WorldWideScience

Sample records for preliminary numerical analysis

  1. Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will

  2. Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code

    International Nuclear Information System (INIS)

    Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong

    2014-01-01

    The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will

  3. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor

  4. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  5. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  6. On the complexity of numerical analysis

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Allender, Eric; Burgisser, Peter

    2009-01-01

    an integer N, decide whether N>0. • In the Blum-Shub-Smale model, polynomial time computation over the reals (on discrete inputs) is polynomial-time equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform...... reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomial-time equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling......We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The Blum-Shub-Smale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation,” which captures an aspect of doing numerical computation...

  7. Assessment of Available Numerical Tools for Dynamic Mooring Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Eskilsson, Claes; Ferri, Francesco

    This report covers a preliminary assessment of available numerical tools to be used in upcoming full dynamic analysis of the mooring systems assessed in the project _Mooring Solutions for Large Wave Energy Converters_. The assessments tends to cover potential candidate software and subsequently c...

  8. Integration of numerical analysis tools for automated numerical optimization of a transportation package design

    International Nuclear Information System (INIS)

    Witkowski, W.R.; Eldred, M.S.; Harding, D.C.

    1994-01-01

    The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package's components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed

  9. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  10. Numerical Modelling and Simulation of Dynamic Parameters for Vibration Driven Mobile Robot: Preliminary Study

    Science.gov (United States)

    Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.

    2018-03-01

    The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.

  11. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  12. Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two

  13. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  14. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  15. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  16. Preliminary result of a three dimensional numerical simulation of cloud formation over a cooling pond

    International Nuclear Information System (INIS)

    Yamada, T.

    1978-01-01

    Cooling ponds receive large amounts of waste heat from industrial sources and release the heat to the atmosphere. These large area sources of warm and moist air may have significant inadvertent effects. This paper is a preliminary step in the development of a method for estimating the perturbations in the atmosphere produced by a cooling pond. A three-dimensional numerical model based on turbulence second-moment closure equations and Gaussian cloud relations has been developed. A simplified version of the model, in which only turbulent energy and length-scale equations are solved prognostically, is used. Numerical simulations are conducted using as boundary conditions the data from a cooling pond study conducted in northern Illinois during the winter of 1976-1977. Preliminary analyses of these simulations indicate that formation of clouds over a cooling pond is sensitive to the moisture content in the ambient atmosphere

  17. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  18. Theoretical numerical analysis a functional analysis framework

    CERN Document Server

    Atkinson, Kendall

    2005-01-01

    This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu

  19. Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace

    Directory of Open Access Journals (Sweden)

    Buliński P.

    2015-09-01

    Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.

  20. RC structures strengthened by metal shear panels: experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Matteis, G.; Formisano, A.; Mazzolani, F. M.

    2008-01-01

    Metal shear panels (MSPs) may be effectively used as a lateral load resisting system for framed structures. In the present paper, such a technique is applied for the seismic protection of existing RC buildings, by setting up a specific design procedure, which has been developed on the basis of preliminary full-scale experimental tests. The obtained results allowed the development of both simplified and advanced numerical models of both the upgraded structure and the applied shear panels. Also, the proposed design methodology, which is framed in the performance base design philosophy, has been implemented for the structural upgrading of a real Greek existing multi-storey RC building. The results of the numerical analysis confirmed the effectiveness of the proposed technique, also emphasising the efficiency of the implemented design methodology

  1. Preliminary Context Analysis of Community Informatics Social ...

    African Journals Online (AJOL)

    Preliminary context analysis is always part of the feasibility study phase in the development of information system for Community Development (CD) purposes. In this paper, a context model and a preliminary context analysis are presented for Social Network Web Application (SNWA) for CD in the Niger Delta region of ...

  2. Comparative analysis of nodal and edge finite element method for numerical analysis of 3-D magnetostatic systems

    International Nuclear Information System (INIS)

    Mintchev, Pavel; Dimitrov, Marin; Balinov, Stoimen

    2002-01-01

    The possibilities for applying the Finite Element Method (FEM) with gauged magnetic vector potential and the Edge Element Method (EEM) for three-dimensional numerical analysis of magnetostatic systems are analyzed. It is established that the EEM ensures sufficient accuracy for engineering calculations but in some cases its use results in bad convergence. The use of the FEM with gauged magnetic vector potential instead of the EEM is recommended for preliminary calculations of devices with complex geometry and large air gaps between the ferromagnetic parts. (Author)

  3. Preliminary hazard analysis for the Brayton Isotope Ground Demonstration System (including vacuum test chamber)

    International Nuclear Information System (INIS)

    Miller, L.G.

    1975-01-01

    The Preliminary Hazard Analysis (PHA) of the BIPS-GDS is a tabular summary of hazards and undesired events which may lead to system damage or failure and/or hazard to personnel. The PHA reviews the GDS as it is envisioned to operate in the Vacuum Test Chamber (VTC) of the GDS Test Facility. The VTC and other equipment which will comprise the test facility are presently in an early stage of preliminary design and will undoubtedly undergo numerous changes before the design is frozen. The PHA and the FMECA to follow are intended to aid the design effort by identifying areas of concern which are critical to the safety and reliability of the BIPS-GDS and test facility

  4. Introductory numerical analysis

    CERN Document Server

    Pettofrezzo, Anthony J

    2006-01-01

    Written for undergraduates who require a familiarity with the principles behind numerical analysis, this classical treatment encompasses finite differences, least squares theory, and harmonic analysis. Over 70 examples and 280 exercises. 1967 edition.

  5. Numerical analysis using Sage

    CERN Document Server

    Anastassiou, George A

    2015-01-01

    This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application.  Answers may be verified using Sage.  The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®.  Sage is  open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...

  6. Preliminary Analysis and Selection of Mooring Solution Candidates

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Delaney, Martin

    This report covers a preliminary analysis of mooring solutions candidates for four large floating wave energy converters. The work is part of the EUDP project “Mooring Solutions for Large Wave Energy Converters” and is the outcome of "Work Package 3: Preliminary Analysis". The report further...... compose the "Milestone 4: Report on results of preliminary analysis and selection of final candidates. The report is produced by Aalborg University with input from the partner WECs Floating Power Plant, KNSwing, LEANCON and Wave Dragon. Tension Technology International (TTI) has provided a significant...

  7. UVISS preliminary visibility analysis

    DEFF Research Database (Denmark)

    Betto, Maurizio

    1998-01-01

    The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part of the w......The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part...... of the work is also to setup the kernel of a software tool for the visibility analysis thatshould be easily expandable to consider more complex strucures for future activities.This analysis is part of the UVISS assessment study and it is meant to provide elementsfor the definition and the selection...

  8. Plasma brake model for preliminary mission analysis

    Science.gov (United States)

    Orsini, Leonardo; Niccolai, Lorenzo; Mengali, Giovanni; Quarta, Alessandro A.

    2018-03-01

    Plasma brake is an innovative propellantless propulsion system concept that exploits the Coulomb collisions between a charged tether and the ions in the surrounding environment (typically, the ionosphere) to generate an electrostatic force orthogonal to the tether direction. Previous studies on the plasma brake effect have emphasized the existence of a number of different parameters necessary to obtain an accurate description of the propulsive acceleration from a physical viewpoint. The aim of this work is to discuss an analytical model capable of estimating, with the accuracy required by a preliminary mission analysis, the performance of a spacecraft equipped with a plasma brake in a (near-circular) low Earth orbit. The simplified mathematical model is first validated through numerical simulations, and is then used to evaluate the plasma brake performance in some typical mission scenarios, in order to quantify the influence of the system parameters on the mission performance index.

  9. A Numerical Analysis on the Local Deformation of a Spacer Grid Structure for Nuclear Fuel Cells

    International Nuclear Information System (INIS)

    Jang, Myung-Geun; Na, Geum Ju; Kim, Jong-Bong; Shin, Hyunho

    2016-01-01

    The result of a preliminary numerical investigation on local deformation characteristics of a multi-layered spacer-grid structure with five guide tubes is reported based on implicit finite element analysis. For the numerical analysis, displacements of top and bottom cross sections of each guide tube in a single-layer model were constrained while a lateral displacement was imposed on the single layer. Unlike the impact hammer test that is generally employed to characterize the deformation characteristics of the space-grid structure, the buckling phenomenon occurs locally in this study; it takes place at the inner grids around each tube and the degree of bucking is more apparent for tubes near the lateral surface where the lateral displacement was imposed. (paper)

  10. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Lai, C.H.; Stow, S.H.

    1987-05-01

    Conceptual models for sedimentary rock settings that could be used in future evaluation and suitability studies are being examined through the DOE Repository Technology Program. One area of concern for the hydrologic aspects of these models is discrete fracture flow analysis as related to the estimation of the size of the representative elementary volume, evaluation of the appropriateness of continuum assumptions and estimation of the large-scale permeabilities of sedimentary rocks. A basis for preliminary analysis of flow in fracture systems of the types that might be expected to occur in low permeability sedimentary rocks is presented. The approach used involves numerical modeling of discrete fracture flow for the configuration of a large-scale hydrologic field test directed at estimation of the size of the representative elementary volume and large-scale permeability. Analysis of fracture data on the basis of this configuration is expected to provide a preliminary indication of the scale at which continuum assumptions can be made

  11. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  12. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  13. Pickering safeguards: a preliminary analysis

    International Nuclear Information System (INIS)

    Todd, J.L.; Hodgkinson, J.G.

    1977-05-01

    A summary is presented of thoughts relative to a systems approach for implementing international safeguards. Included is a preliminary analysis of the Pickering Generating Station followed by a suggested safeguards system for the facility

  14. Preliminary Computational Analysis of the (HIRENASD) Configuration in Preparation for the Aeroelastic Prediction Workshop

    Science.gov (United States)

    Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.

    2011-01-01

    This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.

  15. Preliminary Analysis on Linac Oscillation Data LI05-19 and Wake Field Energy Loss in FACET Commissioning 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; /SLAC

    2012-07-23

    In this note, preliminary analysis on linac ocsillation data in FACET linac LI05-09 plus LI11-19 is presented. Several quadrupoles are identified to possibly have different strength, compared with their designed strength in the MAD optics model. The beam energy loss due to longitudinal wake fields in the S-band linac is also analytically calculated, also by LITRACK numerical simulations.

  16. Numerical analysis of bifurcations

    International Nuclear Information System (INIS)

    Guckenheimer, J.

    1996-01-01

    This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics

  17. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  18. Preliminary HECTOR analysis by Dragon

    Energy Technology Data Exchange (ETDEWEB)

    Presser, W; Woloch, F

    1972-06-02

    From the different cores measured in HECTOR, only ACH 4/B-B was selected for the Dragon analysis, since it presented the largest amount of uniform fuel loading in the central test region and is therefore nearest to an infinite lattice. Preliminary results are discussed.

  19. Licensing support system preliminary needs analysis: Volume 1

    International Nuclear Information System (INIS)

    1989-01-01

    This Preliminary Needs Analysis, together with the Preliminary Data Scope Analysis (next in this series of reports), is a first effort under the LSS Design and Implementation Contract toward developing a sound requirements foundation for subsequent design work. Further refinements must be made before requirements can be specified in sufficient detail to provide a basis for suitably specific system specifications. This preliminary analysis of the LSS requirements has been divided into a ''needs'' and a ''data scope'' portion only for project management and scheduling reasons. The Preliminary Data Scope Analysis will address all issues concerning the content and size of the LSS data base; providing the requirements basis for data acquisition, cataloging and storage sizing specifications. This report addresses all other requirements for the LSS. The LSS consists of both computer subsystems and non-computer archives. This study addresses only the computer subsystems, focusing on the Access Subsystems. After providing background on previous LSS-related work, this report summarizes the findings from previous examinations of needs and describes a number of other requirements that have an impact on the LSS. The results of interviews conducted for this report are then described and analyzed. The final section of the report brings all of the key findings together and describes how these needs analyses will continue to be refined and utilized in on-going design activities. 14 refs., 2 figs., 1 tab

  20. Original Article PRELIMINARY BIOAUTOGRAPHIC ANALYSIS OF ...

    African Journals Online (AJOL)

    PRELIMINARY BIOAUTOGRAPHIC ANALYSIS OF THE SEEDS OF GLYPHAEA BREVIS. (SPRENG) MONACHINO FOR ANTIOXIDANT AND ANTIBACTERIAL PRINCIPLES. Michael Lahai1, Tiwalade Adewale Olugbade2. 1Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, College of Medicine ...

  1. Licensing Support System: Preliminary data scope analysis

    International Nuclear Information System (INIS)

    1989-01-01

    The purpose of this analysis is to determine the content and scope of the Licensing Support System (LSS) data base. Both user needs and currently available data bases that, at least in part, address those needs have been analyzed. This analysis, together with the Preliminary Needs Analysis (DOE, 1988d) is a first effort under the LSS Design and Implementation Contract toward developing a sound requirements foundation for subsequent design work. These reports are preliminary. Further refinements must be made before requirements can be specified in sufficient detail to provide a basis for suitably specific system specifications. This document provides a baseline for what is known at this time. Additional analyses, currently being conducted, will provide more precise information on the content and scope of the LSS data base. 23 refs., 4 figs., 8 tabs

  2. Average-case analysis of numerical problems

    CERN Document Server

    2000-01-01

    The average-case analysis of numerical problems is the counterpart of the more traditional worst-case approach. The analysis of average error and cost leads to new insight on numerical problems as well as to new algorithms. The book provides a survey of results that were mainly obtained during the last 10 years and also contains new results. The problems under consideration include approximation/optimal recovery and numerical integration of univariate and multivariate functions as well as zero-finding and global optimization. Background material, e.g. on reproducing kernel Hilbert spaces and random fields, is provided.

  3. Numerical analysis on acoustic impulse response for watermelon

    International Nuclear Information System (INIS)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho; Lee, Yun Ho

    2002-01-01

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  4. Review of Preliminary Analysis Techniques for Tension Structures.

    Science.gov (United States)

    1984-02-01

    however,a linear dinamic analysis can be conducted for purposes of preliminary design, relative to the static configuration. It is noted that the amount of...16 Chapter 3. PRELIMINARY DESIGN OF TENSION STRUCTURES . . .. .. .. .... 22 S.3.1 Cable Systems . . . . . . . . . . . . .. .. .. .... 23...3.1.1 Singly-Connected Segments. .. .... ... 24 3.1.2 Multiply-Connected Segments . . .. .. .. .. 27 3.1.3 Linearized Dynamics of Cable Systems . . . . 29

  5. Numerical analysis on acoustic impulse response for watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho [Dongshin University, Naju (Korea, Republic of); Lee, Yun Ho [Korea Inspection and Engineering CO.,LTD., Seoul (Korea, Republic of)

    2002-11-15

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  6. Preliminary failure mode and effect analysis

    International Nuclear Information System (INIS)

    Addison, J.V.

    1972-01-01

    A preliminary Failure Mode and Effect Analysis (FMEA) was made on the overall 5 Kwe system. A general discussion of the system and failure effect is given in addition to the tabulated FMEA and a primary block diagram of the system. (U.S.)

  7. Preliminary Analysis of Reinforced Concrete Waffle Walls

    National Research Council Canada - National Science Library

    Shugar, Theodore

    1997-01-01

    A preliminary analytical method based upon modified plate bending theory is offered for structural analysis of a promising new construction method for walls of small buildings and residential housing...

  8. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  9. Numerical analysis

    CERN Document Server

    Jacques, Ian

    1987-01-01

    This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...

  10. An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2013-01-01

    Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to

  11. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    International Nuclear Information System (INIS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-01-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model

  12. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  13. Development of numerical simulation technology for high resolution thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Yoon, Han Young; Kim, K. D.; Kim, B. J.; Kim, J. T.; Park, I. K.; Bae, S. W.; Song, C. H.; Lee, S. W.; Lee, S. J.; Lee, J. R.; Chung, S. K.; Chung, B. D.; Cho, H. K.; Choi, S. K.; Ha, K. S.; Hwang, M. K.; Yun, B. J.; Jeong, J. J.; Sul, A. S.; Lee, H. D.; Kim, J. W.

    2012-04-01

    A realistic simulation of two phase flows is essential for the advanced design and safe operation of a nuclear reactor system. The need for a multi dimensional analysis of thermal hydraulics in nuclear reactor components is further increasing with advanced design features, such as a direct vessel injection system, a gravity driven safety injection system, and a passive secondary cooling system. These features require more detailed analysis with enhanced accuracy. In this regard, KAERI has developed a three dimensional thermal hydraulics code, CUPID, for the analysis of transient, multi dimensional, two phase flows in nuclear reactor components. The code was designed for use as a component scale code, and/or a three dimensional component, which can be coupled with a system code. This report presents an overview of the CUPID code development and preliminary assessment, mainly focusing on the numerical solution method and its verification and validation. It was shown that the CUPID code was successfully verified. The results of the validation calculations show that the CUPID code is very promising, but a systematic approach for the validation and improvement of the physical models is still needed

  14. Numerical Analysis Objects

    Science.gov (United States)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  15. A Preliminary Tsunami vulnerability analysis for Bakirkoy district in Istanbul

    Science.gov (United States)

    Tufekci, Duygu; Lutfi Suzen, M.; Cevdet Yalciner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Resilience of coastal utilities after earthquakes and tsunamis has major importance for efficient and proper rescue and recovery operations soon after the disasters. Vulnerability assessment of coastal areas under extreme events has major importance for preparedness and development of mitigation strategies. The Sea of Marmara has experienced numerous earthquakes as well as associated tsunamis. There are variety of coastal facilities such as ports, small craft harbors, and terminals for maritime transportation, water front roads and business centers mainly at North Coast of Marmara Sea in megacity Istanbul. A detailed vulnerability analysis for Yenikapi region and a detailed resilience analysis for Haydarpasa port in Istanbul have been studied in previously by Cankaya et al., (2015) and Aytore et al., (2015) in SATREPS project. In this study, the methodology of vulnerability analysis under tsunami attack given in Cankaya et al., (2015) is modified and applied to Bakirkoy district of Istanbul. Bakirkoy district is located at western part of Istanbul and faces to the North Coast of Marmara Sea from 28.77oE to 28.89oE. High resolution spatial dataset of Istanbul Metropolitan Municipality (IMM) is used and analyzed. The bathymetry and topography database and the spatial dataset containing all buildings/structures/infrastructures in the district are collated and utilized for tsunami numerical modeling and following vulnerability analysis. The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability assessment parameters in the district according to vulnerability and resilience are defined; and scored by implementation of a GIS based TVA with appropriate MCDA methods. The risk level is computed using tsunami intensity (level of flow depth from simulations) and TVA results at every location in Bakirkoy district. The preliminary results are presented and discussed

  16. Preliminary hazards analysis -- vitrification process

    International Nuclear Information System (INIS)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility's construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment

  17. Preliminary hazards analysis -- vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  18. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lui, S H

    2011-01-01

    A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

  19. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  20. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  1. Sensitivity analysis of numerical solutions for environmental fluid problems

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu; Motoyama, Yasunori

    2003-01-01

    In this study, we present a new numerical method to quantitatively analyze the error of numerical solutions by using the sensitivity analysis. If a reference case of typical parameters is one calculated with the method, no additional calculation is required to estimate the results of the other numerical parameters such as more detailed solutions. Furthermore, we can estimate the strict solution from the sensitivity analysis results and can quantitatively evaluate the reliability of the numerical solution by calculating the numerical error. (author)

  2. Numerical verification of composite rods theory on multi-story buildings analysis

    Science.gov (United States)

    El-Din Mansour, Alaa; Filatov, Vladimir; Gandzhuntsev, Michael; Ryasny, Nikita

    2018-03-01

    In the article, a verification proposal of the composite rods theory on the structural analysis of skeletons for high-rise buildings. A testing design model been formed on which horizontal elements been represented by a multilayer cantilever beam operates on transverse bending on which slabs are connected with a moment-non-transferring connections and a multilayer columns represents the vertical elements. Those connections are sufficiently enough to form a shearing action can be approximated by a certain shear forces function, the thing which significantly reduces the overall static indeterminacy degree of the structural model. A system of differential equations describe the operation mechanism of the multilayer rods that solved using the numerical approach of successive approximations method. The proposed methodology to be used while preliminary calculations for the sake of determining the rigidity characteristics of the structure; are needed. In addition, for a qualitative assessment of the results obtained by other methods when performing calculations with the verification aims.

  3. Preliminary safety analysis report for the TFTR

    International Nuclear Information System (INIS)

    Lind, K.E.; Levine, J.D.; Howe, H.J.

    A Preliminary Safety Analysis Report has been prepared for the Tokamak Fusion Test Reactor. No accident scenarios have been identified which would result in exposures to on-site personnel or the general public in excess of the guidelines defined for the project by DOE

  4. Matlab programming for numerical analysis

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become

  5. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  6. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    International Nuclear Information System (INIS)

    Kadioglu, Samet Y.; Berry, Ray; Martineau, Richard

    2016-01-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)'s thermal-fluids code) built on top of an other INL's product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  7. Preliminary Hazard Analysis applied to Uranium Hexafluoride - UF6 production plant

    International Nuclear Information System (INIS)

    Tomzhinsky, David; Bichmacher, Ricardo; Braganca Junior, Alvaro; Peixoto, Orpet Jose

    1996-01-01

    The purpose of this paper is to present the results of the Preliminary hazard Analysis applied to the UF 6 Production Process, which is part of the UF 6 Conversion Plant. The Conversion Plant has designed to produce a high purified UF 6 in accordance with the nuclear grade standards. This Preliminary Hazard Analysis is the first step in the Risk Management Studies, which are under current development. The analysis evaluated the impact originated from the production process in the plant operators, members of public, equipment, systems and installations as well as the environment. (author)

  8. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  9. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  10. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected.

  11. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki

    2013-01-01

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected

  12. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  13. Preliminary Hazards Analysis Plasma Hearth Process

    International Nuclear Information System (INIS)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment

  14. Preliminary rock mechanics laboratory: Investigation plan

    International Nuclear Information System (INIS)

    Oschman, K.P.; Hummeldorf, R.G.; Hume, H.R.; Karakouzian, M.; Vakili, J.E.

    1987-01-01

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  15. Numerical analysis of electromagnetic fields

    CERN Document Server

    Zhou Pei Bai

    1993-01-01

    Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...

  16. Summary of the Preliminary Analysis of Savannah River Depleted Uranium Trioxide

    International Nuclear Information System (INIS)

    2010-01-01

    This report summarizes a preliminary special analysis of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 2). The analysis is considered preliminary because a final waste profile has not been submitted for review. The special analysis is performed to determine the acceptability of the waste stream for shallow land burial at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The Savannah River Depleted Uranium Trioxide waste stream requires a special analysis because the waste stream's sum of fractions exceeds one. The 99Tc activity concentration is 98 percent of the NNSS Waste Acceptance Criteria and the largest single contributor to the sum of fractions.

  17. Preliminary Analysis of Google+'s Privacy

    OpenAIRE

    Mahmood, Shah; Desmedt, Yvo

    2011-01-01

    In this paper we provide a preliminary analysis of Google+ privacy. We identified that Google+ shares photo metadata with users who can access the photograph and discuss its potential impact on privacy. We also identified that Google+ encourages the provision of other names including maiden name, which may help criminals performing identity theft. We show that Facebook lists are a superset of Google+ circles, both functionally and logically, even though Google+ provides a better user interfac...

  18. The Scrap Tire Problem: A Preliminary Economic Analysis (1985)

    Science.gov (United States)

    The purpose of the study was to conduct a preliminary economic analysis of the social benefits of EPA action to require more appropriate disposal of scrap tires versus the social costs of such an action.

  19. On Preliminary Test Estimator for Median

    OpenAIRE

    Okazaki, Takeo; 岡崎, 威生

    1990-01-01

    The purpose of the present paper is to discuss about estimation of median with a preliminary test. Two procedures are presented, one uses Median test and the other uses Wilcoxon two-sample test for the preliminary test. Sections 3 and 4 give mathematical formulations of such properties, including mean square errors with one specified case. Section 5 discusses their optimal significance levels of the preliminary test and proposes their numerical values by Monte Carlo method. In addition to mea...

  20. The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis

    DEFF Research Database (Denmark)

    Kristensen, Niels Heine; Nielsen, Thorkild; Bruselius-Jensen, Maria Louisa

    2003-01-01

    Kristensen NH, Nielsen T, Bruselius-Jensen M, Scheperlen-Bøgh P, Beckie M, Foster C, Midmore P, Padel S (2002): The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis. Final Report to the EU Commission......Kristensen NH, Nielsen T, Bruselius-Jensen M, Scheperlen-Bøgh P, Beckie M, Foster C, Midmore P, Padel S (2002): The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis. Final Report to the EU Commission...

  1. Numerical analysis II essentials

    CERN Document Server

    REA, The Editors of; Staff of Research Education Association

    1989-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Numerical Analysis II covers simultaneous linear systems and matrix methods, differential equations, Fourier transformations, partial differential equations, and Monte Carlo methods.

  2. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  3. Practical Recommendations for the Preliminary Design Analysis of ...

    African Journals Online (AJOL)

    Interior-to-exterior shear ratios for equal and unequal bay frames, as well as column inflection points were obtained to serve as practical aids for preliminary analysis/design of fixed-feet multistory sway frames. Equal and unequal bay five story frames were analysed to show the validity of the recommended design ...

  4. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history

  5. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  6. Preliminary Hazards Analysis of K-Basin Fuel Encapsulation and Storage

    International Nuclear Information System (INIS)

    Strickland, G.C.

    1994-01-01

    This Preliminary Hazards Analysis (PHA) systematically examines the K-Basin facilities and their supporting systems for hazards created by abnormal operating conditions and external events (e.g., earthquakes) which have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. The operational activities examined are fuel encapsulation, fuel storage and cooling. Encapsulation of sludges in the basins is not examined. A team of individuals from Westinghouse produced a set of Hazards and Operability (HAZOP) tables documenting their examination of abnormal process conditions in the systems and activities examined in K-Basins. The purpose of this report is to reevaluate and update the HAZOP in the original Preliminary Hazard Analysis of K-Basin Fuel Encapsulation and Storage originally developed in 1991

  7. Protective Alternatives of SMR against Extreme Threat Scenario – A Preliminary Risk Analysis

    International Nuclear Information System (INIS)

    Shohet, I.M.; Ornai, D.; Gal, E.; Ronen, Y.; Vidra, M.

    2014-01-01

    The article presents a preliminary risk analysis of the main features in NPP (Nuclear Power Plant) that includes SMR - Small and Modular Reactors, given an extreme threat scenario. A review of the structure and systems of the SMR is followed by systematic definitions and analysis of the threat scenario to which a preliminary risk analysis was carried out. The article outlines the basic events caused by the referred threat scenario, which had led to possible failure mechanisms according to FTA (Fault-Tree-Analysis),critical protective circuits, and todetecting critical topics for the protection and safety of the reactor

  8. The effects of electric forces on dust lifting: Preliminary studies with a numerical model

    International Nuclear Information System (INIS)

    Kok, J F; Renno, N O

    2008-01-01

    Atmospheric dust aerosols affect the Earth's climate by scattering and absorbing radiation and by modifying cloud properties. Recent experiments have indicated that electric fields produced in dusty phenomena such as dust storms and dust devils could enhance the emission of dust aerosols. However, the generation of electric fields in dusty phenomena is poorly understood. To address this problem, we present results from the first physically-based numerical model of electric fields in dust lifting. Our model calculates the motion and collisions of air-borne particles, as well as the charge transfer during these collisions. This allows us to simulate the formation of electric fields as a function of physical parameters, such as wind stress and soil properties. Preliminary model results show that electric fields can indeed enhance the lifting of soil particles. Moreover, they suggest that strong electric fields could trigger a positive feedback because increases in the concentration of charged particles strengthen the original electric field, which in turn lifts additional surface particles. We plan to further test and calibrate our model with experimental data.

  9. Grid-connected ICES: preliminary feasibility analysis and evaluation. Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-30

    The HEAL Complex in New Orleans will serve as a Demonstration Community for which the ICES Demonstration System will be designed. The complex is a group of hospitals, clinics, research facilities, and medical educational facilities. The five tasks reported on are: preliminary energy analysis; preliminary institutional assessment; conceptual design; firming-up of commitments; and detailed work management plan.

  10. Summary of research in applied mathematics, numerical analysis, and computer sciences

    Science.gov (United States)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  11. Stress Analysis of Non-Ferrous Metals Welds by Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Kravarikova Helena

    2017-01-01

    Full Text Available Thermal energy welded material unevenly heated and thus supports the creation of tension. During the fusing process welding transient tensions generated in the welded material. Generation of the transient tensions depends on the thermal expansion and fixed permanently welded parts. Tensions are the result of the interaction of material particles. For welded parts and constructions it is necessary to know the size and direction of application of tensions. The emerging tensions can cause local change or a total deformation of welded materials. Deformations and residual stresses impair the performance of a welded construction, reduces the stability of the parts. To reduce or eliminate of action or a screening direction stresses and strains it is necessary to know the mechanism of their emergence. It is now possible to examine the emergence of tensions numerical experiments on any model using numerical simulation using FEM. Results of numerical experiment is the analysis of stress and deformation course. In the plane the tension it divided into normal σ and τ tangential folders. Decomposition stress on components simplifies the stress analysis. The results obtained from numerical analysis are correct to predict the stress distribution and size. The paper presents the results of numerical experiments stress analysis solutions fillet welds using FEM numerical simulation of welding of non-ferrous metals.

