WorldWideScience

Sample records for preliminary numerical analysis

  1. Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will

  2. Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code

    International Nuclear Information System (INIS)

    Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong

    2014-01-01

    The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will

  3. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  4. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  5. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  6. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  7. Numerical analysis

    CERN Document Server

    Jacques, Ian

    1987-01-01

    This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...

  8. Preliminary analysis of four numerical models for calculating the mesoscale transport of Kr-85

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1983-01-01

    A performance study of four numerical algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids has been made. Dispersion from point and distributed sources and a simulation of a continuous source are compared with analytical solutions to assess relative accuracy. Model predictions are then compared with actual measurements of Kr-85 emitted from the Savannah River Plant (SRP). The particle-in-cell and method of moments algorithms exhibit superior accuracy in modeling single source releases. For modeling distributed sources, algorithms based on the pseudospectral and finite element interpolation concepts exhibit comparable accuracy. The method of moments is felt to be the best overall performer, although all the models appear to be relatively close in accuracy.

  9. Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two

  10. Introductory numerical analysis

    CERN Document Server

    Pettofrezzo, Anthony J

    2006-01-01

    Written for undergraduates who require a familiarity with the principles behind numerical analysis, this classical treatment encompasses finite differences, least squares theory, and harmonic analysis. Over 70 examples and 280 exercises. 1967 edition.

  11. Numerical analysis of bifurcations

    International Nuclear Information System (INIS)

    Guckenheimer, J.

    1996-01-01

    This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics

  12. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  13. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  14. Numerical analysis using Sage

    CERN Document Server

    Anastassiou, George A

    2015-01-01

    This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application.  Answers may be verified using Sage.  The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®.  Sage is  open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...

  15. Numerical analysis II essentials

    CERN Document Server

    REA, The Editors of; Staff of Research Education Association

    1989-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Numerical Analysis II covers simultaneous linear systems and matrix methods, differential equations, Fourier transformations, partial differential equations, and Monte Carlo methods.

  16. UVISS preliminary visibility analysis

    DEFF Research Database (Denmark)

    Betto, Maurizio

    1998-01-01

    The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part of the w......The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part...... of the work is also to setup the kernel of a software tool for the visibility analysis thatshould be easily expandable to consider more complex strucures for future activities.This analysis is part of the UVISS assessment study and it is meant to provide elementsfor the definition and the selection...

  17. Numerical Analysis Objects

    Science.gov (United States)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  18. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    Science.gov (United States)

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  19. Introduction to numerical analysis

    CERN Document Server

    Hildebrand, F B

    1987-01-01

    Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.

  20. Numerical analysis targets

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    Numerical analyses are needed in different steps of the overall design process. Complex models or non-linear reactor core behaviour are important for qualification and/or comparison of results obtained. Adequate models and test should be defined. Fuel assembly, fuel row, and the complete core should be tested for seismic effects causing LOCA and flow-induced vibrations (FIV)

  1. Handbook of numerical analysis

    CERN Document Server

    Ciarlet, Philippe G

    Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an

  2. On the complexity of numerical analysis

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Allender, Eric; Burgisser, Peter

    2009-01-01

    an integer N, decide whether N>0. • In the Blum-Shub-Smale model, polynomial time computation over the reals (on discrete inputs) is polynomial-time equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform...... reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomial-time equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling......We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The Blum-Shub-Smale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation,” which captures an aspect of doing numerical computation...

  3. Pickering safeguards: a preliminary analysis

    International Nuclear Information System (INIS)

    Todd, J.L.; Hodgkinson, J.G.

    1977-05-01

    A summary is presented of thoughts relative to a systems approach for implementing international safeguards. Included is a preliminary analysis of the Pickering Generating Station followed by a suggested safeguards system for the facility

  4. Numerical Limit Analysis:

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2007-01-01

    Limit State analysis has a long history and many prominent researchers have contributed. The theoretical foundation is based on the upper- and lower-bound theorems which give a very comprehensive and elegant formulation on complicated physical problems. In the pre-computer age Limit State analysis...... also enabled engineers to solve practical problems within reinforced concrete, steel structures and geotechnics....

  5. Theoretical numerical analysis a functional analysis framework

    CERN Document Server

    Atkinson, Kendall

    2005-01-01

    This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu

  6. Preliminary HECTOR analysis by Dragon

    Energy Technology Data Exchange (ETDEWEB)

    Presser, W; Woloch, F

    1972-06-02

    From the different cores measured in HECTOR, only ACH 4/B-B was selected for the Dragon analysis, since it presented the largest amount of uniform fuel loading in the central test region and is therefore nearest to an infinite lattice. Preliminary results are discussed.

  7. Matlab programming for numerical analysis

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become

  8. Numerical analysis of electromagnetic fields

    CERN Document Server

    Zhou Pei Bai

    1993-01-01

    Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...

  9. Concept Overview & Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2017-07-12

    'H2@Scale' is an opportunity for wide-scale use of hydrogen as an intermediate that carries energy from various production options to multiple uses. It is based on identifying and developing opportunities for low-cost hydrogen production and investigating opportunities for using that hydrogen across the electricity, industrial, and transportation sectors. One of the key production opportunities is use of low-cost electricity that may be generated under high penetrations of variable renewable generators such as wind and solar photovoltaics. The technical potential demand for hydrogen across the sectors is 60 million metric tons per year. The U.S. has sufficient domestic renewable resources so that each could meet that demand and could readily meet the demand using a portfolio of generation options. This presentation provides an overview of the concept and the technical potential demand and resources. It also motivates analysis and research on H2@Scale.

  10. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor

  11. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  12. Odelouca Dam Construction: Numerical Analysis

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2012-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca Dam`s construction. The material con-stants of the soil model used are determined from a comprehensive testing programme carried out in the C...

  13. Assessment of Available Numerical Tools for Dynamic Mooring Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Eskilsson, Claes; Ferri, Francesco

    This report covers a preliminary assessment of available numerical tools to be used in upcoming full dynamic analysis of the mooring systems assessed in the project _Mooring Solutions for Large Wave Energy Converters_. The assessments tends to cover potential candidate software and subsequently c...

  14. Preliminary hazards analysis -- vitrification process

    International Nuclear Information System (INIS)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility's construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment

  15. Preliminary hazards analysis -- vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  16. Plasma brake model for preliminary mission analysis

    Science.gov (United States)

    Orsini, Leonardo; Niccolai, Lorenzo; Mengali, Giovanni; Quarta, Alessandro A.

    2018-03-01

    Plasma brake is an innovative propellantless propulsion system concept that exploits the Coulomb collisions between a charged tether and the ions in the surrounding environment (typically, the ionosphere) to generate an electrostatic force orthogonal to the tether direction. Previous studies on the plasma brake effect have emphasized the existence of a number of different parameters necessary to obtain an accurate description of the propulsive acceleration from a physical viewpoint. The aim of this work is to discuss an analytical model capable of estimating, with the accuracy required by a preliminary mission analysis, the performance of a spacecraft equipped with a plasma brake in a (near-circular) low Earth orbit. The simplified mathematical model is first validated through numerical simulations, and is then used to evaluate the plasma brake performance in some typical mission scenarios, in order to quantify the influence of the system parameters on the mission performance index.

  17. Integration of numerical analysis tools for automated numerical optimization of a transportation package design

    International Nuclear Information System (INIS)

    Witkowski, W.R.; Eldred, M.S.; Harding, D.C.

    1994-01-01

    The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package's components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed

  18. Preliminary Context Analysis of Community Informatics Social ...

    African Journals Online (AJOL)

    Preliminary context analysis is always part of the feasibility study phase in the development of information system for Community Development (CD) purposes. In this paper, a context model and a preliminary context analysis are presented for Social Network Web Application (SNWA) for CD in the Niger Delta region of ...

  19. Numerical Modelling and Simulation of Dynamic Parameters for Vibration Driven Mobile Robot: Preliminary Study

    Science.gov (United States)

    Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.

    2018-03-01

    The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.

  20. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  1. An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2013-01-01

    Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to

  2. Original Article PRELIMINARY BIOAUTOGRAPHIC ANALYSIS OF ...

    African Journals Online (AJOL)

    PRELIMINARY BIOAUTOGRAPHIC ANALYSIS OF THE SEEDS OF GLYPHAEA BREVIS. (SPRENG) MONACHINO FOR ANTIOXIDANT AND ANTIBACTERIAL PRINCIPLES. Michael Lahai1, Tiwalade Adewale Olugbade2. 1Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, College of Medicine ...

  3. Preliminary Analysis of Reinforced Concrete Waffle Walls

    National Research Council Canada - National Science Library

    Shugar, Theodore

    1997-01-01

    A preliminary analytical method based upon modified plate bending theory is offered for structural analysis of a promising new construction method for walls of small buildings and residential housing...

  4. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  5. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  6. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  7. Average-case analysis of numerical problems

    CERN Document Server

    2000-01-01

    The average-case analysis of numerical problems is the counterpart of the more traditional worst-case approach. The analysis of average error and cost leads to new insight on numerical problems as well as to new algorithms. The book provides a survey of results that were mainly obtained during the last 10 years and also contains new results. The problems under consideration include approximation/optimal recovery and numerical integration of univariate and multivariate functions as well as zero-finding and global optimization. Background material, e.g. on reproducing kernel Hilbert spaces and random fields, is provided.

  8. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  9. Preliminary result of a three dimensional numerical simulation of cloud formation over a cooling pond

    International Nuclear Information System (INIS)

    Yamada, T.

    1978-01-01

    Cooling ponds receive large amounts of waste heat from industrial sources and release the heat to the atmosphere. These large area sources of warm and moist air may have significant inadvertent effects. This paper is a preliminary step in the development of a method for estimating the perturbations in the atmosphere produced by a cooling pond. A three-dimensional numerical model based on turbulence second-moment closure equations and Gaussian cloud relations has been developed. A simplified version of the model, in which only turbulent energy and length-scale equations are solved prognostically, is used. Numerical simulations are conducted using as boundary conditions the data from a cooling pond study conducted in northern Illinois during the winter of 1976-1977. Preliminary analyses of these simulations indicate that formation of clouds over a cooling pond is sensitive to the moisture content in the ambient atmosphere

  10. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  11. Preliminary failure mode and effect analysis

    International Nuclear Information System (INIS)

    Addison, J.V.

    1972-01-01

    A preliminary Failure Mode and Effect Analysis (FMEA) was made on the overall 5 Kwe system. A general discussion of the system and failure effect is given in addition to the tabulated FMEA and a primary block diagram of the system. (U.S.)

  12. Preliminary safety analysis report for the TFTR

    International Nuclear Information System (INIS)

    Lind, K.E.; Levine, J.D.; Howe, H.J.

    A Preliminary Safety Analysis Report has been prepared for the Tokamak Fusion Test Reactor. No accident scenarios have been identified which would result in exposures to on-site personnel or the general public in excess of the guidelines defined for the project by DOE

  13. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lui, S H

    2011-01-01

    A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

  14. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  15. Licensing Support System: Preliminary data scope analysis

    International Nuclear Information System (INIS)

    1989-01-01

    The purpose of this analysis is to determine the content and scope of the Licensing Support System (LSS) data base. Both user needs and currently available data bases that, at least in part, address those needs have been analyzed. This analysis, together with the Preliminary Needs Analysis (DOE, 1988d) is a first effort under the LSS Design and Implementation Contract toward developing a sound requirements foundation for subsequent design work. These reports are preliminary. Further refinements must be made before requirements can be specified in sufficient detail to provide a basis for suitably specific system specifications. This document provides a baseline for what is known at this time. Additional analyses, currently being conducted, will provide more precise information on the content and scope of the LSS data base. 23 refs., 4 figs., 8 tabs

  16. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    ; the framework is based on the theory of rigid-plasticity, and the resulting mathematical optimisation problem can be solved efficiently using modern algorithms. This paper gives a brief introduction to convex optimisation and numerical limit analysis. The mathematical formulation of lower bound load...

  17. Numerical analysis of thermoluminescence glow curves

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs

  18. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  19. Preliminary Analysis of Google+'s Privacy

    OpenAIRE

    Mahmood, Shah; Desmedt, Yvo

    2011-01-01

    In this paper we provide a preliminary analysis of Google+ privacy. We identified that Google+ shares photo metadata with users who can access the photograph and discuss its potential impact on privacy. We also identified that Google+ encourages the provision of other names including maiden name, which may help criminals performing identity theft. We show that Facebook lists are a superset of Google+ circles, both functionally and logically, even though Google+ provides a better user interfac...

  20. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  1. Ferrofluids: Modeling, numerical analysis, and scientific computation

    Science.gov (United States)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  2. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  3. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    For more than half a century, limit state analysis based on the extremum principles have been used to assess the load bearing capacity of reinforced concrete structures. Extensi- ve research within the field has lead to several techniques for performing such analysis manually. While these manual...... methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...

  4. Preliminary Hazards Analysis Plasma Hearth Process

    International Nuclear Information System (INIS)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment

  5. A numerical technique for reactor subchannel analysis

    International Nuclear Information System (INIS)

    Fath, Hassan E.S.

    1983-01-01

    A numerical technique is developed for the solution of the transient boundary layer equations with a moving liquid-vapour interface boundary. The technique uses the finite difference method with the velocity components defined over an Eulerian mesh. A system of interface massless markers is defined where the markers move with the flow field according to a simple kinematic relation between the interface geometry and the fluid velocity. Different applications of nuclear engineering interest are reported with some available results. The present technique is capable of predicting the interface profile near the wall which is important in the reactor subchannel analysis

  6. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen

    Precast concrete elements are widely used in the construction industry as they provide a number of advantages over the conventional in-situ cast concrete structures. Joints cast on the construction site are needed to connect the precast elements, which poses several challenges. Moreover, the curr...... problems are solved efficiently using state-of-the-art solvers. It is concluded that the framework and developed joint models have the potential to enable efficient design of precast concrete structures in the near future......., the current practice is to design the joints as the weakest part of the structure, which makes analysis of the ultimate limit state behaviour by general purpose software difficult and inaccurate. Manual methods of analysis based on limit analysis have been used for several decades. The methods provide...... of the ultimate limit state behaviour. This thesis introduces a framework based on finite element limit analysis, a numerical method based on the same extremum principles as the manual limit analysis. The framework allows for efficient analysis and design in a rigorous manner by use of mathematical optimisation...

  7. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  8. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  9. Preliminary Shielding Analysis for HCCB TBM Transport

    Science.gov (United States)

    Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming

    2015-09-01

    A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  10. Sensitivity analysis of numerical solutions for environmental fluid problems

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu; Motoyama, Yasunori

    2003-01-01

    In this study, we present a new numerical method to quantitatively analyze the error of numerical solutions by using the sensitivity analysis. If a reference case of typical parameters is one calculated with the method, no additional calculation is required to estimate the results of the other numerical parameters such as more detailed solutions. Furthermore, we can estimate the strict solution from the sensitivity analysis results and can quantitatively evaluate the reliability of the numerical solution by calculating the numerical error. (author)

  11. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  12. Activation analysis by filtered neutrons. Preliminary investigation

    International Nuclear Information System (INIS)

    Skarnemark, G.; Rodinson, T.; Skaalberg, M.; Tokay, R.K.

    1986-01-01

    In order to investigate if measuring sensibility and precision by epithermal neutron activation analysis may be improved, different types of geological and biologic test samples were radiated. The test samples were enclosed in an extra filter of tungsten or sodium in order to reduce the flux of those neutrons that otherwise would induce interfering activity in the sample. The geological test samples consist of granites containing lanthanides which had been crushed in tung- sten carbide grinder. Normally such test samples show a interferins 1 87W-activity. By use of a tungsten filter the activity was reduced by up to 60%, which resulted in a considerable improvement of sensibility and precision of the measurement. The biologic test samples consisted of evaporated urine from patients treated with the cell poison cis-platinol. A reliable method to measure the platinum content has not existed so far. This method, however, enables platinum contents as low as about 0.1 ppm to be determined which is quite adequate. To sum up this preliminary study has demonstrated that activation analysis using filtered neutrons, correctly applied, is a satisfactory method of reducing interferences without complicated and time-consuming chemical separation procedures. (O.S.)

  13. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  14. The effects of electric forces on dust lifting: Preliminary studies with a numerical model

    International Nuclear Information System (INIS)

    Kok, J F; Renno, N O

    2008-01-01

    Atmospheric dust aerosols affect the Earth's climate by scattering and absorbing radiation and by modifying cloud properties. Recent experiments have indicated that electric fields produced in dusty phenomena such as dust storms and dust devils could enhance the emission of dust aerosols. However, the generation of electric fields in dusty phenomena is poorly understood. To address this problem, we present results from the first physically-based numerical model of electric fields in dust lifting. Our model calculates the motion and collisions of air-borne particles, as well as the charge transfer during these collisions. This allows us to simulate the formation of electric fields as a function of physical parameters, such as wind stress and soil properties. Preliminary model results show that electric fields can indeed enhance the lifting of soil particles. Moreover, they suggest that strong electric fields could trigger a positive feedback because increases in the concentration of charged particles strengthen the original electric field, which in turn lifts additional surface particles. We plan to further test and calibrate our model with experimental data.

  15. Preliminary hazard analysis using sequence tree method

    International Nuclear Information System (INIS)

    Huang Huiwen; Shih Chunkuan; Hung Hungchih; Chen Minghuei; Yih Swu; Lin Jiinming

    2007-01-01

    A system level PHA using sequence tree method was developed to perform Safety Related digital I and C system SSA. The conventional PHA is a brainstorming session among experts on various portions of the system to identify hazards through discussions. However, this conventional PHA is not a systematic technique, the analysis results strongly depend on the experts' subjective opinions. The analysis quality cannot be appropriately controlled. Thereby, this research developed a system level sequence tree based PHA, which can clarify the relationship among the major digital I and C systems. Two major phases are included in this sequence tree based technique. The first phase uses a table to analyze each event in SAR Chapter 15 for a specific safety related I and C system, such as RPS. The second phase uses sequence tree to recognize what I and C systems are involved in the event, how the safety related systems work, and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. In the sequence tree, the defense-in-depth echelons, including Control echelon, Reactor trip echelon, ESFAS echelon, and Indication and display echelon, are arranged to construct the sequence tree structure. All the related I and C systems, include digital system and the analog back-up systems are allocated in their specific echelon. By this system centric sequence tree based analysis, not only preliminary hazard can be identified systematically, the vulnerability of the nuclear power plant can also be recognized. Therefore, an effective simplified D3 evaluation can be performed as well. (author)

  16. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  17. Analysis of numerical solutions for Bateman equations

    International Nuclear Information System (INIS)

    Loch, Guilherme G.; Bevilacqua, Joyce S.

    2013-01-01

    The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

  18. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  19. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  20. Preliminary Analysis and Selection of Mooring Solution Candidates

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Delaney, Martin

    This report covers a preliminary analysis of mooring solutions candidates for four large floating wave energy converters. The work is part of the EUDP project “Mooring Solutions for Large Wave Energy Converters” and is the outcome of "Work Package 3: Preliminary Analysis". The report further...... compose the "Milestone 4: Report on results of preliminary analysis and selection of final candidates. The report is produced by Aalborg University with input from the partner WECs Floating Power Plant, KNSwing, LEANCON and Wave Dragon. Tension Technology International (TTI) has provided a significant...

  1. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lions, Jacques-Louis

    2011-01-01

    S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro

  2. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  3. Lecture notes in numerical analysis with Mathematica

    CERN Document Server

    Styś, Tadeusz

    2014-01-01

    The contents of this book include chapters on floating point computer arithmetic, natural and generalized interpolating polynomials, uniform approximation, numerical integration, polynomial splines and many more.This book is intended for undergraduate and graduate students in institutes, colleges, universities and academies who want to specialize in this field. The readers will develop a solid understanding of the concepts of numerical methods and their application. The inclusion of Lagrane and Hermite approximation by polynomials, Trapezian rule, Simpsons rule, Gauss methods and Romberg`s met

  4. Preliminary safety analysis of the Gorleben site

    International Nuclear Information System (INIS)

    Bracke, G.; Fischer-Appelt, K.

    2014-01-01

    The safety requirements governing the final disposal of heat-generating radioactive waste in Germany were implemented by the Federal Ministry of Environment, Natural Conservation and Nuclear Safety (BMU) in 2010. The Ministry considers as a fundamental objective the protection of man and the environment against the hazards of radioactive waste. Unreasonable burdens and obligation for future generations shall be avoided. The main safety principles are concentration and inclusion of radioactive and other pollutants in a containment-providing rock zone. Any release of radioactive nuclides may increase the risk for men and the environment only negligibly compared to natural radiation exposure. No intervention or maintenance work shall be necessary in the post-closure phase. Retrieval/recovery of the waste shall be possible up to 500 years after closure. The Gorleben salt dome has been discussed since the 1970's as a possible repository site for heat-generating radioactive waste in Germany. The objective of the project preliminary safety analysis of the Gorleben site (VSG) was to assess if repository concepts at the Gorleben site or other sites with a comparable geology could comply with these requirements based on currently available knowledge (Fischer-Appelt, 2013; Bracke, 2013). In addition to this it was assessed if methodological approaches can be used for a future site selection procedure and which technological and conceptual considerations can be transferred to other geological situations. The objective included the compilation and review of the available exploration data of the Gorleben site and on disposal in salt rock, the development of repository designs, and the identification of the needs for future R and D work and further site investigations. (authors)

  5. Numerical analysis of Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  6. The Scrap Tire Problem: A Preliminary Economic Analysis (1985)

    Science.gov (United States)

    The purpose of the study was to conduct a preliminary economic analysis of the social benefits of EPA action to require more appropriate disposal of scrap tires versus the social costs of such an action.

  7. Original Article PRELIMINARY BIOAUTOGRAPHIC ANALYSIS OF ...

    African Journals Online (AJOL)

    Sierra Leone 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ... the seeds are used in the treatment of skin infections. ... Screening with DPPH showed prominent antioxidant spots on silica at Rf 0.8, 0.5, 0.4 .... underpins conditions like rheumatoid arthritis, ..... As a follow-up to the preliminary TLC studies.

  8. A Preliminary Tsunami vulnerability analysis for Bakirkoy district in Istanbul

    Science.gov (United States)

    Tufekci, Duygu; Lutfi Suzen, M.; Cevdet Yalciner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Resilience of coastal utilities after earthquakes and tsunamis has major importance for efficient and proper rescue and recovery operations soon after the disasters. Vulnerability assessment of coastal areas under extreme events has major importance for preparedness and development of mitigation strategies. The Sea of Marmara has experienced numerous earthquakes as well as associated tsunamis. There are variety of coastal facilities such as ports, small craft harbors, and terminals for maritime transportation, water front roads and business centers mainly at North Coast of Marmara Sea in megacity Istanbul. A detailed vulnerability analysis for Yenikapi region and a detailed resilience analysis for Haydarpasa port in Istanbul have been studied in previously by Cankaya et al., (2015) and Aytore et al., (2015) in SATREPS project. In this study, the methodology of vulnerability analysis under tsunami attack given in Cankaya et al., (2015) is modified and applied to Bakirkoy district of Istanbul. Bakirkoy district is located at western part of Istanbul and faces to the North Coast of Marmara Sea from 28.77oE to 28.89oE. High resolution spatial dataset of Istanbul Metropolitan Municipality (IMM) is used and analyzed. The bathymetry and topography database and the spatial dataset containing all buildings/structures/infrastructures in the district are collated and utilized for tsunami numerical modeling and following vulnerability analysis. The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability assessment parameters in the district according to vulnerability and resilience are defined; and scored by implementation of a GIS based TVA with appropriate MCDA methods. The risk level is computed using tsunami intensity (level of flow depth from simulations) and TVA results at every location in Bakirkoy district. The preliminary results are presented and discussed

  9. Mathematical and numerical analysis of plasma stability

    International Nuclear Information System (INIS)

    Saramito, B.

