WorldWideScience

Sample records for preliminary numerical analysis

  1. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  2. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  3. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from m

  4. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  5. Numerical analysis

    CERN Document Server

    Jacques, Ian

    1987-01-01

    This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...

  6. Analysis of the global free infra-gravity wave climate for the SWOT mission, and preliminary results of numerical modelling

    Science.gov (United States)

    Rawat, A.; Aucan, J.; Ardhuin, F.

    2012-12-01

    All sea level variations of the order of 1 cm at scales under 30 km are of great interest for the future Surface Water Ocean Topography (SWOT) satellite mission. That satellite should provide high-resolution maps of the sea surface height for analysis of meso to sub-mesoscale currents, but that will require a filtering of all gravity wave motions in the data. Free infragravity waves (FIGWs) are generated and radiate offshore when swells and/or wind seas and their associated bound infragravity waves impact exposed coastlines. Free infragravity waves have dominant periods comprised between 1 and 10 minutes and horizontal wavelengths of up to tens of kilometers. Given the length scales of the infragravity waves wavelength and amplitude, the infragravity wave field will can a significant fraction the signal measured by the future SWOT mission. In this study, we analyze the data from recovered bottom pressure recorders of the Deep-ocean Assessment and Reporting of Tsunami (DART) program. This analysis includes data spanning several years between 2006 and 2010, from stations at different latitudes in the North and South Pacific, the North Atlantic, the Gulf of Mexico and the Caribbean Sea. We present and discuss the following conclusions: (1) The amplitude of free infragravity waves can reach several centimeters, higher than the precision sought for the SWOT mission. (2) The free infragravity signal is higher in the Eastern North Pacific than in the Western North Pacific, possibly due to smaller incident swell and seas impacting the nearby coastlines. (3) Free infragravity waves are higher in the North Pacific than in the North Atlantic, possibly owing to different average continental shelves configurations in the two basins. (4) There is a clear seasonal cycle at the high latitudes North Atlantic and Pacific stations that is much less pronounced or absent at the tropical stations, consistent with the generation mechanism of free infragravity waves. Our numerical model

  7. Introductory numerical analysis

    CERN Document Server

    Pettofrezzo, Anthony J

    2006-01-01

    Written for undergraduates who require a familiarity with the principles behind numerical analysis, this classical treatment encompasses finite differences, least squares theory, and harmonic analysis. Over 70 examples and 280 exercises. 1967 edition.

  8. Static Analysis Numerical Algorithms

    Science.gov (United States)

    2016-04-01

    STATIC ANALYSIS OF NUMERICAL ALGORITHMS KESTREL TECHNOLOGY, LLC APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...3. DATES COVERED (From - To) NOV 2013 – NOV 2015 4. TITLE AND SUBTITLE STATIC ANALYSIS OF NUMERICAL ALGORITHMS 5a. CONTRACT NUMBER FA8750-14-C... algorithms , linear digital filters and integrating accumulators, modifying existing versions of Honeywell’s HiLiTE model-based development system and

  9. Theoretical numerical analysis

    CERN Document Server

    Wendroff, Burton

    1966-01-01

    Theoretical Numerical Analysis focuses on the presentation of numerical analysis as a legitimate branch of mathematics. The publication first elaborates on interpolation and quadrature and approximation. Discussions focus on the degree of approximation by polynomials, Chebyshev approximation, orthogonal polynomials and Gaussian quadrature, approximation by interpolation, nonanalytic interpolation and associated quadrature, and Hermite interpolation. The text then ponders on ordinary differential equations and solutions of equations. Topics include iterative methods for nonlinear systems, matri

  10. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  11. Numerical analysis using Sage

    CERN Document Server

    Anastassiou, George A

    2015-01-01

    This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application.  Answers may be verified using Sage.  The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®.  Sage is  open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...

  12. Numerical analysis II essentials

    CERN Document Server

    REA, The Editors of; Staff of Research Education Association

    1989-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Numerical Analysis II covers simultaneous linear systems and matrix methods, differential equations, Fourier transformations, partial differential equations, and Monte Carlo methods.

  13. UVISS preliminary visibility analysis

    DEFF Research Database (Denmark)

    Betto, Maurizio

    1998-01-01

    The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part of the w......The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part...

  14. UVISS preliminary visibility analysis

    DEFF Research Database (Denmark)

    Betto, Maurizio

    1998-01-01

    The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part...

  15. Preliminary 2D numerical modeling of common granular problems

    Science.gov (United States)

    Wyser, Emmanuel; Jaboyedoff, Michel

    2017-04-01

    Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical

  16. Introduction to numerical analysis

    CERN Document Server

    Hildebrand, F B

    1987-01-01

    Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.

  17. Handbook of numerical analysis

    CERN Document Server

    Ciarlet, Philippe G

    Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an

  18. Numerical Limit Analysis:

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2007-01-01

    Limit State analysis has a long history and many prominent researchers have contributed. The theoretical foundation is based on the upper- and lower-bound theorems which give a very comprehensive and elegant formulation on complicated physical problems. In the pre-computer age Limit State analysis...

  19. Numerical Limit Analysis:

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2007-01-01

    Limit State analysis has a long history and many prominent researchers have contributed. The theoretical foundation is based on the upper- and lower-bound theorems which give a very comprehensive and elegant formulation on complicated physical problems. In the pre-computer age Limit State analysis...... also enabled engineers to solve practical problems within reinforced concrete, steel structures and geotechnics....

  20. Theoretical numerical analysis a functional analysis framework

    CERN Document Server

    Atkinson, Kendall

    2005-01-01

    This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu

  1. Concept Overview & Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2017-07-12

    'H2@Scale' is an opportunity for wide-scale use of hydrogen as an intermediate that carries energy from various production options to multiple uses. It is based on identifying and developing opportunities for low-cost hydrogen production and investigating opportunities for using that hydrogen across the electricity, industrial, and transportation sectors. One of the key production opportunities is use of low-cost electricity that may be generated under high penetrations of variable renewable generators such as wind and solar photovoltaics. The technical potential demand for hydrogen across the sectors is 60 million metric tons per year. The U.S. has sufficient domestic renewable resources so that each could meet that demand and could readily meet the demand using a portfolio of generation options. This presentation provides an overview of the concept and the technical potential demand and resources. It also motivates analysis and research on H2@Scale.

  2. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  3. Matlab programming for numerical analysis

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become

  4. Preliminary hazards analysis -- vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  5. Assessment of Available Numerical Tools for Dynamic Mooring Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Eskilsson, Claes; Ferri, Francesco

    This report covers a preliminary assessment of available numerical tools to be used in upcoming full dynamic analysis of the mooring systems assessed in the project _Mooring Solutions for Large Wave Energy Converters_. The assessments tends to cover potential candidate software and subsequently c...

  6. A first course in numerical analysis

    CERN Document Server

    Ralston, Anthony

    2001-01-01

    This outstanding text by two well-known authors treats numerical analysis with mathematical rigor, but presents a minimum of theorems and proofs. Oriented toward computer solutions of problems, it stresses error analysis and computational efficiency, and compares different solutions to the same problem.Following an introductory chapter on sources of error and computer arithmetic, the text covers such topics as approximation and algorithms; interpolation; numerical differentiation and numerical quadrature; the numerical solution of ordinary differential equations; functional approximation by l

  7. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  8. A Preliminary Study on 1D Numerical Experiment of Water Debris Flow in Gully

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to improve and enhance the numerical modeling methods and its application on debris flow problems,a preliminary study has been proposed in accordance with the corrected water-sediment numerical model on the premise of revised resistance and sediment capacity equations.Firstly,an overview the recent re- search achievements on numerical simulation of debris flow has been conducted,the results shown that a gener- al numerical model for debris flow can not be existed at all because the complex rheol...

  9. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  10. An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2013-01-01

    Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to

  11. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  12. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  13. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  14. Preliminary result of a three dimensional numerical simulation of cloud formation over a cooling pond

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.

    1978-01-01

    Cooling ponds receive large amounts of waste heat from industrial sources and release the heat to the atmosphere. These large area sources of warm and moist air may have significant inadvertent effects. This paper is a preliminary step in the development of a method for estimating the perturbations in the atmosphere produced by a cooling pond. A three-dimensional numerical model based on turbulence second-moment closure equations and Gaussian cloud relations has been developed. A simplified version of the model, in which only turbulent energy and length-scale equations are solved prognostically, is used. Numerical simulations are conducted using as boundary conditions the data from a cooling pond study conducted in northern Illinois during the winter of 1976-1977. Preliminary analyses of these simulations indicate that formation of clouds over a cooling pond is sensitive to the moisture content in the ambient atmosphere.

  15. Discrimination and numerical analysis of human pathogenic ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... Numerical analysis of whole-cell protein profiles of all strains revealed 2 .... average linkage method and correlation coefficient distance. ... distance yielded a dendrogam, consisting of two basic .... Candida glabrata: review of.

  16. Design and analysis of numerical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, K.P.; Sacks, J.; Chang, Yuefang (Univ. of Illinois, Urbana-Champaign (United States))

    1993-05-01

    Calculations with numerical models are often referred to as numerical experiments, by analogy to classical laboratory experiments. Usually, many numerical experiments are carried out to determine the response of a numerical model to variations of internal or external parameters over some range of interest. If individual experiments are inexpensive to carry out, and if the number of independent parameters is small, it may be possible to search the entire parameter space of the model. This is difficult, however, if the dimension of the parameter space is even moderately large or the codes are expensive to run. In this paper methods are presented for the design and analysis of numerical experiments that are especially useful and efficient in multidimensional parameter spaces. The analysis method, which is similar to kriging in the spatial analysis literature, fits a statistical model to the output of the numerical model. As an example, the method is applied to a fully nonlinear, global, equivalent-barotropic dynamical model. The statistical model also provides estimates of the uncertainty of predicted numerical model output, which can provide guidance on where in the parameter space to conduct further experiments, if necessary. The method can provide major improvements in the efficiency with which numerical sensitivity experiments are conducted. 17 refs., 9 figs., 2 tabs.

  17. Preliminary Analysis of Google+'s Privacy

    OpenAIRE

    2011-01-01

    In this paper we provide a preliminary analysis of Google+ privacy. We identified that Google+ shares photo metadata with users who can access the photograph and discuss its potential impact on privacy. We also identified that Google+ encourages the provision of other names including maiden name, which may help criminals performing identity theft. We show that Facebook lists are a superset of Google+ circles, both functionally and logically, even though Google+ provides a better user interfac...

  18. Mode analysis of numerical geodynamo models

    CERN Document Server

    Schrinner, Martin; Hoyng, Peter

    2011-01-01

    It has been suggested in Hoyng (2009) that dynamo action can be analysed by expansion of the magnetic field into dynamo modes and statistical evaluation of the mode coefficients. We here validate this method by analysing a numerical geodynamo model and comparing the numerically derived mean mode coefficients with the theoretical predictions. The model belongs to the class of kinematically stable dynamos with a dominating axisymmetric, antisymmetric with respect to the equator and non-periodic fundamental dynamo mode. The analysis requires a number of steps: the computation of the so-called dynamo coefficients, the derivation of the temporally and azimuthally averaged dynamo eigenmodes and the decomposition of the magnetic field of the numerical geodynamo model into the eigenmodes. For the determination of the theoretical mode excitation levels the turbulent velocity field needs to be projected on the dynamo eigenmodes. We compare the theoretically and numerically derived mean mode coefficients and find reason...

  19. Parallel Worldline Numerics: Implementation and Error Analysis

    CERN Document Server

    Mazur, Dan

    2014-01-01

    We give an overview of the worldline numerics technique, and discuss the parallel CUDA implementation of a worldline numerics algorithm. In the worldline numerics technique, we wish to generate an ensemble of representative closed-loop particle trajectories, and use these to compute an approximate average value for Wilson loops. We show how this can be done with a specific emphasis on cylindrically symmetric magnetic fields. The fine-grained, massive parallelism provided by the GPU architecture results in considerable speedup in computing Wilson loop averages. Furthermore, we give a brief overview of uncertainty analysis in the worldline numerics method. There are uncertainties from discretizing each loop, and from using a statistical ensemble of representative loops. The former can be minimized so that the latter dominates. However, determining the statistical uncertainties is complicated by two subtleties. Firstly, the distributions generated by the worldline ensembles are highly non-Gaussian, and so the st...

  20. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lui, S H

    2011-01-01

    A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

  1. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  2. Numerical analysis of divertor plasma for demo-CREST

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M.; Maeki, K.; Hatayama, A. [Graduate School of Fundamental Science and Technology, Keio University, Yokohama (Japan); Hiwatari, R. [Central Research Institute of Electric Power Industry (CRIEPI), Tokyo (Japan); Bonnin, X. [LIMHP-CNRS, Universite Paris 13, Villetaneuse (France); Zhu, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Schneider, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany); Coster, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)

    2010-05-15

    The numerical analysis of the demonstration fusion reactor Demo-CREST has been carried out; this analysis focuses on impurity seeding. Several design activities for DEMO have been carried out; however, its detailed divertor plasma analysis remains to be carried out. Therefore, in this study, we discuss the possibility of neon puffing in demo-CREST to decrease the power load to the divertor plate by using the B2-EIRENE code. It has been shown that the radiation power loss by neon increases with upstream plasma density and that the peak power load to the divertor plate comes close to the allowable level by using the preliminary divertor configuration (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    optimisation as well as material optimisation is given and a four-storey shear wall is analysed using load optimisation. The analysis yields a capacity more than three times larger than the design load for the critical load case, and the collapse mode and stress distribution are analysed. Finally, numerical...

  4. On the Complexity of Numerical Analysis

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Kjeldgaard-Pedersen, Johan; Burgisser, Peter;

    2006-01-01

    We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis. We show that both hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program producing...... of classical complexity classes) being PSPACE....

  5. Preliminary Hazards Analysis Plasma Hearth Process

    Energy Technology Data Exchange (ETDEWEB)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  6. Manufacturing in space: Fluid dynamics numerical analysis

    Science.gov (United States)

    Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.

    1981-01-01

    Natural convection in a spherical container with cooling at the center was numerically simulated using the Lockheed-developed General Interpolants Method (GIM) numerical fluid dynamic computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes growing experiments to be performed on board Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. For a temperature difference of 10 C from the cooling sting at the center to the container surface, and a gravitional loading of 0.000001 g a computed maximum fluid velocity of about 2.4 x 0.00001 cm/sec was reached after about 250 sec. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.

  7. Numerical and experimental study of local heat transfer enhancement in helically coiled pipes. Preliminary results.

    Science.gov (United States)

    Bozzoli, F.; Cattani, L.; Rainieri, S.; Zachár, A.

    2015-11-01

    In the last years, the attention of heat transfer equipments manufacturers turned toward helically coiled-tube heat exchangers, especially with regards to applications for viscous and/or particulate products. The recent progress achieved in numerical simulation motivated many research groups to develop numerical models for this kind of apparatuses. These models, intended both to improve the knowledge of the fundamental heat transfer mechanisms in curved geometries and to support the industrial design of this kind of apparatuses, are usually validated throughout the comparison with either theoretical or experimental evidences by considering average heat transfer performances. However, this approach doesn't guarantee that the validated models are able to reproduce local effects in details, which are so important in this kind of non-standard geometries. In the present paper a numerical model of convective heat transfer in coiled tubes for laminar flow regime was formulated and discussed. Its goodness was checked throughout the comparison with the latest experimental outcomes of Bozzoli et al. [1] in terms of convective heat flux distribution along the boundary of the duct, by ensuring the effectiveness of the model also in the description of local behaviours. Although the present paper reports only preliminary results of this simulation/validation process, it could be of interest for the research community because it proposes a novel approach that could be useful to validate many numerical models for nonstandard geometries.

  8. Repository Subsurface Preliminary Fire Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Logan

    2001-07-30

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

  9. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...... is developed for improved perfor- mance. An example is given in which an inverse T-beam is analyzed and the numerical results are compared to laboratory tests. The third and final element is a plane shell element capable of modeling membrane and plate bending behavior. The element employs a layered disk...

  10. Photonic Crystals Mathematical Analysis and Numerical Approximation

    CERN Document Server

    Dörfler, Willy; Plum, Michael; Schneider, Guido; Wieners, Christian

    2011-01-01

    This book concentrates on the mathematics of photonic crystals, which form an important class of physical structures investigated in nanotechnology. Photonic crystals are materials which are composed of two or more different dielectrics or metals, and which exhibit a spatially periodic structure, typically at the length scale of hundred nanometers. In the mathematical analysis and the numerical simulation of the partial differential equations describing nanostructures, several mathematical difficulties arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence of contin

  11. An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, J F

    2007-01-01

    Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentrablatt Math "". . . carefully structured with many detailed worked examples . . .""-The Mathematical Gazette "". . . an up-to-date and user-friendly account . . .""-Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or d

  12. Numerical analysis method for linear induction machines.

    Science.gov (United States)

    Elliott, D. G.

    1972-01-01

    A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.

  13. Numerical analysis of cross shear plate rolling

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1997-01-01

    The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... are in the roll gap, the position and the size of the shear zone and the rolling load are calculated. Experimental results are presented verifying the calculations. The numerical analysis facilitates a better understanding of the mechanics in cross shear plate rolling....

  14. Numerical analysis of cross shear plate rolling

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1997-01-01

    The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... shear zone between the forward and backward slip zones in the deformation zone thus lowering the rolling load. A numerical analysis of the cross shear rolling process is carried out based on the slab method adopting Wanheim and Bay's general friction model. The pressure distribution along the contact...

  15. BASE Flexible Array Preliminary Lithospheric Structure Analysis

    Science.gov (United States)

    Yeck, W. L.; Sheehan, A. F.; Anderson, M. L.; Siddoway, C. S.; Erslev, E.; Harder, S. H.; Miller, K. C.

    2009-12-01

    The Bighorns Arch Seismic Experiment (BASE) is a Flexible Array experiment integrated with EarthScope. The goal of BASE is to develop a better understanding of how basement-involved foreland arches form and what their link is to plate tectonic processes. To achieve this goal, the crustal structure under the Bighorn Mountain range, Bighorn Basin, and Powder River Basin of northern Wyoming and southern Montana are investigated through the deployment of 35 broadband seismometers, 200 short period seismometers, 1600 “Texan” instruments using active sources and 800 “Texan” instruments monitoring passive sources, together with field structural analysis of brittle structures. The novel combination of these approaches and anticipated simultaneous data inversion will give a detailed structural crustal image of the Bighorn region at all levels of the crust. Four models have been proposed for the formation of the Bighorn foreland arch: subhorizontal detachment within the crust, lithospheric buckling, pure shear lithospheric thickening, and fault blocks defined by lithosphere-penetrating thrust faults. During the summer of 2009, we deployed 35 broadband instruments, which have already recorded several magnitude 7+ teleseismic events. Through P wave receiver function analysis of these 35 stations folded in with many EarthScope Transportable Array stations in the region, we present a preliminary map of the Mohorovicic discontinuity. This crustal map is our first test of how the unique Moho geometries predicted by the four hypothesized models of basement involved arches fit seismic observations for the Bighorn Mountains. In addition, shear-wave splitting analysis for our first few recorded teleseisms helps us determine if strong lithospheric deformation is preserved under the range. These analyses help lead us to our final goal, a complete 4D (3D spatial plus temporal) lithospheric-scale model of arch formation which will advance our understanding of the mechanisms

  16. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  17. Preliminary analysis of turbochargers rotors dynamic behaviour

    Science.gov (United States)

    Monoranu, R.; Ştirbu, C.; Bujoreanu, C.

    2016-08-01

    Turbocharger rotors for the spark and compression ignition engines are resistant steels manufactured in order to support the exhaust gas temperatures exceeding 1200 K. In fact, the mechanical stress is not large as the power consumption of these systems is up to 10 kW, but the operating speeds are high, ranging between 30000 ÷ 250000 rpm. Therefore, the correct turbochargers functioning involves, even from the design stage, the accurate evaluation of the temperature effects, of the turbine torque due to the engine exhaust gases and of the vibration system behaviour caused by very high operating speeds. In addition, the turbocharger lubrication complicates the model, because the classical hydrodynamic theory cannot be applied to evaluate the floating bush bearings. The paper proposes a FEM study using CATIA environment, both as modeling medium and as tool for the numerical analysis, in order to highlight the turbocharger complex behaviour. An accurate design may prevent some major issues which can occur during its operation.

  18. Numerical flow analysis of hydro power stations

    Science.gov (United States)

    Ostermann, Lars; Seidel, Christian

    2017-07-01

    For the hydraulic engineering and design of hydro power stations and their hydraulic optimisation, mainly experimental studies of the physical submodel or of the full model at the hydraulics laboratory are carried out. Partially, the flow analysis is done by means of computational fluid dynamics based on 2D and 3D methods and is a useful supplement to experimental studies. For the optimisation of hydro power stations, fast numerical methods would be appropriate to study the influence of a wide field of optimisation parameters and flow states. Among the 2D methods, especially the methods based on the shallow water equations are suitable for this field of application, since a lot of experience verified by in-situ measurements exists because of the widely used application of this method for the problems in hydraulic engineering. As necessary, a 3D model may supplement subsequently the optimisation of the hydro power station. The quality of the results of the 2D method for the optimisation of hydro power plants is investigated by means of the results of the optimisation of the hydraulic dividing pier compared to the results of the 3D flow analysis.

  19. Dual-fuel, dual-throat engine preliminary analysis

    Science.gov (United States)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  20. Theoretical analyses and numerical simulations of the torsional mode for two acoustic viscometers with preliminary experimental tests.

    Science.gov (United States)

    Ai, Yuhui; Lange, Rebecca A

    2008-03-01

    A rigorous analysis of the torsional modes in both a cylindrical wave guide and the associated static viscous fluid field has been conducted from the solid and the fluid wave equations and the coupled boundary conditions. As a result, two acoustic viscometer models, along with four independent equations connecting the density and the viscosity of the fluid with the attenuation and the phase velocity of the torsional wave in the wave guide, have been developed. The analysis shows that the product of the viscosity and the density of the fluid can be measured from the end reflection coefficient of the torsional wave in the wave guide and that both the viscosity and the density can be determined simultaneously from either the phase velocity or the attenuation of the torsional wave in a single cylindrical wave guide. For the simultaneous measurements of the viscosity and the density, the independent equations have to be solved numerically, for example, using Matlab (The MathWorks, Natick, MA), given either the attenuation or the phase velocity in the wave guide that is surrounded by the fluid. To demonstrate the technical feasibility, numerical simulations have been conducted to discern viscosity, phase velocity, and density, all versus attenuation, at different frequencies, and with variable dimension of a molybdenum rod, so that both the advantages and the disadvantages of the simultaneous measurements can be explored. In the end, to test the two models, preliminary experiments on two viscous standards were conducted at 23 degrees C, and good agreements have been achieved between the viscosities measured from both models and for both standards.

  1. EMPIRICAL-NUMERICAL ANALYSIS OF HEADCUT MIGRATION

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Headcut migration is studied by using empirical and numerical modeling approaches. Empirical formulas for the headcut migration are established using available measurement data, which consider not only the flow strength but also the properties of soil. Numerical model for the headcut migration is proposed. The influences of dynamic pressure gradient, downward flow, and bed slope on sediment entrainment are considered. The local erosion patterns and migration speeds of headcut calculated by the numerical model agree reasonably well with observed data.

  2. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  3. A Preliminary Tsunami vulnerability analysis for Bakirkoy district in Istanbul

    Science.gov (United States)

    Tufekci, Duygu; Lutfi Suzen, M.; Cevdet Yalciner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Resilience of coastal utilities after earthquakes and tsunamis has major importance for efficient and proper rescue and recovery operations soon after the disasters. Vulnerability assessment of coastal areas under extreme events has major importance for preparedness and development of mitigation strategies. The Sea of Marmara has experienced numerous earthquakes as well as associated tsunamis. There are variety of coastal facilities such as ports, small craft harbors, and terminals for maritime transportation, water front roads and business centers mainly at North Coast of Marmara Sea in megacity Istanbul. A detailed vulnerability analysis for Yenikapi region and a detailed resilience analysis for Haydarpasa port in Istanbul have been studied in previously by Cankaya et al., (2015) and Aytore et al., (2015) in SATREPS project. In this study, the methodology of vulnerability analysis under tsunami attack given in Cankaya et al., (2015) is modified and applied to Bakirkoy district of Istanbul. Bakirkoy district is located at western part of Istanbul and faces to the North Coast of Marmara Sea from 28.77oE to 28.89oE. High resolution spatial dataset of Istanbul Metropolitan Municipality (IMM) is used and analyzed. The bathymetry and topography database and the spatial dataset containing all buildings/structures/infrastructures in the district are collated and utilized for tsunami numerical modeling and following vulnerability analysis. The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability assessment parameters in the district according to vulnerability and resilience are defined; and scored by implementation of a GIS based TVA with appropriate MCDA methods. The risk level is computed using tsunami intensity (level of flow depth from simulations) and TVA results at every location in Bakirkoy district. The preliminary results are presented and discussed

  4. [Tuscan Chronic Care Model: a preliminary analysis].

    Science.gov (United States)

    Barbato, Angelo; Meggiolaro, Angela; Rossi, Luigi; Fioravanti, C; Palermita, F; La Torre, Giuseppe

    2015-01-01

    the aim of this study is to present a preliminary analysis of efficacy and effectiveness of a model of chronically ill care (Chronic Care Model, CCM). the analysis took into account 106 territorial modules, 1016 General Practitioners and 1,228,595 patients. The diagnostic and therapeutic pathways activated (PDTA), involved four chronic conditions, selected according to the prevalence and incidence, in Tuscany Region: Diabetes Mellitus (DM), Heart Failure (SC), Chronic Obstructive Pulmonary Disease (COPD) and stroke. Six epidemiological indicators of process and output were selected, in order to measure the model of care performed, before and after its application: adherence to specific follow-up for each pathology (use of clinical and laboratory indicators), annual average of expenditure per/capita/euro for diagnostic tests, in laboratory and instrumental, average expenditure per/capita/year for specialist visits; hospitalization rate for diseases related to the main pathology, hospitalization rate for long-term complications and rate of access to the emergency department (ED). Data were collected through the database; the differences before and after the intervention and between exposed and unexposed, were analyzed by method "Before-After (Controlled and Uncontrolled) Studies". The impact of the intervention was calculated as DD (difference of the differences). DM management showed an increased adhesion to follow-up (DD: +8.1%), and the use of laboratory diagnostics (DD: +4,9 €/year/pc), less hospitalization for long-term complications and for endocrine related diseases (DD respectively: 5.8/1000 and DD: +1.2/1000), finally a smaller increase of access to PS (DD: -1.6/1000), despite a slight increase of specialistic visits (DD: +0,38 €/year/pc). The management of SC initially showed a rising adherence to follow-up (DD: +2.3%), a decrease of specialist visits (DD:E 1.03 €/year/pc), hospitalization and access to PS for exacerbations (DD: -4.4/1000 and DD: -6

  5. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  6. Status of NINJA: the Numerical INJection Analysis project

    CERN Document Server

    Aylott, Benjamin; Boggs, William D; Boyle, Michael; Brady, Patrick R; Brown, Duncan A; Brügmann, Bernd; Buchman, Luisa T; Buonanno, Alessandra; Cadonati, Laura; Camp, Jordan; Campanelli, Manuela; Centrella, Joan; Chatterjis, Shourov; Christensen, Nelson; Chu, Tony; Diener, Peter; Dorband, Nils; Etienne, Zachariah B; Faber, Joshua; Fairhurst, Stephen; Farr, Benjamin; Fischetti, Sebastian; Guidi, Gianluca; Goggin, Lisa M; Hannam, Mark; Herrmann, Frank; Hinder, Ian; Husa, Sascha; Kalogera, Vicky; Keppel, Drew; Kidder, Lawrence E; Kelly, Bernard J; Krishnan, Badri; Laguna, Pablo; Lousto, Carlos O; Mandel, Ilya; Marronetti, Pedro; Matzner, Richard; McWilliams, Sean T; Matthews, Keith D; Mercer, R Adam; Mohapatra, Satyanarayan R P; Mroué, Abdul H; Nakano, Hiroyuki; Ochsner, Evan; Pan, Yi; Pekowsky, Larne; Pfeiffer, Harald P; Pollney, Denis; Pretorius, Frans; Raymond, Vivien; Reisswig, Christian; Rezzolla, Luciano; Rinne, Oliver; Robinson, Craig; Röver, Christian; Santamaría, Lucía; Sathyaprakash, Bangalore; Scheel, Mark A; Schnetter, Erik; Seiler, Jennifer; Shapiro, Stuart L; Shoemaker, Deirdre; Sperhake, Ulrich; Stroeer, Alexander; Sturani, Riccardo; Tichy, Wolfgang; Liu, Yuk Tung; van der Sluys, Marc; van Meter, James R; Vaulin, Ruslan; Vecchio, Alberto; Veitch, John; Viceré, Andrea; Whelan, John T; Zlochower, Yosef; 10.1088/0264-9381/26/11/114008

    2009-01-01

    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise.

  7. Introduction to numerical analysis and scientific computing

    CERN Document Server

    Nassif, Nabil

    2013-01-01

    Computer Number Systems and Floating Point Arithmetic Introduction Conversion from Base 10 to Base 2Conversion from Base 2 to Base 10Normalized Floating Point SystemsFloating Point OperationsComputing in a Floating Point SystemFinding Roots of Real Single-Valued Functions Introduction How to Locate the Roots of a Function The Bisection Method Newton's Method The Secant MethodSolving Systems of Linear Equations by Gaussian Elimination Mathematical Preliminaries Computer Storage for Matrices. Data Structures Back Substitution for Upper Triangular Systems Gauss Reduction LU DecompositionPolynomia

  8. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  9. QCD and numerical analysis III. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borici, A.; Joo, B.; Kennedy, A.; Pendleton, B. (eds.) [Edinburgh Univ. (United Kingdom). School of Physics; Frommer, A. [Bergische Univ. Wuppertal (Germany). Fachbereich C - Mathematik und Naturwissenschaften

    2005-07-01

    This book reports on progress in numerical methods for Lattice QCD with chiral fermions. It contains a set of pedagogical introductory articles written by experts from both the Applied Mathematics and Lattice Field Theory communities, together with detailed accounts of leading-edge algorithms for the simulation of overlap chiral fermions. Topics covered include: QCD simulations in the chiral regime; Evaluation and approximation of matrix functions; Krylov subspace methods for the iterative solution of linear systems; Eigenvalue solvers. These are complemented by a set of articles on closely related numerical and technical problems in Lattice field Theory. (orig.)

  10. Lecture notes in numerical analysis with Mathematica

    CERN Document Server

    Styś, Tadeusz

    2014-01-01

    The contents of this book include chapters on floating point computer arithmetic, natural and generalized interpolating polynomials, uniform approximation, numerical integration, polynomial splines and many more.This book is intended for undergraduate and graduate students in institutes, colleges, universities and academies who want to specialize in this field. The readers will develop a solid understanding of the concepts of numerical methods and their application. The inclusion of Lagrane and Hermite approximation by polynomials, Trapezian rule, Simpsons rule, Gauss methods and Romberg`s met

  11. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  12. Analysis of Numerically Generated Wake Structures

    DEFF Research Database (Denmark)

    Ivanell, S.; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming;

    2009-01-01

    Direct numerical simulations of the Navier-Stokes equations are performed to achieve a better understanding of the behaviour of wakes generated by wind turbines. The simulations are performed by combining the in-house developed computer code EllipSys3D with the actuator-line methodology. In the a......Direct numerical simulations of the Navier-Stokes equations are performed to achieve a better understanding of the behaviour of wakes generated by wind turbines. The simulations are performed by combining the in-house developed computer code EllipSys3D with the actuator-line methodology...

  13. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lions, Jacques-Louis

    2011-01-01

    S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro

  14. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    Science.gov (United States)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component

  15. Numerical Analysis of Large Diameter Butterfly Valve

    Science.gov (United States)

    Youngchul, Park; Xueguan, Song

    In this paper, a butterfly valve with the diameter of 1,800 mm was studied. Three-dimensional numerical technique by using commercial code CFX were conducted to observe the flow patterns and to measure flow coefficient, hydrodynamic torque coefficient and so on, when the large butterfly valve operated with various angles and uniform incoming velocity.

  16. Stochastic Analysis Method of Sea Environment Simulated by Numerical Models

    Institute of Scientific and Technical Information of China (English)

    刘德辅; 焦桂英; 张明霞; 温书勤

    2003-01-01

    This paper proposes the stochastic analysis method of sea environment simulated by numerical models, such as wave height, current field, design sea levels and longshore sediment transport. Uncertainty and sensitivity analysis of input and output factors of numerical models, their long-term distribution and confidence intervals are described in this paper.

  17. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  18. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  19. Preliminary Numerical Investigations of Entropy Generation in Electric Machines Based on a Canonical Configuration

    Directory of Open Access Journals (Sweden)

    Toni Eger

    2015-12-01

    Full Text Available The present paper analyzes numerically the entropy generation induced by forced convection in a canonical configuration. The configuration itself includes two well known fluid dynamic problems: (1 an external flow (flow around a cylinder, Kármán flow; and (2 an internal flow (flow between two concentric rotating cylinders, Couette flow. In many daily engineering issues (e.g., cooling of electric machines, a combination of these problems occurs and has to be investigated. Using the canonical configuration, the fields of entropy generation are analyzed in this work for a constant wall heat flux but varying two key parameters (Reynolds numbers Re∞ and Re0. The entropy generation due to conduction shows an absolute minimum around Re0 = 10,000. The same minima can be found by a detailed analysis of the temperature profile. Thus, entropy generation seems to be a suitable indicator for optimizing heat exchange processes and delivers a large amount of information concerning fluid and heat transport.

  20. A theoretical introduction to numerical analysis

    CERN Document Server

    Ryaben'kii, Victor S

    2006-01-01

    PREFACE ACKNOWLEDGMENTS INTRODUCTION Discretization Conditioning Error On Methods of Computation INTERPOLATION OF FUNCTIONS. QUADRATURES ALGEBRAIC INTERPOLATION Existence and Uniqueness of Interpolating Polynomial Classical Piecewise Polynomial Interpolation Smooth Piecewise Polynomial Interpolation (Splines) Interpolation of Functions of Two Variables TRIGONOMETRIC INTERPOLATION Interpolation of Periodic Functions Interpolation of Functions on an Interval. Relation between Algebraic and Trigonometric Interpolation COMPUTATION OF DEFINITE INTEGRALS. QUADRATURES Trapezoidal Rule, Simpson's Formula, and the Like Quadrature Formulae with No Saturation. Gaussian Quadratures Improper Integrals. Combination of Numerical and Analytical Methods Multiple Integrals SYSTEMS OF SCALAR EQUATIONS SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS: DIRECT METHODS Different Forms of Consistent Linear Systems Linear Spaces, Norms, and Operators Conditioning of Linear Systems Gaussian Elimination and Its Tri-Diag...

  1. Preliminary analysis of patent trends for magnetic fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information.

  2. Development of numerical procedures for analysis of complex structures

    Science.gov (United States)

    Gupta, K. K.

    1984-01-01

    The paper is concerned with the development of novel numerical procedures for the solution of static, stability, free vibration and dynamic response analysis of large, complex practical structures. Thus, details of numerical algorithms evolved for dynamic analysis of usual non-rotating and also rotating structures as well as finite dynamic elements are presented in the paper. Furthermore, the article provides some description of a general-purpose computer program STARS specifically developed for efficient analysis of complex practical structures.

  3. Preliminary analysis of alternative fuel cycles for proliferation evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ripfel, H. C.F.; Rainey, R. H.

    1977-01-01

    The ERDA Division of Nuclear Research and Applications proposed 67 nuclear fuel cycles for assessment as to their nonproliferation potential. The object of the assessment was to determine which fuel cycles pose inherently low risk for nuclear weapon proliferation while retaining the major benefits of nuclear energy. This report is a preliminary analysis of these fuel cycles to develop the fuel-recycle data that will complement reactor data, environmental data, and political considerations, which must be included in the overall evaluation. This report presents the preliminary evaluations from ANL, HEDL, ORNL, and SRL and is the basis for a continuing in-depth study. (DLC)

  4. Preliminary Integrated Safety Analysis Status Report

    Energy Technology Data Exchange (ETDEWEB)

    D. Gwyn

    2001-04-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001.

  5. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  6. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...

  7. Numerical analysis for finite Fresnel transform

    Science.gov (United States)

    Aoyagi, Tomohiro; Ohtsubo, Kouichi; Aoyagi, Nobuo

    2016-10-01

    The Fresnel transform is a bounded, linear, additive, and unitary operator in Hilbert space and is applied to many applications. In this study, a sampling theorem for a Fresnel transform pair in polar coordinate systems is derived. According to the sampling theorem, any function in the complex plane can be expressed by taking the products of the values of a function and sampling function systems. Sampling function systems are constituted by Bessel functions and their zeros. By computer simulations, we consider the application of the sampling theorem to the problem of approximating a function to demonstrate its validity. Our approximating function is a circularly symmetric function which is defined in the complex plane. Counting the number of sampling points requires the calculation of the zeros of Bessel functions, which are calculated by an approximation formula and numerical tables. Therefore, our sampling points are nonuniform. The number of sampling points, the normalized mean square error between the original function and its approximation function and phases are calculated and the relationship between them is revealed.

  8. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  9. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  10. Numerical Analysis of Magnetic Fluid Sealing Performance

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The sealing performance of magnetic fluid is related to the magnetic fluid itself. Many factors can influence the magnetic field and the seal pressure differences of magnetic fluid seals, such as the sealing gap, the shaft eccentricity, the shaft diameter, the volume of the magnetic fluid and the centrifugal force. These factors are analyzed by numerical computation . When the seal material and structure are the same, the seal pressure difference is directly proportional to the magnetic field intensity and the saturation magnetization of the magnetic fluid. The sealing performance of the magnetic fluid will reduce with the increase of the sealing gap and shaft eccentricity. The sealing performance will increase with the volume of the magnetic fluid and decrease with the increase of the shaft diameter taking gravity into account. The increase of the shaft diameter is the same as the reduction of the volume of the magnetic fluid. The magnetic fluid cross-section can change because of the centrifugal force. Some improvements can reduce the influence of the centrifugal force. The centrifugal force can be utilized to improve the sealing performance.