  12. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  13. Preliminary analysis of alternative fuel cycles for proliferation evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ripfel, H. C.F.; Rainey, R. H.

    1977-01-01

    The ERDA Division of Nuclear Research and Applications proposed 67 nuclear fuel cycles for assessment as to their nonproliferation potential. The object of the assessment was to determine which fuel cycles pose inherently low risk for nuclear weapon proliferation while retaining the major benefits of nuclear energy. This report is a preliminary analysis of these fuel cycles to develop the fuel-recycle data that will complement reactor data, environmental data, and political considerations, which must be included in the overall evaluation. This report presents the preliminary evaluations from ANL, HEDL, ORNL, and SRL and is the basis for a continuing in-depth study. (DLC)

  14. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  15. A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules

    International Nuclear Information System (INIS)

    Zurn, R.M.

    1997-09-01

    This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision

  16. Numerical and experimental analysis on tensile properties of ...

    Indian Academy of Sciences (India)

    A Shadrach Jeyasekaran

    2014-11-17

    Nov 17, 2014 ... 4 Department of Electronics and Communication Engineering, Sri Sai ... the findings that the numerical analysis is found to be higher than experimental analysis. .... using ANSYS software has showed that the differences of.

  17. Preliminary analysis of the transient overpower accident for CRBRP. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Frank, M.V.

    1975-07-01

    A preliminary analysis of the transient overpower accident for the Clinch River Breeder Reactor Plant (CRBRP) is presented. Several uncertainties in the analysis and the estimation of ramp rates during the transition to disassembly are discussed. The major conclusions are summarized

  18. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis

    International Nuclear Information System (INIS)

    DYKES, A.A.

    2000-01-01

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O and M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis

  19. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  20. Crystallization and preliminary X-ray diffraction analysis of rat autotaxin

    International Nuclear Information System (INIS)

    Day, Jacqueline E.; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Hausmann, Jens; Kamtekar, Satwik

    2010-01-01

    Autotaxin (ATX), a pyrophosphatase/phosphodiesterase enzyme, is a promising drug target for many indications and is only distantly related to enzymes of previously determined structure. Here, the cloning, expression, purification, crystallization and preliminary diffraction analysis of ATX are reported. Rat autotaxin has been cloned, expressed, purified to homogeneity and crystallized via hanging-drop vapour diffusion using PEG 3350 as precipitant and ammonium iodide and sodium thiocyanate as salts. The crystals diffracted to a maximum resolution of 2.05 Å and belonged to space group P1, with unit-cell parameters a = 53.8, b = 63.3, c = 70.5 Å, α = 98.8, β = 106.2, γ = 99.8°. Preliminary X-ray diffraction analysis indicated the presence of one molecule per asymmetric unit, with a solvent content of 47%

  1. Preliminary analysis of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1997-01-01

    Sandia National Laboratories is conducting a research program to investigate the integrity of nuclear containment structures. As part of the program Sandia will construct an instrumented 1:4 scale model of a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR), which will be pressure tested up to its ultimate capacity. One of the key program objectives is to develop validated methods to predict the structural performance of containment vessels when subjected to beyond design basis loadings. Analytical prediction of structural performance requires a stepwise, systematic approach that addresses all potential failure modes. The analysis effort includes two and three-dimensional nonlinear finite element analyses of the PCCV test model to evaluate its structural performance under very high internal pressurization. Such analyses have been performed using the nonlinear concrete constitutive model, ANACAP-U, in conjunction with the ABAQUS general purpose finite element code. The analysis effort is carried out in three phases: preliminary analysis; pretest prediction; and post-test data interpretation and analysis evaluation. The preliminary analysis phase serves to provide instrumentation support and identify candidate failure modes. The associated tasks include the preliminary prediction of failure pressure and probable failure locations and the development of models to be used in the detailed failure analyses. This paper describes the modeling approaches and some of the results obtained in the first phase of the analysis effort

  2. Defining resilience: A preliminary integrative literature review

    Science.gov (United States)

    Wilt, Bonnie; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    The term “resilience” is ubiquitous in technical literature; it appears in numerous forms, such as resilience, resiliency, or resilient, and each use may have a different definition depending on the interpretation of the writer. This creates difficulties in understanding what is meant by ‘resilience’ in any given use case, especially in discussions of interdisciplinary research. To better understand this problem, this research constructs a preliminary integrative literature review to map different definitions, applications and calculation methods of resilience invoked within critical infrastructure applications. The preliminary review uses a State-of-the-Art Matrix (SAM) analysis to characterize differences in definition across disciplines and between regions. Qualifying the various usages of resilience will produce a greater precision in the literature and a deeper insight into types of data required for its evaluation, particularly with respect to critical infrastructure calculations and how such data may be analyzed. Results from this SAM analysis will create a framework of key concepts as part of the most common applications for “resilient critical infrastructure” modeling.

  3. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S. [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed.

  4. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    International Nuclear Information System (INIS)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S.

    2015-01-01

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed

  5. Thermodynamic analysis and numerical modeling of supercritical injection

    OpenAIRE

    Banuti, Daniel

    2015-01-01

    Although liquid propellant rocket engines are operational and have been studied for decades, cryogenic injection at supercritical pressures is still considered essentially not understood. This thesis intends to approach this problem in three steps: by developing a numerical model for real gas thermodynamics, by extending the present thermodynamic view of supercritical injection, and finally by applying these methods to the analysis of injection. A new numerical real gas thermodynamics mode...

  6. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  7. Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-Tuan Chou

    2013-01-01

    Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.

  8. The Use of Numerical Modeling in the Planning of Physical Model Tests in a Multidirectional Wave Basin

    DEFF Research Database (Denmark)

    Carci, Enric; Rivero, Francisco J.; Burcharth, Hans Falk

    2003-01-01

    For the development of a new port of the A Coruña Port Authority, an extensive and careful analysis of wave propagation had to be done to determine design wave characteristics along the main breakwater, placed behind an irregular shoal. Preliminary numerical simulations showed that wave focusing...

  9. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  10. CONTENT ANALYSIS, DISCOURSE ANALYSIS, AND CONVERSATION ANALYSIS: PRELIMINARY STUDY ON CONCEPTUAL AND THEORETICAL METHODOLOGICAL DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Anderson Tiago Peixoto Gonçalves

    2016-08-01

    Full Text Available This theoretical essay aims to reflect on three models of text interpretation used in qualitative research, which is often confused in its concepts and methodologies (Content Analysis, Discourse Analysis, and Conversation Analysis. After the presentation of the concepts, the essay proposes a preliminary discussion on conceptual and theoretical methodological differences perceived between them. A review of the literature was performed to support the conceptual and theoretical methodological discussion. It could be verified that the models have differences related to the type of strategy used in the treatment of texts, the type of approach, and the appropriate theoretical position.

  11. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1984-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II. Since the actively cooled limiter blade is the component in direct contact with the plasma edge, and thus subject to the severe plasma environment, most preliminary design efforts have concentrated on analysis of the blade. The screening process which led to the recommended preliminary design consisting of a dispersion strenghthened copper or OFHC copper cover plate over an austenitic stainless steel base plate is discussed. A 1 to 3 mm thick low atomic number coating consisting of a graded plasma-sprayed Silicon Carbide-Aluminium composite is recommended subject to further experiment and evaluation. Thermal-hydraulic and stress analyses of the limiter blade are also discussed. (orig.)

  12. Odelouca Dam Construction: Numerical Analysis

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2012-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca Dam`s construction. The material con-stants of the soil model used are determined from a comprehensive testing programme carried out in the C...

  13. Preliminary analysis of patent trends for magnetic fusion technology

    International Nuclear Information System (INIS)

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information

  14. Ferrofluids: Modeling, numerical analysis, and scientific computation

    Science.gov (United States)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  15. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    ; the framework is based on the theory of rigid-plasticity, and the resulting mathematical optimisation problem can be solved efficiently using modern algorithms. This paper gives a brief introduction to convex optimisation and numerical limit analysis. The mathematical formulation of lower bound load...

  16. Numerical analysis of thermoluminescence glow curves

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs

  17. Present status of numerical analysis on transient two-phase flow

    International Nuclear Information System (INIS)

    Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.

    1987-01-01

    The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)

  18. Preliminary analysis of the KAERI RCCS Experiment Using GAMMA+

    Energy Technology Data Exchange (ETDEWEB)

    Khoza, Samukelisiwe; Tak, Nam-il; Lim, Hong-Sik; Lee, Sung-Nam; Cho, Bong-Hyun; Kim, Jong-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This paper describes the analysis of the KAERI RCCS experiment. GAMMA+ code was used for analysis of the RCCS 1/4-scale natural cooling experimental facility designed and built at KAERI to verify the performance of the natural circulation phenomenon. The results obtained from the GAMMA+ analysis showing the temperature profiles and flow rates at steady state were compared with the results from the preliminary experiments conducted in this facility. GAMMA+ analysis for the KAERI RCCS experimental setup was carried out to understand its natural circulation behavior. The air flow rate at the chimney exit achieved by experiments was from to be almost same as that of GAMMA+.

  19. Preliminary thermal and stress analysis of the SINQ window

    International Nuclear Information System (INIS)

    Heidenreich, G.

    1991-01-01

    Preliminary results of a finite element analysis for the SINQ proton beam window are presented. Temperatures and stresses are calculated in an axisymmetric model. As a result of these calculations, the H 2 O-cooled window (safety window) could be redesigned in such a way that plastic deformation resulting from excessive stress in some areas is avoided. (author)

  20. Numerical Analysis of Deflections of Multi-Layered Beams

    Science.gov (United States)

    Biliński, Tadeusz; Socha, Tomasz

    2015-03-01

    The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  1. Preliminary Disposal Analysis for Selected Accelerator Production of Tritium Waste Streams

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.

    1998-06-01

    A preliminary analysis was performed for two selected Accelerator Production of Tritium (APT) generated mixed and low-level waste streams to determine if one mixed low-level waste (MLLW) stream that includes the Mixed Waste Lead (MWL) can be disposed of at the Nevada Test Site (NTS) and at the Hanford Site and if one low-level radioactive waste (LLW) stream, that includes the Tungsten waste stream (TWS) generated by the Tungsten Neutron Source modules and used in the Target/Blanket cavity vessel, can be disposed of in the LLW Vaults at the Savannah River Plant (SRP). The preliminary disposal analysis that the radionuclide concentrations of the two selected APT waste streams are not in full compliance with the Waste Acceptance Criteria (WAC) and the Performance Assessment (PA) radionuclide limits of the disposal sites considered

  2. Purification, crystallization and preliminary X-ray structure analysis of the laccase from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Lyashenko, Andrey V.; Belova, Oksana; Gabdulkhakov, Azat G.; Lashkov, Alexander A.; Lisov, Alexandr V.; Leontievsky, Alexey A.; Mikhailov, Al’bert M.

    2011-01-01

    The purification, crystallization and preliminary X-ray structure analysis of the laccase from G. lucidum are reported. The ligninolytic enzymes of the basidiomycetes play a key role in the global carbon cycle. A characteristic property of these enzymes is their broad substrate specificity, which has led to their use in various biotechnologies, thus stimulating research into the three-dimensional structures of ligninolytic enzymes. This paper presents the purification, crystallization and preliminary X-ray analysis of the laccase from the ligninolytic basidiomycete Ganoderma lucidum

  3. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  4. Beryllium reflectors for research reactors. Review and preliminary finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Pablo S; Cocco, Roxana G., E-mail: rcocco@invap.com.ar [INVAP S.E., Rio Negro (Argentina)

    2012-03-15

    Beryllium is used in numerous research reactors to moderate neutron energy and to reflect neutrons back into the core, thus intensifying the thermal neutron flux. However, beryllium is degraded by radiation damage, as a result of both displacement and transmutation. Displacement damage leads to point defect clustering, irradiation hardening and embrittlement. Transmutation produces helium, which results in high levels of gas and swelling, even at low temperatures. A brief state-of-the-art review on the use of reflector assemblies reveals that each user has adopted a different method for overcoming problems related to swelling: strengthening, cracking and distortion. In the present work a preliminary study about the geometry influence on the reflector assembly behavior was performed by a Finite Element Analysis (FEA). A simplified study was made varying its geometry in height, thickness and width. The results showed that the most influencing parameter in avoiding distortion due to swelling is firstly the reflector's assembly height, H; secondly its thickness, L, and lastly its angle/width, {theta}. These results contribute to the understanding of distortion behavior and the stresses generated in a simple geometry Be bar subjected to radiation, which can be a useful tool for mechanical design of more complex components. (author)

  5. Challenges to Applying a Metamodel for Groundwater Flow Beyond Underlying Numerical Model Boundaries

    Science.gov (United States)

    Reeves, H. W.; Fienen, M. N.; Feinstein, D.

    2015-12-01

    Metamodels of environmental behavior offer opportunities for decision support, adaptive management, and increased stakeholder engagement through participatory modeling and model exploration. Metamodels are derived from calibrated, computationally demanding, numerical models. They may potentially be applied to non-modeled areas to provide screening or preliminary analysis tools for areas that do not yet have the benefit of more comprehensive study. In this decision-support mode, they may be fulfilling a role often accomplished by application of analytical solutions. The major challenge to transferring a metamodel to a non-modeled area is how to quantify the spatial data in the new area of interest in such a way that it is consistent with the data used to derive the metamodel. Tests based on transferring a metamodel derived from a numerical groundwater-flow model of the Lake Michigan Basin to other glacial settings across the northern U.S. show that the spatial scale of the numerical model must be appropriately scaled to adequately represent different settings. Careful GIS analysis of the numerical model, metamodel, and new area of interest is required for successful transfer of results.

  6. Numerical Analysis of Deflections of Multi-Layered Beams

    Directory of Open Access Journals (Sweden)

    Biliński Tadeusz

    2015-03-01

    Full Text Available The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  7. Current problems and subjects on numerical analysis of earthquake geotechnical engineering. For seamless analysis

    International Nuclear Information System (INIS)

    Yoshida, Taiki

    2016-01-01

    There are continuum and discontinuum analyses in the evaluation of seismic stability of surrounding slope in nuclear power plant facility. However, we cannot rationally evaluate such seismic stability due to excessive conservative margin of the results by each analysis. If we can simulate the behavior from small to large deformation by hybridizing them, we can contribute not only to the rationalization of the slope stability evaluation but also the enhancement of evaluation precision in the numerical analysis. In this review, the previous numerical analyses and application cases of them in earthquake geotechnical engineering were classified into three categories, that is, continuum analysis, discontinuum one and the hybridizing process to identify their research themes. The present review has revealed that the research themes are the standardization of condition for conversion, construction of the technique to determine parameters related to conversion and the reasonable physical property set of DEM(Distinct Element Method) after conversion. Our future work will be development of a numerical analysis code hybridizing continuum and discontinuum analyses based on the identified research themes. (author)

  8. Crystallization and preliminary X-ray diffraction analysis of West Nile virus

    International Nuclear Information System (INIS)

    Kaufmann, Bärbel; Plevka, Pavel; Kuhn, Richard J.; Rossmann, Michael G.

    2010-01-01

    Crystals of infectious West Nile virus were obtained and diffracted at best to about 25 Å resolution. Preliminary analysis of the diffraction pattern suggested tight hexagonal packing of the intact virus. West Nile virus, a human pathogen, is closely related to other medically important flaviviruses of global impact such as dengue virus. The infectious virus was purified from cell culture using polyethylene glycol (PEG) precipitation and density-gradient centrifugation. Thin amorphously shaped crystals of the lipid-enveloped virus were grown in quartz capillaries equilibrated by vapor diffusion. Crystal diffraction extended at best to a resolution of about 25 Å using synchrotron radiation. A preliminary analysis of the diffraction images indicated that the crystals had unit-cell parameters a ≃ b ≃ 480 Å, γ = 120°, suggesting a tight hexagonal packing of one virus particle per unit cell

  9. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  10. Numerical analysis for prediction of fatigue crack opening level

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2004-01-01

    Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials

  11. Java technology for implementing efficient numerical analysis in intranet

    International Nuclear Information System (INIS)

    Song, Hee Yong; Ko, Sung Ho

    2001-01-01

    This paper introduces some useful Java technologies for utilizing the internet in numerical analysis, and suggests one architecture performing efficient numerical analysis in the intranet by using them. The present work has verified it's possibility by implementing some parts of this architecture with two easy examples. One is based on Servlet-Applet communication, JDBC and swing. The other is adding multi-threads, file transfer and Java remote method invocation to the former. Through this work it has been intended to make the base for the later advanced and practical research that will include efficiency estimates of this architecture and deal with advanced load balancing

  12. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  13. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso

    2016-07-01

    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  14. Numerical analysis of modified Central Solenoid insert design

    Energy Technology Data Exchange (ETDEWEB)

    Khodak, Andrei, E-mail: akhodak@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Martovetsky, Nicolai; Smirnov, Aleksandre [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Titus, Peter [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2015-10-15

    Highlights: • Modified design of coil for testing ITER superconducting cable is presented. • Numerical analysis allowed design verification. • Three-dimensional current sharing temperature distributions are obtained from the results. - Abstract: The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design three-dimensional numerical simulations were performed using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4 K, no current, (3) temperature 4 K, current 60 kA direct charge, and (4) temperature 4 K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4 K, no current, and temperature 4 K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor

  15. Cognitive Task Analysis of Business Jet Pilots' Weather Flying Behaviors: Preliminary Results

    Science.gov (United States)

    Latorella, Kara; Pliske, Rebecca; Hutton, Robert; Chrenka, Jason

    2001-01-01

    This report presents preliminary findings from a cognitive task analysis (CTA) of business aviation piloting. Results describe challenging weather-related aviation decisions and the information and cues used to support these decisions. Further, these results demonstrate the role of expertise in business aviation decision-making in weather flying, and how weather information is acquired and assessed for reliability. The challenging weather scenarios and novice errors identified in the results provide the basis for experimental scenarios and dependent measures to be used in future flight simulation evaluations of candidate aviation weather information systems. Finally, we analyzed these preliminary results to recommend design and training interventions to improve business aviation decision-making with weather information. The primary objective of this report is to present these preliminary findings and to document the extended CTA methodology used to elicit and represent expert business aviator decision-making with weather information. These preliminary findings will be augmented with results from additional subjects using this methodology. A summary of the complete results, absent the detailed treatment of methodology provided in this report, will be documented in a separate publication.

  16. Preliminary analysis of four numerical models for calculating the mesoscale transport of Kr-85

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1983-01-01

    A performance study of four numerical algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids has been made. Dispersion from point and distributed sources and a simulation of a continuous source are compared with analytical solutions to assess relative accuracy. Model predictions are then compared with actual measurements of Kr-85 emitted from the Savannah River Plant (SRP). The particle-in-cell and method of moments algorithms exhibit superior accuracy in modeling single source releases. For modeling distributed sources, algorithms based on the pseudospectral and finite element interpolation concepts exhibit comparable accuracy. The method of moments is felt to be the best overall performer, although all the models appear to be relatively close in accuracy.

  17. Numerical and RAPD Analysis of Eight Cowpea Genotypes from ...

    African Journals Online (AJOL)

    Hence, numerical tools such as single linkage cluster analysis (SLCA) and principal component analysis (PCA) have been used to determine the extent of variability. This study was conducted to determine the performance, character contribution as well as variation pattern in eight cowpea genotypes collected in Nigeria.

  18. Preliminary safety analysis of the HTTR-IS nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Tachibana, Yukio; Sakaba, Nariaki

    2010-06-01

    Japan Atomic Energy Agency is planning to demonstrate hydrogen production by thermochemical water-splitting IS process utilizing heat from the high-temperature gas-cooled reactor HTTR (HTTR-IS system). The previous study identified that the HTTR modification due to the coupling of hydrogen production plant requires an additional safety review since the scenario and quantitative values of the evaluation items would be altered from the original HTTR safety review. Hence, preliminary safety analyses are conducted by using the system analysis code. Calculation results showed that evaluation items such as a coolant pressure, temperatures of heat transfer tubes at the pressure boundary, etc., did not exceed allowable values. Also, the peak fuel temperature did not exceed allowable value and therefore the reactor core was not damaged and cooled sufficiently. This report compiles calculation conditions, event scenarios and the calculation results of the preliminary safety analysis. (author)

  19. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  20. SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results

    Science.gov (United States)

    Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.

    2009-12-01

    We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in

  1. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  2. Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems

    International Nuclear Information System (INIS)

    Motoyama, Yasunori; Tanaka, Nobuatsu

    2005-01-01

    Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)

  3. Developing group investigation-based book on numerical analysis to increase critical thinking student’s ability

    Science.gov (United States)

    Maharani, S.; Suprapto, E.

    2018-03-01

    Critical thinking is very important in Mathematics; it can make student more understanding mathematics concept. Critical thinking is also needed in numerical analysis. The Numerical analysis's book is not yet including critical thinking in them. This research aims to develop group investigation-based book on numerical analysis to increase critical thinking student’s ability, to know the quality of the group investigation-based book on numerical analysis is valid, practical, and effective. The research method is Research and Development (R&D) with the subject are 30 student college department of Mathematics education at Universitas PGRI Madiun. The development model used is 4-D modified to 3-D until the stage development. The type of data used is descriptive qualitative data. Instruments used are sheets of validation, test, and questionnaire. Development results indicate that group investigation-based book on numerical analysis in the category of valid a value 84.25%. Students response to the books very positive, so group investigation-based book on numerical analysis category practical, i.e., 86.00%. The use of group investigation-based book on numerical analysis has been meeting the completeness criteria classical learning that is 84.32 %. Based on research result of this study concluded that group investigation-based book on numerical analysis is feasible because it meets the criteria valid, practical, and effective. So, the book can be used by every mathematics academician. The next research can be observed that book based group investigation in other subjects.

  4. Current Mooring Design in Partner WECs and Candidates for Preliminary Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    This report is the combined report of Commercial Milestone "CM1: Design and Cost of Current Mooring Solutions of Partner WECs" and Milestone "M3: Mooring Solutions for Preliminary Analysis" of the EUDP project "Mooring Solutions for Large Wave Energy Converters". The report covers a description o...

  5. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Salt Fast Reactor (MSFR)

    International Nuclear Information System (INIS)

    Laureau, A.; Rubiolo, P.R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2013-01-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor (MSFR) are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated. (authors)

  6. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured re- source. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  7. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  8. Preliminary analysis for model development of groundwater evolution in Horonobe area

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Yui, Mikazu

    2003-03-01

    The preliminary analysis for model development of groundwater evolution in Horonobe area was performed with data at D-1, HDB-1 and HDB-2 bore hole where hydrogen / oxygen isotope concentration, mineral property in sedimentary rock and physico-chemical parameters (pH, Eh and ionic concentrations) were measured. As a result of analysis for hydrogen and oxygen isotope concentration, saline water in marine sediment was diluted by the mixing with shallow groundwater and diffusion. And as a result of analysis for a concentration of bicarbonate from the difference of pH values measured between in-situ and under air, the estimated in-situ concentration of bicarbonate differs from that measured under air. And minerals which were assumed to be equilibrium with groundwater were selected by thermodynamic calculation. This report presents the results of preliminary analysis for groundwater evolution by using data derived from D-1, HDB-1 and HDB-2 boring research. In order to establish the model which interprets the groundwater evolution as a next step, data which satisfy the representative in-situ property of groundwater chemistry in Horonobe area are needed. Reliable measurements for physico-chemical parameter and property of minerals in sedimentary rock in dominant layer and at the variety of depth are also needed. (author)

  9. Experimental study and numerical optimization of tensegrity domes - A case study

    Science.gov (United States)

    Winkelmann, Karol; Kłos, Filip; Rąpca, Mateusz

    2018-01-01

    The paper deals with the design, experimental analysis and numerical optimization of tensegrity dome models. Two structures are analyzed - a Geiger system dome (preliminary dome), with PVC-U bars and PA6/PP/PET tendons and a Fuller system dome (target dome), with wooden bars and steel cables as tendons. All used materials are experimentally tested in terms of Young's modulus and yield stress values, the compressed bars are also tested for the limit length demarcating the elastic buckling from plastic failure. The data obtained in experiments is then implemented in SOFiSTiK commercial software FE model. The model's geometrical parameters are considered uniform random variables. Geometrically and materially nonlinear analysis is carried out. Based on the obtained structural response (displacements), a Monte Carlo simulation - based approach is incorporated for both structural design point formulation and the SLS requirements fulfillment analysis. Finally, an attempt is made to erect the Fuller dome model in order to compare the numerical results of an experimentally-derived model with the in situ measurements of an actual structure.

  10. Fatigue behavior of a bolted assembly - a comparison between numerical analysis and experimental analysis

    International Nuclear Information System (INIS)

    Bosser, M.; Vagner, J.

    1987-01-01

    The fatigue behavior of a bolted assembly can be analysed, either by fatigue tests, or by computing the stress variations and using a fatigue curve. This paper presents the fatigue analysis of a stud-bolt and stud-flange of a steam generator manway carried out with the two methods. The experimental analysis is performed for various levels of load, according to the recommandations of the ASME code section III appendix II. The numerical analysis of the stresses is based on the results of a finite element analysis performed with the program SYSTUS. The maximum stresses are obtained in the first bolt threads. In using these stresses, the allowable number of cycles for each level of loading analysed, is obtained from fatigue curves, as defined in appendix I section III of the ASME code. The analysis underlines that, for each level of load the purely numerical approach is highly conservative, compared to the experimental approach. (orig.)

  11. Experimental and Numerical analysis of Metallic Bellow for Acoustic Performance

    Science.gov (United States)

    Panchwadkar, Amit A.; Awasare, Pradeep J., Dr.; Ingle, Ravidra B., Dr.

    2017-08-01

    Noise will concern about the work environment of industry. Machinery environment has overall noise which interrupts communication between the workers. This problem of miscommunication and health hazard will make sense to go for noise attenuation. Modification in machine setup may affect the performance of it. Instead of that, Helmholtz resonator principle will be a better option for noise reduction along the transmission path. Resonator has design variables which gives resonating frequency will help us to confirm the frequency range. This paper deals with metallic bellow which behaves like inertial mass under incident sound wave. Sound wave energy is affected by hard boundary condition of resonator and bellow. Metallic bellow is used in combination with resonator to find out Transmission loss (TL). Microphone attachment with FFT analyzer will give the frequency range for numerical analysis. Numerical analysis of bellow and resonator is carried out to summarize the acoustic behavior of bellow. Bellow can be numerically analyzed to check noise attenuation for centrifugal blower. An impedance tube measurement technique is performed to validate the numerical results for assembly. Dimensional and shape modification can be done to get the acoustic performance of bellow.

  12. National Data Center Preparedness Exercise 2015 (NPE 2015): MY-NDC Preliminary Analysis Result

    International Nuclear Information System (INIS)

    Faisal Izwan Abdul Rashid; Muhammed Zulfakar Zolkaffly

    2016-01-01

    Malaysia has established the CTBT National Data Centre (MY-NDC) in December 2005. MY-NDC is tasked to perform Comprehensive Nuclear-Test-Ban-Treaty (CTBT) data management as well as provide information for Treaty related events to Nuclear Malaysia as CTBT National Authority. In 2015, MY-NDC has participated in the National Data Centre Preparedness Exercise 2015 (NPE 2015). This paper aims at presenting MY-NDC preliminary analysis result of NPE 2015. In NPE 2015, MY-NDC has performed five different analyses, namely, radionuclide, atmospheric transport modelling (ATM), data fusion, seismic analysis and site forensics. The preliminary findings show the hypothetical scenario in NPE 2015 most probably is an uncontained event resulted high release of radionuclide to the air. (author)

  13. Numerical and Experimental Investigation of the Electromechanical Behavior of REBCO Tapes

    Science.gov (United States)

    Allen, N. C.; Chiesa, L.; Takayasu, M.

    2015-12-01

    To fully characterize the electromechanical behavior of a Twisted Stacked-Tape Cable (TSTC) it is important to understand the performance of the individual REBCO tapes under various loading conditions. Numerical modeling and experimentation have been used to investigate the electromechanical characteristics of two commercially available REBCO tapes (SuperPower and SuNAM). Tension and combined tension-torsion experiments on single tapes have been continued, from prior preliminary studies, to characterize their critical current behavior and mechanical strength. Additionally, structural finite element analysis was performed on single tapes under tension and combined tension-torsion to investigate the strain dependence of the critical current. The numerical results were compared to the experimental findings for validation. The SuNAM experimental data matched the numerical model very well while the SuperPower tape experienced degradation at lower stress and strain than predicted in the model. The Superpower tape also displayed greater variability in critical current between different samples as compared with the SuNAM tape.

  14. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  15. NRC staff preliminary analysis of public comments on advance notice of proposed rulemaking on emergency planning

    International Nuclear Information System (INIS)

    Peabody, C.A.; Hickey, J.W.N.