    1987-11-01

    Equilibrium of a tokamak plasma is analyzed using two two-dimensional numerical models. Plasma configuration; convection in a cylindrical plasma layer; and tearing instabilities in a flat layer are considered. The finite element code used is explained. The existence of analogous stationary solutions for a problem concerning compressible fluids is shown. Stationary convection created by the equilibrium density gradient is treated. Approximation using fluid equations is employed in the case of convection resulting from the equilibrium temperature gradient. Evolution towards turbulence of incompressible fluid models is followed [fr

  10. Numerical and experimental analysis on tensile properties of ...

    Indian Academy of Sciences (India)

    A Shadrach Jeyasekaran

    2014-11-17

    Nov 17, 2014 ... 4 Department of Electronics and Communication Engineering, Sri Sai ... the findings that the numerical analysis is found to be higher than experimental analysis. .... using ANSYS software has showed that the differences of.

  11. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  12. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  13. A theoretical introduction to numerical analysis

    CERN Document Server

    Ryaben'kii, Victor S

    2006-01-01

    PREFACE ACKNOWLEDGMENTS INTRODUCTION Discretization Conditioning Error On Methods of Computation INTERPOLATION OF FUNCTIONS. QUADRATURES ALGEBRAIC INTERPOLATION Existence and Uniqueness of Interpolating Polynomial Classical Piecewise Polynomial Interpolation Smooth Piecewise Polynomial Interpolation (Splines) Interpolation of Functions of Two Variables TRIGONOMETRIC INTERPOLATION Interpolation of Periodic Functions Interpolation of Functions on an Interval. Relation between Algebraic and Trigonometric Interpolation COMPUTATION OF DEFINITE INTEGRALS. QUADRATURES Trapezoidal Rule, Simpson's Formula, and the Like Quadrature Formulae with No Saturation. Gaussian Quadratures Improper Integrals. Combination of Numerical and Analytical Methods Multiple Integrals SYSTEMS OF SCALAR EQUATIONS SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS: DIRECT METHODS Different Forms of Consistent Linear Systems Linear Spaces, Norms, and Operators Conditioning of Linear Systems Gaussian Elimination and Its Tri-Diag...

  14. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  15. Review of Preliminary Analysis Techniques for Tension Structures.

    Science.gov (United States)

    1984-02-01

    however,a linear dinamic analysis can be conducted for purposes of preliminary design, relative to the static configuration. It is noted that the amount of...16 Chapter 3. PRELIMINARY DESIGN OF TENSION STRUCTURES . . .. .. .. .... 22 S.3.1 Cable Systems . . . . . . . . . . . . .. .. .. .... 23...3.1.1 Singly-Connected Segments. .. .... ... 24 3.1.2 Multiply-Connected Segments . . .. .. .. .. 27 3.1.3 Linearized Dynamics of Cable Systems . . . . 29

  16. Numerical analysis on acoustic impulse response for watermelon

    International Nuclear Information System (INIS)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho; Lee, Yun Ho

    2002-01-01

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  17. Numerical analysis on acoustic impulse response for watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho [Dongshin University, Naju (Korea, Republic of); Lee, Yun Ho [Korea Inspection and Engineering CO.,LTD., Seoul (Korea, Republic of)

    2002-11-15

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  18. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  19. Numerical analysis on pump turbine runaway points

    International Nuclear Information System (INIS)

    Guo, L; Liu, J T; Wang, L Q; Jiao, L; Li, Z F

    2012-01-01

    To research the character of pump turbine runaway points with different guide vane opening, a hydraulic model was established based on a pumped storage power station. The RNG k-ε model and SMPLEC algorithms was used to simulate the internal flow fields. The result of the simulation was compared with the test data and good correspondence was got between experimental data and CFD result. Based on this model, internal flow analysis was carried out. The result show that when the pump turbine ran at the runway speed, lots of vortexes appeared in the flow passage of the runner. These vortexes could always be observed even if the guide vane opening changes. That is an important way of energy loss in the runaway condition. Pressure on two sides of the runner blades were almost the same. So the runner power is very low. High speed induced large centrifugal force and the small guide vane opening gave the water velocity a large tangential component, then an obvious water ring could be observed between the runner blades and guide vanes in small guide vane opening condition. That ring disappeared when the opening bigger than 20°. These conclusions can provide a theory basis for the analysis and simulation of the pump turbine runaway points.

  20. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  1. The effect of saturation on resin flow in injection pultrusion: a preliminary numerical study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Larsen, Martin; R. Rodríguez, Rosa

    . The implemented saturation and relative permeability curves are adopted from relationships presented in the literature. The results of the numerical model highlights the importance of accurately determining thesaturation curve when included in a numerical solver that is used to predict the resin flow in injection...

  2. Vacuum Large Current Parallel Transfer Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Enyuan Dong

    2014-01-01

    Full Text Available The stable operation and reliable breaking of large generator current are a difficult problem in power system. It can be solved successfully by the parallel interrupters and proper timing sequence with phase-control technology, in which the strategy of breaker’s control is decided by the time of both the first-opening phase and second-opening phase. The precise transfer current’s model can provide the proper timing sequence to break the generator circuit breaker. By analysis of the transfer current’s experiments and data, the real vacuum arc resistance and precise correctional model in the large transfer current’s process are obtained in this paper. The transfer time calculated by the correctional model of transfer current is very close to the actual transfer time. It can provide guidance for planning proper timing sequence and breaking the vacuum generator circuit breaker with the parallel interrupters.

  3. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Lai, C.H.; Stow, S.H.

    1987-05-01

    Conceptual models for sedimentary rock settings that could be used in future evaluation and suitability studies are being examined through the DOE Repository Technology Program. One area of concern for the hydrologic aspects of these models is discrete fracture flow analysis as related to the estimation of the size of the representative elementary volume, evaluation of the appropriateness of continuum assumptions and estimation of the large-scale permeabilities of sedimentary rocks. A basis for preliminary analysis of flow in fracture systems of the types that might be expected to occur in low permeability sedimentary rocks is presented. The approach used involves numerical modeling of discrete fracture flow for the configuration of a large-scale hydrologic field test directed at estimation of the size of the representative elementary volume and large-scale permeability. Analysis of fracture data on the basis of this configuration is expected to provide a preliminary indication of the scale at which continuum assumptions can be made

  4. Preliminary ATWS analysis for the IRIS PRA

    International Nuclear Information System (INIS)

    Maddalena Barra; Marco S Ghisu; David J Finnicum; Luca Oriani

    2005-01-01

    Full text of publication follows: The pressurized light water cooled, medium power (1000 MWt) IRIS (International Reactor Innovative and Secure) has been under development for four years by an international consortium of over 21 organizations from ten countries. The plant conceptual design was completed in 2001 and the preliminary design is nearing completion. The pre-application licensing process with NRC started in October, 2002. IRIS has been primarily focused on establishing a design with innovative safety characteristics. The first line of defense in IRIS is to eliminate event initiators that could potentially lead to core damage. In IRIS, this concept is implemented through the 'safety by design' approach, which allows to minimize the number and complexity of the safety systems and required operator actions. The end result is a design with significantly reduced complexity and improved operability, and extensive plant simplifications to enhance construction. To support the optimization of the plant design and confirm the effectiveness of the safety by design approach in mitigating or eliminating events and thus providing a significant reduction in the probability of severe accidents, the PRA is being used as an integral part of the design process. A preliminary but extensive Level 1 PRA model has been developed to support the pre-application licensing of the IRIS design. As a result of the Preliminary IRIS PRA, an optimization of the design from a reliability point of view was completed, and an extremely low (about 1.2 E -8 ) core damage frequency (CDF) was assessed to confirm the impact of the safety by design approach. This first assessment is a result of a PRA model including internal initiating events. During this assessment, several assumptions were necessary to complete the CDF evaluation. In particular Anticipated Transients Without Scram (ATWS) were not included in this initial assessment, because their contribution to core damage frequency was assumed

  5. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  6. Preliminary shielding analysis of VHTR reactors

    International Nuclear Information System (INIS)

    Flaspoehler, Timothy M.; Petrovic, Bojan

    2011-01-01

    Over the last 20 years a number of methods have been established for automated variance reduction in Monte Carlo shielding simulations. Hybrid methods rely on deterministic adjoint and/or forward calculations to generate these parameters. In the present study, we use the FWCADIS method implemented in MAVRIC sequence of the SCALE6 package to perform preliminary shielding analyses of a VHTR reactor. MAVRIC has been successfully used by a number of researchers for a range of shielding applications, including modeling of LWRs, spent fuel storage, radiation field throughout a nuclear power plant, study of irradiation facilities, and others. However, experience in using MAVRIC for shielding studies of VHTRs is more limited. Thus, the objective of this work is to contribute toward validating MAVRIC for such applications, and identify areas for potential improvement. A simplified model of a prismatic VHTR has been devised, based on general features of the 600 MWt reactor considered as one of the NGNP options. Fuel elements have been homogenized, and the core region is represented as an annulus. However, the overall mix of materials and the relatively large dimensions of the spatial domain challenging the shielding simulations have been preserved. Simulations are performed to evaluate fast neutron fluence, dpa, and other parameters of interest at relevant positions. The paper will investigate and discuss both the effectiveness of the automated variance reduction, as well as applicability of physics model from the standpoint of specific VHTR features. (author)

  7. Preliminary analysis of B. E. C. I

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, H; Sato, S [Waseda Univ., Tokyo (Japan). Science and Engineering Research Lab.; Saito, T; Noma, M; Matsubayashi, T

    1974-10-01

    An emulsion chamber (B.E.C.I.) with a generating layer, mounted on a baloon, was flown as preliminary experiment in May 1973. The object of this experiment was (1) the observation of high energy cosmic ray, (2) study of ultra-high energy multiple generation phenomenon, and (3) study of ultra-high energy heavy ion nuclear reaction. The emulsion chamber comprises three portions. Upper portion is 130 sheets arranged vertically at 3 mm intervals, each sheet is a 1,500 ..mu..m methacrylic base coated on one side with 200 ..mu..m emulsion. Middle portion comprises horizontally arranged 800 ..mu..m methacrylic bases coated on both sides with 50 ..mu..m emulsion, and a 1 mm methacrylic sheet is inserted every five bases. Lower portion comprises first five layers of the sandwich of 1 mm lead sheet and 800 ..mu..m methacrylic base coated on both sides with 50 ..mu..m emulsion and second ten layers of the sandwich of 2 mm lead sheet, 800 ..mu..m methacrylic base coated on one side with 50 ..mu..m emulsion, and X-ray film of N type. The cascade having energy of Esub(o)>400 GeV as the scanning efficiency of lower E.C.C., the events having incidental energy of Esub(o)>3TeV among the jets occured in lower E.C.C., and the events having incidental energy of Esub(o)>10TeV among the jets occured in generating layer have been observed. Angle distribution of the secondary charged particles of jets produced in the generating layer can be obtained accurately.

  8. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  9. Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace

    Directory of Open Access Journals (Sweden)

    Buliński P.

    2015-09-01

    Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.

  10. A Numerical Analysis on the Local Deformation of a Spacer Grid Structure for Nuclear Fuel Cells

    International Nuclear Information System (INIS)

    Jang, Myung-Geun; Na, Geum Ju; Kim, Jong-Bong; Shin, Hyunho

    2016-01-01

    The result of a preliminary numerical investigation on local deformation characteristics of a multi-layered spacer-grid structure with five guide tubes is reported based on implicit finite element analysis. For the numerical analysis, displacements of top and bottom cross sections of each guide tube in a single-layer model were constrained while a lateral displacement was imposed on the single layer. Unlike the impact hammer test that is generally employed to characterize the deformation characteristics of the space-grid structure, the buckling phenomenon occurs locally in this study; it takes place at the inner grids around each tube and the degree of bucking is more apparent for tubes near the lateral surface where the lateral displacement was imposed. (paper)

  11. Practical Recommendations for the Preliminary Design Analysis of ...

    African Journals Online (AJOL)

    Interior-to-exterior shear ratios for equal and unequal bay frames, as well as column inflection points were obtained to serve as practical aids for preliminary analysis/design of fixed-feet multistory sway frames. Equal and unequal bay five story frames were analysed to show the validity of the recommended design ...

  12. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history

  13. Preliminary analysis of patent trends for magnetic fusion technology

    International Nuclear Information System (INIS)

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information

  14. Licensing support system preliminary needs analysis: Volume 1

    International Nuclear Information System (INIS)

    1989-01-01

    This Preliminary Needs Analysis, together with the Preliminary Data Scope Analysis (next in this series of reports), is a first effort under the LSS Design and Implementation Contract toward developing a sound requirements foundation for subsequent design work. Further refinements must be made before requirements can be specified in sufficient detail to provide a basis for suitably specific system specifications. This preliminary analysis of the LSS requirements has been divided into a ''needs'' and a ''data scope'' portion only for project management and scheduling reasons. The Preliminary Data Scope Analysis will address all issues concerning the content and size of the LSS data base; providing the requirements basis for data acquisition, cataloging and storage sizing specifications. This report addresses all other requirements for the LSS. The LSS consists of both computer subsystems and non-computer archives. This study addresses only the computer subsystems, focusing on the Access Subsystems. After providing background on previous LSS-related work, this report summarizes the findings from previous examinations of needs and describes a number of other requirements that have an impact on the LSS. The results of interviews conducted for this report are then described and analyzed. The final section of the report brings all of the key findings together and describes how these needs analyses will continue to be refined and utilized in on-going design activities. 14 refs., 2 figs., 1 tab

  15. Preliminary thermal and stress analysis of the SINQ window

    International Nuclear Information System (INIS)

    Heidenreich, G.

    1991-01-01

    Preliminary results of a finite element analysis for the SINQ proton beam window are presented. Temperatures and stresses are calculated in an axisymmetric model. As a result of these calculations, the H 2 O-cooled window (safety window) could be redesigned in such a way that plastic deformation resulting from excessive stress in some areas is avoided. (author)

  16. Preliminary Integrated Safety Analysis Status Report

    International Nuclear Information System (INIS)

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  17. Thermodynamic analysis and numerical modeling of supercritical injection

    OpenAIRE

    Banuti, Daniel

    2015-01-01

    Although liquid propellant rocket engines are operational and have been studied for decades, cryogenic injection at supercritical pressures is still considered essentially not understood. This thesis intends to approach this problem in three steps: by developing a numerical model for real gas thermodynamics, by extending the present thermodynamic view of supercritical injection, and finally by applying these methods to the analysis of injection. A new numerical real gas thermodynamics mode...

  18. Preliminary analysis of alternative fuel cycles for proliferation evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ripfel, H. C.F.; Rainey, R. H.

    1977-01-01

    The ERDA Division of Nuclear Research and Applications proposed 67 nuclear fuel cycles for assessment as to their nonproliferation potential. The object of the assessment was to determine which fuel cycles pose inherently low risk for nuclear weapon proliferation while retaining the major benefits of nuclear energy. This report is a preliminary analysis of these fuel cycles to develop the fuel-recycle data that will complement reactor data, environmental data, and political considerations, which must be included in the overall evaluation. This report presents the preliminary evaluations from ANL, HEDL, ORNL, and SRL and is the basis for a continuing in-depth study. (DLC)

  19. The effect of high-resolution orography on numerical modelling of atmospheric flow: a preliminary experiment

    International Nuclear Information System (INIS)

    Scarani, C.; Tampieri, F.; Tibaldi, S.

    1983-01-01

    The effect of increasing the resolution of the topography in models of numerical weather prediction is assessed. Different numerical experiments have been performed, referring to a case of cyclogenesis in the lee of the Alps. From the comparison, it appears that the lower atmospheric levels are better described by the model with higherresolution topography; comparable horizontal resolution runs with smoother topography appear to be less satisfactory in this respect. It turns out also that the vertical propagation of the signal due to the front-mountain interaction is faster in the high-resolution experiment

  20. Numerical and RAPD Analysis of Eight Cowpea Genotypes from ...

    African Journals Online (AJOL)

    Hence, numerical tools such as single linkage cluster analysis (SLCA) and principal component analysis (PCA) have been used to determine the extent of variability. This study was conducted to determine the performance, character contribution as well as variation pattern in eight cowpea genotypes collected in Nigeria.

  1. antibacterial properties and preliminary phytochemical analysis

    African Journals Online (AJOL)

    DR. AMINU

    2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City. *Correspondence ... phytochemical analysis of the dried leaves extracts revealed the presence of alkaloids, ... for the synthesis of useful drugs.

  2. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  3. Experience with PET FDG - Preliminary analysis

    International Nuclear Information System (INIS)

    Massardo, Teresa; Jofre, Josefina; Canessa, Jose; Gonzalez, Patricio; Humeres, Pamela; Sierralta, Paulina; Galaz, Rodrigo; Miranda, Karina

    2004-01-01

    Full text: The objective of this preliminary communication was to analyse the indications and data in initial group of patients studied with first dedicated PET scanner in the country at Hospital Militar in Santiago Chile. The main application of positron emission tomography (PET) with 18-Fluoro deoxyglucose (FDG) is related with oncological patients management. We studied 136 patients, 131 (97%) with known or suspected malignant disease and remaining 5 for cardiological or neuropsychiatric disease. Ten patients were controlled diabetics (1 insulin dependent). Their mean age was 51.6±18 years ranging from 6 to 84 years and 65% were females. A total of 177 scans were acquired using a dedicated PET (Siemens HR + with 4mm resolution) system. Mean F18-FDG injected dose was 477±107 MBq (12.9±2.9 mCi). Mean blood glucose levels, performed prior the injection, were 94±17mg/dl (range 62-161). F18-FDG was obtained from the cyclotron IBA Cyclone 18/9 installed in the Chilean Agency of Nuclear Energy, distant about 15 miles away from the clinical PET facility. PET studies were analyzed by at least 4 independent observers visually. Standardized uptake value (SUV) was calculated in some cases. Image fusion of FDG images with recent anatomical (CT, MRI) studies was performed where available. Data acquisition protocol consisted in 7-8 beds/study from head to mid-thighs, with 6-7-min/bed acquisitions, 36% transmission with germanium 68 rods. Data was reconstructed with standard OSEM protocol. The main indications included pulmonary lesions in 31%, gastrointestinal cancers in 21%, melanoma in 13% and lymphoma in 9% patients. The remaining were of breast, thyroid, testes, ovary, musculoskeletal (soft tissue and bone), brain tumour etc. Abnormal focal tracer uptake was observed in 83/131 oncological patients, 54% corroborating with clinical diagnosis of primary tumor or recurrence while 46% showed new metastatic localization. FDG scans were normal 36/131 patients. In 9 patients

  4. Experience with PET FDG - Preliminary analysis

    Energy Technology Data Exchange (ETDEWEB)

    Massardo, Teresa; Jofre, Josefina; Canessa, Jose; Gonzalez, Patricio; Humeres, Pamela; Sierralta, Paulina; Galaz, Rodrigo; Miranda, Karina [Centro PET de Imagenes Moleculares, Hospital Militar de Santiago, Santiago (Chile)

    2004-01-01

    Full text: The objective of this preliminary communication was to analyse the indications and data in initial group of patients studied with first dedicated PET scanner in the country at Hospital Militar in Santiago Chile. The main application of positron emission tomography (PET) with 18-Fluoro deoxyglucose (FDG) is related with oncological patients management. We studied 136 patients, 131 (97%) with known or suspected malignant disease and remaining 5 for cardiological or neuropsychiatric disease. Ten patients were controlled diabetics (1 insulin dependent). Their mean age was 51.6{+-}18 years ranging from 6 to 84 years and 65% were females. A total of 177 scans were acquired using a dedicated PET (Siemens HR + with 4mm resolution) system. Mean F18-FDG injected dose was 477{+-}107 MBq (12.9{+-}2.9 mCi). Mean blood glucose levels, performed prior the injection, were 94{+-}17mg/dl (range 62-161). F18-FDG was obtained from the cyclotron IBA Cyclone 18/9 installed in the Chilean Agency of Nuclear Energy, distant about 15 miles away from the clinical PET facility. PET studies were analyzed by at least 4 independent observers visually. Standardized uptake value (SUV) was calculated in some cases. Image fusion of FDG images with recent anatomical (CT, MRI) studies was performed where available. Data acquisition protocol consisted in 7-8 beds/study from head to mid-thighs, with 6-7-min/bed acquisitions, 36% transmission with germanium 68 rods. Data was reconstructed with standard OSEM protocol. The main indications included pulmonary lesions in 31%, gastrointestinal cancers in 21%, melanoma in 13% and lymphoma in 9% patients. The remaining were of breast, thyroid, testes, ovary, musculoskeletal (soft tissue and bone), brain tumour etc. Abnormal focal tracer uptake was observed in 83/131 oncological patients, 54% corroborating with clinical diagnosis of primary tumor or recurrence while 46% showed new metastatic localization. FDG scans were normal 36/131 patients. In 9

  5. Preliminary engineering analysis for clothes washers

    Energy Technology Data Exchange (ETDEWEB)

    Biermayer, Peter J.

    1996-10-01

    The Engineering Analysis provides information on efficiencies, manufacturer costs, and other characteristics of the appliance class being analyzed. For clothes washers, there are two classes: standard and compact. Since data were not available to analyze the compact class, only clothes washers were analyzed in this report. For this analysis, individual design options were combined and ordered in a manner that resulted in the lowest cumulative cost/savings ratio. The cost/savings ratio is the increase in manufacturer cost for a design option divided by the reduction in operating costs due to fuel and water savings.

  6. Java technology for implementing efficient numerical analysis in intranet

    International Nuclear Information System (INIS)

    Song, Hee Yong; Ko, Sung Ho

    2001-01-01

    This paper introduces some useful Java technologies for utilizing the internet in numerical analysis, and suggests one architecture performing efficient numerical analysis in the intranet by using them. The present work has verified it's possibility by implementing some parts of this architecture with two easy examples. One is based on Servlet-Applet communication, JDBC and swing. The other is adding multi-threads, file transfer and Java remote method invocation to the former. Through this work it has been intended to make the base for the later advanced and practical research that will include efficiency estimates of this architecture and deal with advanced load balancing

  7. RC structures strengthened by metal shear panels: experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Matteis, G.; Formisano, A.; Mazzolani, F. M.