  11. Using R for numerical analysis in science and engineering

    CERN Document Server

    Bloomfield, Victor A

    2014-01-01

    Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinea

  12. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  13. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or c

  14. Numerical bifurcation analysis of immunological models with time delays

    Science.gov (United States)

    Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady

    2005-12-01

    In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.

  15. Numerical analysis of complex fluid-flow systems

    Science.gov (United States)

    Holland, R. L.

    1980-01-01

    Very flexible computer-assisted numerical analysis is used to solve dynamic fluid-flow equations characterizing computer-controlled heat dissipation system developed for Space lab. Losses caused by bends, ties, fittings, valves, and like are easily included, and analysis can solve both steady-state and transient cases. It can also interact with parallel thermal analysis.

  16. Fort Drum Preliminary Fiscal Impact Analysis.

    Science.gov (United States)

    1986-02-01

    of inmigrants 0 Fiscal histories, projections, and impacts for counties, cities, towns, villages, school districts, and the state. The results of...distribution of the inmigrating population within the three counties. Thus, an accurate forecast of the expected distribution of the inmigrating population is a...The distribution of inmigration to the school districts was made using the analysis explained in Chapter 3. Children associated with 800 new on-post

  17. A numerical comparison of sensitivity analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hamby, D.M.

    1993-12-31

    Engineering and scientific phenomena are often studied with the aid of mathematical models designed to simulate complex physical processes. In the nuclear industry, modeling the movement and consequence of radioactive pollutants is extremely important for environmental protection and facility control. One of the steps in model development is the determination of the parameters most influential on model results. A {open_quotes}sensitivity analysis{close_quotes} of these parameters is not only critical to model validation but also serves to guide future research. A previous manuscript (Hamby) detailed many of the available methods for conducting sensitivity analyses. The current paper is a comparative assessment of several methods for estimating relative parameter sensitivity. Method practicality is based on calculational ease and usefulness of the results. It is the intent of this report to demonstrate calculational rigor and to compare parameter sensitivity rankings resulting from various sensitivity analysis techniques. An atmospheric tritium dosimetry model (Hamby) is used here as an example, but the techniques described can be applied to many different modeling problems. Other investigators (Rose; Dalrymple and Broyd) present comparisons of sensitivity analyses methodologies, but none as comprehensive as the current work.

  18. Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace

    Directory of Open Access Journals (Sweden)

    Buliński P.

    2015-09-01

    Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.

  19. Numerical analysis of human dental occlusal contact

    Science.gov (United States)

    Bastos, F. S.; Las Casas, E. B.; Godoy, G. C. D.; Meireles, A. B.

    2010-06-01

    The purpose of this study was to obtain real contact areas, forces, and pressures acting on human dental enamel as a function of the nominal pressure during dental occlusal contact. The described development consisted of three steps: characterization of the surface roughness by 3D contact profilometry test, finite element analysis of micro responses for each pair of main asperities in contact, and homogenization of macro responses using an assumed probability density function. The inelastic deformation of enamel was considered, adjusting the stress-strain relationship of sound enamel to that obtained from instrumented indentation tests conducted with spherical tip. A mechanical part of the static friction coefficient was estimated as the ratio between tangential and normal components of the overall resistive force, resulting in μd = 0.057. Less than 1% of contact pairs reached the yield stress of enamel, indicating that the occlusal contact is essentially elastic. The micro-models indicated an average hardness of 6.25GPa, and the homogenized result for macroscopic interface was around 9GPa. Further refinements of the methodology and verification using experimental data can provide a better understanding of processes related to contact, friction and wear of human tooth enamel.

  20. Preliminary Analysis of Helicopter Options to Support Tunisian Counterterrorism Operations

    Science.gov (United States)

    2016-04-27

    results of the current analysis and in Mouton et al., 2015, is the relative cost -effectiveness between the CH-47D and the Mi-17v5. In the previous...helicopters from Sikorsky to fulfill a number of roles in counterterrorism operations. Rising costs and delays in delivery raised the question of...whether other cost -effective options exist to meet Tunisia’s helicopter requirement. Approach Our team conducted a preliminary assessment of

  1. Numerical Analysis vs. Mathematics: Modern mathematics often does not deal with the practical problems which face numerical analysis.

    Science.gov (United States)

    Hamming, R W

    1965-04-23

    I hope I have shown not that mathematicians are incompetent or wrong, but why I believe that their interests, tastes, and objectives are frequently different from those of practicing numerical analysts, and why activity in numerical analysis should be evaluated by its own standards and not by those of pure mathematics. I hope I have also shown you that much of the "art form" of mathematics consists of delicate, "noise-free" results, while many areas of applied mathematics, especially numerical analysis, are dominated by noise. Again, in computing the process is fundamental, and rigorous mathematical proofs are often meaningless in computing situations. Finally, in numerical analysis, as in engineering, choosing the right model is more important than choosing the model with the elegant mathematics.

  2. Preliminary assessment of numerical data requirements TA-73 landfill Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-19

    A numerical model, TOUGH2, was selected for describing liquid- and gas-phase flow in the unsaturated tuff underlying the TA-73 landfill. The model was selected primarily for its ability to simulate the significant mechanisms that may affect transport of contaminants through the vadose zone at the TA-73 landfill, including non-isothermal flow through fractured media. TOUGH2 is the best documented, verified, and validated model capable of performing the required simulations. The sensitivity analyses that were performed and describes in this report identified the input parameters that the selected numerical model is most sensitive to. The input parameters analyzed were saturated hydraulic conductivity, van Genuchten {alpha} and n, residual and saturated moisture contents, infiltration rate, fracture spacing and permeability, atmospheric pressure, and temperature. The sensitivity analyses were performed using a model grid that was designed to incorporate the regions in the landfill vicinity where contaminant transport is likely to occur and where the physical processes affecting flow and transport are the most dynamic. The sensitivity analyses performed suggest that the model is quite sensitive to a number of input parameters, including saturated hydraulic conductivity, the van Genuchten parameters {alpha} and n (for both the tuff matrix and fractures), fracture density and aperture, and atmospheric pressure. The results indicate that additional site-specific hydraulic properties and fracture data should be obtained before attempting to perform predictive, numerical simulations of gas- and liquid-phase flow beneath the landfill.

  3. Numerical Analysis of Conductor Galloping Limitation by Oscillation Frequency Detuning

    Directory of Open Access Journals (Sweden)

    I. I. Serguey

    2009-01-01

    Full Text Available A numerical method has been developed for calculation of conductor oscillations at the moment of galloping that takes account of pendulum  oscillation dampers in the form of eccentric loads. The method is recommended for a numerical analysis of various schemes pertaining to arrangement of horizontal pendulums in the span and their parameters including angles of their initial setting. The obtained results can be used for designing and operation of aerial power lines. 

  4. Interval analysis for Certified Numerical Solution of Problems in Robotics

    OpenAIRE

    Merlet, Jean-Pierre

    2009-01-01

    International audience; Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved numerically with a computer. Examples of such problems are system solving and global optimization but numerous other problems may be addressed as well. This approach has the following general advantages: 1 it allows to find solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are physical param...

  5. Numerical Analysis of Dynamic Direct Tension and Direct Compression Tests

    Science.gov (United States)

    1993-01-01

    material model employed in the nonlinear analysis is a hypoelastic model based on a uniaxial stress-strain relation (Figure 18) that is generalized to...rates. Both an elastic and inelastic concrete material model were employed in all numerical analyses. The modes of failure predicted by the numerical... models ; (2) augmenting the system by adding other typical scenarios, with the ultimate goal of expanding it into a general task-oriented system/shell; and

  6. Preliminary numerical investigation of bandwidth effects on CBET using the LPSE-CBET code

    Science.gov (United States)

    Bates, Jason; Myatt, Jason; Shaw, John; Weaver, James; Obenschain, Keith; Lehmberg, Robert; Obenschain, Steve

    2016-10-01

    Cross beam energy transfer (CBET) is a significant energy-loss mechanism for direct-drive implosions on the OMEGA laser facility. Recently, a working group that includes participants from the Laboratory for Laser Energetics (LLE) at the University of Rochester and the U.S. Naval Research Laboratory (NRL) was formed to investigate strategies for ameliorating the deleterious effects of CBET. As part of this collaboration, the wave-based code LPSE-CBET developed at LLE has been made available to researchers at NRL and is being used to study the feasibility of suppressing CBET through the enhancement of laser bandwidth by stimulated rotational Raman scattering (SRRS). In this poster, we present some preliminary results on this subject. In particular, we discuss initial efforts to evaluate mitigation levels of 4 discrete Stokes lines from SRRS in air and compare our findings with ray-based simulation results of wavelength shifted (-6Å ,0, +6Å) driver-lines on OMEGA. Work Supported by DoE/NNSA.

  7. Numerical Analysis of Shock Induced Separation Delay by Air Humidity

    Institute of Scientific and Technical Information of China (English)

    Piotr DOERFFER; Slawomir DYKAS

    2005-01-01

    @@ In this paper numerical calculations of the dry and humid air flows in the nozzle are presented. The dry air flow (adiabatic flow) and the humid air flow (flow with homogeneous condensation, diabatic flow) are modeled with the use of Reynolds Averaged Navier-Stokes (RANS) equations. The comparison of these two types of flow is carried out. The influence of the air humidity on the shock wave location and its interaction with the boundary layer is examined. Obtained numerical results present a first numerical approach of the condensation and evaporation process in transonic flow of humid air. The phenomena considered here are very complex and complicated and need further in-depth numerical analysis.

  8. Shape sensitivity analysis in numerical modelling of solidification

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2007-12-01

    Full Text Available The methods of sensitivity analysis constitute a very effective tool on the stage of numerical modelling of casting solidification. It is possible, among others, to rebuilt the basic numerical solution on the solution concerning the others disturbed values of physical and geometrical parameters of the process. In this paper the problem of shape sensitivity analysis is discussed. The non-homogeneous casting-mould domain is considered and the perturbation of the solidification process due to the changes of geometrical dimensions is analyzed. From the mathematical point of view the sensitivity model is rather complex but its solution gives the interesting information concerning the mutual connections between the kinetics of casting solidification and its basic dimensions. In the final part of the paper the example of computations is shown. On the stage of numerical realization the finite difference method has been applied.

  9. Partial differential equations modeling, analysis and numerical approximation

    CERN Document Server

    Le Dret, Hervé

    2016-01-01

    This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .

  10. On diagnosis measurement under dynamic loading of ball bearing using numerical thermal analysis and infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dong Pyo; Kim, Ho Jong [School of Mechanical System Engineering, Chonbuk Nationa University, Jeonju (Korea, Republic of); Kim, Won Tae [School of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of)

    2013-08-15

    With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology with valuable suggestions for the future bearing fault detection.

  11. Investigating Convergence Patterns for Numerical Methods Using Data Analysis

    Science.gov (United States)

    Gordon, Sheldon P.

    2013-01-01

    The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…

  12. Numerical analysis of electro-osmosis consolidation: a case study

    NARCIS (Netherlands)

    Yuan, J.; Hicks, M.A.

    2015-01-01

    A numerical model for the design and analysis of electro-osmosis consolidation in soft clay is used to study a well-documented full-scale field test. The large-strain model, which considers coupled electro-osmosis flow, hydraulic flow and electric density flow in a deformable elasto-plastic porous m

  13. Scilab and Maxima Environment: Towards Free Software in Numerical Analysis

    Science.gov (United States)

    Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro

    2010-01-01

    In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)

  14. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured re- source. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  15. Investigating Convergence Patterns for Numerical Methods Using Data Analysis

    Science.gov (United States)

    Gordon, Sheldon P.

    2013-01-01

    The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…

  16. Homogenization-Based Numerical Mathods, Homogenization, Asymptotic Analysis, Asymptotic Expansion, Numerical Simulation

    OpenAIRE

    Frenod, Emmanuel

    2013-01-01

    In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.

  17. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  18. Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi; Barrett, Brittany; Lin, Bin

    2013-01-01

    Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.

  19. Determinants of Trade Credit: A Preliminary Analysis on Construction Sector

    Directory of Open Access Journals (Sweden)

    Nicoleta Barbuta-Misu

    2016-07-01

    Full Text Available This paper introduces a preliminary analysis of the correlations between trade credit and some selected measures of financial performance for a sample of 958 firms acting in the construction sector. The examined period covers 2004-2013. The sample derived from Amadeus database contains firms that have sold and bought on credit. Results showed that larger firms offered and used more credit than counterparties. Firms offered and used in same time credit, but not in same level. Firms with higher return on assets and profit margin used and offered less credit from suppliers, respectively to clients. Moreover, more liquid firms used less trade payables.

  20. Numerical and Analytical Analysis of Elastic Rotor Natural Frequency

    Directory of Open Access Journals (Sweden)

    Adis J. Muminovic

    2014-11-01

    Full Text Available In this paper simulation model which enables quick analysis of elastic rotor natural frequency modes is developed using Matlab. This simulation model enables users to get dependency diagram of natural frequency in relation to diameter and length of the rotor,density of the material or modulus of elasticity. Testing of the model is done using numerical analysis in SolidWorks software.

  1. NUMERICAL ANALYSIS OF A FEM FOR A TRANSIENT VISCOELASTIC FLOW

    Institute of Scientific and Technical Information of China (English)

    穆君; 冯民富

    2004-01-01

    We present the numerical analysis of a coupled method for the numerical simulation of transient viscoelastic flow obeying a differential constitutive equation with a Newtonian viscosity. The scheme used is based on Euler implicit method in time and maintains at each time step a couple of the velocity u and the viscoelastic part of the stress σ. Approximation in space is made by finite element method. The approximate stress, velocity and pressure are, respectively, P1-continuous, p2-continuous, and p1continuous. Upwinding needed for convection of σ is made by a "Streamline Upwind Petrov Galerkin" method (SUPG).

  2. Introduction to Numerical Computation - analysis and Matlab illustrations

    DEFF Research Database (Denmark)

    Elden, Lars; Wittmeyer-Koch, Linde; Nielsen, Hans Bruun

    their properties. The book describes and analyses numerical methods for error analysis, differentiation, integration, interpolation and approximation, and the solution of nonlinear equations, linear systems of algebraic equations and systems of ordinary differential equations. Principles and algorithms......In a modern programming environment like eg MATLAB it is possible by simple commands to perform advanced calculations on a personal computer. In order to use such a powerful tool efiiciently it is necessary to have an overview of available numerical methods and algorithms and to know about...

  3. CONTENT ANALYSIS, DISCOURSE ANALYSIS, AND CONVERSATION ANALYSIS: PRELIMINARY STUDY ON CONCEPTUAL AND THEORETICAL METHODOLOGICAL DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Anderson Tiago Peixoto Gonçalves

    2016-08-01

    Full Text Available This theoretical essay aims to reflect on three models of text interpretation used in qualitative research, which is often confused in its concepts and methodologies (Content Analysis, Discourse Analysis, and Conversation Analysis. After the presentation of the concepts, the essay proposes a preliminary discussion on conceptual and theoretical methodological differences perceived between them. A review of the literature was performed to support the conceptual and theoretical methodological discussion. It could be verified that the models have differences related to the type of strategy used in the treatment of texts, the type of approach, and the appropriate theoretical position.

  4. Numeric computation and statistical data analysis on the Java platform

    CERN Document Server

    Chekanov, Sergei V

    2016-01-01

    Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...

  5. Numerical analysis of cavitation within slanted axial-flow pump

    Institute of Scientific and Technical Information of China (English)

    张睿; 陈红勋

    2013-01-01

    In this paper, the cavitating flow within a slanted axial-flow pump is numerically researched. The hydraulic and cavitation performance of the slanted axial-flow pump under different operation conditions are estimated. Compared with the experimental hydraulic performance curves, the numerical results show that the filter-based model is better than the standard k-e model to predict the parameters of hydraulic performance. In cavitation simulation, compared with the experimental results, the proposed numerical method has good predicting ability. Under different cavitation conditions, the internal cavitating flow fields within slanted axial-flow pump are investigated. Compared with flow visualization results, the major internal flow features can be effectively grasped. In order to explore the origin of the cavitation performance breakdown, the Boundary Vorticity Flux (BVF) is introduced to diagnose the cavitating flow fields. The analysis results indicate that the cavitation performance drop is relevant to the instability of cavitating flow on the blade suction surface.

  6. Numerical analysis on pool boiling using user defined function

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Uk; Jeon, Byong Guk; Kim, Seok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    PAFS (passive auxiliary feedwater system) adopted in the APR+ (Advanced Power Reactor Plus) of Korea is one such application. When PAFS is activated with an actuation signal, steam from the steam generator passes through heat exchanger tubes submerged in a water tank of the PAFS. Outside these heat exchanger tubes, nucleate boiling phenomena appears. In the present work, a numerical study is reported on three-dimensional transient state pool boiling of water having an immersed heat source. The velocity vector fields during the decrease in the water level are numerically investigated in a pool, and the accuracy of the results is checked by comparing the experimental results conducted using the PIV techniques by Kim et al. These numerical results can be used as basic research data for an analysis and prediction of the natural circulation phenomena in the cooling tank of the passive safety system in a nuclear power plant.

  7. Numerical simulation analysis of Guixi copper flash smelting furnace

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A numerical simulation analysis for reactions of chalcopyrite and pyrite particles coupled with momentum, heat and mass transfer between the particle and gas in a flash smelting furnace is presented. In the simulation, the equations governing the gas flow are solved numerically by Eular method. The particle phase is introduced into the gas flow by the particle-source-in-cell technique (PSIC). Predictions including the fluid flow field, temperature field, concentration field of gas phase and the tracks of particles have been obtained by the numerical simulation. The visualized results show that the reaction of sulfide particles is almost completed in the upper zone of the shaft within 1.5 m far from the central jet distributor (CJD) type concentrate burner. The simulation results are in good agreement with data obtained from a series of experiments and tests in the plant and the error is less than 2%.

  8. Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    CERN Document Server

    Aylott, Benjamin; Boggs, William D; Boyle, Michael; Brady, Patrick R; Brown, Duncan A; Brügmann, Bernd; Buchman, Luisa T; Buonanno, Alessandra; Cadonati, Laura; Camp, Jordan; Campanelli, Manuela; Centrella, Joan; Chatterji, Shourov; Christensen, Nelson; Chu, Tony; Diener, Peter; Dorband, Nils; Etienne, Zachariah B; Faber, Joshua; Fairhurst, Stephen; Farr, Benjamin; Fischetti, Sebastian; Guidi, Gianluca; Goggin, Lisa M; Hannam, Mark; Herrmann, Frank; Hinder, Ian; Husa, Sascha; Kalogera, Vicky; Keppel, Drew; Kidder, Lawrence E; Kelly, Bernard J; Krishnan, Badri; Laguna, Pablo; Lousto, Carlos O; Mandel, Ilya; Marronetti, Pedro; Matzner, Richard; McWilliams, Sean T; Matthews, Keith D; Mercer, R Adam; Mohapatra, Satyanarayan R P; Mroué, Abdul H; Nakano, Hiroyuki; Ochsner, Evan; Pan, Yi; Pekowsky, Larne; Pfeiffer, Harald P; Pollney, Denis; Pretorius, Frans; Raymond, Vivien; Reisswig, Christian; Rezzolla, Luciano; Rinne, Oliver; Robinson, Craig; Röver, Christian; Santamaría, Lucía; Sathyaprakash, Bangalore; Scheel, Mark A; Schnetter, Erik; Seiler, Jennifer; Shapiro, Stuart L; Shoemaker, Deirdre; Sperhake, Ulrich; Stroeer, Alexander; Sturani, Riccardo; Tichy, Wolfgang; Liu, Yuk Tung; van der Sluys, Marc; van Meter, James R; Vaulin, Ruslan; Vecchio, Alberto; Veitch, John; Viceré, Andrea; Whelan, John T; Zlochower, Yosef

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the da...

  9. Application of numerical analysis to jet engine combustor design. Jet engine nenshoki sekkei eno suchi kaiseki no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fuji, H. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1990-11-01

    Numerical methods are applied in practice to complement and support jet engine combustor design and development. Part of the conventional design-trial fabrication-testing performance evaluation cycle replaced by iterated numerical analysis applied in a preliminary cycle of design-evaluation, undertaken before proceeding to actual trial fabrication testing and final evaluation. Presented examples are of numerical methods applied to design/development of a high temperature combustor of airblast fuel injector type, in which analysis is undertaken of flows through diffuser and through combustion liner, of temperature distributions, of flows through liner cooling slots, and liner skin temperature distributions. Furthermore, results of three-dimensional flow analysis are applied to optimizing the design parameters of a jet-swirl combustor and to calculation of the centrifugal force in a jet swirl combustion liner. 3 refs., 18 figs., 1 tab.

  10. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  11. Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil

    2016-01-01

    was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... classification, and had length/thickness (L/T) aspect ratios of 2.00 and 1.82, respectively. The particles were characterized with X-ray micro-computed tomography, coupled with spherical harmonic analysis to mathematically describe the full 3-D shape of the particles, while the rheological performance...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...

  12. Analytical and Numerical funicular analysis by means of the Parametric Force Density Method

    Directory of Open Access Journals (Sweden)

    C. Cercadillo-García

    2016-04-01

    Full Text Available The funicular concept has often been used in different stages of structural analysis and design. This paper presents two new methods: Analytical, A-FDM, and Numerical method, N-FDM, based on a parametric application of the original Force Density Method (FDM. This is an especially useful way of visualizing a set of solutions and optimizing, i.e. selecting one specific funicular related to a set of constraints. Two structural algorithms are implemented iteratively with Maple® in real time, and output is also linked to AutoCAD®. Maple® facilitates control of geometrical constraints, while AutoCAD® helps to show all parameterized data. Because of their practical interest, special emphasis is placed on masonry structures using a Limit Analysis approach and preliminary design. Examples of the application of both methods are depicted.

  13. Electronic Warfare M-on-N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis

    Science.gov (United States)

    2017-04-12

    E. Jarvis Electronic Warfare M-on- N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis Advanced Techniques Branch Tactical...12-04-2017 NRL Memorandum Report Electronic Warfare M-on- N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis Donald E...ELECTRONIC WARFARE M-ON- N DIGITAL SIMULATION LOGGING REQUIREMENTS AND HDF5: A PRELIMINARY ANALYSIS 1. INTRODUCTION HDF5 technology [Folk] has been

  14. Integrated numerical methods for hypersonic aircraft cooling systems analysis

    Science.gov (United States)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1992-01-01

    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  15. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  16. Numerical stability analysis in respiratory control system models

    Directory of Open Access Journals (Sweden)

    Laszlo E. Kollar

    2005-04-01

    Full Text Available Stability of the unique equilibrium in two mathematical models (based on chemical balance dynamics of human respiration is examined using numerical methods. Due to the transport delays in the respiratory control system these models are governed by delay differential equations. First, a simplified two-state model with one delay is considered, then a five-state model with four delays (where the application of numerical methods is essential is investigated. In particular, software is developed to perform linearized stability analysis and simulations of the model equations. Furthermore, the Matlab package DDE-BIFTOOL v.~2.00 is employed to carry out numerical bifurcation analysis. Our main goal is to study the effects of transport delays on the stability of the model equations. Critical values of the transport delays (i.e., where Hopf bifurcations occur are determined, and stable periodic solutions are found as the delays pass their critical values. The numerical findings are in good agreement with analytic results obtained earlier for the two-state model.

  17. Perovskite sensing materials for syngas composition monitoring and biomass gasifier numerical model validation: A preliminary approach

    Science.gov (United States)

    Pallozzi, V.; Di Carlo, A.; Zaza, F.; Villarini, M.; Carlini, M.; Bocci, E.

    2016-06-01

    Biomass gasification represents a suitable choice for global environmental impact reduction, but more efforts on the process efficiency need to be conducted in order to enhance the use of this technology. Studies on inputs and outputs of the process, as well as measurements and controls of syngas composition and correlated organic and inorganic impurities, are crucial points for the optimization of the entire process: models of the system and sensing devices are, thus, very attractive for this purpose. In particular, perovskite based chemoresistive sensors could represent a promising technology, since their simplicity in function, relatively low cost and direct high temperature operation. The aim of this work is to develop a steam fluidized bed biomass gasifier model, for the prediction of the process gas composition, and new perovskite compounds, LaFeO3 based, as sensing material of chemoresistive sensors for syngas composition and impurities measurements. Chemometric analysis on the combustion synthesis via citrate-nitrate technique of LaFeO3 was also performed, in order to evaluate the relationship between synthesis conditions and perovskite materials and, thus, sensor properties. Performance of different sensors will be tested, in next works, with the support of the developed gasifier model.

  18. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  19. Analysis preliminary phytochemical raw extract of leaves Nephrolepis pectinata

    Directory of Open Access Journals (Sweden)

    Natally Marreiros Gomes

    2017-06-01

    Full Text Available The Nephrolepis pectinata popularly known as paulista fern, ladder-heaven, cat tail, belongs to the family Davalliaceae. For the beauty of the arrangements of their leaves ferns are quite commercialized in Brazil, however, have not been described in the literature studies on their pharmacological potential. Thus, the objective of this research was to analyze the phytochemical properties of the crude extract of the leaves of Nephrolepis pectinata. To perform the phytochemical analysis were initially made the collection of the vegetable, preparation of voucher specimen, washing, drying and grinding. Then, extraction by percolation method and end the phytochemical analysis. Preliminary results phytochemicals the crude extract of the leaves of Nephrolepis pectinata tested positive for reducing sugars, phenols/tannins (catechins tannins and catechins.

  20. Numerical analysis of the human nostril by the Fourier series.

    Science.gov (United States)

    Goto, M; Katsuki, T

    1990-02-01

    Fourier series has been applied in a numerical analysis of the human nostril morphology. The relationship between the nostril form and the Fourier coefficients was examined: the constant affected the size, the first term determined the roundness, and the second term determined the flatness of the morphology. The inclination of the apse line was calculated from the phase of the second term. Ninety-five standardized nostril photographs were analyzed by Fourier series: 48 of adult Japanese females and 47 of German females. The German nostril was larger in size, flatter in shape, and the apse line closer to the sagittal plane than the Japanese counterpart. As a clinical application of nostril digitization, pre- and post-operative cleft lip noses were analyzed. Fourier analysis has proved to be useful in a numerical evaluation of morphological differences of, and post-operative changes made to, the nostril.

  1. A numerical analysis of the unsteady flow past bluff bodies

    Science.gov (United States)

    Fernando, M. S. U. K.; Modi, V. J.

    1990-01-01

    The paper describes in detail a relatively sophisticated numerical approach, using the Boundary Element Method in conjunction with the Discrete Vortex Model, to represent the complex unsteady flow field around a bluff body with separating shear layers. Important steps in the numerical analysis of this challenging problem are discussed and a performance evaluation algorithm established. Of considerable importance is the effect of computational parameters such as number of elements representing the geometry, time-step size, location of the nascent vortices, etc., on the accuracy of results and the associated cost. As an example, the method is applied to the analysis of the flow around a stationary Savonius rotor. A detailed parametric study provides fundamental information concerning the starting torque time histories, evolution of the wake, Strouhal number, etc. A comparison with the wind tunnel test data shows remarkable correlation suggesting considerable promise for the approach.

  2. Numerical Analysis of Modal Instability Onset in Fiber Amplifiers

    Science.gov (United States)

    2014-03-11

    Evolution of the logarithmic frequency spectrum of the off-center optical intensity probe along the length of the co-pumped amplifier for the case of...Evolution of the logarithmic frequency spectrum of the off-center optical intensity probe along the length of the counter-pumped amplifier for the...ABSTRACT 16. SECURITY CLASSIFICATION OF: Numerical analysis of the onset of modal instability in fiber amplifiers is presented. Specifically calculations

  3. Clustered Numerical Data Analysis Using Markov Lie Monoid Based Networks

    Science.gov (United States)

    Johnson, Joseph

    2016-03-01

    We have designed and build an optimal numerical standardization algorithm that links numerical values with their associated units, error level, and defining metadata thus supporting automated data exchange and new levels of artificial intelligence (AI). The software manages all dimensional and error analysis and computational tracing. Tables of entities verses properties of these generalized numbers (called ``metanumbers'') support a transformation of each table into a network among the entities and another network among their properties where the network connection matrix is based upon a proximity metric between the two items. We previously proved that every network is isomorphic to the Lie algebra that generates continuous Markov transformations. We have also shown that the eigenvectors of these Markov matrices provide an agnostic clustering of the underlying patterns. We will present this methodology and show how our new work on conversion of scientific numerical data through this process can reveal underlying information clusters ordered by the eigenvalues. We will also show how the linking of clusters from different tables can be used to form a ``supernet'' of all numerical information supporting new initiatives in AI.

  4. Numerical analysis on thermal drilling of aluminum metal matrix composite

    Science.gov (United States)

    Hynes, N. Rajesh Jesudoss; Maheshwaran, M. V.

    2016-05-01

    The work-material deformation is very large and both the tool and workpiece temperatures are high in thermal drilling. Modeling is a necessary tool to understand the material flow, temperatures, stress, and strains, which are difficult to measure experimentally during thermal drilling. The numerical analysis of thermal drilling process of aluminum metal matrix composite has been done in the present work. In this analysis the heat flux of different stages is calculated. The calculated heat flux is applied on the surface of work piece and thermal distribution is predicted in different stages during the thermal drilling process.

  5. Numerical analysis of modified Central Solenoid insert design

    Energy Technology Data Exchange (ETDEWEB)

    Khodak, Andrei, E-mail: akhodak@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Martovetsky, Nicolai; Smirnov, Aleksandre [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Titus, Peter [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2015-10-15

    Highlights: • Modified design of coil for testing ITER superconducting cable is presented. • Numerical analysis allowed design verification. • Three-dimensional current sharing temperature distributions are obtained from the results. - Abstract: The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design three-dimensional numerical simulations were performed using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4 K, no current, (3) temperature 4 K, current 60 kA direct charge, and (4) temperature 4 K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4 K, no current, and temperature 4 K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor

  6. Solar Stirling power generation - Systems analysis and preliminary tests

    Science.gov (United States)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  7. Primate phylogeny studied by comparative determinant analysis. A preliminary report.

    Science.gov (United States)

    Bauer, K

    1993-01-01

    In this preliminary report the divergence times for the major primate groups are given, calculated from a study by comparative determinant analysis of 69 proteins (equaling 0.1% of the whole genetic information). With an origin of the primate order set at 80 million years before present, the ages of the last common ancestors (LCAs) of man and the major primate groups obtained this way are as follows: Pan troglodytes 5.2; Gorilla gorilla 7.4; Pongo pygmaeus 19.2; Hylobates lar 20.3; Old World monkeys 31.4; Lagothrix lagotricha 46.0; Cebus albifrons 59.5; three lemur species 67.0, and Galago crassicaudatus 73.3 million years. The LCA results and the approach are shortly discussed. A full account of this extended investigation including results on nonprimate mammals and on the determinant structures and the immunologically derived evolutionary rates of the proteins analyzed will be published elsewhere.

  8. PRELIMINARY PHYTOCHEMICAL ANALYSIS OF ACTINIOPTERIS RADIATA (SWARTZ LINK.

    Directory of Open Access Journals (Sweden)

    R. Manonmani

    2013-06-01

    Full Text Available The objective of the present study was to find out the presence of preliminary phytochemicals in six different solvent extracts of Actiniopteris radiata (Swartz link. by qualitative screening methods. The solvent used for the extraction of leaf and rhizome powder were ethanol, petroleum ether, chloroform, acetone, DMSO and aqueous. The secondary metabolites such as steroids, triterpenoids, reducing sugars, sugars, alkaloids, phenolic compounds, catechins, flavonoids, saponins, tannins, anthroquinones and amino acids were screened by using standard methods. The phytochemical analysis of the ethanolic extract of both (leaf & rhizome revealed the presence of most active constituents than the other solvents. The ethanolic rhizome extracts of Actiniopteris radiata showed higher amount of phytochemicals when compared with the ethanolic leaf extracts.

  9. CUSUM control charts based on likelihood ratio for preliminary analysis

    Institute of Scientific and Technical Information of China (English)

    Yi DAI; Zhao-jun WANG; Chang-liang ZOU

    2007-01-01

    To detect and estimate a shift in either the mean and the deviation or both for the preliminary analysis, the statistical process control (SPC) tool, the control chart based on the likelihood ratio test (LRT), is the most popular method.Sullivan and woodall pointed out the test statistic lrt (n1, n2) is approximately distributed as x2 (2) as the sample size n, n1 and n2 are very large, and the value of n1 = 2, 3,..., n- 2 and that of n2 = n- n1.So it is inevitable that n1 or n2 is not large. In this paper the limit distribution of lrt(n1, n2) for fixed n1 or n2 is figured out, and the exactly analytic formulae for evaluating the expectation and the variance of the limit distribution are also obtained.In addition, the properties of the standardized likelihood ratio statistic slr(n1,n) are discussed in this paper. Although slr(n1, n) contains the most important information, slr(i, n)(i ≠ n1) also contains lots of information. The cumulative sum (CUSUM) control chart can obtain more information in this condition. So we propose two CUSUM control charts based on the likelihood ratio statistics for the preliminary analysis on the individual observations. One focuses on detecting the shifts in location in the historical data and the other is more general in detecting a shift in either the location and the scale or both.Moreover, the simulated results show that the proposed two control charts are, respectively, superior to their competitors not only in the detection of the sustained shifts but also in the detection of some other out-of-control situations considered in this paper.

  10. CUSUM control charts based on likelihood ratio for preliminary analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To detect and estimate a shift in either the mean and the deviation or both for the preliminary analysis, the statistical process control (SPC) tool, the control chart based on the likelihood ratio test (LRT), is the most popular method. Sullivan and woodall pointed out the test statistic lrt(n1, n2) is approximately distributed as x2(2) as the sample size n,n1 and n2 are very large, and the value of n1 = 2,3,..., n - 2 and that of n2 = n - n1. So it is inevitable that n1 or n2 is not large. In this paper the limit distribution of lrt(n1, n2) for fixed n1 or n2 is figured out, and the exactly analytic formulae for evaluating the expectation and the variance of the limit distribution are also obtained. In addition, the properties of the standardized likelihood ratio statistic slr(n1, n) are discussed in this paper. Although slr(n1, n) contains the most important information, slr(i, n)(i≠n1) also contains lots of information. The cumulative sum (CUSUM) control chart can obtain more information in this condition. So we propose two CUSUM control charts based on the likelihood ratio statistics for the preliminary analysis on the individual observations. One focuses on detecting the shifts in location in the historical data and the other is more general in detecting a shift in either the location and the scale or both. Moreover, the simulated results show that the proposed two control charts are, respectively, superior to their competitors not only in the detection of the sustained shifts but also in the detection of some other out-of-control situations considered in this paper.

  11. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  12. Numerical Ergonomics Analysis in Operation Environment of CNC Machine

    Science.gov (United States)

    Wong, S. F.; Yang, Z. X.

    2010-05-01

    The performance of operator will be affected by different operation environments [1]. Moreover, poor operation environment may cause health problems of the operator [2]. Physical and psychological considerations are two main factors that will affect the performance of operator under different conditions of operation environment. In this paper, applying scientific and systematic methods find out the pivot elements in the field of physical and psychological factors. There are five main factors including light, temperature, noise, air flow and space that are analyzed. A numerical ergonomics model has been built up regarding the analysis results which can support to advance the design of operation environment. Moreover, the output of numerical ergonomic model can provide the safe, comfortable, more productive conditions for the operator.

  13. Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

    Directory of Open Access Journals (Sweden)

    Olazabal-Loumé M.

    2013-11-01

    Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.

  14. Numerical analysis of ossicular chain lesion of human ear

    Institute of Scientific and Technical Information of China (English)

    Yingxi Liu; Sheng Li; Xiuzhen Sun

    2009-01-01

    Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones,middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus,and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.

  15. Application of numerical analysis to jet engine combustor design

    Energy Technology Data Exchange (ETDEWEB)

    To, H. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-04-01

    The design and development process of jet engine combustors in Ishikawajima-Harima Heavy Industries Co., Ltd. was presented which is featured by iterated numerical analyses in earlier stages of design. The analytical methods used, models applied and features were given together with verification results of numerical analyses of a velocity profile in a dump diffuser, flow and temperature distribution in a combustion liner, and liner skin temperature distribution. As examples in design and development of an airblast fuel injector type high temperature combustor, analytical results of the followings were given: flows through a diffuser, flows through a combustion liner, flows through liner cooling slots and liner skin temperature distribution. In addition, results of three-dimensional flow analysis were given in terms of optimization of design parameters for a jet-swirl combustor and calculation of a centrifugal force for a jet-swirl combustor liner as examples. 6 refs., 18 figs., 1 tab.

  16. A numerical approach for the analysis of deformable journal bearings

    Directory of Open Access Journals (Sweden)

    D. Benasciutti

    2012-07-01

    Full Text Available This paper presents a numerical approach for the analysis of hydrodynamic radial journal bearings. The effect of shaft and housing elastic deformation on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements structural model is solved. Temperature and pressure effects on viscosity are also included with the Vogel-Barus model. The deformed lubrication gap and the overall stress state were calculated. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of elastic deformation of bearing components on oil pressure distribution, compared with results for ideally rigid components obtained by Raimondi and Boyd solution.

  17. Global atmospheric response to specific linear combinations of the main SST modes.. Part I: numerical experiments and preliminary results

    Science.gov (United States)

    Trzaska, S.; Moron, V.; Fontaine, B.