    1980-01-01

    The Nuclear Regulatory Commission (NRC) published an advance notice of proposed rulemaking on emergency planning on July 17, 1979 (44 FR 41483). In October and November 1979, the NRC staff submitted several papers to the Commission related to the emergency planning rulemaking. One of these papers was a preliminary analysis of public comments received on the advance notice (SECY-79-591B, November 13, 1979). This document consists of the preliminary analysis as it was submitted to the Commission, with minor editorial changes

  16. Analysis of control rod behavior based on numerical simulation

    International Nuclear Information System (INIS)

    Ha, D. G.; Park, J. K.; Park, N. G.; Suh, J. M.; Jeon, K. L.

    2010-01-01

    The main function of a control rod is to control core reactivity change during operation associated with changes in power, coolant temperature, and dissolved boron concentration by the insertion and withdrawal of control rods from the fuel assemblies. In a scram, the control rod assemblies are released from the CRDMs (Control Rod Drive Mechanisms) and, due to gravity, drop rapidly into the fuel assemblies. The control rod insertion time during a scram must be within the time limits established by the overall core safety analysis. To assure the control rod operational functions, the guide thimbles shall not obstruct the insertion and withdrawal of the control rods or cause any damage to the fuel assembly. When fuel assembly bow occurs, it can affect both the operating performance and the core safety. In this study, the drag forces of the control rod are estimated by a numerical simulation to evaluate the guide tube bow effect on control rod withdrawal. The contact condition effects are also considered. A full scale 3D model is developed for the evaluation, and ANSYS - commercial numerical analysis code - is used for this numerical simulation. (authors)

  17. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    For more than half a century, limit state analysis based on the extremum principles have been used to assess the load bearing capacity of reinforced concrete structures. Extensi- ve research within the field has lead to several techniques for performing such analysis manually. While these manual...... methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...

  18. Numerical analysis of melting/solidification phenomena using a moving boundary problem analysis method X-FEM

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki

    2008-01-01

    A numerical analysis method for melting/solidification phenomena has been developed to evaluate a feasibility of several candidate techniques in the nuclear fuel cycle. Our method is based on the eXtended Finite Element Method (X-FEM) which has been used for moving boundary problems. Key technique of the X-FEM is to incorporate signed distance function into finite element interpolation to represent a discontinuous gradient of the temperature at a moving solid-liquid interface. Construction of the finite element equation, the technique of quadrature and the method to solve the equation are reported here. The numerical solutions of the one-dimensional Stefan problem, solidification in a two-dimensional square corner and melting of pure gallium are compared to the exact solutions or to the experimental data. Through these analyses, validity of the newly developed numerical analysis method has been demonstrated. (author)

  19. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  20. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  1. Interactive Numerical and Symbolic Analysis: A New Paradigm for Teaching Electronics

    Directory of Open Access Journals (Sweden)

    Jean-Claude Thomassian

    2008-09-01

    Full Text Available Analog Insydes, Mathematica’s symbolic circuit analysis toolbox, uses modern algorithms of expression simplification depending on comparisons with a numerical reference solution of the circuit under investigation. Some insight is offered on how the complexity of an expression barrier is overcome followed by two classical examples, a BJT emitter follower and a MOSFET common-gate amplifier stage to illustrate the proposed method at work. A concluding section discusses that time spent teaching introductory electronics by computer-aided circuit analysis, interactive numerical and symbolic, is a worthwhile investment.

  2. Solutions manual to accompany An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2014-01-01

    A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, sp

  3. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  4. 3rd International Conference on Numerical Analysis and Optimization : Theory, Methods, Applications and Technology Transfer

    CERN Document Server

    Grandinetti, Lucio; Purnama, Anton

    2015-01-01

    Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, opt...

  5. Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes

    International Nuclear Information System (INIS)

    Oldenburg, C.M.

    1998-01-01

    Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories

  6. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan; Chand, Umesh

    2018-01-01

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles

  7. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  8. Numerical models for differential problems

    CERN Document Server

    Quarteroni, Alfio

    2017-01-01

    In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...

  9. Elucidation of self-induced sloshing occurrence mechanism using numerical analysis

    International Nuclear Information System (INIS)

    Saeki, Soichi; Madarame, Haruki; Okamoto, Koji; Tanaka, Nobukazu.

    1995-01-01

    In liquid metal-cooled fast breeder reactors, there is free liquid surface in a reactor vessel and others, and by reducing the size of the reactor vessel and others, it is necessary to increase the flow velocity of liquid sodium coolant. In the free liquid surface in which fast circulating flow exists, undesirable phenomena like waving and bubble catching are feared. The self-induced sloshing taken up in this study is one of these phenomena. Since the actual machine has complex three-dimensional structure, in order to forecast the occurrence of sloshing, it is necessary to elucidate the mechanism of vibration occurrence. The mechanism of occurrence of self-induced sloshing due to horizontal and vertical plane jets has been explained a number of times so far. In this study, by applying the model of the occurrence mechanism of Fukaya to horizontal plane jet, the self-induced sloshing due to horizontal plane jet was simulated by numerical analysis. Based on the results, it was attempted to examine the vibration energy supplied to sloshing in a whole flow field and the dependence of sloshing region on water depth and flow velocity. The numerical simulation, the analysis of the occurrence mechanism by using the numerical analysis code and the results are reported. (K.I.)

  10. Numerical equilibrium analysis for structured consumer resource models.

    Science.gov (United States)

    de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A

    2010-02-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.

  11. Sensitivity of a numerical wave model on wind re-analysis datasets

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  12. Heterogeneous agent model and numerical analysis of learning

    Czech Academy of Sciences Publication Activity Database

    Vošvrda, Miloslav; Vácha, Lukáš

    2002-01-01

    Roč. 9, č. 17 (2002), s. 15-22 ISSN 1212-074X R&D Projects: GA ČR GA402/01/0034; GA ČR GA402/01/0539; GA AV ČR IAA7075202 Institutional research plan: CEZ:AV0Z1075907 Keywords : efficient markets hypothesis * technical trading rules * numerical analysis of learning Subject RIV: AH - Economics

  13. Preliminary evaluation of techniques for transforming regional climate model output to the potential repository site in support of Yucca Mountain future climate synthesis

    International Nuclear Information System (INIS)

    Church, H.W.; Zak, B.D.; Behl, Y.K.

    1995-06-01

    The report describes a preliminary evaluation of models for transforming regional climate model output from a regional to a local scale for the Yucca Mountain area. Evaluation and analysis of both empirical and numerical modeling are discussed which is aimed at providing site-specific, climate-based information for use by interfacing activities. Two semiempirical approaches are recommended for further analysis

  14. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  15. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen

    Precast concrete elements are widely used in the construction industry as they provide a number of advantages over the conventional in-situ cast concrete structures. Joints cast on the construction site are needed to connect the precast elements, which poses several challenges. Moreover, the curr...... problems are solved efficiently using state-of-the-art solvers. It is concluded that the framework and developed joint models have the potential to enable efficient design of precast concrete structures in the near future......., the current practice is to design the joints as the weakest part of the structure, which makes analysis of the ultimate limit state behaviour by general purpose software difficult and inaccurate. Manual methods of analysis based on limit analysis have been used for several decades. The methods provide...... of the ultimate limit state behaviour. This thesis introduces a framework based on finite element limit analysis, a numerical method based on the same extremum principles as the manual limit analysis. The framework allows for efficient analysis and design in a rigorous manner by use of mathematical optimisation...

  16. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  17. Contributions to mathematical analysis and to numerical approximation in plasma physics

    International Nuclear Information System (INIS)

    Besse, N.

    2009-01-01

    The author's scientific works deal with numerical analysis and the simulation of the partial differential equations that intervene in the transport of charged particles and in plasma physics. In the chapters 2 and 3, a reduction of the Vlasov equation is presented, this method is based on the Liouville geometric invariants and it leads to a mathematical model named water-bag model that can be coupled with various equations of the electromagnetic field: the Poisson equation, the quasi-neutral equation or Maxwell equations. In the chapter 3 this reduction method is applied to the Vlasov gyro-kinetic equation to form the gyro-water-bag model. The mathematical analysis of this model produces interesting analytical results such as: threshold instabilities, instability growth rate, transport coefficient and non-linear turbulence mechanisms. Simulations have been performed to study turbulence in magnetized plasmas. In these plasmas occurred numerous instabilities due to the presence of high density and temperature gradients. These instabilities generate turbulence that deteriorates plasma confinement conditions required for thermonuclear fusion. The numerical calculation of turbulent thermal diffusivities is important since confinement time is determined by these transport coefficients. The chapter 4 gathers mathematical analysis issues like convergence or prior knowledge of errors concerning several high-order numerical methods used to solve Vlasov-Poisson or Vlasov-Einstein equation systems as well as the induction equation of an idealistic MHD system. The chapter 5 presents original numerical methods to solve several non-linear Vlasov equations such as Vlasov-Poisswell, Vlasov-Darwin, Vlasov-Maxwell and Vlasov-gyrokinetic that are involved either in inertial fusion or in magnetic confinement fusion

  18. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  19. Preliminary Mass Spectrometric Analysis of Uranium on Environmental Swipe Materials

    International Nuclear Information System (INIS)

    Cheong, Chang-Sik; Jeong, Youn-Joong; Ryu, Jong-Sik; Shin, Hyung-Seon; Cha, Hyun-Ju; Ahn, Gil-Hoon; Park, Il-Jin; Min, Gyung-Sik

    2006-01-01

    It is well-known that uranium and plutonium isotopic compositions of safeguards samples are very useful to investigate the history of nuclear activities. To strengthen the capabilities of environmental sampling analysis in the ROK through MOST/DOE collaboration, round robin test for uranium and plutonium was designed in 2003. As the first round robin test, a set of dried uranium-containing solutions (∼35ng and (∼300ng) was distributed to the participating laboratories in November of 2003, with results reported in April of 2004. The KBSI (Korea Basic Science Institute) and ORNL (Oak Ridge National Laboratory) are currently in the process of analyzing uranium on cotton swipes for the second round robin test. As a preliminary test for the second round, KBSI intends to analyze home-made swipe samples into which international uranium standards are added. Here we describe technical steps of sample preparation and mass spectrometry at KBSI, and report some results of the preliminary test

  20. Numerical analysis on pool boiling using user defined function

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Uk; Jeon, Byong Guk; Kim, Seok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    PAFS (passive auxiliary feedwater system) adopted in the APR+ (Advanced Power Reactor Plus) of Korea is one such application. When PAFS is activated with an actuation signal, steam from the steam generator passes through heat exchanger tubes submerged in a water tank of the PAFS. Outside these heat exchanger tubes, nucleate boiling phenomena appears. In the present work, a numerical study is reported on three-dimensional transient state pool boiling of water having an immersed heat source. The velocity vector fields during the decrease in the water level are numerically investigated in a pool, and the accuracy of the results is checked by comparing the experimental results conducted using the PIV techniques by Kim et al. These numerical results can be used as basic research data for an analysis and prediction of the natural circulation phenomena in the cooling tank of the passive safety system in a nuclear power plant.

  1. Analysis preliminary phytochemical raw extract of leaves Nephrolepis pectinata

    Directory of Open Access Journals (Sweden)

    Natally Marreiros Gomes

    2017-06-01

    Full Text Available The Nephrolepis pectinata popularly known as paulista fern, ladder-heaven, cat tail, belongs to the family Davalliaceae. For the beauty of the arrangements of their leaves ferns are quite commercialized in Brazil, however, have not been described in the literature studies on their pharmacological potential. Thus, the objective of this research was to analyze the phytochemical properties of the crude extract of the leaves of Nephrolepis pectinata. To perform the phytochemical analysis were initially made the collection of the vegetable, preparation of voucher specimen, washing, drying and grinding. Then, extraction by percolation method and end the phytochemical analysis. Preliminary results phytochemicals the crude extract of the leaves of Nephrolepis pectinata tested positive for reducing sugars, phenols/tannins (catechins tannins and catechins.

  2. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  3. Preliminary analysis of a target factory for laser fusion

    International Nuclear Information System (INIS)

    Sherohman, J.W.; Hendricks, C.D.

    1980-01-01

    An analysis of a target factory leading to the determination of production expressions has provided for the basis of a parametric study. Parameters involving the input and output rate of a process system, processing yield factors, and multiple processing steps and production lines have been used to develop an understanding of their dependence on the rate of target injection for laser fusion. Preliminary results have indicated that a parametric study of this type will be important in the selection of processing methods to be used in the final production scheme of a target factory

  4. Numeric computation and statistical data analysis on the Java platform

    CERN Document Server

    Chekanov, Sergei V

    2016-01-01

    Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...

  5. Application of symplectic integrator to numerical fluid analysis

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu

    2000-01-01

    This paper focuses on application of the symplectic integrator to numerical fluid analysis. For the purpose, we introduce Hamiltonian particle dynamics to simulate fluid behavior. The method is based on both the Hamiltonian formulation of a system and the particle methods, and is therefore called Hamiltonian Particle Dynamics (HPD). In this paper, an example of HPD applications, namely the behavior of incompressible inviscid fluid, is solved. In order to improve accuracy of HPD with respect to space, CIVA, which is a highly accurate interpolation method, is combined, but the combined method is subject to problems in that the invariants of the system are not conserved in a long-time computation. For solving the problems, symplectic time integrators are introduced and the effectiveness is confirmed by numerical analyses. (author)

  6. Preliminary Report: Analysis of the baseline study on the prevalence of Salmonella in laying hen flocks of Gallus gallus

    DEFF Research Database (Denmark)

    Hald, Tine

    This is a preliminary report on the analysis of the Community-wide baseline study to estimate the prevalence of Salmonella in laying hen flocks. It is being published pending the full analysis of the entire dataset from the baseline study. The report contains the elements necessary for the establ......This is a preliminary report on the analysis of the Community-wide baseline study to estimate the prevalence of Salmonella in laying hen flocks. It is being published pending the full analysis of the entire dataset from the baseline study. The report contains the elements necessary...

  7. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    Science.gov (United States)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  8. Four generations versus left-right symmetry. A comparative numerical analysis

    International Nuclear Information System (INIS)

    Heidsieck, Tillmann J.

    2012-01-01

    In this work, we present a comparative numerical analysis of the Standard Model (SM) with a sequential fourth generation (SM4) and the left-right symmetric Standard model (LRM). We focus on the constraints induced by flavour violating ΔF=2 processes in the K and B system while the results of studies of collider bounds and electroweak precision tests are taken into account as external inputs. In contrast to many previous studies of both models considered in this work, we do make not any ad-hoc assumptions on the structure of the relevant mixing matrices. Therefore, we employ powerful Monte Carlo methods in order to approximate the viable parameter space of the models. In preparation of our numerical analysis, we present all relevant formulae and review the different numerical methods used in this work. In order to better understand the patterns of new effects in ΔF=2 processes, we perform a fit including all relevant ΔF=2 constraints in the context of the Standard Model. The result of this fit is then used in a general discussion on new effects in ΔF=2 processes in the context of generic extensions of the Standard Model. Our numerical analysis of the SM4 and the LRM demonstrates that in both models the existing anomalies in Δ=2 processes can easily be resolved. We transparently show how the different observables are connected to each other by their dependence on combinations of mixing parameters. In our analysis of rare decays in the SM4, we establish patterns of flavour violation that could in principle be used to disprove this model on the basis of ΔF=1 processes alone. In the LRM, we discuss the importance of the contributions originating from the exchange of heavy, flavour changing, neutral Higgs bosons as well as the inability of the LRM to entirely solve the V ub problem.

  9. Four generations versus left-right symmetry. A comparative numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Tillmann J.

    2012-06-18

    In this work, we present a comparative numerical analysis of the Standard Model (SM) with a sequential fourth generation (SM4) and the left-right symmetric Standard model (LRM). We focus on the constraints induced by flavour violating {Delta}F=2 processes in the K and B system while the results of studies of collider bounds and electroweak precision tests are taken into account as external inputs. In contrast to many previous studies of both models considered in this work, we do make not any ad-hoc assumptions on the structure of the relevant mixing matrices. Therefore, we employ powerful Monte Carlo methods in order to approximate the viable parameter space of the models. In preparation of our numerical analysis, we present all relevant formulae and review the different numerical methods used in this work. In order to better understand the patterns of new effects in {Delta}F=2 processes, we perform a fit including all relevant {Delta}F=2 constraints in the context of the Standard Model. The result of this fit is then used in a general discussion on new effects in {Delta}F=2 processes in the context of generic extensions of the Standard Model. Our numerical analysis of the SM4 and the LRM demonstrates that in both models the existing anomalies in {Delta}=2 processes can easily be resolved. We transparently show how the different observables are connected to each other by their dependence on combinations of mixing parameters. In our analysis of rare decays in the SM4, we establish patterns of flavour violation that could in principle be used to disprove this model on the basis of {Delta}F=1 processes alone. In the LRM, we discuss the importance of the contributions originating from the exchange of heavy, flavour changing, neutral Higgs bosons as well as the inability of the LRM to entirely solve the V{sub ub} problem.

  10. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    Science.gov (United States)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  11. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene

    International Nuclear Information System (INIS)

    Ciaccafava, Alexandre; Lartigue, Audrey; Mansuelle, Pascal; Jeudy, Sandra; Abergel, Chantal

    2011-01-01

    The mimivirus L544 gene product was expressed in E. coli and crystallized; preliminary phasing of a MAD data set was performed using the selenium signal present in a crystal of recombinant selenomethionine-substituted protein. Mimivirus is the prototype of a new family (the Mimiviridae) of nucleocytoplasmic large DNA viruses (NCLDVs), which already include the Poxviridae, Iridoviridae, Phycodnaviridae and Asfarviridae. Mimivirus specifically replicates in cells from the genus Acanthamoeba. Proteomic analysis of purified mimivirus particles revealed the presence of many subunits of the DNA-directed RNA polymerase II complex. A fully functional pre-transcriptional complex appears to be loaded in the virions, allowing mimivirus to initiate transcription within the host cytoplasm immediately upon infection independently of the host nuclear apparatus. To fully understand this process, a systematic study of mimivirus proteins that are predicted (by bioinformatics) or suspected (by proteomic analysis) to be involved in transcription was initiated by cloning and expressing them in Escherichia coli in order to determine their three-dimensional structures. Here, preliminary crystallographic analysis of the recombinant L544 protein is reported. The crystals belonged to the orthorhombic space group C222 1 with one monomer per asymmetric unit. A MAD data set was used for preliminary phasing using the selenium signal present in a selenomethionine-substituted protein crystal

  12. Large-scale numerical simulations on two-phase flow behavior in a fuel bundle of RMWR with the earth simulator

    International Nuclear Information System (INIS)

    Kazuyuki, Takase; Hiroyuki, Yoshida; Hidesada, Tamai; Hajime, Akimoto; Yasuo, Ose

    2003-01-01

    Fluid flow characteristics in a fuel bundle of a reduced-moderation light water reactor (RMWR) with a tight-lattice core were analyzed numerically using a newly developed two-phase flow analysis code under the full bundle size condition. Conventional analysis methods such as sub-channel codes need composition equations based on the experimental data. In case that there are no experimental data regarding to the thermal-hydraulics in the tight-lattice core, therefore, it is difficult to obtain high prediction accuracy on the thermal design of the RMWR. Then the direct numerical simulations with the earth simulator were chosen. The axial velocity distribution in a fuel bundle changed sharply around a grid spacer and its quantitative evaluation was obtained from the present preliminary numerical study. The high prospect was acquired on the possibility of establishment of the thermal design procedure of the RMWR by large-scale direct simulations. (authors)

  13. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations

    OpenAIRE

    Boudin , Laurent; Grec , Bérénice; Salvarani , Francesco

    2012-01-01

    International audience; We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. We provide a qualitative and quantitative mathematical analysis of the model. The main properties of the standard explicit numerical scheme are also analyzed. We eventually include some numerical simulations pointing out the uphill diffusion phenome...

  14. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Directory of Open Access Journals (Sweden)

    Božek Pavol

    2014-08-01

    Full Text Available Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  15. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Science.gov (United States)

    Božek, Pavol; Turygin, Yuri

    2014-08-01

    Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  16. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    DYKES, A.A.

    2000-10-11

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O&M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis.

  17. Conservative numerical schemes for Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, L. [Universidad Complutense, Madrid (Spain). Dept. de Matematica Aplicada; Jimenez, S. [Universidad Alfonso X El Sabio, Madrid (Spain). Dept. de Matematica Aplicada

    1999-05-01

    As a preliminary step to study magnetic field lines, the authors seek numerical schemes that reproduce at discrete level the significant feature of the continuous model, based on an underling Lagrangian structure. The resulting scheme give discrete counterparts of the variation law for the energy as well of as the Euler-Lagrange equations and their symmetries.

  18. Investigating Convergence Patterns for Numerical Methods Using Data Analysis

    Science.gov (United States)

    Gordon, Sheldon P.

    2013-01-01

    The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…

  19. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    Science.gov (United States)

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  20. Numerical bifurcation analysis of conformal formulations of the Einstein constraints

    International Nuclear Information System (INIS)

    Holst, M.; Kungurtsev, V.

    2011-01-01

    The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to

  1. A Numerical Study of Quantization-Based Integrators

    Directory of Open Access Journals (Sweden)

    Barros Fernando

    2014-01-01

    Full Text Available Adaptive step size solvers are nowadays considered fundamental to achieve efficient ODE integration. While, traditionally, ODE solvers have been designed based on discrete time machines, new approaches based on discrete event systems have been proposed. Quantization provides an efficient integration technique based on signal threshold crossing, leading to independent and modular solvers communicating through discrete events. These solvers can benefit from the large body of knowledge on discrete event simulation techniques, like parallelization, to obtain efficient numerical integration. In this paper we introduce new solvers based on quantization and adaptive sampling techniques. Preliminary numerical results comparing these solvers are presented.

  2. Crystallization and preliminary X-ray diffraction analysis of diaminopimelate epimerase from Escherichia coli

    International Nuclear Information System (INIS)

    Hor, Lilian; Dobson, Renwick C. J.; Dogovski, Con; Hutton, Craig A.; Perugini, Matthew A.

    2009-01-01

    Diaminopimelate (DAP) epimerase, an enzyme in the lysine-biosynthetic pathway, is a promising target for antibiotic development against pathogenic bacteria. Here, the cloning, expression, purification, crystallization and preliminary diffraction analysis of DAP epimerase from E. coli are reported. Diaminopimelate (DAP) epimerase (EC 5.1.1.7) catalyzes the penultimate step of lysine biosynthesis in bacteria and plants, converting l,l-diaminopimelate to meso-diaminopimelate. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DAP epimerase from Escherichia coli are presented. Crystals were obtained in space group P4 1 2 1 2 and diffracted to 2.0 Å resolution, with unit-cell parameters a = b = 89.4, c = 179.6 Å. Molecular replacement was conducted using Bacillus anthracis DAP epimerase as a search model and showed the presence of two molecules in the asymmetric unit, with an initial R free of 0.456 and R work of 0.416

  3. Numerical analysis targets

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    Numerical analyses are needed in different steps of the overall design process. Complex models or non-linear reactor core behaviour are important for qualification and/or comparison of results obtained. Adequate models and test should be defined. Fuel assembly, fuel row, and the complete core should be tested for seismic effects causing LOCA and flow-induced vibrations (FIV)

  4. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the pilus-associated sortase C from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Neiers, F.; Madhurantakam, C.; Fälker, S.; Normark, S.; Henriques-Normark, B.; Achour, A.

    2008-01-01

    Crystallization conditions and preliminary X-ray diffraction analysis of the S. pneumoniae-derived pilus-associated protein sortase C are reported. The pilus-associated sortase C from Streptococcus pneumoniae (SrtC or Srt-2) acts as a polymerase for the pilus subunit proteins RrgA and RrgB. Here, the crystallization and preliminary X-ray diffraction analysis of three crystal forms of SrtC are reported. One crystal form belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.9, b = 96.9, c = 98.9 Å, α = β = γ = 90°. The other two crystal forms belong to space group P222, with unit-cell parameters a = 48.8, b = 97.2, c = 99.2 Å, α = β = γ = 90° and a = 48.6, b = 96.5, c = 98.8 Å, α = β = γ = 90°, respectively. Preliminary analysis indicates the presence of two molecules in the asymmetric unit of the crystal for all three forms

  5. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    International Nuclear Information System (INIS)

    L-Cancelos, R.; Varas, F.; Viéitez, I.; Martín, E.

    2016-01-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved. (paper)

  6. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  7. Preliminary Slope Stability Study Using Slope/ W

    International Nuclear Information System (INIS)

    Nazran Harun; Mohd Abd Wahab Yusof; Kamarudin Samuding; Mohd Muzamil Mohd Hashim; Nurul Fairuz Diyana Bahrudin

    2014-01-01

    Analyzing the stability of earth structures is the oldest type of numerical analysis in geotechnical engineering. Limit equilibrium types of analyses for assessing the stability of earth slopes have been in use in geotechnical engineering for many decades. Modern limit equilibrium software is making it possible to handle ever-increasing complexity within an analysis. It is being considered as the potential method in dealing with complex stratigraphy, highly irregular pore-water pressure conditions, various linear and nonlinear shear strength models and almost any kind of slip surface shape. It allows rapid decision making by providing an early indication of the potential suitability of sites based on slope stability analysis. Hence, a preliminary slope stability study has been developed to improve the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. The results showed that geometry of cross section A-A ' , B-B ' , C-C ' and D-D ' achieved the factor of safety not less than 1.4 and these are deemed acceptable. (author)

  8. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  9. Preliminary Shielding Analysis for HCCB TBM Transport

    Science.gov (United States)

    Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming

    2015-09-01

    A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  10. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  11. Integration of risk matrix and event tree analysis: a natural stone ...

    Indian Academy of Sciences (India)

    M Kemal Özfirat

    2017-09-27

    Sep 27, 2017 ... Different types of accidents may occur in natural stone facilities during movement, dimensioning, cutting ... are numerous risk analysis methods such as preliminary ..... machine type and maintenance (MM) event, block control.

  12. On the mechanics of cerebral aneurysms: experimental research and numerical simulation

    Science.gov (United States)

    Parshin, D. V.; Kuianova, I. O.; Yunoshev, A. S.; Ovsyannikov, K. S.; Dubovoy, A. V.

    2017-10-01

    This research extends existing experimental data for CA tissues [1, 2] and presents the preliminary results of numerical calculations. Experiments were performed to measure aneurysm wall stiffness and the data obtained was analyzed. To reconstruct the geometry of the CAs, DICOM images of real patients with aneurysms and ITK Snap [3] were used. In addition, numerical calculations were performed in ANSYS (commercial software, License of Lavrentyev Institute of Hydrodynamics). The results of these numerical calculations show a high level of agreement with experimental data from previous literature.

  13. Cost analysis of small hydroelectric power plants components and preliminary estimation of global cost

    International Nuclear Information System (INIS)

    Basta, C.; Olive, W.J.; Antunes, J.S.

    1990-01-01

    An analysis of cost for each components of Small Hydroelectric Power Plant, taking into account the real costs of these projects is shown. It also presents a global equation which allows a preliminary estimation of cost for each construction. (author)

  14. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    Science.gov (United States)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  15. Activation analysis by filtered neutrons. Preliminary investigation

    International Nuclear Information System (INIS)

    Skarnemark, G.; Rodinson, T.; Skaalberg, M.; Tokay, R.K.

    1986-01-01

    In order to investigate if measuring sensibility and precision by epithermal neutron activation analysis may be improved, different types of geological and biologic test samples were radiated. The test samples were enclosed in an extra filter of tungsten or sodium in order to reduce the flux of those neutrons that otherwise would induce interfering activity in the sample. The geological test samples consist of granites containing lanthanides which had been crushed in tung- sten carbide grinder. Normally such test samples show a interferins 1 87W-activity. By use of a tungsten filter the activity was reduced by up to 60%, which resulted in a considerable improvement of sensibility and precision of the measurement. The biologic test samples consisted of evaporated urine from patients treated with the cell poison cis-platinol. A reliable method to measure the platinum content has not existed so far. This method, however, enables platinum contents as low as about 0.1 ppm to be determined which is quite adequate. To sum up this preliminary study has demonstrated that activation analysis using filtered neutrons, correctly applied, is a satisfactory method of reducing interferences without complicated and time-consuming chemical separation procedures. (O.S.)

  16. LikelihoodLib - Fitting, Function Maximization, and Numerical Analysis

    CERN Document Server

    Smirnov, I B

    2001-01-01

    A new class library is designed for function maximization, minimization, solution of equations and for other problems related to mathematical analysis of multi-parameter functions by numerical iterative methods. When we search the maximum or another special point of a function, we may change and fit all parameters simultaneously, sequentially, recursively, or by any combination of these methods. The discussion is focused on the first the most complicated method, although the others are also supported by the library. For this method we apply: control of precision by interval computations; the calculation of derivatives either by differential arithmetic, or by the method of finite differences with the step lengths which provide suppression of the influence of numerical noise; possible synchronization of the subjective function calls with minimization of the number of iterations; competitive application of various methods for step calculation, and converging to the solution by many trajectories.

  17. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    Science.gov (United States)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  18. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  19. Numerical simulation of dimples in airfoil using MATLAB

    Science.gov (United States)

    Booma Devi, P.; Shah, Dilip A.