    2008-01-01

    Metal shear panels (MSPs) may be effectively used as a lateral load resisting system for framed structures. In the present paper, such a technique is applied for the seismic protection of existing RC buildings, by setting up a specific design procedure, which has been developed on the basis of preliminary full-scale experimental tests. The obtained results allowed the development of both simplified and advanced numerical models of both the upgraded structure and the applied shear panels. Also, the proposed design methodology, which is framed in the performance base design philosophy, has been implemented for the structural upgrading of a real Greek existing multi-storey RC building. The results of the numerical analysis confirmed the effectiveness of the proposed technique, also emphasising the efficiency of the implemented design methodology

  8. Preliminary analysis of the KAERI RCCS Experiment Using GAMMA+

    Energy Technology Data Exchange (ETDEWEB)

    Khoza, Samukelisiwe; Tak, Nam-il; Lim, Hong-Sik; Lee, Sung-Nam; Cho, Bong-Hyun; Kim, Jong-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This paper describes the analysis of the KAERI RCCS experiment. GAMMA+ code was used for analysis of the RCCS 1/4-scale natural cooling experimental facility designed and built at KAERI to verify the performance of the natural circulation phenomenon. The results obtained from the GAMMA+ analysis showing the temperature profiles and flow rates at steady state were compared with the results from the preliminary experiments conducted in this facility. GAMMA+ analysis for the KAERI RCCS experimental setup was carried out to understand its natural circulation behavior. The air flow rate at the chimney exit achieved by experiments was from to be almost same as that of GAMMA+.

  9. Comparative analysis of nodal and edge finite element method for numerical analysis of 3-D magnetostatic systems

    International Nuclear Information System (INIS)

    Mintchev, Pavel; Dimitrov, Marin; Balinov, Stoimen

    2002-01-01

    The possibilities for applying the Finite Element Method (FEM) with gauged magnetic vector potential and the Edge Element Method (EEM) for three-dimensional numerical analysis of magnetostatic systems are analyzed. It is established that the EEM ensures sufficient accuracy for engineering calculations but in some cases its use results in bad convergence. The use of the FEM with gauged magnetic vector potential instead of the EEM is recommended for preliminary calculations of devices with complex geometry and large air gaps between the ferromagnetic parts. (Author)

  10. Gravity field of Venus - A preliminary analysis

    Science.gov (United States)

    Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Smith, J. C.; Wimberly, R. N.; Wagner, C. A.

    1979-01-01

    The gravitational field of Venus obtained by tracking the Pioneer Venus Orbiter is examined. For each spacecraft orbit, two hours of Doppler data centered around periapsis were used to estimate spacecraft position and velocity and the velocity residuals obtained were spline fit and differentiated to produce line of sight gravitational accelerations. Consistent variations in line of sight accelerations from orbit to orbit reveal the presence of gravitational anomalies. A simulation of isostatic compensation for an elevated region on the surface of Venus indicates that the mean depth of compensation is no greater than about 100 km. Gravitational spectra obtained from a Fourier analysis of line of sight accelerations from selected Venus orbits are compared to the earth's gravitational spectrum and spherical harmonic gravitational potential power spectra of the earth, the moon and Mars. The Venus power spectrum is found to be remarkably similar to that of the earth, however systematic variations in the harmonics suggest differences in dynamic processes or lithospheric behavior.

  11. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S. [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed.

  12. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    International Nuclear Information System (INIS)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S.

    2015-01-01

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed

  13. Preliminary hazard analysis for the Brayton Isotope Ground Demonstration System (including vacuum test chamber)

    International Nuclear Information System (INIS)

    Miller, L.G.

    1975-01-01

    The Preliminary Hazard Analysis (PHA) of the BIPS-GDS is a tabular summary of hazards and undesired events which may lead to system damage or failure and/or hazard to personnel. The PHA reviews the GDS as it is envisioned to operate in the Vacuum Test Chamber (VTC) of the GDS Test Facility. The VTC and other equipment which will comprise the test facility are presently in an early stage of preliminary design and will undoubtedly undergo numerous changes before the design is frozen. The PHA and the FMECA to follow are intended to aid the design effort by identifying areas of concern which are critical to the safety and reliability of the BIPS-GDS and test facility

  14. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  15. Advanced high conversion PWR: preliminary analysis

    International Nuclear Information System (INIS)

    Golfier, H.; Bellanger, V.; Bergeron, A.; Dolci, F.; Gastaldi, B.; Koberl, O.; Mignot, G.; Thevenot, C.

    2007-01-01

    In this paper, physical aspects of a HCPWR (High Conversion Light Water Reactor), which is an innovative PWR fuelled with mixed oxide and having a higher conversion ratio due to a lower moderation ratio. Moderation ratios lower than unity are considered which has led to low moderation PWR fuel assembly designs. The objectives of this parametric study are to define a feasibility area with regard to the following neutronic aspects: moderation ratio, Pu loading, reactor spectrum, irradiation time, and neutronic coefficients. Important thermohydraulic parameters are the pressure drop, the critical heat flux, the maximum temperature in the fuel rod and the pumping power. The thermohydraulic analysis shows that a range of moderation ratios from 0.8 to 1.2 is technically possible. A compromise between improved fuel utilization and research and development effort has been found for the moderation ration of about 1. The parametric study shows that there are 2 ranges of interest for the moderation ratio: -) moderation ratio between 0.8 and 1.2 with reduced fissile heights (> 3 m), hexagonal arrangement fuel assembly and square arrangement fuel assembly are possible; and -) moderation between 0.6 and 0.7 with a modification of the reactor operating conditions (reduction of the primary flow and of the thermal power), the fuel rods could be arranged inside a hexagonal fuel rod assembly. (A.C.)

  16. A preliminary analysis of bidayuh Jagoi patun

    Directory of Open Access Journals (Sweden)

    Dayang Sariah Abang Suhai

    2013-12-01

    Full Text Available Bidayuh Pantun or Patun remains a under researched topic in Borneo studies and language research due to the difficulties associated with obtaining critical, poetic information in oral culture, language variations and societal mobility. Existing data from anthologies however provide little detail about the instrinsic and extrinsic features ascribed to the poem by the people who produce and use them. This paper attempts to explore patun from the Jagoi community. In this study, the structural aspects, themes and moral values of 47 patun from the Jagoi community were analysed. The initial explanations suggested by the poet were further analysed to determine the various structural features to place it alongside existing mainstream lyric poetry. The analysis of the intrinsic features showed that good rhythmic patun has four to six words per line and eight to 12 syllables per line, and the final syllables of each line has assonance and consonance patterns of a-a-a-a and a-b-a-b. The themes of the patun include love, advice, forgiveness, beliefs, hopelessness and happiness, and the moral values take the form of subtle advice and admonishments. The Bidayuh patun is indeed a projection of knowledge, experiences, beliefs, values, and emotions of the community.

  17. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan; Chand, Umesh

    2018-01-01

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles

  18. Investigating Convergence Patterns for Numerical Methods Using Data Analysis

    Science.gov (United States)

    Gordon, Sheldon P.

    2013-01-01

    The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…

  19. Scilab and Maxima Environment: Towards Free Software in Numerical Analysis

    Science.gov (United States)

    Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro

    2010-01-01

    In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)

  20. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured re- source. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  1. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  2. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  3. The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Bae, Jun Ho; Park, Joo Hwan

    2010-01-01

    A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect the detailed shape of rod bundle on the numerical computation due to a lot of computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers, bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve the complex geometry such as a fuel rod bundle. In front of applying the method to the problem of 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to the simple geometry. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for the future works

  4. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  5. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected.

  6. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki

    2013-01-01

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected

  7. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso

    2016-07-01

    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  8. The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Park, Joo Hwan

    2010-09-01

    A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect numerical computations on the detailed shape of rod bundle due to challenges with computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers and bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve complex geometry such as a fuel rod bundle. Before applying a solution to the problem of the 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to simple geometry. The split channel method has been proposed with the aim of computing the fully shaped CANDU fuel channel with detailed components. The validity was tested by applying the method to the single channel problem. The average temperature have similar values for the considered two methods, while the local temperature shows a slight difference by the effect of conduction heat transfer in the solid region of a rod. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for future work

  9. Numerical Analysis of Deflections of Multi-Layered Beams

    Science.gov (United States)

    Biliński, Tadeusz; Socha, Tomasz

    2015-03-01

    The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  10. Numerical Analysis of Deflections of Multi-Layered Beams

    Directory of Open Access Journals (Sweden)

    Biliński Tadeusz

    2015-03-01

    Full Text Available The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  11. On numerical solution of Burgers' equation by homotopy analysis method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2008-01-01

    In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions

  12. Numerical analysis of the big bounce in loop quantum cosmology

    International Nuclear Information System (INIS)

    Laguna, Pablo

    2007-01-01

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity

  13. Numerical analysis on pool boiling using user defined function

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Uk; Jeon, Byong Guk; Kim, Seok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    PAFS (passive auxiliary feedwater system) adopted in the APR+ (Advanced Power Reactor Plus) of Korea is one such application. When PAFS is activated with an actuation signal, steam from the steam generator passes through heat exchanger tubes submerged in a water tank of the PAFS. Outside these heat exchanger tubes, nucleate boiling phenomena appears. In the present work, a numerical study is reported on three-dimensional transient state pool boiling of water having an immersed heat source. The velocity vector fields during the decrease in the water level are numerically investigated in a pool, and the accuracy of the results is checked by comparing the experimental results conducted using the PIV techniques by Kim et al. These numerical results can be used as basic research data for an analysis and prediction of the natural circulation phenomena in the cooling tank of the passive safety system in a nuclear power plant.

  14. Numeric computation and statistical data analysis on the Java platform

    CERN Document Server

    Chekanov, Sergei V

    2016-01-01

    Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...

  15. Prediction of 222 Rn exhalation rates from phosphogypsum based stacks. Part II: preliminary numerical results

    International Nuclear Information System (INIS)

    Rabi, Jose A.; Mohamad, Abdulmajeed A.

    2004-01-01

    The first part of this paper proposes a steady-state 2-D model for 222 Rn transport in phosphogypsum stacks. In this second part, the dimensionless model equations are solved numerically with the help of an existing finite-volume simulator that has been successfully used to solve heat and mass transfer problems in porous media. As a test case, a rectangular shaped stack is considered in order to verify the ability of the proposed parametric approach to account for concurrent effects on the 222 Rn exhalation into the local atmosphere. Air flow is supposed to be strictly buoyancy driven and the ground is assumed to be impermeable to 222 Rn and at a higher temperature under the stack base. Dimensionless controlling parameters are set to representative values and results are presented for Grashof number in the range 10 6 ≤Gr≤ 10 8 , corresponding to very small to small temperature differences between incoming air and ground underneath the stack base. For the particular set of parameters and inasmuch as Gr increases, streamlines presented basically the same pattern while internal isotherms and iso concentration lines remained almost unchanged. Total average Sherwood number proved to be rather insensitive to Gr while total average Nusselt increased slightly with Gr. (author)

  16. Experimental and Numerical analysis of Metallic Bellow for Acoustic Performance

    Science.gov (United States)

    Panchwadkar, Amit A.; Awasare, Pradeep J., Dr.; Ingle, Ravidra B., Dr.

    2017-08-01

    Noise will concern about the work environment of industry. Machinery environment has overall noise which interrupts communication between the workers. This problem of miscommunication and health hazard will make sense to go for noise attenuation. Modification in machine setup may affect the performance of it. Instead of that, Helmholtz resonator principle will be a better option for noise reduction along the transmission path. Resonator has design variables which gives resonating frequency will help us to confirm the frequency range. This paper deals with metallic bellow which behaves like inertial mass under incident sound wave. Sound wave energy is affected by hard boundary condition of resonator and bellow. Metallic bellow is used in combination with resonator to find out Transmission loss (TL). Microphone attachment with FFT analyzer will give the frequency range for numerical analysis. Numerical analysis of bellow and resonator is carried out to summarize the acoustic behavior of bellow. Bellow can be numerically analyzed to check noise attenuation for centrifugal blower. An impedance tube measurement technique is performed to validate the numerical results for assembly. Dimensional and shape modification can be done to get the acoustic performance of bellow.

  17. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  18. Preliminary Mass Spectrometric Analysis of Uranium on Environmental Swipe Materials

    International Nuclear Information System (INIS)

    Cheong, Chang-Sik; Jeong, Youn-Joong; Ryu, Jong-Sik; Shin, Hyung-Seon; Cha, Hyun-Ju; Ahn, Gil-Hoon; Park, Il-Jin; Min, Gyung-Sik

    2006-01-01

    It is well-known that uranium and plutonium isotopic compositions of safeguards samples are very useful to investigate the history of nuclear activities. To strengthen the capabilities of environmental sampling analysis in the ROK through MOST/DOE collaboration, round robin test for uranium and plutonium was designed in 2003. As the first round robin test, a set of dried uranium-containing solutions (∼35ng and (∼300ng) was distributed to the participating laboratories in November of 2003, with results reported in April of 2004. The KBSI (Korea Basic Science Institute) and ORNL (Oak Ridge National Laboratory) are currently in the process of analyzing uranium on cotton swipes for the second round robin test. As a preliminary test for the second round, KBSI intends to analyze home-made swipe samples into which international uranium standards are added. Here we describe technical steps of sample preparation and mass spectrometry at KBSI, and report some results of the preliminary test

  19. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  20. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  1. Preliminary numerical simulation for shallow strata stability of coral reef in South China Sea

    Science.gov (United States)

    Tang, Qinqin; Zhan, Wenhuan; Zhang, Jinchang

    2017-04-01

    Coral reefs are the geologic material and special rock and soil, which live in shallow water of the tropic ocean and are formed through biological and geological action. Since infrastructure construction is being increasingly developed on coral reefs during recent years, it is necessary to evaluate the shallow strata stability of coral reefs in the South China Sea. The paper is to study the borehole profiles for shallow strata of coral reefs in the South China Sea, especially in the hydrodynamic marine environment?, and to establish a geological model for numerical simulation with Geo-Studio software. Five drilling holes show a six-layer shallow structure of South China Sea, including filling layer, mid-coarse sand, coral sand gravel, fine sand, limestone debris and reef limestone. The shallow coral reef profile next to lagoon is similar to "layers cake", in which the right side close to the sea is analogous to "block cake". The simulation results show that coral reef stability depends on wave loads and earthquake strength, as well as the physical properties of coral reefs themselves. The safety factor of the outer reef is greater than 10.0 in the static condition, indicating that outer reefs are less affected by the wave and earthquake. However, the safety factor next to lagoon is ranging from 0.1 to 4.9. The main reason for the variations that the strata of coral reefs close to the sea are thick. For example, the thickness of reef limestone is more than 10 m and equivalent to the block. When the thickness of inside strata is less than 10 m, they show weak engineering geological characteristics. These findings can provide useful information for coral reef constructions in future. This work was funded by National Basic Research Program of China (contract: 2013CB956104) and National Natural Science Foundation of China (contract: 41376063).

  2. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  3. Numerical analysis of a neural network with hierarchically organized patterns

    International Nuclear Information System (INIS)

    Bacci, Silvia; Wiecko, Cristina; Parga, Nestor

    1988-01-01

    A numerical analysis of the retrieval behaviour of an associative memory model where the memorized patterns are stored hierarchically is performed. It is found that the model is able to categorize errors. For a finite number of categories, these are retrieved correctly even when the stored patterns are not. Instead, when they are allowed to increase with the number of neurons, their retrieval quality deteriorates above a critical category capacity. (Author)

  4. Heterogeneous agent model and numerical analysis of learning

    Czech Academy of Sciences Publication Activity Database

    Vošvrda, Miloslav; Vácha, Lukáš

    2002-01-01

    Roč. 9, č. 17 (2002), s. 15-22 ISSN 1212-074X R&D Projects: GA ČR GA402/01/0034; GA ČR GA402/01/0539; GA AV ČR IAA7075202 Institutional research plan: CEZ:AV0Z1075907 Keywords : efficient markets hypothesis * technical trading rules * numerical analysis of learning Subject RIV: AH - Economics

  5. Numerical bifurcation analysis of conformal formulations of the Einstein constraints

    International Nuclear Information System (INIS)

    Holst, M.; Kungurtsev, V.

    2011-01-01

    The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to

  6. Numerical analysis for prediction of fatigue crack opening level

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2004-01-01

    Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials

  7. Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results

    Science.gov (United States)

    Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.

    2012-12-01

    Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base

  8. Preliminary numerical simulations of the 27 February 2010 Chile tsunami: first results and hints in a tsunami early warning perspective

    Science.gov (United States)

    Tinti, S.; Tonini, R.; Armigliato, A.; Zaniboni, F.; Pagnoni, G.; Gallazzi, Sara; Bressan, Lidia

    2010-05-01

    The tsunamigenic earthquake (M 8.8) that occurred offshore central Chile on 27 February 2010 can be classified as a typical subduction-zone earthquake. The effects of the ensuing tsunami have been devastating along the Chile coasts, and especially between the cities of Valparaiso and Talcahuano, and in the Juan Fernandez islands. The tsunami propagated across the entire Pacific Ocean, hitting with variable intensity almost all the coasts facing the basin. While the far-field propagation was quite well tracked almost in real-time by the warning centres and reasonably well reproduced by the forecast models, the toll of lives and the severity of the damage caused by the tsunami in the near-field occurred with no local alert nor warning and sadly confirms that the protection of the communities placed close to the tsunami sources is still an unresolved problem in the tsunami early warning field. The purpose of this study is two-fold. On one side we perform numerical simulations of the tsunami starting from different earthquake models which we built on the basis of the preliminary seismic parameters (location, magnitude and focal mechanism) made available by the seismological agencies immediately after the event, or retrieved from more detailed and refined studies published online in the following days and weeks. The comparison with the available records of both offshore DART buoys and coastal tide-gauges is used to put some preliminary constraints on the best-fitting fault model. The numerical simulations are performed by means of the finite-difference code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna, Italy, which can solve both the linear and non-linear versions of the shallow-water equations on nested grids. The second purpose of this study is to use the conclusions drawn in the previous part in a tsunami early warning perspective. In the framework of the EU-funded project DEWS (Distant Early Warning System), we will

  9. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis

    International Nuclear Information System (INIS)

    DYKES, A.A.

    2000-01-01

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O and M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis

  10. A general numerical analysis of the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1985-01-01

    For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.

  11. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    Science.gov (United States)

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  12. Numerical analysis of modified Central Solenoid insert design

    Energy Technology Data Exchange (ETDEWEB)

    Khodak, Andrei, E-mail: akhodak@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Martovetsky, Nicolai; Smirnov, Aleksandre [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Titus, Peter [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2015-10-15

    Highlights: • Modified design of coil for testing ITER superconducting cable is presented. • Numerical analysis allowed design verification. • Three-dimensional current sharing temperature distributions are obtained from the results. - Abstract: The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design three-dimensional numerical simulations were performed using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4 K, no current, (3) temperature 4 K, current 60 kA direct charge, and (4) temperature 4 K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4 K, no current, and temperature 4 K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor

  13. Analysis of control rod behavior based on numerical simulation

    International Nuclear Information System (INIS)

    Ha, D. G.; Park, J. K.; Park, N. G.; Suh, J. M.; Jeon, K. L.

    2010-01-01

    The main function of a control rod is to control core reactivity change during operation associated with changes in power, coolant temperature, and dissolved boron concentration by the insertion and withdrawal of control rods from the fuel assemblies. In a scram, the control rod assemblies are released from the CRDMs (Control Rod Drive Mechanisms) and, due to gravity, drop rapidly into the fuel assemblies. The control rod insertion time during a scram must be within the time limits established by the overall core safety analysis. To assure the control rod operational functions, the guide thimbles shall not obstruct the insertion and withdrawal of the control rods or cause any damage to the fuel assembly. When fuel assembly bow occurs, it can affect both the operating performance and the core safety. In this study, the drag forces of the control rod are estimated by a numerical simulation to evaluate the guide tube bow effect on control rod withdrawal. The contact condition effects are also considered. A full scale 3D model is developed for the evaluation, and ANSYS - commercial numerical analysis code - is used for this numerical simulation. (authors)

  14. Preliminary Analysis on Linac Oscillation Data LI05-19 and Wake Field Energy Loss in FACET Commissioning 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; /SLAC

    2012-07-23

    In this note, preliminary analysis on linac ocsillation data in FACET linac LI05-09 plus LI11-19 is presented. Several quadrupoles are identified to possibly have different strength, compared with their designed strength in the MAD optics model. The beam energy loss due to longitudinal wake fields in the S-band linac is also analytically calculated, also by LITRACK numerical simulations.

  15. PWR control rod ejection analysis with the numerical nuclear reactor

    International Nuclear Information System (INIS)

    Hursin, M.; Kochunas, B.; Downar, T. J.

    2008-01-01

    During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then

  16. LikelihoodLib - Fitting, Function Maximization, and Numerical Analysis

    CERN Document Server

    Smirnov, I B

    2001-01-01

    A new class library is designed for function maximization, minimization, solution of equations and for other problems related to mathematical analysis of multi-parameter functions by numerical iterative methods. When we search the maximum or another special point of a function, we may change and fit all parameters simultaneously, sequentially, recursively, or by any combination of these methods. The discussion is focused on the first the most complicated method, although the others are also supported by the library. For this method we apply: control of precision by interval computations; the calculation of derivatives either by differential arithmetic, or by the method of finite differences with the step lengths which provide suppression of the influence of numerical noise; possible synchronization of the subjective function calls with minimization of the number of iterations; competitive application of various methods for step calculation, and converging to the solution by many trajectories.

  17. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...

  18. Numerical analysis of stress fields generated by quenching process

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account mechanical phenomena generated by thermalphenomena and phase transformations. In the model of mechanical phenomena, apart from thermal, plastic and structural strain, alsotransformations plasticity was taken into account. The stress and strain fields are obtained using the solution of the Finite Elements Method of the equilibrium equation in rate form. The thermophysical constants occurring in constitutive relation depend on temperature and phase composite. For determination of plastic strain the Huber-Misses condition with isotropic strengthening was applied whereas fordetermination of transformation plasticity a modified Leblond model was used. In order to evaluate the quality and usefulness of thepresented models a numerical analysis of stresses and strains associated hardening process of a fang lathe of cone shaped made of tool steel was carried out.

  19. Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

    Directory of Open Access Journals (Sweden)

    Olazabal-Loumé M.

    2013-11-01

    Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.

  20. Application of symplectic integrator to numerical fluid analysis

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu

    2000-01-01

    This paper focuses on application of the symplectic integrator to numerical fluid analysis. For the purpose, we introduce Hamiltonian particle dynamics to simulate fluid behavior. The method is based on both the Hamiltonian formulation of a system and the particle methods, and is therefore called Hamiltonian Particle Dynamics (HPD). In this paper, an example of HPD applications, namely the behavior of incompressible inviscid fluid, is solved. In order to improve accuracy of HPD with respect to space, CIVA, which is a highly accurate interpolation method, is combined, but the combined method is subject to problems in that the invariants of the system are not conserved in a long-time computation. For solving the problems, symplectic time integrators are introduced and the effectiveness is confirmed by numerical analyses. (author)

  1. Preliminary analysis of a target factory for laser fusion

    International Nuclear Information System (INIS)

    Sherohman, J.W.; Hendricks, C.D.

    1980-01-01

    An analysis of a target factory leading to the determination of production expressions has provided for the basis of a parametric study. Parameters involving the input and output rate of a process system, processing yield factors, and multiple processing steps and production lines have been used to develop an understanding of their dependence on the rate of target injection for laser fusion. Preliminary results have indicated that a parametric study of this type will be important in the selection of processing methods to be used in the final production scheme of a target factory

  2. Determinants of Trade Credit: A Preliminary Analysis on Construction Sector

    Directory of Open Access Journals (Sweden)

    Nicoleta Barbuta-Misu

    2016-07-01

    Full Text Available This paper introduces a preliminary analysis of the correlations between trade credit and some selected measures of financial performance for a sample of 958 firms acting in the construction sector. The examined period covers 2004-2013. The sample derived from Amadeus database contains firms that have sold and bought on credit. Results showed that larger firms offered and used more credit than counterparties. Firms offered and used in same time credit, but not in same level. Firms with higher return on assets and profit margin used and offered less credit from suppliers, respectively to clients. Moreover, more liquid firms used less trade payables.