    1996-10-01

    This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO) phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns) were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST) patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP) climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder) than the long-term mean in the southern hemisphere (northern hemisphere)]. Atlantic SSTAs may also play a significant role. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->

  18. Buckling analysis of composite cylindrical shell using numerical analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Young; Bae, Won Byung [Pusan Nat' l Univ., Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime Univ., Busan (Korea, Republic of); Lee, Woo Hyung [Underwater Vehicle Research Center, Busan (Korea, Republic of)

    2012-01-15

    The objective of this paper is to predict the buckling pressure of a composite cylindrical shell using buckling formulas (ASME 2007, NASA SP 8007) and finite element analysis. The model in this study uses a stacking angle of [0/90]12t and USN 125 composite material. All specimens were made using a prepreg method. First, finite element analysis was conducted, and the results were verified through comparison with the hydrostatic pressure bucking experiment results. Second, the values obtained from the buckling formula and the buckling pressure values obtained from the finite element analysis were compared as the stacking angle was changed in 5 .deg. increments from 20 .deg. to 90 .deg. The linear and nonlinear results of the finite element analysis were consistent with the results of the experiment, with a safety factor of 0.85-1. Based on the above result, the ASME 2007 formula, a simplified version of the NASA SP 8007 formula, is regarded as a buckling formula that provides a reliable safety factor.

  19. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase.

    Science.gov (United States)

    Jeudy, Sandra; Coutard, Bruno; Lebrun, Régine; Abergel, Chantal

    2005-06-01

    The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005), Acta Cryst. F61, 212-215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2(1)3, with unit-cell parameter 99.425 A. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  20. Stability and Accuracy Analysis for Taylor Series Numerical Method

    Institute of Scientific and Technical Information of China (English)

    赵丽滨; 姚振汉; 王寿梅

    2004-01-01

    The Taylor series numerical method (TSNM) is a time integration method for solving problems in structural dynamics. In this paper, a detailed analysis of the stability behavior and accuracy characteristics of this method is given. It is proven by a spectral decomposition method that TSNM is conditionally stable and belongs to the category of explicit time integration methods. By a similar analysis, the characteristic indicators of time integration methods, the percentage period elongation and the amplitude decay of TSNM, are derived in a closed form. The analysis plays an important role in implementing a procedure for automatic searching and finding convergence radii of TSNM. Finally, a linear single degree of freedom undamped system is analyzed to test the properties of the method.

  1. Numerical analysis of frictional heat generation in bicycle disc brake

    Science.gov (United States)

    Tahmid, Shadman; Alam, Saima

    2017-06-01

    Precise braking operations are pivotal to ensure safety in modern day vehicle designs. Brakes are mechanical devices for increasing the frictional resistance that obstructs the turning motion of vehicle wheels by absorbing either kinetic, potential energy or both while in action. This absorbed energy appears in the form of heat. Stress, distribution of friction on surface, frictional heat generation, material and geometry are the major controlling factors for efficiency of braking operations. Frictional heat generation and its effective dissipation is one of the most predominant of these factors and hence it is the focus of this study. The purpose of this study is to analyze the thermal behavior of a full bicycle disc brake using finite element method. Sequential thermal structured method based on Ansys 14.5 is used to carry out the numerical simulation for evaluating the variation of total heat flux and temperature profiles with respect to time. The analysis model was studied experimentally and results obtained by numerical analysis were within 3% of the experimental result for maximum temperature. The model is thus adequately validated to be followed for a similar analysis on bicycle brakes.

  2. Numerical method in biomechanical analysis of intramedullary osteosynthesis in children

    Directory of Open Access Journals (Sweden)

    A. Krauze

    2006-02-01

    Full Text Available Purpose: The paper presents the biomechanical analysis of intramedullary osteosynthesis in 5-7 year old children.Design/methodology/approach: The numerical analysis was performed for two different materials (stainless steel – 316L and titanium alloy – Ti-6Al-4V and for two different fractures of the femur (1/2 of the bone shaft, and 25 mm above. Furthermore, the stresses between the bone fragments were calculated while loading the femur with forces derived from the trunk mass. In the research the Metaizeau method was applied. This method ensures appropriate fixation without complications.Findings: The numerical analysis shows that stresses in both the steel and the titanium alloy nails didn’t exceed the yield point: for the stainless steel Rp0,2,min = 690 MPa and for the titanium alloy Rp0,2,min = 895 MPa.Research limitations/implications: The obtained results are the basis for the optimization of mechanical properties of the metallic biomaterial.Practical implications: On the basis of the obtained results it can be stated that both stainless steel and titanium alloy nails can be aplied in elastic osteosythesis in femur fractures in children.Originality/value: The obtain results can be used by physicians to ensure elastic osteosythesis that accelerate bone union.

  3. Numerical MLPG Analysis of Piezoelectric Sensor in Structures

    Science.gov (United States)

    Staňák, Peter; Sládek, Ján; Sládek, Vladimír; Krahulec, Slavomír

    2014-07-01

    The paper deals with a numerical analysis of the electro-mechanical response of piezoelectric sensors subjected to an external non-uniform displacement field. The meshless method based on the local Petrov-Galerkin (MLPG) approach is utilized for the numerical solution of a boundary value problem for the coupled electro-mechanical fields that characterize the piezoelectric material. The sensor is modeled as a 3-D piezoelectric solid. The transient effects are not considered. Using the present MLPG approach, the assumed solid of the cylindrical shape is discretized with nodal points only, and a small spherical subdomain is introduced around each nodal point. Local integral equations constructed from the weak form of governing PDEs are defined over these local subdomains. A moving least-squares (MLS) approximation scheme is used to approximate the spatial variations of the unknown field variables, and the Heaviside unit step function is used as a test function. The electric field induced on the sensor is studied in a numerical example for two loading scenarios.

  4. NUMERICAL ANALYSIS OF DELAMINATION GROWTH FOR STIFFENED COMPOSITE LAMINATED PLATES

    Institute of Scientific and Technical Information of China (English)

    白瑞祥; 陈浩然

    2004-01-01

    A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuckling, delamination onset and propagation, etc. A finite element analysis was conducted on the basis of the Mindlin first order shear effect theory and the von-Krmn nonlinear deformation assumption. The total energy release rate used as the criteria of delamination growth was estimated with virtual crack closure technique (VCCT). A self-adaptive grid moving technology was adopted to model the delamination growth process. Moreover, the contact effect along delamination front was also considered during the numerical simulation process. By some numerical examples, the influence of distribution and location of stiffener, configuration and size of the delamination, boundary condition and contact effect upon the delamination growth behavior of the stiffened composite plates were investigated. The method and numerical conclusion provided should be of great value to engineers dealing with composite structures.

  5. Numerical analysis of decoy state quantum key distribution protocols

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Jim W [Los Alamos National Laboratory; Rice, Patrick R [Los Alamos National Laboratory

    2008-01-01

    Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.

  6. Analysis and numerical simulation of the dynamics of bubbles

    OpenAIRE

    Méndez Rodríguez, Num

    2010-01-01

    This project will consist of the following tasks: - analysis of the mathematical models for oscillating bubbles (axisymmetric and non-axisymmetric cases). - numerical simulation of different phenomena related with oscillating bubbles. Este trabajo tiene como objetivo el estudio y simulación de la diámica de burbujas. Inicialmente se introducen los modelos matemáticos de burbujas esféricas, para dar paso a la formulacón tridimensional basada en el método de los elementos de contorno. Para l...

  7. Numerical Analysis for Functional Differential and Integral Equations

    Institute of Scientific and Technical Information of China (English)

    Hermann BRUNNER; Tao TANG; Stefan VANDEWALLE

    2009-01-01

    @@ From December 3-6,2007,the Department of Mathematics at Hong Kong Baptist University hosted the International Workshop on Numerical Analysis and Computational Methods for Functional Differential and Integral Equations. This workshop,organized by Hermann Brunner of Memorial University of Newfoundland (Canada) & Hong Kong Baptist University,Leevan Ling and Tao Tang of Hong Kong Baptist University,and Chengjian Zhang of Huazhong University of Science and Technology (China) brought together some 40 members of research groups in Hong Kong,Taiwan and the mainland of China,Belgium,Canada,Japan,and Portugal.

  8. Numerical analysis of sound transmission loss using FDTD method

    OpenAIRE

    Murakami, Keiichi; Aoyama, Takashi; 村上, 桂一; 青山, 剛史

    2009-01-01

    This paper provides the results of a numerical analysis on sound transmission loss of a thin aluminum plate. The finite difference time domain (FDTD) method is used in this study because it simultaneously solves both sound wave propagation in fluid and elastic wave propagation in solid. The calculated value of sound transmission loss gives good agreement with that of mass law. Sound transmission of saw-shaped wave approximated by the sum of sine waves is also calculated. As a result, it is co...

  9. Structural Analysis of Composite Laminates using Analytical and Numerical Techniques

    Directory of Open Access Journals (Sweden)

    Sanghi Divya

    2016-01-01

    Full Text Available A laminated composite material consists of different layers of matrix and fibres. Its properties can vary a lot with each layer’s or ply’s orientation, material property and the number of layers itself. The present paper focuses on a novel approach of incorporating an analytical method to arrive at a preliminary ply layup order of a composite laminate, which acts as a feeder data for the further detailed analysis done on FEA tools. The equations used in our MATLAB are based on analytical study code and supply results that are remarkably close to the final optimized layup found through extensive FEA analysis with a high probabilistic degree. This reduces significant computing time and saves considerable FEA processing to obtain efficient results quickly. The result output by our method also provides the user with the conditions that predicts the successive failure sequence of the composite plies, a result option which is not even available in popular FEM tools. The predicted results are further verified by testing the laminates in the laboratory and the results are found in good agreement.

  10. Sensitivity analysis of numerical model of prestressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Bílý, Petr, E-mail: petr.bily@fsv.cvut.cz; Kohoutková, Alena, E-mail: akohout@fsv.cvut.cz

    2015-12-15

    Graphical abstract: - Highlights: • FEM model of prestressed concrete containment with steel liner was created. • Sensitivity analysis of changes in geometry and loads was conducted. • Steel liner and temperature effects are the most important factors. • Creep and shrinkage parameters are essential for the long time analysis. • Prestressing schedule is a key factor in the early stages. - Abstract: Safety is always the main consideration in the design of containment of nuclear power plant. However, efficiency of the design process should be also taken into consideration. Despite the advances in computational abilities in recent years, simplified analyses may be found useful for preliminary scoping or trade studies. In the paper, a study on sensitivity of finite element model of prestressed concrete containment to changes in geometry, loads and other factors is presented. Importance of steel liner, reinforcement, prestressing process, temperature changes, nonlinearity of materials as well as density of finite elements mesh is assessed in the main stages of life cycle of the containment. Although the modeling adjustments have not produced any significant changes in computation time, it was found that in some cases simplified modeling process can lead to significant reduction of work time without degradation of the results.

  11. Preliminary analysis of distributed in situ soil moisture measurements

    Directory of Open Access Journals (Sweden)

    L. Brocca

    2005-01-01

    Full Text Available Surface soil moisture content is highly variable in both space and time. Remote sensing can provide an effective methodology for mapping surface moisture content over large areas but ground based measurements are required to test its reliability and to calibrate retrieval algorithms. Recently, we had the opportunity to design and perform an experiment aimed at jointly acquiring measurements of surface soil water content at various locations and remotely sensed hyperspectral data. The area selected for the experiment is located in central Umbria and it extends for 90km2. For the area, detailed lithological and multi-temporal landslide inventory maps were available. We identified eight plots where measurements of soil water content were made using a Time Domain Reflectometer (TDR. The plots range in size from 100m2 to 600m2, and cover a variety of topographic and morphological settings. The TDR measurements were conducted during four days, on 5 April, 15 April, 2 May and 3 May 2004. On 3 May the NERC airborne CASI 2 acquired the hyperspectral data. Preliminary analysis concerning the matching between the landslides and the soil moisture were reported. Statistical and geostatistical analysis investigating the spatial-temporal soil moisture distribution were performed. These results will be compared with the data of surface temperature obtained from the remotely sensed hyperspectral sensor.

  12. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  13. Numerical Analysis of Structural Progressive Collapse to Blast Loads

    Institute of Scientific and Technical Information of China (English)

    HAO Hong; WU Chengqing; LI Zhongxian; ABDULLAH A K

    2006-01-01

    After the progressive collapse of Ronan Point apartment in UK in 1968,intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressive collapse.However,only very few building design codes provide some rather general guidance,no detailed design requirement is given.Progressive collapse of the Alfred P.Murrah Federal building in Oklahoma City and the World Trade Centre (WTC) sparked again tremendous research interest on progressive collapse of structures.Recently,US Department of Defence (DoD) and US General Service Administration (GSA) issued guidelines for structure progressive collapse analysis.These two guidelines are most commonly used,but their accuracy is not known.This paper presents numerical analysis of progressive collapse of an example frame structure to blast loads.The DoD and GSA procedures are also used to analyse the same example structure.Numerical results are compared and discussed.The accuracy and the applicability of the two design guidelines are evaluated.

  14. Analysis and Numerical Treatment of Elliptic Equations with Stochastic Data

    Science.gov (United States)

    Cheng, Shi

    Many science and engineering applications are impacted by a significant amount of uncertainty in the model. Examples include groundwater flow, microscopic biological system, material science and chemical engineering systems. Common mathematical problems in these applications are elliptic equations with stochastic data. In this dissertation, we examine two types of stochastic elliptic partial differential equations(SPDEs), namely nonlinear stochastic diffusion reaction equations and general linearized elastostatic problems in random media. We begin with the construction of an analysis framework for this class of SPDEs, extending prior work of Babuska in 2010. We then use the framework both for establishing well-posedness of the continuous problems and for posing Galerkintype numerical methods. In order to solve these two types of problems, single integral weak formulations and stochastic collocation methods are applied. Moreover, a priori error estimates for stochastic collocation methods are derived, which imply that the rate of convergence is exponential, along with the order of polynomial increasing in the space of random variables. As expected, numerical experiments show the exponential rate of convergence, verified by a posterior error analysis. Finally, an adaptive strategy driven by a posterior error indicators is designed.

  15. NUMERICAL ANALYSIS OF THE MECHANICS OF SOIL REINFORCEMENT

    Institute of Scientific and Technical Information of China (English)

    Weifeng SONG; Lihua CHEN; Xiuping LIU

    2006-01-01

    Roots affect the soil stress and strain and contribute to soil reinforcement. An analysis of stress and strain in the root-soil composite is presented which combines roots, soils, and an interface element by using the Duncan-Chang E-μmodel and a nonlinear-interface-element model. In this research, a finite element numerical analysis method was applied to simulate the stress field resulting in a composite of Pinus tabulaeformis roots and soils. Results show that roots can transmit the stress from surface soils to deep soils, and can reduce soil stress within the surface soil layer; results also show that the effect of soil reinforcement by roots is limited to surface soils. The Slope Safety Index of a pine slope becomes 10% higher than that of a natural slope, indicating that roots have a significant effect on soil reinforcement.

  16. Modal interval analysis new tools for numerical information

    CERN Document Server

    Sainz, Miguel A; Calm, Remei; Herrero, Pau; Jorba, Lambert; Vehi, Josep

    2014-01-01

    This book presents an innovative new approach to interval analysis. Modal Interval Analysis (MIA) is an attempt to go beyond the limitations of classic intervals in terms of their structural, algebraic and logical features. The starting point of MIA is quite simple: It consists in defining a modal interval that attaches a quantifier to a classical interval and in introducing the basic relation of inclusion between modal intervals by means of the inclusion of the sets of predicates they accept. This modal approach introduces interval extensions of the real continuous functions, identifies equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify these equivalences, along with guidelines for arriving at these inclusions. Applications of these equivalences in different areas illustrate the obtained results. The book also presents a new interval object: marks, which aspire to be a new form of numerical treatment of errors in measurements and computations.

  17. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time.

  18. Numerical Analysis of Microwave Heating on Saponification Reaction

    Science.gov (United States)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  19. Some Techniques for the Objective Analysis of Humidity for Regional Scale Numerical Weather Prediction.

    Science.gov (United States)

    Rasmussen, Robert Gary

    Several topics relating to the objective analysis of humidity for regional scale numerical weather prediction are investigated. These include: (1) sampling the humidity field; (2) choosing an analysis scheme; (3) choosing an analysis variable; (4) using surface data to diagnose upper -air humidity (SFC-DIAG); (5) using cloud analysis data to diagnose surface and upper-air humidities (3DNEPH-DIAG); and (6) modeling the humidity lateral autocorrelation function. Regression equations for the diagnosed humidities and several correlation models are developed and validated. Four types of data are used in a preliminary demonstration: observations (radiosonde and surface), SFC-DIAG data, 3DNEPH-DIAG data, and forecast data from the Drexel/NCAR Limited-Area and Mesoscale Prediction System (LAMPS). The major conclusions are: (1) independent samples of relative humidity can be obtained by sampling at intervals of two days and 1750 km, on the average; (2) Gandin's optimum interpolation (OI) is preferable to Cressman's successive correction and Panofsky's surface fitting schemes; (3) relative humidity (RH) is a better analysis variable than dew-point depression; (4) RH*, the square root of (1-RH), is better than RH; (5) both surface and cloud analysis data can be used to diagnose the upper-air humidity; (6) pooling dense data prior to OI analysis can improve the quality of the analysis and reduce its computational burden; (7) iteratively pooling data is economical; (8) for the types of data considered, use of more than about eight data in an OI point analysis cannot be justified by expectations of further reducing the analysis error variance; and (9) the statistical model in OI is faulty in that an analyzed humidity can be biased too much toward the first guess.

  20. Grid-connected ICES: preliminary feasibility analysis and evaluation. Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-30

    The HEAL Complex in New Orleans will serve as a Demonstration Community for which the ICES Demonstration System will be designed. The complex is a group of hospitals, clinics, research facilities, and medical educational facilities. The five tasks reported on are: preliminary energy analysis; preliminary institutional assessment; conceptual design; firming-up of commitments; and detailed work management plan.

  1. Purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 from ostrich (Struthio camelus) eggshell

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Grajeda, Juan Pablo [Unidad de Proteómica Médica, Instituto Nacional de Medicina Genómica, Mexico City (Mexico); Marín-García, Liliana [Instituto de Química, Universidad Nacional Autónoma de México (Mexico); Stojanoff, Vivian [Brookhaven National Laboratories, NSLS, Upton, New York (United States); Moreno, Abel, E-mail: carcamo@servidor.unam.mx [Instituto de Química, Universidad Nacional Autónoma de México (Mexico); Unidad de Proteómica Médica, Instituto Nacional de Medicina Genómica, Mexico City (Mexico)

    2007-11-01

    The purification, crystallization and preliminary X-ray diffraction data of the protein struthiocalcin 1 isolated from ostrich eggshell are reported. The purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 (SCA-1), a protein obtained from the intramineral part of ostrich (Struthio camelus) eggshell, is reported.

  2. Investigation of Sorption and Diffusion Mechanisms, and Preliminary Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nair, Sankar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-02-01

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several monovalent and divalent cation exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed using tritiated water feed solution containing tritium at the high end of the range (1 mCi/mL) anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. The tritium concentration was about 0.1 ppm. The permeate was recovered under vacuum. The HTO/H2O selectivity and separation factor calculated from the measured tritium concentrations ranged from 0.99 to 1.23, and 0.83-0.98, respectively. Although the membrane performance for HTO separation was lower than expected, several encouraging observations including molecular sieving and high vapor permeance are reported. Additionally, several new approaches are proposed, such as tuning the sorption and diffusion properties offered by small pore LTA zeolite materials, and cation exchanged aluminosilicates with high metal loading. It is hypothesized that substantially improved preferential transport of tritium (HTO) resulting in a more concentrated permeate can be achieved. Preliminary economic analysis for the membrane-based process to concentrate tritiated water is also discussed.

  3. Crystallization and preliminary crystallographic analysis of recombinant human galectin-1

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Stacy A. [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia); Scott, Ken [School of Biological Sciences, University of Auckland, Auckland (New Zealand); Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2007-11-01

    Human galectin-1 has been cloned, expressed in E. coli, purified and crystallized in the presence of both lactose (ligand) and β-mercaptoethanol under six different conditions. The X-ray diffraction data obtained have enabled the assignment of unit-cell parameters for two novel crystal forms of human galectin-1. Galectin-1 is considered to be a regulator protein as it is ubiquitously expressed throughout the adult body and is responsible for a broad range of cellular regulatory functions. Interest in galectin-1 from a drug-design perspective is founded on evidence of its overexpression by many cancers and its immunomodulatory properties. The development of galectin-1-specific inhibitors is a rational approach to the fight against cancer because although galectin-1 induces a plethora of effects, null mice appear normal. X-ray crystallographic structure determination will aid the structure-based design of galectin-1 inhibitors. Here, the crystallization and preliminary diffraction analysis of human galectin-1 crystals generated under six different conditions is reported. X-ray diffraction data enabled the assignment of unit-cell parameters for crystals grown under two conditions, one belongs to a tetragonal crystal system and the other was determined as monoclinic P2{sub 1}, representing two new crystal forms of human galectin-1.

  4. Preliminary radiation criteria and nuclear analysis for ETF

    Energy Technology Data Exchange (ETDEWEB)

    Engholm, B.A.

    1980-09-01

    Preliminary biological and materials radiation dose criteria for the Engineering Test Facility are described and tabulated. In keeping with the ETF Mission Statement, a key biological dose criterion is a 24-hour shutdown dose rate of 2 mrem/hr on the surface of the outboard bulk shield. Materials dose criteria, which primarily govern the inboard shield design, include 10/sup 9/ rads exposure limit to epoxy insulation, 3 x 10/sup -4/ dpa damage to the TF coil copper stabilizer, and a total nuclear heating rate of 5 kW in the inboard TF coils. Nuclear analysis performed during FY 80 was directed primarily at the inboard and outboard bulk shielding, and at radiation streaming in the neutral beam drift ducts. Inboard and outboard shield thicknesses to achieve the biological and materials radiation criteria are 75 cm inboard and 125 cm outboard, the configuration consisting of alternating layers of stainless steel and borated water. The outboard shield also includes a 5 cm layer of lead. NBI duct streaming analyses performed by ORNL and LASL will play a key role in the design of the duct and NBI shielding in FY 81. The NBI aluminum cryopanel nuclear heating rate during the heating cycle is about 1 milliwatt/cm/sup 3/, which is far less than the permissible limit.

  5. Preliminary analysis of aerial hyperspectral data on shallow lacustrine waters

    Science.gov (United States)

    Bianchi, Remo; Castagnoli, A.; Cavalli, Rosa M.; Marino, Carlo M.; Pignatti, Stefano; Zilioli, Eugenio

    1995-11-01

    The availability of MIVIS hyperspectral data, deriving from an aerial survey recently performed over a test-site in Lake Garda, Italy, gave the possibility of a preliminary new insight in the field of specific applications of remote sensing to shallow water analysis. The spectroradiometers in the visible and in the thermal infrared were explored in particular, accessing to helpful information for the detection of bio-physical indicators of water quality, either related to the surface/sub-surface of waters or to the bottom of the lake, since the study area presents very shallow waters, never exceeding a 6-meter depth in any case. Primary interest was the detection of man-induced activities along the margins, like sewage effect and sedimentary structure in the bottom or algal bloom. Secondly, a correlation between absorbivity coefficients in the visible bands and bathimetric contour lines in the proximity of the marginal zone of the lake was accomplished, by means of two indicative spectroradiometric transects.

  6. Numerical Analysis of Asphalt Pavements under Moving Wheel Loads

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The responses of the pavement in service are the basis for the design of the semi-rigid base course asphalt pavement.Due to the dynamic characteristics of wheel loads and the temperature loads,the dynamic response analysis is very significant.In this article, the dynamic analysis of asphalt pavement under moving wheel loads is carried out using finite element method coupled with non-reflective boundary method.The influences of the base modulus, thickness, the vehicle velocity, the tire pressure, and the contact condition at the interface are studied using parametric analysis.The results of numerical analysis show that it is not appropriate to simply increase the base modulus or thickness in the design.It would be beneficial if the base design is optimized synthetically.The increase of damping is also beneficial to the pavements because of the surface deflection and the stresses declination.Furthermore, the good contact condition at the interface results in good performance because it combines every layer of the pavement to work together.As overload aggravates the working condition of the pavement, it is not allowed.

  7. Numerical Analysis of Erosion Caused by Biomimetic Axial Fan Blade

    Directory of Open Access Journals (Sweden)

    Jun-Qiu Zhang

    2013-01-01

    Full Text Available Damage caused by erosion has been reported in several industries for a wide range of situations. In the present work, a new method is presented to improve the erosion resistance of machine components by biomimetic method. A numerical investigation of solid particle erosion in the standard and biomimetic configuration blade of axial fan is presented. The analysis consists in the application of the discrete phase model, for modeling the solid particles flow, and the Eulerian conservation equations to the continuous phase. The numerical study employs computational fluid dynamics (CFD software, based on a finite volume method. User-defined function was used to define wear equation. Gas/solid flow axial fan was simulated to calculate the erosion rate of the particles on the fan blades and comparatively analyzed the erosive wear of the smooth surface, the groove-shaped, and convex hull-shaped biomimetic surface axial flow fan blade. The results show that the groove-shaped biomimetic blade antierosion ability is better than that of the other two fan blades. Thoroughly analyze of antierosion mechanism of the biomimetic blade from many factors including the flow velocity contours and flow path lines, impact velocity, impact angle, particle trajectories, and the number of collisions.

  8. Numerical and Experimental Stress Analysis of a Composite Leaf Spring

    Directory of Open Access Journals (Sweden)

    Kaveri A. Katake

    2016-10-01

    Full Text Available Automobile sector is always focusing on enhancing level of comfort, fuel economy, customer satisfaction and safety. Vehicle weight reduction increases the overall fuel efficiency. Use of composite materials has made it possible to reduce the weight of the vehicle, without reduction in load carrying capacity. Now a day's manufacturers and researchers are trying to replace conventional material parts with composites. The composite materials have more elastic strain energy storage capacity and high strength to weight ratio as compared to steel. This paper is related to Numerical and experimental strength analysis of suspension leaf springs for a light motor vehicle made of composite materials. Two materials Glass Fiber Reinforced Plastic (GFRP and Carbon Fiber Reinforced Plastic (CFRP are selected for manufacturing of leaf spring. The strength of these composite depends on angle orientation, volume to weight ratio of reinforcement and length to depth ratio of fiber. In this work two leaf springs made of GFRP and a sandwich of CFRP and GFRP are developed. Numerical and experimental static stress analyses are carried out for these two springs. These results are compared with analytical results of conventional metal spring. The comparison shows that composite material springs have compatible strength to withstand load. Comparative results for weight, cost and deformation are presented at the end of the paper.

  9. POLLUTANT EMISSION NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The energies produced by the diesel engines of strong power are largely used in marine propulsion because of their favorable reliability and their significant output. However, the increasingly constraining legislations, aimed at limiting the pollutant emissions from the exhaust gas produced by these engines, tend to call into question their supremacy. The analysis of the pollutant emissions and their reduction in the exhaust gas of the slow turbocharged marine diesel engine using ANSYS 15 constitutes the principal objective of this study. To address problems of global air pollution due to the pollutant emission from fuel oil engin e combustion, it is necessary to understand the mechanisms by which pollutants are produced in combustion processes. In the present work, an experimental and numerical study is carried out on a unit of real use aboard a car ferry ship. A numerical model based on a detailed chemical kinetics scheme is used to calculate the emissions of NOx, SOx and Sooth in an internal combustion engine model for the same characteristics of the real unit.

  10. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L-Y [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  11. Numerical analysis of the dynamics of distributed vortex configurations

    Science.gov (United States)

    Govorukhin, V. N.

    2016-08-01

    A numerical algorithm is proposed for analyzing the dynamics of distributed plane vortex configurations in an inviscid incompressible fluid. At every time step, the algorithm involves the computation of unsteady vortex flows, an analysis of the configuration structure with the help of heuristic criteria, the visualization of the distribution of marked particles and vorticity, the construction of streamlines of fluid particles, and the computation of the field of local Lyapunov exponents. The inviscid incompressible fluid dynamic equations are solved by applying a meshless vortex method. The algorithm is used to investigate the interaction of two and three identical distributed vortices with various initial positions in the flow region with and without the Coriolis force.

  12. Experimental and numerical analysis of cavitating flow around a hydrofoil

    Directory of Open Access Journals (Sweden)

    Müller Miloš

    2012-04-01

    Full Text Available The paper describes experiments carried out in the cavitation tunnel with the rectangular test section of 150 × 150 × 500 mm and the maximum test section inlet velocity of 25 m/s. These experiments have been aimed to visualize the cavitation phenomena as well as to quantify the erosion potential using pitting tests evaluated during the incubation period for the cast-iron prismatic hydrofoil with the modified NACA profile. A bypass section installed in the tunnel has allowed to measure the nuclei content in the inlet flow to the test section using the acoustic spectrometer. The measured data have been compared with the CFD analysis of the cavitation phenomena on the hydrofoil as well as the numerically determined location and magnitude of the first calculated collapses of the cavitating bubbles with a good agreement.

  13. NUMERICAL METHOD AND RANDOM ANALYSIS OF CEMENT CONCRETE EXPANSION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The numerical method and random analysis of cement concrete expansion are given. A mathematical procedure is presented which includes the nonlinear characteristics of the concrete. An expression is presented to predict the linear restrained expansion of expansive concrete bar restrained by a steel rod. The results indicate a rapid change in strains and stresses within initial days, after which the change gradually decreases. A reliable and accurate method of predicting the behavior of the concrete bulkheads in drifts is presented here. Extensive sensitivity and parametric studies have been performed. The random density distributions of expansive concrete are given based on the restricted or unrestricted condition. These studies show that the bulkhead stress fields are largely influenced by the early modulus of the concrete and the randomness of the ultimate unrestrained expansion of the concrete.

  14. Numerical Analysis for Structural Safety Evaluation of Butterfly Valves

    Science.gov (United States)

    Shin, Myung-Seob; Yoon, Joon-Yong; Park, Han-Yung

    2010-06-01

    Butterfly valves are widely used in current industry to control the fluid flow. They are used for both on-off and throttling applications involving large flows at relatively low operating pressure especially in large size pipelines. For the industrial application of butterfly valves, it must be ensured that the valve could be used safety under the fatigue life and the deformations produced by the pressure of the fluid. In this study, we carried out the structure analysis of the body and the valve disc of the butterfly valve and the numerical simulation was performed by using ANSYS v11.0. The reliability of valve is evaluated under the investigation of the deformation, the leak test and the durability of the valve.

  15. Numerical Analysis of Vibrations of Structures under Moving Inertial Load

    CERN Document Server

    Bajer, Czeslaw I

    2012-01-01

    Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...

  16. EXPERIMENTAL INVESTIGATION & NUMERICAL ANALYSIS OF COMPOSITE LEAF SPRING

    Directory of Open Access Journals (Sweden)

    K. K. JADHAO,

    2011-06-01

    Full Text Available The Automobile Industry has shown keen interest for replacement of steel leaf spring with that of glass fiber composite leaf spring, since the composite material has high strength to weight ratio, good corrosion resistance and tailor-able properties. The objective of present study was to replace material for leaf spring. In present study the material selected was glass fiber reinforced plastic (GFRP and the polyester resin (NETPOL 1011 can be used which was more economical this will reduce total cost of composite leaf spring. A spring with constant width and thickness was fabricated by hand lay-up technique which was very simple and economical. The experiments were conducted on UTM and numerical analysis was done via (FEA using ANSYS software. Stresses and deflection results were verified for analytical and experimental results. Result shows that, the composite spring has stresses much lower than steel leaf spring and weight of composite spring was nearly reduced up to 85%.

  17. Deterministic and stochastic error bounds in numerical analysis

    CERN Document Server

    Novak, Erich

    1988-01-01

    In these notes different deterministic and stochastic error bounds of numerical analysis are investigated. For many computational problems we have only partial information (such as n function values) and consequently they can only be solved with uncertainty in the answer. Optimal methods and optimal error bounds are sought if only the type of information is indicated. First, worst case error bounds and their relation to the theory of n-widths are considered; special problems such approximation, optimization, and integration for different function classes are studied and adaptive and nonadaptive methods are compared. Deterministic (worst case) error bounds are often unrealistic and should be complemented by different average error bounds. The error of Monte Carlo methods and the average error of deterministic methods are discussed as are the conceptual difficulties of different average errors. An appendix deals with the existence and uniqueness of optimal methods. This book is an introduction to the area and a...

  18. Numerical Analysis of Quality Inspection of Anchorage System

    Institute of Scientific and Technical Information of China (English)

    ZHANGYongxing; XUMing

    2002-01-01

    Sonoprobe method has been applied in non-destructive inspection of anchorage project.The fundament is that dynamic transient excitation causes the elastic vibration of an anchor bar,and flaws can be estimated or deduced by determining transient response of the anchor bar.FEA numeric solution of hyperbolic equation indicates that deductions must comply with acoustic parameters such as velocity of sound,vibration range,wave shape etc when inspecting interior flaws in the grout of an anchor bar,Based on wavelet packet analysis,the energy eigenvector is a flaw vector,which could be regarded as the basis in the nondestructive inspection of anchors,As a non-linear dynamical system,artifical neural networks dealing with quality insection of gray system have been proved efficient.

  19. Numerical Analysis of Flow through Shrouded Turbine Cascade

    Directory of Open Access Journals (Sweden)

    S. Thanigaiarasu

    2013-10-01

    Full Text Available The aim of the work is to estimate the secondary flow losses through the gap between the shrouded turbine rotor blades. Aerodynamic losses occurring in flow such as profile, secondary flow and leakage were analyzed. The numerical results of flow over a single shrouded turbine rotor blade, cascade analysis of two shrouded turbine rotor blade with zero gap and leakage analysis through the 2mm z-gap of the shrouded turbine rotor blade are presented. First, a single shrouded turbine rotor blade was analyzed and the pressure coefficient on the surface of the blade at midsection of blade is taken as reference. For this, the geometry of a shrouded HP turbine rotor is chosen. GAMBIT software is used for designing and analyzed using FLUENT software. Secondly cascade analysis was also carried out using the same procedure and the pressure coefficient is compared with the reference pressure coefficient profile and found that changes in the pressure coefficient on the blade surface. Finally the two shrouded turbine rotor blades with 2mm z-gap between the shrouds are created and analyzed using the same procedure and the pressure coefficient was compared with the reference pressure coefficient profile and found that decrease in the pressure coefficient on the blade surface near the shroud is because of the leakage of flow through the z-gap between the shrouds. The leakage lessens the end wall boundary layer separation near shroud of the turbine rotor blade with 2mm z-gap.

  20. Preliminary Analysis of Remote Monitoring & Robotic Concepts for Performance Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    D.A. McAffee

    1997-02-18

    ) Identify and discuss the main Performance Confirmation monitoring needs and requirements during the post-emplacement preclosure period. This includes radiological, non-radiological, host rock, and infrastructure performance monitoring needs. It also includes monitoring for possible off-normal events. (Presented in Section 7.3). (3) Identify general approaches and methods for obtaining performance information from within the emplacement drifts for Performance Confirmation. (Presented in Section 7.4) (4)Review and discuss available technologies and design strategies that may permit the use of remotely operated systems within the hostile thermal and radiation environment expected within the emplacement drifts. (Presented in Section 7.5). (5) Based on Performance Confirmation monitoring needs and available technologies, identify potential application areas for remote systems and robotics for post-emplacement preclosure Performance Confirmation activities (Presented in Section 7.6). (6) Develop preliminary remote monitoring and robotic concepts for post-emplacement, preclosure Performance Confirmation activities. (Presented in Section 7.7) This analysis is being performed very early in the systems engineering cycle, even as issues related to the Performance Confirmation program planning phase are being formulated and while the associated needs, constraints and objectives are yet to be fully determined and defined. This analysis is part of an issue formulation effort and is primarily concerned with identification and description of key issues related to remotely monitoring repository performance for Performance Confirmation. One of the purposes of this analysis is to provide an early investigation of potential design challenges that may have a high impact on future design concepts. This analysis can be used to guide future concept development and help access what is feasible and achievable by application of remote systems technology. Future design and systems engineering

  1. Preliminary analysis of knee stress in Full Extension Landing

    Directory of Open Access Journals (Sweden)

    Majid Davoodi Makinejad

    2013-09-01

    Full Text Available OBJECTIVE: This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height. METHODS: The impact time and loads were measured via inverse dynamic analysis of free landing without knee flexion from three different heights (25, 50 and 75 cm, using five subjects with an average body mass index of 18.8. Three-dimensional data were developed from computed tomography scans and were reprocessed with modeling software before being imported and analyzed by finite element analysis software. The whole leg was considered to be a fixed middle-hinged structure, while impact loads were applied to the femur in an upward direction. RESULTS: Straight landing exerted an enormous amount of pressure on the knee joint as a result of the body's inability to utilize the lower extremity muscles, thereby maximizing the threat of injury when the load exceeds the height-safety threshold. CONCLUSIONS: The researchers conclude that extended-knee landing results in serious deformation of the meniscus and cartilage and increases the risk of bone-to-bone contact and serious knee injury when the load exceeds the threshold safety height. This risk is considerably greater than the risk of injury associated with walking downhill or flexion landing activities.

  2. A preliminary assessment of using a white light confocal imaging profiler for cut mark analysis.

    Science.gov (United States)

    Schmidt, Christopher W; Moore, Christopher R; Leifheit, Randell

    2012-01-01

    White light confocal microscopy creates detailed 3D representations of microsurfaces that can be qualitatively and quantitatively analyzed. The study describes its application to the analysis of cut marks on bone, particularly when discerning cuts made by steel tools from those made by stone. The process described comes from a study where cuts were manually made on a cow rib with seven cutting tools, four stone (an unmodified chert flake, a chert biface, a bifacially ground slate fragment, and an unsharpened piece of slate), and three steel (a Swiss Army Knife, a serrate steak knife, and a serrate saw). Kerfs were magnified ×20 and 3D data clouds were generated using a Sensofar(®) White Light Confocal Profiler (WLCP). Kerf profiles and surface areas, volumes, mean depths, and maximum depths were calculated with proprietary software (SensoScan(®) and SolarMap(®)). For the most part, the stone tools make shallower and wider cuts. Kerf floors can be studied at higher magnifications; they were viewed at ×100. When comparing the kerf floors of the unsharpened slate and the serrate steak knife it was found that the slate floor was more uneven, but the serrate steak knife generated more overall relief. Although preliminary, the approach described here successfully distinguishes stone and steel tools; the authors conclude that the WLCP is a promising technology for cut mark analysis because of the very detailed 3D representations it creates and the numerous avenues of analysis it provides.