    2017-05-01

    The Aircraft wing is a point of important research which poses greater challenge in terms of aerodynamic efficiency. The flow separation control method is addressed in classical aerodynamics methods. This study focuses on influence of dimples on controlling the flow and also increasing the aerodynamic efficiency. The periodic process of placing the cavities on the wing starting from root to tip controls the flow separation. The linear variation of characteristic curve provides the information about the flow separation and control of flow on upper surface of the airfoil.These different shapes are utilized viz., Square, Rectangle and Triangle. The numerical simulation is carried out in using MATLAB package. Preliminary analysis on the flow separation is carried out focuses on laminar flow separation, which has the influence on the overall lift generation and drag generation.

  20. Numerical Modeling and Analysis of Transient Electromagnetic Wave Propagation and Scattering

    National Research Council Canada - National Science Library

    Petropoulos, Peter

    2000-01-01

    .... We are continuing with analysis and numerical comparisons with exact ABC's in ABC's instead of the simpler Dirichlet boundary condition to terminate the sponge layers in the time-domain is desirable...

  1. Preliminary numerical simulations of the 27 February 2010 Chile tsunami: first results and hints in a tsunami early warning perspective

    Science.gov (United States)

    Tinti, S.; Tonini, R.; Armigliato, A.; Zaniboni, F.; Pagnoni, G.; Gallazzi, Sara; Bressan, Lidia

    2010-05-01

    The tsunamigenic earthquake (M 8.8) that occurred offshore central Chile on 27 February 2010 can be classified as a typical subduction-zone earthquake. The effects of the ensuing tsunami have been devastating along the Chile coasts, and especially between the cities of Valparaiso and Talcahuano, and in the Juan Fernandez islands. The tsunami propagated across the entire Pacific Ocean, hitting with variable intensity almost all the coasts facing the basin. While the far-field propagation was quite well tracked almost in real-time by the warning centres and reasonably well reproduced by the forecast models, the toll of lives and the severity of the damage caused by the tsunami in the near-field occurred with no local alert nor warning and sadly confirms that the protection of the communities placed close to the tsunami sources is still an unresolved problem in the tsunami early warning field. The purpose of this study is two-fold. On one side we perform numerical simulations of the tsunami starting from different earthquake models which we built on the basis of the preliminary seismic parameters (location, magnitude and focal mechanism) made available by the seismological agencies immediately after the event, or retrieved from more detailed and refined studies published online in the following days and weeks. The comparison with the available records of both offshore DART buoys and coastal tide-gauges is used to put some preliminary constraints on the best-fitting fault model. The numerical simulations are performed by means of the finite-difference code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna, Italy, which can solve both the linear and non-linear versions of the shallow-water equations on nested grids. The second purpose of this study is to use the conclusions drawn in the previous part in a tsunami early warning perspective. In the framework of the EU-funded project DEWS (Distant Early Warning System), we will

  2. Preliminary X-ray analysis of twinned crystals of sarcosine dimethylglycine methyltransferase from Halorhodospira halochoris

    International Nuclear Information System (INIS)

    Kallio, Juha Pekka; Jänis, Janne; Nyyssölä, Antti; Hakulinen, Nina; Rouvinen, Juha

    2009-01-01

    The crystallization and preliminary X-ray diffraction analysis of sarcosine dimethylglycine methyltransferase from H. halochoris is reported. Sarcosine dimethylglycine methyltransferase (EC 2.1.1.157) is an enzyme from the extremely halophilic anaerobic bacterium Halorhodospira halochoris. This enzyme catalyzes the twofold methylation of sarcosine to betaine, with S-adenosylmethionine (AdoMet) as the methyl-group donor. This study presents the crystallization and preliminary X-ray analysis of recombinant sarcosine dimethylglycine methyltransferase produced in Escherichia coli. Mass spectroscopy was used to determine the purity and homogeneity of the enzyme material. Two different crystal forms, which initially appeared to be hexagonal and tetragonal, were obtained. However, on analyzing the diffraction data it was discovered that both crystal forms were pseudo-merohedrally twinned. The true crystal systems were monoclinic and orthorhombic. The monoclinic crystal diffracted to a maximum of 2.15 Å resolution and the orthorhombic crystal diffracted to 1.8 Å resolution

  3. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  4. Production, crystallization and preliminary X-ray diffraction analysis of the allergen Can f 2 from Canis familiaris

    International Nuclear Information System (INIS)

    Madhurantakam, Chaithanya; Nilsson, Ola B.; Jönsson, Klas; Grönlund, Hans; Achour, Adnane

    2009-01-01

    The recombinant form of the allergen Can f 2 from C. familiaris was produced, isolated and crystallized in two different forms. Preliminary X-ray diffraction analyses are reported for the two crystal forms of Can f 2. The allergen Can f 2 from dog (Canis familiaris) present in saliva, dander and fur is an important cause of allergic sensitization worldwide. Here, the production, isolation, crystallization and preliminary X-ray diffraction analysis of two crystal forms of recombinant Can f 2 are reported. The first crystal form belonged to space group C222, with unit-cell parameters a = 68.7, b = 77.3, c = 65.1 Å, and diffracted to 1.55 Å resolution, while the second crystal form belonged to space group C2, with unit-cell parameters a = 75.7, b = 48.3, c = 68.7 Å, β = 126.5°, and diffracted to 2.1 Å resolution. Preliminary data analysis indicated the presence of a single molecule in the asymmetric unit for both crystal forms

  5. Chemical Analysis of the Moon at the Surveyor VII Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Franzgrote, E J; Patterson, J H

    1968-10-04

    The alpha-scattering experiment aboard Surveyor VII has provided a chemical analysis of the moon in the area of the crater Tycho. The preliminary results indicate a chemical composition similar to that already found at two mare sites, but with a lower concentration of elements of the iron group (titanium through copper).

  6. Numerical analysis of the big bounce in loop quantum cosmology

    International Nuclear Information System (INIS)

    Laguna, Pablo

    2007-01-01

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity

  7. Foregrounds in the BOOMERANG-LDB data: a preliminary rms analysis

    OpenAIRE

    Masi, S.; Ade, P. A. R.; Bock, J.; Boscaleri, A.; Crill, B. P.; de Bernardis, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V. V.; Lange, A. E.; Martinis, L.; Mauskopf, P. D.; Montroy, T.; Netterfield, C. B.

    2000-01-01

    We present a preliminary analysis of the BOOMERanG LDB maps, focused on foregrounds. BOOMERanG detects dust emission at moderately low galactic latitudes ($b > -20^o$) in bands centered at 90, 150, 240, 410 GHz. At higher Galactic latitudes, we use the BOOMERanG data to set conservative upper limits on the level of contamination at 90 and 150 GHz. We find that the mean square signal correlated with the IRAS/DIRBE dust template is less than 3% of the mean square signal due to CMB anisotropy.

  8. A numerical technique for reactor subchannel analysis

    International Nuclear Information System (INIS)

    Fath, Hassan E.S.

    1983-01-01

    A numerical technique is developed for the solution of the transient boundary layer equations with a moving liquid-vapour interface boundary. The technique uses the finite difference method with the velocity components defined over an Eulerian mesh. A system of interface massless markers is defined where the markers move with the flow field according to a simple kinematic relation between the interface geometry and the fluid velocity. Different applications of nuclear engineering interest are reported with some available results. The present technique is capable of predicting the interface profile near the wall which is important in the reactor subchannel analysis

  9. Preliminary Investigation on the Behavior of Pore Air Pressure During Rainfall Infiltration

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Min, Ng Soon; Hasliza Hamzah, Nur; Hazreek Zainal Abidin, Mohd; Madun, Aziman; Tajudin, Saiful Azhar Ahmad

    2018-04-01

    This paper focused on the preliminary investigation of pore air pressure behaviour during rainfall infiltration in order to substantiate the mechanism of rainfall induced slope failure. The actual behaviour or pore air pressure during infiltration is yet to be clearly understood as it is regularly assumed as atmospheric. Numerical modelling of one dimensional (1D) soil column was utilized in this study to provide a preliminary insight of this highlighted uncertainty. Parametric study was performed by using rainfall intensities of 1.85 x 10-3m/s and 1.16 x 10-4m/s applied on glass beads to simulate intense and modest rainfall conditions. Analysis results show that the high rainfall intensity causes more development of pore air pressure compared to low rainfall intensity. This is because at high rainfall intensity, the rainwater cannot replace the pore air smoothly thus confining the pore air. Therefore, the effect of pore air pressure has to be taken into consideration particularly during heavy rainfall.

  10. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  11. Numerical Analysis Of The Resistance To Pullout Test Of Clinched Assemblies Of Thin Metal Sheets

    International Nuclear Information System (INIS)

    Jomaa, Moez; Billardon, Rene

    2007-01-01

    This paper presents the finite element analysis of the resistance of a clinch point to pullout test -that follows the numerical analysis of the forming process of the point-. The simulations have been validated by comparison with experimental evidences. The influence on the numerical predictions of various computation and process parameters have been evaluated

  12. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  13. Preliminary study of elemental analysis of hydroxyapatite used neutron activation analysis method

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Rina Mulyaningsih

    2010-01-01

    Preliminary study has been carried out elemental analysis of hydroxyapatite synthesized using the method of neutron activation analysis. Hydroxyapatite is the main component constituent of bones and teeth which can be synthesized from limestone and phosphoric acid. Hydroxyapatite can be used as a bone substitute material and human and animal teeth. Tests on the metal content is necessary to prevent the risk of damage to bones and teeth due to contamination. Results of analysis using neutron activation analysis method with samples irradiated at the neutron flux 10"3 n.det"-"1cm"-"2 for one minute, the impurities of Al (48.60±6.47 mg/kg), CI (38.00±7.47 mg/kg), Mn (1.05±0.19 mg/kg), and Mg (2095.30±203.66 mg/kg), were detected, whereas with irradiation time for 10 minutes and 40 minutes with a time decay of three days there were K (103.89 ± 26.82 mg/kg), Br (1617.06 ± 193.66 mg/kg), and Na (125.10±9.57 mg/kg). These results indicate that there is impurity Al, CI, Mn, Mg, Br, K and Na, although in very small amounts and do not cause damage to bones and teeth. (author)

  14. Preliminary spatial analysis of combined BATSE/Ulysses gamma-ray burst locations

    International Nuclear Information System (INIS)

    Kippen, R. Marc; Hurley, Kevin; Pendleton, Geoffrey N.

    1998-01-01

    We present the preliminary spatial analysis of 278 bursts that have been localized by BATSE and the two-spacecraft Compton/Ulysses Interplanetary Network. The large number and superior accuracy of the combined BATSE/Ulysses locations provides improved sensitivity to small-angle source properties. We find that the locations are consistent with large- and small-scale isotropy, with no significant small-angle clustering. We constrain the fraction of sources in clusters and discuss the implications for burst repetition

  15. Introduction to numerical analysis

    CERN Document Server

    Hildebrand, F B

    1987-01-01

    Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.

  16. Analysis of noncondensable effect during small break transient in VVER-440 geometry with CATHARE V1.3L. Preliminary results

    International Nuclear Information System (INIS)

    Sarrette, C.

    1996-11-01

    The report presents a study of the transport and dissolution-release of non-condensable gas into the fluid of the primary loop for the VVER-440 geometry. The analysis has been done using a new model developed for the CATHARE thermal hydraulic code. Results are presented, obtained from calculations of small break loss-of-coolant (SBLOCA) accidents for the Loviisa nuclear power plant (NPP) geometry. The influence of nitrogen dissolved in the water of the accumulators of the emergency core coolant system (ECCS) on natural circulation is discussed. Possibilities of formation of nitrogen bubbles in the main vessels upper plenum, top of the downcomer, steam generators collectors, and upper structures of RCP's are investigated. First results show that there is potentiality for interruption, mainly due to the presence of nitrogen in the top of the downcomer and the upper parts of the RCP's. These preliminary results should be confirmed by carrying out calculations now prematurely stopped for numerical reasons. (8 refs.)

  17. Gas cooled fast reactor 2400 MWTh, status on the conceptual design studies and preliminary safety analysis

    International Nuclear Information System (INIS)

    Malo, J.Y.; Alpy, N.; Bentivoglio, F.

    2009-01-01

    The Gas cooled Fast Reactor (GFR) is considered by the French Commissariat a l'Energie Atomique as a promising concept, combining the benefits of fast spectrum and high temperature, using Helium as coolant. A status on the GFR preliminary viability was made at the end of 2007, ending the pre-conceptual design phase. A consistent overall systems arrangement was proposed and a preliminary safety analysis based on operating transient calculations and a simplified PSA had established a global confidence in the feasibility and safety of this baseline concept. Its potential for attractive performances had been pointed out. Compare to the more mature Sodium Fast Reactor technology, no demonstrator has ever been built and the feasibility demonstration will required a longer lead time. The next main project milestone is related to the GFR viability, scheduled in 2012. The current studies consist in revisiting the reactor reference design options as selected at the end of 2007. Most of them are being consolidated by going more in depth in the analysis. Some possible alternatives are assessed. The paper will give a status on the last studies performed on the core design and corresponding neutronics and cycle performance, the Decay Heat Removal strategy and preliminary safety analysis, systems design and balance of plant... This paper is complementary to the Icapp'09 papers 9062 dealing with the Gas cooled Fast Reactor Demonstrator ALLEGRO and 9378 related to GFR transients analysis. (author)

  18. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    Science.gov (United States)

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  19. Crystallization and preliminary X-ray diffraction analysis of the MIF4G domain of DAP5

    International Nuclear Information System (INIS)

    Frank, Filipp; Virgili, Geneviève; Sonenberg, Nahum; Nagar, Bhushan

    2009-01-01

    The MIF4G domain of DAP5 was crystallized in two distinct crystal forms. Diffraction patterns have been analyzed and preliminary analysis, including molecular replacement, is presented here. Death-associated protein 5 (DAP5) is a member of the eIF4G family of scaffolding proteins that mediate cap-independent translation initiation by recruiting the translational machinery to internal ribosomal entry sites (IRESs) on mRNA. The MIF4G domain of DAP5 directly interacts with the eukaryotic initiation factors eIF4A and eIF3 and enhances the translation of several viral and cellular IRESs. Here, the crystallization and preliminary X-ray diffraction analysis of the MIF4G domain of DAP5 is presented

  20. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

    International Nuclear Information System (INIS)

    Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

    2017-01-01

    Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and

  1. On numerical solution of Burgers' equation by homotopy analysis method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2008-01-01

    In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions

  2. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  3. Numerical modeling assistance system in finite element analysis for the structure of an assembly

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko

    2015-01-01

    The objective of structural analysis and seismic response analysis are well recognized and utilized as one of sophisticated analysis tools for design objects in the nuclear engineering. The way to design nuclear facilities is always in compromising with many index, such as costs, performance, robustness and so on, but the most important issues is the safety. It is true the structural analysis and seismic response analysis plays an important role to insure the safety, since it is well known that Japan is always facing to the earthquake. In this paper, a numerical analysis's controlling and managing system is implemented on a supercomputer, which controls the modelling process and data treating for structural robustness, although a numerical analysis's manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The analytical modeling manager executes the process by order of the lists for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Modeling process was experimentally found that may subject to the intention of designing index. The numerical experiments were carried out with static analyses and dynamic analyses. The results of its experiment introduce reasonable discussion to understand the accuracy of simulation. In the numerical experiments, K, supercomputer is utilized by using parallel computing resource with the controlling and managing system. The structural analysis and seismic response analysis are done by the FIEST, finite element analysis for the structure of an assembly, which carries out the simulation by gathering components. As components are attached to one another to build an assembly, and, therefore, the interactions between the components due to differences in material properties and their connection conditions considerably affect the behavior of an assembly. FIESTA is

  4. Chemical Analysis of the Moon at the Surveyor VI Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Patterson, J H; Franzgrote, E J

    1968-06-07

    The alpha-scattering experiment aboard soft-landing Surveyor VI has provided a chemical analysis of the surface of the moon in Sinus Medii. The preliminary results indicate that, within experimental errors, the composition is the same as that found by Surveyor V in Mare Tranquillitatis. This finding suggests that large portions of the lunar maria resemble basalt in composition.

  5. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  6. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  7. Numerical analysis of fluid flow and heat transfer in a helical ...

    African Journals Online (AJOL)

    DR OKE

    International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.

  8. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    Gunawan, Indra; Sulistyo, Harry; Rochmad

    2001-01-01

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI 3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 o C. FeCl 3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  9. Scilab and Maxima Environment: Towards Free Software in Numerical Analysis

    Science.gov (United States)

    Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro

    2010-01-01

    In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)

  10. Numerical analysis of a PCM thermal storage system with varying wall temperature

    International Nuclear Information System (INIS)

    Halawa, E.; Bruno, F.; Saman, W.

    2005-01-01

    Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given

  11. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  12. Matched filtering of numerical relativity templates of spinning binary black holes

    International Nuclear Information System (INIS)

    Vaishnav, Birjoo; Hinder, Ian; Herrmann, Frank; Shoemaker, Deirdre

    2007-01-01

    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes, and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary but nonprecessing spin and inclination for the axial case considered here

  13. Numerical simulation of a DFB - fiber laser sensor (part 1

    Directory of Open Access Journals (Sweden)

    Dan SAVASTRU

    2010-06-01

    Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.

  14. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    An economic technique for the numerical analysis of the elasto-plastic behaviour of shells of revolution would be of considerable value in the nuclear reactor industry. A numerical method based on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motion are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behaviour, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. (Auth.)

  15. Original Article PRELIMINARY BIOAUTOGRAPHIC ANALYSIS OF ...

    African Journals Online (AJOL)

    Sierra Leone 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ... the seeds are used in the treatment of skin infections. ... Screening with DPPH showed prominent antioxidant spots on silica at Rf 0.8, 0.5, 0.4 .... underpins conditions like rheumatoid arthritis, ..... As a follow-up to the preliminary TLC studies.

  16. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  17. Advances in variational and hemivariational inequalities theory, numerical analysis, and applications

    CERN Document Server

    Migórski, Stanisław; Sofonea, Mircea

    2015-01-01

    Highlighting recent advances in variational and hemivariational inequalities with an emphasis on theory, numerical analysis and applications, this volume serves as an indispensable resource to graduate students and researchers interested in the latest results from recognized scholars in this relatively young and rapidly-growing field. Particularly, readers will find that the volume’s results and analysis present valuable insights into the fields of pure and applied mathematics, as well as civil, aeronautical, and mechanical engineering. Researchers and students will find new results on well posedness to stationary and evolutionary inequalities and their rigorous proofs. In addition to results on modeling and abstract problems, the book contains new results on the numerical methods for variational and hemivariational inequalities. Finally, the applications presented illustrate the use of these results in the study of miscellaneous mathematical models which describe the contact between deformable bodies and a...

  18. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  19. Crystallization and preliminary X-ray analysis of isomaltase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yamamoto, Keizo; Miyake, Hideo; Kusunoki, Masami; Osaki, Shigeyoshi

    2008-01-01

    The crystallization and preliminary X-ray analysis of isomaltase is reported. Isomaltase from Saccharomyces cerevisiae is an oligo-1,6-glucosidase that preferentially hydrolyzes isomaltose, with little activity towards isomaltotriose or longer oligosaccharides. An amino-acid sequence analysis of the isomaltase revealed that it belongs to glucoside hydrolase family 13. Recombinant isomaltase was purified and crystallized by the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant. The crystals belonged to space group C2, with unit-cell parameters a = 95.67, b = 115.42, c = 61.77 Å, β = 91.17°. X-ray diffraction data were collected to 1.35 Å resolution from a single crystal on a synchrotron-radiation source

  20. Preliminary analysis of a membrane-based atmosphere-control subsystem

    Science.gov (United States)

    Mccray, Scott B.; Newbold, David D.; Ray, Rod; Ogle, Kathryn

    1993-01-01

    Controlled ecological life supprot systems will require subsystems for maintaining the consentrations of atmospheric gases within acceptable ranges in human habitat chambers and plant growth chambers. The goal of this work was to develop a membrane-based atmosphere comntrol (MBAC) subsystem that allows the controlled exchange of atmospheric componets (e.g., oxygen, carbon dioxide, and water vapor) between these chambers. The MBAC subsystem promises to offer a simple, nonenergy intensive method to separate, store and exchange atmospheric components, producing optimal concentrations of components in each chamber. In this paper, the results of a preliminary analysis of the MBAC subsystem for control of oxygen and nitrogen are presented. Additionally, the MBAC subsystem and its operation are described.

  1. Numerical analysis of nonlinear behavior of steel-concrete composite structures

    Directory of Open Access Journals (Sweden)

    Í.J.M. LEMES

    Full Text Available Abstract This paper presents the development of an effective numerical formulation for the analysis of steel-concrete composite structures considering geometric and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM was developed and the stiffness parameters were obtained by homogenization of cross-section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM. The Newton-Raphson Method with path-following strategies is adopted to solve nonlinear global and local (in cross-section level equations. The results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross sections, composite columns, and composite portal frames.

  2. Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

    Directory of Open Access Journals (Sweden)

    Olazabal-Loumé M.

    2013-11-01

    Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.

  3. Numerical analysis of stress fields generated by quenching process

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account mechanical phenomena generated by thermalphenomena and phase transformations. In the model of mechanical phenomena, apart from thermal, plastic and structural strain, alsotransformations plasticity was taken into account. The stress and strain fields are obtained using the solution of the Finite Elements Method of the equilibrium equation in rate form. The thermophysical constants occurring in constitutive relation depend on temperature and phase composite. For determination of plastic strain the Huber-Misses condition with isotropic strengthening was applied whereas fordetermination of transformation plasticity a modified Leblond model was used. In order to evaluate the quality and usefulness of thepresented models a numerical analysis of stresses and strains associated hardening process of a fang lathe of cone shaped made of tool steel was carried out.

  4. A Numerical Procedure for Analysis of W/R Contact Using Explicit Finite Element Methods

    NARCIS (Netherlands)

    Ma, Y.; Markine, V.L.

    2015-01-01

    Since no effective experimental approaches have been proposed to assess wheel and rail (W/R) contact performance till now, numerical computational analysis is known as an alternative to approximately simulate the W/R interaction. In this paper, one numerical procedure is proposed on the basis of

  5. Global atmospheric response to specific linear combinations of the main SST modes. Part I: numerical experiments and preliminary results

    Directory of Open Access Journals (Sweden)

    S. Trzaska

    1996-10-01

    Full Text Available This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder than the long-term mean in the southern hemisphere (northern hemisphere]. Atlantic SSTAs may also play a significant role.

  6. Numerical stability for velocity-based 2-phase formulation for geotechnical dynamic analysis

    OpenAIRE

    Mieremet, M.M.J.

    2015-01-01

    As a master student in AppliedMathematics at the Delft University of Technology I am highly educated in Numerical Analysis. My interest in this field even mademe choose elective courses such as Advanced Numerical Methods, Applied Finite Elements and Computational Fluid Dynamics. In my search for a challenging graduationproject I chose a research proposal on the material point method, an extension of the finite element method that is well-suited for problems involving large deformations. The p...

  7. Numerical and experimental analysis of a horizontal ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-03-15

    The main objective of this work is to evaluate a heat pump system using the ground as a source of heat. A ground-coupled heat pump (GCHP) system has been installed and tested at the test room, University of Firat, Elazig, Turkey. Results obtained during experimental testing are presented and discussed here. The coefficient of performance (COP{sub sys}) of the GCHP system is determined from the measured data. A numerical model of heat transfer in the ground was developed for determining the temperature distribution in the vicinity of the pipe. The finite difference approximation is used for numerical analysis. It is observed that the numerical results agree with the experimental results. (author) (author)

  8. POLLUTANT EMISSION NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The energies produced by the diesel engines of strong power are largely used in marine propulsion because of their favorable reliability and their significant output. However, the increasingly constraining legislations, aimed at limiting the pollutant emissions from the exhaust gas produced by these engines, tend to call into question their supremacy. The analysis of the pollutant emissions and their reduction in the exhaust gas of the slow turbocharged marine diesel engine using ANSYS 15 constitutes the principal objective of this study. To address problems of global air pollution due to the pollutant emission from fuel oil engin e combustion, it is necessary to understand the mechanisms by which pollutants are produced in combustion processes. In the present work, an experimental and numerical study is carried out on a unit of real use aboard a car ferry ship. A numerical model based on a detailed chemical kinetics scheme is used to calculate the emissions of NOx, SOx and Sooth in an internal combustion engine model for the same characteristics of the real unit.

  9. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.

  10. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    International Nuclear Information System (INIS)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E.

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC

  11. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis

    International Nuclear Information System (INIS)

    Gaudio, P; Malizia, A; Gelfusa, M; Poggi, L.A.; Martinelli, E.; Di Natale, C.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis. (paper)

  12. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Science.gov (United States)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  13. Experimental and numerical analysis of interlocking rib formation at sheet metal blanking

    Science.gov (United States)

    Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj

    2018-05-01

    Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.

  14. A Preliminary Analysis of the Outcomes of Students Assisted by VET FEE-HELP: Summary

    Science.gov (United States)

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    This summary highlights the key findings from the report "A preliminary analysis of the outcomes of students assisted by VET FEE-HELP". VET FEE-HELP is an income-contingent loan scheme that assists eligible students undertaking certain vocational education training (VET) courses with an approved provider by paying for all or part of…

  15. Expression, purification, crystallization and preliminary X-ray analysis of Aeromonas hydrophilia metallo-β-lactamase

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nandini, E-mail: nandini-sharma@merck.com; Toney, Jeffrey H.; Fitzgerald, Paula M. D.

    2005-02-01

    Crystallization and preliminary X-ray analysis of the CphA metallo-β-lactamase from A. hydrophilia are described. The crystals belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 40.75, b = 42.05, c = 128.88 Å, and diffract to 1.8 Å.

  16. A general numerical analysis of the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1985-01-01

    For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.

  17. The Role of Numerical Methods in the Sensitivity Analysis of a ...

    African Journals Online (AJOL)

    The mathematical modelling of physiochemical interaction in the framework of industrial and environmental physics which relies on an initial value problem is defined by a first order ordinary differential equation. Two numerical methods of studying sensitivity analysis of physiochemical interaction data are developed.

  18. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  19. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  20. Preliminary hazard analysis using sequence tree method

    International Nuclear Information System (INIS)

    Huang Huiwen; Shih Chunkuan; Hung Hungchih; Chen Minghuei; Yih Swu; Lin Jiinming

    2007-01-01

    A system level PHA using sequence tree method was developed to perform Safety Related digital I and C system SSA. The conventional PHA is a brainstorming session among experts on various portions of the system to identify hazards through discussions. However, this conventional PHA is not a systematic technique, the analysis results strongly depend on the experts' subjective opinions. The analysis quality cannot be appropriately controlled. Thereby, this research developed a system level sequence tree based PHA, which can clarify the relationship among the major digital I and C systems. Two major phases are included in this sequence tree based technique. The first phase uses a table to analyze each event in SAR Chapter 15 for a specific safety related I and C system, such as RPS. The second phase uses sequence tree to recognize what I and C systems are involved in the event, how the safety related systems work, and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. In the sequence tree, the defense-in-depth echelons, including Control echelon, Reactor trip echelon, ESFAS echelon, and Indication and display echelon, are arranged to construct the sequence tree structure. All the related I and C systems, include digital system and the analog back-up systems are allocated in their specific echelon. By this system centric sequence tree based analysis, not only preliminary hazard can be identified systematically, the vulnerability of the nuclear power plant can also be recognized. Therefore, an effective simplified D3 evaluation can be performed as well. (author)

  1. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  2. Preliminary CFD analysis methodology for flow in a LFR fuel assembly

    International Nuclear Information System (INIS)

    Catana, A.; Ioan, M.; Serbanel, M.

    2013-01-01

    In this paper a preliminary Computational Fluid Dynamics (CFD) analysis was performed in order to setup a methodology to be used for more complex coolant flow analysis inside ALFRED nuclear reactor fuel assembly. The core contains 171 separated fuel assembly, each consisting in a hexagonal array of 127 fuel rods. Three honey comb spacer grids are proposed along fuel rods with the aim to keep flow geometry intact during reactor operation. The main goal of this paper is to compute some hydraulic parameters: pressure, velocity, wall shear stress and turbulence parameters with and without spacer grids. In this analysis we consider an adiabatic case, so far no heat transfer is considered but we pave the road toward more complex thermo hydraulic analysis for ALFRED (LFR in general). The CAELINUX CFD distribution was used with its main components: Salome-Meca (for geometry and mesh) and Code-Saturne as mono-phase CFD solver. Paraview and Visist Postprocessors were used for data extraction and graphical displays. (authors)

  3. Preliminary Evaluation of MapReduce for High-Performance Climate Data Analysis

    Science.gov (United States)

    Duffy, Daniel Q.; Schnase, John L.; Thompson, John H.; Freeman, Shawn M.; Clune, Thomas L.

    2012-01-01

    MapReduce is an approach to high-performance analytics that may be useful to data intensive problems in climate research. It offers an analysis paradigm that uses clusters of computers and combines distributed storage of large data sets with parallel computation. We are particularly interested in the potential of MapReduce to speed up basic operations common to a wide range of analyses. In order to evaluate this potential, we are prototyping a series of canonical MapReduce operations over a test suite of observational and climate simulation datasets. Our initial focus has been on averaging operations over arbitrary spatial and temporal extents within Modern Era Retrospective- Analysis for Research and Applications (MERRA) data. Preliminary results suggest this approach can improve efficiencies within data intensive analytic workflows.