  3. Global atmospheric response to specific linear combinations of the main SST modes. Part I: numerical experiments and preliminary results

    Directory of Open Access Journals (Sweden)

    S. Trzaska

    1996-10-01

    Full Text Available This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder than the long-term mean in the southern hemisphere (northern hemisphere]. Atlantic SSTAs may also play a significant role.

  4. Preliminary results of an attempt to provide soil moisture datasets in order to verify numerical weather prediction models

    International Nuclear Information System (INIS)

    Cassardo, C.; Loglisci, N.

    2005-01-01

    In the recent years, there has been a significant growth in the recognition of the soil moisture importance in large-scale hydrology and climate modelling. Soil moisture is a lower boundary condition, which rules the partitioning of energy in terms of sensible and latent heat flux. Wrong estimations of soil moisture lead to wrong simulation of the surface layer evolution and hence precipitations and cloud cover forecasts could be consequently affected. This is true for large scale medium-range weather forecasts as well as for local-scale short range weather forecasts, particularly in those situations in which local convection is well developed. Unfortunately; despite the importance of this physical parameter there are only few soil moisture data sets sparse in time and in space around in the world. Due to this scarcity of soil moisture observations, we developed an alternative method to provide soil moisture datasets in order to verify numerical weather prediction models. In this paper are presented the preliminary results of an attempt to verify soil moisture fields predicted by a mesoscale model. The data for the comparison were provided by the simulations of the diagnostic land surface scheme LSPM (Land Surface Process Model), widely used at the Piedmont Regional Weather Service for agro-meteorological purposes. To this end, LSPM was initialized and driven by Synop observations, while the surface (vegetation and soil) parameter values were initialized by ECOCLIMAP global dataset at 1km 2 resolution

  5. Preliminary Computational Analysis of the (HIRENASD) Configuration in Preparation for the Aeroelastic Prediction Workshop

    Science.gov (United States)

    Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.

    2011-01-01

    This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.

  6. CONTENT ANALYSIS, DISCOURSE ANALYSIS, AND CONVERSATION ANALYSIS: PRELIMINARY STUDY ON CONCEPTUAL AND THEORETICAL METHODOLOGICAL DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Anderson Tiago Peixoto Gonçalves

    2016-08-01

    Full Text Available This theoretical essay aims to reflect on three models of text interpretation used in qualitative research, which is often confused in its concepts and methodologies (Content Analysis, Discourse Analysis, and Conversation Analysis. After the presentation of the concepts, the essay proposes a preliminary discussion on conceptual and theoretical methodological differences perceived between them. A review of the literature was performed to support the conceptual and theoretical methodological discussion. It could be verified that the models have differences related to the type of strategy used in the treatment of texts, the type of approach, and the appropriate theoretical position.

  7. Numerical equilibrium analysis for structured consumer resource models.

    Science.gov (United States)

    de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A

    2010-02-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.

  8. Numerical verification of composite rods theory on multi-story buildings analysis

    Science.gov (United States)

    El-Din Mansour, Alaa; Filatov, Vladimir; Gandzhuntsev, Michael; Ryasny, Nikita

    2018-03-01

    In the article, a verification proposal of the composite rods theory on the structural analysis of skeletons for high-rise buildings. A testing design model been formed on which horizontal elements been represented by a multilayer cantilever beam operates on transverse bending on which slabs are connected with a moment-non-transferring connections and a multilayer columns represents the vertical elements. Those connections are sufficiently enough to form a shearing action can be approximated by a certain shear forces function, the thing which significantly reduces the overall static indeterminacy degree of the structural model. A system of differential equations describe the operation mechanism of the multilayer rods that solved using the numerical approach of successive approximations method. The proposed methodology to be used while preliminary calculations for the sake of determining the rigidity characteristics of the structure; are needed. In addition, for a qualitative assessment of the results obtained by other methods when performing calculations with the verification aims.

  9. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  10. Numerical analysis of interacting cracks in biaxial stress field

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    1999-01-01

    The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 usually produce highly irregular kinked and branched crack patterns. Crack initialization and propagation depends on stress state underlying the crack pattern. Numerical analysis (such as finite element method) of interacting kinked and branched cracks can provide accurate solutions. This paper discusses the use of general-purpose finite element code ABAQUS for evaluating stress fields at crack tips of interacting complex cracks. The results obtained showed reasonable agreement with the reference solutions and confirmed use of finite elements in such class of problems.(author)

  11. Numerical analysis of jet breakup behavior using particle method

    International Nuclear Information System (INIS)

    Shibata, Kazuya; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A continuous jet changes to droplets where jet breakup occurs. In this study, two-dimensional numerical analysis of jet breakup is performed using the MPS method (Moving Particle Semi-implicit Method) which is a particle method for incompressible flows. The continuous fluid surrounding the jet is neglected. Dependencies of the jet breakup length on the Weber number and the Froude number agree with the experiment. The size distribution of droplets is in agreement with the Nukiyama-Tanasawa distribution which has been widely used as an experimental correlation. Effects of the Weber number and the Froude number on the size distribution are also obtained. (author)

  12. Numerical analysis of beam with sinusoidally corrugated webs

    Science.gov (United States)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  13. Structural Analysis of Composite Laminates using Analytical and Numerical Techniques

    Directory of Open Access Journals (Sweden)

    Sanghi Divya

    2016-01-01

    Full Text Available A laminated composite material consists of different layers of matrix and fibres. Its properties can vary a lot with each layer’s or ply’s orientation, material property and the number of layers itself. The present paper focuses on a novel approach of incorporating an analytical method to arrive at a preliminary ply layup order of a composite laminate, which acts as a feeder data for the further detailed analysis done on FEA tools. The equations used in our MATLAB are based on analytical study code and supply results that are remarkably close to the final optimized layup found through extensive FEA analysis with a high probabilistic degree. This reduces significant computing time and saves considerable FEA processing to obtain efficient results quickly. The result output by our method also provides the user with the conditions that predicts the successive failure sequence of the composite plies, a result option which is not even available in popular FEM tools. The predicted results are further verified by testing the laminates in the laboratory and the results are found in good agreement.

  14. Sensitivity analysis of numerical model of prestressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Bílý, Petr, E-mail: petr.bily@fsv.cvut.cz; Kohoutková, Alena, E-mail: akohout@fsv.cvut.cz

    2015-12-15

    Graphical abstract: - Highlights: • FEM model of prestressed concrete containment with steel liner was created. • Sensitivity analysis of changes in geometry and loads was conducted. • Steel liner and temperature effects are the most important factors. • Creep and shrinkage parameters are essential for the long time analysis. • Prestressing schedule is a key factor in the early stages. - Abstract: Safety is always the main consideration in the design of containment of nuclear power plant. However, efficiency of the design process should be also taken into consideration. Despite the advances in computational abilities in recent years, simplified analyses may be found useful for preliminary scoping or trade studies. In the paper, a study on sensitivity of finite element model of prestressed concrete containment to changes in geometry, loads and other factors is presented. Importance of steel liner, reinforcement, prestressing process, temperature changes, nonlinearity of materials as well as density of finite elements mesh is assessed in the main stages of life cycle of the containment. Although the modeling adjustments have not produced any significant changes in computation time, it was found that in some cases simplified modeling process can lead to significant reduction of work time without degradation of the results.

  15. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  16. Analysis preliminary phytochemical raw extract of leaves Nephrolepis pectinata

    Directory of Open Access Journals (Sweden)

    Natally Marreiros Gomes

    2017-06-01

    Full Text Available The Nephrolepis pectinata popularly known as paulista fern, ladder-heaven, cat tail, belongs to the family Davalliaceae. For the beauty of the arrangements of their leaves ferns are quite commercialized in Brazil, however, have not been described in the literature studies on their pharmacological potential. Thus, the objective of this research was to analyze the phytochemical properties of the crude extract of the leaves of Nephrolepis pectinata. To perform the phytochemical analysis were initially made the collection of the vegetable, preparation of voucher specimen, washing, drying and grinding. Then, extraction by percolation method and end the phytochemical analysis. Preliminary results phytochemicals the crude extract of the leaves of Nephrolepis pectinata tested positive for reducing sugars, phenols/tannins (catechins tannins and catechins.

  17. Preliminary analysis of accident in SST-1 current feeder system

    International Nuclear Information System (INIS)

    Roy, Swati; Kanabar, Deven; Garg, Atul; Singh, Amit; Tanna, Vipul; Prasad, Upendra; Srinivasan, R.

    2017-01-01

    Steady-state Tokamak-1 (SST-1) has 16 superconducting Toroidal field (TF) and 9 superconducting poloidal field (PF) coils rated for 10kA DC. All the TF are connected in series and are operated in DC condition whereas PF coils are individually operated in pulse mode during SST-1 campaigns. SST-1 current feeder system (CFS) houses 9 pairs of PF current leads and 1 pair of TF current leads. During past SST-1 campaign, there were arcing incidents within SST-1 CFS chamber which caused significant damage to PF superconducting current leads as well as its Helium cooling lines of the current leads. This paper brings out the preliminary analysis of the mentioned arcing incident, possible reasons and its investigation thereby laying out the sequence of events. From this analysis and observations, various measures to avoid such arcing incidents have also been proposed. (author)

  18. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  19. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  20. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  1. Modal interval analysis new tools for numerical information

    CERN Document Server

    Sainz, Miguel A; Calm, Remei; Herrero, Pau; Jorba, Lambert; Vehi, Josep

    2014-01-01

    This book presents an innovative new approach to interval analysis. Modal Interval Analysis (MIA) is an attempt to go beyond the limitations of classic intervals in terms of their structural, algebraic and logical features. The starting point of MIA is quite simple: It consists in defining a modal interval that attaches a quantifier to a classical interval and in introducing the basic relation of inclusion between modal intervals by means of the inclusion of the sets of predicates they accept. This modal approach introduces interval extensions of the real continuous functions, identifies equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify these equivalences, along with guidelines for arriving at these inclusions. Applications of these equivalences in different areas illustrate the obtained results. The book also presents a new interval object: marks, which aspire to be a new form of numerical treatment of errors in measurements and computations.

  2. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan

    2018-03-08

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles. The low and high resistive state values in each cycle are calculated, and the analysis shows that the structure has excellent retention reliability properties. The presented Cu species density plot indicates that Cu insertion occurs almost exclusively along grain boundaries resulting in a confined isomorphic conductive filament that maintains its overall shape and electric properties during cycling. The superior reliability of this structure may thus be attributed to the relatively low amount of Cu migrating into the RSL during initial formation. In addition, the results show a good match and help to confirm experimental measurements done over a previously demonstrated device.

  3. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time.

  4. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time

  5. Preliminary RAMI analysis of WCLL blanket and breeder systems

    International Nuclear Information System (INIS)

    Arroyo, Jose Manuel; Brown, Richard; Harman, Jon; Rosa, Elena; Ibarra, Angel

    2015-01-01

    Highlights: • Preliminary RAMI model for WCLL has been developed. • Critical parts and parameters influencing WCLL availability have been focused. • Necessary developments of tools/models to represent system performance have been identified. - Abstract: DEMO will be a prototype fusion reactor designed to prove the capability to produce electrical power in a commercially acceptable way. One of the key factors in that endeavor is the achievement of certain level of plant availability. Therefore, RAMI (Reliability, Availability, Maintainability and Inspectability) will be a key element in the engineering development of DEMO. Some studies have been started so as to develop the tools and models to assess different design alternatives from RAMI point of view. The main objective of these studies is to be able to evaluate the influence of different parameters on DEMO availability and to focus the critical parts that should be further researched and improved in order to develop a high-availability oriented DEMO design. A preliminary RAMI analysis of the Water Cooled Lithium-Lead (WCLL) blanket and breeder concept for DEMO has been developed. The amounts of single elements that may fail (e.g. more than 180,000 C-shaped tubes) and the mean down time associated to failures inside the vacuum vessel (around 3 months) have been highlighted as the critical parameters influencing the system availability. On the other hand, the necessary developments of tools/models to better represent the system performance have been identified and proposed for future work.

  6. Preliminary RAMI analysis of WCLL blanket and breeder systems

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, Jose Manuel, E-mail: josemanuel.arroyo@ciemat.es [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Brown, Richard [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon (United Kingdom); Harman, Jon [EFDA Close Support Unit, Garching (Germany); Rosa, Elena; Ibarra, Angel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • Preliminary RAMI model for WCLL has been developed. • Critical parts and parameters influencing WCLL availability have been focused. • Necessary developments of tools/models to represent system performance have been identified. - Abstract: DEMO will be a prototype fusion reactor designed to prove the capability to produce electrical power in a commercially acceptable way. One of the key factors in that endeavor is the achievement of certain level of plant availability. Therefore, RAMI (Reliability, Availability, Maintainability and Inspectability) will be a key element in the engineering development of DEMO. Some studies have been started so as to develop the tools and models to assess different design alternatives from RAMI point of view. The main objective of these studies is to be able to evaluate the influence of different parameters on DEMO availability and to focus the critical parts that should be further researched and improved in order to develop a high-availability oriented DEMO design. A preliminary RAMI analysis of the Water Cooled Lithium-Lead (WCLL) blanket and breeder concept for DEMO has been developed. The amounts of single elements that may fail (e.g. more than 180,000 C-shaped tubes) and the mean down time associated to failures inside the vacuum vessel (around 3 months) have been highlighted as the critical parameters influencing the system availability. On the other hand, the necessary developments of tools/models to better represent the system performance have been identified and proposed for future work.

  7. Numerical analysis and optimisation of heavy water upgrading column

    International Nuclear Information System (INIS)

    Sankar, Rama; Ghosh, Brindaban; Bhanja, K.

    2013-01-01

    In the 'Pressurised Heavy Water' type of reactors, heavy water is used both as moderator and coolant. During operation of reactor downgraded heavy water is generated that needs to be upgraded for reuse in the reactor. When the isotopic purity of heavy water becomes less than 99.75%, it is termed as downgraded heavy water. Downgraded heavy water also contains impurity such as corrosion products, dirt, oil etc. Upgradation of downgraded heavy water is normally done in two steps: (i) Purification: In this step downgraded heavy water is first purified to remove corrosion products, dirt, oil, etc. and (ii) Upgradation of heavy water to increase its isotopic purity, this step is carried out by vacuum distillation of downgraded heavy water after purification. This project is aimed at mathematical modelling and numerical simulation of heavy water upgrading column. Modelling and simulation studies of the upgradation column are based on equilibrium stage model to evaluate the effect of feed location, pressure, feed composition, reflux ratio in the packed column for given reboiler and condenser duty of distillation column. State to stage modelling of two-phase two-component flow has constitutes the overall modelling of the column. The governing equations consist of stage-wise species and overall mass continuity and stage-wise energy balance. This results in tridigonal matrix equation for stage liquid fractions for heavy and light water. The stage-wise liquid flow rates and temperatures are governed by stage-wise mass and energy balance. The combined form of the corresponding governing equations, with the incorporation of thermodynamic equation of states, form a system of nonlinear equations. This system have been resolved numerically using modified Newton-Raphson method. A code in the MATLAB platform has been developed by on above numerical procedure. The optimisation of the column operating conditions is to be carried out based on parametric studies and analysis of different

  8. Numerical Analysis of Microwave Heating on Saponification Reaction

    Science.gov (United States)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  9. The concept of validation of numerical models for consequence analysis

    International Nuclear Information System (INIS)

    Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove

    2014-01-01

    Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation

  10. POLLUTANT EMISSION NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The energies produced by the diesel engines of strong power are largely used in marine propulsion because of their favorable reliability and their significant output. However, the increasingly constraining legislations, aimed at limiting the pollutant emissions from the exhaust gas produced by these engines, tend to call into question their supremacy. The analysis of the pollutant emissions and their reduction in the exhaust gas of the slow turbocharged marine diesel engine using ANSYS 15 constitutes the principal objective of this study. To address problems of global air pollution due to the pollutant emission from fuel oil engin e combustion, it is necessary to understand the mechanisms by which pollutants are produced in combustion processes. In the present work, an experimental and numerical study is carried out on a unit of real use aboard a car ferry ship. A numerical model based on a detailed chemical kinetics scheme is used to calculate the emissions of NOx, SOx and Sooth in an internal combustion engine model for the same characteristics of the real unit.

  11. Numerical electromagnetic frequency domain analysis with discrete exterior calculus

    Science.gov (United States)

    Chen, Shu C.; Chew, Weng Cho

    2017-12-01

    In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

  12. Desiccant wheels for air humidification: An experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Intini, Manuel; Joppolo, Cesare Maria; Molinaroli, Luca; Romano, Francesco

    2015-01-01

    Highlights: • The use of desiccant wheel to humidify an air stream is investigated. • Air humidification is obtained by extracting water vapour from outdoor air. • Experimental tests in winter humidification conditions are performed. • The design of the proposed humidification system is numerically analyzed. • Effects of boundary conditions on humidification capacity are investigated. - Abstract: In this work the use of a desiccant wheel for air humidification is investigated through a numerical and experimental approach. In the proposed humidification system, water vapour is adsorbed from outdoor environment and it is released directly to the air stream supplied to the building. Such a system can be an interesting alternative to steam humidifiers in hospitals or, more generally, in applications where air contamination is a critical issue and therefore adiabatic humidifiers are not allowed. Performance of the proposed system is deeply investigated and optimal values of desiccant wheel configuration parameters are discussed. It is shown that in the investigated conditions, which are representative of Southern Europe winter climate, the system can properly match the latent load of the building. Finally, power consumption referred to the primary source of the proposed humidification system is compared to the one of steam humidifiers. The present analysis is carried out through experimental tests of a desiccant wheel in winter humidification conditions and through a phenomenological model of the device, based on heat and mass transfer equations.

  13. Numerical Analysis of Film Cooling at High Blowing Ratio

    Science.gov (United States)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  14. Preliminary analysis of biomass potentially useful for producing biodiesel

    International Nuclear Information System (INIS)

    Cabrera Cifuentes, Gerardo; Burbano Jaramillo, Juan Carlos; Garcia Melo, Jose Isidro

    2011-01-01

    Given that biodiesel is emerging as a viable solution for some energy and environmental problems, research on raw materials appropriate for its production is a matter of growing interest. In this study we present the results of research devoted to preliminary analysis on several vegetable (biomass) species potentially useful for producing biodiesel. The bioprospection zone is a region on the Colombian Pacific coast. The candidate species collected underwent different standardized ASTM tests in order for us to define properties that facilitate their evaluation. Some of the species underwent a transesterification process. Comparisons between the thermo-physical properties of the biofuels obtained and the properties of commercial diesel were carried out. Also, performance tests for these biofuels were conducted in compression ignition engines, particularly evaluating efficiency, fuel consumption, and potency at different RPMs.

  15. Preliminary radar systems analysis for Venus orbiter missions

    Science.gov (United States)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  16. Numerical Analysis of Vibrations of Structures under Moving Inertial Load

    CERN Document Server

    Bajer, Czeslaw I

    2012-01-01

    Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...

  17. Numerical analysis of boosting scheme for scalable NMR quantum computation

    International Nuclear Information System (INIS)

    SaiToh, Akira; Kitagawa, Masahiro

    2005-01-01

    Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the scheme proposed by Schulman and Vazirani [in Proceedings of the 31st ACM Symposium on Theory of Computing (STOC'99) (ACM Press, New York, 1999), pp. 322-329] is known for the simple quantum circuit to redistribute the biases (polarizations) of qubits and small time complexity. However, our numerical simulation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which indicates a growth in the total classical correlation. This result--namely, that there is such a significant growth in the total binary entropy--disagrees with that of their analysis

  18. Numerical Analysis on Seepage in the deep overburden CFRD

    Science.gov (United States)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  19. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    Science.gov (United States)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  20. [Effects decomposition in mediation analysis: a numerical example].

    Science.gov (United States)

    Zugna, Daniela; Richiardi, Lorenzo

    2018-01-01

    Mediation analysis aims to decompose the total effect of the exposure on the outcome into a direct effect (unmediated) and an indirect effect (mediated by a mediator). When the interest also lies on understanding whether the exposure effect differs in different sub-groups of study population or under different scenarios, the mediation analysis needs to be integrated with interaction analysis. In this setting it is necessary to decompose the total effect not only into two components, the direct and indirect effects, but other two components linked to interaction. The interaction between the exposure and the mediator in their effect on the outcome could indeed act through the effect of the exposure on the mediator or through the mediator when the mediator is not totally explained by the exposure. We describe options for decomposition, proposed in literature, of the total effect and we illustrate them through a hypothetical example of the effect of age at diagnosis of cancer on survival, mediated and unmediated by the therapeutical approach, and a numerical example.

  1. Development of small scale cluster computer for numerical analysis

    Science.gov (United States)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  2. Computational techniques for inelastic analysis and numerical experiments

    International Nuclear Information System (INIS)

    Yamada, Y.

    1977-01-01

    A number of formulations have been proposed for inelastic analysis, particularly for the thermal elastic-plastic creep analysis of nuclear reactor components. In the elastic-plastic regime, which principally concerns with the time independent behavior, the numerical techniques based on the finite element method have been well exploited and computations have become a routine work. With respect to the problems in which the time dependent behavior is significant, it is desirable to incorporate a procedure which is workable on the mechanical model formulation as well as the method of equation of state proposed so far. A computer program should also take into account the strain-dependent and/or time-dependent micro-structural changes which often occur during the operation of structural components at the increasingly high temperature for a long period of time. Special considerations are crucial if the analysis is to be extended to large strain regime where geometric nonlinearities predominate. The present paper introduces a rational updated formulation and a computer program under development by taking into account the various requisites stated above. (Auth.)