  3. Preliminary Core Analysis of a Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Chang Keun; Chang, Jongwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Venneri, Francesco [Ultra Safe Nuclear Corporation, Los Alamos (United States); Hawari, Ayman [NC State Univ., Raleigh (United States)

    2014-05-15

    The Micro Modular Reactor (MMR) will be 'melt-down proof'(MDP) under all circumstances, including the complete loss of coolant, and will be easily transportable and retrievable, and suitable for use with very little site preparation and Balance of Plant (BOP) requirements for a variety of applications, from power generation and process heat applications in remote areas to grid-unattached locations, including ship propulsion. The Micro Modular Reactor design proposed in this paper has 3 meter diameter core (2 meter active core) which is suitable for 'factory manufactured' and has few tens year of service life for remote deployment. We confirmed the feasibility of long term service life by a preliminary neutronic analysis in terms of the excess reactivity, the temperature feedback coefficient, and the control margins. We are able to achieve a reasonably long core life time of 5 ∼ 10 years under typical thermal hydraulic condition of a helium cooled reactor. However, on a situation where longer service period and safety is important, we can reduce the power density to the level of typical pebble bed reactor. In this case we can design 10 MWt MMR with core diameter for 10 ∼ 40 years core life time without much loss in the economics. Several burnable poisons are studied and it is found that erbia mixed in the compact matrix seems reasonably good poison. The temperature feedback coefficients were remaining negative during lifetime. Drum type control rods at reflector region and few control rods inside core region are sufficient to control the reactivity during operation and to achieve safe cold shutdown state.

  4. Numerical analysis of field-scale transport of bromacil

    Science.gov (United States)

    Russo, David; Tauber-Yasur, Inbar; Laufer, Asher; Yaron, Bruno

    Field-scale transport of bromacil (5-bromo-3- sec-butyl-6-methyluracil) was analyzed using two different model processes for local description of the transport. The first was the classical, one-region convection dispersion equation (CDE) model while the second was the two-region, mobile-immobile (MIM) model. The analyses were performed by means of detailed three-dimensional, numerical simulations of the flow and the transport [Russo, D., Zaidel, J. and Laufer, A., Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil. Water Resour. Res., 1998, in press], employing local soil hydraulic properties parameters from field measurements and local adsorption/desorption coefficients and the first-order degradation rate coefficient from laboratory measurements. Results of the analyses suggest that for a given flow regime, mass exchange between the mobile and the immobile regions retards the bromacil degradation, considerably affects the distribution of the bromacil resident concentration, c, at relatively large travel times, slightly affects the spatial moments of the distribution of c, and increases the skewing of the bromacil breakthrough and the uncertainty in its prediction, compared with the case in which the soil contained only a single (mobile) region. Mean and standard deviation of the simulated concentration profiles at various elapsed times were compared with measurements from a field-scale transport experiment [Tauber-Yasur, I., Hadas, A., Russo, D. and Yaron, B., Leaching of terbuthylazine and bromacil through field soils. Water, Air Soil Poln., 1998, in press] conducted at the Bet Dagan site. Given the limitations of the present study (e.g. the lack of detailed field data on the spatial variability of the soil chemical properties) the main conclusion of the present study is that the field-scale transport of bromacil at the Bet Dagan site is better quantified with the MIM model than the CDE model.

  5. Numerical Analysis of Piles in Layered Soils: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Reddy C

    2015-04-01

    Full Text Available In this paper, numerical analysis of a pile-soil interaction problem is presented considering the parameters influencing the axial load-deformation behavior of the pile embedded in a layered soil medium. The analysis is demonstrated with parametric solutions of a pile with underlain model soil strata under the axial force. An attempt is made to ascertain the extent of influence of elastic properties of the pile, geometry of the pile, end conditions of the pile and the elastic properties of the underlain soil strata on the response of the piles under axial loads lying in a model soil layers in terms of the settlement of the pile and the internal deformation of the pile. The study revealed that the increase in modulus of elasticity of pile improves the settlement resistance of the pile, increase in the ratio of cross sectional dimensions causes decrease in the top deformations of the pile, the settlement of the pile reduced to a great extent when the cross section of the pile adopted is non circular instead of circular and increase in the elastic modulii of top and bottom layers of soil has decreased the settlement of the pile to a great extent, but elastic modulus of soil layers other than top and bottom has got negligible influence on the settlement of the pile.

  6. Preliminary evaluation of diabatic heating distribution from FGGE level 3b analysis data

    Science.gov (United States)

    Kasahara, A.; Mizzi, A. P.

    1985-01-01

    A method is presented for calculating the global distribution of diabatic heating rate. Preliminary results of global heating rate evaluated from the European center for Medium Range Weather Forecasts Level IIIb analysis data is also presented.

  7. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in situ conditions for a bedrock repository for spent nuclear fuel. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft).An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models.Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that effects the Simpevarp area. Transport calculations are then performed by particle tracking from a local-scale release area (tens of square kilometres) to identify potential discharge areas for the site. The transport from the two site-scale release areas (a few square kilometres) at the Simpevarp site and the Laxemar site are also considered more specifically and using greater grid resolution.The main

  8. The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis

    DEFF Research Database (Denmark)

    Kristensen, Niels Heine; Nielsen, Thorkild; Bruselius-Jensen, Maria Louisa

    2003-01-01

    Kristensen NH, Nielsen T, Bruselius-Jensen M, Scheperlen-Bøgh P, Beckie M, Foster C, Midmore P, Padel S (2002): The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis. Final Report to the EU Commission......Kristensen NH, Nielsen T, Bruselius-Jensen M, Scheperlen-Bøgh P, Beckie M, Foster C, Midmore P, Padel S (2002): The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis. Final Report to the EU Commission...

  9. SAMSAN- MODERN NUMERICAL METHODS FOR CLASSICAL SAMPLED SYSTEM ANALYSIS

    Science.gov (United States)

    Frisch, H. P.

    1994-01-01

    SAMSAN was developed to aid the control system analyst by providing a self consistent set of computer algorithms that support large order control system design and evaluation studies, with an emphasis placed on sampled system analysis. Control system analysts have access to a vast array of published algorithms to solve an equally large spectrum of controls related computational problems. The analyst usually spends considerable time and effort bringing these published algorithms to an integrated operational status and often finds them less general than desired. SAMSAN reduces the burden on the analyst by providing a set of algorithms that have been well tested and documented, and that can be readily integrated for solving control system problems. Algorithm selection for SAMSAN has been biased toward numerical accuracy for large order systems with computational speed and portability being considered important but not paramount. In addition to containing relevant subroutines from EISPAK for eigen-analysis and from LINPAK for the solution of linear systems and related problems, SAMSAN contains the following not so generally available capabilities: 1) Reduction of a real non-symmetric matrix to block diagonal form via a real similarity transformation matrix which is well conditioned with respect to inversion, 2) Solution of the generalized eigenvalue problem with balancing and grading, 3) Computation of all zeros of the determinant of a matrix of polynomials, 4) Matrix exponentiation and the evaluation of integrals involving the matrix exponential, with option to first block diagonalize, 5) Root locus and frequency response for single variable transfer functions in the S, Z, and W domains, 6) Several methods of computing zeros for linear systems, and 7) The ability to generate documentation "on demand". All matrix operations in the SAMSAN algorithms assume non-symmetric matrices with real double precision elements. There is no fixed size limit on any matrix in any

  10. A Computer-Based Content Analysis of Interview Texts: Numeric Description and Multivariate Analysis.

    Science.gov (United States)

    Bierschenk, B.

    1977-01-01

    A method is described by which cognitive structures in verbal data can be identified and categorized through numerical analysis and quantitative description. Transcriptions of interviews (in this case, the verbal statements of 40 researchers) are manually coded and subjected to analysis following the AaO (Agent action Object) paradigm. The texts…

  11. Preliminary study on washability and composition analysis of highsulfur coal in some mining areas in Guizhou

    Institute of Scientific and Technical Information of China (English)

    QIU Yue-qin; MAO Song; ZHANG Qin; TIAN Ye; LIU Zhi-hong

    2011-01-01

    Preliminary sink-float experiments on high-sulfur coal was done in some mining areas and carried on elementary analysis, industrial analysis, and ashcontent analysis. Through the experiments, definite middlings, and gangue, the phase analysis of sulfur was carried on, by which a good understanding of sulfur characters in raw coal was achieved.

  12. Summary of research in applied mathematics, numerical analysis, and computer sciences

    Science.gov (United States)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  13. A Preliminary Tsunami Vulnerability Analysis for Yenikapi Region in Istanbul

    Science.gov (United States)

    Ceren Cankaya, Zeynep; Suzen, Lutfi; Cevdet Yalciner, Ahmet; Kolat, Cagil; Aytore, Betul; Zaytsev, Andrey

    2015-04-01

    One of the main requirements during post disaster recovery operations is to maintain proper transportation and fluent communication at the disaster areas. Ports and harbors are the main transportation hubs which must work with proper performance at all times especially after the disasters. Resilience of coastal utilities after earthquakes and tsunamis have major importance for efficient and proper rescue and recovery operations soon after the disasters. Istanbul is a mega city with its various coastal utilities located at the north coast of the Sea of Marmara. At Yenikapi region of Istanbul, there are critical coastal utilities and vulnerable coastal structures and critical activities occur daily. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, water front commercial and/or recreational structures are some of the examples of coastal utilization which are vulnerable against marine disasters. Therefore their vulnerability under tsunami or any other marine hazard to Yenikapi region of Istanbul is an important issue. In this study, a methodology of vulnerability analysis under tsunami attack is proposed with the applications to Yenikapi region. In the study, high resolution (1m) GIS database of Istanbul Metropolitan Municipality (IMM) is used and analyzed by using GIS implementation. The bathymetry and topography database and the vector dataset containing all buildings/structures/infrastructures in the study area are obtained for tsunami numerical modeling for the study area. GIS based tsunami vulnerability assessment is conducted by applying the Multi-criteria Decision Making Analysis (MCDA). The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability parameters in the region due to two different classifications i) vulnerability of buildings/structures and ii) vulnerability of (human) evacuation

  14. Cusum charts for preliminary analysis of individual observations

    NARCIS (Netherlands)

    A.J. Koning (Alex); R.J.M.M. Does (Ronald)

    1997-01-01

    textabstractA preliminary Cusum chart based on individual observations is developed from the uniformly most powerful test for the detection of linear trends. This Cusum chart is compared with several of its competitors which are based on the likelihood ratio test and on transformations of standardiz

  15. NUMERICAL SIMULATION FOR A PROCESS ANALYSIS OF A COKE OVEN

    Institute of Scientific and Technical Information of China (English)

    Zhancheng Guo; Huiqing Tang

    2005-01-01

    A computational fluid dynamic model is established for a coking process analysis of a coke oven using PHOENICS CFD package. The model simultaneously calculates the transient composition, temperatures of the gas and the solid phases, velocity of the gas phase and porosity and density of the semi-coke phase. Numerical simulation is illustrated in predicting the evolution of volatile gases, gas flow paths, profiles of density, porosity of the coke oven charge,profiles of temperatures of the coke oven gas and the semi-coke bed. On the basis of above modeling, the flow of coke oven gas (COG) blown from the bottom of the coke oven into the porous semi-coke bed is simulated to reveal whether or not and when the blown COG can uniformly flow through the porous semi-coke bed for the purpose of desulfurizing the semi-coke by recycling the COG. The simulation results show that the blown COG can uniformly flow through the semi-coke bed only after the temperature at the center of the semi-coke bed has risen to above 900 ℃.

  16. Numerical analysis of pile lateral behavior of pile supported embankment

    Institute of Scientific and Technical Information of China (English)

    荆志东; 刘力; 郑刚; 姜岩

    2008-01-01

    A finite difference numerical method was adopted to evaluate the pile lateral behavior of pile supported embankment. A published case history was used to verify the proposed methodology. By simulating the case history, the determination of parameters needed were verified. Then three embankments constructed on different ground conditions with different soil-pile relative stiffnesses were analyzed to study pile lateral behaviors including pile deflection and bending moment. The results show that pile deflections and bending moments induced by soil lateral deformation and embankment vertical load are different for piles at different positions under the same embankment. The relative stiffness between pile and soil affected by the properties of different reinforcing piles such as concrete pile and deep mixing method pile exert important effects on the pile lateral behavior and the pile’s failure modes. Consequently, it is necessary to consider the different piles lateral behaviors and possible failure modes at different positions and the different piles proprieties with different reinforcing methods in the embankment stability analysis.

  17. Numeric calculation of celestial bodies with spreadsheet analysis

    Science.gov (United States)

    Koch, Alexander

    2016-04-01

    The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.

  18. Direct Numerical Simulation of Combustion Using Principal Component Analysis

    Science.gov (United States)

    Owoyele, Opeoluwa; Echekki, Tarek

    2016-11-01

    We investigate the potential of accelerating chemistry integration during the direct numerical simulation (DNS) of complex fuels based on the transport equations of representative scalars that span the desired composition space using principal component analysis (PCA). The transported principal components (PCs) offer significant potential to reduce the computational cost of DNS through a reduction in the number of transported scalars, as well as the spatial and temporal resolution requirements. The strategy is demonstrated using DNS of a premixed methane-air flame in a 2D vortical flow and is extended to the 3D geometry to further demonstrate the computational efficiency of PC transport. The PCs are derived from a priori PCA of a subset of the full thermo-chemical scalars' vector. The PCs' chemical source terms and transport properties are constructed and tabulated in terms of the PCs using artificial neural networks (ANN). Comparison of DNS based on a full thermo-chemical state and DNS based on PC transport based on 6 PCs shows excellent agreement even for species that are not included in the PCA reduction. The transported PCs reproduce some of the salient features of strongly curved and strongly strained flames. The 2D DNS results also show a significant reduction of two orders of magnitude in the computational cost of the simulations, which enables an extension of the PCA approach to 3D DNS under similar computational requirements. This work was supported by the National Science Foundation Grant DMS-1217200.

  19. Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments

    Science.gov (United States)

    Chen, Juanjuan; Zhang, Tianping; Geng, Hai; Jia, Yanhui; Meng, Wei; Wu, Xianming; Sun, Anbang

    2016-06-01

    Accelerator grid structural and electron backstreaming failures are the most important factors affecting the ion thruster's lifetime. During the thruster's operation, Charge Exchange Xenon (CEX) ions are generated from collisions between plasma and neutral atoms. Those CEX ions grid's barrel and wall frequently, which cause the failures of the grid system. In order to validate whether the 20 cm Lanzhou Ion Propulsion System (LIPS-200) satisfies China's communication satellite platform's application requirement for North-South Station Keeping (NSSK), this study analyzed the measured depth of the pit/groove on the accelerator grid's wall and aperture diameter's variation and estimated the operating lifetime of the ion thruster. Different from the previous method, in this paper, the experimental results after the 5500 h of accumulated operation of the LIPS-200 ion thruster are presented firstly. Then, based on these results, theoretical analysis and numerical calculations were firstly performed to predict the on-orbit lifetime of LIPS-200. The results obtained were more accurate to calculate the reliability and analyze the failure modes of the ion thruster. The results indicated that the predicted lifetime of LIPS-200's was about 13218.1 h which could satisfy the required lifetime requirement of 11000 h very well.

  20. 1-D Numerical Analysis of RBCC Engine Performance

    Science.gov (United States)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  1. Numerical Simulation and Scaling Analysis of Cell Printing

    Science.gov (United States)

    Qiao, Rui; He, Ping

    2011-11-01

    Cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use inkjet printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation. Although the feasibility of cell printing has been demonstrated recently, the printing resolution and cell viability remain to be improved. Here we investigate a unit operation in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids. The droplet and cell dynamics are quantified using both direct numerical simulation and scaling analysis. These studies indicate that although cell experienced significant stress during droplet impact, the duration of such stress is very short, which helps explain why many cells can survive the cell printing process. These studies also revealed that cell membrane can be temporarily ruptured during cell printing, which is supported by indirect experimental evidence.

  2. Numerical analysis of laminar forced convection in a spherical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Tuft, D.B.

    1980-07-21

    Calculations of steady laminar incompressible fluid-flow and heat transfer in a spherical annulus are presented. Steady pressures, temperatures, velocities, and heat transfer coefficients are calculated for an insulated outer sphere and a 0/sup 0/C isothermal inner sphere with 50/sup 0/C heated water flowing in the annulus. The inner sphere radius is 13.97 cm, the outer sphere radius is 16.83 cm and the radius ratio is 1.2. The transient axisymmetric equations of heat, mass, and momentum conservation are solved numerically in spherical coordinates. The transient solution is carried out in time until steady state is achieved. A variable mesh is used to improve resolution near the inner sphere where temperature and velocity gradients are steep. It is believed that this is the first fully two-dimensional analysis of forced flow in a spherical annulus. Local and bulk Nusselt numbers are presented for Reynolds numbers from 4.4 to 440. Computed bulk Nusselt numbers ranged from 2 to 50 and are compared to experimental results from the literature. Inlet flow jetting off the inner sphere and flow separation are predicted by the analysis. The location of wall jet separation was found to be a function of Reynolds number, indicating the location of separation depends upon the ratio of inertia to viscous forces. Wall jet separation has a pronounced effect on the distribution of local heat flux. The area between inlet and separation was found to be the most significant area for heat transfer. Radial distributions of azimuthal velocity and temperature are presented for various angles beginning at the inlet. Inner sphere pressure distribution is presented and the effect on flow separation is discussed.

  3. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

    Science.gov (United States)

    2006-12-01

    H. A.; Wilkes, J. O. Applied Numerical Methods ; Wiley: New York, 1969. Chapra , S. C.; Canale, R. P. Numerical Methods for Engineers with... Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids by John D. Clayton, Peter W. Chung, Michael A. Greenfield...Proving Ground, MD 21005-5066 ARL-TR-4002 December 2006 Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

  4. Development of a numerical simulator of human swallowing using a particle method (part 1. Preliminary evaluation of the possibility of numerical simulation using the MPS method).

    Science.gov (United States)

    Kamiya, Tetsu; Toyama, Yoshio; Michiwaki, Yukihiro; Kikuchi, Takahiro

    2013-01-01

    The aim of the present study was to evaluate the possibility of numerical simulation of the swallowing process using a moving particle simulation (MPS) method, which defined the food bolus as a number of particles in a fluid, a solid, and an elastic body. In order to verify the accuracy of the simulation results, a simple water bolus falling model was solved using the three-dimensional (3D) MPS method. We also examined the simplified swallowing simulation using a two-dimensional (2D) MPS method to confirm the interactions between the liquid, solid, elastic bolus, and organ structure. In a comparison of the 3D MPS simulation and experiments, the falling time of the water bolus and the configuration of the interface between the liquid and air corresponded exactly to the experimental measurements and the visualization images. The results showed that the accuracy of the 3D MPS simulation was qualitatively high for the simple falling model. Based on the results of the simplified swallowing simulation using the 2D MPS method, each bolus, defined as a liquid, solid, and elastic body, exhibited different behavior when the organs were transformed forcedly. This confirmed that the MPS method could be used for coupled simulations of the fluid, the solid, the elastic body, and the organ structures. The results suggested that the MPS method could be used to develop a numerical simulator of the swallowing process.

  5. The Analysis and Design of Low Boom Configurations Using CFD and Numerical Optimization Techniques

    Science.gov (United States)

    Siclari, Michael J.

    1999-01-01

    computation requires an hour of computational time on a Cray computer, one can see that the use of constrained numerical optimization quickly becomes impractical.Hence, in order to practically couple a numerical design optimization technique with a CFD method, the CFD method must be extremely efficient with running times on the order of only minutes. The CFD Euler code developed under NASA sponsorship and referred to as MIM3D-SB for the most part fulfills these efficiency requirements. Analysis of wing- body configurations can be computed in a matter of a few minutes. The present study will concentrate on the feasibility of the use of this CFD code in conjunction with a numerical design optimization technique for the sonic boom reduction of candidate HSCT configurations. A preliminary supersonic aircraft design system has been established that utilizes the numerical design optimization code NPSOL developed at Stanford University coupled with the supersonic NUM3D-SB CFD code. Many questions still need to be answered in regard to using CFD and numerical optimizers as design tools. There are difficulties related to both the CFD codes and the numerical optimizers. Numerical optimizers can converge to a local minima rather than a global minima. This behavior is largely a function of the initial guess in the design space. The optimizer also is searching for a minimum of the function in terms of its derivative without any regard to the actual function value. Numerically (i.e. CFD) determined gradients can also generate spurious numerical local minima. In addition, for the sonic boom problem, grid fineness will also determine the accuracy of the final design solution. Design optimization methods work well on problems defined by continuous objective functions. The sonic boom signature design problem is not necessarily defined by a continuous objective function. The signature can have a variety of shapes; i.e. from N-wave to multiple shocks. The far-field or ground signature may not

  6. Numerical Analysis of Impulse Turbine for Isolated Pilot OWC System

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2013-01-01

    Full Text Available Oscillating water column (OWC is the most widely used wave energy converting technology in the world. The impulse turbine is recently been employed as the radial turbine in OWC facilities to convert bidirectional mechanical air power into electricity power. 3D numerical model for the impulse turbine is established in this paper to investigate its operating performance of the designed impulse turbine for the pilot OWC system which is under the construction on Jeju Island, Republic of Korea. The proper mesh style, turbulence model, and numerical solutions are employed to study the velocity and air pressure distribution especially around the rotor blade. The operating coefficients obtained from the numerical simulation are compared with corresponding experimental data, which demonstrates that the 3D numerical model proposed here can be applied to the research of impulse turbines for OWC system. Effects of tip clearances on flow field distribution characteristics and operating performances are also studied.

  7. Current Mooring Design in Partner WECs and Candidates for Preliminary Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    This report is the combined report of Commercial Milestone "CM1: Design and Cost of Current Mooring Solutions of Partner WECs" and Milestone "M3: Mooring Solutions for Preliminary Analysis" of the EUDP project "Mooring Solutions for Large Wave Energy Converters". The report covers a description...... of the current mooring design of the partner Wave Energy Converter (WEC) developers in the project, together with a preliminary cost estimate of the systems....

  8. Experimental and Numerical Analysis of Steel Joints in Round Wood

    Directory of Open Access Journals (Sweden)

    Mikolášek David

    2014-12-01

    Full Text Available The paper analyses a drawn steel joint in round logs for which several types of reinforcements have been proposed. The load-carrying capacity of the reinforcements have been tested in laboratories. At the same time, numerical modelling has been performed - it has focused, in particular, on rigidity of the joints during the loading process. Physical and geometrical nonlinearities have been taken into account. The Finite Element Method and 3D computation models have been used in the numerical calculations.

  9. Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics

    OpenAIRE

    Feireisl, E. (Eduard); Karper, T.; Pokorný, M.

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring...

  10. Numerical Model for the Analysis of Coolability of a Particulate Debris Bed with Single Phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Cho, C. H.; Jeong, H. Y.; Chang, W. P.; Kwon, Y. M.; Lee, Y. B

    2008-01-15

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. Accordingly, Numerical model development for the Analysis of coolability of a particulate debris bed with single phase flow was carried out for in-vessel retention of the core debris.

  11. Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building

    Energy Technology Data Exchange (ETDEWEB)

    G. Wagenblast

    2000-05-01

    The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

  12. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  13. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  14. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Jeudy, Sandra [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Coutard, Bruno [Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Lebrun, Régine [IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Abergel, Chantal, E-mail: chantal.abergel@igs.cnrs-mrs.fr [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France)

    2005-06-01

    A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported. The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004 ▶), Science, 306, 1344–1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005 ▶), Acta Cryst. F61, 212–215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2{sub 1}3, with unit-cell parameter 99.425 Å. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  15. Numerical modeling and analysis of the active magnetic regenerator

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein

    expressed as temperature span versus cooling power is mapped as a function of the central parameters. Since regenerators built of several magnetic materials distinguished by their respective magnetic transition temperatures are reported to perform better than single-material AMRs this concept has been......In this thesis the active magnetic regenerator (AMR) is analyzed using various numerical tools and experimental devices. A 2-dimensional transient numerical model of the AMR is developed and implemented and it is used to investigate the in uence of a range of parameters on the performance...... investigated using the numerical AMR model. The results show indeed that the performance may be enhanced signicantly and it may thus be concluded that the performance of the AMR is dependent on a vast number of parameters (material composition, magnetic eld source, regenerator geometry, regenerator eciency...

  16. Cusum charts for preliminary analysis of individual observations

    OpenAIRE

    1997-01-01

    textabstractA preliminary Cusum chart based on individual observations is developed from the uniformly most powerful test for the detection of linear trends. This Cusum chart is compared with several of its competitors which are based on the likelihood ratio test and on transformations of standardized recursive residuals on which for instance the Q-chart methodology is based. It turns out that the new proposed Cusum chart is not only superior in the detection of linear trend out-of-control co...

  17. International Winter Workshop on Differential Equations and Numerical Analysis

    CERN Document Server

    Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin

    2016-01-01

    This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.

  18. Analysis of anelastic flow and numerical treatment via finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.J.

    1994-05-01

    In this report, we reconsider the various approximations made to the full equations of motion and energy transport for treating low-speed flows with significant temperature induced property variations. This entails assessment of the development of so-called anelastic for low-Mach number flows outside the range of validity of the Boussinesq equations. An integral part of this assessment is the development of a finite element-based numerical scheme for obtaining approximate numerical solutions to this class of problems. Several formulations were attempted and are compared.

  19. Grid-connected ICES preliminary feasibility analysis and evaluation. Final report. Volume I. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-30

    A group of hospitals, clinics, research facilities, and medical education facilities, known as the HEAL Complex, was chosen as the site (in New Orleans) for the demonstration of a Grid-Connected Integrated Community Energy System (ICES). The contract work included a preliminary energy supply/demand assessment of the Demonstration Community, a preliminary feasibility analysis and conceptual design of a candidate Demonstration System, preliminary assessment of institutional factors, preparation of a detailed work management plan for subsequent phases of the demonstration program, firming-up of commitments from participating parties, and reporting thereon. This Phase I study has indicated that a central ICES plant producing steam, chilled water, and by-product electricity to serve the HEAL Complex is technically and economically feasible to the extent that Phase II, Detailed Feasibility and Preliminary Design, should be implemented. (MCW)

  20. Numerical Analysis of Turbulent Flows in Channels of Complex Geometry

    Science.gov (United States)

    Farbos De Luzan, Charles

    The current study proposes to follow a systematic validated approach to applied fluid mechanics problems in order to evaluate the ability of different computational fluid dynamics (CFD) to be a relevant design tool. This systematic approach involves different operations such as grid sensitivity analyses, turbulence models comparison and appropriate wall treatments, in order to define case-specific optimal parameters for industrial applications. A validation effort is performed on each study, with particle image velocimetry (PIV) experimental results as the validating metric. The first part of the dissertation lays down the principles of validation, and presents the details of a grid sensitivity analysis, as well as a turbulence models benchmark. The models are available in commercial solvers, and in most cases the default values of the equations constants are retained. The validation experimental data is taken with a hot wire, and has served as a reference to validate multiple turbulence models for turbulent flows in channels. In a second part, the study of a coaxial piping system will compare a set of different steady Reynolds-Averaged Navier Stokes (RANS) turbulence models, namely the one equation model Spalart-Almaras, and two-equation-models standard k-epsilon, k-epsilon realizable, k-epsilon RNG, standard k-omega, k-omega SST, and transition SST. The geometry of interest involves a transition from an annulus into a larger one, where highly turbulent phenomena occur, such as recirculation and jet impingement. Based on a set of constraints that are defined in the analysis, a chosen model will be tested on new designs in order to evaluate their performance. The third part of this dissertation will address the steady-state flow patterns in a Viscosity-Sensitive Fluidic Diode (VSFD). This device is used in a fluidics application, and its originality lies in the fact that it does not require a control fluid in order to operate. This section will discuss the

  1. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  2. Numerical analysis of elastic coated solids in line contact

    Institute of Scientific and Technical Information of China (English)

    王廷剑; 王黎钦; 古乐; 赵小力

    2015-01-01

    A line contact model of elastic coated solids is presented based on the influence coefficients (ICs) of surface displacement and stresses of coating−substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions (FRF) by using a conversion method based on fast Fourier transformation (FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method (CGM) and discrete convolution fast Fourier transformation (DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameterh/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.

  3. Introduction to Numerical Computation - analysis and Matlab illustrations

    DEFF Research Database (Denmark)

    Elden, Lars; Wittmeyer-Koch, Linde; Nielsen, Hans Bruun

    In a modern programming environment like eg MATLAB it is possible by simple commands to perform advanced calculations on a personal computer. In order to use such a powerful tool efiiciently it is necessary to have an overview of available numerical methods and algorithms and to know about...... are illustrated by examples in MATLAB....

  4. Numerical Analysis on Rotary Forging Mechanism of a Flange

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical simulation on the rotary forging process of a flange is conducted by three-dimensional rigid-plastic finite element method. The states of stress and strain rate in the workpiece are analyzed and the forging mechanism of the flange is revealed. Moreover, the influence of the die configuration on the material flow is also analyzed.

  5. Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models

    NARCIS (Netherlands)

    Osiewalski, J.; Steel, M.F.J.

    1996-01-01

    In this paper we describe the use of modern numerical integration methods for making posterior inferences in composed error stochastic frontier models for panel data or individual cross-sections.Two Monte Carlo methods have been used in practical applications.We survey these two methods in some

  6. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  7. Numerical analysis of time-dependent Boussinesq models

    NARCIS (Netherlands)

    Houwen, P.J. van der; Mooiman, J.; Wubs, F.W.

    1991-01-01

    In this paper we analyse numerical models for time-dependent Boussinesq equations. These equations arise when so-called Boussinesq terms are introduced into the shallow water equations. We use the Boussinesq terms proposed by Katapodes and Dingemans. These terms generalize the constant depth terms g

  8. Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.

    Science.gov (United States)

    1985-04-09

    Process Analysis A. F. Talbot. V. Elanchenny, L. H. Finkel, A. Macris and 3. P. Schwedock Sun Tech, Inc., A Subsidiary of Sun Co. P. 0. Box 1135 Marcus Hook...investigation be carried out in three discrete phases, as described below: Phase I - Preliminary process analysis includes an eval- uation of the potential of

  9. A Preliminary Study on Gender Differences in Studying Systems Analysis and Design

    Science.gov (United States)

    Lee, Fion S. L.; Wong, Kelvin C. K.

    2017-01-01

    Systems analysis and design is a crucial task in system development and is included in a typical information systems programme as a core course. This paper presented a preliminary study on gender differences in studying a systems analysis and design course of an undergraduate programme. Results indicated that male students outperformed female…

  10. Numerical analysis of nanostructures for enhanced light extraction from OLEDs

    CERN Document Server

    Zschiedrich, L; Burger, S; Schmidt, F; 10.1117/12.2001132

    2013-01-01

    Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are then gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

  11. Numerical analysis of bump foil bearings without nominal radial clearance

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-sheng; XU Huai-jin; ZHANG Guang-hui

    2008-01-01

    Bump foil bearings without nominal radial clearance were analyzed. An air film thickness model and a bearing theoretical analytical model were developed accounting for air compressibility and foil deformation. To analyze hydrodynamic characteristics of bump foil beatings with different operating eccentricities, the air film thickness equation and Reynolds equation were coupled through pressure and solved by Newton-Raphson Method(NRM) and Finite Difference Method (FDM). The characteristics of an bump foil bearing model were dis-cussed including load carrying capacity, film thickness and pressure distributions. The results of simulation show that bump foil beating without nominal radial clearance can provide better stability and greater load capaci-ty. This numerical analytical method also reveals a good convergence in numerical calculation.

  12. Numerical analysis of microholes film/effusion cooling effectiveness

    Science.gov (United States)

    Ochrymiuk, Tomasz

    2017-10-01

    Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three-dimensional discrete hole film cooling RSM-AKN turbulent heat transfer models based on variable turbulent Prandtl number approaches were considered. Obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two-equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models. The RSM-AKN turbulent model was used in micoholes case too. The main target of simulations was maintain the same level of cooling efficiency ratio in both cases and confirm that is possible significantly reduce mass flows of the coolant in microholes case.

  13. 3D numerical simulation and analysis of railgun gouging mechanism

    Institute of Scientific and Technical Information of China (English)

    Jin-guo WU; Bo TANG; Qing-hua LIN; Hai-yuan LI; Bao-ming LI

    2016-01-01

    A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  14. An Experimental and Numerical Analysis of Puff Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Saidi MS

    2014-12-01

    Full Text Available The permeability of a tobacco rod in a cigarette increases as it converts into char and ash in the coal. The hot coal introduces a significant resistance to the air flow when air passes through. Through a series of experiments, the cigarette burn line and burn rate, the centerline temperature, and the pressure drop were measured for continuous puffing conditions. The gas viscosity was calculated from the temperature distribution inside the cigarette and applying Sutherland's law. Then, the experimental setup was mathematically modeled from a commercially available CFD (Computational Fluid Dynamics code and, by matching the numerical and experimental results, the changes in coal and filter permeability during puffing were estimated. The numerical simulation successfully reproduced the results of experiments on the air flow through the coal, ventilation holes and paper wrapper.

  15. NUMERICAL ANALYSIS OF GASEOUS FLOW IN MICRO-CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Xu Jie; Gu Chuangang; Wang Tong

    2004-01-01

    The algorithm of gaseous flow in bi-dimensional micro-channels is set up and the corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels is numerically analyzed and the pressure drop along the duct as well as the velocity profile in the micro-channels is obtained. The numerical results agreed well with the experimental results in the references. Moreover, the effects of Kn, (σv and Re on the velocity profiles are analyzed. It is found that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundary increases; the tangential momentum coefficient (σv affects the slip velocity greatly. The slip velocity increases with decreasing (σv In the slip flow regime and for low Re numbers, the slip velocity is little influenced by the Re number.

  16. Numerical analysis of quench in coated conductors with defects

    Science.gov (United States)

    Liu, Wenbin; Yong, Huadong; Zhou, Youhe

    2016-09-01

    When the superconductor is subjected to local thermal perturbations, a large amount of joule heat may be generated in the conductor, which may lead to a quench. In a quench event, a normal zone irreversibly spreads throughout the conductor leading to failure of the superconducting device. In this paper, we will discuss the one-dimensional quench behavior in the coated conductors with internal defects or interface defects. Based on the numerical procedure given in the previous works, the normal zone propagation is studied by using the finite difference method. The numerical results are presented to discuss the normal zone propagation. We consider the effect of internal defect on the nonuniform temperature propagation. For the conductor with interface defects, it can be found that the normal zone propagation velocity is increased by defects.

  17. Numerical analysis of quench in coated conductors with defects

    Directory of Open Access Journals (Sweden)

    Wenbin Liu

    2016-09-01

    Full Text Available When the superconductor is subjected to local thermal perturbations, a large amount of joule heat may be generated in the conductor, which may lead to a quench. In a quench event, a normal zone irreversibly spreads throughout the conductor leading to failure of the superconducting device. In this paper, we will discuss the one-dimensional quench behavior in the coated conductors with internal defects or interface defects. Based on the numerical procedure given in the previous works, the normal zone propagation is studied by using the finite difference method. The numerical results are presented to discuss the normal zone propagation. We consider the effect of internal defect on the nonuniform temperature propagation. For the conductor with interface defects, it can be found that the normal zone propagation velocity is increased by defects.

  18. Numerical analysis of capacitive pressure micro-sensors

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiaomin; LI; Mingxuan; WANG; Chenghao

    2005-01-01

    Pseudo-spectral method is used to numerically model the diaphragm deflection of capacitive pressure micro-sensor under uniform load. The relationship between the capacitance of the micro-sensor and the load is then analyzed after the description of the computational principle. For normal mode micro-sensor, the tensile force on the diaphragm can be ignored and thereby the capacitance increases linearly with the load increase only when the load is so small that the resultant deflection is less than the diaphragm thickness. The linear relationship between the capacitance and the load turns to be nonlinear thereafter and the capacitance rises dramatically with the constant increase of the load. For touch mode micro-sensor, an algorithm to determine the touch radius of the diaphragm and substrate is presented and the curve of capacitance versus load is shown on the numerical results laying a theoretical foundation for micro-sensor design.

  19. A general numerical analysis of time-domain NQR experiments.

    Science.gov (United States)

    Harel, Elad; Cho, Herman

    2006-12-01

    We introduce a general numerical approach for solving the Liouville equation of an isolated quadrupolar nuclide that can be used to analyze the unitary dynamics of time-domain NQR experiments. A numerical treatment is necessitated by the dimensionality of the Liouville space, which precludes analytical, closed form solutions for I > 3/2. Accurate simulations of experimental nutation curves, forbidden transition intensities, powder and single crystal spectra, and off-resonance irradiation dynamics can be computed with this method. We also examine the validity of perturbative approximations where the signal intensity of a transition is proportional to the transition moment between the eigenstates of the system, thus providing a simple basis for determining selection rules. Our method allows us to calculate spectra for all values of the asymmetry parameter, eta, and sample orientations relative to the coil axis. We conclude by demonstrating the methodology for calculating the response of the quadrupole system to amplitude- and frequency-modulated pulses.

  20. The Numerical Analysis of Flow Field on Warship Deck

    Directory of Open Access Journals (Sweden)

    Kwan Ouyang

    2015-03-01

    Full Text Available This study aims to simulate the exhaust flow field of ship by the method of computational fluid dynamics (CFD concerning with the interference by exhaust temperature, shape of stack and rolling angles etc.. In this research wind tunnel test for a corvette has been performed to attain associated experimental data, which were used as a reference basis. During simulation process several configurations of stacks have been selected, and combining with various rolling angles, exhaust temperatures and velocities, we have generated numerous cases from which the diffusion paths and temperature distribution of the exhaust flow field can be clearly observed and analyzed. In terms of numerical simulation, the packaged program computational fluid dynamics software has been adopted. The simulation results also possess the same trend as the experimental data, which have initially confirmed the methods developed here can be used for the arrangement of stack and superstructure at the stage of initial and conceptual design of ships.