  4. Optimum design of vaporizer fin with liquefied natural gas by numerical analysis

    International Nuclear Information System (INIS)

    Jeong, Hyo Min; Chung, Han Shik; Lee, Sang Chul; Kong, Tae Woo; Yi, Chung Seub

    2006-01-01

    Generally, the temperature drop under 0 .deg. C on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins (Φ) and fin thickness (TH F ). Numerical analysis results were presented through the correlations between the ice layer thickness (TH ICE ) on the vaporizer surface to the temperature distribution of inside vaporizer (T IN ), fin thickness (TH F ), and angle between two fins (Φ). Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper

  5. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity

    International Nuclear Information System (INIS)

    Kluth, G.

    2008-12-01

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  6. Preliminary RAMI analysis of WCLL blanket and breeder systems

    International Nuclear Information System (INIS)

    Arroyo, Jose Manuel; Brown, Richard; Harman, Jon; Rosa, Elena; Ibarra, Angel

    2015-01-01

    Highlights: • Preliminary RAMI model for WCLL has been developed. • Critical parts and parameters influencing WCLL availability have been focused. • Necessary developments of tools/models to represent system performance have been identified. - Abstract: DEMO will be a prototype fusion reactor designed to prove the capability to produce electrical power in a commercially acceptable way. One of the key factors in that endeavor is the achievement of certain level of plant availability. Therefore, RAMI (Reliability, Availability, Maintainability and Inspectability) will be a key element in the engineering development of DEMO. Some studies have been started so as to develop the tools and models to assess different design alternatives from RAMI point of view. The main objective of these studies is to be able to evaluate the influence of different parameters on DEMO availability and to focus the critical parts that should be further researched and improved in order to develop a high-availability oriented DEMO design. A preliminary RAMI analysis of the Water Cooled Lithium-Lead (WCLL) blanket and breeder concept for DEMO has been developed. The amounts of single elements that may fail (e.g. more than 180,000 C-shaped tubes) and the mean down time associated to failures inside the vacuum vessel (around 3 months) have been highlighted as the critical parameters influencing the system availability. On the other hand, the necessary developments of tools/models to better represent the system performance have been identified and proposed for future work.

  7. Preliminary RAMI analysis of WCLL blanket and breeder systems

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, Jose Manuel, E-mail: josemanuel.arroyo@ciemat.es [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Brown, Richard [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon (United Kingdom); Harman, Jon [EFDA Close Support Unit, Garching (Germany); Rosa, Elena; Ibarra, Angel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • Preliminary RAMI model for WCLL has been developed. • Critical parts and parameters influencing WCLL availability have been focused. • Necessary developments of tools/models to represent system performance have been identified. - Abstract: DEMO will be a prototype fusion reactor designed to prove the capability to produce electrical power in a commercially acceptable way. One of the key factors in that endeavor is the achievement of certain level of plant availability. Therefore, RAMI (Reliability, Availability, Maintainability and Inspectability) will be a key element in the engineering development of DEMO. Some studies have been started so as to develop the tools and models to assess different design alternatives from RAMI point of view. The main objective of these studies is to be able to evaluate the influence of different parameters on DEMO availability and to focus the critical parts that should be further researched and improved in order to develop a high-availability oriented DEMO design. A preliminary RAMI analysis of the Water Cooled Lithium-Lead (WCLL) blanket and breeder concept for DEMO has been developed. The amounts of single elements that may fail (e.g. more than 180,000 C-shaped tubes) and the mean down time associated to failures inside the vacuum vessel (around 3 months) have been highlighted as the critical parameters influencing the system availability. On the other hand, the necessary developments of tools/models to better represent the system performance have been identified and proposed for future work.

  8. Determinants of Trade Credit: A Preliminary Analysis on Construction Sector

    Directory of Open Access Journals (Sweden)

    Nicoleta Barbuta-Misu

    2016-07-01

    Full Text Available This paper introduces a preliminary analysis of the correlations between trade credit and some selected measures of financial performance for a sample of 958 firms acting in the construction sector. The examined period covers 2004-2013. The sample derived from Amadeus database contains firms that have sold and bought on credit. Results showed that larger firms offered and used more credit than counterparties. Firms offered and used in same time credit, but not in same level. Firms with higher return on assets and profit margin used and offered less credit from suppliers, respectively to clients. Moreover, more liquid firms used less trade payables.

  9. Research in progress in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  10. Numerical analysis for fatigue life prediction on railroad RCF crack initiation

    NARCIS (Netherlands)

    Ma, Y.; Markine, V.L.

    2015-01-01

    In the present paper, a numerical procedure for surface crack initiation analysis based on the critical plane approach is proposed. The complex stress/strain state of wheel and rail (W/R) contact is analysed by means of submodelling approach together with the transient contact nodal loads obtained

  11. Elastic and inelastic methods of piping systems analysis: a preliminary review

    International Nuclear Information System (INIS)

    Reich, M.; Esztergar, E.P.; Spence, J.; Boyle, J.; Chang, T.Y.

    1975-02-01

    A preliminary review of the methods used for elastic and inelastic piping system analysis is presented. The following principal conclusions are reached: techniques for the analysis of complex piping systems operating in the high temperature creep regime should be further developed; accurate analysis of a complete pipework system in creep using the ''complete shell finite element methods'' is not feasible at the present, and the ''reduced shell finite element method'' still requires excessive computer time and also requires further investigation regarding the compatibility problems associated with the pipe bend element, particularly when applied to cases involving general loading conditions; and with the current size of proposed high temperature systems requiring the evaluation of long-term operating life (30 to 40 years), it is important to adopt a simplified analysis method. A design procedure for a simplified analysis method based on currently available techniques applied in a three-stage approach is outlined. The work required for implementation of these procedures together with desirable future developments are also briefly discussed. Other proposed simplified approximations also are reviewed in the text. 101 references. (U.S.)

  12. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time

  13. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time.

  14. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  15. Supplementation of Flow Accelerated Corrosion Prediction Program Using Numerical Analysis Technique

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2010-01-01

    Flow-accelerated corrosion (FAC) leads to thinning of steel pipe walls that are exposed to flowing water or wet steam. From experience, it is seen that FAC damage to piping at fossil and nuclear plants can result in outages that require expensive repairs and can affect plant reliability and safety. CHECWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data so that piping failures caused by FAC can be prevented. However, CHECWORKS may be occasionally ignore local susceptible portions when predicting FAC damage in a group of pipelines after constructing a database for all the secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of CHECWORKS prediction results using numerical analysis. FAC susceptible locations determined using CHECWORKS for two pipeline groups of a nuclear plant was compared with determined using the numerical-analysis-based FLUENT

  16. Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building

    Directory of Open Access Journals (Sweden)

    Lacki Piotr

    2017-12-01

    Full Text Available The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab and truss elements (reinforcement bars. The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.

  17. Preliminary radar systems analysis for Venus orbiter missions

    Science.gov (United States)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  18. Numerical electromagnetic frequency domain analysis with discrete exterior calculus

    Science.gov (United States)

    Chen, Shu C.; Chew, Weng Cho

    2017-12-01

    In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

  19. Analysis of numerical solutions for Bateman equations

    International Nuclear Information System (INIS)

    Loch, Guilherme G.; Bevilacqua, Joyce S.

    2013-01-01

    The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

  20. Numerical analysis of beam with sinusoidally corrugated webs

    Science.gov (United States)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  1. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  2. The effect of saturation on resin flow in injection pultrusion: a preliminary numerical study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Larsen, Martin; R. Rodríguez, Rosa

    . The implemented saturation and relative permeability curves are adopted from relationships presented in the literature. The results of the numerical model highlights the importance of accurately determining thesaturation curve when included in a numerical solver that is used to predict the resin flow in injection...

  3. Preliminary analysis of accident in SST-1 current feeder system

    International Nuclear Information System (INIS)

    Roy, Swati; Kanabar, Deven; Garg, Atul; Singh, Amit; Tanna, Vipul; Prasad, Upendra; Srinivasan, R.

    2017-01-01

    Steady-state Tokamak-1 (SST-1) has 16 superconducting Toroidal field (TF) and 9 superconducting poloidal field (PF) coils rated for 10kA DC. All the TF are connected in series and are operated in DC condition whereas PF coils are individually operated in pulse mode during SST-1 campaigns. SST-1 current feeder system (CFS) houses 9 pairs of PF current leads and 1 pair of TF current leads. During past SST-1 campaign, there were arcing incidents within SST-1 CFS chamber which caused significant damage to PF superconducting current leads as well as its Helium cooling lines of the current leads. This paper brings out the preliminary analysis of the mentioned arcing incident, possible reasons and its investigation thereby laying out the sequence of events. From this analysis and observations, various measures to avoid such arcing incidents have also been proposed. (author)

  4. Numerical analysis of the thermally induced flow in a strongly rotating gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1982-04-01

    The present work is concerned with the numerical analysis of the thermally induced flow in a rapidly gas centrifuge. The primary purpose for this work is to investigate the dependence of the flow field on the thermal boundary conditions, angular speed, aspect ratio of the cylinder, holdup. Some of our results are compared with the predictions of asymptotic theories, particularly those of Sakurai-Mtsuda and Brouwers, and with the numerical results of Dickinson-Jones.

  5. A numerical approach to model and predict the energy absorption and crush mechanics within a long-fiber composite crush tube

    Science.gov (United States)

    Pickett, Leon, Jr.

    Past research has conclusively shown that long fiber structural composites possess superior specific energy absorption characteristics as compared to steel and aluminum structures. However, destructive physical testing of composites is very costly and time consuming. As a result, numerical solutions are desirable as an alternative to experimental testing. Up until this point, very little numerical work has been successful in predicting the energy absorption of composite crush structures. This research investigates the ability to use commercially available numerical modeling tools to approximate the energy absorption capability of long-fiber composite crush tubes. This study is significant because it provides a preliminary analysis of the suitability of LS-DYNA to numerically characterize the crushing behavior of a dynamic axial impact crushing event. Composite crushing theory suggests that there are several crushing mechanisms occurring during a composite crush event. This research evaluates the capability and suitability of employing, LS-DYNA, to simulate the dynamic crush event of an E-glass/epoxy cylindrical tube. The model employed is the composite "progressive failure model", a much more limited failure model when compared to the experimental failure events which naturally occur. This numerical model employs (1) matrix cracking, (2) compression, and (3) fiber breakage failure modes only. The motivation for the work comes from the need to reduce the significant cost associated with experimental trials. This research chronicles some preliminary efforts to better understand the mechanics essential in pursuit of this goal. The immediate goal is to begin to provide deeper understanding of a composite crush event and ultimately create a viable alternative to destructive testing of composite crush tubes.

  6. Computational techniques for inelastic analysis and numerical experiments

    International Nuclear Information System (INIS)

    Yamada, Y.

    1977-01-01

    A number of formulations have been proposed for inelastic analysis, particularly for the thermal elastic-plastic creep analysis of nuclear reactor components. In the elastic-plastic regime, which principally concerns with the time independent behavior, the numerical techniques based on the finite element method have been well exploited and computations have become a routine work. With respect to the problems in which the time dependent behavior is significant, it is desirable to incorporate a procedure which is workable on the mechanical model formulation as well as the method of equation of state proposed so far. A computer program should also take into account the strain-dependent and/or time-dependent micro-structural changes which often occur during the operation of structural components at the increasingly high temperature for a long period of time. Special considerations are crucial if the analysis is to be extended to large strain regime where geometric nonlinearities predominate. The present paper introduces a rational updated formulation and a computer program under development by taking into account the various requisites stated above. (Auth.)

  7. [Effects decomposition in mediation analysis: a numerical example].

    Science.gov (United States)

    Zugna, Daniela; Richiardi, Lorenzo

    2018-01-01

    Mediation analysis aims to decompose the total effect of the exposure on the outcome into a direct effect (unmediated) and an indirect effect (mediated by a mediator). When the interest also lies on understanding whether the exposure effect differs in different sub-groups of study population or under different scenarios, the mediation analysis needs to be integrated with interaction analysis. In this setting it is necessary to decompose the total effect not only into two components, the direct and indirect effects, but other two components linked to interaction. The interaction between the exposure and the mediator in their effect on the outcome could indeed act through the effect of the exposure on the mediator or through the mediator when the mediator is not totally explained by the exposure. We describe options for decomposition, proposed in literature, of the total effect and we illustrate them through a hypothetical example of the effect of age at diagnosis of cancer on survival, mediated and unmediated by the therapeutical approach, and a numerical example.

  8. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  9. Vibro-Acoustic Numerical Analysis for the Chain Cover of a Car Engine

    Directory of Open Access Journals (Sweden)

    Enrico Armentani

    2017-06-01

    Full Text Available In this work, a vibro-acoustic numerical and experimental analysis was carried out for the chain cover of a low powered four-cylinder four-stroke diesel engine, belonging to the FPT (FCA Power Train family called SDE (Small Diesel Engine. By applying a methodology used in the acoustic optimization of new FPT engine components, firstly a finite element model (FEM of the engine was defined, then a vibration analysis was performed for the whole engine (modal analysis, and finally a forced response analysis was developed for the only chain cover (separated from the overall engine. The boundary conditions applied to the chain cover were the accelerations experimentally measured by accelerometers located at the points of connection among chain cover, head cover, and crankcase. Subsequently, a boundary element (BE model of the only chain cover was realized to determine the chain cover noise emission, starting from the previously calculated structural vibrations. The numerical vibro-acoustic outcomes were compared with those experimentally observed, obtaining a good correlation. All the information thus obtained allowed the identification of those critical areas, in terms of noise generation, in which to undertake necessary improvements.

  10. Purification, crystallization and preliminary crystallographic analysis of human cystathionine β-synthase

    International Nuclear Information System (INIS)

    Oyenarte, Iker; Majtan, Tomas; Ereño, June; Corral-Rodríguez, María Angeles; Kraus, Jan P.; Martínez-Cruz, Luis Alfonso

    2012-01-01

    This article describes the crystallization and preliminary crystallographic analysis of a protein construct (hCBS 516–525 ) that contains the full-length cystathionine β-synthase from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525. Human cystathionine β-synthase (CBS) is a pyridoxal-5′-phosphate-dependent hemeprotein, whose catalytic activity is regulated by S-adenosylmethionine. CBS catalyzes the β-replacement reaction of homocysteine (Hcy) with serine to yield cystathionine. CBS is a key regulator of plasma levels of the thrombogenic Hcy and deficiency in CBS is the single most common cause of homocystinuria, an inherited metabolic disorder of sulfur amino acids. The properties of CBS enzymes, such as domain organization, oligomerization degree or regulatory mechanisms, are not conserved across the eukaryotes. The current body of knowledge is insufficient to understand these differences and their impact on CBS function and physiology. To overcome this deficiency, we have addressed the crystallization and preliminary crystallographic analysis of a protein construct (hCBS 516–525 ) that contains the full-length CBS from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525, which are located in a disordered loop. The human enzyme yielded crystals belonging to space group I222, with unit-cell parameters a = 124.98, b = 136.33, c = 169.83 Å and diffracting X-rays to a resolution of 3.0 Å. The crystal structure appears to contain two molecules in the asymmetric unit which presumably correspond to a dimeric form of the enzyme

  11. Numerical analysis of reactor internals under hydrodynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Da Hye; Chang, Yoon Suk [Kyung Hee Univ., Yongin (Korea, Republic of); Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, six kinds of major equipment of a typical reactor internals were identified by incorporating recent research trend. Based on this, detailed numerical models were developed and used for establishment of optimum analysis methodology subjected to hydrodynamic loads. As a result, stress values of the major equipment were calculated through the acoustic-structure analysis under periodic hydrodynamic load and the turbulence-structure analysis under random hydrodynamic load. The numerical analysis scheme can be used for development of preventive action plan and management procedures of the reactor internals. Reactor internals installed in a pressure vessel have been exposed to harsh environment such as high neutron irradiation and temperature with complex fluid flow. As the increase of operational years of NPPs(Nuclear Power Plants), possibility of functional loss of the reactor internals is increased due to degradation caused by radiation embrittlement, thermal aging, fatigue, corrosion and FIV(Flow-Induced Vibration) etc. In practice, defects were detected at core support structure as well as upper and lower parts of structural assembly in European and United States NPPs. Recently, in a GALL(Generic Aging Lessons Learned) report, US NRC(Nuclear Regulatory Commission) identified reactor internals as a high priority component and addressed relevant management programs. In Korea, similar activities have been conducted for long-term operation beyond design lifetime but most of them were limited to qualitative evaluation based on examination and maintenance programs. Therefore, not only to reduce repair and replacement efforts but also to secure the stability of NPPs, necessity for development of quantitative evaluation technique as well as establishment of preventive action plan and management procedures is on the rise. The FIV represents the structural vibration phenomenon induced by liquid flow and generally occurs at contact surfaces. In the present

  12. Preliminary analysis of biomass potentially useful for producing biodiesel

    International Nuclear Information System (INIS)

    Cabrera Cifuentes, Gerardo; Burbano Jaramillo, Juan Carlos; Garcia Melo, Jose Isidro

    2011-01-01

    Given that biodiesel is emerging as a viable solution for some energy and environmental problems, research on raw materials appropriate for its production is a matter of growing interest. In this study we present the results of research devoted to preliminary analysis on several vegetable (biomass) species potentially useful for producing biodiesel. The bioprospection zone is a region on the Colombian Pacific coast. The candidate species collected underwent different standardized ASTM tests in order for us to define properties that facilitate their evaluation. Some of the species underwent a transesterification process. Comparisons between the thermo-physical properties of the biofuels obtained and the properties of commercial diesel were carried out. Also, performance tests for these biofuels were conducted in compression ignition engines, particularly evaluating efficiency, fuel consumption, and potency at different RPMs.

  13. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    Science.gov (United States)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  14. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  15. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    A numerical method based instead on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motions are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behavior, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. The elasto-plastic constitutive relations adopted are in accordance with currently recommended constitutive equations for inelastic design analysis of FFTF Components. The Von Mises yield criteria and associated flow rule is used and the kinematic hardening law is followed. Examples are considered in which stainless steels common to LMFBR application are used

  16. Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Sin Kim; Goon-Cherl Park [Seoul National Univ., Seoul (Korea, Republic of)

    1995-09-01

    An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral loss coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.

  17. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...

  18. Increased-accuracy numerical modeling of electron-optical systems with space-charge

    International Nuclear Information System (INIS)

    Sveshnikov, V.

    2011-01-01

    This paper presents a method for improving the accuracy of space-charge computation for electron-optical systems. The method proposes to divide the computational region into two parts: a near-cathode region in which analytical solutions are used and a basic one in which numerical methods compute the field distribution and trace electron ray paths. A numerical method is used for calculating the potential along the interface, which involves solving a non-linear equation. Preliminary results illustrating the improvement of accuracy and the convergence of the method for a simple test example are presented.

  19. Numerical analysis of a neural network with hierarchically organized patterns

    International Nuclear Information System (INIS)

    Bacci, Silvia; Wiecko, Cristina; Parga, Nestor

    1988-01-01

    A numerical analysis of the retrieval behaviour of an associative memory model where the memorized patterns are stored hierarchically is performed. It is found that the model is able to categorize errors. For a finite number of categories, these are retrieved correctly even when the stored patterns are not. Instead, when they are allowed to increase with the number of neurons, their retrieval quality deteriorates above a critical category capacity. (Author)

  20. Numerical analysis of free surface instabilities in the IFMIF lithium target

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Moeslang, A.

    2007-01-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Different kinds of instability mechanisms in the liquid jet flow have been evaluated and classified based on analytical and experimental data. Numerical investigations of the target free surface flow have been performed. Previous numerical investigations have shown in principle the suitability of CFD code Star- CD for the simulation of the Li-target flow. The main objective of this study is detailed numerical analysis of instabilities in the Li-jet flow caused by boundary layer relaxation near the nozzle exit, transition to the turbulence flow and back wall curvature. A number of CFD models are developed to investigate the formation of instabilities on the target surface. Turbulence models are validated on the experimental data. Experimental observations have shown that the change of the nozzle geometry at the outlet such as a slight divergence of the nozzle surfaces or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface with an amplitude up to 5 mm. Target surface fluctuations of this magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plat. Analysis of large instabilities in the Li-target flow combined with the heat distribution in lithium depending on the free surface shape is performed in this study. (orig.)

  1. Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge

    Science.gov (United States)

    Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan

    2016-01-01

    As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.

  2. Numerical analysis of thermal environment control in high density data center

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Kyung; Kim, Hyeon Joong; Cha, Dong An [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2012-08-15

    Increasing heat generation in CPUs can hamper effective recirculation and by pass because of the large temperature difference between the exhaust and the intake air through a server room. This increases the overall temperature inside a data center and decreases the efficiency of the data center's cooling system. The purpose of the data center's cooling system is to separate the intake and exhaust air by controlling the computer room air conditioner(CRAC). In this study, ICEPAK is used to conduct a numerical analysis of a data center's cooling system. The temperature distribution and the entire room are analyzed for different volumetric flow rates. The optimized volumetric flow rate is found for each CPU power. The heat removal and temperature distribution for CPU powers of 100, 120, and 140W are found to be the best for a volumetric flow rate of 0.15m'3'/s. The numerical analysis is verified through RTI indicators, and the results appear to be the most reliable when the RTI value is 81.

  3. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  4. Anomalous Structure of Oceanic Lithosphere in the North Atlantic and Arctic Oceans: A Preliminary Analysis Based on Bathymetry, Gravity and Crustal Structure

    Science.gov (United States)

    Barantsrva, O.

    2014-12-01

    We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results

  5. Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Muliawan, Made Jaya; Gao, Zhen

    2012-01-01

    The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has to be carr......The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has...... to be carried out numerically, through coupled analyses of alternative solutions. The present study deals with the preliminary hydrodynamic characterization of Wave Dragon needed in order to calibrate the numerical model to be used for the mooring design. A hydrodynamic analysis of the small scale model...

  6. Numerical Analysis of Film Cooling at High Blowing Ratio

    Science.gov (United States)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  7. Numerical analysis of thermal impact on hydro-mechanical properties of clay

    Directory of Open Access Journals (Sweden)

    Xuerui Wang

    2014-10-01

    Full Text Available As is known, high-level radioactive waste (HLW is commonly heat-emitting. Heat output from HLW will dissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical (THMC processes. In highly consolidated clayey rocks, thermal effects are particularly significant because of their very low permeability and water-saturated state. Thermal impact on the integrity of the geological barriers is of most importance with regard to the long-term safety of repositories. This study focuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using a coupled thermo-mechanical multiphase flow (TH2M model which is implemented in the finite element programme OpenGeoSys (OGS. The material properties of the numerical model are characterised by a transversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model based on van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based on Fourier's law. In the numerical approaches, special attention has been paid to the thermal expansion of three different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity. Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in the present model. The model has been applied to simulate a laboratory heating experiment on claystone. The numerical model gives a satisfactory representation of the observed material behaviour in the laboratory experiment. The comparison of the calculated results with the laboratory findings verifies that the simulation with the present numerical model could provide a deeper understanding of the observed effects.

  8. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lions, Jacques-Louis

    2011-01-01

    S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro

  9. Modal interval analysis new tools for numerical information

    CERN Document Server

    Sainz, Miguel A; Calm, Remei; Herrero, Pau; Jorba, Lambert; Vehi, Josep

    2014-01-01

    This book presents an innovative new approach to interval analysis. Modal Interval Analysis (MIA) is an attempt to go beyond the limitations of classic intervals in terms of their structural, algebraic and logical features. The starting point of MIA is quite simple: It consists in defining a modal interval that attaches a quantifier to a classical interval and in introducing the basic relation of inclusion between modal intervals by means of the inclusion of the sets of predicates they accept. This modal approach introduces interval extensions of the real continuous functions, identifies equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify these equivalences, along with guidelines for arriving at these inclusions. Applications of these equivalences in different areas illustrate the obtained results. The book also presents a new interval object: marks, which aspire to be a new form of numerical treatment of errors in measurements and computations.

  10. Numerical Analysis of Soil Settlement Prediction and Its Application In Large-Scale Marine Reclamation Artificial Island Project

    Directory of Open Access Journals (Sweden)

    Zhao Jie

    2017-11-01

    Full Text Available In an artificial island construction project based on the large-scale marine reclamation land, the soil settlement is a key to affect the late safe operation of the whole field. To analyze the factors of the soil settlement in a marine reclamation project, the SEM method in the soil micro-structural analysis method is used to test and study six soil samples such as the representative silt, mucky silty clay, silty clay and clay in the area. The structural characteristics that affect the soil settlement are obtained by observing the SEM charts at different depths. By combining numerical calculation method of Terzaghi’s one-dimensional and Biot’s two-dimensional consolidation theory, the one-dimensional and two-dimensional creep models are established and the numerical calculation results of two consolidation theories are compared in order to predict the maximum settlement of the soils 100 years after completion. The analysis results indicate that the micro-structural characteristics are the essential factor to affect the settlement in this area. Based on numerical analysis of one-dimensional and two-dimensional settlement, the settlement law and trend obtained by two numerical analysis method is similar. The analysis of this paper can provide reference and guidance to the project related to the marine reclamation land.

  11. Structural Analysis of Composite Laminates using Analytical and Numerical Techniques

    Directory of Open Access Journals (Sweden)

    Sanghi Divya

    2016-01-01

    Full Text Available A laminated composite material consists of different layers of matrix and fibres. Its properties can vary a lot with each layer’s or ply’s orientation, material property and the number of layers itself. The present paper focuses on a novel approach of incorporating an analytical method to arrive at a preliminary ply layup order of a composite laminate, which acts as a feeder data for the further detailed analysis done on FEA tools. The equations used in our MATLAB are based on analytical study code and supply results that are remarkably close to the final optimized layup found through extensive FEA analysis with a high probabilistic degree. This reduces significant computing time and saves considerable FEA processing to obtain efficient results quickly. The result output by our method also provides the user with the conditions that predicts the successive failure sequence of the composite plies, a result option which is not even available in popular FEM tools. The predicted results are further verified by testing the laminates in the laboratory and the results are found in good agreement.

  12. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  13. Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 2, Figures [and] Volume 3, Technical Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R. [Nevada Univ., Las Vegas, NV (United States). Transportation Research Center

    1991-05-31

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history.

  14. Preliminary Analysis of the Bundle-Duct Interaction for the fuel of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Cheon, Jin Sik; Hahn, Do Hee; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    BDI (Bundle-Duct Interaction) occurs in the fuel of SFR (Sodium-cooled Fast Reactor) due to the radial expansion and bowing of a fuel pin bundle. Under the BDI condition, excess cladding strain and hot spots would occur. Therefore, BDI, which is the dominant deformation mechanisms in a fuel pin bundle, should be considered to evaluate the FBR fuel integrity. The analysis codes such as ETOILE and BMBOO, have been developed to evaluate the BDI behavior. The bundle duct interaction model is also being developed for SFR in Korea. This model is based on ANSYS. In this paper, the fuel pin configuration model for the BDI calculation was established. The preliminary analysis of the bundle-duct interaction was performed to evaluate the fuel design concept.

  15. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  16. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  17. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2007-01-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with 'generic' component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance

  18. Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Gaschott, L.J.

    1995-01-01

    This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility

  19. Field-based dynamic light scattering microscopy: theory and numerical analysis.

    Science.gov (United States)

    Joo, Chulmin; de Boer, Johannes F

    2013-11-01

    We present a theoretical framework for field-based dynamic light scattering microscopy based on a spectral-domain optical coherence phase microscopy (SD-OCPM) platform. SD-OCPM is an interferometric microscope capable of quantitative measurement of amplitude and phase of scattered light with high phase stability. Field-based dynamic light scattering (F-DLS) analysis allows for direct evaluation of complex-valued field autocorrelation function and measurement of localized diffusive and directional dynamic properties of biological and material samples with high spatial resolution. In order to gain insight into the information provided by F-DLS microscopy, theoretical and numerical analyses are performed to evaluate the effect of numerical aperture of the imaging optics. We demonstrate that sharp focusing of fields affects the measured diffusive and transport velocity, which leads to smaller values for the dynamic properties in the sample. An approach for accurately determining the dynamic properties of the samples is discussed.

  20. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  1. Zdeněk Kopal: Numerical Analyst

    Science.gov (United States)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  2. The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings

    International Nuclear Information System (INIS)

    Perotti, Federico; Domaneschi, Marco; De Grandis, Silvia

    2013-01-01

    Highlights: • Seismic fragility of structural components in base isolated NPP is computed. • Dynamic integration, Response Surface, FORM and Monte Carlo Simulation are adopted. • Refined approach for modeling the non-linearities behavior of isolators is proposed. • Beyond-design conditions are addressed. • The preliminary design of the isolated IRIS is the application of the procedure. -- Abstract: The research work here described is devoted to the development of a numerical procedure for the computation of seismic fragilities for equipment and structural components in Nuclear Power Plants; in particular, reference is made, in the present paper, to the case of isolated buildings. The proposed procedure for fragility computation makes use of the Response Surface Methodology to model the influence of the random variables on the dynamic response. To account for stochastic loading, the latter is computed by means of a simulation procedure. Given the Response Surface, the Monte Carlo method is used to compute the failure probability. The procedure is here applied to the preliminary design of the Nuclear Power Plant reactor building within the International Reactor Innovative and Secure international project; the building is equipped with a base isolation system based on the introduction of High Damping Rubber Bearing elements showing a markedly non linear mechanical behavior. The fragility analysis is performed assuming that the isolation devices become the critical elements in terms of seismic risk and that, once base-isolation is introduced, the dynamic behavior of the building can be captured by low-dimensional numerical models

  3. Geoscientific long-term prognosis. Preliminary safety analysis for the site Gorleben

    International Nuclear Information System (INIS)

    Mrugalla, Sabine

    2011-07-01

    The preliminary safety analysis of the site Gorleben includes the following chapters: (1) Introduction; (2) Aim and content of the geoscientific long-term prognosis for the site Gorleben; (3) Boundary conditions at the site Gorleben: climate; geomorphology; overlying rocks and adjoining rocks; hydrogeology; salt deposit Gorleben. (4) Probable future geological developments at the site Gorleben: supraregional developments with effects on the site Gorleben; glacial period developments; developments of the geomorphology, overlying and adjoining rocks; future developments of the hydrological systems at the site Gorleben; future saliniferous specific developments of the salt deposit Gorleben. (5) Commentary on the unlikely or excludable developments of the site Gorleben.