  3. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    Science.gov (United States)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  4. Numerical analysis of reactor internals under hydrodynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Da Hye; Chang, Yoon Suk [Kyung Hee Univ., Yongin (Korea, Republic of); Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, six kinds of major equipment of a typical reactor internals were identified by incorporating recent research trend. Based on this, detailed numerical models were developed and used for establishment of optimum analysis methodology subjected to hydrodynamic loads. As a result, stress values of the major equipment were calculated through the acoustic-structure analysis under periodic hydrodynamic load and the turbulence-structure analysis under random hydrodynamic load. The numerical analysis scheme can be used for development of preventive action plan and management procedures of the reactor internals. Reactor internals installed in a pressure vessel have been exposed to harsh environment such as high neutron irradiation and temperature with complex fluid flow. As the increase of operational years of NPPs(Nuclear Power Plants), possibility of functional loss of the reactor internals is increased due to degradation caused by radiation embrittlement, thermal aging, fatigue, corrosion and FIV(Flow-Induced Vibration) etc. In practice, defects were detected at core support structure as well as upper and lower parts of structural assembly in European and United States NPPs. Recently, in a GALL(Generic Aging Lessons Learned) report, US NRC(Nuclear Regulatory Commission) identified reactor internals as a high priority component and addressed relevant management programs. In Korea, similar activities have been conducted for long-term operation beyond design lifetime but most of them were limited to qualitative evaluation based on examination and maintenance programs. Therefore, not only to reduce repair and replacement efforts but also to secure the stability of NPPs, necessity for development of quantitative evaluation technique as well as establishment of preventive action plan and management procedures is on the rise. The FIV represents the structural vibration phenomenon induced by liquid flow and generally occurs at contact surfaces. In the present

  5. Evaluation of Offshore Wind Turbine Tower Dynamics with Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Begum Yurdanur Dagli

    2018-01-01

    Full Text Available A dynamic behaviour of a cylindirical wind tower with variable cross section is investigated under environmental and earthquake forces. The ground acceleration term is represented by a simple cosine function to investigate both normal and parallel components of the earthquake motions located near ground surface. The function of earthquake force is simplified to apply Rayleigh’s energy method. Wind forces acting on above the water level and wave forces acting on below this level are utilized in computations considering earthquake effect for entire structure. The wind force is divided into two groups: the force acting on the tower and the forces acting on the rotor nacelle assembly (RNA. The drag and the inertial wave forces are calculated with water particle velocities and accelerations due to linear wave theory. The resulting hydrodynamic wave force on the tower in an unsteady viscous flow is determined using the Morison equation. The displacement function of the physical system in which dynamic analysis is performed by Rayleigh’s energy method is obtained by the single degree of freedom (SDOF model. The equation of motion is solved by the fourth-order Runge–Kutta method. The two-way FSI (fluid-structure interaction technique was used to determine the accuracy of the numerical analysis. The results of computational fluid dynamics and structural mechanics are coupled in FSI analysis by using ANSYS software. Time-varying lateral displacements and the first natural frequency values which are obtained from Rayleigh’s energy method and FSI technique are compared. The results are presented by graphs. It is observed from these graphs that the Rayleigh model can be an alternative way at the prelimanary stage of the structural analysis with acceptable accuracy.

  6. Numerical simulation for the design analysis of kinematic Stirling engines

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    Highlights: • A thermodynamic analysis for kinematic Stirling engines was presented. • The analysis integrated thermal, mechanical and thermodynamic interactions. • The analyses considered geometrical and operational parameters. • The results allowed to map the performance of the engine. • The analysis allow the design assessment of Stirling engines. - Abstract: The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The

  7. Development of numerical simulation technology for high resolution thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Yoon, Han Young; Kim, K. D.; Kim, B. J.; Kim, J. T.; Park, I. K.; Bae, S. W.; Song, C. H.; Lee, S. W.; Lee, S. J.; Lee, J. R.; Chung, S. K.; Chung, B. D.; Cho, H. K.; Choi, S. K.; Ha, K. S.; Hwang, M. K.; Yun, B. J.; Jeong, J. J.; Sul, A. S.; Lee, H. D.; Kim, J. W.

    2012-04-01

    A realistic simulation of two phase flows is essential for the advanced design and safe operation of a nuclear reactor system. The need for a multi dimensional analysis of thermal hydraulics in nuclear reactor components is further increasing with advanced design features, such as a direct vessel injection system, a gravity driven safety injection system, and a passive secondary cooling system. These features require more detailed analysis with enhanced accuracy. In this regard, KAERI has developed a three dimensional thermal hydraulics code, CUPID, for the analysis of transient, multi dimensional, two phase flows in nuclear reactor components. The code was designed for use as a component scale code, and/or a three dimensional component, which can be coupled with a system code. This report presents an overview of the CUPID code development and preliminary assessment, mainly focusing on the numerical solution method and its verification and validation. It was shown that the CUPID code was successfully verified. The results of the validation calculations show that the CUPID code is very promising, but a systematic approach for the validation and improvement of the physical models is still needed

  8. Numeric calculation of celestial bodies with spreadsheet analysis

    Science.gov (United States)

    Koch, Alexander

    2016-04-01

    The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.

  9. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  10. The design and numerical analysis of tandem thermophotovoltaic cells

    International Nuclear Information System (INIS)

    Yang Hao-Yu; Liu Ren-Jun; Wang Lian-Kai; Lü You; Li Tian-Tian; Li Guo-Xing; Zhang Yuan-Tao; Zhang Bao-Lin

    2013-01-01

    In this paper, numerical analysis of GaSb =(E g = 0.72 eV)/Ga 0.84 In 0.16 As 0.14 Sb 0.86 (E g = 0.53 eV) tandem thermophotovoltaic (TPV) cells is carried out by using Silvaco/Atlas software. In the tandem cells, a GaSb p-n homojunction is used for the top cell and a GaInAsSb p-n homojunction for the bottom cell. A heavily doped GaSb tunnel junction connects the two sub-cells together. The simulations are carried out at a radiator temperature of 2000 K and a cell temperature of 300 K. The radiation photons are injected from the top of the tandem cells. Key properties of the single- and dual-junction TPV cells, including I–V characteristic, maximum output power (P max ), open-circuit voltage (V oc ), short-circuit current (I sc ), etc. are presented. The effects of the sub-cell thickness and carrier concentration on the key properties of tandem cells are investigated. A comparison of the dual-TPV cells with GaSb and GaInAsSb single junction cells shows that the P max of tandem cells is almost twice as great as that of the single-junction cells. (interdisciplinary physics and related areas of science and technology)

  11. Numerical Analysis of a Passive Containment Filtered Venting System

    International Nuclear Information System (INIS)

    Kim, Taejoon; Ha, Huiun; Heo, Sun

    2014-01-01

    The passive Containment Filtered Venting system (CFVS) does not have principally any kind of isolation valves or filtering devices which need periodic maintenance. In this study, the hydro-thermal analysis is presented to investigate the existence of flow instability in the passive CFVS and its performance under the pressure change of APR+ containment building with LB-LOCA M/E data. The Passive Containment Filtered Venting System was suggested as a part in i-Power development project and the operation mechanism was investigated by numerical modeling and simulation using GOTHIC8.0 system code. There are four Phases for consideration to investigate the pressurization of the containment building, loss of hydrostatic head in the pipe line of CFVS, opening of pipe line and gas ejection to the coolant tank, and the head recovery inside the pipe as the containment gas exhausted. The simulation results show that gas generation rate determine the timing of head recovery in the CFVS pipe line and that the equipment of various devices inducing pressure loss at the pipe can give the capacity of Phase control of the passive CFVS operation

  12. Improvement of numerical analysis method for FBR core characteristics. 3

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamamoto, Toshihisa; Kitada, Takanori; Katagi, Yousuke

    1998-03-01

    As the improvement of numerical analysis method for FBR core characteristics, studies on several topics have been conducted; multiband method, Monte Carlo perturbation and nodal transport method. This report is composed of the following three parts. Part 1: Improvement of Reaction Rate Calculation Method in the Blanket Region Based on the Multiband Method; A method was developed for precise evaluation of the reaction rate distribution in the blanket region using the multiband method. With the 3-band parameters obtained from the ordinary fitting method, major reaction rates such as U-238 capture, U-235 fission, Pu-239 fission and U-238 fission rate distributions were analyzed. Part 2: Improvement of Estimation Method for Reactivity Based on Monte-Carlo Perturbation Theory; Perturbation theory based on Monte-Carlo perturbation theory have been investigated and introduced into the calculational code. The Monte-Carlo perturbation code was applied to MONJU core and the calculational results were compared to the reference. Part 3: Improvement of Nodal Transport Calculation for Hexagonal Geometry; A method to evaluate the intra-subassembly power distribution from the nodal averaged neutron flux and surface fluxes at the node boundaries, was developed based on the transport theory. (J.P.N.)

  13. Dynamic optimization of a FCC converter unit: numerical analysis

    Directory of Open Access Journals (Sweden)

    E. Almeida Nt

    2011-03-01

    Full Text Available Fluidized-bed Catalytic Cracking (FCC is a process subject to frequent variations in the operating conditions (including feed quality and feed rate. The production objectives usually are the maximization of LPG and gasoline production. This fact makes the FCC converter unit an excellent opportunity for real-time optimization. The present work aims to apply a dynamic optimization in an industrial FCC converter unit, using a mechanistic dynamic model, and to carry out a numerical analysis of the solution procedure. A simultaneous approach was used to discretize the system of differential-algebraic equations and the resulting large-scale NLP problem was solved using the IPOPT solver. This study also does a short comparison between the results obtained by a potential dynamic real-time optimization (DRTO against a possible steady-state real-time optimization (RTO application. The results demonstrate that the application of dynamic real-time optimization of a FCC converter unit can bring significant benefits in production.

  14. Summary of research in applied mathematics, numerical analysis, and computer sciences

    Science.gov (United States)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  15. Numerical analysis of laminar forced convection in a spherical annulus

    International Nuclear Information System (INIS)

    Tuft, D.B.

    1980-01-01

    Calculations of steady laminar incompressible fluid-flow and heat transfer in a spherical annulus are presented. Steady pressures, temperatures, velocities, and heat transfer coefficients are calculated for an insulated outer sphere and a 0 0 C isothermal inner sphere with 50 0 C heated water flowing in the annulus. The inner sphere radius is 13.97 cm, the outer sphere radius is 16.83 cm and the radius ratio is 1.2. The transient axisymmetric equations of heat, mass, and momentum conservation are solved numerically in spherical coordinates. The transient solution is carried out in time until steady state is achieved. A variable mesh is used to improve resolution near the inner sphere where temperature and velocity gradients are steep. It is believed that this is the first fully two-dimensional analysis of forced flow in a spherical annulus. Local and bulk Nusselt numbers are presented for Reynolds numbers from 4.4 to 440. Computed bulk Nusselt numbers ranged from 2 to 50 and are compared to experimental results from the literature. Inlet flow jetting off the inner sphere and flow separation are predicted by the analysis. The location of wall jet separation was found to be a function of Reynolds number, indicating the location of separation depends upon the ratio of inertia to viscous forces. Wall jet separation has a pronounced effect on the distribution of local heat flux. The area between inlet and separation was found to be the most significant area for heat transfer. Radial distributions of azimuthal velocity and temperature are presented for various angles beginning at the inlet. Inner sphere pressure distribution is presented and the effect on flow separation is discussed

  16. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  17. Preliminary radiation criteria and nuclear analysis for ETF

    International Nuclear Information System (INIS)

    Engholm, B.A.

    1980-09-01

    Preliminary biological and materials radiation dose criteria for the Engineering Test Facility are described and tabulated. In keeping with the ETF Mission Statement, a key biological dose criterion is a 24-hour shutdown dose rate of 2 mrem/hr on the surface of the outboard bulk shield. Materials dose criteria, which primarily govern the inboard shield design, include 10 9 rads exposure limit to epoxy insulation, 3 x 10 -4 dpa damage to the TF coil copper stabilizer, and a total nuclear heating rate of 5 kW in the inboard TF coils. Nuclear analysis performed during FY 80 was directed primarily at the inboard and outboard bulk shielding, and at radiation streaming in the neutral beam drift ducts. Inboard and outboard shield thicknesses to achieve the biological and materials radiation criteria are 75 cm inboard and 125 cm outboard, the configuration consisting of alternating layers of stainless steel and borated water. The outboard shield also includes a 5 cm layer of lead. NBI duct streaming analyses performed by ORNL and LASL will play a key role in the design of the duct and NBI shielding in FY 81. The NBI aluminum cryopanel nuclear heating rate during the heating cycle is about 1 milliwatt/cm 3 , which is far less than the permissible limit

  18. Preliminary Analysis For Wolsong Par Effects Using ISACC Calculations

    International Nuclear Information System (INIS)

    Song, Yong Mann; Kim, Dong Ha

    2012-01-01

    In the paper, hydrogen control effects using PARs only are analyzed for severe SBO station blackout (SBO) sequences beyond the design basis accidents in WS-1 which are of CANDU6 type reactor. As a computational tool, the latest version of ISAAC4.3 (Integrated Severe Accident Analysis Code for CANDU), which is a fully integrated and lumped severe accident computer code, is used to simulate hydrogen generation and transport inside the reactor building (R/B) before its failure. For the performance of hydrogen removal, the depletion rate equation of K-PAR developed in Korea is applied. In a CANDU reactor, three areas are identified as sources of hydrogen under severe accidents: fuel-coolant interactions in intact channels, suspended fuel or debris interactions in-calandria tank and debris interactions in-calandria vault. The first two origins provide source for the late ('late' terminology is used because it takes more than one day before calandria tank failure) potential hydrogen combustion before calandria tank failure and all the three origins would provide source for the very late potential hydrogen combustion occurring at or after calaria tank failure. If the hydrogen mitigation system fails, the AICC (adiabatic isochoric complete combustion) burning of highly flammable hydrogen may cause Wolsong R/B failure. So hydrogen induced failure possibility is evaluated, using preliminary ISAAC calculations, under several SBO conditions with and without PAR for both late and very late accident periods

  19. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  20. Investigation of Sorption and Diffusion Mechanisms, and Preliminary Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nair, Sankar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-02-01

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several monovalent and divalent cation exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed using tritiated water feed solution containing tritium at the high end of the range (1 mCi/mL) anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. The tritium concentration was about 0.1 ppm. The permeate was recovered under vacuum. The HTO/H2O selectivity and separation factor calculated from the measured tritium concentrations ranged from 0.99 to 1.23, and 0.83-0.98, respectively. Although the membrane performance for HTO separation was lower than expected, several encouraging observations including molecular sieving and high vapor permeance are reported. Additionally, several new approaches are proposed, such as tuning the sorption and diffusion properties offered by small pore LTA zeolite materials, and cation exchanged aluminosilicates with high metal loading. It is hypothesized that substantially improved preferential transport of tritium (HTO) resulting in a more concentrated permeate can be achieved. Preliminary economic analysis for the membrane-based process to concentrate tritiated water is also discussed.

  1. Preliminary analysis of public dose from CFETR gaseous tritium release

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China); Ni, Muyi, E-mail: muyi.ni@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Lian, Chao; Jiang, Jieqiong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-02-15

    Highlights: • Present the amounts and limit dose of tritium release to the environment for CFETR. • Perform a preliminary simulation of radiation dose for gaseous tritium release. • Key parameters about soil types, wind speed, stability class, effective release height and age were sensitivity analyzed. • Tritium release amount is recalculated consistently with dose limit in Chinese regulation for CFETR. - Abstract: To demonstrate tritium self-sufficiency and other engineering issues, the scientific conception of Chinese Fusion Engineering Test Reactor (CFETR) has been proposed in China parallel with ITER and before DEMO reactor. Tritium environmental safety for CFETR is an important issue and must be evaluated because of the huge amounts of tritium cycling in reactor. In this work, different tritium release scenarios of CFETR and dose limit regulations in China are introduced. And the public dose is preliminarily analyzed under normal and accidental events. Furthermore, after finishing the sensitivity analysis of key input parameters, the public dose is reevaluated based on extreme parameters. Finally, tritium release amount is recalculated consistently with the dose limit in Chinese regulation for CFETR, which would provide a reference for tritium system design of CFETR.

  2. Cost risk analysis of radioactive waste management Preliminary study

    International Nuclear Information System (INIS)

    Forsstroem, J.

    2006-12-01

    This work begins with exposition of the basics of risk analysis. These basics are then applied to the Finnish radioactive waste disposal environment in which the nuclear power companies are responsible for all costs of radioactive waste management including longterm disposal of spent fuel. Nuclear power companies prepare cost estimates of the waste disposal on a yearly basis to support the decision making on accumulation of resources to the nuclear waste disposal fund. These cost estimates are based on the cost level of the ongoing year. A Monte Carlo simulation model of the costs of the waste disposal system was defined and it was used to produce preliminary results of its cost risk characteristics. Input data was synthesised by modifying the original coefficients of cost uncertainty to define a cost range for each cost item. This is a suitable method for demonstrating results obtainable by the model but it is not accurate enough for supporting decision making. Two key areas of further development were identified: the input data preparation and identifying and handling of (i.e. eliminating or merging) interacting cost elements in the simulation model. Further development in both of the mentioned areas can be carried out by co-operating with the power companies as they are the sources of the original data. (orig.)

  3. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  4. Grid-connected ICES: preliminary feasibility analysis and evaluation. Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-30

    The HEAL Complex in New Orleans will serve as a Demonstration Community for which the ICES Demonstration System will be designed. The complex is a group of hospitals, clinics, research facilities, and medical educational facilities. The five tasks reported on are: preliminary energy analysis; preliminary institutional assessment; conceptual design; firming-up of commitments; and detailed work management plan.

  5. Preliminary safety analysis of molten salt breeder reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2013-01-01

    Background: The molten salt reactor is one of the six advanced reactor concepts identified by the Generation IV International Forum as a candidate for cooperative development, which is characterized by remarkable advantages in inherent safety, fuel cycle, miniaturization, effective utilization of nuclear resources and proliferation resistance. ORNL finished the conceptual design of Molten Salt Breeder Reactor (MSBR) based on the design, building and operation of Molten Salt Reactor Experiment (MSRE). Purpose: We attempt to implement the preliminary safety analysis of MSBR in order to provide a reference for the design and optimization of MSBR in the future. Methods: According to the conceptual design of MSBR, a model of safety analysis using point kinetics coupled with the simplified heat transfer mechanism is presented. The model is applied to simulate the transient phenomena of MSBR initiated by an abnormal step reactivity addition and an abnormal ramp reactivity addition at full-power equilibrium condition. Results: The thermal power in the core increases rapidly at the beginning and is accompanied by a rise of the fuel and graphite temperatures after 100, 300, 500 and 600 pcm reactivity addition. The maximum outlet temperature of the fuel in the core is at 1250℃ in 500 pcm reactivity addition, but up to 1350℃ in 600 pcm reactivity addition. The maximum of the power and the temperature are delayed and lower in the ramp reactivity addition rather than in the step reactivity addition. Conclusions: Based on the results, when the reactivity inserted is less than 500 pcm in maximum at full power equilibrium condition, the structural material in Hastelloy-N is not melted and can keep integrity without external control action. And it is necessary to try to avoid inserting a reactivity at short time. (authors)

  6. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L-Y [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  7. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in situ conditions for a bedrock repository for spent nuclear fuel. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft).An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models.Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that effects the Simpevarp area. Transport calculations are then performed by particle tracking from a local-scale release area (tens of square kilometres) to identify potential discharge areas for the site. The transport from the two site-scale release areas (a few square kilometres) at the Simpevarp site and the Laxemar site are also considered more specifically and using greater grid resolution.The main

  8. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    numerically investigated by means of a recent computational model that ..... dependent nonlinear formulations, where the solution scheme is most likely to face with .... boundary and geometric conditions, to (15–16), also proves the validity.

  9. RAMAN amplifier gain dynamics with ASE : Numerical analysis and ...

    African Journals Online (AJOL)

    DR OKE

    simulation approach ... single pump amplification is diagnosed numerically and simulated using MATLAB to obtain experimental outcome. ... or high speed response in comparison with the other nonlinear processes ... Mathematical Modeling.

  10. Numerical Analysis of Impulse Turbine for Isolated Pilot OWC System

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2013-01-01

    Full Text Available Oscillating water column (OWC is the most widely used wave energy converting technology in the world. The impulse turbine is recently been employed as the radial turbine in OWC facilities to convert bidirectional mechanical air power into electricity power. 3D numerical model for the impulse turbine is established in this paper to investigate its operating performance of the designed impulse turbine for the pilot OWC system which is under the construction on Jeju Island, Republic of Korea. The proper mesh style, turbulence model, and numerical solutions are employed to study the velocity and air pressure distribution especially around the rotor blade. The operating coefficients obtained from the numerical simulation are compared with corresponding experimental data, which demonstrates that the 3D numerical model proposed here can be applied to the research of impulse turbines for OWC system. Effects of tip clearances on flow field distribution characteristics and operating performances are also studied.

  11. Sharing wind power forecasts in electricity markets: A numerical analysis

    International Nuclear Information System (INIS)

    Exizidis, Lazaros; Kazempour, S. Jalal; Pinson, Pierre; Greve, Zacharie de; Vallée, François

    2016-01-01

    Highlights: • Information sharing among different agents can be beneficial for electricity markets. • System cost decreases by sharing wind power forecasts between different agents. • Market power of wind producer may increase by sharing forecasts with market operator. • Extensive out-of-sample analysis is employed to draw reliable conclusions. - Abstract: In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making more informed day-ahead schedules, which reduces the need for balancing resources in real-time operation. This paper numerically evaluates the potential value of sharing forecasts for the whole system in terms of system cost reduction. Besides, its impact on each market player’s profit is analyzed. The framework of this study is based on a stochastic two-stage market setup and complementarity modeling, which allows us to gain further insights into information sharing impacts.

  12. Experimental and Numerical Analysis of Steel Joints in Round Wood

    Directory of Open Access Journals (Sweden)

    Mikolášek David

    2014-12-01

    Full Text Available The paper analyses a drawn steel joint in round logs for which several types of reinforcements have been proposed. The load-carrying capacity of the reinforcements have been tested in laboratories. At the same time, numerical modelling has been performed - it has focused, in particular, on rigidity of the joints during the loading process. Physical and geometrical nonlinearities have been taken into account. The Finite Element Method and 3D computation models have been used in the numerical calculations.

  13. Preliminary analysis of knee stress in Full Extension Landing

    Directory of Open Access Journals (Sweden)

    Majid Davoodi Makinejad

    2013-09-01

    Full Text Available OBJECTIVE: This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height. METHODS: The impact time and loads were measured via inverse dynamic analysis of free landing without knee flexion from three different heights (25, 50 and 75 cm, using five subjects with an average body mass index of 18.8. Three-dimensional data were developed from computed tomography scans and were reprocessed with modeling software before being imported and analyzed by finite element analysis software. The whole leg was considered to be a fixed middle-hinged structure, while impact loads were applied to the femur in an upward direction. RESULTS: Straight landing exerted an enormous amount of pressure on the knee joint as a result of the body's inability to utilize the lower extremity muscles, thereby maximizing the threat of injury when the load exceeds the height-safety threshold. CONCLUSIONS: The researchers conclude that extended-knee landing results in serious deformation of the meniscus and cartilage and increases the risk of bone-to-bone contact and serious knee injury when the load exceeds the threshold safety height. This risk is considerably greater than the risk of injury associated with walking downhill or flexion landing activities.

  14. Fatigue behavior of a bolted assembly - a comparison between numerical analysis and experimental analysis

    International Nuclear Information System (INIS)

    Bosser, M.; Vagner, J.

    1987-01-01

    The fatigue behavior of a bolted assembly can be analysed, either by fatigue tests, or by computing the stress variations and using a fatigue curve. This paper presents the fatigue analysis of a stud-bolt and stud-flange of a steam generator manway carried out with the two methods. The experimental analysis is performed for various levels of load, according to the recommandations of the ASME code section III appendix II. The numerical analysis of the stresses is based on the results of a finite element analysis performed with the program SYSTUS. The maximum stresses are obtained in the first bolt threads. In using these stresses, the allowable number of cycles for each level of loading analysed, is obtained from fatigue curves, as defined in appendix I section III of the ASME code. The analysis underlines that, for each level of load the purely numerical approach is highly conservative, compared to the experimental approach. (orig.)