  1. 3D numerical simulation and analysis of railgun gouging mechanism

    Directory of Open Access Journals (Sweden)

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  2. Analytical Analysis and Numerical Solution of Two Flavours Skyrmion

    CERN Document Server

    Hadi, Miftachul; Hermawanto, Denny

    2010-01-01

    Two flavours Skyrmion will be analyzed analytically, in case of static and rotational Skyrme equations. Numerical solution of a nonlinear scalar field equation, i.e. the Skyrme equation, will be worked with finite difference method. This article is a more comprehensive version of \\textit{SU(2) Skyrme Model for Hadron} which have been published at Journal of Theoretical and Computational Studies, Volume \\textbf{3} (2004) 0407.

  3. Numerical analysis and geotechnical assessment of mine scale model

    Institute of Scientific and Technical Information of China (English)

    Khanal Manoj; Adhikary Deepak; Balusu Rao

    2012-01-01

    Various numerical methods are available to model,simulate,analyse and interpret the results; however a major task is to select a reliable and intended tool to perform a realistic assessment of any problem.For a model to be a representative of the realistic mining scenario,a verified tool must be chosen to perform an assessment of mine roof support requirement and address the geotechnical risks associated with longwall mining.The dependable tools provide a safe working environment,increased production,efficient management of resources and reduce environmental impacts of mining.Although various methods,for example,analytical,experimental and empirical are being adopted in mining,in recent days numerical tools are becoming popular due to the advancement in computer hardware and numerical methods.Empirical rules based on past experiences do provide a general guide,however due to the heterogeneous nature of mine geology (i.e.,none of the mine sites are identical),numerical simulations of mine site specific conditions would lend better insights into some underlying issues.The paper highlights the use of a continuum mechanics based tool in coal mining with a mine scale model.The continuum modelling can provide close to accurate stress fields and deformation.The paper describes the use of existing mine data to calibrate and validate the model parameters,which then are used to assess geotechnical issues related with installing a new high capacity longwall mine at the mine site.A variety of parameters,for example,chock convergences,caveability of overlying sandstones,abutment and vertical stresses have been estimated.

  4. Numerical Analysis of Turbocharger’s Bearing using Dynamic Mesh

    Directory of Open Access Journals (Sweden)

    J. Moradi Cheqamahi

    2016-01-01

    Full Text Available Journal bearings are widely used in different machineries. Reynolds equation is the governing equation to predict pressure distribution and load bearing capacity in journal bearings. There are many analytical and numerical methods for solving this equation. The main disadvantage of these methods is their inability to analyze complex geometries. In this paper, a comprehensive method based on dynamic mesh method is developed to solve the conservation equations of mass, momentum and energy. This method has smaller error compared to other techniques. To verify the accuracy of this method, the bearings with different length to diameter ratios are analytically and numerically analyzed under different loads and compared with each other. In continue, the turbocharger’s bearing is numerically simulated and the effects of rotational speed change are studied. Finally, the turbocharger’s bearing with four axial grooves are simulated. The simulations results show that adding grooves to the turbocharger’s bearing causes the bearing eccentricity ratio and lubricant flow rate to increase and the attitude angle, rate of temperature rise and frictional torque to decrease.

  5. Numerical bifurcation analysis of the bipedal spring-mass model

    Science.gov (United States)

    Merker, Andreas; Kaiser, Dieter; Hermann, Martin

    2015-01-01

    The spring-mass model and its numerous extensions are currently one of the best candidates for templates of human and animal locomotion. However, with increasing complexity, their applications can become very time-consuming. In this paper, we present an approach that is based on the calculation of bifurcations in the bipedal spring-mass model for walking. Since the bifurcations limit the region of stable walking, locomotion can be studied by computing the corresponding boundaries. Originally, the model was implemented as a hybrid dynamical system. Our new approach consists of the transformation of the series of initial value problems on different intervals into a single boundary value problem. Using this technique, discontinuities can be avoided and sophisticated numerical methods for studying parametrized nonlinear boundary value problems can be applied. Thus, appropriate extended systems are used to compute transcritical and period-doubling bifurcation points as well as turning points. We show that the resulting boundary value problems can be solved by the simple shooting method with sufficient accuracy, making the application of the more extensive multiple shooting superfluous. The proposed approach is fast, robust to numerical perturbations and allows determining complete manifolds of periodic solutions of the original problem.

  6. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  7. 3rd International Conference on Numerical Analysis and Optimization : Theory, Methods, Applications and Technology Transfer

    CERN Document Server

    Grandinetti, Lucio; Purnama, Anton

    2015-01-01

    Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, opt...

  8. Numerical and experimental analysis of vertical spray control patternators

    Directory of Open Access Journals (Sweden)

    F. Sarghini

    2013-09-01

    Full Text Available The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer. Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows. In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup.

  9. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Univ. of Minnesota, Minneapolis, MN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  10. Numerical Analysis of Secondary Cooling in Continuous Slab Casting

    Institute of Scientific and Technical Information of China (English)

    Kee-Hyeon Cho; Byung-Moon Kim

    2008-01-01

    In the present study, a numerical optimization program has been developed for predicting the optimal secondary cooling patterns in a continuous slab caster. Optimization strategy using Broydon-Fletcher-Goldfarb-Shanno (BFGS) method is carried out by determining the constant heat transfer coefficients in each spray zone, which could satisfy the casting conditions and metallurgical criteria specified by the engineer. From the present results, it is found that even a slight variation in the pouring temperature, allowable surface temperature, and casting speed could give rise to the changes in the cooling pattern throughout the spray zones.

  11. Numerical analysis of soil bearing capacity by changing soil characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Khodashenas Pelko

    2009-10-01

    Full Text Available In this research work by changing different parameters of soil foundation like density, cohesion and foundation depth and width of square foundation at angle of friction of 0° to 50° with increment of 5°, numerically safe bearing capacity of soil foundation is calculated and it is attempted to assess economical dimension of foundation as well as understanding variation range of bearing capacity at different degree. It could help of civil engineering in design of foundations at any situation.

  12. Floor Heating with Displacement Ventilation: An Experimental and Numerical Analysis

    DEFF Research Database (Denmark)

    Causone, Francesco; Olesen, Bjarne W.; Corgnati, S.P.

    2010-01-01

    The effect of floor heating combined with displacement ventilation (DV) on thermal indoor environments and indoor air quality (IAQ) was studied by means of CFD. The numerical model was validated with experimental data. A typical office room was simulated, and one of the occupants was considered...... to simulate different kinds of contaminant sources, under the same boundary conditions. It was found that DV does not guarantee a better IAQ than full mixing when contaminant sources are not linked to heat sources, even when floor heating is used. Contaminants produced by powerful heat sources require high...

  13. Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

    CERN Document Server

    Shoemaker, Deirdre; London, Lionel; Pekowsky, Larne

    2015-01-01

    Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.

  14. Numerical analysis of welded joint treated by explosion shock waves

    Institute of Scientific and Technical Information of China (English)

    GUAN Jianjun; CHEN Huaining

    2007-01-01

    This paper focuses on the simulation of welding residual stresses and the action of explosion shock waves on welding residual stresses. Firstly, the distributions of welding temperature field and residual stress on a butt joint were numerically simulated with the sequentially coupled method. Secondly, the effect of explosion shock waves, produced by plastic strip-like explosive, on welding residual stress distri-bution was predicted with coupled Lagrange-ALE algorithm.It was implicated that explosion treatment could effectively reduce welding residual stresses. The simulation work lays a foundation for the further research on the rule of explosion treatment's effect on welding residual stresses and the factors that may influence it.

  15. Numerical simulation and mechanism analysis of freak waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A numerical wave model based on the modified fourth-order nonlinear Schroe dinger equation (mNLSE) in deep water was developed to simulate the formation of freak waves and a standard split-step, pseudo-spectral method was used to solve the equation. The validation of the model is firstly verified, then the simulation of freak waves was performed by changing sideband conditions, and the variation of wave energy was also analyzed in the evolution. The results indicate that Benjamin-Feir instability (sideband instability) is an important mechanism for freak wave formation.

  16. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  17. NUMERICAL SIMULATION ANALYSIS OF EXTERNAL FLOW FIELD OF WAGON-SHAPED CAR AT THE MOMENT OF PASSING

    Institute of Scientific and Technical Information of China (English)

    GU Zhengqi; HE Yibin; ZHOU Wei; JIANG Bo

    2008-01-01

    In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the Cs -x/l curve of side force coefficient(Cs) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data,which shows creditability of numerical simulation methods presented.Key words: External flow field Passing Numerical simulation Side force coefficient

  18. Numerical Analysis of Transient Temperature Response of Soap Film

    Science.gov (United States)

    Tanaka, Seiichi; Tatesaku, Akihiro; Dantsuka, Yuki; Fujiwara, Seiji; Kunimine, Kanji

    2015-11-01

    Measurements of thermophysical properties of thin liquid films are important to understand interfacial phenomena due to film structures composed of amphiphilic molecules in soap film, phospholipid bilayer of biological cell and emulsion. A transient hot-wire technique for liquid films less than 1 \\upmu m thick such as soap film has been proposed to measure the thermal conductivity and diffusivity simultaneously. Two-dimensional heat conduction equations for a solid cylinder with a liquid film have been solved numerically. The temperature of a thin wire with liquid film increases steeply with its own heat generation. The feasibility of this technique is verified through numerical experiments for various thermal conductivities, diffusivities, and film thicknesses. Calculated results indicate that the increase in the volumetric average temperature of the thin wire sufficiently varies with the change of thermal conductivity and diffusivity of the soap film. Therefore, the temperature characteristics could be utilized to evaluate both the thermal conductivity and diffusivity using the Gauss-Newton method.

  19. Numerical solution-space analysis of satisfiability problems

    Science.gov (United States)

    Mann, Alexander; Hartmann, A. K.

    2010-11-01

    The solution-space structure of the three-satisfiability problem (3-SAT) is studied as a function of the control parameter α (ratio of the number of clauses to the number of variables) using numerical simulations. For this purpose one has to sample the solution space with uniform weight. It is shown here that standard stochastic local-search (SLS) algorithms like average satisfiability (ASAT) exhibit a sampling bias, as does “Metropolis-coupled Markov chain Monte Carlo” (MCMCMC) (also known as “parallel tempering”) when run for feasible times. Nevertheless, unbiased samples of solutions can be obtained using the “ballistic-networking approach,” which is introduced here. It is a generalization of “ballistic search” methods and yields also a cluster structure of the solution space. As application, solutions of 3-SAT instances are generated using ASAT plus ballistic networking. The numerical results are compatible with a previous analytical prediction of a simple solution-space structure for small values of α and a transition to a clustered phase at αc≈3.86 , where the solution space breaks up into several non-negligible clusters. Furthermore, in the thermodynamic limit there are, even for α=4.25 close to the SAT-UNSAT transition αs≈4.267 , always clusters without any frozen variables. This may explain why some SLS algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT transition.

  20. Validation of numerical codes for the analysis of plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R. (Univ. di Salerno, Dipt. di Ingegneria Elettronica, Fisciano (Italy)); Bottura, L. (NET Team, Garching (Germany)); Chiocchio, S. (NET Team, Garching (Germany)); Coccorese, E. (Univ. di Reggio Calabria, Ist. di Ingegneria Elettronica (Italy)); Gernhardt, J. (Max Planck IPP, Garching (Germany)); Gruber, O. (Max Planck IPP, Garching (Germany)); Fresa, R. (Univ. di Salerno, Dipt. di Ingegneria Elettronica, Fisciano (Italy)); Martone, R. (Univ. di Salerno, Dipt. di Ingegneria Elettronica, Fisciano (Italy)); Portone, A. (NET Team, Garching (Germany)); Seidel, U. (Max Planck IPP, Garching (Germany))

    1994-01-01

    Electromagnetic aspects in the design of ITER-like reactors call for an extensive use of complex and advanced numerical codes. For this reason a strong attention has been paid within the NET-Team to the code development. In particular, through a cooperation with some Italian universities, during the last years a number of numerical procedures were developed and integrated. In order to assess the code reliability and to gain confidence on their predictions for next generation ITER-like reactors, the validation of the codes against experiments has to be considered as a strict requirement. Aim of this paper is to give a comprehensive presentation of this problem in the light of the results of a campaign of validation runs. The main outcome of this work is that the computational procedures, which have been developed for the NET project and then extensively used also for ITER studies, can be considered as experimentally validated in a sufficiently wide range of cases of interest. In particular, computed values are compared with experimental measurements made during some typical ASDEX-Upgrade discharges. From the electromagnetic point of view, many features of this machine are common to the ITER concept, so that the results of the validation can reasonably be extended to the ITER case. (orig.)

  1. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  2. Preliminary Coupling of MATRA Code for Multi-physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongjin; Choi, Jinyoung; Yang, Yongsik; Kwon, Hyouk; Hwang, Daehyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The boundary conditions such as the inlet temperature, mass flux, averaged heat flux, power distributions of the rods, and core geometry is given by constant values or functions of time. These conditions are separately calculated and provided by other codes, such as a neutronics or a system codes, into the MATRA code. In addition, the coupling of several codes in the different physics field is focused and embodied. In this study, multiphysics coupling methods were developed for a subchannel code (MATRA) with neutronics codes (MASTER, DeCART) and a fuel performance code (FRAPCON-3). Preliminary evaluation results for representative sample cases are presented. The MASTER and DeCART codes provide the power distribution of the rods in the core to the MATRA code. In case of the FRAPCON-3 code, the variation of the rod diameter induced by the thermal expansion is yielded and provided. The MATRA code transfers the thermal-hydraulic conditions that each code needs. Moreover, the coupling method with each code is described.

  3. Laboratory Investigations on Estuary Salinity Mixing: Preliminary Analysis

    Directory of Open Access Journals (Sweden)

    F. H. Nuryazmeen

    2014-05-01

    Full Text Available Estuaries are bodies of water along the coasts that are formed when fresh water from rivers flows into and mixes with salt water from the ocean. The estuaries serve as a habitat to some aquatic lives, including mangroves. Human-induced activities such as dredging of shipping lanes along the bottom estuarine, the disposal of industrial wastes into the water system and shoreline development influence estuarine dynamics which include mixing process. These activities might contribute to salinity changes and further adversely affect the estuarine ecosystem. In order to study at the characteristics of the mixing between salt water (estuary and freshwater (river, a preliminary investigation had been done in the laboratory. Fresh water was released from one end of the flume and overflowing at weir at the other end. Meanwhile, salt water was represented by the red dye tracer released through a weir and intruded upstream as a gravity current. The isohalines are plotted to see the salinity patterns. Besides, to examine the spatial and temporal salinity profiles along the laboratory investigations, the plotted graphs have been made. The results show that the changes in salinity level along the flume due to mixing between fresh water and salt water. This showed typical salt-wedge estuary characteristics.

  4. Expression, purification, crystallization and preliminary X-ray analysis of the cathelicidin motif of the protegrin-3 precursor.

    Science.gov (United States)

    Sanchez, J F; Hoh, F; Strub, M P; Strub, J M; Van Dorsselaer, A; Lehrer, R; Ganz, T; Chavanieu, A; Calas, B; Dumas, C; Aumelas, A

    2001-11-01

    Numerous precursors of antibacterial peptides with unrelated sequences share a similar prosequence which belongs to the cathelicidin family of proteins. The three-dimensional structure of this cathelicidin motif, which contains two disulfide bonds, has not yet been reported. The cathelicidin motif (ProS) of the protegrin-3 precursor was overexpressed in Escherichia coli as a His-tagged protein. The His(6) tag was removed by thrombin cleavage. ProS was purified to homogeneity and single crystals were obtained by the hanging-drop vapour-diffusion method at pH 3-4. Preliminary X-ray diffraction analysis indicated that these crystals belong to the hexagonal space group P6(1)22 or P6(5)22, with unit-cell parameters a = b = 51.42, c = 134.25 A. These crystals diffracted beyond 2.75 A (1.9 A at ESRF) and contain one molecule per asymmetric unit.

  5. Fukushima Daiichi unit 1 uncertainty analysis--Preliminary selection of uncertain parameters and analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Cardoni, Jeffrey N.; Kalinich, Donald A.

    2014-02-01

    Sandia National Laboratories (SNL) plans to conduct uncertainty analyses (UA) on the Fukushima Daiichi unit (1F1) plant with the MELCOR code. The model to be used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). However, that study only examined a handful of various model inputs and boundary conditions, and the predictions yielded only fair agreement with plant data and current release estimates. The goal of this uncertainty study is to perform a focused evaluation of uncertainty in core melt progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, vessel lower head failure, etc.). In preparation for the SNL Fukushima UA work, a scoping study has been completed to identify important core melt progression parameters for the uncertainty analysis. The study also lays out a preliminary UA methodology.

  6. Notes on numerical reliability of several statistical analysis programs

    Science.gov (United States)

    Landwehr, J.M.; Tasker, Gary D.

    1999-01-01

    This report presents a benchmark analysis of several statistical analysis programs currently in use in the USGS. The benchmark consists of a comparison between the values provided by a statistical analysis program for variables in the reference data set ANASTY and their known or calculated theoretical values. The ANASTY data set is an amendment of the Wilkinson NASTY data set that has been used in the statistical literature to assess the reliability (computational correctness) of calculated analytical results.

  7. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    CERN Document Server

    Hinder, Ian; Boyle, Michael; Etienne, Zachariah B; Healy, James; Johnson-McDaniel, Nathan K; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoglu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D; Hannam, Mark; Haas, Roland; Hemberger, Daniel A; Husa, Sascha; Kidder, Lawrence E; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O; Marronetti, Pedro; Matzner, Richard A; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W; Teukolsky, Saul A; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef

    2014-01-01

    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the ...

  8. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  9. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  10. Numerical analysis of wet separation of particles by density differences

    CERN Document Server

    Markauskas, Darius

    2016-01-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  11. Numerical analysis of poly-TFTs under off conditions

    Science.gov (United States)

    Colalongo, L.; Valdinoci, M.; Baccarani, G.; Migliorato, P.; Tallarida, G.; Reita, C.

    1997-04-01

    Polycrystalline silicon thin-film transistors (poly-TFTs) are getting increasingly important for applications in active-matrix flat-panel displays (AMFPDs) and, more generally, for large-area electronics. As the leakage current requirements of poly-TFTs for large area applications become more stringent, it is important to improve our understanding of the physical effects which originate it. The purpose of this work is that of investigating the anomalous behaviour of leakage-currents in poly-TFTs by numerical simulation, taking into account the effect of energy-distributed traps and field-enhanced generation mechanisms. In what follows, we show that the off current is due to the concomitant effects of Poole-Frenkel, trap-assisted and band-to-band tunneling generation mechanisms, and that each of them may be important at different temperature and bias conditions.

  12. Mathematical analysis and numerical methods for science and technology

    CERN Document Server

    Dautray, Robert

    These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...

  13. Numerical analysis of Coleman-de Luccia tunneling

    Science.gov (United States)

    Goto, Yuhei; Okuyama, Kazumi

    2016-08-01

    In this paper, we study the false vacuum decay of a single scalar field ϕ coupled to gravity described by the Coleman-de Luccia (CdL) instanton. We show that it is possible to numerically calculate the bounce factor, which is related to the CdL tunneling rate, without using the thin-wall approximation. In this paper, we consider 1/cosh(ϕ)- and cos(ϕ)-type potentials as examples, which have cosmological and phenomenological applications. Especially, in the cos(ϕ)-type potential, we show that the range of values in which axion decay constant can take is restricted by the form of the periodic potential if the CdL tunneling occurs.

  14. Mathematical analysis and numerical simulation of a model of morphogenesis.

    Science.gov (United States)

    Muñoz, Ana I; Tello, José Ignacio

    2011-10-01

    We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.

  15. Numerical Analysis of Mixed Convection through an Internally Finned Tube

    Directory of Open Access Journals (Sweden)

    Sachindra Kumar Rout

    2012-01-01

    Full Text Available Wall temperature of an internally finned tube has been computed numerically for different fin number, height, and shape by solving conservation equations of mass, momentum, and energy using Fluent 12.1 for a steady and laminar flow of fluid inside a tube under mixed flow condition. It has been found that there exists an optimum number for fins to keep the pipe wall temperature at a minimum. The fin height has an optimum value beyond which the wall temperature becomes insensitive to fin height. For a horizontal tube, under mixed flow condition, it is seen that the upper surface has higher average temperature than the lower surface. The impact of fin shape on the heat transfer rate shows that wall temperature is least for triangular-shaped fins, compared to rectangular- and T-shaped fins. In addition to the thermal characteristics, the pressure drop caused due to the presence of fins has also been studied.

  16. Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems

    Directory of Open Access Journals (Sweden)

    Y. Cai

    1995-01-01

    Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.

  17. Numerical Analysis of Coleman-de Luccia Tunneling

    CERN Document Server

    Goto, Yuhei

    2016-01-01

    We study the false vacuum decay of a single scalar field $\\phi$ coupled to gravity described by the Coleman-de Luccia (CdL) instanton. We show that it is possible to numerically calculate the bounce factor, which is related to the CdL tunneling rate, without using the thin-wall approximation. In this paper, we consider $1/\\cosh(\\phi)$- and $\\cos(\\phi)$-type potential as examples, which have cosmological and phenomenological applications. Especially, in the $\\cos(\\phi)$-type potential we show that the range of values in which axion decay constant can take is restricted by the form of the periodic potential if the CdL tunneling occurs.

  18. Computational Notes on the Numerical Analysis of Galactic Rotation Curves

    CERN Document Server

    Scelza, G

    2014-01-01

    In this paper we present a brief discussion on the salient points of the computational analysis that are at the basis of the paper \\cite{StSc}. The computational and data analysis have been made with the software Mathematica$^\\circledR$ and presented at Mathematica Italia User Group Meeting 2011.

  19. Coarse-grained numerical bifurcation analysis of lattice Boltzmann models

    NARCIS (Netherlands)

    Leemput, P. Van; Lust, K.W.A.; Kevrekidis, I.G.

    2005-01-01

    In this paper we study the coarse-grained bifurcation analysis approach proposed by I.G. Kevrekidis and collaborators in PNAS [C. Theodoropoulos, Y.H. Qian, I.G. Kevrekidis, "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example, Proc. Natl. Acad. Sci. 97 (18)

  20. Numerical Analysis on Neutron Shielding Structure of ITER Vacuum Vessel

    Institute of Scientific and Technical Information of China (English)

    LIU Changle; WU Songtao; YU Jie; SHENG Daolin

    2008-01-01

    The neutron shielding component of ITER (International Thermonuclear Experi-mental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest defor-mation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the defor-mation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.

  1. A preliminary numerical study on the time-varying fall attitudes and aerodynamics of freely falling conical graupel particles

    Science.gov (United States)

    Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei

    2017-01-01

    The flow fields and dynamic motions of conical graupel of diameters 0.5-5 mm falling in air of 800 h Pa and - 8 °C are studied by solving the transient Navier-Stokes equations numerically for flow past the conical graupel and the body dynamics equations representing the 6-degrees-of-freedom motion that determines the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The shape of conical graupel made through a simple but practical existing mathematical equation allows us to have an uneven mass distribution, which is generally believed to have great influence on ice particles' orientations while falling when inertial force becomes increasingly dominant over other effects. The simulated motions include vertical fall, lateral translation, sailing, rotation and pendulum swing. The computed flow fields are characterized in terms of streamtrace patterns as well as the vorticity magnitude fields, and the corresponding motions of the conical graupel is physically featured by looking upon the graupel surface distributions of pressure coefficient, torques contributed by both pressure as well as viscous effects. Tumbling doesn't occur when an initial orientation of the graupel is either 20° or 160° about Y axis, and the torque contributed by the pressure effect is dominant over that contributed by the viscous effect.

  2. Transient natural convection heat and mass transfer in a rectangular enclosure - A numerical analysis

    Science.gov (United States)

    Han, Samuel S.; Schafer, Charles F.

    1988-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity with combined horizontal temperature and concentration gradients is performed by a numerical method based on the SIMPLE. Numerical results show that the average Nusselt and Sherwood numbers both decrease markedly when the solutal and thermal buoyancy forces act in the opposite directions. When the solutal and thermal buoyancy forces act in the same directions, however, the average Sherwood number increases significantly and yet the average Nusselt number decreases slightly.

  3. Preliminary Analysis of the Oklahoma Wavefields Demonstration Dataset

    Science.gov (United States)

    Anderson, K. R.; Sweet, J. R.; Woodward, R.; Karplus, M. S.; DeShon, H. R.; Magnani, M. B.; Hayward, C.; Langston, C. A.

    2016-12-01

    In June 2016, a field crew of 50 students, faculty, industry personnel and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3C 4.5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. The nested gradiometer was designed to measure the full seismic wavefield using standard frequency-wavenumber techniques and spatial wave gradients. A broadband, 18 station "Golay 3x6" array was deployed around the gradiometer and seismic lines with an aperture of approximately 5 km to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic arrays and to quantify the wind acoustic noise effect on co-located broadband stations. The variety of instrumentation used in this deployment was chosen to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. We present preliminary results from the data collected during the experiment. We analyze the level of signal coherence observed across the nested gradiometer and Golay array as well as array design fidelity. We report on data quality, including completeness and noise levels, for the various types of instrumentation. We also examine the performance of co-located surface and buried nodes to determine the benefits of each installation type. Finally, we present performance comparisons between co-located nodes and broadband stations and compare these results to prior wavefield/large-N deployments

  4. Preliminary analysis techniques for ring and stringer stiffened cylindrical shells

    Science.gov (United States)

    Graham, J.

    1993-03-01

    This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.

  5. Method to control depth error when ablating human dentin with numerically controlled picosecond laser: a preliminary study.

    Science.gov (United States)

    Sun, Yuchun; Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Wang, Yong

    2015-07-01

    A three-axis numerically controlled picosecond laser was used to ablate dentin to investigate the quantitative relationships among the number of additive pulse layers in two-dimensional scans starting from the focal plane, step size along the normal of the focal plane (focal plane normal), and ablation depth error. A method to control the ablation depth error, suitable to control stepping along the focal plane normal, was preliminarily established. Twenty-four freshly removed mandibular first molars were cut transversely along the long axis of the crown and prepared as 48 tooth sample slices with approximately flat surfaces. Forty-two slices were used in the first section. The picosecond laser was 1,064 nm in wavelength, 3 W in power, and 10 kHz in repetition frequency. For a varying number (n = 5-70) of focal plane additive pulse layers (14 groups, three repetitions each), two-dimensional scanning and ablation were performed on the dentin regions of the tooth sample slices, which were fixed on the focal plane. The ablation depth, d, was measured, and the quantitative function between n and d was established. Six slices were used in the second section. The function was used to calculate and set the timing of stepwise increments, and the single-step size along the focal plane normal was d micrometer after ablation of n layers (n = 5-50; 10 groups, six repetitions each). Each sample underwent three-dimensional scanning and ablation to produce 2 × 2-mm square cavities. The difference, e, between the measured cavity depth and theoretical value was calculated, along with the difference, e 1, between the measured average ablation depth of a single-step along the focal plane normal and theoretical value. Values of n and d corresponding to the minimum values of e and e 1, respectively, were obtained. In two-dimensional ablation, d was largest (720.61 μm) when n = 65 and smallest when n = 5 (45.00 μm). Linear regression yielded the quantitative

  6. Numerical analysis and simulation of Czochralski growth processes for large diameter silicon crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Numerical analysis and simulation have been an effective means to develop the advanced growth technology and to control the defects type, size and density for silicon crystals of 300 mm and beyond In the present paper, numerical analysis of the melt flow in the Czochralski (CZ) crystal growth configuration, the three dimensional (3D) modeling, the simulation of melt flow under the magnetic field, the inverse modeling and the time-dependent simulation are reviewed. Finally, comparison of numerical analysis with experimental measurements is discussed.

  7. Damage detection and quantification using mode curvature variation on framed structures: analysis of the preliminary results

    Science.gov (United States)

    Iacovino, Chiara; Ditommaso, Rocco; Auletta, Gianluca; Ponzo, Felice C.

    2017-04-01

    Continuous monitoring based on vibrational identification methods is increasingly employed for the evaluation of the state of health of existing buildings after strong motion earthquake. Different damage identification methods are based on the variations of damage indices defined in terms modal (eigenfrequencies, mode shapes, and modal damping) and/or non-modal parameters. Most of simplified methods for structural health monitoring and damage detection are based on the evaluation of the dynamic characteristics evolution associated to the fundamental mode of vibration of a monitored structure. Aim of this work is the upgrade of an existing method for damage localization on framed structures during a moderate/destructive earthquake. The existing version of the method is based on the comparison of the geometric characteristics (with particular reference to the mode curvature) exhibited by the structures, related to fundamental mode of vibration, before and during an earthquake. The approach is based on the use of a nonlinear filter, the band-variable filter, based on the Stockwell Transform able to extract the nonlinear response of each mode of vibration. The new version of the method provides the possibility to quantify a possible damage occurred on the monitored structure linking the mode curvature variation with the maximum inter-story drift. This paper shows the preliminary results obtained from several simulations on nonlinear numerical models of reinforced concrete framed structures, designed for only gravity loads, without and with the presence of infill panels. Furthermore, a correlation between maximum mode curvature difference and maximum inter-story drift has been defined for the different numerical models in order to quantify the structural damage. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the

  8. Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing

    Directory of Open Access Journals (Sweden)

    R. Company

    2014-01-01

    analysis of the method is provided. The method preserves positivity and monotonicity of the numerical solution. Consistency and stability properties of the scheme are studied. Explicit calculations avoid iterative algorithms for solving nonlinear systems. Theoretical results are confirmed by numerical experiments. Comparison with other approaches shows that the proposed method is accurate and competitive.

  9. Methods of numerical analysis of 1-dimensional 2-body problem in Wheeler-Feynman electrodynamics

    Science.gov (United States)

    Klimenko, S. V.; Nikitin, I. N.; Urazmetov, W. F.

    2000-04-01

    Numerical methods for solution of differential equations with deviating arguments describing 1-dimensional ultra-relativistic scattering of 2 identical charged particles in classical electrodynamics with half-retarded/halfadvanced interaction (Wheeler and Feynman, 1949) are developed. A bifurcation of solutions and violation of their reflectional symmetries in the region of velocities v>0.937c are found in numerical analysis.

  10. Numerical stability for velocity-based 2-phase formulation for geotechnical dynamic analysis

    NARCIS (Netherlands)

    Mieremet, M.M.J.

    2015-01-01

    As a master student in AppliedMathematics at the Delft University of Technology I am highly educated in Numerical Analysis. My interest in this field even mademe choose elective courses such as Advanced Numerical Methods, Applied Finite Elements and Computational Fluid Dynamics. In my search for a c

  11. Preliminary Design and Analysis of ITER In-Wall Shielding

    Institute of Scientific and Technical Information of China (English)

    LIU Changle; YU Jie; WU Songtao; CAI Yingxiang; PAN Wanjiang

    2007-01-01

    ITER in-wall shielding (IIS) is situated between the doubled shells of the ITER Vacuum Vessel (IVV). Its main functions are applied in shielding neutron, gamma-ray and toroidal field ripple reduction. The structure of IIS has been modelled according to the IVV design criteria which has been updated by the ITER team (IT). Static analysis and thermal expansion analysis were performed for the structure. Thermal-hydraulic analysis verified the heat removal capability and resulting temperature, pressure, and velocity changes in the coolant flow. Consequently, our design work is possibly suitable as a reference for IT's updated or final design in its next step.

  12. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-18

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program (The Program). The analysis is a task by Princeton Energy Resources International, LLC, in support of the National Renewable Energy Laboratory on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE).

  13. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  14. Numerical simulation and analysis of water flow over stepped spillways

    Institute of Scientific and Technical Information of China (English)

    QIAN ZhongDong; HU XiaoQing; HUAI WenXin; AMADOR António

    2009-01-01

    Numerical simulation of water flow over the stepped spillway is conducted using Mixture multiphase flow model. Different turbulence models are chosen to enclose the controlling equations. The turbulence models investigated are realizable k-ε model, SST k-ω model, v2-f model and LES model. The computational results by the four turbulence models are compared with experimental ones in the following aspects: mean velocity, the spanwise vorticity and the growth of the turbulent boundary layer thickness in the streamwise direction. It is found from the comparison that the realizable k-ε model, in which the rotation tensor is included, shows good performance for simulation of flows involving rotation, boundary layer and recirculation. The realizable k-e model is the most efficient in simulating flow over stepped spillways. Further, the characteristics of water flow on the stepped spillway are studied in terms of the mean velocity profile normal to the pseudo-bottom and the pressure field on the steps based on the simulation results using realizable k-ε model.

  15. Parameter Calibration and Numerical Analysis of Twin Shallow Tunnels

    Science.gov (United States)

    Paternesi, Alessandra; Schweiger, Helmut F.; Scarpelli, Giuseppe

    2017-05-01

    Prediction of displacements and lining stresses in underground openings represents a challenging task. The main reason is primarily related to the complexity of this ground-structure interaction problem and secondly to the difficulties in obtaining a reliable geotechnical characterisation of the soil or the rock. In any case, especially when class A predictions fail in forecasting the system behaviour, performing class B or C predictions, which rely on a higher level of knowledge of the surrounding ground, can represent a useful resource for identifying and reducing model deficiencies. The case study presented in this paper deals with the construction works of twin-tube shallow tunnels excavated in a stiff and fine-grained deposit. The work initially focuses on the ground parameter calibration against experimental data, which together with the choice of an appropriate constitutive model plays a major role in the assessment of tunnelling-induced deformations. Since two-dimensional analyses imply initial assumptions to take into account the effect of the 3D excavation, three-dimensional finite element analyses were preferred. Comparisons between monitoring data and results of numerical simulations are provided. The available field data include displacements and deformation measurements regarding both the ground and tunnel lining.

  16. Experimental and Numerical Failure Analysis of Adhesive Composite Joints

    Directory of Open Access Journals (Sweden)

    Farhad Asgari Mehrabadi

    2012-01-01

    Full Text Available In the first section of this work, a suitable data reduction scheme is developed to measure the adhesive joints strain energy release rate under pure mode-I loading, and in the second section, three types of adhesive hybrid lap-joints, that is, Aluminum-GFRP (Glass Fiber Reinforced Plastic, GFRP-GFRP, and Steel-GFRP were employed in the determination of adhesive hybrid joints strengths and failures that occur at these assemblies under tension loading. To achieve the aims, Double Cantilever Beam (DCB was used to evaluate the fracture state under the mode-I loading (opening mode and also hybrid lap-joint was employed to investigate the failure load and strength of bonded joints. The finite-element study was carried out to understand the stress intensity factors in DCB test to account fracture toughness using J-integral method as a useful tool for predicting crack failures. In the case of hybrid lap-joint tests, a numerical modeling was also performed to determine the adhesive stress distribution and stress concentrations in the side of lap-joint. Results are discussed in terms of their relationship with adhesively bonded joints and thus can be used to develop appropriate approaches aimed at using adhesive bonding and extending the lives of adhesively bonded repairs for aerospace structures.

  17. NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE

    Directory of Open Access Journals (Sweden)

    Walid AICH

    2011-01-01

    Full Text Available Natural convection heat transfer and fluid flow have been examined numerically using the control-volume finite-element method in an isosceles prismatic cavity, submitted to a uniform heat flux from below when inclined sides are maintained isothermal and vertical walls are assumed to be perfect thermal insulators, without symmetry assumptions for the flow structure. The aim of the study is to examine a pitchfork bifurcation occurrence. Governing parameters on heat transfer and flow fields are the Rayleigh number and the aspect ratio of the enclosure. It has been found that the heated wall is not isothermal and the flow structure is sensitive to the aspect ratio. It is also found that heat transfer increases with increasing of Rayleigh number and decreases with increasing aspect ratio. The effects of aspect ratio become significant especially for higher values of Rayleigh number. Eventually the obtained results show that a pitchfork bifurcation occurs at a critical Rayleigh number, above which the symmetric solutions becomes unstable and asymmetric solutions are instead obtained.

  18. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    Science.gov (United States)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  19. Relating observations of contrail persistence to numerical weather analysis output

    Directory of Open Access Journals (Sweden)

    D. P. Duda

    2008-10-01

    Full Text Available The potential for using high-resolution meteorological data from two operational numerical weather analyses (NWA to diagnose and predict persistent contrail formation is evaluated using two independent contrail observation databases. Contrail occurrence statistics derived from surface and satellite observations between April 2004 and June 2005 are matched to the humidity, vertical velocity, wind shear and atmospheric stability derived from analyses from the Rapid Update Cycle (RUC and the Advanced Regional Prediction System (ARPS models. The relationships between contrail occurrence and the NWA-derived statistics are analyzed to determine under which atmospheric conditions persistent contrail formation is favored within NWAs. Humidity is the most important factor determining whether contrails are short-lived or persistent, and persistent contrails are more likely to appear when vertical velocities are positive, and more likely to spread when the atmosphere is less stable. Although artificial upper limits on upper tropospheric humidity within the NWAs prevent a direct quantitative agreement of model data with contrail formation theory, logistic regression or similar statistical methods may improve the prediction of contrail occurrence.

  20. Numerical Bifurcation Analysis of Conformal Formulations of the Einstein Constraints

    CERN Document Server

    Holst, M

    2011-01-01

    The Einstein constraint equations have been the subject of study for more than fifty years. The introduction of the conformal method in the 1970's as a parameterization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et. al in 2008, with extensions to rough data by Holst et. al in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental non-uniqueness problems with the conformal method as a parameterization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einst...