  4. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

    International Nuclear Information System (INIS)

    Ambrosini, W.

    1998-01-01

    In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

  5. Numerical analysis of the performance of rock weirs: Effects of structure configuration on local hydraulics

    Science.gov (United States)

    Holmquist-Johnson, C. L.

    2009-01-01

    River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.

  6. Simplicial quantum gravity with higher derivative terms: Formalism and numerical results in four dimensions

    International Nuclear Information System (INIS)

    Hamber, H.W.; Williams, R.M.; Cambridge Univ.

    1986-01-01

    Higher derivative terms for Regge's formulation of lattice gravity are discussed. The analytic weak-field expansion for the regular tessellation α 5 of the four-sphere is presented. Preliminary numerical results for some computations in four dimensions are also discussed. (orig.)

  7. Preliminary results of an attempt to provide soil moisture datasets in order to verify numerical weather prediction models

    International Nuclear Information System (INIS)

    Cassardo, C.; Loglisci, N.

    2005-01-01

    In the recent years, there has been a significant growth in the recognition of the soil moisture importance in large-scale hydrology and climate modelling. Soil moisture is a lower boundary condition, which rules the partitioning of energy in terms of sensible and latent heat flux. Wrong estimations of soil moisture lead to wrong simulation of the surface layer evolution and hence precipitations and cloud cover forecasts could be consequently affected. This is true for large scale medium-range weather forecasts as well as for local-scale short range weather forecasts, particularly in those situations in which local convection is well developed. Unfortunately; despite the importance of this physical parameter there are only few soil moisture data sets sparse in time and in space around in the world. Due to this scarcity of soil moisture observations, we developed an alternative method to provide soil moisture datasets in order to verify numerical weather prediction models. In this paper are presented the preliminary results of an attempt to verify soil moisture fields predicted by a mesoscale model. The data for the comparison were provided by the simulations of the diagnostic land surface scheme LSPM (Land Surface Process Model), widely used at the Piedmont Regional Weather Service for agro-meteorological purposes. To this end, LSPM was initialized and driven by Synop observations, while the surface (vegetation and soil) parameter values were initialized by ECOCLIMAP global dataset at 1km 2 resolution

  8. Experimental and numerical analysis of behavior of electromagnetic annular linear induction pump

    International Nuclear Information System (INIS)

    Goldsteins, Linards

    2015-01-01

    The research explores the issue of magnetohydrodynamic (MHD) instability in electromagnetic induction pumps with focus on the regimes of high slip Reynolds magnetic number (Rm s ) in Annular Linear Induction Pumps (ALIP) operating with liquid sodium. The context of the thesis is French GEN IV Sodium Fast Reactor research and development program for ASTRID in a framework of which the use of high discharge ALIP in the secondary cooling loops is being studied. CEA has designed, realized and will exploit PEMDYN facility, able to represent MHD instability in high discharge ALIP. In the thesis stability of an ideal ALIP is elaborated theoretically using linear stability analysis. Analysis revealed that strong amplification of perturbation is expected after convective stability threshold is reached. Theory is supported with numerical results and experiments reported in literature. Stable operation and stabilization technique operating with two frequencies in case of an ideal ALIP is discussed and necessary conditions derived. Detailed numerical models of flat linear induction pump (FLIP) taking into account effects of a real pump are developed. New technique of magnetic field measurements has been introduced and experimental results demonstrate a qualitative agreement with numerical models capturing all principal phenomena such as oscillation of magnetic field and perturbed velocity profiles. These results give significantly more profound insight in the phenomenon of MHD instability and can be used as a reference in further studies. (author) [fr

  9. Sensitivity analysis of numerical model of prestressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Bílý, Petr, E-mail: petr.bily@fsv.cvut.cz; Kohoutková, Alena, E-mail: akohout@fsv.cvut.cz

    2015-12-15

    Graphical abstract: - Highlights: • FEM model of prestressed concrete containment with steel liner was created. • Sensitivity analysis of changes in geometry and loads was conducted. • Steel liner and temperature effects are the most important factors. • Creep and shrinkage parameters are essential for the long time analysis. • Prestressing schedule is a key factor in the early stages. - Abstract: Safety is always the main consideration in the design of containment of nuclear power plant. However, efficiency of the design process should be also taken into consideration. Despite the advances in computational abilities in recent years, simplified analyses may be found useful for preliminary scoping or trade studies. In the paper, a study on sensitivity of finite element model of prestressed concrete containment to changes in geometry, loads and other factors is presented. Importance of steel liner, reinforcement, prestressing process, temperature changes, nonlinearity of materials as well as density of finite elements mesh is assessed in the main stages of life cycle of the containment. Although the modeling adjustments have not produced any significant changes in computation time, it was found that in some cases simplified modeling process can lead to significant reduction of work time without degradation of the results.

  10. A numerical analysis of an anisotropic phase-field model for binary-fluid mixtures in the presence of magnetic-field

    OpenAIRE

    Belmiloudi , Aziz; Rasheed , Amer

    2015-01-01

    In this paper we propose a numerical scheme and perform its numerical analysis devoted to an anisotropic phase-field model with convection under the influence of magnetic field for the isother-mal solidification of binary mixtures in two-dimensional geometry. Precisely, the numerical stability and error analysis of this approximation scheme which is based on mixed finite-element method are performed. The particular application of a nickelcopper (NiCu) binary alloy, with real physical paramete...

  11. Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics

    International Nuclear Information System (INIS)

    Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo

    2010-04-01

    The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be utilized

  12. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  13. The concept of validation of numerical models for consequence analysis

    International Nuclear Information System (INIS)

    Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove

    2014-01-01

    Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation

  14. Analysis of swirl recovery vanes for increased propulsive efficiency in tractor propeller aircraft

    NARCIS (Netherlands)

    Veldhuis, L.L.M.; Stokkermans, T.C.A.; Sinnige, T.; Eitelberg, G.

    2016-01-01

    In this paper we address a preliminary assessment of the performance effects of swirl recovery vanes (SRVs) in a installed and uninstalled tractor propeller arrangement. A numerical analysis was performed on a propeller and a propeller-wing configuration after the SRVs were optimized first in a

  15. Handbook of numerical analysis

    CERN Document Server

    Ciarlet, Philippe G

    Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an

  16. Dynamic load synthesis for shock numerical simulation in space structure design

    Science.gov (United States)

    Monti, Riccardo; Gasbarri, Paolo

    2017-08-01

    Pyroshock loads are the most stressing environments that a space equipment experiences during its operating life from a mechanical point of view. In general, the mechanical designer considers the pyroshock analysis as a very demanding constraint. Unfortunately, due to the non-linear behaviour of the structure under such loads, only the experimental tests can demonstrate if it is able to withstand these dynamic loads. By taking all the previous considerations into account, some preliminary information about the design correctness could be done by performing ;ad-hoc; numerical simulations, for example via commercial finite element software (i.e. MSC Nastran). Usually these numerical tools face the shock solution in two ways: 1) a direct mode, by using a time dependent enforcement and by evaluating the time-response and space-response as well as the internal forces; 2) a modal basis approach, by considering a frequency dependent load and of course by evaluating internal forces in the frequency domain. This paper has the main aim to develop a numerical tool to synthetize the time dependent enforcement based on deterministic and/or genetic algorithm optimisers. In particular starting from a specified spectrum in terms of SRS (Shock Response Spectrum) a time dependent discrete function, typically an acceleration profile, will be obtained to force the equipment by simulating the shock event. The synthetizing time and the interface with standards numerical codes will be two of the main topics dealt with in the paper. In addition a congruity and consistency methodology will be presented to ensure that the identified time dependent loads fully match the specified spectrum.

  17. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  18. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  19. Development and preliminary experimental study on micro-stacked insulator

    International Nuclear Information System (INIS)

    Ren Chengyan; Yuan Weiqun; Zhang Dongdong; Yan Ping; Wang Jue

    2009-01-01

    High gradient insulating technology is one of the key technologies in new type dielectric wall accelerator(DWA). High gradient insulator, namely micro-stacked insulator, was developed and preliminary experimental study was done. Based on the finite element and particle simulating method, surface electric field distribution and electron movement track of micro-stacked insulator were numerated, and then the optimized design proposal was put forward. Using high temperature laminated method, we developed micro-stacked insulator samples which uses exhaustive fluorinated ethylene propylene(FEP) as dielectric layer and stainless steel as metal layer. Preliminary experiment of vacuum surface flashover in nanosecond pulse voltage was done and micro-stacked insulator exhibited favorable vacuum surface flashover performance with flashover field strength of near 180 kV/cm. (authors)

  20. Preliminary Analysis of the Fuel Bundle Stiffness by ANSYS for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Cheon, Jin Sik; Hahn, Do Hee; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    In SFR (Sodium-cooled Fast Reactor) the temperature of the fuel pin is higher than that of the hexagonal duct, so the thermal expansion rate of the fuel bundle is higher than that of the duct. The neutron fluence and the fuel pin pressure are also increased according to the burnup. So the radial expansion and bowing of a fuel pin bundle would occur, and then fuel bundle would interact with a duct. This phenomenon is called bundle-to-duct interaction (BDI). Under the BDI condition, excess cladding strain and hot spots would occur. Therefore BDI as well as the core mechanics should be considered to evaluate the FBR fuel integrity. The analysis codes such as ETOILE, SHADOW, and MARSE, have been developed to evaluate the BDI behavior. The ANSYS based model is also being developed to analysis the bundle duct interaction for SFR in Korea. In this paper, the fuel pin/bundle model for analyzing the bending deflection and oval deformation was described. The preliminary analysis of the fuel bundle stiffness was performed by the developed model.

  1. Preliminary systems-interaction results from the Digraph Matrix Analysis of the Watts Bar Nuclear Power Plant safety-injection systems

    International Nuclear Information System (INIS)

    Sacks, I.J.; Ashmore, B.C.; Champney, J.M.; Alesso, H.P.

    1983-06-01

    This report provides preliminary results generated by a Digraph Matrix Analysis (DMA) for a Systems Interaction analysis performed on the Safety Injection System of the Tennessee Valley Authority Watts Bar Nuclear Power Plant. An overview of DMA is provided along with a brief description of the computer codes used in DMA

  2. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    Science.gov (United States)

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  3. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan

    2018-03-08

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles. The low and high resistive state values in each cycle are calculated, and the analysis shows that the structure has excellent retention reliability properties. The presented Cu species density plot indicates that Cu insertion occurs almost exclusively along grain boundaries resulting in a confined isomorphic conductive filament that maintains its overall shape and electric properties during cycling. The superior reliability of this structure may thus be attributed to the relatively low amount of Cu migrating into the RSL during initial formation. In addition, the results show a good match and help to confirm experimental measurements done over a previously demonstrated device.

  4. Expression, purification, crystallization and preliminary X-ray analysis of two arginine-biosynthetic enzymes from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Moradian, Fatemeh; Garen, Craig; Cherney, Leonid; Cherney, Maia; James, Michael N. G.

    2006-01-01

    Two enzymes responsible for arginine biosynthesis in M. tuberculosis were expressed in Escherichia coli, then purified to homogeneity. Preliminary X-ray analysis of diffraction-quality crystals grown from each enzyme are reported. The gene products of two open reading frames from Mycobacterium tuberculosis (Mtb) have been crystallized using the sitting-drop vapour-diffusion method. Rv1652 encodes a putative N-acetyl-γ-glutamyl-phosphate reductase (MtbAGPR), while the Rv1656 gene product is annotated as ornithine carbamoyltransferase (MtbOTC). Both MtbAGPR and MtbOTC were expressed in Escherichia coli, purified to homogeneity and crystallized. Native data for each crystal were collected to resolutions of 2.15 and 2.80 Å, respectively. Preliminary X-ray data are presented for both enzymes

  5. Numerical analysis of interacting cracks in biaxial stress field

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    1999-01-01

    The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 usually produce highly irregular kinked and branched crack patterns. Crack initialization and propagation depends on stress state underlying the crack pattern. Numerical analysis (such as finite element method) of interacting kinked and branched cracks can provide accurate solutions. This paper discusses the use of general-purpose finite element code ABAQUS for evaluating stress fields at crack tips of interacting complex cracks. The results obtained showed reasonable agreement with the reference solutions and confirmed use of finite elements in such class of problems.(author)

  6. Integration of artificial intelligence and numerical optimization techniques for the design of complex aerospace systems

    International Nuclear Information System (INIS)

    Tong, S.S.; Powell, D.; Goel, S.

    1992-02-01

    A new software system called Engineous combines artificial intelligence and numerical methods for the design and optimization of complex aerospace systems. Engineous combines the advanced computational techniques of genetic algorithms, expert systems, and object-oriented programming with the conventional methods of numerical optimization and simulated annealing to create a design optimization environment that can be applied to computational models in various disciplines. Engineous has produced designs with higher predicted performance gains that current manual design processes - on average a 10-to-1 reduction of turnaround time - and has yielded new insights into product design. It has been applied to the aerodynamic preliminary design of an aircraft engine turbine, concurrent aerodynamic and mechanical preliminary design of an aircraft engine turbine blade and disk, a space superconductor generator, a satellite power converter, and a nuclear-powered satellite reactor and shield. 23 refs

  7. Preliminary Design Analysis of a HGD for the NHDD Program at Korea

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, H. Y.; Lee, S. B.; Kim, Y. W.

    2007-01-01

    Korea Atomic Energy Research Institute is in the process of carrying out a Nuclear Hydrogen Development and Demonstration (NHDD) Program by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. A coaxial double-tube Hot Gas Duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger for the NHDD program. Recently, a preliminary design evaluation for the hot gas duct of the NHDD program was carried out. These preliminary design activities include a decision on the geometric dimensions, a strength evaluation, an appropriate material selection, and identifying the design code for the HGD. In this study, a preliminary strength evaluation for the HGD of the NHDD program has been undertaken based on the HTR-10 design concepts. Also, a preliminary evaluation of the creep-fatigue damage for a high temperature HGD structure has been carried out according to the draft code case for Alloy 617. Preliminary strength evaluation results for the HGD showed that the geometric dimensions of the proposed HGD would be acceptable for the design requirements

  8. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    International Nuclear Information System (INIS)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard

    2007-01-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4 1 2 1 2 or P4 3 2 1 2 and diffracted to a resolution of 1.6 Å

  9. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    Energy Technology Data Exchange (ETDEWEB)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF 328, D-69120 Heidelberg (Germany)

    2007-09-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 and diffracted to a resolution of 1.6 Å.

  10. Numerical analysis of experiments modeling LWR sump cooling by natural convection

    International Nuclear Information System (INIS)

    2002-01-01

    An optional sump cooling concept for the European pressurized water reactor EPR was investigated at the Research Center Karlsruhe. This concept foresees to utilize single phase natural convection in water to remove the decay heat from the core melt. The natural convection was investigated by the SUCOS-2D and -3D scaled experiments. A numerical investigation and interpretation of these experiments was performed by means of the computer code FLUTAN. In this paper, the numerical investigation of SUCOS-3D is summarized. Following the results of the former 2d experiments and the numerical analysis of both experiments, an unexpected temperature distribution is found in this 3d experiment. Basing on the experimental data it had to be postulated that one of the horizontal coolers was slightly tilled against the main flow direction. Additional numerical investigations show that a slope of only one percent would explain the experimental flow field. Conclusions are also drawn on the limits of scalability and transferability of the experimental results to a reactor sump. A detailed transformation will only be possible by applying well validated CFD-codes and experienced code users. As the flow in the reactor sump will be turbulent and this flow is strongly three-dimensional and time-dependent, only the method of Large Eddy Simulation is considered of being an adequate tool for reliable trans formation of the gained experience to analyses for the reactor sump at 1:1 scales. (author)

  11. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  12. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  13. The purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Clostridium botulinum

    International Nuclear Information System (INIS)

    Dobson, Renwick C. J.; Atkinson, Sarah C.; Gorman, Michael A.; Newman, Janet M.; Parker, Michael W.; Perugini, Matthew A.

    2008-01-01

    Dihydrodipicolinate synthase (DHDPS), an enzyme in the lysine-biosynthetic pathway, is a promising target for antibiotic development against pathogenic bacteria. Here, the expression, purification, crystallization and preliminary diffraction analysis of DHDPS from C. botulinum are reported. In recent years, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has received considerable attention from both mechanistic and structural viewpoints. This enzyme, which is part of the diaminopimelate pathway leading to lysine, couples (S)-aspartate-β-semialdehyde with pyruvate via a Schiff base to a conserved active-site lysine. In this paper, the expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS from Clostridium botulinum, an important bacterial pathogen, are presented. The enzyme was crystallized in a number of forms, predominantly using PEG precipitants, with the best crystal diffracting to beyond 1.9 Å resolution and displaying P4 2 2 1 2 symmetry. The unit-cell parameters were a = b = 92.9, c = 60.4 Å. The crystal volume per protein weight (V M ) was 2.07 Å 3 Da −1 , with an estimated solvent content of 41%. The structure of the enzyme will help guide the design of novel therapeutics against the C. botulinum pathogen

  14. The Development and Numerical Analysis of the Conical Radiator Extrusion Process

    Directory of Open Access Journals (Sweden)

    Michalczyk J.

    2017-12-01

    Full Text Available The article presents a newly developed method for single-operation extrusion of conical radiators. This is the author’s radiator manufacturing method being the subject of a patent application. The proposed method enables the manufacture of radiators either with or without an inner opening and with an integral plate. Selected results of numerical computations made within Forge®3D, a finite element method (FEM-based software program, were presented during the analysis of the process. A comparative analysis of the proposed manufacturing method using the double-sided extrusion method was also made.

  15. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  16. Preliminary analysis for evolution of redox conditions in the near field

    International Nuclear Information System (INIS)

    Chiba, Tamotsu; Miki, Takahito; Inagaki, Manabu; Sasamoto, Hiroshi; Yui, Mikazu

    1999-06-01

    It is planned that high level radioactive waste is going to be disposed under deep geological environment. It is believed that the chemical condition of deep groundwater is generally anoxic and reducing. However, during construction and operation phase of repository, oxygen will diffuse some distance into the surrounding rock mass, and diffused oxygen may remain in the surrounding rock mass even after repository closure. In such a case, the transitional redox condition around the drift is not preferable in view point of safety assessment for HLW disposal. Hence, it is very important to evaluate evolution of redox conditions in the near field. This report describes results of preliminary analysis for evolution of redox conditions in the near field rock mass and buffer after repository closure based on the model developed by Chiba et al. (1999). The results of preliminary analysis are summarized as follows: The decrease of oxygen in the near field rock mass and buffer are affected by pH of groundwater and surface area of iron-bearing minerals. The decrease of oxygen in the near field rock mass takes place at time scales lower than 500 years in considering the hypothetical reference groundwater pH range for H12 report. It is implicated that the redox conditions in the near field rock mass will recover to reducing conditions. The decrease of oxygen in the buffer takes place at time scales lower several tens years under neutral to weakly alkaline pH values of porewater in the buffer, even if it is assumed that residual oxygen in the near field rock mass after repository closure will diffuse into the buffer. On the other hand, under weakly acid pH values of porewater in the buffer, it may be presumed that oxygen remain in the buffer at time scale more than 500 years. (author)

  17. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  18. Numerical investigation of beam-driven PWFA in quasi-nonlinear regime

    International Nuclear Information System (INIS)

    Londrillo, P.; Gatti, C.; Ferrario, M.

    2014-01-01

    In beam-driven Plasma Based Wakefield Acceleration (PWFA), the quasi-nonlinear model has been designed to combine high efficient ‘blowout’ regimes, where cold and overdense driving electron beams form a totally rarefied plasma channel, with low charge beam distribution assuring the excited wakefield preserves relevant linear properties. This scheme can have applications in experimental facilities, like SPARC 150 MeV linac at LNF-INFN laboratories, where low-emittance, low-charge narrow electron beams can be produced to be injected on a preformed plasma channel. Here we present a preliminary numerical investigation of this configuration, using the fully 3D ALaDyn PIC code, as a preparatory work to design optimal conditions for the COMB experimental set-up. Specific numerical tools, having computational and diagnostic advantages in PWFA conditions and checks of the numerical outcomes with analytical results, are also presented and discussed

  19. Preliminary results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Matsumoto, T.; Komine, K.; Arai, S.

    1997-01-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented

  20. Numerical Analysis of Microwave Heating on Saponification Reaction

    Science.gov (United States)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  1. Numerical analysis of heat transfer of canned liquid foods containing fibers or particles during sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.Z.; Sakai, N.; Hanzawa, T. [Tokyo Univ. of Fisheries, Tokyo (Japan). Dept. of Food Science and Tech.

    2000-10-01

    The velocity profile, temperature distribution, and the slowest heating point of a canned liquid food containing fibers or particles were calculated numerically by using fundamental equations that take account of the effect of free convection in the can at an unsteady state under the assumption of imaginary fluid with apparent physical properties. To check these calculated results, the temperature distribution in the can was measured experimentally under the same operating conditions as those of the theoretical analysis. The calculated results agree closely with the experimental ones. Adaptable ranges of present numerical analysis and the positional characteristics of the slowest heating point are shown. (author)

  2. Preliminary phytochemical screening, Antibacterial potential and GC-MS analysis of two medicinal plant extracts.

    Science.gov (United States)

    Vijayaram, Seerangaraj; Kannan, Suruli; Saravanan, Konda Mani; Vasantharaj, Seerangaraj; Sathiyavimal, Selvam; P, Palanisamy Senthilkumar

    2016-05-01

    The presence study was aimed to catalyze the primary metabolites and their confirmation by using GC-MS analysis and antibacterial potential of leaf extract of two important medicinal plant viz., Eucalyptus and Azadirachta indica. The antibacterial potential of the methanol leaf extract of the studied species was tested against Escherichia coli, Pseudomonas aeruginosa, Klebsiellap neumoniae, Streptococcus pyogens, Staphylococcus aureus using by agar well diffusion method. The higher zone of inhibition (16mm) was observed against the bacterium Pseudomonas aeruginosa at 100μl concentration of methanol leaf extract. Preliminary phytochemical analysis of studied species shows that presence of phytochemical compounds like steroids, phenolic compounds and flavonoids. GC-MS analysis confirms the occurrence of 20 different compounds in the methanol leaf extract of the both studied species.

  3. Crystallization and preliminary X-ray analysis of Escherichia coli RNase G

    International Nuclear Information System (INIS)

    Fang, Pengfei; Wang, Jing; Li, Xu; Guo, Min; Xing, Li; Cao, Xu; Zhu, Yi; Gao, Yan; Niu, Liwen; Teng, Maikun

    2009-01-01

    Full-length E. coli RNase G was overexpressed, purified and crystallized. Diffraction data were collected to a resolution of 3.4 Å. The homologous RNases RNase E and RNase G are widely distributed in bacteria and function in many important physiological processes, including mRNA degradation, rRNA maturation and so on. In this study, the crystallization and preliminary X-ray analysis of RNase G from Escherichia coli is described. Purified recombinant E. coli RNase G, which has 497 amino acids, was crystallized in the cubic space group F432, with unit-cell parameters a = b = c = 219.84 Å. X-ray diffraction data were collected to a resolution of 3.4 Å

  4. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  5. NUMERICAL ANALYSIS OF THE CRITICAL STATE OF THIN-WALLED STRUCTURE WITH Z-PROFILE CROSS SECTION

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-03-01

    Full Text Available The object of the study was the thin-walled profile with Z-shaped cross section made of the carbon-epoxy composite. Material model was prepared based on the implemented orthotropic properties. The purpose of study was to determine the value of the critical load at which buckling occurs, the form of buckling and operating characteristics in critical condition. In order to achieve this numerical analysis were carried out. Additionally, the effects of the modification in arrangement of layers of the laminate to the stability and strength of thin-walled composite structures was presented. Numerical studies were carried out using commercial simulation software - ABAQUS®. Within the FEM research, both forms of buckling and the associated critical load, dependent on the configuration the layers of the composite were achieved. Analysis of the obtained results, allowed the evaluation of the structure's work in relation to the level of energy consumption or rigidity estimation. In the paper only numerical simulations of the critical state were conducted.

  6. Numerical and on-site experimental dynamic analysis of the Italian PEC fast reactor building

    International Nuclear Information System (INIS)

    Castoldi, A.; Muzzi, F.; Orsi, R.; Panzeri, P.; Pezzoli, P.; Ruggeri, G.; Martelli, A.; Masoni, P.; Brancati, V.

    1988-01-01

    On-site dynamic tests and three-dimensional numerical analysis have been performed by ISMES on behalf of ENEA on the building of the Italian PEC fast reactor test facility. These studies aimed at evaluating the safety margins in the PEC reactor seismic analysis and at providing data for the optimization of the PEC seismic monitoring system. The paper describes the on-site dynamic tests carried out using various excitation methods (two eccentric back-rotating-mass mechanical vibrator, blasting in bore-hole and hydraulic actuators at the building foundations). It highlights the purposes of the four tests campaigns performed at various construction stages and reports the main experimental results. In connection with the experimental tests, a detailed 3D finite element model was set up for fixed base analysis; from the results of the 3D model a simplified equivalent model of the structure was then derived for soil-structure interaction analysis. The mathematical model was validated and calibrated by using the results of the experimental dynamic tests. The main numerical results and the comparisons with the experimental data are presented. (author)

  7. Structure of unilamellar vesicles: Numerical analysis based on small-angle neutron scattering data

    International Nuclear Information System (INIS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zbytovska, J.; Almasy, L.; Aswal, V. K.; Strunz, P.; Wartewig, S.; Neubert, R.

    2006-01-01

    The structure of polydispersed populations of unilamellar vesicles is studied by small-angle neutron scattering for three types of lipid systems, namely, single-, two-and four-component vesicular systems. Results of the numerical analysis based on the separated-form-factor model are reported

  8. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    Energy Technology Data Exchange (ETDEWEB)

    Dahing, Lahasen Normanshah [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia and Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia); Yahya, Redzuan [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yahya, Roslan; Hassan, Hearie [Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia)

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  9. MAAP4 CANDU analysis of a generic CANDU-6 plant: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, S.M.; Mathew, P.M

    2001-10-01

    To support the generic probabilistic safety analysis (PSA) program at AECL, in particular to conduct Level 2 PSA analysis of a CANDU 6 plant undergoing a postulated severe accident, the capability to conduct severe accident consequence analysis for a CANDU plant is required. For this purpose, AECL selected MAAP4 CANDU from a number of other severe accident codes. The necessary models for a generic CANDU 6 station have been implemented in the code, and the code version 0.2 beta was tested using station data, which were assembled for a generic CANDU 6 station. This paper describes the preliminary results of the consequence analysis using MAAP4 CANDU for a generic CANDU 6 station, when it undergoes a station blackout and a large loss-of-coolant accident scenario. The analysis results show that the plant response is consistent with the physical phenomena modeled and the failure criteria used. The results also confirm that the CANDU design is robust with respect to severe accidents, which is reflected in the calculated long times that are available for administering accident management measures to arrest the accident progression before the calandria vessel or containment become at risk. (author)

  10. Development of a Preliminary Model for Evaluating Occupational Health and Safety Risk Management Maturity in Small and Medium-Sized Enterprises

    Directory of Open Access Journals (Sweden)

    Bilal Kaassis

    2018-02-01

    Full Text Available Management of occupational health and safety (OHS risks is a crucial component of any business. Numerous investigations have shown that work-related injuries and deaths occur disproportionately in small-to-medium-sized enterprises (SMEs and that this is clearly due to deficient management of OHS risks. The main goal of this work is to develop a base of indicators suitable for evaluating OHS risk management maturity in industrial SMEs. A preliminary model is then proposed for this evaluation, based on a small number of relevant indicators selected from a careful bibliographic review. The work begins with a critical review of the literature and analysis of known concepts, methods, tools and models of measurement of risk analysis maturity in order to extract relevant indicators. The most suitable indicators are then grouped to form the basis of a preliminary model for evaluating OHS risk management maturity in the SME setting. Our findings will help managers of SMEs make sound decisions in their quest to improve the OHS performance of their businesses.