  15. Risk Assessment of Healthcare Waste by Preliminary Hazard Analysis Method

    Directory of Open Access Journals (Sweden)

    Pouran Morovati

    2017-09-01

    Full Text Available Introduction and purpose: Improper management of healthcare waste (HCW can pose considerable risks to human health and the environment and cause serious problems in developing countries such as Iran. In this study, we sought to determine the hazards of HCW in the public hospitals affiliated to Abadan School of Medicine using the preliminary hazard analysis (PHA method. Methods: In this descriptive and analytic study, health risk assessment of HCW in government hospitals affiliated to Abadan School of Medicine (4 public hospitals was carried out by using PHA in the summer of  2016. Results: We noted the high risk of sharps and infectious wastes. Considering the dual risk of injury and disease transmission, sharps were classified in the very high-risk group, and pharmaceutical and chemical and radioactive wastes were classified in the medium-risk group. Sharps posed the highest risk, while pharmaceutical and chemical wastes had the lowest risk. Among the various stages of waste management, the waste treatment stage was the most hazardous in all the studied hospitals. Conclusion: To diminish the risks associated with healthcare waste management in the studied hospitals, adequate training of healthcare workers and care providers, provision of suitable personal protective and transportation equipment, and supervision of the environmental health manager of hospitals should be considered by the authorities.  

  16. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Ji Yi-Cai

    2015-01-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)

  17. Numerical analysis of pipe impact on reinforced concrete structures

    International Nuclear Information System (INIS)

    Prinja, N.K.

    1990-01-01

    This paper presents the methodology and the results of numerical analyses carried out by using the computer code DYNA3D to analyse pipe impacts on a reinforced concrete slab, a floor beam and a column. Modelling techniques employed to represent various features of typical reinforced concrete (RC) structures and the details of a soil and crushable foam type of material model used to represent concrete material behaviour are described. The results show that a reasonable prediction of global behaviour of reinforced concrete structures under impact loading can be obtained by this numerical method. (author)

  18. International Winter Workshop on Differential Equations and Numerical Analysis

    CERN Document Server

    Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin

    2016-01-01

    This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.

  19. Numerical analysis of the performance prediction for a thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Nyung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-09-15

    The present study develops a two-dimensional numerical code that can predict the performance of a thermoelectric generator module including a p-leg/n-leg pair and top and bottom electrodes. The present code can simulate the detailed thermoelectric phenomena including the heat flow, electric current, Joule heating, Peltier heating, and Thomson heating, together with the efficiency of the modules whose properties depend on the temperature. The present numerical code can be used for the design optimization of a thermoelectric power generator.

  20. Cost analysis of small hydroelectric power plants components and preliminary estimation of global cost

    International Nuclear Information System (INIS)

    Basta, C.; Olive, W.J.; Antunes, J.S.

    1990-01-01

    An analysis of cost for each components of Small Hydroelectric Power Plant, taking into account the real costs of these projects is shown. It also presents a global equation which allows a preliminary estimation of cost for each construction. (author)

  1. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

    International Nuclear Information System (INIS)

    Faustino, N.; Vieira, N.

    2007-01-01

    We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

  2. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  3. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    Choked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are ...

  4. Numerical Modeling and Mechanical Analysis of Flexible Risers

    Directory of Open Access Journals (Sweden)

    J. Y. Li

    2015-01-01

    Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.

  5. About numerical analysis of a plasma physics problem

    International Nuclear Information System (INIS)

    Almeida Cipolatti, R. de

    1985-01-01

    A numerical study on macroscopic equilibrium of a plasma at interior of a tokamak device, considering boundary problems for the case which f(s)=sis presented. The abstract Dirichlet problem enumerating main results which is applied to plasma model is studied. (M.C.K.) [pt

  6. Numerical bifurcation analysis of a class of nonlinear renewal equations

    NARCIS (Netherlands)

    Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca

    2016-01-01

    We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits

  7. Numerical analysis and control of the recirculation bubble strength ...

    African Journals Online (AJOL)

    Numerical investigation of the turbulent jet flows, both central and annular type of jets has been carried out with the introduction of swirl at the inlet using the modified κ −ε model. It was observed that the recirculation bubble generated by the central jet without swirl diminishes in size due to increase in swirl number, while in ...

  8. On the numerical stability analysis of pipelined Krylov subspace methods

    Czech Academy of Sciences Publication Activity Database

    Carson, E.T.; Rozložník, Miroslav; Strakoš, Z.; Tichý, P.; Tůma, M.

    submitted 2017 (2018) R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : Krylov subspace methods * the conjugate gradient method * numerical stability * inexact computations * delay of convergence * maximal attainable accuracy * pipelined Krylov subspace methods * exascale computations

  9. Introduction to Numerical Computation - analysis and Matlab illustrations

    DEFF Research Database (Denmark)

    Elden, Lars; Wittmeyer-Koch, Linde; Nielsen, Hans Bruun

    In a modern programming environment like eg MATLAB it is possible by simple commands to perform advanced calculations on a personal computer. In order to use such a powerful tool efiiciently it is necessary to have an overview of available numerical methods and algorithms and to know about...... are illustrated by examples in MATLAB....

  10. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  11. A Preliminary Tsunami Vulnerability Analysis for Yenikapi Region in Istanbul

    Science.gov (United States)

    Ceren Cankaya, Zeynep; Suzen, Lutfi; Cevdet Yalciner, Ahmet; Kolat, Cagil; Aytore, Betul; Zaytsev, Andrey

    2015-04-01

    One of the main requirements during post disaster recovery operations is to maintain proper transportation and fluent communication at the disaster areas. Ports and harbors are the main transportation hubs which must work with proper performance at all times especially after the disasters. Resilience of coastal utilities after earthquakes and tsunamis have major importance for efficient and proper rescue and recovery operations soon after the disasters. Istanbul is a mega city with its various coastal utilities located at the north coast of the Sea of Marmara. At Yenikapi region of Istanbul, there are critical coastal utilities and vulnerable coastal structures and critical activities occur daily. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, water front commercial and/or recreational structures are some of the examples of coastal utilization which are vulnerable against marine disasters. Therefore their vulnerability under tsunami or any other marine hazard to Yenikapi region of Istanbul is an important issue. In this study, a methodology of vulnerability analysis under tsunami attack is proposed with the applications to Yenikapi region. In the study, high resolution (1m) GIS database of Istanbul Metropolitan Municipality (IMM) is used and analyzed by using GIS implementation. The bathymetry and topography database and the vector dataset containing all buildings/structures/infrastructures in the study area are obtained for tsunami numerical modeling for the study area. GIS based tsunami vulnerability assessment is conducted by applying the Multi-criteria Decision Making Analysis (MCDA). The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability parameters in the region due to two different classifications i) vulnerability of buildings/structures and ii) vulnerability of (human) evacuation

  12. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  13. The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis

    DEFF Research Database (Denmark)

    Kristensen, Niels Heine; Nielsen, Thorkild; Bruselius-Jensen, Maria Louisa

    2003-01-01

    Kristensen NH, Nielsen T, Bruselius-Jensen M, Scheperlen-Bøgh P, Beckie M, Foster C, Midmore P, Padel S (2002): The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis. Final Report to the EU Commission......Kristensen NH, Nielsen T, Bruselius-Jensen M, Scheperlen-Bøgh P, Beckie M, Foster C, Midmore P, Padel S (2002): The Organic Food Market and Marketing Initiatives in Europe: a Preliminary Analysis. Final Report to the EU Commission...

  14. Oxygenates in automotive fuels. Consequence analysis - preliminary study

    International Nuclear Information System (INIS)

    Brandberg, Aa.; Saevbark, B.

    1994-01-01

    Oxygenates is used in gasoline due to several reasons. They are added as high-octane components in unleaded gasoline and as agents to reduce the emission of harmful substances. Oxygenates produced from biomass might constitute a coming market for alternative fuels. This preliminary study describes the prerequisites and consequences of such an oxygenate utilization. 39 refs, 9 figs, 5 tabs

  15. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2005-12-01

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  16. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  17. [Management of cytostatic drugs by nurses: analysis of preliminary results].

    Science.gov (United States)

    Bilski, Bartosz

    2004-01-01

    Cytostatic drugs pose a quite specific occupational risk to health care workers. There is a wide range of potential harmful effects, including remote effects, exerted by this group of drugs. In Polish and international regulations, standards of work safety and hygiene concerning these substances are clearly defined. Nevertheless working conditions in Polish health care institutions are now mostly influenced by economic and organizational problems, which may also be reflected in the compliance with the work safety rules. This paper presents a preliminary analysis of subjective assessment of practice with regard to the management of cytostatics reported by nurses, an occupational group mostly exposed to these substances. The study was carried out at hospital departments in the Warmińsko-Mazurskie Voivodship, where exposure of the staff to these drugs was observed. The study covered the whole nursing staff exposed. Completed questionnaires were obtained from 60 nurses, aged +/- 32 years (20-54 years) with job seniority +/- 8 years (2-18), including 58 nurses with secondary education and two university graduates. Undergraduate education did not develop in respondents skills to work with cytostatics. There is a need to increase the involvement of nursing schools, research institutes and teaching hospitals in the improvement of vocational training of nurses working with cytostatic drugs. To this end, all nurses should be covered with the obligatory training how to handle this group of drugs. The respondents reported that they had acquired their knowledge and experience of managing cytostatics in their work and during training organized at workplace. Despite the acquired knowledge and experience the interviewed nurses did not always comply with work safety and hygiene regulations. The problem of exposure to cytostatic drugs in the form of tablets was most frequently neglected. Some of the nurses were additionally exposed to ionizing radiation. Shortage of the nursing

  18. Performance analysis of numeric solutions applied to biokinetics of radionuclides

    International Nuclear Information System (INIS)

    Mingatos, Danielle dos Santos; Bevilacqua, Joyce da Silva

    2013-01-01

    Biokinetics models for radionuclides applied to dosimetry problems are constantly reviewed by ICRP. The radionuclide trajectory could be represented by compartmental models, assuming constant transfer rates between compartments. A better understanding of physiological or biochemical phenomena, improve the comprehension of radionuclide behavior in the human body and, in general, more complex compartmental models are proposed, increasing the difficulty of obtaining the analytical solution for the system of first order differential equations. Even with constant transfer rates numerical solutions must be carefully implemented because of almost singular characteristic of the matrix of coefficients. In this work we compare numerical methods with different strategies for ICRP-78 models for Thorium-228 and Uranium-234. The impact of uncertainty in the parameters of the equations is also estimated for local and global truncation errors. (author)

  19. 3D numerical simulation and analysis of railgun gouging mechanism

    Directory of Open Access Journals (Sweden)

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  20. Classical and modern numerical analysis theory, methods and practice

    CERN Document Server

    Ackleh, Azmy S; Kearfott, R Baker; Seshaiyer, Padmanabhan

    2009-01-01

    Mathematical Review and Computer Arithmetic Mathematical Review Computer Arithmetic Interval ComputationsNumerical Solution of Nonlinear Equations of One Variable Introduction Bisection Method The Fixed Point Method Newton's Method (Newton-Raphson Method) The Univariate Interval Newton MethodSecant Method and Müller's Method Aitken Acceleration and Steffensen's Method Roots of Polynomials Additional Notes and SummaryNumerical Linear Algebra Basic Results from Linear Algebra Normed Linear Spaces Direct Methods for Solving Linear SystemsIterative Methods for Solving Linear SystemsThe Singular Value DecompositionApproximation TheoryIntroduction Norms, Projections, Inner Product Spaces, and Orthogonalization in Function SpacesPolynomial ApproximationPiecewise Polynomial ApproximationTrigonometric ApproximationRational ApproximationWavelet BasesLeast Squares Approximation on a Finite Point SetEigenvalue-Eigenvector Computation Basic Results from Linear Algebra The Power Method The Inverse Power Method Deflation T...

  1. Detecting failure events in buildings: a numerical and experimental analysis

    OpenAIRE

    Heckman, V. M.; Kohler, M. D.; Heaton, T. H.

    2010-01-01

    A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of wavef...

  2. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  3. Numerical analysis of biosonar beamforming mechanisms and strategies in bats.

    Science.gov (United States)

    Müller, Rolf

    2010-09-01

    Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat.

  4. Current problems and subjects on numerical analysis of earthquake geotechnical engineering. For seamless analysis

    International Nuclear Information System (INIS)

    Yoshida, Taiki

    2016-01-01

    There are continuum and discontinuum analyses in the evaluation of seismic stability of surrounding slope in nuclear power plant facility. However, we cannot rationally evaluate such seismic stability due to excessive conservative margin of the results by each analysis. If we can simulate the behavior from small to large deformation by hybridizing them, we can contribute not only to the rationalization of the slope stability evaluation but also the enhancement of evaluation precision in the numerical analysis. In this review, the previous numerical analyses and application cases of them in earthquake geotechnical engineering were classified into three categories, that is, continuum analysis, discontinuum one and the hybridizing process to identify their research themes. The present review has revealed that the research themes are the standardization of condition for conversion, construction of the technique to determine parameters related to conversion and the reasonable physical property set of DEM(Distinct Element Method) after conversion. Our future work will be development of a numerical analysis code hybridizing continuum and discontinuum analyses based on the identified research themes. (author)

  5. Numerical Analysis Of The Resistance To Pullout Test Of Clinched Assemblies Of Thin Metal Sheets

    International Nuclear Information System (INIS)

    Jomaa, Moez; Billardon, Rene

    2007-01-01

    This paper presents the finite element analysis of the resistance of a clinch point to pullout test -that follows the numerical analysis of the forming process of the point-. The simulations have been validated by comparison with experimental evidences. The influence on the numerical predictions of various computation and process parameters have been evaluated

  6. Numerical and experimental analysis of vertical spray control patternators

    Directory of Open Access Journals (Sweden)

    F. Sarghini

    2013-09-01

    Full Text Available The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer. Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows. In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup.

  7. Preliminary Analysis of Helicopter Options to Support Tunisian Counterterrorism Operations

    Science.gov (United States)

    2016-04-27

    helicopters from Sikorsky to fulfill a number of roles in counterterrorism operations. Rising costs and delays in delivery raised the question of...whether other cost-effective options exist to meet Tunisia’s helicopter requirement. Approach Our team conducted a preliminary assessment of...alternative helicopters for counterterrorism air assault missions. Any decision to acquire an aircraft must consider many factors, including technical

  8. The set of prime numbers: Multiscale analysis and numeric accelerators

    International Nuclear Information System (INIS)

    Iovane, Gerardo

    2009-01-01

    In this work, we show that the prime numbers follow a multiscale distribution. Indeed they can be classified thanks to tree structures, which are expressed in terms of two maximal subsets of N and using multilayer selection rules, acting on these sets of prime candidates. Consequently, the prime numbers follow a specific deterministic rules. Indeed, a numeric accelerator for generating primes can be realized in terms of the above mentioned specific rules. From the comparison with the Fibonacci numbers a beautiful harmony comes in terms of the Golden Mean which is relevant to high energy physics and E-Infinity theory too.

  9. Floor Heating with Displacement Ventilation: An Experimental and Numerical Analysis

    DEFF Research Database (Denmark)

    Causone, Francesco; Olesen, Bjarne W.; Corgnati, S.P.

    2010-01-01

    The effect of floor heating combined with displacement ventilation (DV) on thermal indoor environments and indoor air quality (IAQ) was studied by means of CFD. The numerical model was validated with experimental data. A typical office room was simulated, and one of the occupants was considered...... to simulate different kinds of contaminant sources, under the same boundary conditions. It was found that DV does not guarantee a better IAQ than full mixing when contaminant sources are not linked to heat sources, even when floor heating is used. Contaminants produced by powerful heat sources require high...

  10. Analysis and modeling of subgrid scalar mixing using numerical data

    Science.gov (United States)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.

  11. Numerical analysis of sawtooth oscillation during electron cyclotron heating phases

    International Nuclear Information System (INIS)

    Wang Shiqing; Jin Yaqiu

    2001-01-01

    By employing two models, namely the reconnection model and the turbulence model, the authors present a transport code simulation of sawtooth discharges in T-10 Tokamak in the electron cyclotron heating phases, and the trigger conditions are also coupled into the transport code. In one discharge, ECRH was located nearly on-axis, and in another ECRH was located well off-axis. The comparison of numerical results and experiment data show that good prediction was obtained with the turbulence model. In contrast, due to some fundamental shortcoming of the reconnection model, no satisfactory fit could be obtained using the latter

  12. Numerical analysis of data in dynamic function studies

    International Nuclear Information System (INIS)

    Riihimaeki, E.

    1975-01-01

    Relations between tracer theories, models for organ function and the numerical solution of parameters from tracer experiments are reviewed. A unified presentation is given in terms of systems theory. Dynamic tracer studies should give the flow and volume of the tracer and, possibly, indications of the internal structure of the organ studied. Proper program writing will facilitate the exchange of the programs between the users and thereby avoid duplication of effort. An important attribute in this respect is machine independence of the programs which is achieved by the use of a high-level language. (author)

  13. 3rd International Conference on Numerical Analysis and Optimization : Theory, Methods, Applications and Technology Transfer

    CERN Document Server

    Grandinetti, Lucio; Purnama, Anton

    2015-01-01

    Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, opt...

  14. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    Science.gov (United States)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  15. Experimental and numerical analysis of pollutant dispersion from a chimney

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.M.; Mhiri, H. [Ecole Nationale d' Ingenieurs de Monastir, Tunisie (Tunisia). Laboratorie de Mecanique des Fluides et Thermique; Le Palec, G.; Bournot, P. [UNIMECA, Marseille (France). Institut de Mecanique de Marseille, Equipe IMFT

    2005-03-01

    Particle image velocimetry (PIV) is used to extract and characterize the underlying organized motions, i.e. coherent structures, within the near-wake region of a turbulent round jet discharged perpendicularly from a chimney into a crossflow. This flow has been found to be quite complex owing to its three-dimensional nature and the interactions between several flow regions. Analyses of the underlying coherent structures, which play an important role in the physics of the flow, are still rare and mostly based on flow-visualization techniques. Using a PIV technique, we examined the wake regions of the chimney and plume at levels near the top of the chimney. The complex geometry of these structures in the wake of the plume as well as their interaction with the plume as it bends over after emission is discussed. In this paper we describe the Kelvin-Helmholtz vortex structures, the downwash phenomena and the effect of the height of the chimney. Extensive wind tunnel experimental results are presented and compared with numerical simulation. A good level of agreement was found between the results of flow visualization and numerical simulation. (author)

  16. Numerical analysis of the spacer grids' compression strength

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N., E-mail: carlosschettino@inb.gov.br, E-mail: jpg@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Programa de Engenharia Metalurgica

    2013-07-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  17. Experimental and numerical analysis of the drainage of aluminium foams

    International Nuclear Information System (INIS)

    Brunke, O; Hamann, A; Cox, S J; Odenbach, S

    2005-01-01

    Drainage is one of the driving forces for the temporal instability of molten metal foams. For usual aqueous foams this phenomenon is well examined and understood on both the experimental and the theoretical side. The situation is different for metallic foams. Due to their opaque nature, the observation of drainage is only possible by either measuring the density distribution of solidified samples ex situ or by x-ray or neutron radioscopy. Up to now there exists just one theoretical study describing the drainage behaviour of metallic foams incorporating the drainage equation, the temperature dependence of the viscosity and thermal transport. This paper will present results on the drainage behaviour of aluminium foams grown by a powder-metallurgical production route. For this purpose an experiment which allows the observation of drainage in cylindrical metal foam columns has been developed. Experimental density profiles after different drainage times are measured ex situ and compared to numerical results of the standard drainage equation for aqueous foams. This first comparison between the density redistribution of metallic aluminium foams and numerical solutions shows that the standard drainage equation can be used to explain the drainage behaviour of metallic foams

  18. Numerical analysis of the spacer grids' compression strength

    International Nuclear Information System (INIS)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N.

    2013-01-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  19. Protective Alternatives of SMR against Extreme Threat Scenario – A Preliminary Risk Analysis

    International Nuclear Information System (INIS)

    Shohet, I.M.; Ornai, D.; Gal, E.; Ronen, Y.; Vidra, M.

    2014-01-01

    The article presents a preliminary risk analysis of the main features in NPP (Nuclear Power Plant) that includes SMR - Small and Modular Reactors, given an extreme threat scenario. A review of the structure and systems of the SMR is followed by systematic definitions and analysis of the threat scenario to which a preliminary risk analysis was carried out. The article outlines the basic events caused by the referred threat scenario, which had led to possible failure mechanisms according to FTA (Fault-Tree-Analysis),critical protective circuits, and todetecting critical topics for the protection and safety of the reactor

  20. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  1. Beryllium reflectors for research reactors. Review and preliminary finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Pablo S; Cocco, Roxana G., E-mail: rcocco@invap.com.ar [INVAP S.E., Rio Negro (Argentina)

    2012-03-15

    Beryllium is used in numerous research reactors to moderate neutron energy and to reflect neutrons back into the core, thus intensifying the thermal neutron flux. However, beryllium is degraded by radiation damage, as a result of both displacement and transmutation. Displacement damage leads to point defect clustering, irradiation hardening and embrittlement. Transmutation produces helium, which results in high levels of gas and swelling, even at low temperatures. A brief state-of-the-art review on the use of reflector assemblies reveals that each user has adopted a different method for overcoming problems related to swelling: strengthening, cracking and distortion. In the present work a preliminary study about the geometry influence on the reflector assembly behavior was performed by a Finite Element Analysis (FEA). A simplified study was made varying its geometry in height, thickness and width. The results showed that the most influencing parameter in avoiding distortion due to swelling is firstly the reflector's assembly height, H; secondly its thickness, L, and lastly its angle/width, {theta}. These results contribute to the understanding of distortion behavior and the stresses generated in a simple geometry Be bar subjected to radiation, which can be a useful tool for mechanical design of more complex components. (author)

  2. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    Science.gov (United States)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  3. Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems

    Directory of Open Access Journals (Sweden)

    Y. Cai

    1995-01-01

    Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.

  4. Mathematical analysis and numerical methods for science and technology

    CERN Document Server

    Dautray, Robert

    These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...

  5. A numerical analysis of the British Experimental Rotor Program blade

    Science.gov (United States)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  6. Numerical analysis of quasiperiodic perturbations for the Alfven wave

    International Nuclear Information System (INIS)

    Yamakoshi, Y.; Muto, K.; Yoshida, Z.

    1994-01-01

    The Alfven wave may have a localized eigenfunction when it propagates on a chaotic magnetic field. The Arnold-Beltrami-Childress (ABC) flow is a paradigm of chaotic stream lines and is a simple exact solution to the three-dimensional force-free plasma equilibrium equations. The three-dimensional structure of the magnetic field is represented by sinusoidal quasiperiodic modulation. The short wavelength Alfven wave equation for the ABC-flow magnetic field has a quasiperiodic potential term, which induces interference among ''Bragg-reflected'' waves with irregular phases. Then the eigenfunction decays at long distance and a point spectrum occurs. Two different types of short wavelength modes have numerically analyzed to demonstrate the existence of localized Alfven wave eigenmodes

  7. Numerical analysis of whole-body cryotherapy chamber design improvement

    Science.gov (United States)

    Yerezhep, D.; Tukmakova, A. S.; Fomin, V. E.; Masalimov, A.; Asach, A. V.; Novotelnova, A. V.; Baranov, A. Yu

    2018-05-01

    Whole body cryotherapy is a state-of-the-art method that uses cold for treatment and prevention of diseases. The process implies the impact of cryogenic gas on a human body that implements in a special cryochamber. The temperature field in the chamber is of great importance since local integument over-cooling may occur. Numerical simulation of WBC has been carried out. Chamber design modification has been proposed in order to increase the uniformity of the internal temperature field. The results have been compared with the ones obtained for a standard chamber design. The value of temperature gradient formed in the chamber containing curved wall with certain height has been decreased almost twice in comparison with the results obtained for the standard design. The modification proposed may increase both safety and comfort of cryotherapy.