  1. Numerical simulation and analysis of water flow over stepped spillways

    Institute of Scientific and Technical Information of China (English)

    AMADOR; António

    2009-01-01

    Numerical simulation of water flow over the stepped spillway is conducted using Mixture multiphase flow model. Different turbulence models are chosen to enclose the controlling equations. The turbulence models investigated are realizable k-ε model, SST k-ω model, v2-f model and LES model. The computational results by the four turbulence models are compared with experimental ones in the following aspects: mean velocity, the spanwise vorticity and the growth of the turbulent boundary layer thickness in the streamwise direction. It is found from the comparison that the realizable k-ε model, in which the rotation tensor is included, shows good performance for simulation of flows involving rotation, boundary layer and recirculation. The realizable k-ε model is the most efficient in simulating flow over stepped spillways. Further, the characteristics of water flow on the stepped spillway are studied in terms of the mean velocity profile normal to the pseudo-bottom and the pressure field on the steps based on the simulation results using realizable k-ε model.

  2. Numerical analysis of extensional flow through the pharyngeal duct

    Science.gov (United States)

    Preciado-Méndez, M.; Salinas-Vázquez, M.; Vicente, W.; Brito-de la Fuente, E.; Ascanio, G.

    2017-01-01

    The flow through the pharynx from the glossopalatal junction (GPJ) to the upper esophageal sphincter (UES) has been numerically investigated with a non-Newtonian fluid obeying the power-law with similar rheological indices to a contrast medium used in videofluroscopy. For that purpose, a three-dimensional model of the transport of food bolus along the pharynx has been proposed using the immersed boundaries method, which allow representing the shape of the pharynx using Cartesian grids. The pharyngeal wall has been considered to be an elastic membrane. Flow fields in terms of the axial velocity, pressure, shear rate and strain rate were obtained. Results show that the highest velocity concentrates in the central stream as the fluid enters into the pharynx. In addition, as the flow quits the pharynx, a recirculation zone appears inside the cavity, resulting in low velocity zone, which increases with the coefficient of elasticity. A strong dependence on the coefficient of elasticity was observed on the pressure fields; so that as such a coefficient increases, the pressure in the pharyngeal wall will increase. It has been also observed that the bolus head travels faster than the bolus tail, which indicates that the bolus is not only subjected to shear but also to elongation. Results from this work can be further used for a rheological characterization (shear and extension) of oral nutritional supplements for patients suffering from swallowing disorders.

  3. Mechanical behavior and numerical analysis of corrugated wire mesh laminates

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Ho; Shankar, Krishna; Tahtali, Murat [UNSW, ADFA, Canberra (Australia)

    2012-01-15

    The objective is to show a possibility of corrugated wire mesh laminate (CWML) structure for bone application. CWML is a part of open-cell structures with low density and high strength built with bonded mesh layers. Specimens of CWML made of 316 stainless steel woven meshes with 0.22 mm wire diameter and 0.95 mm mesh aperture, bonded by transit liquid phase (TLP) at low temperatures, were fabricated and tested under quasi-static conditions to determine their compressive behavior with varying numbers of layers of the sample. The finite element software was used to model the CWML and studied their response to mechanical loading. Then, the numerical model was confirmed by the tested sample. Consequently, CWML specimens were reasonably matched with the human tibia bone ranged over apparent density from 0.05 to 0.08 g/cm{sup 3} in Young's modulus and from 0.05 to 0.11 g/cm{sup 3} in compressive yield strength. The CWML model can have the potential for bone application.

  4. Numerical Analysis and Centrifuge Modeling of Shallow Foundations

    Institute of Scientific and Technical Information of China (English)

    罗强; 栾茂田; 杨蕴明; 王忠涛; 赵守正

    2014-01-01

    The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.

  5. Numerical analysis on letdown system performance test for YGN 3

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Taek; Sohn, Seok Hoon; Seo, Jong Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-09-01

    Integrated performance test of Chemical and Volume control System was successfully performed in 1994. However, an extensive effort to correct hardware and software problems in the letdown line was required mainly due to the lack of adequate simulation code to predict the test accurately. Although the LTC computer code was used during the YGN 3 and 4 NSSS design process, the code can not satisfactorily predict the test due to its insufficient letdown line modeling. This study developed a numerical model to simulate the letdown test by modifying the current LTC code, and then verified the model by comparing with the test data. The comparison shows that the modified LTC computer code can predict the transient behavior of letdown system tests very well. Especially, the model was verified to be able to predict the instantaneous fluctuations in the letdown backpressure and flowrate which are caused by the `Stiction (composition of stick and friction)` of valve. Therefore, it is concluded that the modified LTC computer code with the ability of calculating the `Stiction` phenomena will be very useful for future plant design and test predictions. 1 tab., 11 figs., 7 refs. (Author).

  6. Enzyme polymorphism in Endotrypanum and numerical analysis of isoenzyme data.

    Science.gov (United States)

    Franco, A M; Momen, H; Naiff, R D; Moreira, C F; Deane, M P; Grimaldi Júnior, G

    1996-07-01

    In this study, we have analysed enzyme polymorphism among a group of protozoan parasites of the genus Endotrypanum (Kinetoplastida: Trypanosomatidae). Seventeen stocks of Endotrypanum spp. isolated from sloths (Choloepus didactylus and C. juruanus) in the Amazon Region of Brazil were analysed by enzyme electrophoresis, and their electromorphic profiles were compared with reference strains reported previously. The 16 enzymic loci were analysed, and the strains were classified into zymodemes, each representing parasites with unique enzyme profiles. Each zymodeme was considered as an elementary taxon, and using numerical analyses (cladistic, agglomerative hierarchical and ordination techniques) the genus was shown to be monophyletic and the 12 zymodemes characterized could be divided into 3 groups (A, B, C). The heterogeneous population (which may represent a complex of parasite species or strains variants) showed, however, no correlation with the origin (i.e. host species involved or geographic area of isolation) of Endotrypanum stocks. Eight isolates of Endotrypanum sp. from Rondônia State (Brazil) and a parasite strain from Panama were clustered together into a zymodeme, which was phenetically closely related to the E. monterogeii from Costa Rica. The data indicate that E. schaudinni is a species complex.

  7. Numerical Analysis of a Radiant Heat Flux Calibration System

    Science.gov (United States)

    Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.

    1998-01-01

    A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.

  8. Performance analysis tool (PATO): Development and preliminary validation

    National Research Council Canada - National Science Library

    Fernando Martins; Filipe Clemente; Frutuoso Silva

    2017-01-01

    .... The Performance Analysis Tool (PATO) software was built with the aim to quickly codify relationships between players and built the adjacency matrices that can be used to test the network measures...

  9. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

    2007-03-01

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

  10. Integrated transcriptome and methylome analysis in youth at high risk for bipolar disorder: a preliminary analysis.

    Science.gov (United States)

    Fries, G R; Quevedo, J; Zeni, C P; Kazimi, I F; Zunta-Soares, G; Spiker, D E; Bowden, C L; Walss-Bass, C; Soares, J C

    2017-03-14

    First-degree relatives of patients with bipolar disorder (BD), particularly their offspring, have a higher risk of developing BD and other mental illnesses than the general population. However, the biological mechanisms underlying this increased risk are still unknown, particularly because most of the studies so far have been conducted in chronically ill adults and not in unaffected youth at high risk. In this preliminary study we analyzed genome-wide expression and methylation levels in peripheral blood mononuclear cells from children and adolescents from three matched groups: BD patients, unaffected offspring of bipolar parents (high risk) and controls (low risk). By integrating gene expression and DNA methylation and comparing the lists of differentially expressed genes and differentially methylated probes between groups, we were able to identify 43 risk genes that discriminate patients and high-risk youth from controls. Pathway analysis showed an enrichment of the glucocorticoid receptor (GR) pathway with the genes MED1, HSPA1L, GTF2A1 and TAF15, which might underlie the previously reported role of stress response in the risk for BD in vulnerable populations. Cell-based assays indicate a GR hyporesponsiveness in cells from adult BD patients compared to controls and suggest that these GR-related genes can be modulated by DNA methylation, which poses the theoretical possibility of manipulating their expression as a means to counteract the familial risk presented by those subjects. Although preliminary, our results suggest the utility of peripheral measures in the identification of biomarkers of risk in high-risk populations and further emphasize the potential role of stress and DNA methylation in the risk for BD in youth.

  11. Numerical analysis of rainfall effects in external overburden dump

    Institute of Scientific and Technical Information of China (English)

    Radhakanta Koner⇑; Debashish Chakravarty

    2016-01-01

    The effect of slope angle for external overburden dump in response to average and heavy rainfall has been analyzed using a two dimensional finite difference method of transient water flow through unsaturated–saturated soil. The external dump stability is evaluated for five geomaterial types on the basis of globally accepted safety factor analysis technique, based on shear strength reduction approach using finite differ-ence method. The results obtained from the finite difference method of analysis indicate that the external dump with more than 30? slope angle is greatly influenced by the rainfall under the studied conditions for geomaterial 3, 4 and 5, whereas dumps with geomaterial 1 and 2 remain safe. The analysis shows that major slope failure is out of preview for the studied rainfall conditions.

  12. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  13. Modern Numerical Methods for Classical Sampled System Analysis-SAMSAN

    Science.gov (United States)

    Frisch, H. P.

    1984-01-01

    SAMSAN aids control-system analyst by providing self-consistent set of computer algorithms that support large-order control-system design and evaluation studies, with emphasis placed on sampled system analysis. Program provides set of algorithms readily integrated for solving control-system problems.

  14. Numerical Methods for Classical Sampled-System Analysis

    Science.gov (United States)

    Frisch, H. P.; Bauer, F. H.

    1986-01-01

    SAMSAN provides control-system analyst with self-consistent computer algorithms that support large-order control-system design and evaluation studies. Emphasizes sampled-system analysis. SAMSAN reduces burden on analyst by providing set of algorithms well tested and documented and readily integrated for solving control-system problems.

  15. Numerical Fracture Analysis of Cryogenically Treated Alloy Steel Weldments

    Science.gov (United States)

    Rasool Mohideen, S.; Thamizhmanii, S.; Fatah, M. M. Muhammed Abdul; Saidin, W. Najmuddin W.

    2016-02-01

    Cryogenic treatment is being used commercially in the industries in the last two decades for improving the life of many engineering component such as bearings and cutting tools. Though their influence in improving the wear resistance of tool materials is well established, the effect of treatment on weldments is not much investigated. In the present work, a two dimensional finite element analysis was carried out on the compact tension specimen model for simulating the treatment process and to study the fracture behaviour. The weldments were modelled by thermo- mechanical coupled field analysis for simulating he temperature distribution in the model during weld pool cooling and introducing thermal stresses due to uneven contraction and cooling. The model was subjected to cryogenic treatment by adopting radiation effect. The fracture analysis was carried out using Rice's J- Integral approach. The analysis produced a similar outcome of experimental results i.e. Increase in the fracture toughness of the specimen after cryogenic treatment in the heat affected zone of weldment.

  16. Numerical limit analysis of keyed shear joints in concrete structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    of the authors, previous theoretical works and present design equations in standards do not account for this important effect. In this paper, a detailed model based on finite element limit analysis is introduced to assess the effect of the discontinuous reinforcement. The model is based on the lower bound...

  17. Bioelectrical impedance analysis for bovine milk: Preliminary results

    Science.gov (United States)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  18. Numerical ellipsometry: Examination of growing nickel and rhenium thin films using n-k plane analysis and effective numerical substrates

    Energy Technology Data Exchange (ETDEWEB)

    Urban, F.K., E-mail: urban@fiu.edu; Barton, D.

    2015-05-29

    Useful thin film information may be obtained using ellipsometry data recorded during film growth. In cases in which the growing film overlies a substrate already coated with other films, it is possible to use a model which includes prior knowledge of the optical properties and layer thicknesses of all underlying films and the substrate. However, accuracy of the analysis is limited by imprecision in knowledge of the underlying structure and is not possible if the underlying material structure is unknown. These problems may be addressed by substituting a four-variable “numerical substrate” in place of the underlying materials. The “numerical substrate” exactly mathematically replaces a model of the physical substrate. It is represented by two effective optical indices which are independent of the growing film and dependent only upon light incidence angle and wavelength. The method may be implemented with a set of five measurements at a single wavelength and incidence angle or a set of three measurements at each of two incidence angles. Measurements may be made in-situ during film growth or ex-situ using “step deposited” films of different thicknesses. The work presented here is to demonstrate the method for nickel and rhenium films deposited on a BK7 substrate by Yamamoto using ion sputtering. - Highlights: • Ellipsometry data were taken in-situ. • Data are single angle, single wavelength. • Film nucleation layers are strongly vertically inhomogeneous. • Upper layers were nearly homogeneous. • Solutions used five measurements at different times.

  19. Algorithms for numerical and symbolic analysis of linear circuits and methods of derivatives LU-decomposition

    Directory of Open Access Journals (Sweden)

    V. A. Golovin

    1986-04-01

    Full Text Available The algorithms of numerical and symbolic analysis methods of linear chains of derivatives and LU-decomposition. An example of the calculation circuit functions using programs that implement the proposed algorithms.

  20. Numerical analysis of the non-contacting gas face seals

    Science.gov (United States)

    Blasiak, S.

    2017-08-01

    The non-contacting gas face seals are used in high-performance devices where the main requirements are safety and reliability. Compliance with these requirements is made possible by careful research and analysis of physical processes related to, inter alia, fluid flow through the radial gap and ring oscillations susceptible to being housed in the enclosure under the influence of rotor kinematic forces. Elaborating and developing mathematical models describing these phenomena allows for more and more accurate analysis results. The paper presents results of studies on stationary ring oscillations made of different types of materials. The presented results of the research allow to determine which of the materials used causes the greatest amplitude of the vibration of the system fluid film-working rings.

  1. Numerical Analysis of a Blocking Mass Attenuating Wave Propagation

    Institute of Scientific and Technical Information of China (English)

    Xianzhong Wang; Xiongliang Yao; Qiangyong Wang; Shuai Lv

    2011-01-01

    Based on wave theory,blocking mass impeding propagation of flexural waves was analyzed with force excitation applied on a ship pedestal.The analysis model of a complex structure was developed by combining statistical energy analysis and the finite element method.Based on the hybrid FE-SEA method,the vibro-acoustic response of a complex structure was solved.Then,the sound radiation of a cylindrical shell model influenced by blocking mass was calculated in mid/high frequency.The result shows that blocking mass has an obvious effect on impeding propagation.The study provides a theoretical and experimental basis for application of the blocking mass to structure-borne sound propagation control.

  2. A Numerical Model for Torsion Analysis of Composite Ship Hulls

    Directory of Open Access Journals (Sweden)

    Ionel Chirica

    2012-01-01

    Full Text Available A new methodology based on a macroelement model proposed for torsional behaviour of the ship hull made of composite material is proposed in this paper. A computer program has been developed for the elastic analysis of linear torsion. The results are compared with the FEM-based licensed soft COSMOS/M results and measurements on the scale simplified model of a container ship, made of composite materials.

  3. Gender Differences in Bed Rest: Preliminary Analysis of Vascular Function

    Science.gov (United States)

    Platts, Steven H.; Stenger, Michael B.; Martin, David S.; Freeman-Perez, Sondra A.; Phillips, Tiffany; Ribeiro, L. Christine

    2008-01-01

    Orthostatic intolerance is a recognized consequence of spaceflight. Numerous studies have shown that women are more susceptible to orthostatic intolerance following spaceflight as well as bed rest, the most commonly used ground-based analog for spaceflight. One of the possible mechanisms proposed to account for this is a difference in vascular responsiveness between genders. We hypothesized that women and men would have differing vascular responses to 90 days of 6-degree head down tilt bed rest. Additionally, we hypothesized that vessels in the upper and lower body would respond differently, as has been shown in the animal literature. Thirteen subjects were placed in bedrest for 90 days (8 men, 5 women) at the Flight Analogs Unit, UTMB. Direct arterial and venous measurements were made with ultrasound to evaluate changes in vascular structure and function. Arterial function was assessed, in the arm and leg, during a reactive hyperemia protocol and during sublingual nitroglycerin administration to gauge the contributions of endothelial dependent and independent dilator function respectively. Venous function was assessed in dorsal hand and foot veins during the administration of pharmaceuticals to assess constrictor and dilator function. Both gender and day effects are seen in arterial dilator function to reactive hyperemia, but none are seen with nitroglycerin. There are also differences in the wall thickness in the arm vs the leg during bed rest, which return toward pre-bed rest levels by day 90. More subjects are required, especially females as there is not sufficient power to properly analyze venous function. Day 90 data are most underpowered.

  4. A Preliminary Analysis of a Behavioral Classrooms Needs Assessment

    Science.gov (United States)

    Leaf, Justin B.; Leaf, Ronald; McCray, Cynthia; Lamkins, Carol; Taubman, Mitchell; McEachin, John; Cihon, Joseph H.

    2016-01-01

    Today many special education classrooms implement procedures based upon the principles of Applied Behavior Analysis (ABA) to establish educationally relevant skills and decrease aberrant behaviors. However, it is difficult for school staff and consultants to evaluate the implementation of various components of ABA and general classroom set up. In…

  5. A Preliminary MANPRINT Evaluation of the All Source Analysis (ASAS)

    Science.gov (United States)

    1988-11-01

    Rear (CEWI) FSIC ............................ 2 CEWI ( TCAE ) AIM(6) ........................... 2 DTOC AIM(6...Sensors and the Ml Battalion TCAE ..... ............... . 13 2. Ratings of Understanding of Tasks Required at the Completion of Training and at the...for transmission to the sensors and jammers. CEWI Tactical Control and Analysis Element ( TCAE ) AIM(6) The AIM module consists of a VAX 750R computer

  6. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    Science.gov (United States)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  7. 3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements.

    Science.gov (United States)

    Stadelmann, Vincent A; Hocke, Jean; Verhelle, Jensen; Forster, Vincent; Merlini, Francesco; Terrier, Alexandre; Pioletti, Dominique P

    2009-02-01

    A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed that quantification of bone remodelling should be performed at the tibial crest and at the distal diaphysis. The numerical model could also be used to furnish a more subtle analysis as a precise correlation between local strain and local biological response can be obtained with the experimentally validated numerical model.

  8. Application of nonlinear optimization method to sensitivity analysis of numerical model

    Institute of Scientific and Technical Information of China (English)

    XU Hui; MU Mu; LUO Dehai

    2004-01-01

    A nonlinear optimization method is applied to sensitivity analysis of a numerical model. Theoretical analysis and numerical experiments indicate that this method can give not only a quantitative assessment whether the numerical model is able to simulate the observations or not, but also the initial field that yields the optimal simulation. In particular, when the simulation results are apparently satisfactory, and sometimes both model error and initial error are considerably large, the nonlinear optimization method, under some conditions, can identify the error that plays a dominant role.

  9. The Qualitative and Numerical Analysis of the Cosmological Model Based on Phantom Scalar Field with Self

    CERN Document Server

    Ignat'ev, Yu G

    2016-01-01

    In this paper we investigate the asymptotic behavior of the cosmological model based on phantom scalar field on the ground of qualitative analysis of the system of the cosmological model's differential equations and show that as opposed to models with classical scalar field, such models have stable asymptotic solutions with constant value of the potential both in infinite past and infinite future. We also develop numerical models of the cosmological evolution models with phantom scalar field in this paper. {\\bf keywords}: cosmological model, phantom scalar field, quality analysis, asymptotic behavior, numerical simulation, numerical gravitation.\\\\ {\\bf PACS}: 04.20.Cv, 98.80.Cq, 96.50.S 52.27.Ny

  10. Quantitative numerical analysis of transient IR-experiments on buildings

    Science.gov (United States)

    Maierhofer, Ch.; Wiggenhauser, H.; Brink, A.; Röllig, M.

    2004-12-01

    Impulse-thermography has been established as a fast and reliable tool in many areas of non-destructive testing. In recent years several investigations have been done to apply active thermography to civil engineering. For quantitative investigations in this area of application, finite difference calculations have been performed for systematic studies on the influence of environmental conditions, heating power and time, defect depth and size and thermal properties of the bulk material (concrete). The comparison of simulated and experimental data enables the quantitative analysis of defects.

  11. Reliability Distribution of Numerical Control Lathe Based on Correlation Analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Qi; Guixiang Shen; Yingzhi Zhang; Shuguang Sun; Bingkun Chen

    2016-01-01

    Combined Reliability distribution with correlation analysis, a new method has been proposed to make Reliability distribution where considering the elements about structure correlation and failure correlation of subsystems. Firstly, we make a sequence for subsystems by means of TOPSIS which comprehends the considerations of Reliability allocation, and introducing a Copula connecting function to set up a distribution model based on structure correlation, failure correlation and target correlation, and then acquiring reliability target area of all subsystems by Matlab. In this method, not only the traditional distribution considerations are concerned, but also correlation influences are involved, to achieve supplementing information and optimizing distribution.

  12. The numerical thermodynamic analysis of Otto-Miller Cycle (OMC

    Directory of Open Access Journals (Sweden)

    Cakir Mehmet

    2016-01-01

    Full Text Available This paper presents a thermodynamic analysis for an irreversible Otto-Miller Cycle (OMC by taking into consideration heat transfer effects and internal irreversibilities resulting from compression and expansion processes. In the analyses, the influences of the miller cycle ratio, combustion and heat loss constants and inlet temperature have been investigated relations with efficiency in dimensionless form. The dimensionless power output and power density and thermal efficiency relations have been computationally obtained versus the engine design parameters with respect to combustion and heat transfer constants. The results demonstrate that the heat transfer and combustion constants have considerable effects on the cycle thermodynamic performance. This situation theoretically verified for OMC.

  13. Numerical analysis of helium-heated methane/steam reformer

    Science.gov (United States)

    Mozdzierz, M.; Brus, G.; Kimijima, S.; Szmyd, J. S.

    2016-09-01

    One of the most promising between many high temperature nuclear reactors applications is to produce hydrogen with heat gained. The simplest and the best examined method is steam reforming of methane. The fabricated hydrogen has wide range of use, for example can be electrochemically oxidized in fuel cells. However, heat management inside methane/steam reformer is extremely important because huge temperature gradients can cause catalyst deactivation. In this work the analysis of temperature field inside helium-heated methane/steam reformer is presented. The optimal system working conditions with respect to methane conversion rate are proposed.

  14. NUMERICAL ANALYSIS ON BINOMIAL TREE METHODS FOR AMERICAN LOOKBACK OPTIONS

    Institute of Scientific and Technical Information of China (English)

    戴民

    2001-01-01

    Lookback options are path-dependent options. In general, the binomial tree methods,as the most popular approaches to pricing options, involve a path dependent variable as well as the underlying asset price for lookback options. However, for floating strike lookback options, a single-state variable binomial tree method can be constructed. This paper is devoted to the convergence analysis of the single-state binomial tree methods both for discretely and continuously monitored American floating strike lookback options. We also investigate some properties of such options, including effects of expiration date, interest rate and dividend yield on options prices,properties of optimal exercise boundaries and so on.

  15. Numerical Analysis for the Air Flow of Cross Flow Fan

    Science.gov (United States)

    Sakai, Hirokazu; Tokushge, Satoshi; Ishikawa, Masatoshi; Ishihara, Takuya

    There are many factors for designing the cross flow fan. Therefore, the performance of cross flow fan is not clear yet. We can analyze the transient flow of a cross flow fan using sliding mesh approach. One of the tasks using Computational Fluid Dynamics (CFD) is a way of modeling for analysis heat exchangers with cross flow fan. These tasks are very important for design. The paper has a modeling of heat exchangers and meshing the fan blades. The next tasks, we focus the ability of cross flow fan when we change the geometry of fan blades.

  16. Preliminary shielding analysis for the CSNS target station monolith

    Institute of Scientific and Technical Information of China (English)

    张斌; 陈义学; 杨寿海; 吴军; 殷雯; 梁天骄; 贾学军

    2010-01-01

    The construction of the China Spallation Neutron Source (CSNS) has been initiated at Dongguan,Guangdong,China.In spallation neutron sources the target station monolith is contaminated by a large number of fast neutrons whose energies can be as large as those of the protons of the proton beam directed towards the tungsten target.A detailed radiation transport analysis of the target station monolith is important for the construction of the CSNS.The analysis is performed using the coupled Monte Carlo and multi-dimensional discrete ordinates method.Successful elimination of the primary ray effects via the two-dimensional uncollided flux and first collision source methodology is also illustrated.The dose at the edge of the monolith is calculated.The results demonstrate that the doses received by the hall staff members are below the required standard limit.

  17. Preliminary analysis of productivity of fruiting fungi on Strzeleckie meadows

    Directory of Open Access Journals (Sweden)

    Barbara Sadowska

    2014-11-01

    Full Text Available Analysis demonstrated that the fresh ahd dry weight as well as the ash content of fungal fruit bodies collected on a forest-surrounded unmown meadow (Stellario-Deschampsietum Freitag 1957 and Caricetum elatae W.Koch 1926 were lower than the same values for a plot of exploited mown meadow and higher than on an exploited unmown meadow (Arrhenatheretum medioeuropaeum (Br.-Bl. Oberd. 1952.

  18. Potential landslide activity affecting the archaeological site of Orongo (Easter Island-Chile): preliminary analysis

    Science.gov (United States)

    Margottini, C.; Delmonaco, G.; Spizzichino, D.; Pandolfi, O.; Crisostomo, R.; Nohe, S.

    2009-04-01

    Easter Island forms part of the Easter Line, a continuous latitudinal chain of volcanic seamounts and islands in the Pacific Sea. The island's roughly triangular shape is determined by the merging of lava flows produced by its three main volcanoes (Rano Kau, Terevaka, Poike) which form its main mass. The Rano Kau volcano, sited in the SW vertex of the island, is made up of numerous basaltic lava flows and has been reduced in size by faulting and marine erosion. Its crater (1.4 km wide) is a small caldera that collapsed after a late, large explosive phase, as attested by the presence of breccia deposits around the eastern rim of the crater. The archaeological stone village of Orongo is located above the inner wall of the crater at an altitude of ca. 300m a.s.l. Prominent historical remains are the numerous petroglyphs that represent the ancient ceremonial of the birdman cult (tangata manu). Rano Kau is mainly composed of sequences of basaltic and intermediate lavas and pyroclastics. Most of the of the original caldera area, especially in the southern flank, has been disrupted by marine erosion. This has caused a dramatic change of the original morphology, resulting in a sub-vertical cliff and steep slopes, especially in the middle-low portions. In the upper part of the slopes weathered soils and regolith are outcropping. Topographical and geomorphological analysis of the area conducted by a direct field surveys in January and July 2008 have provided clear evidences of slope instability along the southern external flank of the caldera. Different landslide areas have been detected. The most active area is located at east of the village in correspondence of the crest zone of Rano Kau where a debris slide/fall has recently occurred. The analysis of photos taken in Nov. 2007 in the same area evidences that the landslide crown area was originated at an elevation of ca. 200m a.s.l. along a probable contact between basaltic layers on the top and weathered lava. Other minor

  19. Numerical analysis of surface subsidence in asymmetric parallel highway tunnels

    Directory of Open Access Journals (Sweden)

    Ratan Das

    2017-02-01

    Full Text Available Tunnelling related hazards are very common in the Himalayan terrain and a number of such instances have been reported. Several twin tunnels are being planned for transportation purposes which will require good understanding for prediction of tunnel deformation and surface settlement during the engineering life of the structure. The deformational behaviour, design of sequential excavation and support of any jointed rock mass are challenging during underground construction. We have raised several commonly assumed issues while performing stability analysis of underground opening at shallow depth. For this purpose, Kainchi-mod Nerchowck twin tunnels (Himachal Pradesh, India are taken for in-depth analysis of the stability of two asymmetric tunnels to address the influence of topography, twin tunnel dimension and geometry. The host rock encountered during excavation is composed mainly of moderately to highly jointed grey sandstone, maroon sandstone and siltstones. In contrast to equidimensional tunnels where the maximum subsidence is observed vertically above the centreline of the tunnel, the result from the present study shows shifting of the maximum subsidence away from the tunnel centreline. The maximum subsidence of 0.99 mm is observed at 4.54 m left to the escape tunnel centreline whereas the maximum subsidence of 3.14 mm is observed at 8.89 m right to the main tunnel centreline. This shifting clearly indicates the influence of undulating topography and in-equidimensional noncircular tunnel.

  20. Numerical Flow Analysis of a Hydraulic Gear Pump

    Science.gov (United States)

    Panta, Yogendra M.; Kim, Hyun W.; Pierson, Hazel M.

    2007-11-01

    The pressure that exists at the outlet port of a gear pump is a result of system load that was created by a resistance to the fluid flow. However, the flow pattern created inside an external gear pump by the motion of two oppositely rotating gears is deceptively complex, despite the simple geometry of the gear pump. The flow cannot be analyzed, based on a steady-state assumption that is usually employed to analyze turbo-machinery although the flow is essentially steady. Only the time-dependent, transient analysis with moving dynamic meshing technique can predict the motion of the fluid flow against the very high adverse pressure distribution. Although the complexity of analysis is inherent in all positive displacement pumps, gear pumps pose an exceptional challenge in modeling due to the fact that there are two rotating components that are housed within a stationary casing and the gears must be in contact with each other all the time. Fluent, commercially available computational fluid dynamics (CFD) software was used to analyze the flow of the gear pump. The investigation done by CFD produced significant information on flow patterns, velocity and pressure fields, and flow rates.

  1. Thermal energy storage in aquifiers: preliminary information

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.

    1979-12-01

    Topics discussed include: conceptual designs; numerical modelling; field experiments; relevant technical information; feasibility studies; preliminary aquifer selection considerations; and preliminary design and operating considerations. (TFD)

  2. Preliminary analysis of the mitochondrial genome evolutionary pattern in primates

    Institute of Scientific and Technical Information of China (English)

    Liang ZHAO; Xingtao ZHANG; Xingkui TAO; Weiwei WANG; Ming LI

    2012-01-01

    Since the birth of molecular evolutionary analysis,primates have been a central focus of study and mitochondrial DNA is well suited to these endeavors because of its unique features.Surprisingly,to date no comprehensive evaluation of the nucleotide substitution patterns has been conducted on the mitochondrial genome of primates.Here,we analyzed the evolutionary patterns and evaluated selection and recombination in the mitochondrial genomes of 44 Primates species downloaded from GenBank.The results revealed that a strong rate heterogeneity occurred among sites and genes in all comparisons.Likewise,an obvious decline in primate nucleotide diversity was noted in the subunit rRNAs and tRNAs as compared to the protein-coding genes.Within 13 protein-coding genes,the pattern of nonsynonymous divergence was similar to that of overall nucleotide divergence,while synonymous changes differed only for individual genes,indicating that the rate heterogeneity may result from the rate of change at nonsynonymous sites.Codon usage analysis revealed that there was intermediate codon usage bias in primate protein-coding genes,and supported the idea that GC mutation pressure might determine codon usage and that positive selection is not the driving force for the codon usage bias.Neutrality tests using site-specific positive selection from a Bayesian framework indicated no sites were under positive selection for any gene,consistent with near neutrality.Recombination tests based on the pairwise homoplasy test statistic supported complete linkage even for much older divergent primate species.Thus,with the exception of rate heterogeneity among mitochondrial genes,evaluating the validity assumed complete linkage and selective neutrality in primates prior to phylogenetic or phylogeographic analysis seems unnecessary.

  3. Preliminary analysis of the mitochondrial genome evolutionary pattern in primates.

    Science.gov (United States)

    Zhao, Liang; Zhang, Xingtao; Tao, Xingkui; Wang, Weiwei; Li, Ming

    2012-08-01

    Since the birth of molecular evolutionary analysis, primates have been a central focus of study and mitochondrial DNA is well suited to these endeavors because of its unique features. Surprisingly, to date no comprehensive evaluation of the nucleotide substitution patterns has been conducted on the mitochondrial genome of primates. Here, we analyzed the evolutionary patterns and evaluated selection and recombination in the mitochondrial genomes of 44 Primates species downloaded from GenBank. The results revealed that a strong rate heterogeneity occurred among sites and genes in all comparisons. Likewise, an obvious decline in primate nucleotide diversity was noted in the subunit rRNAs and tRNAs as compared to the protein-coding genes. Within 13 protein-coding genes, the pattern of nonsynonymous divergence was similar to that of overall nucleotide divergence, while synonymous changes differed only for individual genes, indicating that the rate heterogeneity may result from the rate of change at nonsynonymous sites. Codon usage analysis revealed that there was intermediate codon usage bias in primate protein-coding genes, and supported the idea that GC mutation pressure might determine codon usage and that positive selection is not the driving force for the codon usage bias. Neutrality tests using site-specific positive selection from a Bayesian framework indicated no sites were under positive selection for any gene, consistent with near neutrality. Recombination tests based on the pairwise homoplasy test statistic supported complete linkage even for much older divergent primate species. Thus, with the exception of rate heterogeneity among mitochondrial genes, evaluating the validity assumed complete linkage and selective neutrality in primates prior to phylogenetic or phylogeographic analysis seems unnecessary.

  4. Preliminary safety analysis for key design features of KALIMER-600

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. B.; Chang, W. P.; Suk, S. D.; Ha, K. S.; Jeong, H. Y.; Heo, S

    2004-03-01

    KAERI is developing the conceptual design of a Liquid Metal Reactor, KALIMER-600 (Korea Advanced LIquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER-600 addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, key safety design features are described and safety analyses results for typical ATWS accidents in the KALIMER design with breakeven core are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the event categorization and acceptance criteria for the KALIMER-600 safety analysis are described in Chapter 2. In Chapter 3, results of inherent safety evaluations for the KALIMER-600 conceptual design are presented. The KALIMER-600 core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated Anticipated Transient Without Scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER-600 system response to the events. They are categorized as Bounding Events (BEs) because of their low probability of occurrence. In Chapter 4, the analysis of flow blockage for KALIMER-600 with the MATRA-LMR-FB code, which has been developed for the internal flow blockage in a LMR subassembly. The cases with a blockage of 6-subchannel, 24-subchannel, and 54-subchannel are analyzed.The performance analysis of the KALIMER-600 containment and some evaluations for the behaviors during HCDA will be performed later.

  5. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  6. Preliminary RAMI analysis of DFLL TBS for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dagui [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Yuan, Run [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Jiaqun, E-mail: jiaqun.wang@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Fang; Wang, Jin [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • We performed the functional analysis of the DFLL TBS. • We performed a failure mode analysis of the DFLL TBS. • We estimated the reliability and availability of the DFLL TBS. • The ITER RAMI approach was applied to the DFLL TBS for technical risk control in the design phase. - Abstract: ITER is the first fusion machine fully designed to prove the physics and technological basis for next fusion power plants. Among the main technical objectives of ITER is to test and validate design concepts of tritium breeding blankets relevant to the fusion power plants. To achieve this goal, China has proposed the dual functional lithium-lead test blanket module (DFLL TBM) concept design. The DFLL TBM and its associated ancillary system were called DFLL TBS. The DFLL TBS play a key role in next fusion reactor. In order to ensure reliable and available of DFLL TBS, the risk control project of DFLL TBS has been put on the schedule. As the stage of the ITER technical risk control policy, the RAMI (Reliability, Availability, Maintainability, Inspectability) approach was used to control the technical risk of ITER. In this paper, the RAMI approach was performed on the conceptual design of DFLL TBS. A functional breakdown was prepared on DFLL TBS, and the system was divided into 3 main functions and 72 basic functions. Based on the result of functional breakdown of DFLL TBS, the reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. The inherent availability of the DFLL TBS expected after implementation of mitigation actions was calculated to be 98.57% over 2 years based on the ITER reliability database. A Failure Modes Effects and Criticality Analysis (FMECA) was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability.

  7. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  8. Statistical Analysis of Time Series Data (STATS). Users Manual (Preliminary)

    Science.gov (United States)

    1987-05-01

    15, 30. 60, 90, 120, andL -!/14:X.... 183 days are presently used. auto Page 1 of 10 wrpy *VtsE0> J1 record (continued) Field Variab Vlue D 2 NPRDS ...each event. 6 JEND + Order number of last period in time series to ( NPRDS ) select for analysis. If blank, the last period is assumed. 7 JPPF Plotting...values. 2 NPRDS + Actual number of periods for the event following on ’INO records until the next ID, BF, or LI record. IN record - T:E SERIES DATA

  9. A Preliminary Genetic Analysis of Complement 3 Gene and Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jianliang Ni

    Full Text Available Complement pathway activation was found to occur frequently in schizophrenia, and complement 3 (C3 plays a major role in this process. Previous studies have provided evidence for the possible role of C3 in the development of schizophrenia. In this study, we hypothesized that the gene encoding C3 (C3 may confer susceptibility to schizophrenia in Han Chinese. We analyzed 7 common single nucleotide polymorphisms (SNPs of C3 in 647 schizophrenia patients and 687 healthy controls. Peripheral C3 mRNA expression level was measured in 23 drug-naïve patients with schizophrenia and 24 controls. Two SNPs (rs1047286 and rs2250656 that deviated from Hardy-Weinberg equilibrium were excluded for further analysis. Among the remaining 5 SNPs, there was no significant difference in allele and genotype frequencies between the patient and control groups. Logistic regression analysis showed no significant SNP-gender interaction in either dominant model or recessive model. There was no significant difference in the level of peripheral C3 expression between the drug-naïve schizophrenia patients and healthy controls. In conclusion, the results of this study do not support C3 as a major genetic susceptibility factor in schizophrenia. Other factors in AP may have critical roles in schizophrenia and be worthy of further investigation.

  10. Preliminary Rock Physics Analysis on Lodgepole Formation in Manitoba, Canada

    Science.gov (United States)

    Kim, N.; Keehm, Y.