  11. A preliminary investigation: the impact of microscopic condenser on depth of field in cytogenetic imaging

    Science.gov (United States)

    Ren, Liqiang; Qiu, Yuchen; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Wei R.; Liu, Hong

    2013-02-01

    As one of the important components of optical microscopes, the condenser has a considerable impact on system performance, especially on the depth of field (DOF). DOF is a critical technical feature in cytogenetic imaging that may affect the efficiency and accuracy of clinical diagnosis. The purpose of this study is to investigate the influence of microscopic condenser on DOF using a prototype of transmitted optical microscope, based on objective and subjective evaluations. After the description of the relationship between condenser and objective lens and the theoretical analysis of the condenser impact on system numerical aperture and DOF, a standard resolution pattern and several cytogenetic samples are adopted to assess the condenser impact on DOF, respectively. The experimental results of these objective and subjective evaluations are in agreement with the theoretical analysis and show that, under the specific intermediate range of condenser numerical aperture ( NAcond ), the DOF value decreases with the increase of NAcond . Although the above qualitative results are obtained under the experimental conditions with a specific prototype system, the methods presented in this preliminary investigation could offer useful guidelines for optimizing operational parameters in cytogenetic imaging.

  12. Optical asymmetric cryptography based on elliptical polarized light linear truncation and a numerical reconstruction technique.

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng

    2014-06-20

    We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.

  13. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  14. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  15. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  16. The mimivirus R355 gene product: preliminary crystallographic analysis of a putative ubiquitin-like protein-specific protease

    International Nuclear Information System (INIS)

    Jeudy, Sandra; Lartigue, Audrey; Mansuelle, Pascal; Ogata, Yuki; Abergel, Chantal

    2010-01-01

    The genome sequence of mimivirus, the largest known double-stranded DNA virus, encodes a putative protease: the R355 gene product. Its expression in E. coli, its crystallization and the preliminary phasing of a MAD data set using the selenium signal present in a crystal of recombinant selenomethionine-substituted protein are reported. The complete genome sequence of the largest known double-stranded DNA virus, mimivirus, reveals the presence of a gene (denoted R355) that potentially encodes a cysteine protease that is expressed late (after 6 h) in the infectious cycle of the virus. In order to verify a sequence-based functional prediction and understand its role during the infectious process, the R355 protein was produced to assay its proteolytic activity and solve its three-dimensional structure. Here, the preliminary crystallographic analysis of the recombinant viral protein is reported. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with a monomer in the asymmetric unit. A MAD data set was used for preliminary phasing using the selenium signal from a selenomethionine-substituted protein crystal

  17. Numerical indications on the semiclassical limit of the flipped vertex

    Energy Technology Data Exchange (ETDEWEB)

    Magliaro, Elena; Perini, Claudio; Rovelli, Carlo [Centre de Physique Theorique de Luminy , Case 907, F-13288 Marseille (France)

    2008-05-07

    We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced 'flipped' vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.

  18. Numerical analysis of jet breakup behavior using particle method

    International Nuclear Information System (INIS)

    Shibata, Kazuya; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A continuous jet changes to droplets where jet breakup occurs. In this study, two-dimensional numerical analysis of jet breakup is performed using the MPS method (Moving Particle Semi-implicit Method) which is a particle method for incompressible flows. The continuous fluid surrounding the jet is neglected. Dependencies of the jet breakup length on the Weber number and the Froude number agree with the experiment. The size distribution of droplets is in agreement with the Nukiyama-Tanasawa distribution which has been widely used as an experimental correlation. Effects of the Weber number and the Froude number on the size distribution are also obtained. (author)

  19. Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)

    2011-05-15

    In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of

  20. Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy

    International Nuclear Information System (INIS)

    Kowal, G; Falceta-Goncalves, D A; Lazarian, A

    2011-01-01

    In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of

  1. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  2. A Sensitivity Study for an Evaluation of Input Parameters Effect on a Preliminary Probabilistic Tsunami Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Hyun-Me; Kim, Min Kyu; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sheen, Dong-Hoon [Chonnam National University, Gwangju (Korea, Republic of)

    2014-10-15

    The tsunami hazard analysis has been based on the seismic hazard analysis. The seismic hazard analysis has been performed by using the deterministic method and the probabilistic method. To consider the uncertainties in hazard analysis, the probabilistic method has been regarded as attractive approach. The various parameters and their weight are considered by using the logic tree approach in the probabilistic method. The uncertainties of parameters should be suggested by analyzing the sensitivity because the various parameters are used in the hazard analysis. To apply the probabilistic tsunami hazard analysis, the preliminary study for the Ulchin NPP site had been performed. The information on the fault sources which was published by the Atomic Energy Society of Japan (AESJ) had been used in the preliminary study. The tsunami propagation was simulated by using the TSUNAMI{sub 1}.0 which was developed by Japan Nuclear Energy Safety Organization (JNES). The wave parameters have been estimated from the result of tsunami simulation. In this study, the sensitivity analysis for the fault sources which were selected in the previous studies has been performed. To analyze the effect of the parameters, the sensitivity analysis for the E3 fault source which was published by AESJ was performed. The effect of the recurrence interval, the potential maximum magnitude, and the beta were suggested by the sensitivity analysis results. Level of annual exceedance probability has been affected by the recurrence interval.. Wave heights have been influenced by the potential maximum magnitude and the beta. In the future, the sensitivity analysis for the all fault sources in the western part of Japan which were published AESJ would be performed.

  3. Experimental method and preliminary studies of the passive containment water film evaporation mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng [State Nuclear Power Technology Research, Beijing (China). Development Center; State Nuclear Power Research Institute, Beijing (China); Yang, Lin; Zhao, Wei; Zhou, Shan; Du, Wangfang; Gao, Zhan; Li, Honegsen [State Nuclear Power Technology Research, Beijing (China). Development Center

    2017-05-15

    For larger containments and higher operation parameters, characteristics of the outside cooling of the PCCS are very important for the analysis on the containment integrity. A preliminary analysis was made and a four-step experimental method was used to numerically analyze the falling water film evaporation for the advanced passive containment. Then, the water flow stability along the outside wall of the containment was studied. The results fit well with those correlations without airflow when the air velocity is less than 5.0 m/s. However, when the air velocity is larger than 5.0 m/s, the influence of the air velocity on the water film will appear and the mean water film thickness will be thicker. Based on the prototype operation parameters, experimental studies were carried and the results were compared with the Dittus-Boelter correlation within the operation ranges. A modification factor was proposed for the conservative application of this correlation for nuclear safety analysis.

  4. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  5. Numerical analysis of regular waves over an onshore oscillating water column

    Energy Technology Data Exchange (ETDEWEB)

    Davyt, D.P.; Teixeira, P.R.F. [Universidade Federal do Rio Grande (FURG), RS (Brazil)], E-mail: pauloteixeira@furg.br; Ramalhais, R. [Universidade Nova de Lisboa, Caparica (Portugal). Fac. de Ciencias e Tecnologia; Didier, E. [Laboratorio Nacional de Engenharia Civil, Lisboa (Portugal)], E-mail: edidier@lnec.pt

    2010-07-01

    The potential of wave energy along coastal areas is a particularly attractive option in regions of high latitude, such as the coasts of northern Europe, North America, New Zealand, Chile and Argentina where high densities of annual average wave energy are found (typically between 40 and 100 kW/m of wave front). Power estimated in the south of Brazil is 30kW/m, creating a possible alternative of source energy in the region. There are many types and designs of equipment to capture energy from waves under analysis, such as the oscillating water column type (OWC) which has been one of the first to be developed and installed at sea. Despite being one of the most analyzed wave energy converter devices, there are few case studies using numerical simulation. In this context, the numerical analysis of regular waves over an onshore OWC is the main objective of this paper. The numerical models FLUINCO and FLUENT are used for achieving this goal. The FLUINCO model is based on RANS equations which are discretized using the two-step semi-implicit Taylor-Galerkin method. An arbitrary Lagrangian Eulerian formulation is used to enable the solution of problems involving free surface movements. The FLUENT code (version 6.3.26) is based on the finite volume method to solve RANS equations. Volume of Fluid method (VOF) is used for modeling free surface flows. Time integration is achieved by a second order implicit scheme, momentum equations are discretized using MUSCL scheme and HRIC (High Resolution Interface Capturing) scheme is used for convective term of VOF transport equation. The case study consists of a 10.m deep channel with a 10 m wide chamber at its end. One meter high waves with different periods are simulated. Comparisons between FLUINCO and FLUENT results are presented. Free surface elevation inside the chamber; velocity distribution and streamlines; amplification factor (relation between wave height inside the chamber and incident wave height); phase angle (angular

  6. Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16

  7. Numerical study of the ghost-ghost-gluon vertex on the lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z∼ 1 1(p 2 ) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β= 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16. (author)

  8. About numerical analysis of electromagnetic field induce in gear wheels during hardening process

    Directory of Open Access Journals (Sweden)

    Gabriel Cheregi

    2008-05-01

    Full Text Available The paper presents the results of a numericalsimulation using finite element analysis for a coupledmagneto-thermal problem, specific for inductionhardening processes. The analysis takes into account therelative movement between inductor and the heated part.Numerical simulation allows to determine accurately thethermal regime of the induction heating process and theoptimal parameters which offer maximum efficiency.Therefore the experiments number in designing processcan be decreased and a better knowledge of the processcan be obtained.

  9. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  10. Lecture notes in numerical analysis with Mathematica

    CERN Document Server

    Styś, Tadeusz

    2014-01-01

    The contents of this book include chapters on floating point computer arithmetic, natural and generalized interpolating polynomials, uniform approximation, numerical integration, polynomial splines and many more.This book is intended for undergraduate and graduate students in institutes, colleges, universities and academies who want to specialize in this field. The readers will develop a solid understanding of the concepts of numerical methods and their application. The inclusion of Lagrane and Hermite approximation by polynomials, Trapezian rule, Simpsons rule, Gauss methods and Romberg`s met

  11. Numerical Simulations Of Flagellated Micro-Swimmers

    Science.gov (United States)

    Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey

    2017-11-01

    We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.

  12. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  13. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  14. Experimental and Numerical Analysis of Screw Fixation in Anterior Cruciate Ligament Reconstruction

    Science.gov (United States)

    Chizari, Mahmoud; Wang, Bin; Snow, Martyn; Barrett, Mel

    2008-09-01

    This paper reports the results of an experimental and finite element analysis of tibial screw fixation in anterior cruciate ligament (ACL) reconstruction. The mechanical properties of the bone and tendon graft are obtained from experiments using porcine bone and bovine tendon. The results of the numerical study are compared with those from mechanical testing. Analysis shows that the model may be used to establish the optimum placement of the tunnel in anterior cruciate ligament reconstruction by predicting mechanical parameters such as stress, strain and displacement at regions in the tunnel wall.

  15. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  16. Numerical analysis of non-stationary free surface flow in a Pelton bucket

    Energy Technology Data Exchange (ETDEWEB)

    Hana, Morten

    1999-07-01

    Computation and analysis of flow in Pelton buckets have been carried out. First a graphical method is investigated and partially improved. In order to decide whether to improve the method further or disregard it in favour of commercial computational fluid dynamics (CFD) codes, a study on numerical methods for free surface flow was carried out. This part of this work concentrates on the theoretical background for different numerical methods, and describes some practical considerations. Although small programs were created based on the literature survey, but only one reported herein, it was soon found that commonly available numerical codes were favourable in use. A code, RIPPLE, was acquired to study the Volume of Fluid (VOF) method in detail. The commercial codes used were Flow-3D and CFX-4. These programs were used in three different cases. First, a simplified 2-dimensional case was verified experimentally. Next, a 3-dimensional fixed jet calculation was carried out. Finally, numerical calculations with relative motion between the jet and buckets were carried out with CFX-4. The conclusion is that commercial CFD codes can replace the graphical method. But careful implementation is needed in order to resolve the special features of Pelton turbines, which are the free surface, the complex geometry and the relative motion between the jet and the bucket.

  17. Rigid-body-spring model numerical analysis of joint performance of engineered cementitious composites and concrete

    Science.gov (United States)

    Khmurovska, Y.; Štemberk, P.; Křístek, V.

    2017-09-01

    This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.

  18. Preliminary Hazard Classification for the 105-B Reactor

    International Nuclear Information System (INIS)

    Kerr, N.R.

    1997-08-01

    This document summarizes the inventories of radioactive and hazardous materials present within the 105-B Reactor and uses the inventory information to determine the preliminary hazard classification for the surveillance and maintenance activities of the facility. The result of this effort was the preliminary hazard classification for the 105-B Building surveillance and maintenance activities. The preliminary hazard classification was determined to be Nuclear Category 3. Additional hazard and accident analysis will be documented in a separate report to define the hazard controls and final hazard classification

  19. Development of high velocity gas gun with a new trigger system-numerical analysis

    Science.gov (United States)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  20. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1999-01-01

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed

  1. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1999-11-11

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.

  2. Modeling and preliminary thermal analysis of the capsule for a creep test in HANARO

    International Nuclear Information System (INIS)

    Choi, Myoung Hwan; Cho, Man Soon; Choo, Kee Nam; Kang, Young Hwan; Sohn, Jae Min; Shin, Yoon Taeg; Park, Sung Jae; Kim, Bong Goo; Kim, Young Jin

    2005-01-01

    A creep capsule is a device to investigate the creep characteristics of nuclear materials during inpile irradiation tests. To obtain the design data of the capsule through a preliminary thermal analysis, a 2-dimensional model for the cross section of the capsule including the specimens and components is generated, and an analysis using the ANSYS program is performed. The gamma-heating rates of the materials for the HANARO power of 30MW are considered, and the effect of the gap size and the control rod position on the temperature of the specimen is discussed. From the analysis it is found that the gap between the thermal media and the external tube has a significant effect on the temperature of the specimen. The temperature by increasing the position of the control rod is decreased

  3. An experimental-numerical method for comparative analysis of joint prosthesis

    International Nuclear Information System (INIS)

    Claramunt, R.; Rincon, E.; Zubizarreta, V.; Ros, A.

    2001-01-01

    The difficulty that exists in the analysis of mechanical stresses in bones is high due to its complex mechanical and morphological characteristics. This complexity makes generalists modelling and conclusions derived from prototype tests very questionable. In this article a relatively simple comparative analysis systematic method that allow us to establish some behaviour differences in different kind of prosthesis is presented. The method, applicable in principle to any joint problem, is based on analysing perturbations produced in natural stress states of a bone after insertion of a joint prosthesis and combines numerical analysis using a 3-D finite element model and experimental studies based on photoelastic coating and electric extensometry. The experimental method is applied to compare two total hip prosthesis cement-free femoral stems of different philosophy. One anatomic of new generation, being of oblique setting over cancellous bone and the other madreporique of trochantero-diaphyseal support over cortical bone. (Author) 4 refs

  4. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    International Nuclear Information System (INIS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator. (paper)

  5. Micropropagation of selected Oenothera species and preliminary studies on their secondary metabolites

    Directory of Open Access Journals (Sweden)

    Barbara Thiem

    2014-01-01

    Full Text Available A method was devised for the micropropagation of eight species of the genus Oenothera L. from shoot tips and shoot segments with nodes. Microshoot cultures were obtained from explants on Murashige and Skoog (MS medium enriched with IAA and BA. Numerous shoots developed properly after they had been transferred onto MS medium without BA. When they had rooted under the influence of auxins (IAA or IBA, shoots were transferred to pots and then to the soil, where they matured. In the seeds produced by these plants, the content of fatty acids was determined using the GC method. A preliminary analysis of flavonoid compounds and phenolic acids was made using the 2D TLC method (fingerprinting in microshoots and leaves of soil plants regenerated in vitro.

  6. Numerical Analysis of Flow and Heat Transfer of a Viscoelastic Fluid Over A Stretching Sheet by Using the Homotopy Analysis Method

    DEFF Research Database (Denmark)

    Momeni, M.; Jamshidi, N.; Barari, Amin

    2011-01-01

    equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison with the numerical method in solving this problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear...... conclusion can be drawn from the numerical method results that the HAM provides highly accurate solutions for nonlinear differential equations. Design/methodology/approach - In this paper a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet channel...... is presented and the Homotopy Analysis Method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison...

  7. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  8. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    International Nuclear Information System (INIS)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  9. Preliminary analysis on hybrid Box-Jenkins - GARCH modeling in forecasting gold price

    Science.gov (United States)

    Yaziz, Siti Roslindar; Azizan, Noor Azlinna; Ahmad, Maizah Hura; Zakaria, Roslinazairimah; Agrawal, Manju; Boland, John

    2015-02-01

    Gold has been regarded as a valuable precious metal and the most popular commodity as a healthy return investment. Hence, the analysis and prediction of gold price become very significant to investors. This study is a preliminary analysis on gold price and its volatility that focuses on the performance of hybrid Box-Jenkins models together with GARCH in analyzing and forecasting gold price. The Box-Cox formula is used as the data transformation method due to its potential best practice in normalizing data, stabilizing variance and reduces heteroscedasticity using 41-year daily gold price data series starting 2nd January 1973. Our study indicates that the proposed hybrid model ARIMA-GARCH with t-innovation can be a new potential approach in forecasting gold price. This finding proves the strength of GARCH in handling volatility in the gold price as well as overcomes the non-linear limitation in the Box-Jenkins modeling.

  10. Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Zhang, Yanfei; Cherney, Maia M.; Solomonson, Matthew; Liu, Jianshe; James, Michael N. G.; Weiner, Joel H.

    2009-01-01

    The sulfide:quinone oxidoreductase from A. ferrooxidans ATCC 23270 was overexpressed in E. coli and purified. Crystallization and preliminarily X-ray crystallographic analysis were performed for the recombinant enzyme. The gene product of open reading frame AFE-1293 from Acidithiobacillus ferrooxidans ATCC 23270 is annotated as encoding a sulfide:quinone oxidoreductase, an enzyme that catalyses electron transfer from sulfide to quinone. Following overexpression in Escherichia coli, the enzyme was purified and crystallized using the hanging-drop vapour-diffusion method. The native crystals belonged to the tetragonal space group P4 2 2 1 2, with unit-cell parameters a = b = 131.7, c = 208.8 Å, and diffracted to 2.3 Å resolution. Preliminary crystallographic analysis indicated the presence of a dimer in the asymmetric unit, with an extreme value of the Matthews coefficient (V M ) of 4.53 Å 3 Da −1 and a solvent content of 72.9%

  11. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  12. Most significant preliminary results of the probabilistic safety analysis on the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Perdomo, Manuel

    1995-01-01

    Since 1990 the Group for PSA Development and Applications (GDA/APS) is working on the Level-1 PSA for the Juragua-1 NPP, as a part of an IAEA Technical Assistance Project. The main objective of this study, which is still under way, is to assess, in a preliminary way, the Reactor design safety to find its potential 'weak points' at the construction stage, using a eneric data base. At the same time, the study allows the PSA team to familiarize with the plant design and analysis techniques for the future operational PSA of the plant. This paper presents the most significant preliminary results of the study, which reveal some advantages of the safety characteristics of the plant design in comparison with the homologous VVER-440 reactors and some areas, where including slight modifications would improve the plant safety, considering the level of detail at which the study is carried out. (author). 13 refs, 1 fig, 2 tabs

  13. PWR control rod ejection analysis with the numerical nuclear reactor

    International Nuclear Information System (INIS)

    Hursin, M.; Kochunas, B.; Downar, T. J.

    2008-01-01

    During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then

  14. MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.

    Directory of Open Access Journals (Sweden)

    Matthew J Wade

    Full Text Available Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.

  15. MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.

    Science.gov (United States)

    Wade, Matthew J; Oakley, Jordan; Harbisher, Sophie; Parker, Nicholas G; Dolfing, Jan

    2017-01-01

    Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.

  16. Direct Numerical Simulations of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Livescu, D; Wei, T; Petersen, M R

    2011-01-01

    The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.

  17. The SNS target station preliminary Title I shielding analyses

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Lillie, R.A.; Barnes, J.M.; McNeilly, G.S.

    2000-01-01

    The Department of Energy (DOE) has given the Spallation Neutron Source (SNS) project approval to begin Title I design of the proposed facility to be built at Oak Ridge National Laboratory (ORNL). During the conceptual design phase of the SNS project, the target station bulk-biological shield was characterized and the activation of the major targets station components was calculated. Shielding requirements were assessed with respect to weight, space, and dose-rate constraints for operating, shut-down, and accident conditions utilizing the SNS shield design criteria, DOE Order 5480.25, and requirements specified in 10 CFR 835. Since completion of the conceptual design phase, there have been major design changes to the target station as a result of the initial shielding and activation analyses, modifications brought about due to engineering concerns, and feedback from numerous external review committees. These design changes have impacted the results of the conceptual design analyses, and consequently, have required a re-investigation of the new design. Furthermore, the conceptual design shielding analysis did not address many of the details associated with the engineering design of the target station. In this paper, some of the proposed SNS target station preliminary Title I shielding design analyses will be presented. The SNS facility (with emphasis on the target station), shielding design requirements, calculational strategy, and source terms used in the analyses will be described. Preliminary results and conclusions, along with recommendations for additional analyses, will also be presented. (author)

  18. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  19. Preliminary screening analysis of the off-site environment downstream of the US Department of Energy Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1990-01-01

    Operations and waste disposal activities at the Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge Gaseous Diffusion Plant (ORGDP), located on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) in eastern Tennessee, have introduced airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams that ultimately drain into the Clinch River. Previously reported concentrations of radionuclides, metals, and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of contaminants of possible concern to the protection of human health and the environment. A preliminary screening was conducted of contaminants in the off-site surface water environments downstream of the DOE ORR. This screening analysis represents part of a scoping phase of the Clinch River Resource Conservation and Recovery Facilities Investigation (CRRFI). The purpose of this preliminary screening analysis is to use existing data on off-site contaminant concentrations to identify and prioritize potential contaminants of concern for further evaluation and investigation. The primary objective of this screening analysis is to ensure that CRRFI sampling and analysis efforts focus on those contaminants that may possibly contribute to human health or environmental risk. 8 refs., 3 figs., 6 tabs

  20. Fukushima Daiichi unit 1 uncertainty analysis--Preliminary selection of uncertain parameters and analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Cardoni, Jeffrey N.; Kalinich, Donald A.

    2014-02-01

    Sandia National Laboratories (SNL) plans to conduct uncertainty analyses (UA) on the Fukushima Daiichi unit (1F1) plant with the MELCOR code. The model to be used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). However, that study only examined a handful of various model inputs and boundary conditions, and the predictions yielded only fair agreement with plant data and current release estimates. The goal of this uncertainty study is to perform a focused evaluation of uncertainty in core melt progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, vessel lower head failure, etc.). In preparation for the SNL Fukushima UA work, a scoping study has been completed to identify important core melt progression parameters for the uncertainty analysis. The study also lays out a preliminary UA methodology.

  1. Numerical bifurcation analysis of delay differential equations arising from physiological modeling.

    Science.gov (United States)

    Engelborghs, K; Lemaire, V; Bélair, J; Roose, D

    2001-04-01

    This paper has a dual purpose. First, we describe numerical methods for continuation and bifurcation analysis of steady state solutions and periodic solutions of systems of delay differential equations with an arbitrary number of fixed, discrete delays. Second, we demonstrate how these methods can be used to obtain insight into complex biological regulatory systems in which interactions occur with time delays: for this, we consider a system of two equations for the plasma glucose and insulin concentrations in a diabetic patient subject to a system of external assistance. The model has two delays: the technological delay of the external system, and the physiological delay of the patient's liver. We compute stability of the steady state solution as a function of two parameters, compare with analytical results and compute several branches of periodic solutions and their stability. These numerical results allow to infer two categories of diabetic patients for which the external system has different efficiency.

  2. Numerical model analysis of the shaded dye-sensitized solar cell module

    International Nuclear Information System (INIS)

    Chen Shuanghong; Weng Jian; Huang Yang; Zhang Changneng; Hu Linhua; Kong Fantai; Wang Lijun; Dai Songyuan

    2010-01-01

    On the basis of a numerical model analysis, the photovoltaic performance of a partially shadowed dye-sensitized solar cell (DSC) module is investigated. In this model, the electron continuity equation and the Butler-Vollmer equation are applied considering electron transfer via the interface of transparent conducting oxide/electrolyte in the shaded DSC. The simulation results based on this model are consistent with experimental results. The influence of shading ratio, connection types and the intensity of irradiance has been analysed according to experiments and numerical simulation. It is found that the performance of the DSC obviously declines with an increase in the shaded area due to electron recombination at the TCO/electrolyte interface and that the output power loss of the shadowed DSC modules in series is much larger than that in parallel due to the 'breakdown' occurring at the TCO/electrolyte interface. The impact of shadow on the DSC performance is stronger with increase in irradiation intensity.

  3. Attempts at a numerical realisation of stochastic differential equations containing Preisach operator

    International Nuclear Information System (INIS)

    McCarthy, S; Rachinskii, D

    2011-01-01

    We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.

  4. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  5. Preliminary 2D design study for A ampersand PCT

    International Nuclear Information System (INIS)

    Keto, E.; Azevedo, S.; Roberson, P.

    1995-03-01

    Lawrence Livermore National Laboratory is currently designing and constructing a tomographic scanner to obtain the most accurate possible assays of radioactivity in barrels of nuclear waste in a limited amount of time. This study demonstrates a method to explore different designs using laboratory experiments and numerical simulations. In particular, we examine the trade-off between spatial resolution and signal-to-noise. The simulations are conducted in two dimensions as a preliminary study for three dimensional imaging. We find that the optimal design is entirely dependent on the expected source sizes and activities. For nuclear waste barrels, preliminary results indicate that collimators with widths of 1 to 3 inch and aspect ratios of 5:1 to 10:1 should perform well. This type of study will be repeated in 3D in more detail to optimize the final design

  6. Expression, purification, crystallization and preliminary X-ray analysis of wild-type and of an active-site mutant of glyceraldehyde-3-phosphate dehydrogenase from Campylobacter jejuni

    International Nuclear Information System (INIS)

    Tourigny, David S.; Elliott, Paul R.; Edgell, Louise J.; Hudson, Gregg M.; Moody, Peter C. E.

    2010-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray analysis of wild-type and of an active-site mutant of C. jejuni glyceraldehyde-3-phosphate dehydrogenase is reported. The genome of the enteric pathogen Campylobacter jejuni encodes a single glyceraldehyde-3-phosphate dehydrogenase that can utilize either NADP + or NAD + as coenzymes for the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of both the wild type and an active-site mutant of the enzyme are presented. Preliminary X-ray analysis revealed that in both cases the crystals diffracted to beyond 1.9 Å resolution. The space group is shown to be I4 1 22, with unit-cell parameters a = 90.75, b = 90.75, c = 225.48 Å, α = 90.46, β = 90.46, γ = 222.79°; each asymmetric unit contains only one subunit of the tetrameric enzyme

  7. Space reactor preliminary mechanical design

    International Nuclear Information System (INIS)

    Meier, K.L.

    1983-01-01

    An analysis was performed on the SABRE reactor space power system to determine the effect of the number and size of heat pipes on the design parameters of the nuclear subsystem. Small numbers of thin walled heat pipes were found to give a lower subsystem mass, but excessive fuel swelling resulted. The SP-100 preliminary design uses 120 heat pipes because of acceptable fuel swelling and a minimum nuclear subsystem mass of 1875 kg. Salient features of the reactor preliminary design are: individual fuel modules, ZrO 2 block core mounts, bolted collar fuel module restraints, and a BeO central plug

  8. Numerical Analysis on the Free Fall Motion of the Control Rod Assembly for the Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Hong; Choi, Choengryul; Son, Sung-Man [ELSOLTEC, Yongin (Korea, Republic of); Kim, Jae-Yong; Yoon, Kyung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    On receiving the scram signal, the control rod assemblies are released to fall into the reactor core by its weight. Thus drop time and falling velocity of the control rod assembly must be estimated for the safety evaluation. However, because of its complex shape, it is difficult to estimate the drop time by theoretical method. In this study, numerical analysis has been carried out in order to estimate drop time and falling velocity of the control rod assembly to provide the underlying data for the design optimization. Numerical analysis has been carried out to estimate the drop time and falling velocity of the control rod assembly for sodium-cooled fast reactor. Before performing the numerical analysis for the control rod assembly, sphere dropping experiment has been carried out for verification of the CFD methodology. The result of the numerical analysis for the method verification is almost same as the result of the experiment. Falling velocity and drag force increase rapidly in the beginning. And then it goes to the stable state. When the piston head of the control rod assembly is inserted into the damper, the drag force increases instantaneously and the falling velocity decreases quickly. The falling velocity is reduced about 14 % by damper. The total drop time of the control rod assembly is about 1.47s. In the next study, the experiment for the control rod assembly will be carried out, and its result is going to be compared with the CFD analysis result.

  9. Numerical and experimental analysis of the impact of a nuclear spent fuel cask

    Energy Technology Data Exchange (ETDEWEB)

    Aquaro, D. [Department of Mechanical, Nuclear and Production Engineering (DIMNP), Pisa University, Via Diotisalvi, Pisa (Italy); Zaccari, N., E-mail: nicola.zaccari@enel.i [Department of Mechanical, Nuclear and Production Engineering (DIMNP), Pisa University, Via Diotisalvi, Pisa (Italy); Di Prinzio, M.; Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering (DIMNP), Pisa University, Via Diotisalvi, Pisa (Italy)

    2010-04-15

    This paper deals with the numerical and experimental analyses of a shell type shock absorber for a nuclear spent fuel cask. Nine-meter free drop tests performed on reduced scale models are described. The results are compared with numerical simulations performed with FEM computer codes, considering reduced scale models as well as the prototype. The paper shows the results of a similitude analysis, with which the data obtained by means of the reduced scale models can be extrapolated to the prototype. Small discrepancies were obtained using large-scale models (1:2 and 1:6), while small-scale models (1:12) did not give reliable results. A 1:9 scale model provided useful information with a less than 20% error.