  8. Numerical analysis of Sakiadis flow problem considering Maxwell nanofluid

    Directory of Open Access Journals (Sweden)

    Mustafa Meraj

    2017-01-01

    Full Text Available This article investigates the flow of Maxwell nanofluid over a moving plate in a calm fluid. Novel aspects of Brownian motion and thermophoresis are taken into consideration. Revised model for passive control of nanoparticle volume fraction at the plate is used in this study. The formulated differential system is solved numerically by employing shooting approach together with fourth-fifth-order-Runge-Kutta integration procedure and Newton’s method. The solutions are greatly influenced with the variation of embedded parameters which include the local Deborah number, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number, and the Schmidt number. We found that the variation in velocity distribution with an increase in local Deborah number is non-monotonic. Moreover, the reduced Nusselt number has a linear and direct relationship with the local Deborah number.

  9. Numerical analysis of wet separation of particles by density differences

    Science.gov (United States)

    Markauskas, D.; Kruggel-Emden, H.

    2017-07-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  10. Analysis of stresses on buried pipeline subjected to landslide based on numerical simulation and regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)

    2010-07-01

    Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.

  11. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  12. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    International Nuclear Information System (INIS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-01-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model

  13. Preliminary Hazard Analysis applied to Uranium Hexafluoride - UF6 production plant

    International Nuclear Information System (INIS)

    Tomzhinsky, David; Bichmacher, Ricardo; Braganca Junior, Alvaro; Peixoto, Orpet Jose

    1996-01-01

    The purpose of this paper is to present the results of the Preliminary hazard Analysis applied to the UF 6 Production Process, which is part of the UF 6 Conversion Plant. The Conversion Plant has designed to produce a high purified UF 6 in accordance with the nuclear grade standards. This Preliminary Hazard Analysis is the first step in the Risk Management Studies, which are under current development. The analysis evaluated the impact originated from the production process in the plant operators, members of public, equipment, systems and installations as well as the environment. (author)

  14. Numerical Analysis of Thermal Comfort at Urban Environment

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.

    2009-08-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (athletic park), named "Serafeio Athletic and Cultural Centre," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  15. Numerical Analysis of Thermal Comfort at Open Air Spaces

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  16. Interaction of debris with a solid obstacle: Numerical analysis

    International Nuclear Information System (INIS)

    Kosinska, Anna

    2010-01-01

    The subject of this research is the propagation of a cloud of solid particles formed from an explosion-damaged construction. The main objective is the interaction of the cloud (debris) with a solid beam located at some distance from the explosion. The mathematical model involves the flow of the gas using standard conservation equations, and this part of the model is solved numerically. The solid particles are treated as a system of solid points (so-called Lagrangian approach), whose motion is the result of the flowing gas as well as collisions with obstacles. These two issues are described respectively by Newton's second law and the hard-sphere model. The model is used to simulate various cases where the influence of different parameters like the value of the pressure of the explosion, the particle size, the number of particles and the obstacle location are investigated. The results are presented as snapshots of particle location, and also as the particle total momentum during collision with the beam.

  17. Interaction of debris with a solid obstacle: numerical analysis.

    Science.gov (United States)

    Kosinska, Anna

    2010-05-15

    The subject of this research is the propagation of a cloud of solid particles formed from an explosion-damaged construction. The main objective is the interaction of the cloud (debris) with a solid beam located at some distance from the explosion. The mathematical model involves the flow of the gas using standard conservation equations, and this part of the model is solved numerically. The solid particles are treated as a system of solid points (so-called Lagrangian approach), whose motion is the result of the flowing gas as well as collisions with obstacles. These two issues are described respectively by Newton's second law and the hard-sphere model. The model is used to simulate various cases where the influence of different parameters like the value of the pressure of the explosion, the particle size, the number of particles and the obstacle location are investigated. The results are presented as snapshots of particle location, and also as the particle total momentum during collision with the beam. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. Study on the numerical analysis of nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Yang, J.C.

    1980-01-01

    A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)

  19. NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE

    Directory of Open Access Journals (Sweden)

    Walid AICH

    2011-01-01

    Full Text Available Natural convection heat transfer and fluid flow have been examined numerically using the control-volume finite-element method in an isosceles prismatic cavity, submitted to a uniform heat flux from below when inclined sides are maintained isothermal and vertical walls are assumed to be perfect thermal insulators, without symmetry assumptions for the flow structure. The aim of the study is to examine a pitchfork bifurcation occurrence. Governing parameters on heat transfer and flow fields are the Rayleigh number and the aspect ratio of the enclosure. It has been found that the heated wall is not isothermal and the flow structure is sensitive to the aspect ratio. It is also found that heat transfer increases with increasing of Rayleigh number and decreases with increasing aspect ratio. The effects of aspect ratio become significant especially for higher values of Rayleigh number. Eventually the obtained results show that a pitchfork bifurcation occurs at a critical Rayleigh number, above which the symmetric solutions becomes unstable and asymmetric solutions are instead obtained.

  20. Numerical analysis on centrifugal compressor with membrane type dryer

    Science.gov (United States)

    Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.

    2017-09-01

    Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.

  1. A numerical analysis of crack growth in brittle microcracking composites

    International Nuclear Information System (INIS)

    Biner, S.B.

    1993-01-01

    A set of numerical analyses of crack growth was performed to elucidate the mechanism of microcracking on the observed fracture behavior of brittle solids and composites. The random nucleation, orientation and size effects of discrete microcracks and resulting interactions are fully accounted for in a hybrid finite element model. The results indicate that the energy expenditure due the microcrack nucleation seems not to contribute significantly to the resistance to crack growth. The main controlling parameter appears to be elastic interaction of the microcracks with the main crack in the absence of a reinforcing phase; therefore, the microcrack density plays an important role. In the case of the composites, the interaction of the main crack with the stress fields of the reinforcing phase, rather than interaction of microcracks, is the controlling parameter for the resistance to the crack growth even in the presence of a large population of microcracks. It will be also shown that the crack branching and crack kinking can readily develop as a result of microcracking

  2. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  3. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  4. Numerical analysis of the bubble detachment diameter in nucleate boiling

    International Nuclear Information System (INIS)

    Lamas, M I; Sáiz Jabardo, J M; Arce, A; Fariñas, P

    2012-01-01

    The present paper presents a tri-dimensional CFD (Computational Fluid Dynamics) model to investigate the fluid flow around bubbles attached to heated walls. Transient solutions of the governing field equations in a domain containing the bubbles and the surrounding liquid have been obtained. The nucleation, growing and detachment processes have been analyzed. Concerning the software, the open source OpenFOAM has been used. Special attention has been given to the bubble detachment diameter. Two mechanisms have been considered as physically related to the detachment: surface tension and buoyancy. As expected, it has been verified that the bubble detachment diameter depends on the contact angle, operating pressure and properties of the fluid. Several fluids have been considered (water, R134a, ammonia and R123), as well as several operating pressures (between 0.1 and 10 bar) and contact angles (between 10 and 80°). It has been concluded that the detachment diameter depends strongly on the contact angle and fluid properties and slightly on the pressure. A correlation for the bubble detachment diameter has been developed based on the obtained numerical results. Data from this expression compare reasonably well with those from other correlations from the literature.

  5. A general numerical analysis program for the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1986-01-01

    A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.

  6. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  7. Numerical analysis of a reciprocating active magnetic regenerator

    International Nuclear Information System (INIS)

    Lionte, Sergiu; Vasile, Carmen; Siroux, Monica

    2015-01-01

    A time-dependent, two-dimensional mathematical model of a configuration system for magnetic refrigeration has been developed, based on a reciprocating active magnetic regenerator operating at room temperature. The model's geometry is made of parallel plates of magnetocaloric material separated by microchannels. Through the microchannels, the flow of a heat transfer fluid has also been simulated. Water has been used as heat transfer fluid and as magnetocaloric material we have used the benchmark material gadolinium. The heat transfer inside the regenerator and the fluid flow are modelled separately and the magnetocaloric effect is taken into account by the inclusion of a variable source term in the energy equation. The model simulates the steps of the active magnetic regenerative refrigeration cycle and evaluates the performance in terms of cooling load, COP, temperature span and pressure drop for the parallel-plate configuration. The model has been validated by comparing the numerical results with the results obtained from an experimental device made by a partner. This parametric study allows us to identify the most important characteristics that have a significant influence on the thermal behaviour of the active magnetic regenerator. Several simulation results are discussed and some optimal solutions are presented. - Highlights: • We have developed a 2D model of an active magnetic regenerator. • The MCE is included as a source term with data from experimental measurements. • A validation of the model with experimental data is included. • We analysed the temperature span, the cooling power, the COP and the pressure drop of the system

  8. Preliminary analysis of the transient overpower accident for CRBRP. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Frank, M.V.

    1975-07-01

    A preliminary analysis of the transient overpower accident for the Clinch River Breeder Reactor Plant (CRBRP) is presented. Several uncertainties in the analysis and the estimation of ramp rates during the transition to disassembly are discussed. The major conclusions are summarized

  9. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  10. A Numerical Procedure for Analysis of W/R Contact Using Explicit Finite Element Methods

    NARCIS (Netherlands)

    Ma, Y.; Markine, V.L.

    2015-01-01

    Since no effective experimental approaches have been proposed to assess wheel and rail (W/R) contact performance till now, numerical computational analysis is known as an alternative to approximately simulate the W/R interaction. In this paper, one numerical procedure is proposed on the basis of

  11. Numerical Fracture Analysis of Cryogenically Treated Alloy Steel Weldments

    International Nuclear Information System (INIS)

    Rasool Mohideen, S; Thamizhmanii, S; Muhammed Abdul Fatah, M.M; Saidin, W. Najmuddin W.

    2016-01-01

    Cryogenic treatment is being used commercially in the industries in the last two decades for improving the life of many engineering component such as bearings and cutting tools. Though their influence in improving the wear resistance of tool materials is well established, the effect of treatment on weldments is not much investigated. In the present work, a two dimensional finite element analysis was carried out on the compact tension specimen model for simulating the treatment process and to study the fracture behaviour. The weldments were modelled by thermo- mechanical coupled field analysis for simulating he temperature distribution in the model during weld pool cooling and introducing thermal stresses due to uneven contraction and cooling. The model was subjected to cryogenic treatment by adopting radiation effect. The fracture analysis was carried out using Rice's J- Integral approach. The analysis produced a similar outcome of experimental results i.e. Increase in the fracture toughness of the specimen after cryogenic treatment in the heat affected zone of weldment. (paper)

  12. Numerical analysis of electromigration in thin film VLSI interconnections

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.; Angelescu, S.; Vissarion, R.; Dima, G.; Wallinga, Hans; Profirescu, M.D.

    1995-01-01

    Due to the continuing downscaling of the dimensions in VLSI circuits, electromigration is becoming a serious reliability hazard. A software tool based on finite element analysis has been developed to solve the two partial differential equations of the two particle vacancy/imperfection model.

  13. Numerical analysis of stiffener for hybrid drive unite

    Directory of Open Access Journals (Sweden)

    Jakubovičová Lenka

    2018-01-01

    Full Text Available The matter of this article is a stress-strain analysis of hybrid drive prototype unit connected directly to convention Concrete Transit Mixer Gearbox. The unite was developed with intention to do field test on existing convection machines with possibility to use existing interfaces. The hybrid drive unit consists from electric and hydrostatic motor connected through addition mechanical transmission gearbox. The question is if today standard interface is good enough or need additional support a “stiffener”. Two engineering design were analysed. The first one includes using the stiffener to fixate the construction of hybrid drive unite connected to the planetary gear. The second one is without the stiffener. For strain-stress analysis, a finite element software ANSYS Workbench was used.

  14. Numerical analysis of the non-contacting gas face seals

    Science.gov (United States)

    Blasiak, S.

    2017-08-01

    The non-contacting gas face seals are used in high-performance devices where the main requirements are safety and reliability. Compliance with these requirements is made possible by careful research and analysis of physical processes related to, inter alia, fluid flow through the radial gap and ring oscillations susceptible to being housed in the enclosure under the influence of rotor kinematic forces. Elaborating and developing mathematical models describing these phenomena allows for more and more accurate analysis results. The paper presents results of studies on stationary ring oscillations made of different types of materials. The presented results of the research allow to determine which of the materials used causes the greatest amplitude of the vibration of the system fluid film-working rings.

  15. DESIGN ANALYSIS OF ELECTRICAL MACHINES THROUGH INTEGRATED NUMERICAL APPROACH

    Directory of Open Access Journals (Sweden)

    ARAVIND C.V.

    2016-02-01

    Full Text Available An integrated design platform for the newer type of machines is presented in this work. The machine parameters are evaluated out using developed modelling tool. With the machine parameters, the machine is modelled using computer aided tool. The designed machine is brought to simulation tool to perform electromagnetic and electromechanical analysis. In the simulation, conditions setting are performed to setup the materials, meshes, rotational speed and the excitation circuit. Electromagnetic analysis is carried out to predict the behavior of the machine based on the movement of flux in the machines. Besides, electromechanical analysis is carried out to analyse the speed-torque characteristic, the current-torque characteristic and the phase angle-torque characteristic. After all the results are analysed, the designed machine is used to generate S block function that is compatible with MATLAB/SIMULINK tool for the dynamic operational characteristics. This allows the integration of existing drive system into the new machines designed in the modelling tool. An example of the machine design is presented to validate the usage of such a tool.

  16. WIPP [Waste Isolation Pilot Plant] panel entryway seal: Numerical simulation of seal composite interaction for preliminary design evaluation

    International Nuclear Information System (INIS)

    Argueello, J.G.

    1988-04-01

    This report presents the results of a series of structural analyses performed to evaluate the structural interaction of the components of a potential two-component panel entryway seal configuration with each other and with the rock salt formation at the repository horizon of the Waste Isolation Pilot Plant. A two-dimensional axisymmetric geomechanical model is used to numerically simulate the interaction of the components of a 30.48 m (100 ft) long seal, consisting of concrete end caps and a crushed salt core, with each other and with the surrounding formation. Issues addressed in this report pertain to the consolidation of the crushed salt in terms of how much of the seal core reaches effective consolidation in the presence of the stiff concrete end caps since these could conceivably cause bridging (retardation of closure around the core) to occur. In addition, the stress field in the end caps is evaluated to determine if the concrete component maintains its integrity. The stresses induced in the surrounding formation are also evaluated to determine if the presence of the concrete component in the seal system results in a ''tightening'' of the formation around the seal. 20 refs., 43 figs., 2 tabs

  17. Numerical analysis of magnetoelastic coupled buckling of fusion reactor components

    International Nuclear Information System (INIS)

    Demachi, K.; Yoshida, Y.; Miya, K.

    1994-01-01

    For a tokamak fusion reactor, it is one of the most important subjects to establish the structural design in which its components can stand for strong magnetic force induced by plasma disruption. A number of magnetostructural analysis of the fusion reactor components were done recently. However, in these researches the structural behavior was calculated based on the small deformation theory where the nonlinearity was neglected. But it is known that some kinds of structures easily exceed the geometrical nonlinearity. In this paper, the deflection and the magnetoelastic buckling load of fusion reactor components during plasma disruption were calculated

  18. A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules

    International Nuclear Information System (INIS)

    Zurn, R.M.

    1997-09-01

    This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision

  19. Purification, crystallization and preliminary X-ray structure analysis of the laccase from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Lyashenko, Andrey V.; Belova, Oksana; Gabdulkhakov, Azat G.; Lashkov, Alexander A.; Lisov, Alexandr V.; Leontievsky, Alexey A.; Mikhailov, Al’bert M.

    2011-01-01

    The purification, crystallization and preliminary X-ray structure analysis of the laccase from G. lucidum are reported. The ligninolytic enzymes of the basidiomycetes play a key role in the global carbon cycle. A characteristic property of these enzymes is their broad substrate specificity, which has led to their use in various biotechnologies, thus stimulating research into the three-dimensional structures of ligninolytic enzymes. This paper presents the purification, crystallization and preliminary X-ray analysis of the laccase from the ligninolytic basidiomycete Ganoderma lucidum

  20. NRC staff preliminary analysis of public comments on advance notice of proposed rulemaking on emergency planning

    International Nuclear Information System (INIS)

    Peabody, C.A.; Hickey, J.W.N.

    1980-01-01

    The Nuclear Regulatory Commission (NRC) published an advance notice of proposed rulemaking on emergency planning on July 17, 1979 (44 FR 41483). In October and November 1979, the NRC staff submitted several papers to the Commission related to the emergency planning rulemaking. One of these papers was a preliminary analysis of public comments received on the advance notice (SECY-79-591B, November 13, 1979). This document consists of the preliminary analysis as it was submitted to the Commission, with minor editorial changes

  1. Numerical Modeling and Analysis of Transient Electromagnetic Wave Propagation and Scattering

    National Research Council Canada - National Science Library

    Petropoulos, Peter

    2000-01-01

    .... We are continuing with analysis and numerical comparisons with exact ABC's in ABC's instead of the simpler Dirichlet boundary condition to terminate the sponge layers in the time-domain is desirable...

  2. Numerical analysis of fluid flow and heat transfer in a helical ...

    African Journals Online (AJOL)

    DR OKE

    International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.

  3. Deterministic sensitivity analysis for the numerical simulation of contaminants transport

    International Nuclear Information System (INIS)

    Marchand, E.

    2007-12-01

    The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)

  4. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Univ. of Minnesota, Minneapolis, MN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  5. Preliminary Coupling of MATRA Code for Multi-physics Analysis

    International Nuclear Information System (INIS)

    Kim, Seongjin; Choi, Jinyoung; Yang, Yongsik; Kwon, Hyouk; Hwang, Daehyun

    2014-01-01

    The boundary conditions such as the inlet temperature, mass flux, averaged heat flux, power distributions of the rods, and core geometry is given by constant values or functions of time. These conditions are separately calculated and provided by other codes, such as a neutronics or a system codes, into the MATRA code. In addition, the coupling of several codes in the different physics field is focused and embodied. In this study, multiphysics coupling methods were developed for a subchannel code (MATRA) with neutronics codes (MASTER, DeCART) and a fuel performance code (FRAPCON-3). Preliminary evaluation results for representative sample cases are presented. The MASTER and DeCART codes provide the power distribution of the rods in the core to the MATRA code. In case of the FRAPCON-3 code, the variation of the rod diameter induced by the thermal expansion is yielded and provided. The MATRA code transfers the thermal-hydraulic conditions that each code needs. Moreover, the coupling method with each code is described

  6. Seismic response of transamerical building. I. Data and preliminary analysis

    Science.gov (United States)

    Celebi, M.; Safak, E.

    1991-01-01

    The objective of this paper is to present preliminary analyses of a set of acceleration response records obtained during the October 17, 1989 Loma Prieta earthquake (Ms = 7.1) from the 60-story vertically tapered, pyramid-shaped Trans-america Building-a landmark of San Francisco. The building was instrumented in 1985 with 22 channels of synchronized sensors consisting of 13 uniaxial accelerometers deployed throughout the structure and connected to a central recording system and three triaxial strong-motion accelerographs at three different levels of the structure. No free-field accelerographs are at the site. The acceleration records permit the study of the behavior of this unique structure. The predominant translational response of the building and the associated frequency at approximately 0.28 Hz are identified from the records and their Fourier amplitude spectra. The records do not indicate any significant torsional motion. However, there is rocking type soil-structure interaction, and an associated frequency of approximately 2.0 Hz is identified from the Fourier amplitude spectra of the differential motions between the ground level and that at the basement. In addition, the response spectra for the basement motions indicate significant resonance in both directions at a period of approximately 0.5 seconds.

  7. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  8. COMBUSTION STAGE NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The primary goal of engine design is to maximize each efficiency factor, in order to extract the most power from the least amount of fuel. In terms of fluid dynamics, the volumetric and combustion efficiency are dependent on the fluid dynamics in the engine manifolds and cylinders. Cold flow analysis involves modeling the airflow in the transient engine cycle without reactions. The goal is to capture the mixture formation process by accurately accounting for the interaction of moving geometry with the fluid dynamics of the induction process. The changing characteristics of the air flow jet that tumbles into the cylinder with swirl via intake valves and the exhaust jet through the exhaust valves as they open and close can be determined, along with the turbulence production from swirl and tumble due to compression and squish. The target of this paper was to show how, by using the reverse engineering techniques, one may replicate and simulate the functioning conditions and parameters of an existing marine engine. The departing information were rather scarce in terms of real processes taking place in the combustion stage, but at the end we managed to have a full picture of the main parameters evolution during the combustion phase inside this existing marine engine

  9. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  10. Separate direct injection of diesel and ethanol: A numerical analysis

    Directory of Open Access Journals (Sweden)

    Burnete Nicolae V.

    2017-01-01

    Full Text Available The purpose of this study is to investigate the theoretical possibility of using a pilot diesel injection for the auto-ignition of a main ethanol injection in a compression ignition engine. To this effect a predictive simulation model has been built based on experimental results for a diesel cycle (pilot and main injection at 1500 and 2500 min–1, respectively. For every engine speed, in addition to the diesel reference cycle, two more simulations were done: one with the same amount of fuel injected into the cylinder and one with the same amount of energy, which required an increase in the quantity of ethanol proportional to the ratio of its lower heating value and that of diesel. The simulations showed that in all cases the pilot diesel led to the auto-ignition of ethanol. The analysis of the in-cylinder traces at 1500 min–1 showed that combustion efficiency is improved, the peak temperature value decrease with approximately 240 K and, as a result, the NO emissions are 3.5-4 times lower. The CO and CO2 values depend on the amount of fuel injected into the cylinder. At 2500 min–1 there are similar trends but with the following observations: the ignition delay increases, while the pressure and temperature are lower.

  11. Fukushima Daiichi unit 1 uncertainty analysis--Preliminary selection of uncertain parameters and analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Cardoni, Jeffrey N.; Kalinich, Donald A.

    2014-02-01

    Sandia National Laboratories (SNL) plans to conduct uncertainty analyses (UA) on the Fukushima Daiichi unit (1F1) plant with the MELCOR code. The model to be used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). However, that study only examined a handful of various model inputs and boundary conditions, and the predictions yielded only fair agreement with plant data and current release estimates. The goal of this uncertainty study is to perform a focused evaluation of uncertainty in core melt progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, vessel lower head failure, etc.). In preparation for the SNL Fukushima UA work, a scoping study has been completed to identify important core melt progression parameters for the uncertainty analysis. The study also lays out a preliminary UA methodology.

  12. Numerical analysis on infiltration-driven decarbonation during skarnification

    Science.gov (United States)

    Chu, X.; Lee, C. T.; Dasgupta, R.

    2017-12-01

    analysis should be viewed as a lower-limit estimate. [1] Lee et al (2013) Geosphere 9. [2] Balashov & Yardley (1998) Am J Sci 298. [3] Joesten & Fisher (1988) GSA Bull 100. [4] Lasaga & Rye (1993) Am J Sci 293. [5] Crisp (1984) J Volcanol Geotherm Res 20. [6] Allard et al (1991) Nature 351.