    2012-12-01

    We present rock physics analysis results of Lodgepole Formation, a carbonate reservoir in Daly Field, Manitoba, Canada. We confirmed that the Lodgepole Formation can be divided into six units in the study area: Basal Limestone, Cromer Shale, Cruickshank Crinoidal, Cruickshank Shale, Daly member and Flossie Lake member from the bottom, using eight well log data and previous works. We then performed rock physics analyses on four carbonate units (Basal Limestone, Cruickshank Crinoidal, Daly and Flossie Lake), such as Vp-porosity, AI-porosity, DEM (differential effective medium) modeling, and fluid substitution analysis. In Vp-porosity domain, the top unit, Flossie Lake member has lower porosity and higher velocity, while the other units show similar porosity and velocity. We think that this results from the diagenesis of Flossie Lake member since it bounds with unconformity. However, the four units show very similar trend in Vp-porosity domain, and we can report one Vp-porosity relation for all carbonate units of the Lodgepole formation. We also found that the acoustic impedance varies more than 10% from low porosity zone (3-6%) to high porosity zone (9-12%) from AI-porosity analysis. Thus one can delineate high porosity zone from seismic impedance data. DEM modeling showed that Flossie Lake would have relatively low aspect ratio of pores than the others, which implies that the top unit has been influenced by diagenesis. To determine fluid sensitivity of carbonate units, we conducted fluid substitution on four units from 100% water to 100% oil. The top unit, Flossie Lake, showed slight increase of Vp, which seems to be density effect. The others showed small decrease of Vp, but not significant. If we observe Vp/Vs rather than Vp, the sensitivity increases. However, fluid discrimination would be difficult because of high stiffness of rock frame. In summary, three lower carbonate units of Lodgepole Formation would be prospective and high porosity zone can be delineated

  11. COMBUSTION STAGE NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The primary goal of engine design is to maximize each efficiency factor, in order to extract the most power from the least amount of fuel. In terms of fluid dynamics, the volumetric and combustion efficiency are dependent on the fluid dynamics in the engine manifolds and cylinders. Cold flow analysis involves modeling the airflow in the transient engine cycle without reactions. The goal is to capture the mixture formation process by accurately accounting for the interaction of moving geometry with the fluid dynamics of the induction process. The changing characteristics of the air flow jet that tumbles into the cylinder with swirl via intake valves and the exhaust jet through the exhaust valves as they open and close can be determined, along with the turbulence production from swirl and tumble due to compression and squish. The target of this paper was to show how, by using the reverse engineering techniques, one may replicate and simulate the functioning conditions and parameters of an existing marine engine. The departing information were rather scarce in terms of real processes taking place in the combustion stage, but at the end we managed to have a full picture of the main parameters evolution during the combustion phase inside this existing marine engine

  12. Separate direct injection of diesel and ethanol: A numerical analysis

    Directory of Open Access Journals (Sweden)

    Burnete Nicolae V.

    2017-01-01

    Full Text Available The purpose of this study is to investigate the theoretical possibility of using a pilot diesel injection for the auto-ignition of a main ethanol injection in a compression ignition engine. To this effect a predictive simulation model has been built based on experimental results for a diesel cycle (pilot and main injection at 1500 and 2500 min–1, respectively. For every engine speed, in addition to the diesel reference cycle, two more simulations were done: one with the same amount of fuel injected into the cylinder and one with the same amount of energy, which required an increase in the quantity of ethanol proportional to the ratio of its lower heating value and that of diesel. The simulations showed that in all cases the pilot diesel led to the auto-ignition of ethanol. The analysis of the in-cylinder traces at 1500 min–1 showed that combustion efficiency is improved, the peak temperature value decrease with approximately 240 K and, as a result, the NO emissions are 3.5-4 times lower. The CO and CO2 values depend on the amount of fuel injected into the cylinder. At 2500 min–1 there are similar trends but with the following observations: the ignition delay increases, while the pressure and temperature are lower.

  13. Experimental and numerical analysis of automotive gearbox rattle noise

    Science.gov (United States)

    Kadmiri, Younes; Rigaud, Emmanuel; Perret-Liaudet, Joël; Vary, Laurence

    2012-06-01

    The aim of this work is to characterize the rattle noise of automotive gearboxes, resulting from impacts between toothed wheels of unselected gear ratios. These stereo-mechanical impacts are modeled by a coefficient of restitution which describes damping during the squeezing of the lubricant film for approaching surfaces, and the elastic deformation of impacting bodies. The dynamic response of the loose gear first depends on the design parameters and the engine operating conditions. The unknown parameters are the drag torque and the coefficient of restitution. They are identified experimentally through implementation of two optical encoders in an actual automotive gearbox and the operation of a specific test bench which replicates the automotive power train. Models of the different drag torque sources are validated from analysis of the free damped response of the driveline. The coefficient of restitution and its probability density function are measured from experiments under stationary operating conditions. A nonlinear model is built. The dynamic response of the loose gear depends on the dimensionless backlash, the coefficient of restitution and a dimensionless parameter proposed to describe the rattle excitation level. Experiments under controlled excitation are performed to validate the assumptions, to confirm the ability of the parameter proposed to describe the rattle noise threshold, and to characterize the dynamic response. The nonlinear model predictions are fitted with the drag torque and coefficient of restitution previously identified. They are compared with measurements to demonstrate the ability of the model to predict gear rattle for any loose gear, any gearbox and any operating condition.

  14. Brain hemisphere dominance and vocational preference: a preliminary analysis.

    Science.gov (United States)

    Szirony, Gary Michael; Pearson, L Carolyn; Burgin, John S; Murray, Gerald C; Elrod, Lisa Marie

    2007-01-01

    Recent developments in split-brain theory add support to the concept of specialization within brain hemispheres. Holland's vocational personality theory may overlap with Human Information Processing (HIP) characteristics. Holland's six RIASEC codes were developed to identify vocational personality characteristics, and HIP scales were designed to measure hemispheric laterality. Relationships between the two scales were evaluated through canonical correlation with some significant results, however not all Holland scale scores correlated with left, right, or integrated hemispheric preference. Additional findings related to participants self-perception of music and math ability were also correlated. Findings on this added analysis revealed a high correlation between perception of musical ability and right brain function but not between mathematical concept and left brain alone. Implications regarding vocational choice and work are discussed.

  15. City of Hoboken Energy Surety Analysis: Preliminary Design Summary

    Energy Technology Data Exchange (ETDEWEB)

    Stamp, Jason Edwin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Smith, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Guttromson, Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Henry, Jordan M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Critical Infrastructure Systems Dept.; Jensen, Richard Pearson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2014-09-01

    In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.

  16. Analysis of organochlorine pesticides in human milk: preliminary results.

    Science.gov (United States)

    Campoy, C; Jiménez, M; Olea-Serrano, M F; Moreno-Frías, M; Cañabate, F; Olea, N; Bayés, R; Molina-Font, J A

    2001-11-01

    In the face of evidence of human milk contamination by organochlorine pesticides, an analysis was performed on samples of milk obtained from healthy lactating women in the provinces of Granada and Almeria in Southern Spain. The samples were obtained by the Neonate Section of the Department of Pediatrics of Granada University Hospital (Neonatology Division) and by the Neonatal Service of Poniente Hospital in El Ejido, Almería. A liquid-liquid extraction procedure was performed. The cleaning of the sample before gas chromatography-mass spectrometry (GC-MS) used silica Sep-Pak. Among other pesticides, aldrin, dieldrin, DDT and its metabolites, lindane, methoxychlor and endosulfan were identified. The presence of these products was confirmed by mass spectrometry. The identification and quantification of these organochlorine molecules is important because they have estrogenic effects.

  17. Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL

    2016-01-01

    Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heat transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.

  18. Preliminary analysis of cerebrospinal fluid proteome in patients with neurocysticercosis

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-jun; LI Jing-yi; HUANG Yong; XUE Yan-ping

    2009-01-01

    Background Neurocysticercosis is the infection of the nervous system by the larvae of Taenia solium (T. solium). Despite continuous effort, the experimental diagnosis of neurocysticercosis remains unresolved. Since the cerebrospinal fluid (CSF) contacts with the brain, dynamic information about pathological processes of the brain is likely to be reflected in CSF. Therefore, CSF may serve as a rich source of putative biomarkers related to neurocysticercosis. Comparative proteomic analysis of CSF of neurocysticercosis patients and control subjects may find differentially expressed proteins. Methods Two-dimensional difference in gel electrophoresis (2D-DIGE) was used to investigate differentially expressed proteins in CSF of patients with neurocysticercosis by comparing the protein profile of CSF from neurocysticercosis patients with that from control subjects. The differentially expressed spots/proteins were recognized with matrix-assisted laser desorption/ionization-time of flight-time of flight (MALDI-TOF-TOF) mass spectrometry. Results Forty-four enzyme digested peptides were obtained from 4 neurocysticercotic patients. Twenty-three were identified through search of the NCBI protein database with Mascot software, showing 19 up-expressed and 4 down-expressed. Of these proteins, 26S proteosome related to ATP- and ubiquitin-dependent degradation of proteins and lipocalin type prostaglandin D synthase involved in PGD2-synthesis and extracellular transporter activities were up-expressed, while transferrin related to iron metabolism within the brain was down-expressed. Conclusions This study established the proteomic profile of pooled CSF from 4 patients with neurocysticercosis, suggesting the potential value of proteomic analysis for the study of candidate biomarkers involved in the diagnosis or pathogenesis of neurocysticercosis.

  19. Preliminary Design and Analysis of the GIFTS Instrument Pointing System

    Science.gov (United States)

    Zomkowski, Paul P.

    2003-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Instrument is the next generation spectrometer for remote sensing weather satellites. The GIFTS instrument will be used to perform scans of the Earth s atmosphere by assembling a series of field-of- views (FOV) into a larger pattern. Realization of this process is achieved by step scanning the instrument FOV in a contiguous fashion across any desired portion of the visible Earth. A 2.3 arc second pointing stability, with respect to the scanning instrument, must be maintained for the duration of the FOV scan. A star tracker producing attitude data at 100 Hz rate will be used by the autonomous pointing algorithm to precisely track target FOV s on the surface of the Earth. The main objective is to validate the pointing algorithm in the presence of spacecraft disturbances and determine acceptable disturbance limits from expected noise sources. Proof of concept validation of the pointing system algorithm is carried out with a full system simulation developed using Matlab Simulink. Models for the following components function within the full system simulation: inertial reference unit (IRU), attitude control system (ACS), reaction wheels, star tracker, and mirror controller. With the spacecraft orbital position and attitude maintained to within specified limits the pointing algorithm receives quaternion, ephemeris, and initialization data that are used to construct the required mirror pointing commands at a 100 Hz rate. This comprehensive simulation will also aid in obtaining a thorough understanding of spacecraft disturbances and other sources of pointing system errors. Parameter sensitivity studies and disturbance analysis will be used to obtain limits of operability for the GIFTS instrument. The culmination of this simulation development and analysis will be used to validate the specified performance requirements outlined for this instrument.

  20. Efficient planning and numerical analysis of industrial hemming processes

    Science.gov (United States)

    Burchitz, Igor; Fritsche, David; Grundmann, Göran; Hillmann, Matthias

    2011-08-01

    Hemming is a forming operation used in the automotive industry to join inner and outer components during the assembly of closures. These are typically opening parts of the body-in-white with additional requirements to their visual appearance. A suitable production concept of hemming operation which satisfies quality, capacity and cost requirements is determined during hemming planning activities. A digital tool to facilitate these activities and minimize the amount of trial and error iterations in try-out phase is presented in this paper. This tool can be used to define process plan, active tool surfaces and suitable process parameters for both die hemming and roll hemming operations. In case of early feasibility studies, when the die layout of the drawing operation is still not available, 3D part geometry is used directly to develop the concept of hemming process. Advanced validation studies, aimed at process optimization and controlling defects associated with hemming, can be based on complete simulation of all forming operations. Validation and analysis of developed concepts of hemming operation is done using the standard AutoForm-Incremental solver. Submesh strategy and special algorithm for contact description between inner and outer parts were implemented to ensure that accurate simulation results can be obtained within reasonable calculation time. Performance of the new software tool for hemming planning and accuracy of simulation results are demonstrated using several simple benchmarks and a real industrial part. It is shown that the new software tool can help to secure the efficient production launch by providing adequate support in try-out phase.

  1. Preliminary analysis of the use of smartwatches for longitudinal health monitoring.

    Science.gov (United States)

    Jovanov, Emil

    2015-08-01

    New generations of smartwatches feature continuous measurement of physiological parameters, such as heart rate, galvanic skin resistance (GSR), and temperature. In this paper we present the results of preliminary analysis of the use of Basis Peak smartwatch for longitudinal health monitoring during a 4 month period. Physiological measurements during sleep are validated using Zephyr Bioharness 3 monitor and SOMNOscreen+ polysomnographic monitoring system from SOMNOmedics. Average duration of sequences with no missed data was 49.9 minutes, with maximum length of 17 hours, and they represent 88.88% of recording time. Average duration of the charging event was 221.9 min, and average time between charges was 54 hours, with maximum duration of the charging event of 16.3 hours. Preliminary results indicate that the physiological monitoring performance of existing smartwatches provides sufficient performance for longitudinal monitoring of health status and analysis of health and wellness trends.

  2. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.

  3. Sammon mapping for preliminary analysis in Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Nicolae APOSTOLESCU

    2016-03-01

    Full Text Available The main goal of this paper is to present the implementation of the Sammon algorithm developed for finding N points in a lower m-dimensional subspace, where the original points are from a high n-dimensional space. This mapping is done so interpoints Euclidian distances in m-space correspond to the distances measured in the n-dimensional space. This method known as non-linear projection method or multidimensional scaling (MDS aims to preserve the global properties of points. The method is based on the idea of transforming the original, n-dimensional input space into a reduced, m-dimensional one, where mAnalysis (PCA may be applied as a pre-processing procedure for starting, in order to obtain the N points in the lower subspace. The algorithm was tested on hyperspectral data with spectra of various lengths. Depending of the size of the input data (number of points, the number of learning iterations and computational facilities available, Sammon mapping might be computationally expensive.

  4. A simplified procedure of linear regression in a preliminary analysis

    Directory of Open Access Journals (Sweden)

    Silvia Facchinetti

    2013-05-01

    Full Text Available The analysis of a statistical large data-set can be led by the study of a particularly interesting variable Y – regressed – and an explicative variable X, chosen among the remained variables, conjointly observed. The study gives a simplified procedure to obtain the functional link of the variables y=y(x by a partition of the data-set into m subsets, in which the observations are synthesized by location indices (mean or median of X and Y. Polynomial models for y(x of order r are considered to verify the characteristics of the given procedure, in particular we assume r= 1 and 2. The distributions of the parameter estimators are obtained by simulation, when the fitting is done for m= r + 1. Comparisons of the results, in terms of distribution and efficiency, are made with the results obtained by the ordinary least square methods. The study also gives some considerations on the consistency of the estimated parameters obtained by the given procedure.

  5. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  6. Social network analysis in identifying influential webloggers: A preliminary study

    Science.gov (United States)

    Hasmuni, Noraini; Sulaiman, Nor Intan Saniah; Zaibidi, Nerda Zura

    2014-12-01

    In recent years, second generation of internet-based services such as weblog has become an effective communication tool to publish information on the Web. Weblogs have unique characteristics that deserve users' attention. Some of webloggers have seen weblogs as appropriate medium to initiate and expand business. These webloggers or also known as direct profit-oriented webloggers (DPOWs) communicate and share knowledge with each other through social interaction. However, survivability is the main issue among DPOW. Frequent communication with influential webloggers is one of the way to keep survive as DPOW. This paper aims to understand the network structure and identify influential webloggers within the network. Proper understanding of the network structure can assist us in knowing how the information is exchanged among members and enhance survivability among DPOW. 30 DPOW were involved in this study. Degree centrality and betweenness centrality measurement in Social Network Analysis (SNA) were used to examine the strength relation and identify influential webloggers within the network. Thus, webloggers with the highest value of these measurements are considered as the most influential webloggers in the network.

  7. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    Energy Technology Data Exchange (ETDEWEB)

    FRANZ GR; MEICHLE RH

    2011-07-18

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  8. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  9. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  10. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  11. PRELIMINARY PHYTOCHEMICAL ANALYSIS AND ACUTE ORAL TOXICITY STUDY OF CLITORIA TERNATEA LINN. ROOTS IN ALBINO MICE

    Directory of Open Access Journals (Sweden)

    Deka Manalisha

    2011-12-01

    Full Text Available Clitoria ternatea has been using since the ancient times for its medicinal values. Almost all the parts of the plant have medicinal property. The root of the plant is reported to have anti diarrheal, Anti histamic, cholinergic activity etc. Traditionally the root has been using for the treatment of many diseases like leucorrhoea, diarrhea, urinary problems, diuretic, impotency, stomach trouble etc. The present study was designed to investigate the preliminary phytochemical analysis and acute oral toxicity of the root of the plant. The shed dried materials were grinded and used in the study. The preliminary phytochemical analysis was done by following standard protocols. For acute oral toxicity study, methanolic extract of the root was used. The extract was prepared by standard protocol. The preliminary phytochemical analysis showed the presence of proteins, carbohydrates, glycosides, resins, saponin, flavonoid, alkaloids, steroids and phenol. The acute oral toxicity study showed no mortality up to a dose of 3000 mg per kg body weight. The presence of plant chemicals revealed the medicinal values and the non toxic property of the plant indicated the value of the plant as medicine. Thus we can conclude that, the root of the plant can be used as a safe drug against many diseases.

  12. PRELIMINARY PHYTOCHEMICAL ANALYSIS AND ACUTE ORAL TOXICITY STUDY OF MUCUNA PRURIENS LINN. IN ALBINO MICE

    Directory of Open Access Journals (Sweden)

    Deka Manalisha

    2012-02-01

    Full Text Available Mucuna Pruriens Linn. is an annual, climbing shrub which has an important place among aphrodisiac herbs in India since the ancient times. The plant has been using traditionally for many medicinal purposes such as Infertility, Parkinson’s disease, Loss of libido, Antioxidant, Anti venom, Anti microbial etc. The present study was carried out to investigate the preliminary phytochemical analysis and acute oral toxicity of the seeds of M.pruriens on albino mice. Matured seeds of M.pruriens were dried in shed and grinded in a mechanical grinder. The preliminary phytochemical analysis was done by following standard protocols. For acute oral toxicity study, methanolic extract of the seeds were used. The extract was prepared in a Soxlet apparatus. The preliminary phytochemical analysis showed the presence of protein, carbohydrates, glycosides, alkaloids, steroids, flavonoids, phenols and tannins. The acute oral toxicity study showed no mortality up to a dose of 4000 mg per kg body weight. The presence of plant chemicals revealed the medicinal values and the non toxic property of the plant indicated the value of the plant as medicine. Thus, we can conclude that, the seed of the plant can be used as a safe drug against many diseases.

  13. Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)

    2011-05-15

    In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of

  14. ANALYSIS ON IMPACT RESPONSES OF UNRESTRAINED PLANAR FRAME STRUCTURE(Ⅱ)-NUMERICAL EXAMPLE ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    CHEN Rong; ZHENG Hai-tao; XUE Song-tao; TANG He-sheng

    2005-01-01

    By using the formula derived in Part (Ⅰ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed.The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave; the shear effect in beams should not be neglected in the impact response analysis of structures.

  15. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  16. Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation

    OpenAIRE

    Dijkstra, Henk A.

    2014-01-01

    We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical conditions associated with these transitions, popularly referred to as 'tipping points', is important for understanding the transition mechanisms. We describe the two basic classes of methods of numer...

  17. An Efficient Method for Solving Spread Option Pricing Problem: Numerical Analysis and Computing

    Directory of Open Access Journals (Sweden)

    R. Company

    2016-01-01

    Full Text Available This paper deals with numerical analysis and computing of spread option pricing problem described by a two-spatial variables partial differential equation. Both European and American cases are treated. Taking advantage of a cross derivative removing technique, an explicit difference scheme is developed retaining the benefits of the one-dimensional finite difference method, preserving positivity, accuracy, and computational time efficiency. Numerical results illustrate the interest of the approach.

  18. Geometric invariants for initial data sets: analysis, exact solutions, computer algebra, numerics

    Energy Technology Data Exchange (ETDEWEB)

    Valiente Kroon, Juan A, E-mail: j.a.valiente-kroon@qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom)

    2011-09-22

    A personal perspective on the interaction of analytical, numerical and computer algebra methods in classical Relativity is given. This discussion is inspired by the problem of the construction of invariants that characterise key solutions to the Einstein field equations. It is claimed that this kind of ideas will be or importance in the analysis of dynamical black hole spacetimes by either analytical or numerical methods.

  19. Numerical methods for two-parameter local bifurcation analysis of maps

    NARCIS (Netherlands)

    Govaerts, W.; Khoshsiar Ghaziani, R.; Kuznetsov, Yu.A.; Meijer, H.G.E.

    2007-01-01

    We discuss new and improved algorithms for the bifurcation analysis of fixed points and periodic orbits (cycles) of maps and their implementation in matcont, a MATLAB toolbox for continuation and bifurcation analysis of dynamical systems. This includes the numerical continuation of fixed points of i

  20. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  1. GC-MS analysis, preliminary phytochemical screening, physicochemical analysis and anti-diabetic activity of ethanol extract of Jasminum cuspidatum leaves

    National Research Council Canada - National Science Library

    Singumsetty Vinay; Shaik Karimulla; Devarajan Saravanan

    2014-01-01

    The purpose of the present study was investigating the GC-MS analysis, preliminary phytochemical screening, physicochemical analysis and anti-diabetic activity of ethanol extract of the leaves of Jasminum cuspidatum...

  2. ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Determination Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Liu, Bing; Rosenberg, Michael I.

    2010-11-01

    The United States (U.S.) Department of Energy (DOE) conducted a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The preliminary analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s preliminary determination. However, out of the 109 addenda, 34 were preliminarily determined to have measureable and quantifiable impact.

  3. Preliminary phytochemical analysis and DPPH free radical scavenging activity of Trewia nudiflora Linn. roots and leaves.

    Science.gov (United States)

    Balakrishnan, N; Srivastava, Mayank; Tiwari, Pallavi

    2013-11-01

    Oxidative stress is one of the major causative factors of many chronic and degenerative diseases. Plants have been used in traditional medicine in different parts of world for thousands of years and continue to provide new remedies for human kind. The present study was to investigate the preliminary phytochemical analysis of various extracts of roots and leaves of Trewia nudiflora (Euphorbiaceae) and antioxidant activity by 1,1,diphenyl-2-picryl hydrazyl (DPPH) radical scavenging method. The preliminary phytochemical screening showed the presence of several phytochemicals including alkaloids, glycosides, flavonoids, steroids, phenolic compounds and tannins. The ethanol and aqueous extracts of roots and leaves of Trewia nudiflora showed significant antioxidant activity compared to standard drug ascorbic acid.

  4. CONSTRUCTION OF THE CHINESE LEARNERS' PARALLEL CORPUS OF JAPANESE AND ITS PRELIMINARY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Masatake Dantsuji

    2004-01-01

    Full Text Available This study aims to introduce the project to construct the Chinese learners' corpus (LC of Japanese at Dalian University of Technology (DUT, and detail the LC construction, development of DUT Corpus Linguistics Tools, and contribution to the education of Japanese as a second language. The outstanding characteristic of the LC is its parallel form with learners' Japanese texts and their Chinese translation, which enables us to make comprehensive analysis of the influence of Chinese (L1 to Japanese (L2. We have made a preliminary analysis of the errors contained.

  5. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    Science.gov (United States)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  6. Numerical analysis of rainfall infiltration in the slope with a fracture

    Institute of Scientific and Technical Information of China (English)

    FAN Ping; LIU Qingquan; LI Jiachun; SUN Jianping

    2005-01-01

    With the finite volume method, a 2D numerical model for seepage in unsaturated soil has been established to study the rainfall infiltration in the fractured slope.The result shows that more rain may infiltrate into the slope due to existing fracture and then the pore pressure rises correspondingly. Very probably, it is one of the crucial factors accounting for slope failure. Furthermore a preliminary study has been conducted to investigate the influence of various fracture and rainfall factors such as the depth, width and location of a crack, surface condition, rainfall intensity and duration. Pore pressure and water volumetric content during the transient seepage are carefully examined to reveal the intrinsic mechanism.

  7. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  8. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    Science.gov (United States)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  9. ERROR ANALYSIS FOR A FAST NUMERICAL METHOD TO A BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND

    Institute of Scientific and Technical Information of China (English)

    Jingtang Ma; Tao Tang

    2008-01-01

    For two-dimensional boundary integral equations of the first kind with logarithmic kernels,the use of the conventional boundary element methods gives linear systems with dense matrix.In a recent work [J.Comput.Math.,22 (2004),pp.287-298],it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules.The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved.The purpose of this work is to establish a stability and convergence theory for this fast numerical method.The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation.The formal orders of convergence observed in the numerical experiments are proved rigorously.

  10. Numerical analysis of the steam flow field in shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    Bartoszewicz Jarosław

    2016-06-01

    Full Text Available In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ε, RNG k-ε, Wilcox k-ω, Chen-Kim k-ε, and Lam-Bremhorst k-ε. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  11. Numerical analysis of the steam flow field in shell and tube heat exchanger

    Science.gov (United States)

    Bartoszewicz, Jarosław; Bogusławski, Leon

    2016-06-01

    In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ɛ, RNG k-ɛ, Wilcox k-ω, Chen-Kim k-ɛ, and Lam-Bremhorst k-ɛ. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  12. Solutions manual to accompany An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2014-01-01

    A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, sp

  13. Nonlinear Scaling Laws for Parametric Receiving Arrays. Part II. Numerical Analysis

    Science.gov (United States)

    1976-06-30

    8217" " .’Ml’.1 ’.■■’: ■ ’ ^ t- Nonlinear Scaling Laws for Parametric Receiving Arrays Part II Numerical Analysis » - m • o prepared ...8217 ’ ■ — Nonlinear Scaling Laws for Parametric Receiving Arrays » z Part II. Numerical Analysis prepared under: A ——^ N0ÖJ339- 7 5 - C -J02 59, //V-ARPA Order...IF ’IP ,6T, 10 .HNO. IR .I_E. £0> riELTI = LiELTrJ IF ’IP .GT. 3 0 .HMD. IP .LE. 3 0;. [ IELT I = IiELT3 IF

  14. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Science.gov (United States)

    Božek, Pavol; Turygin, Yuri

    2014-08-01

    Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  15. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Directory of Open Access Journals (Sweden)

    Božek Pavol

    2014-08-01

    Full Text Available Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  16. Data analysis for preliminary conceptual model design, Vadose Zone Monitoring System (VZMS), McClellan AFB. 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Zawislanski, P.T.; Oldenburg, C.M.

    1998-01-05

    Vadose zone investigations are being performed at site S-7 in IC 34, at McClellan AFB. At this location, a Vadose Zone Monitoring System (VZMS) is being used to collect subsurface data including hydraulic potential, soil gas pressure, moisture content, water chemistry, gas chemistry, and temperature. Although each individual data set is useful in improving the characterization of this contaminated site, the overall purpose of data collection is to provide input for the conceptual and numerical modeling of VOC transport in the vadose zone and the exchange of contaminants between the vadose zone and groundwater. In this report the authors submit a summary and preliminary analysis of the data collected through the end of 1997 and present it in the context of input for the impending modeling. This report merges findings from both the first and second half of 1997 and is presented as an annual report in lieu of two semi-annual reports, due to the fact that insufficient data had been collected up to mid June to allow a meaningful analysis.

  17. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    DYKES, A.A.

    2000-10-11

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O&M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis.

  18. Numerical analysis of dynamic variation of weld pool geometry in fully-penetrated TIG welding

    Institute of Scientific and Technical Information of China (English)

    Zhao Ming; Li Ruiying

    2008-01-01

    A mathematical model is developed for numerical analysis of thermal process in TIG welding with a moving arc, which is considered the double-elliptic distribution for both arc heat flux and arc pressure. An adjusting factor is introduced into the expression of arc pressure. The domain within which the arc heat flux is distributed non-symmetrically due to arc moving is selected appropriately, and three conditions for the domain to meet are described. The latent heat is taken into consideration by liquid fraction method. The dynamic development of weld pool geometry during TIG welding is analyzed numerically, and the effect of arc moving on the weld pool geometry is discussed. The experimental results show that the numerical analysis accuracy is obviously improved through taking the above-mentioned measures.

  19. Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-Tuan Chou

    2013-01-01

    Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.

  20. Influences of system uncertainties on the numerical transfer path analysis of engine systems

    Science.gov (United States)

    Acri, A.; Nijman, E.; Acri, A.; Offner, G.

    2017-10-01

    Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.

  1. Variable-density groundwater flow simulations and particle tracking. Numerical modelling using DarcyTools. Preliminary site description of the Simpevarp area, version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Stigsson, Martin; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2004-12-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden, Forsmark and Simpevarp. The investigations started in 2002 and have been planned since the late 1990s. The work presented here investigates the possibility of using hydrogeochemical measurements in deep boreholes to reduce parameter uncertainty in a regional modelling of groundwater flow in fractured rock. The work was conducted with the aim of improving the palaeohydrogeological understanding of the Simpevarp area and to give recommendations to the preparations of the next version of the Preliminary Site Description (1.2). The study is based on a large number of numerical simulations of transient variable density groundwater flow through a strongly heterogeneous and anisotropic medium. The simulations were conducted with the computer code DarcyTools, the development of which has been funded by SKB. DarcyTools is a flexible porous media code specifically designed to treat groundwater flow and salt transport in sparsely fractured crystalline rock and it is noted that some of the features presented in this report are still under development or subjected to testing and verification. The simulations reveal the sensitivity of the results to different hydrogeological modelling assumptions, e.g. the sensitivity to the initial groundwater conditions at 10,000 BC, the size of the model domain and boundary conditions, and the hydraulic properties of deterministically and stochastically modelled deformation zones. The outcome of these simulations was compared with measured salinities and calculated relative proportions of different water types (mixing proportions) from measurements in two deep core drilled boreholes in the Laxemar subarea. In addition to the flow simulations, the statistics of flow related transport parameters were calculated for particle flowpaths from repository depth to ground surface for two subareas within the

  2. Numerical analysis and optimization of a dual-order mode all-optical wavelength converter

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Wolfson, David; Kloch, Allan;

    2001-01-01

    A numerical analysis of a dual-order mode (DOMO) wavelength converter has been carried out. We optimize the waveguide dimensions for high speed and compare to a single mode device. We also identify a crosstalk penalty when converting to wavelengths close to the original....

  3. Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles

    DEFF Research Database (Denmark)

    Ona, Stephen L.W.; Harringtona, Clare S.

    2000-01-01

    Amplified fragment length polymorphism (AFLP)-based profiling was performed on 138 strains representing all named Campylobacter species and subspecies. Profiles of 15/16 species comprised 6 to greater than 100 fragments and were subjected to numerical analysis. The mean similarity of 48 duplicate...

  4. Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation

    NARCIS (Netherlands)

    Dijkstra, H.A.; Wubs, F.W.; et al, [No Value; Thiele, U.

    2014-01-01

    We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical con

  5. Research in progress in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  6. Numerical Bifurcation Methods and their Application to Fluid Dynamics : Analysis beyond Simulation

    NARCIS (Netherlands)

    Dijkstra, Henk A.; Wubs, Fred W.; Cliffe, Andrew K.; Doedel, Eusebius; Dragomirescu, Ioana F.; Eckhardt, Bruno; Gelfgat, Alexander Yu.; Hazel, Andrew L.; Lucarini, Valerio; Salinger, Andy G.; Phipps, Erik T.; Sanchez-Umbria, Juan; Schuttelaars, Henk; Tuckerman, Laurette S.; Thiele, Uwe

    2014-01-01

    We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical con

  7. Numerical analysis of thermoluminescence glow curves; Analisis numerico de las cruvas de termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Ros, J. M.; Delgado, A.

    1989-07-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs.

  8. Preliminary analysis of Alvito-Odivelas reservoir system operation under climate change scenarios

    OpenAIRE

    2008-01-01

    The present study provides a preliminary analysis of the impact of climate change on a water resources system of Alentejo region in the South of Portugal. Regional climate model HadRM3P forced by the Global Circulation Model HadAM3P A2 of the Hadley Centre, is used to derive temperature and precipitation data, which in turn is used as input to hydrological model (SHETRAN) for simulation of future streamflow. Dynamic programming based models are used for operation of reservoir system in order ...

  9. Stock assessment of Haliporoides triarthrus (Fam. Solenoceridae) off Mozambique: a preliminary analysis

    OpenAIRE

    Torstensen, E.; Pacule, H.

    1992-01-01

    The pink shrimp, Haliporoides triarthrus, is an important species in the deep-water shrimp fishery in Mozambique. Total catches are in the range of 1,500 to 2,700 tons, with the pink shrimp accounting for 70-90%. Estimates of growth parameters and of natural mortality are used for a preliminary assessment of the fishery, based on length-structured virtual population analysis and yield-per-recruit analyses. With an arbitrarily chosen terminal fishing mortality F, the results indicate a situati...

  10. Preliminary Analysis of Liquid Metal MHD Pressure Drop in the Blanket for the FDS

    Institute of Scientific and Technical Information of China (English)

    王红艳; 吴宜灿; 何晓雄

    2002-01-01

    Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.

  11. Preliminary performance analysis of a transverse flow spectrally selective two-slab packed bed volumetric receiver

    CSIR Research Space (South Africa)

    Roos, TH

    2016-05-01

    Full Text Available stream_source_info Roos_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 2694 Content-Encoding UTF-8 stream_name Roos_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 21st SolarPACES... International Conference (SolarPACES 2015), 13-16 October 2015 Preliminary Performance Analysis of a Transverse Flow Spectrally Selective Two-slab Packed Bed Volumetric Receiver Thomas H. Roos1, a) and Thomas M. Harms2, b) 1Aeronautical Systems...

  12. Application of Thermal Analysis Tests Results in the Numerical Simulations of Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Kargul T.

    2015-04-01

    Full Text Available Measurement of thermophysical properties of steel is possible by using different thermal analysis techniques. In the field of metallurgy the most relevant methods are Differential Thermal Analysis (DTA and Differential Scanning Calorimetry (DSC. The paper presents the results of thermophysical properties which are necessary to carry out numerical simulation of continuous casting of steel. The study was performed for two steel grades S320GD and S235JR. The main aim of the research was to determine the dependence of specific heat on temperature. On the basis of obtained results the thermal effects of phase transformations and characteristic transition temperatures were also identified. Both the specific heat of steel and thermal effects of phase transformations are included in the Fourier-Kirchhoff equation, as the material properties necessary to obtain the numerical solution. The paper presents the research methodology, analysis of results and method of determining the specific heat of steel based on the results of DSC analysis.

  13. Preliminary Report: Analysis of the baseline study on the prevalence of Salmonella in laying hen flocks of Gallus gallus

    DEFF Research Database (Denmark)

    Hald, Tine

    This is a preliminary report on the analysis of the Community-wide baseline study to estimate the prevalence of Salmonella in laying hen flocks. It is being published pending the full analysis of the entire dataset from the baseline study. The report contains the elements necessary for the establ......This is a preliminary report on the analysis of the Community-wide baseline study to estimate the prevalence of Salmonella in laying hen flocks. It is being published pending the full analysis of the entire dataset from the baseline study. The report contains the elements necessary...

  14. About numerical analysis of electromagnetic field induce in gear wheels during hardening process

    Directory of Open Access Journals (Sweden)

    Gabriel Cheregi

    2008-05-01

    Full Text Available The paper presents the results of a numericalsimulation using finite element analysis for a coupledmagneto-thermal problem, specific for inductionhardening processes. The analysis takes into account therelative movement between inductor and the heated part.Numerical simulation allows to determine accurately thethermal regime of the induction heating process and theoptimal parameters which offer maximum efficiency.Therefore the experiments number in designing processcan be decreased and a better knowledge of the processcan be obtained.

  15. Numerical daemons in hydrological modeling: Effects on uncertainty assessment, sensitivity analysis and model predictions

    Science.gov (United States)

    Kavetski, D.; Clark, M. P.; Fenicia, F.

    2011-12-01

    Hydrologists often face sources of uncertainty that dwarf those normally encountered in many engineering and scientific disciplines. Especially when representing large scale integrated systems, internal heterogeneities such as stream networks, preferential flowpaths, vegetation, etc, are necessarily represented with a considerable degree of lumping. The inputs to these models are themselves often the products of sparse observational networks. Given the simplifications inherent in environmental models, especially lumped conceptual models, does it really matter how they are implemented? At the same time, given the complexities usually found in the response surfaces of hydrological models, increasingly sophisticated analysis methodologies are being proposed for sensitivity analysis, parameter calibration and uncertainty assessment. Quite remarkably, rather than being caused by the model structure/equations themselves, in many cases model analysis complexities are consequences of seemingly trivial aspects of the model implementation - often, literally, whether the start-of-step or end-of-step fluxes are used! The extent of problems can be staggering, including (i) degraded performance of parameter optimization and uncertainty analysis algorithms, (ii) erroneous and/or misleading conclusions of sensitivity analysis, parameter inference and model interpretations and, finally, (iii) poor reliability of a calibrated model in predictive applications. While the often nontrivial behavior of numerical approximations has long been recognized in applied mathematics and in physically-oriented fields of environmental sciences, it remains a problematic issue in many environmental modeling applications. Perhaps detailed attention to numerics is only warranted for complicated engineering models? Would not numerical errors be an insignificant component of total uncertainty when typical data and model approximations are present? Is this really a serious issue beyond some rare isolated

  16. Heat Transfer in a Porous Radial Fin: Analysis of Numerically Obtained Solutions

    Directory of Open Access Journals (Sweden)

    R. Jooma

    2017-01-01

    Full Text Available A time dependent nonlinear partial differential equation modelling heat transfer in a porous radial fin is considered. The Differential Transformation Method is employed in order to account for the steady state case. These solutions are then used as a means of assessing the validity of the numerical solutions obtained via the Crank-Nicolson finite difference method. In order to engage in the stability of this scheme we conduct a stability and dynamical systems analysis. These provide us with an assessment of the impact of the nonlinear sink terms on the stability of the numerical scheme employed and on the dynamics of the solutions.

  17. Epidemiological markers for Pseudomonas aeruginosa. 5. Subdivision by interative numerical analysis of isolates according to lysotypes.