  10. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  11. Central receiver solar thermal power system. Phase 1. CDRL item 2; Pilot Plant preliminary design report. Volume II. System decription and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    An active system analysis and integration effort has been maintained. These activities have included the transformation of initial program requirements into a preliminary system design, the evolution of subsystem requirements which lay the foundation for subsystem design and test activity, and the overseeing of the final preliminary design effort to ensure that the subsystems are operationally compatible and capable of producing electricity at the lowest possible cost per unit of energy. Volume II of the Preliminary Design Report presents the results of the overall system effort that went on during this contract. The effort is assumed to include not only the total system definition and design but also all subsystem interactions.

  12. Preliminary Analysis of Rapid Condensation Experiment with MARS-KS Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Ho; Jun, Hwang Yong; Jeong, Hae Yong [Sejong University, Seoul (Korea, Republic of)

    2016-05-15

    In the present study, the rapid condensation experiment performed in MANOTEA facility is analyzed with the MARS-KS code. It is known that there exists some limitation with a system code to predict this kind of a very active condensation due to direct mixing of cold injection flow and steam. Through the analysis we investigated the applicability of MARS-KS code for the design of various passive safety systems in the future. The configuration of the experimental facility MANOTEA, which has been constructed at the University of Maryland - United States Naval Academy, is described and the modeling approach using the MARS-KS code is also provided. The preliminary result shows that the MARS-KS predicts the general trend of pressure and temperature in the condensing part correctly. However, it is also found that there exist some limitations in the simulation such as an unexpected pressure peak or a sudden temperature change.

  13. LASSO observations at McDonald and OCA/CERGA: A preliminary analysis

    Science.gov (United States)

    Veillet, CH.; Fridelance, P.; Feraudy, D.; Boudon, Y.; Shelus, P. J.; Ricklefs, R. L.; Wiant, J. R.

    1993-01-01

    The Laser Synchronization from Synchronous Orbit (LASSO) observations between USA and Europe were made possible with the move of Meteosat 3/P2 toward 50 deg W. Two Lunar Laser Ranging stations participated into the observations: the MLRS at McDonald Observatory (Texas, USA) and OCA/CERGA (Grasse, France). Common sessions were performed since 30 Apr. 1992, and will be continued up to the next Meteosat 3/P2 move further West (planned for January 1993). The preliminary analysis made with the data already collected by the end of Nov. 1992 shows that the precision which can be obtained from LASSO is better than 100 ps, the accuracy depending on how well the stations maintain their time metrology, as well as on the quality of the calibration (still to be made.) For extracting such a precision from the data, the processing has been drastically changed compared to the initial LASSO data analysis. It takes into account all the measurements made, timings on board, and echoes at each station. This complete use of the data increased dramatically the confidence into the synchronization results.

  14. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhou, E-mail: zhaozhou@swip.ac.cn; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-02-15

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li{sub 4}SiO{sub 4} pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  15. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    International Nuclear Information System (INIS)

    Zhao, Zhou; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-01-01

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li_4SiO_4 pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  16. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  17. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  18. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

    Science.gov (United States)

    Jain, Sonal

    2018-01-01

    In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

  19. Direct numerical simulation of annular flows

    Science.gov (United States)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  20. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  1. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    Science.gov (United States)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  2. BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis

    DEFF Research Database (Denmark)

    Nielsen, S.S.; Toft, K.N.; Snakenborg, Detlef

    2009-01-01

    A fully open source software program for automated two-dimensional and one-dimensional data reduction and preliminary analysis of isotropic small-angle X-ray scattering (SAXS) data is presented. The program is freely distributed, following the open-source philosophy, and does not rely on any...... commercial software packages. BioXTAS RAW is a fully automated program that, via an online feature, reads raw two-dimensional SAXS detector output files and processes and plots data as the data files are created during measurement sessions. The software handles all steps in the data reduction. This includes...... mask creation, radial averaging, error bar calculation, artifact removal, normalization and q calibration. Further data reduction such as background subtraction and absolute intensity scaling is fast and easy via the graphical user interface. BioXTAS RAW also provides preliminary analysis of one...

  3. Oxygenates in automotive fuels. Consequence analysis - preliminary study

    International Nuclear Information System (INIS)

    Brandberg, Aa.; Saevbark, B.

    1994-01-01

    Oxygenates is used in gasoline due to several reasons. They are added as high-octane components in unleaded gasoline and as agents to reduce the emission of harmful substances. Oxygenates produced from biomass might constitute a coming market for alternative fuels. This preliminary study describes the prerequisites and consequences of such an oxygenate utilization. 39 refs, 9 figs, 5 tabs

  4. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  5. The preliminary of software development for the kinematics analysis of 5 DOF Nuclear Malaysia robot arm v2

    International Nuclear Information System (INIS)

    Mohd Zaid Hassan; Anwar Abdul Rahman; Rosli Darmawan; Mohd Arif Hamzah

    2010-01-01

    This paper presents the preliminary software development for the kinematics analysis of 5 DOF rescue robot. The kinematics analysis is the study of relationship between the individual joints of the robot manipulator, the position and orientation of the end-effector. The Denavit-Hartenberg (DH) model is used to model the robot links and joints. Both forward and inverse kinematic are presented. The simulation software has been developed by using MATLAB to solve the robot arms kinematic behavior. (author)

  6. Preliminary Safety Analysis Report for the Transuranic Storage Area Retrieval Enclosure at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-03-01

    This Transuranic Storage Area Retrieval Enclosure Preliminary Safety Analysis Report was completed as required by DOE Order 5480.23. The purpose of this document is to construct a safety basis that supports the design and permits construction of the facility. The facility has been designed to the requirements of a Radioactive Solid Waste Facility presented in DOE Order 6430.1A

  7. Structural analysis of salt cavities formed by solution mining: I. Method of analysis and preliminary results for spherical cavities

    International Nuclear Information System (INIS)

    Fossum, A.F.

    1976-01-01

    The primary objective of this effort is an analysis of the structural stability of cavities formed by solution mining in salt domes. In particular, the effects of depth (i.e. initial state of in situ stress), shape, volume (i.e. physical dimensions of the cavity), and sequence of salt excavation/fluid evacuation on the timewise structural stability of a cavity are of interest. It is anticipated that an assessment can be made of the interrelation between depth, cavern size, and cavern shape or of the practical limits therewith. In general, the cavity shape is assumed to be axisymmetric and the salt is assumed to exhibit nonlinear creep behavior. The primary emphasis is placed on the methodology of the finite element analysis, and the results of preliminary calculations for a spherically shaped cavity. It is common practice for engineers to apply elasticity theory to the behavior of rock in order to obtain near field stresses and displacements around an underground excavation in an effort to assess structural stability. Rock masses, particularly at depth, may be subjected to a rather complex state of initial stress, and may be nonhomogeneous and anisotropic. If one also includes complex geometrical excavation shape, the use of analytical techniques as an analysis tool is practically impossible. Thus, it is almost a necessity that approximate solution techniques be employed. In this regard, the finite element method is ideal as it can handle complex geometries and nonlinear material behavior with relative ease. An unusual feature of the present study is the incorporation into the finite element code of a procedure for handling the gradual creation or excavation of an underground cavity. During the excavation sequence, the salt is permitted to exhibit nonlinear stress-strain-time dependence. The bulk of this report will be devoted to a description of the analysis procedures, together with a preliminary calculation for a spherically shaped cavity

  8. NUMERICAL AND EXPERIMENTAL ANALYSIS OF UNSTEADY WORK OF U-SHAPE BOREHOLE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S. A. Filatau

    2014-01-01

    Full Text Available Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.

  9. Analytical and Numerical Studies of Several Fluid Mechanical Problems

    Science.gov (United States)

    Kong, D. L.

    2014-03-01

    fluid systems, which are featured by fast rotation and very small viscosity effects, three dimensional fully nonlinear numerical simulations of Navier-Stokes equations play important roles. A precession-driven flow in a rotating channel is studied by the combination of asymptotic analysis and fully parallel numerical simulations. Various results of laminar and turbulent flows are thereby presented. Resonant precession-driven flows prove to be a possible candidate to persistently maintain the dynamo processes in the Earth-like planets. Computational fluid dynamics requires massive computing capability. Incompressibility and thin viscous boundary layers can pose huge difficulties to large scale numerical simulations. To make full use of the power of modern high performance computing facilities, a C++ 3D finite-element analysis code is under development based on PETSc platform. The code and data structures will be elaborated, along with the presentations of some preliminary calculations of the Jupiter's polytropic interior.

  10. Analysis of stresses on buried pipeline subjected to landslide based on numerical simulation and regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)

    2010-07-01

    Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.

  11. Strategy for a numerical Rock Mechanics Site Descriptive Model. Further development of the theoretical/numerical approach

    International Nuclear Information System (INIS)

    Olofsson, Isabelle; Fredriksson, Anders

    2005-05-01

    The Swedish Nuclear and Fuel Management Company (SKB) is conducting Preliminary Site Investigations at two different locations in Sweden in order to study the possibility of a Deep Repository for spent fuel. In the frame of these Site Investigations, Site Descriptive Models are achieved. These products are the result of an interaction of several disciplines such as geology, hydrogeology, and meteorology. The Rock Mechanics Site Descriptive Model constitutes one of these models. Before the start of the Site Investigations a numerical method using Discrete Fracture Network (DFN) models and the 2D numerical software UDEC was developed. Numerical simulations were the tool chosen for applying the theoretical approach for characterising the mechanical rock mass properties. Some shortcomings were identified when developing the methodology. Their impacts on the modelling (in term of time and quality assurance of results) were estimated to be so important that the improvement of the methodology with another numerical tool was investigated. The theoretical approach is still based on DFN models but the numerical software used is 3DEC. The main assets of the programme compared to UDEC are an optimised algorithm for the generation of fractures in the model and for the assignment of mechanical fracture properties. Due to some numerical constraints the test conditions were set-up in order to simulate 2D plane strain tests. Numerical simulations were conducted on the same data set as used previously for the UDEC modelling in order to estimate and validate the results from the new methodology. A real 3D simulation was also conducted in order to assess the effect of the '2D' conditions in the 3DEC model. Based on the quality of the results it was decided to update the theoretical model and introduce the new methodology based on DFN models and 3DEC simulations for the establishment of the Rock Mechanics Site Descriptive Model. By separating the spatial variability into two parts, one

  12. The effect of high-resolution orography on numerical modelling of atmospheric flow: a preliminary experiment

    International Nuclear Information System (INIS)

    Scarani, C.; Tampieri, F.; Tibaldi, S.

    1983-01-01

    The effect of increasing the resolution of the topography in models of numerical weather prediction is assessed. Different numerical experiments have been performed, referring to a case of cyclogenesis in the lee of the Alps. From the comparison, it appears that the lower atmospheric levels are better described by the model with higherresolution topography; comparable horizontal resolution runs with smoother topography appear to be less satisfactory in this respect. It turns out also that the vertical propagation of the signal due to the front-mountain interaction is faster in the high-resolution experiment

  13. Preliminary radiation criteria and nuclear analysis for ETF

    International Nuclear Information System (INIS)

    Engholm, B.A.

    1980-09-01

    Preliminary biological and materials radiation dose criteria for the Engineering Test Facility are described and tabulated. In keeping with the ETF Mission Statement, a key biological dose criterion is a 24-hour shutdown dose rate of 2 mrem/hr on the surface of the outboard bulk shield. Materials dose criteria, which primarily govern the inboard shield design, include 10 9 rads exposure limit to epoxy insulation, 3 x 10 -4 dpa damage to the TF coil copper stabilizer, and a total nuclear heating rate of 5 kW in the inboard TF coils. Nuclear analysis performed during FY 80 was directed primarily at the inboard and outboard bulk shielding, and at radiation streaming in the neutral beam drift ducts. Inboard and outboard shield thicknesses to achieve the biological and materials radiation criteria are 75 cm inboard and 125 cm outboard, the configuration consisting of alternating layers of stainless steel and borated water. The outboard shield also includes a 5 cm layer of lead. NBI duct streaming analyses performed by ORNL and LASL will play a key role in the design of the duct and NBI shielding in FY 81. The NBI aluminum cryopanel nuclear heating rate during the heating cycle is about 1 milliwatt/cm 3 , which is far less than the permissible limit

  14. Numerical method for analysis of temperature rises and thermal stresses around high level radioactive waste repository in granite

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1982-01-01

    The disposal of high-level radioactive waste should result in temperature rises and thermal stresses which change the hydraulic conductivity of the rock around the repository. For safety analysis on disposal of high-level radioactive waste into hard rock, it is necessary to find the temperature rises and thermal stresses distributions around the repository. In this paper, these distribution changes are analyzed by the use of the finite difference method. In advance of numerical analysis, it is required to simplify the shapes and properties of the repository and the rock. Several kinds of numerical models are prepared, and the results of this analysis are examined. And, the waste disposal methods are discussed from the stand-points of the temperature rise and thermal stress analysis. (author)

  15. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  16. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    Science.gov (United States)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  17. Numerical analysis and optimisation of heavy water upgrading column

    International Nuclear Information System (INIS)

    Sankar, Rama; Ghosh, Brindaban; Bhanja, K.

    2013-01-01

    In the 'Pressurised Heavy Water' type of reactors, heavy water is used both as moderator and coolant. During operation of reactor downgraded heavy water is generated that needs to be upgraded for reuse in the reactor. When the isotopic purity of heavy water becomes less than 99.75%, it is termed as downgraded heavy water. Downgraded heavy water also contains impurity such as corrosion products, dirt, oil etc. Upgradation of downgraded heavy water is normally done in two steps: (i) Purification: In this step downgraded heavy water is first purified to remove corrosion products, dirt, oil, etc. and (ii) Upgradation of heavy water to increase its isotopic purity, this step is carried out by vacuum distillation of downgraded heavy water after purification. This project is aimed at mathematical modelling and numerical simulation of heavy water upgrading column. Modelling and simulation studies of the upgradation column are based on equilibrium stage model to evaluate the effect of feed location, pressure, feed composition, reflux ratio in the packed column for given reboiler and condenser duty of distillation column. State to stage modelling of two-phase two-component flow has constitutes the overall modelling of the column. The governing equations consist of stage-wise species and overall mass continuity and stage-wise energy balance. This results in tridigonal matrix equation for stage liquid fractions for heavy and light water. The stage-wise liquid flow rates and temperatures are governed by stage-wise mass and energy balance. The combined form of the corresponding governing equations, with the incorporation of thermodynamic equation of states, form a system of nonlinear equations. This system have been resolved numerically using modified Newton-Raphson method. A code in the MATLAB platform has been developed by on above numerical procedure. The optimisation of the column operating conditions is to be carried out based on parametric studies and analysis of different

  18. Application of numerical analysis technique to make up for pipe wall thinning prediction program

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2009-01-01

    Flow Accelerated Corrosion (FAC) leads to wall thinning of steel piping exposed to flowing water or wet steam. Experience has shown that FAC damage to piping at fossil and nuclear plants can lead to costly outages and repairs and can affect plant reliability and safety. CHEWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data to prevent piping failures caused by FAC. However, CHECWORKS may be occasionally left out local susceptible portions owing to predicting FAC damage by pipeline group after constructing a database for all secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of the CHECWORKS prediction results in terms of numerical analysis. FAC susceptible locations based on CHECWORKS for the two pipeline groups of a nuclear plant was compared with those of numerical analysis based on FLUENT.

  19. Numerical Modeling and Mechanical Analysis of Flexible Risers

    Directory of Open Access Journals (Sweden)

    J. Y. Li

    2015-01-01

    Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.

  20. Damage detection and quantification using mode curvature variation on framed structures: analysis of the preliminary results

    Science.gov (United States)

    Iacovino, Chiara; Ditommaso, Rocco; Auletta, Gianluca; Ponzo, Felice C.

    2017-04-01

    Continuous monitoring based on vibrational identification methods is increasingly employed for the evaluation of the state of health of existing buildings after strong motion earthquake. Different damage identification methods are based on the variations of damage indices defined in terms modal (eigenfrequencies, mode shapes, and modal damping) and/or non-modal parameters. Most of simplified methods for structural health monitoring and damage detection are based on the evaluation of the dynamic characteristics evolution associated to the fundamental mode of vibration of a monitored structure. Aim of this work is the upgrade of an existing method for damage localization on framed structures during a moderate/destructive earthquake. The existing version of the method is based on the comparison of the geometric characteristics (with particular reference to the mode curvature) exhibited by the structures, related to fundamental mode of vibration, before and during an earthquake. The approach is based on the use of a nonlinear filter, the band-variable filter, based on the Stockwell Transform able to extract the nonlinear response of each mode of vibration. The new version of the method provides the possibility to quantify a possible damage occurred on the monitored structure linking the mode curvature variation with the maximum inter-story drift. This paper shows the preliminary results obtained from several simulations on nonlinear numerical models of reinforced concrete framed structures, designed for only gravity loads, without and with the presence of infill panels. Furthermore, a correlation between maximum mode curvature difference and maximum inter-story drift has been defined for the different numerical models in order to quantify the structural damage. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the

  1. Expression, purification, crystallization and preliminary crystallographic analysis of PA3885 (TpbA) from Pseudomonas aeruginosa PAO1

    International Nuclear Information System (INIS)

    Yang, Wen; Li, Kan; Bai, Yuwei; Zhou, Ruimin; Zhou, Weihong; Bartlam, Mark

    2010-01-01

    PA3885 (TpbA), a tyrosine phosphatase, may function as a balancing factor between biofilm formation and motility in the opportunistic pathogen P. aeruginosa. Here, the expression, purification, crystallization and preliminary crystallographic analysis of PA3885 from P. aeruginosa PAO1 are reported. Biofilms are important in cell communication and growth in most bacteria and are also responsible for most human clinical infections and diseases. Quorum-sensing systems have been identified to be crucial for biofilm formation and regulation. PA3885 (TpbA), a tyrosine phosphatase, is reported to convert extracellular quorum-sensing signals into internal gene-cascade reactions that result in reduced biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. Here, PA3885 from P. aeruginosa PAO1 was expressed, purified and crystallized. Single crystals were studied by X-ray crystallography and native diffraction data were collected to 2.8 Å resolution. These crystals were determined to belong to space group C2. It was not possible to conclusively determine the number of proteins in the asymmetric unit from the preliminary X-ray diffraction data analysis alone and attempts to determine the crystal structure of PA3885 are currently under way

  2. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Petrareanu, Georgiana; Balasu, Mihaela C.; Zander, Ulrich; Scheidig, Axel J.; Szedlacsek, Stefan E.

    2010-01-01

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P2 1 . Diffraction data were obtained to a resolution of 2.2 Å

  4. Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I

    Energy Technology Data Exchange (ETDEWEB)

    Ariza, Antonio; Vickers, Tim J.; Greig, Neil; Fairlamb, Alan H.; Bond, Charles S., E-mail: c.s.bond@dundee.ac.uk [Division of Biological Chemistry and Molecular Microbiology, Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dundee DD1 5EH,Scotland (United Kingdom)

    2005-08-01

    The detoxification enzyme glyoxalase I from L. major has been crystallized. Preliminary molecular-replacement calculations indicate the presence of three glyoxalase I dimers in the asymmetric unit. Glyoxalase I (GLO1) is a putative drug target for trypanosomatids, which are pathogenic protozoa that include the causative agents of leishmaniasis. Significant sequence and functional differences between Leishmania major and human GLO1 suggest that it may make a suitable template for rational inhibitor design. L. major GLO1 was crystallized in two forms: the first is extremely disordered and does not diffract, while the second, an orthorhombic form, produces diffraction to 2.0 Å. Molecular-replacement calculations indicate that there are three GLO1 dimers in the asymmetric unit, which take up a helical arrangement with their molecular dyads arranged approximately perpendicular to the c axis. Further analysis of these data are under way.

  5. Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu

    2015-08-01

    Full Text Available In this paper, two tetrapyrrolic complexes, Zn(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin and Cu(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.

  6. Extra-Property Legal Reserve in the Cerrado Biome: A preliminary Analysis within the Watershed Context

    Directory of Open Access Journals (Sweden)

    Fábio Carneiro Lobo

    2006-08-01

    Full Text Available This paper presents a normalized remaining vegetation index (NRVI based on land use data, which is evaluated according to three distinct minimum watershed sizes (10,000, 50,000 and 200,000 ha , whose limits were derived via SRTM data (Shuttle Radar Topography Mission. The NRVI varies from -1 (i. e. entirely converted watersheds to 1 (no conversion at all, and allows the association of land use data to numerical variables, such as social development indices. High NRVI values were found in the Northeastern watersheds of Goias State , while negative NRVI values predominated in the Southeastern and Southern portions of the study area. In compliance to the Brazilian Forest Code (i. e. permanent preservation areas and legal reserve, we estimated an NRVI value of -0.382, which is found in only 50,13% of the 10,000 ha watersheds. Although preliminary, our results suggest that NRVI can effectively serve the purposes of a transferable development rights approach (TDR regarding legal reserves in the State of Goias and Federal District.

  7. Numerical analysis of the construction of Odelouca Dam using a Subloading Surface Soil Model

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2014-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil, and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca dam construction. In this analysis the explicit finite difference program FLAC is used. An unconventional elastoplastic soil model, a Subloadin...

  8. Numerical analysis of thermoluminescence glow curves; Analisis numerico de las cruvas de termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Ros, J M; Delgado, A

    1989-07-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs.

  9. A two-step approach for the preliminary evaluation of the thermal-hydraulics and safety of the ELSY open square core design

    International Nuclear Information System (INIS)

    Meloni, Paride; Bandini, Giacomino; Polidori, Massimiliano; Cervone, Antonio; Manservisi, Sandro

    2009-01-01

    Several innovative solutions for a liquid metal fast reactor design have been investigated in the EURATOM Sixth Framework Programme and an open-assembly core design for the ELSY (European Lead-cooled System) reactor has been proposed by ENEA. The development of this new reactor, based on innovative neutronic and safety considerations, requires a new approach to the thermal-hydraulic (T/H) core design. In this paper a new two-step approach of the T/H analysis for this open-assembly core is presented and, in particular is used for the evaluation of the preliminary core design of a 1500 MW lead fast reactor with open square lattice and three fuel radial zones with different levels of enrichment. In the first step a preliminary thermal-hydraulic and safety evaluation of the core neutronic design is investigated by using a one-dimensional RELAP5 model for independent channel analysis. Then two and three-dimensional effects are taken into account by using a dedicated tool for the evaluation of assembly mixing effects. The RELAP5 model, based on pressure loss and heat transfer correlations available for heavy liquid metal flows in rod bundle, consists of completely independent assemblies and therefore it can be used for a conservative evaluation of the thermal-hydraulics of the core reactor. Due to the open-lattice configuration, the two and three-dimensional effects are important and they are taken into account by using a simplified three-dimensional numerical model of an open square lattice reactor core, developed with the purpose of analyzing the whole core behavior. The numerical simulation is performed at assembly length level taking into account the local fluctuations of turbulent viscosity and energy exchange coefficients at sub-channel level through transfer operators based on parametric coefficients. A preliminary evaluation of the mixing effects between assembly flows on the temperature field has been performed by using an average assembly turbulent viscosity

  10. Numerical analysis of gas puff modulation experiment on JT-60U

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Sakasai, Akira

    1992-03-01

    In tokamak transport physics, source modulation experiments are one of the most effective methods. For an analysis of these modulation experiments, a simple numerical method was developed to solve the general transport equations. This method was applied to gas puff modulation experiments on JT-60U. From the comparison between the measured and calculated density perturbations, it was found that the particle diffusion coefficient is about 0.8 m 2 /sec in the edge region and 0.1-0.2 m 2 /sec in the central region. (author)

  11. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    Science.gov (United States)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  12. NUMERICAL ANALYSIS AND EXPERIMENTAL INVESTIGATION OF DISK SPRING CONFIGURATIONS WITH REGARD TO LOAD CAPACITY OF SAFETY PROGRESSIVE GEARS

    Directory of Open Access Journals (Sweden)

    Paweł LONKWIC

    2016-09-01

    Full Text Available The paper investigates the effect of various disk spring package configurations on brake load of safety progressive gears. The numerical analysis is performed using the Abaqus/CAE software and the designed 3D models. The numerical results are then verified in experimental tests. The tests also examine the effect of lubrication on brake load of spring packages. In addition, the paper investigates the work conditions of safety progressive gears at emergency braking. The experimental results show agreement with the numerical results.

  13. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Ji Yi-Cai

    2015-01-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)

  14. Yoga Meditation Practitioners Exhibit Greater Gray Matter Volume and Fewer Reported Cognitive Failures: Results of a Preliminary Voxel-Based Morphometric Analysis

    Directory of Open Access Journals (Sweden)

    Brett Froeliger

    2012-01-01

    Full Text Available Hatha yoga techniques, including physical postures (asanas, breathing exercises (pranayama, and meditation, involve the practice of mindfulness. In turn, yoga meditation practices may induce the state of mindfulness, which, when evoked recurrently through repeated practice, may accrue into trait or dispositional mindfulness. Putatively, these changes may be mediated by experience-dependent neuroplastic changes. Though prior studies have identified differences in gray matter volume (GMV between long-term mindfulness practitioners and controls, no studies to date have reported on whether yoga meditation is associated with GMV differences. The present study investigated GMV differences between yoga meditation practitioners (YMP and a matched control group (CG. The YMP group exhibited greater GM volume in frontal, limbic, temporal, occipital, and cerebellar regions; whereas the CG had no greater regional greater GMV. In addition, the YMP group reported significantly fewer cognitive failures on the Cognitive Failures Questionnaire (CFQ, the magnitude of which was positively correlated with GMV in numerous regions identified in the primary analysis. Lastly, GMV was positively correlated with the duration of yoga practice. Results from this preliminary study suggest that hatha yoga practice may be associated with the promotion of neuroplastic changes in executive brain systems, which may confer therapeutic benefits that accrue with repeated practice.

  15. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    Science.gov (United States)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  16. Application of preliminary risk analysis at marble finishing plants in Recife's metropolitan area.

    Science.gov (United States)

    de Melo Neto, Rútilo P; Kohlman Rabbani, Emilia R

    2012-01-01

    The finishing of marble occurs in quarries all over Brazil, being the most significant dimension of the ornamental stone sector, with 7,000 businesses. Recife's Metropolitan Area (RMR) contains approximately 106 marble quarries, 25 of them unionized. The study focused on the application of Preliminary Risk Analysis, conducted at two unionized quarries: M1, a small business; and the second, M2, considered a micro enterprise. In this analysis both the administrative and the productive sectors were evaluated. The fieldwork was done in the month of December 2010. The study revealed that the two quarries carried moderate risks in the administrative sector, mainly due to ergonomic factors, and that in the productive sectors the risks were high, specifically because of excess noise, dust material, and precarious electrical installations. Using the results of the qualitative analysis as a base, the need for quantitative study presents itself in order to determine the most adequate modes of protection to be of assistance in the management of these risks, guaranteeing the safety and health of the worker and consequently the improvement in productivity in this sector.

  17. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  18. Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2017-01-01

    In the present work, we developed a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. The numerical model is based on the coupling between the porous media model and the lumped mass structural model. A novel interface was implemented...

  19. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  20. Numerical simulation and analysis for low-frequency rock physics measurements

    Science.gov (United States)

    Dong, Chunhui; Tang, Genyang; Wang, Shangxu; He, Yanxiao

    2017-10-01

    In recent years, several experimental methods have been introduced to measure the elastic parameters of rocks in the relatively low-frequency range, such as differential acoustic resonance spectroscopy (DARS) and stress-strain measurement. It is necessary to verify the validity and feasibility of the applied measurement method and to quantify the sources and levels of measurement error. Relying solely on the laboratory measurements, however, we cannot evaluate the complete wavefield variation in the apparatus. Numerical simulations of elastic wave propagation, on the other hand, are used to model the wavefield distribution and physical processes in the measurement systems, and to verify the measurement theory and analyze the measurement results. In this paper we provide a numerical simulation method to investigate the acoustic waveform response of the DARS system and the quasi-static responses of the stress-strain system, both of which use axisymmetric apparatus. We applied this method to parameterize the properties of the rock samples, the sample locations and the sensor (hydrophone and strain gauges) locations and simulate the measurement results, i.e. resonance frequencies and axial and radial strains on the sample surface, from the modeled wavefield following the physical experiments. Rock physical parameters were estimated by inversion or direct processing of these data, and showed a perfect match with the true values, thus verifying the validity of the experimental measurements. Error analysis was also conducted for the DARS system with 18 numerical samples, and the sources and levels of error are discussed. In particular, we propose an inversion method for estimating both density and compressibility of these samples. The modeled results also showed fairly good agreement with the real experiment results, justifying the effectiveness and feasibility of our modeling method.