    Science.gov (United States)

    Bergan, T; Niemelä, T; Gyllenberg, H

    1975-06-01

    A computer-based numerical approach to the allocation of Pseudomonas aeruginosa bacteriphage patterns has been presented. This rendered a usefule identification of similar phage types. The grouping had epidemiological relevance. Grouping of phage typing patterns of P. aeruginosa by numerical analysis showed that the patterns of related isolations may differ in one strong lysotype reaction, occasionally even in more reactions. Thus parallels previous findings which have been based on studies of the reproducibility of the method and evaluations of differences in epidemiologically related strains from the same sources.

  18. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  19. CAREFUL NUMERICAL SIMULATION AND ANALYSIS OF MIGRATION-ACCUMULATION OF TANHAI REGION

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-rang; DU Ning; HAN Yu-ji

    2005-01-01

    Numerical simulation of careful parallel arithmetic of oil resources migration-accumulation of Tanhai Region (three-layer) was done. Careful parallel operator splitting-up implicit iterative scheme, parallel arithmetic program, parallel arithmetic information and alternating-direction mesh subdivision were put forward. Parallel arithmetic and analysis of different CPU combinations were done. This numerical simulation test and the actual conditions are basically coincident. The convergence estimation of the model problem has successfully solved the difficult problem in the fields of permeation fluid mechanics, computational mathematics and petroleum geology.

  20. Numerical analysis of secondary flow in a two-stage turbine

    Science.gov (United States)

    Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.

    1990-01-01

    The three-dimensional viscous average passage flow in the Pratt and Whitney alternate design Space Shuttle Main Engine fuel turbine has been simulated. The effect of secondary flows generated by upstream blade rows on the performance of downstream blade rows is studied. The numerical results are compared to the design intent to validate improved models in the average passage equations. Analysis of the results centers on the primary spanwise mixing mechanism in this low aspect ratio turbine. A multigrid method has also been incorporated to improve the overall convergence rate of the numerical algorithm.

  1. Delineation of Fractured Aquifer Using Numerical Analysis (Factor of Resistivity Data in a Granite Terrain

    Directory of Open Access Journals (Sweden)

    Rolland Andrade

    2014-01-01

    Full Text Available In hard rock terrain, fractured aquifers comprise the major source of groundwater availability where the phreatic aquifer is desaturated. Identification of fracture zones in hard rock terrain and potential groundwater source delineation had been a perennial problem in hydrology. The purpose of this paper is to highlight the study over a small watershed area, in a granite terrain, wherein an attempt was made to delineate and map the fractured aquifer using numerical (factor analysis of the conventional vertical electrical sounding data, which was obscure in curve matching technique. This numerical approach in concatenation with resistivity imaging or other techniques would prove to be an effective tool in groundwater exploration.

  2. Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple

    CERN Document Server

    Griffiths, Graham

    2010-01-01

    Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by p

  3. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  4. Preliminary phytochemical screening, Antibacterial potential and GC-MS analysis of two medicinal plant extracts.

    Science.gov (United States)

    Vijayaram, Seerangaraj; Kannan, Suruli; Saravanan, Konda Mani; Vasantharaj, Seerangaraj; Sathiyavimal, Selvam; P, Palanisamy Senthilkumar

    2016-05-01

    The presence study was aimed to catalyze the primary metabolites and their confirmation by using GC-MS analysis and antibacterial potential of leaf extract of two important medicinal plant viz., Eucalyptus and Azadirachta indica. The antibacterial potential of the methanol leaf extract of the studied species was tested against Escherichia coli, Pseudomonas aeruginosa, Klebsiellap neumoniae, Streptococcus pyogens, Staphylococcus aureus using by agar well diffusion method. The higher zone of inhibition (16mm) was observed against the bacterium Pseudomonas aeruginosa at 100μl concentration of methanol leaf extract. Preliminary phytochemical analysis of studied species shows that presence of phytochemical compounds like steroids, phenolic compounds and flavonoids. GC-MS analysis confirms the occurrence of 20 different compounds in the methanol leaf extract of the both studied species.

  5. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  6. Preliminary Cluster Analysis For Several Representatives Of Genus Kerivoula (Chiroptera: Vespertilionidae) in Borneo

    Science.gov (United States)

    Hasan, Noor Haliza; Abdullah, M. T.

    2008-01-01

    The aim of the study is to use cluster analysis on morphometric parameters within the genus Kerivoula to produce a dendrogram and to determine the suitability of this method to describe the relationship among species within this genus. A total of 15 adult male individuals from genus Kerivoula taken from sampling trips around Borneo and specimens kept at the zoological museum of Universiti Malaysia Sarawak were examined. A total of 27 characters using dental, skull and external body measurements were recorded. Clustering analysis illustrated the grouping and morphometric relationships between the species of this genus. It has clearly separated each species from each other despite the overlapping of measurements of some species within the genus. Cluster analysis provides an alternative approach to make a preliminary identification of a species.

  7. Sensitivity of a numerical wave model on wind re-analysis datasets

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  8. Numerical Analysis of Excitation Characteristic of Piezoelectric Transducers for SAW Propagation Using Wavelet Method of Moment

    Institute of Scientific and Technical Information of China (English)

    CHENMing; TANGTiantong; ZHANGXiaolin

    2003-01-01

    In this paper, an effective numerical method based on wavelet moment method is presented to enhance the analysis of interdigital transducer (IDT)for the excitation of surface acoustic waves (SAW) on the piezoelectric substrate of acoustic-optical devices. This problem is formulated in terms of an integral equa-tion, and its electric charge matrix equations obtained by the method of moment (MoM) are effectively solved by Daubechies discrete wavelet transform. One of the mosts triking advantage of this method is that it can greatly ac-celerate the computing with the help of conjugate gradient methods because the wavelet transform make the moment matrices sparse. As a result of the use of this method, the transducer input power coupling factors to both surface and bulk waves are computed. Analysis results show this method is a powerful numerical technique in analysis of IDT for acousto-optical devices.

  9. On the use of stability regions in the numerical analysis of initial value problems

    Science.gov (United States)

    Lenferink, H. W. J.; Spijker, M. N.

    1991-07-01

    This paper deals with the stability analysis of one-step methods in the numerical solution of initial (-boundary) value problems for linear, ordinary, and partial differential equations. Restrictions on the stepsize are derived which guarantee the rate of error growth in these methods to be of moderate size. These restrictions are related to the stability region of the method and to numerical ranges of matrices stemming from the differential equation under consideration. The errors in the one-step methods are measured in arbitrary norms (not necessarily generated by an inner product). The theory is illustrated in the numerical solution of the heat equation and some other differential equations, where the error growth is measured in the maximum norm.

  10. Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    DU Hao; LI Zhongxian

    2009-01-01

    In Order to reduce economic and life losses due to terrorism or accidental explosion threats,reinforced concrete(RC)slabs of buildings need to be designed or retrofitted to resist blast loading.In this paper the dynamic behavior Of RC slabs under blast loading and its influencing factors are studied.The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software.Both the strain rate effect and the damage accumulation are taken into account in the material model.The dynamic responses of the RC slab subiected to blast loading are analyzed,and the influence of concrete strength,thickness and reinforcement ratio on the behavior of the RC slab under blast loading iS numerically investigated.Based on the numerical results.some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.

  11. Stability Analysis of Numerical Methods for a 1.5-Layer Shallow-Water Ocean Model

    Directory of Open Access Journals (Sweden)

    Guang-an Zou

    2013-01-01

    Full Text Available A 1.5-layer reduced-gravity shallow-water ocean model in spherical coordinates is described and discretized in a staggered grid (standard Arakawa C-grid with the forward-time central-space (FTCS method and the Leap-frog finite difference scheme. The discrete Fourier analysis method combined with the Gershgorin circle theorem is used to study the stability of these two finite difference numerical models. A series of necessary conditions of selection criteria for the time-space step sizes and model parameters are obtained. It is showed that these stability conditions are more accurate than the Courant-Friedrichs-Lewy (CFL condition and other two criterions (Blumberg and Mellor, 1987; Casulli, 1990, 1992. Numerical experiments are proposed to test our stability results, and numerical model that is designed is also used to simulate the ocean current.

  12. System Level Numerical Analysis of a Monte Carlo Simulation of the E. Coli Chemotaxis

    CERN Document Server

    Siettos, Constantinos I

    2010-01-01

    Over the past few years it has been demonstrated that "coarse timesteppers" establish a link between traditional numerical analysis and microscopic/ stochastic simulation. The underlying assumption of the associated lift-run-restrict-estimate procedure is that macroscopic models exist and close in terms of a few governing moments of microscopically evolving distributions, but they are unavailable in closed form. This leads to a system identification based computational approach that sidesteps the necessity of deriving explicit closures. Two-level codes are constructed; the outer code performs macroscopic, continuum level numerical tasks, while the inner code estimates -through appropriately initialized bursts of microscopic simulation- the quantities required for continuum numerics. Such quantities include residuals, time derivatives, and the action of coarse slow Jacobians. We demonstrate how these coarse timesteppers can be applied to perform equation-free computations of a kinetic Monte Carlo simulation of...

  13. Model and numerical analysis of 3D corrosion layer of reinforced concrete structure

    Institute of Scientific and Technical Information of China (English)

    李永和; 葛修润

    2003-01-01

    Under the assumption that the corrosion at the end of steel bolt or steel bar is shaped like the contour line of ellipsoid, a mathematic model and formulas of calculating the thickness of corrosion layer at arbitrary point are presented in this paper. Then regarding the arbitrary points of 3D corrosion layer as patch element model of fictitious displacement discontinuity, we propose the basic solution of 3D problem of the patch element acting on discontinuous displacement. With three basic assumptions of the corrosion layer, we set up the 3D numerical discreted model, and derive the stress boundary equation for fictitious corrosion layer of 3D numerical analysis. We also make the numerical stimulating calculation of the shotcrete structure at some lane using 3D finite element method. The results show that this method is effective and reasonable.

  14. The purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Clostridium botulinum

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Renwick C. J., E-mail: rdobson@unimelb.edu.au; Atkinson, Sarah C. [Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, Victoria 3010 (Australia); Gorman, Michael A. [St Vincents Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Newman, Janet M. [CSIRO Division of Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Parker, Michael W. [Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, Victoria 3010 (Australia); St Vincents Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Perugini, Matthew A. [Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2008-03-01

    Dihydrodipicolinate synthase (DHDPS), an enzyme in the lysine-biosynthetic pathway, is a promising target for antibiotic development against pathogenic bacteria. Here, the expression, purification, crystallization and preliminary diffraction analysis of DHDPS from C. botulinum are reported. In recent years, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has received considerable attention from both mechanistic and structural viewpoints. This enzyme, which is part of the diaminopimelate pathway leading to lysine, couples (S)-aspartate-β-semialdehyde with pyruvate via a Schiff base to a conserved active-site lysine. In this paper, the expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS from Clostridium botulinum, an important bacterial pathogen, are presented. The enzyme was crystallized in a number of forms, predominantly using PEG precipitants, with the best crystal diffracting to beyond 1.9 Å resolution and displaying P4{sub 2}2{sub 1}2 symmetry. The unit-cell parameters were a = b = 92.9, c = 60.4 Å. The crystal volume per protein weight (V{sub M}) was 2.07 Å{sup 3} Da{sup −1}, with an estimated solvent content of 41%. The structure of the enzyme will help guide the design of novel therapeutics against the C. botulinum pathogen.

  15. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  16. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  17. A Preliminary Analysis of Calcifying Particles in the Serum and Prostates of Patients with Prostatic Inflammation

    Science.gov (United States)

    Jones, Jeffrey A.; Carlson, Grant; Kajander, E. Olavi; Warmflash, David; Taylor, Karen; Ayala, Gustavo; Shoskes, Daniel; Everett, Meg; Feedback, Dan; Ciftcioglu, Neva

    2006-01-01

    Chronic diseases of the prostate such as benign prostatic hyperplasia (BPH) & chronic pelvic pain syndrome (CPPS) have associated findings of chronic inflammation, despite a lack of causal relationship. Numerous attempts to define an infectious agent responsible for the clinical findings have been inconsistent. The possibility of an infectious agent, that has not been uncovered with routine culturing methods, forms the basis for this study. Serum from 940 healthy Finnish men were compared with serum from 40 Crohn's, 40 path dx prostatitis, & 40 with path dx carcinoma, using an enzyme-linked immunosorbant assay (ELISA), to detect antigens specific to Nanobacteria(NB) utilizing monoclonal antibodies (Ab) 5/3 and 8D10. This ELISA has not been validated for detecting NB-associated with clinical prostatic disease, yet cross-reactivity with other bacterial species is low. Immunohistochemistry was performed on de-paraffinized prostatic tissue slides, de-calcified with EDTA and stained with the DAKO Catalyzed Signal Amplification kit, employing 8D10 as the primary (target/antigen-detecting) Ab. The mean (plus or minus SD) & median concentrations of NB antigen (U/50 L) were 379.59 (plus or minus 219.28) & 640.00 for patients with prostatitis (BPH) vs 3.31 (plus or minus 3.55) & 2.94 for prostate adenocarcinoma, 1.88 (plus or minus 2.94) & 0.80 for Crohn's disease, & 7.43 (plus or minus 25.57) & 0.00 for patients with no clinical prostatic disease. Unpaired t-tests revealed statistically significant differences between the prostatitis (BPH) sera & each of the other groups with p less than 0.005, but no differences between the other groups themselves. Preliminary studies with immunohistochemistry & 3-D confocal microscopy reveal 16/24 tissue sections + for NB Ag in BPH vs. only 2/22 tissue sections with prostate cancer. The preliminary findings of this serum screening study suggest that NB antigen may be commonly found in the serum of patients with the pathological diagnosis

  18. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis.

    Science.gov (United States)

    Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.

  19. Determination of Scaling Parameter and Dynamical Resonances in Complex-Rotated Hamiltonian Ⅱ: Numerical Analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; ZHAO Fang; LI Shao-Hua; ZHAO Mei-Shan; CHEN Chang-Yong

    2008-01-01

    This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomie molecular predissoeiation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.

  20. Active compensation of aperture discontinuities for WFIRST-AFTA: analytical and numerical comparison of propagation methods and preliminary results with a WFIRST-AFTA-like pupil

    Science.gov (United States)

    Mazoyer, Johan; Pueyo, Laurent; Norman, Colin; N'Diaye, Mamadou; van der Marel, Roeland P.; Soummer, Rémi

    2016-03-01

    The new frontier in the quest for the highest contrast levels in the focal plane of a coronagraph is now the correction of the large diffraction artifacts introduced at the science camera by apertures of increasing complexity. Indeed, the future generation of space- and ground-based coronagraphic instruments will be mounted on on-axis and/or segmented telescopes; the design of coronagraphic instruments for such observatories is currently a domain undergoing rapid progress. One approach consists of using two sequential deformable mirrors (DMs) to correct for aberrations introduced by secondary mirror structures and segmentation of the primary mirror. The coronagraph for the WFIRST-AFTA mission will be the first of such instruments in space with a two-DM wavefront control system. Regardless of the control algorithm for these multiple DMs, they will have to rely on quick and accurate simulation of the propagation effects introduced by the out-of-pupil surface. In the first part of this paper, we present the analytical description of the different approximations to simulate these propagation effects. In Appendix A, we prove analytically that in the special case of surfaces inducing a converging beam, the Fresnel method yields high fidelity for simulations of these effects. We provide numerical simulations showing this effect. In the second part, we use these tools in the framework of the active compensation of aperture discontinuities (ACAD) technique applied to pupil geometries similar to WFIRST-AFTA. We present these simulations in the context of the optical layout of the high-contrast imager for complex aperture telescopes, which will test ACAD on a optical bench. The results of this analysis show that using the ACAD method, an apodized pupil Lyot coronagraph, and the performance of our current DMs, we are able to obtain, in numerical simulations, a dark hole with a WFIRST-AFTA-like. Our numerical simulation shows that we can obtain contrast better than 2×10-9 in

  1. A preliminary study on numerical simulation of microwave heating process for chemical reaction and discussion of hotspot and thermal runaway phe-nomenon

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang; HUANG KaMa; YAN LiPing; YAO Yuan

    2009-01-01

    The nonlinear process of microwave heating chemical reaction is studied by means of numerical simulation. Especially, the variation of temperature in terms of space and time, as well as the hotspot and thermal runaway phenomena are discussed. Suppose the heated object is a cylinder and the inci-dent electromagnetic (EM) wave is plane wave, the problem turns out to be a coupling calculation of 2D multi-physical fields. The integral equation of EM field is solved using the method of moment (MoM) and the thermal conduction equation is solved using a semi-analysis method. Moreover, a method to determine the equivalent complex permittivity of reactant under the heating is presented in order to perform the calculation. The numerical results for water and a dummy chemical reaction (A) show that the hotspot is a ubiquitous phenomenon in microwave heating process. When the radius of the heated object is small, the highest temperature occurs somewhere inside the object due to the concentration of the EM wave. While the radius increases to a certain degree, the highest temperature occurs some-where close to the surface due to the skin effect, and the whole high temperature area shows cres-cant-shaped. That is in accordance with basic physical principles, if the radius is kept the same in the heating process, the hotspot position of water does not change, while that of reaction A with several radius values varies. For either water or A, the thermal runaway phenomenon in which small difference of radius results in large difference of highest temperature, occurs easily when the radius is small. On the contrary, it is not evident when the radius is large. Moreover, it is notable that the highest tern-perature in water shows oscillating decreasing trend with the increase of radius, but in reaction A al-most decreases monotonously. Further study should be performed to determine if this difference is only an occasional occurrence.

  2. Evaluation of CO2 migration and formation storage capacity in the Dalders formations, Baltic Sea - Preliminary analysis by means of models of increasing complexity

    Science.gov (United States)

    Niemi, Auli; Yang, Zhibing; Tian, Liang; Jung, Byeongju; Fagerlund, Fritjof; Joodaki, Saba; Pasquali, Riccardo; O'Neill, Nick; Vernon, Richard

    2014-05-01

    We present preliminary data analysis and modeling of CO2 injection into selected parts of the Dalders Monocline and Dalders Structure, formations situated under the Baltic Sea and of potential interest for CO2 geological storage. The approach taken is to use models of increasing complexity successively, thereby increasing the confidence and reliability of the predictions. The objective is to get order-of-magnitude estimates of the behavior of the formations during potential industrial scale CO2 injection and subsequent storage periods. The focus has been in regions with best cap-rock characteristics, according to the present knowledge. Data has been compiled from various sources available, such as boreholes within the region. As the first approximation we use analytical solutions, in order to get an initial estimate the CO2 injection rates that can be used without causing unacceptable pressure increases. These preliminary values are then used as basis for more detailed numerical analyses with TOUGH2/TOUGH2-MP (e.g. Zhang et al, 2008) simulator and vertical equilibrium based (e.g. Gasda et al, 2009) models. With the numerical models the variations in material properties, formation thickness etc., as well as more processes such as CO2 dissolution can also be taken into account. The presentation discusses results from these preliminary analyses in terms of estimated storage capacity, CO2 and pressure plume extent caused by various injection scenarios, as well as CO2 travel time after the end of the injection. The effect of factors such as number of injection wells and the positioning of these, the effect of formation properties and the boundary conditions are discussed as are the benefits and disadvantages of the various modeling approaches used. References: Gasda S.E. et al, 2009. Computational Geosciences 13, 469-481. Zhang et al, 2008. Report LBNL-315E, Lawrence Berkeley National Laboratory.

  3. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  4. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    Science.gov (United States)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  5. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  6. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  7. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  8. Preliminary cladistic analysis of genera of the cestode order Trypanorhyncha Diesing, 1863.

    Science.gov (United States)

    Beveridge, I; Campbell, R A; Palm, H W

    1999-01-01

    A preliminary cladistic analysis was carried out on the 49 currently recognised genera of the order Trypanorhyncha. Forty-four characters were analysed; a functional outgroup was used for scolex and strobilar characters, while Nybelinia was utilised to polarise characters related to the rhyncheal system. Eight well-resolved clades were evident in the resultant cladogram, which is compared with existing phenetic classifications. An analysis of families resulted in a similar clustering of taxa to that observed in the case of the genera. The results suggest that two key characters used in existing classifications, namely the presence of sensory fossettes on the bothridia and the development of atypical heteroacanth and poeciloacanth armatures from typical heteroacanth armatures, have occurred on several occasions. Some clades provide support for the arrangements used in current classifications. Suggestions are made for future avenues of research which might provide more robust phylogenetic data for the Trypanorhyncha.

  9. Preliminary Evaluation of MapReduce for High-Performance Climate Data Analysis

    Science.gov (United States)

    Duffy, Daniel Q.; Schnase, John L.; Thompson, John H.; Freeman, Shawn M.; Clune, Thomas L.

    2012-01-01

    MapReduce is an approach to high-performance analytics that may be useful to data intensive problems in climate research. It offers an analysis paradigm that uses clusters of computers and combines distributed storage of large data sets with parallel computation. We are particularly interested in the potential of MapReduce to speed up basic operations common to a wide range of analyses. In order to evaluate this potential, we are prototyping a series of canonical MapReduce operations over a test suite of observational and climate simulation datasets. Our initial focus has been on averaging operations over arbitrary spatial and temporal extents within Modern Era Retrospective- Analysis for Research and Applications (MERRA) data. Preliminary results suggest this approach can improve efficiencies within data intensive analytic workflows.

  10. Dimensions of Human-Work Domain Interaction: A Preliminary Analysis for the Design of a Corporate Digital Library.

    Science.gov (United States)

    Xie, Hong

    2003-01-01

    Applies the cognitive system engineering approach to investigate human-work interaction at a corporate setting. Reports preliminary analysis of data collected from diary analysis and interview of 20 subjects. Results identify three dimensions for each of four interactive activities involved in human-work interaction and their relationships.…

  11. Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo [Sungkyunkwan University, Seoul (Korea, Republic of)

    2010-04-15

    The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be

  12. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  13. Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments

    CERN Document Server

    Semblat, Jean-François; Dangla, Patrick; 10.1016/S0267-7261(00)00016-6

    2009-01-01

    The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium an...

  14. Numerical Analysis of the Stability of Embankment Slope Reinforced with Piles

    Institute of Scientific and Technical Information of China (English)

    CUI Wei; ZHANG Zhigeng; YAN Shuwang

    2007-01-01

    The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated with zero-thickness elasto-plastic interface elements. Effects of pile spacing and pile position on the safety factor of slope and the behavior of piles under these conditions are given. The numerical analysis indicates that the positions of the pile have significant influence on the stability of the slope, and the pile needs to be installed in the middle of the slope for maximum safety factors. In the end, the soil arching effect closely associated with the space between stabilizing piles is analyzed. The results are helpful for design and construction of stabilizing piles.

  15. Degenerate two-phase incompressible flow problems III: Perturbation analysis and numerical experiments

    Directory of Open Access Journals (Sweden)

    Zhangxin Chen

    1999-12-01

    Full Text Available This is the third paper of a three-part series where we develop and analyze a finite element approximation for a degenerate elliptic-parabolic partial differential system which describes the flow of two incompressible, immiscible fluids in porous media. The approximation uses a mixed finite element method for the pressure equation and a Galerkin finite element method for the saturation equation. It is based on a regularization of the saturation equation. In the first paper cite{RckA} we analyzed the regularized differential system and presented numerical results. In the second paper cite{RckB} we obtained error estimates. In the present paper we describe a perturbation analysis for the saturation equation and numerical experiments for complementing this analysis.

  16. Advances in variational and hemivariational inequalities theory, numerical analysis, and applications

    CERN Document Server

    Migórski, Stanisław; Sofonea, Mircea

    2015-01-01

    Highlighting recent advances in variational and hemivariational inequalities with an emphasis on theory, numerical analysis and applications, this volume serves as an indispensable resource to graduate students and researchers interested in the latest results from recognized scholars in this relatively young and rapidly-growing field. Particularly, readers will find that the volume’s results and analysis present valuable insights into the fields of pure and applied mathematics, as well as civil, aeronautical, and mechanical engineering. Researchers and students will find new results on well posedness to stationary and evolutionary inequalities and their rigorous proofs. In addition to results on modeling and abstract problems, the book contains new results on the numerical methods for variational and hemivariational inequalities. Finally, the applications presented illustrate the use of these results in the study of miscellaneous mathematical models which describe the contact between deformable bodies and a...

  17. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  18. Numerical Analysis of Helicopter Rotor Hovering in Close Proximity to the Ground with a Wall

    Science.gov (United States)

    Itoga, Noriaki; Iboshi, Naohiro; Horimoto, Mitsumasa; Saito, Shigeru; Tanabe, Yasutada

    In rescue operations and emergency medical services, helicopters are frequently required to operate near the ground with obstacles such as buildings and sidewalls of highway. In this paper, numerical analysis of helicopter rotor hovering in close proximity to the ground with an obstacle is done by solving unsteady 3D compressible Euler equations with an overlapped grid system. The obstacle is simulated by a wall vertically set up on the ground. The parameters for numerical analysis are the rotor height and distance from the rotor-hub-center to the wall. The effects of combinations of these parameters on the flowfields around the rotor, inflow distributions on the rotor disc and behaviors of blade flapping motion are discussed. It is also clarified the cause that the helicopter rotor hovering in close proximity to the ground with a wall does not have the enough ground effect depending on the combinations of these parameters.

  19. Numerical analysis of a PCM thermal storage system with varying wall temperature

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E. [Sustainable Energy Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia)]. E-mail: edward.halawa@unisa.edu.au; Bruno, F. [Sustainable Energy Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia); Saman, W. [Sustainable Energy Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2005-09-15

    Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given.

  20. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  1. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    Energy Technology Data Exchange (ETDEWEB)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF 328, D-69120 Heidelberg (Germany)

    2007-09-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 and diffracted to a resolution of 1.6 Å.

  2. Numerical analysis on bearing capacity of middle pylon caisson foundation of Taizhou Bridge

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Shao Guojian; Hu Feng; Gu Lijun

    2012-01-01

    Because of the computation difficulty of the beating capacity of large underwater caisson foundation on thick overburden layer ground, the geotechnieal software FLAC3D was utilized in the 3D numerical analysis on the bearing capacity of middle pylon foundation. From the computational results, it is concluded that the caisson foundation has a good bearing capacity on thick overburden layer ground and the beating capacity can be improved assuming that the soil near the area of basal comer is reinforced.

  3. Numerical analysis of temperature field during hardfacing process and comparison with experimental results

    Directory of Open Access Journals (Sweden)

    Lazić Vukić N.

    2014-01-01

    Full Text Available The three-dimensional transient nonlinear thermal analysis of the hard facing process is performed by using the finite element method. The simulations were executed on the open source Salome platform using the open source finite element solver Code_Aster. The Gaussian double ellipsoid was selected in order to enable greater possibilities for the calculation of the moving heat source. The numerical results were compared with available experimental results.

  4. Numerical analysis of added mass and damping of floating production,storage and offloading system

    Institute of Scientific and Technical Information of China (English)

    Ke Wang; Xi Zhang; Zhi-Qiang Zhang; Wang Xu

    2012-01-01

    An integral equation approach is utilized to investigate the added mass and damping of floating production,storage and offloading system (FPSO system).Finite water depth Green function and higher-order boundary element method are used to solve integral equation.Numerical results about added mass and damping are presented for odd and even mode motions of FPSO.The results show robust convergence in high frequency range and can be used in wave load analysis for FPSO designing and operation.

  5. Biospark: scalable analysis of large numerical datasets from biological simulations and experiments using Hadoop and Spark.

    Science.gov (United States)

    Klein, Max; Sharma, Rati; Bohrer, Chris H; Avelis, Cameron M; Roberts, Elijah

    2017-01-15

    Data-parallel programming techniques can dramatically decrease the time needed to analyze large datasets. While these methods have provided significant improvements for sequencing-based analyses, other areas of biological informatics have not yet adopted them. Here, we introduce Biospark, a new framework for performing data-parallel analysis on large numerical datasets. Biospark builds upon the open source Hadoop and Spark projects, bringing domain-specific features for biology.

  6. Four generations versus left-right symmetry. A comparative numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Tillmann J.

    2012-06-18

    In this work, we present a comparative numerical analysis of the Standard Model (SM) with a sequential fourth generation (SM4) and the left-right symmetric Standard model (LRM). We focus on the constraints induced by flavour violating {Delta}F=2 processes in the K and B system while the results of studies of collider bounds and electroweak precision tests are taken into account as external inputs. In contrast to many previous studies of both models considered in this work, we do make not any ad-hoc assumptions on the structure of the relevant mixing matrices. Therefore, we employ powerful Monte Carlo methods in order to approximate the viable parameter space of the models. In preparation of our numerical analysis, we present all relevant formulae and review the different numerical methods used in this work. In order to better understand the patterns of new effects in {Delta}F=2 processes, we perform a fit including all relevant {Delta}F=2 constraints in the context of the Standard Model. The result of this fit is then used in a general discussion on new effects in {Delta}F=2 processes in the context of generic extensions of the Standard Model. Our numerical analysis of the SM4 and the LRM demonstrates that in both models the existing anomalies in {Delta}=2 processes can easily be resolved. We transparently show how the different observables are connected to each other by their dependence on combinations of mixing parameters. In our analysis of rare decays in the SM4, we establish patterns of flavour violation that could in principle be used to disprove this model on the basis of {Delta}F=1 processes alone. In the LRM, we discuss the importance of the contributions originating from the exchange of heavy, flavour changing, neutral Higgs bosons as well as the inability of the LRM to entirely solve the V{sub ub} problem.

  7. Numerical analysis of rheological and tribological behavior influence on 16MnCr5 forging fibering

    Science.gov (United States)

    Gavrus, A.; Pintilie, D.; Nedelcu, R.

    2016-10-01

    The present research work is focus on the influence of the rheological constitutive equation and friction law formulation on 16MnCr5 forging fibering. Numerical analysis using FE Forge® and Abaqus code show the importance of the rheological softening terms on the metals fibers morphology and position coordinate. Calibration of friction law and sensitivity of softening parameters corresponding to a Hansel-Spittel rheological equation have been studied.

  8. Numerical Analysis on Transmission Characteristics of a Bragg Grating Assisted Mismatched Fiber Coupler

    Institute of Scientific and Technical Information of China (English)

    WEI Daoping; JIANG Zhong'ao; ZHAO Yucheng; JIAN Shuisheng

    2000-01-01

    Based on mode-coupled theory, a Bragg grating assisted mismatched fiber coupler is analyzed theoretically. At the same time, a detailed numerical analysis on transmission characteristics of the coupler is carried out when it considers the arcs of two fibers in the coupling region of the coupler or not, and the optimized design on the Bragg grating assisted mismatched fiber coupler for wavelength-division multiplexing/ demultiplexing is proposed.

  9. Analysis of CO2 emission in traffic flow and numerical tests

    Science.gov (United States)

    Zhu, Wen-Xing

    2013-10-01

    We investigated the carbon dioxide emission rate in traffic flow analytically and numerically. The emission model was derived based on Bando’s optimal velocity model with a consideration of slope. Simulations were conducted to examine the relationship between the CO2 emission rate of vehicles and slope of road, traffic density, and road length. Analysis of the results shows that some original laws of CO2 emission in traffic flow with congestion were exhibited.

  10. Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

    CERN Document Server

    Benzekry, Sebastien

    2010-01-01

    We introduce and analyze a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastasis that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations in view of clinical applications.

  11. Numerical analysis of an oscillating water column converter considering a physical constraint in the chimney outlet

    OpenAIRE

    Gomes, Mateus das Neves; Seibt, Flávio Medeiros; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Isoldi, Liércio André

    2014-01-01

    This work presents a 2D numerical study of an Oscillating Water Column (OWC) converter considering physical constraints in its outlet chimney to represent the turbine pressure drop. Two strategies were adopted. The first considers different dimensions for a physical constraint similar to an orifice plate, being the analysis performed in a laboratory scale. After that, other physical restriction with geometry similar to a rotor turbine was investigated in a real scale by means a dimensional va...

  12. Numerical Tracking of Limit Points for Direct Parametric Analysis in Nonlinear Rotordynamics

    OpenAIRE

    Xie, Lihan; Baguet, Sébastien; Prabel, Benoit; Dufour, Régis

    2016-01-01

    International audience; A frequency-domain approach for direct parametric analysis of limit points of nonlinear dynamical systems is presented in this paper. Instead of computing responses curves for several values of a given system parameter, the direct tracking of limit points is performed. The whole numerical procedure is based on the Harmonic Balance Method and can be decomposed in three distinct steps. Firstly, a response curve is calculated by HBM combined with a continuation technique ...

  13. Numerical analysis of laminar and turbulent incompressible flows using the finite element Fluid Dynamics Analysis Package (FIDAP)

    Science.gov (United States)

    Sohn, Jeong L.

    1988-08-01

    The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.

  14. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  15. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  16. Numerical analysis of heat transfer in the exhaust gas flow in a diesel power generator

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2016-09-01

    This work presents a numerical study of heat transfer in the exhaust duct of a diesel power generator. The analysis was performed using two different approaches: the Finite Difference Method (FDM) and the Finite Volume Method (FVM), this last one by means of a commercial computer software, ANSYS CFX®. In FDM, the energy conservation equation was solved taking into account the estimated velocity profile for fully developed turbulent flow inside a tube and literature correlations for heat transfer. In FVM, the mass conservation, momentum, energy and transport equations were solved for turbulent quantities by the K-ω SST model. In both methods, variable properties were considered for the exhaust gas composed by six species: CO2, H2O, H2, O2, CO and N2. The entry conditions for the numerical simulations were given by experimental data available. The results were evaluated for the engine operating under loads of 0, 10, 20, and 37.5 kW. Test mesh and convergence were performed to determine the numerical error and uncertainty of the simulations. The results showed a trend of increasing temperature gradient with load increase. The general behaviour of the velocity and temperature profiles obtained by the numerical models were similar, with some divergence arising due to the assumptions made for the resolution of the models.

  17. Numerical Analysis of Flow Phenomena in a Residual Heat Removal Pump

    Directory of Open Access Journals (Sweden)

    Jianping Yuan

    2015-02-01

    Full Text Available The hydraulic performances as well as the cavitation phenomena in a scaled residual heat removal pump were investigated by experimental and numerical methods, respectively. In particular, a 3D numerical model of cavitation was adopted to simulate the internal cavitating flow through the model pump. The hydraulic performances of the model pump predicted by numerical simulations were in good agreement with the corresponding experimental data. The main generation and evolution of attached cavitation throughout the blade channels at different cavitating conditions have been investigated using the vapor fraction ISO surface and in-plane velocity vectors. Results show that the low static pressure at the impeller inlet is the main reason for leading edge cavitation by correlation analysis of static pressure on the midspan of impeller. Cavitation proved to occur over a wide range of flow rates, producing a characteristic creeping shape of the head-drop curve and developing in the form of nonaxisymmetric cavities at design flow rate. Moreover, the occurrence of these cavities, attached to the suction surface of blades, was found to depend on the NPSHA value. Numerical and experimental results in this paper can provide better understanding of the origin of leading edge cavitation in residual heat removal pumps.

  18. Analysis and numerical solution of a transport equation for pulse reflection in a randomly layered medium

    Energy Technology Data Exchange (ETDEWEB)

    Asch, M.

    1990-01-01

    The author studies analytically and numerically a transport equation arising from acoustic wave propagation due to a point source in a randomly layered half space. Random material properties whose fluctuations are not restricted in magnitude, but are on a specific length scale are included in the acoustic equations. Analysis of the resulting stochastic differential equations by asymptotic methods lead to the derivation of a transport equation which describes the moments of the reflected pressure field. This equation is an infinite system of linear hyperbolic partial differential equations. A probabilistic interpretation of the transport equation by random walks leads to an existence and uniqueness proof. This interpretation is also the basis of numerical simulations by a Monte Carlo method for a plane wave problem. This is not an efficient numerical method, but provides insight into the mechanism of multiple scattering in the limit studied here. Finite difference methods must be used in the point source case. Due to the singular nature of the initial conditions he prefers to desingularize the system by substituting a progressing wave expansion. This desingularization is a prerequisite for solving an inverse problem. The regularized equations are then integrated and discretized using simple numerical methods. The resulting problem is extremely large (four dimensions plus time) and sophisticated vectorization and parallelization techniques must be applied in order to solve it efficiently. The results obtained are in good agreement with known explicit solutions for statistically homogeneous media.

  19. Numerical analysis of non-stationary free surface flow in a Pelton bucket

    Energy Technology Data Exchange (ETDEWEB)

    Hana, Morten

    1999-07-01

    Computation and analysis of flow in Pelton buckets have been carried out. First a graphical method is investigated and partially improved. In order to decide whether to improve the method further or disregard it in favour of commercial computational fluid dynamics (CFD) codes, a study on numerical methods for free surface flow was carried out. This part of this work concentrates on the theoretical background for different numerical methods, and describes some practical considerations. Although small programs were created based on the literature survey, but only one reported herein, it was soon found that commonly available numerical codes were favourable in use. A code, RIPPLE, was acquired to study the Volume of Fluid (VOF) method in detail. The commercial codes used were Flow-3D and CFX-4. These programs were used in three different cases. First, a simplified 2-dimensional case was verified experimentally. Next, a 3-dimensional fixed jet calculation was carried out. Finally, numerical calculations with relative motion between the jet and buckets were carried out with CFX-4. The conclusion is that commercial CFD codes can replace the graphical method. But careful implementation is needed in order to resolve the special features of Pelton turbines, which are the free surface, the complex geometry and the relative motion between the jet and the bucket.

  20. Numerical analysis of stress distribution in embedded highly birefringent PANDA fibers

    Science.gov (United States)

    Lesiak, Piotr; Woliński, Tomasz

    2015-09-01

    The paper presents numerical analysis compared with experimental data of influence of polymerization shrinkage on highly birefringent (HB) PANDA optical fibers embedded in a composite material. Since polymerization is a chemical process consisting in combining single molecules in a macromolecular compound [1], principal directions of the polymerization shrinkage depend on a number of the composite layers associated with this process. In this paper a detailed analysis of the piezo-optic effects occurring in HB optical fibers before and after the lamination process answers the question to what extent a degree of the material degradation can be properly estimated.