  13. Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems

    International Nuclear Information System (INIS)

    Motoyama, Yasunori; Tanaka, Nobuatsu

    2005-01-01

    Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)

  14. Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control

    International Nuclear Information System (INIS)

    Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His

    2006-01-01

    A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

  15. Preliminary study of elemental analysis of hydroxyapatite used neutron activation analysis method

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Rina Mulyaningsih

    2010-01-01

    Preliminary study has been carried out elemental analysis of hydroxyapatite synthesized using the method of neutron activation analysis. Hydroxyapatite is the main component constituent of bones and teeth which can be synthesized from limestone and phosphoric acid. Hydroxyapatite can be used as a bone substitute material and human and animal teeth. Tests on the metal content is necessary to prevent the risk of damage to bones and teeth due to contamination. Results of analysis using neutron activation analysis method with samples irradiated at the neutron flux 10"3 n.det"-"1cm"-"2 for one minute, the impurities of Al (48.60±6.47 mg/kg), CI (38.00±7.47 mg/kg), Mn (1.05±0.19 mg/kg), and Mg (2095.30±203.66 mg/kg), were detected, whereas with irradiation time for 10 minutes and 40 minutes with a time decay of three days there were K (103.89 ± 26.82 mg/kg), Br (1617.06 ± 193.66 mg/kg), and Na (125.10±9.57 mg/kg). These results indicate that there is impurity Al, CI, Mn, Mg, Br, K and Na, although in very small amounts and do not cause damage to bones and teeth. (author)

  16. Chemical Analysis of the Moon at the Surveyor VI Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Patterson, J H; Franzgrote, E J

    1968-06-07

    The alpha-scattering experiment aboard soft-landing Surveyor VI has provided a chemical analysis of the surface of the moon in Sinus Medii. The preliminary results indicate that, within experimental errors, the composition is the same as that found by Surveyor V in Mare Tranquillitatis. This finding suggests that large portions of the lunar maria resemble basalt in composition.

  17. Chemical Analysis of the Moon at the Surveyor VII Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Franzgrote, E J; Patterson, J H

    1968-10-04

    The alpha-scattering experiment aboard Surveyor VII has provided a chemical analysis of the moon in the area of the crater Tycho. The preliminary results indicate a chemical composition similar to that already found at two mare sites, but with a lower concentration of elements of the iron group (titanium through copper).

  18. Current Mooring Design in Partner WECs and Candidates for Preliminary Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    This report is the combined report of Commercial Milestone "CM1: Design and Cost of Current Mooring Solutions of Partner WECs" and Milestone "M3: Mooring Solutions for Preliminary Analysis" of the EUDP project "Mooring Solutions for Large Wave Energy Converters". The report covers a description o...

  19. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  20. Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Gaschott, L.J.

    1995-01-01

    This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility

  1. A Preliminary Analysis of the Outcomes of Students Assisted by VET FEE-HELP: Summary

    Science.gov (United States)

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    This summary highlights the key findings from the report "A preliminary analysis of the outcomes of students assisted by VET FEE-HELP". VET FEE-HELP is an income-contingent loan scheme that assists eligible students undertaking certain vocational education training (VET) courses with an approved provider by paying for all or part of…

  2. Expression, purification, crystallization and preliminary X-ray analysis of Aeromonas hydrophilia metallo-β-lactamase

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nandini, E-mail: nandini-sharma@merck.com; Toney, Jeffrey H.; Fitzgerald, Paula M. D.

    2005-02-01

    Crystallization and preliminary X-ray analysis of the CphA metallo-β-lactamase from A. hydrophilia are described. The crystals belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 40.75, b = 42.05, c = 128.88 Å, and diffract to 1.8 Å.

  3. Preliminary safety analysis of unscrammed events for KLFR

    International Nuclear Information System (INIS)

    Kim, S.J.; Ha, G.S.

    2005-01-01

    The report presents the design features of KLFR; Safety Analysis Code; steady-state calculation results and analysis results of unscrammed events. The calculations of the steady-state and unscrammed events have been performed for the conceptual design of KLFR using SSC-K code. UTOP event results in no fuel damage and no centre-line melting. The inherent safety features are demonstrated through the analysis of ULOHS event. Although the analysis of ULOF has much uncertainties in the pump design, the analysis results show the inherent safety characteristics. 6% flow of rated flow of natural circulation is formed in the case of ULOF. In the metallic fuel rod, the cladding temperature is somewhat high due to the low heat transfer coefficient of lead. ULOHS event should be considered in design of RVACS for long-term cooling

  4. Stress Analysis of Non-Ferrous Metals Welds by Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Kravarikova Helena

    2017-01-01

    Full Text Available Thermal energy welded material unevenly heated and thus supports the creation of tension. During the fusing process welding transient tensions generated in the welded material. Generation of the transient tensions depends on the thermal expansion and fixed permanently welded parts. Tensions are the result of the interaction of material particles. For welded parts and constructions it is necessary to know the size and direction of application of tensions. The emerging tensions can cause local change or a total deformation of welded materials. Deformations and residual stresses impair the performance of a welded construction, reduces the stability of the parts. To reduce or eliminate of action or a screening direction stresses and strains it is necessary to know the mechanism of their emergence. It is now possible to examine the emergence of tensions numerical experiments on any model using numerical simulation using FEM. Results of numerical experiment is the analysis of stress and deformation course. In the plane the tension it divided into normal σ and τ tangential folders. Decomposition stress on components simplifies the stress analysis. The results obtained from numerical analysis are correct to predict the stress distribution and size. The paper presents the results of numerical experiments stress analysis solutions fillet welds using FEM numerical simulation of welding of non-ferrous metals.

  5. Damage detection and quantification using mode curvature variation on framed structures: analysis of the preliminary results

    Science.gov (United States)

    Iacovino, Chiara; Ditommaso, Rocco; Auletta, Gianluca; Ponzo, Felice C.

    2017-04-01

    Continuous monitoring based on vibrational identification methods is increasingly employed for the evaluation of the state of health of existing buildings after strong motion earthquake. Different damage identification methods are based on the variations of damage indices defined in terms modal (eigenfrequencies, mode shapes, and modal damping) and/or non-modal parameters. Most of simplified methods for structural health monitoring and damage detection are based on the evaluation of the dynamic characteristics evolution associated to the fundamental mode of vibration of a monitored structure. Aim of this work is the upgrade of an existing method for damage localization on framed structures during a moderate/destructive earthquake. The existing version of the method is based on the comparison of the geometric characteristics (with particular reference to the mode curvature) exhibited by the structures, related to fundamental mode of vibration, before and during an earthquake. The approach is based on the use of a nonlinear filter, the band-variable filter, based on the Stockwell Transform able to extract the nonlinear response of each mode of vibration. The new version of the method provides the possibility to quantify a possible damage occurred on the monitored structure linking the mode curvature variation with the maximum inter-story drift. This paper shows the preliminary results obtained from several simulations on nonlinear numerical models of reinforced concrete framed structures, designed for only gravity loads, without and with the presence of infill panels. Furthermore, a correlation between maximum mode curvature difference and maximum inter-story drift has been defined for the different numerical models in order to quantify the structural damage. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the

  6. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  7. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1984-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II. Since the actively cooled limiter blade is the component in direct contact with the plasma edge, and thus subject to the severe plasma environment, most preliminary design efforts have concentrated on analysis of the blade. The screening process which led to the recommended preliminary design consisting of a dispersion strenghthened copper or OFHC copper cover plate over an austenitic stainless steel base plate is discussed. A 1 to 3 mm thick low atomic number coating consisting of a graded plasma-sprayed Silicon Carbide-Aluminium composite is recommended subject to further experiment and evaluation. Thermal-hydraulic and stress analyses of the limiter blade are also discussed. (orig.)

  8. Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes

    International Nuclear Information System (INIS)

    Oldenburg, C.M.

    1998-01-01

    Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories

  9. ORNL: PWR-BDHT analysis procedure, a preliminary overview

    International Nuclear Information System (INIS)

    Cliff, S.B.

    1978-01-01

    The computer programs currently used in the analysis of the ORNL-PWR Blowdown Heat Transfer Separate-Effects Program are overviewed. The current linkages and relationships among the programs are given along with general comments about the future directions of some of these programs. The overview is strictly from the computer science point of view with only minimal information concerning the engineering aspects of the analysis procedure

  10. Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)

    2011-05-15

    In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of

  11. Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy

    International Nuclear Information System (INIS)

    Kowal, G; Falceta-Goncalves, D A; Lazarian, A

    2011-01-01

    In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of

  12. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  13. Numerical stability for velocity-based 2-phase formulation for geotechnical dynamic analysis

    OpenAIRE

    Mieremet, M.M.J.

    2015-01-01

    As a master student in AppliedMathematics at the Delft University of Technology I am highly educated in Numerical Analysis. My interest in this field even mademe choose elective courses such as Advanced Numerical Methods, Applied Finite Elements and Computational Fluid Dynamics. In my search for a challenging graduationproject I chose a research proposal on the material point method, an extension of the finite element method that is well-suited for problems involving large deformations. The p...

  14. Numerical analysis of the thermally induced flow in a strongly rotating gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1982-04-01

    The present work is concerned with the numerical analysis of the thermally induced flow in a rapidly gas centrifuge. The primary purpose for this work is to investigate the dependence of the flow field on the thermal boundary conditions, angular speed, aspect ratio of the cylinder, holdup. Some of our results are compared with the predictions of asymptotic theories, particularly those of Sakurai-Mtsuda and Brouwers, and with the numerical results of Dickinson-Jones.

  15. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations

    OpenAIRE

    Boudin , Laurent; Grec , Bérénice; Salvarani , Francesco

    2012-01-01

    International audience; We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. We provide a qualitative and quantitative mathematical analysis of the model. The main properties of the standard explicit numerical scheme are also analyzed. We eventually include some numerical simulations pointing out the uphill diffusion phenome...

  16. Summary of the Preliminary Analysis of Savannah River Depleted Uranium Trioxide

    International Nuclear Information System (INIS)

    2010-01-01

    This report summarizes a preliminary special analysis of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 2). The analysis is considered preliminary because a final waste profile has not been submitted for review. The special analysis is performed to determine the acceptability of the waste stream for shallow land burial at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The Savannah River Depleted Uranium Trioxide waste stream requires a special analysis because the waste stream's sum of fractions exceeds one. The 99Tc activity concentration is 98 percent of the NNSS Waste Acceptance Criteria and the largest single contributor to the sum of fractions.

  17. Bioelectrical impedance analysis for bovine milk: Preliminary results

    Science.gov (United States)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  18. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  19. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    International Nuclear Information System (INIS)

    Kadioglu, Samet Y.; Berry, Ray; Martineau, Richard

    2016-01-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)'s thermal-fluids code) built on top of an other INL's product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  20. Isolation and preliminary function analysis of a Na + /H + antiporter ...

    African Journals Online (AJOL)

    A full-length cDNA Na+/H+ antiporter gene (MzNHX1) was isolated from Malus zumi according to the homologous Na+/H+ antiporter gene region in plants. Sequence analysis indicated that the cDNA was 2062 bp in length, including an open reading frame (ORF) of 1629 bp, which encoded a predicted polypeptide of 542 ...

  1. A Preliminary Analysis of a Behavioral Classrooms Needs Assessment

    Science.gov (United States)

    Leaf, Justin B.; Leaf, Ronald; McCray, Cynthia; Lamkins, Carol; Taubman, Mitchell; McEachin, John; Cihon, Joseph H.

    2016-01-01

    Today many special education classrooms implement procedures based upon the principles of Applied Behavior Analysis (ABA) to establish educationally relevant skills and decrease aberrant behaviors. However, it is difficult for school staff and consultants to evaluate the implementation of various components of ABA and general classroom set up. In…

  2. Preliminary analysis of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1997-01-01

    Sandia National Laboratories is conducting a research program to investigate the integrity of nuclear containment structures. As part of the program Sandia will construct an instrumented 1:4 scale model of a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR), which will be pressure tested up to its ultimate capacity. One of the key program objectives is to develop validated methods to predict the structural performance of containment vessels when subjected to beyond design basis loadings. Analytical prediction of structural performance requires a stepwise, systematic approach that addresses all potential failure modes. The analysis effort includes two and three-dimensional nonlinear finite element analyses of the PCCV test model to evaluate its structural performance under very high internal pressurization. Such analyses have been performed using the nonlinear concrete constitutive model, ANACAP-U, in conjunction with the ABAQUS general purpose finite element code. The analysis effort is carried out in three phases: preliminary analysis; pretest prediction; and post-test data interpretation and analysis evaluation. The preliminary analysis phase serves to provide instrumentation support and identify candidate failure modes. The associated tasks include the preliminary prediction of failure pressure and probable failure locations and the development of models to be used in the detailed failure analyses. This paper describes the modeling approaches and some of the results obtained in the first phase of the analysis effort

  3. Pilot Workload and Speech Analysis: A Preliminary Investigation

    Science.gov (United States)

    Bittner, Rachel M.; Begault, Durand R.; Christopher, Bonny R.

    2013-01-01

    Prior research has questioned the effectiveness of speech analysis to measure the stress, workload, truthfulness, or emotional state of a talker. The question remains regarding the utility of speech analysis for restricted vocabularies such as those used in aviation communications. A part-task experiment was conducted in which participants performed Air Traffic Control read-backs in different workload environments. Participant's subjective workload and the speech qualities of fundamental frequency (F0) and articulation rate were evaluated. A significant increase in subjective workload rating was found for high workload segments. F0 was found to be significantly higher during high workload while articulation rates were found to be significantly slower. No correlation was found to exist between subjective workload and F0 or articulation rate.

  4. Preliminary analysis of productivity of fruiting fungi on Strzeleckie meadows

    Directory of Open Access Journals (Sweden)

    Barbara Sadowska

    2014-11-01

    Full Text Available Analysis demonstrated that the fresh ahd dry weight as well as the ash content of fungal fruit bodies collected on a forest-surrounded unmown meadow (Stellario-Deschampsietum Freitag 1957 and Caricetum elatae W.Koch 1926 were lower than the same values for a plot of exploited mown meadow and higher than on an exploited unmown meadow (Arrhenatheretum medioeuropaeum (Br.-Bl. Oberd. 1952.

  5. Preliminary analysis on incore performance of nuclear fuel: pt. 4

    International Nuclear Information System (INIS)

    Noh, S.K.; Chang, M.H.; Lee, C.C.; Chung, Y.H.; Kuk, K.Y.; Park, C.Y.; Lee, S.K.

    1981-01-01

    An analysis has been performed for thermal hydraulic design parameters of Wolsung-1 reactor core in steady state with the help of a computer code COBRA-IV-I. The design parameters are coolant enthalpy, flow velocity, coolant quality, pressure and fuel temperature distribution. The maximum power channel has been taken into account in this work. The results appear to be reasonably agreeable with data from PSR'S, with the maximum difference between this work and PSR'S being 4.3%

  6. Job Search Success in Local Labour Markets - A Preliminary Analysis

    OpenAIRE

    Greig, Malcolm; McQuaid, Ronald W.

    2001-01-01

    This study tests the appropriateness of current government employment policies, in particular the New Deal, in targeting specific groups of unemployed jobseekers. A sample of 169 unemployed jobseekers is divided into those who were successful and unsuccessful in finding employment and each group is analysed in terms of their attributes. A factor analysis of these attributes is then carried out in order to develop typical profiles of unsuccessful jobseekers who are possibly in need of special ...

  7. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    Gunawan, Indra; Sulistyo, Harry; Rochmad

    2001-01-01

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI 3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 o C. FeCl 3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  8. Preliminary RAMI analysis of DFLL TBS for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dagui [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Yuan, Run [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Jiaqun, E-mail: jiaqun.wang@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Fang; Wang, Jin [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • We performed the functional analysis of the DFLL TBS. • We performed a failure mode analysis of the DFLL TBS. • We estimated the reliability and availability of the DFLL TBS. • The ITER RAMI approach was applied to the DFLL TBS for technical risk control in the design phase. - Abstract: ITER is the first fusion machine fully designed to prove the physics and technological basis for next fusion power plants. Among the main technical objectives of ITER is to test and validate design concepts of tritium breeding blankets relevant to the fusion power plants. To achieve this goal, China has proposed the dual functional lithium-lead test blanket module (DFLL TBM) concept design. The DFLL TBM and its associated ancillary system were called DFLL TBS. The DFLL TBS play a key role in next fusion reactor. In order to ensure reliable and available of DFLL TBS, the risk control project of DFLL TBS has been put on the schedule. As the stage of the ITER technical risk control policy, the RAMI (Reliability, Availability, Maintainability, Inspectability) approach was used to control the technical risk of ITER. In this paper, the RAMI approach was performed on the conceptual design of DFLL TBS. A functional breakdown was prepared on DFLL TBS, and the system was divided into 3 main functions and 72 basic functions. Based on the result of functional breakdown of DFLL TBS, the reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. The inherent availability of the DFLL TBS expected after implementation of mitigation actions was calculated to be 98.57% over 2 years based on the ITER reliability database. A Failure Modes Effects and Criticality Analysis (FMECA) was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability.

  9. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  10. Computer content analysis of schizophrenic speech: a preliminary report.

    Science.gov (United States)

    Tucker, G J; Rosenberg, S D

    1975-06-01

    Computer analysis significantly differtiated the thermatic content of the free speech of 10 schizophrenic patients from that of 10 nonschizophrenic patients and from the content of transcripts of dream material from 10 normal subjects. Schizophrenic patients used the thematic categories in factor 1 (the "schizophrenic factor") 3 times more frequently than the nonschizophrenics and 10 times more frequently than the normal subjects (p smaller than 01). In general, the language content of the schizophrenic patient mirrored an almost agitated attempt to locate oneself in time and space and to defend against internal discomfort and confusion. The authors discuss the implications of this study for future research.

  11. Preliminary report on the PIXE analysis of the squid statoliths

    International Nuclear Information System (INIS)

    Ikeda, Yuzuru; Arai, Nobuaki; Sakamoto, Wataru; Murayama, Tatsuro; Maeda, Kuniko; Yoshida, Koji.

    1996-01-01

    Micro trace elements in the squid statolith, a calcareous stone which acts as a balancer and hearing, was analyzed with Particle Induced X-ray Emission (PIXE) for the Japanese common squid for the first time. Calcium is the main component of the squid statoliths, which means that squid statolith is the pure calcified structure similar to the fish otolith. Beside Ca, Sr was detected with strong dosage, and some other elements as Mn, Fe, Cu, Zn and As were also detected. Possible assumption of intake of microelements to the statoliths and the suitability of PIXE for statoliths analysis are discussed. (author)

  12. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  13. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  14. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    International Nuclear Information System (INIS)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  15. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lavietes, A.D.; McQuaid, J.H.; Paulus, T.J.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  16. Optimum design of vaporizer fin with liquefied natural gas by numerical analysis

    International Nuclear Information System (INIS)

    Jeong, Hyo Min; Chung, Han Shik; Lee, Sang Chul; Kong, Tae Woo; Yi, Chung Seub

    2006-01-01

    Generally, the temperature drop under 0 .deg. C on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins (Φ) and fin thickness (TH F ). Numerical analysis results were presented through the correlations between the ice layer thickness (TH ICE ) on the vaporizer surface to the temperature distribution of inside vaporizer (T IN ), fin thickness (TH F ), and angle between two fins (Φ). Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper

  17. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity

    International Nuclear Information System (INIS)

    Kluth, G.

    2008-12-01

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  18. Rigid-body-spring model numerical analysis of joint performance of engineered cementitious composites and concrete

    Science.gov (United States)

    Khmurovska, Y.; Štemberk, P.; Křístek, V.

    2017-09-01

    This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.

  19. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    International Nuclear Information System (INIS)

    L-Cancelos, R.; Varas, F.; Viéitez, I.; Martín, E.

    2016-01-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved. (paper)

  20. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  1. Numerical analysis of heat transfer of canned liquid foods containing fibers or particles during sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.Z.; Sakai, N.; Hanzawa, T. [Tokyo Univ. of Fisheries, Tokyo (Japan). Dept. of Food Science and Tech.

    2000-10-01

    The velocity profile, temperature distribution, and the slowest heating point of a canned liquid food containing fibers or particles were calculated numerically by using fundamental equations that take account of the effect of free convection in the can at an unsteady state under the assumption of imaginary fluid with apparent physical properties. To check these calculated results, the temperature distribution in the can was measured experimentally under the same operating conditions as those of the theoretical analysis. The calculated results agree closely with the experimental ones. Adaptable ranges of present numerical analysis and the positional characteristics of the slowest heating point are shown. (author)

  2. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Directory of Open Access Journals (Sweden)

    Božek Pavol

    2014-08-01

    Full Text Available Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  3. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Science.gov (United States)

    Božek, Pavol; Turygin, Yuri

    2014-08-01

    Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  4. Interactive Numerical and Symbolic Analysis: A New Paradigm for Teaching Electronics

    Directory of Open Access Journals (Sweden)

    Jean-Claude Thomassian

    2008-09-01

    Full Text Available Analog Insydes, Mathematica’s symbolic circuit analysis toolbox, uses modern algorithms of expression simplification depending on comparisons with a numerical reference solution of the circuit under investigation. Some insight is offered on how the complexity of an expression barrier is overcome followed by two classical examples, a BJT emitter follower and a MOSFET common-gate amplifier stage to illustrate the proposed method at work. A concluding section discusses that time spent teaching introductory electronics by computer-aided circuit analysis, interactive numerical and symbolic, is a worthwhile investment.

  5. Solutions manual to accompany An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2014-01-01

    A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, sp

  6. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    In this study, rail and highway routes which may be used for shipments of high-level nuclear waste to a proposed repository at Yucca Mountain, Nevada are characterized. This characterization facilitates three types of impact analysis: comparative study, limited worst-case assessment, and more sophisticated probabilistic risk assessment techniques. Data for relative and absolute impact measures are provided to support comparisons of routes based on selected characteristics. A worst-case scenario assessment is included to determine potentially critical and most likely places for accidents or incidents to occur. The assessment facilitated by the data in this study is limited because impact measures are restricted to the identification of potential areas or persons affected. No attempt is made to quantify the magnitude of these impacts. Most likely locations for accidents to occur are determined relative to other locations within the scope of this study. Independent factors and historical trends used to identify these likely locations are only proxies for accident probability

  7. City of Hoboken Energy Surety Analysis: Preliminary Design Summary

    Energy Technology Data Exchange (ETDEWEB)

    Stamp, Jason Edwin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Smith, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Guttromson, Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Henry, Jordan M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Critical Infrastructure Systems Dept.; Jensen, Richard Pearson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2014-09-01

    In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.

  8. The Σ − D relation for planetary nebulae: Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Urošević D.

    2007-01-01

    Full Text Available An analysis of the relation between radio surface brightness and diameter, so-called Σ − D relation, for planetary nebulae (PNe is presented: i the theoretical Σ − D relation for the evolution of bremsstrahlung surface brightness is derived; ii contrary to the results obtained earlier for the Galactic supernova remnant (SNR samples, our results show that the updated sample of Galactic PNe does not severely suffer from volume selection effect - Malmquist bias (same as for the extragalactic SNR samples and; iii we conclude that the empirical S − D relation for PNe derived in this paper is not useful for valid determination of distances for all observed PNe with unknown distances. .

  9. Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages

    Directory of Open Access Journals (Sweden)

    Man-Li He

    2016-11-01

    Full Text Available Abstract Background Psoroptic mange is a chronic, refractory, contagious and infectious disease mainly caused by the mange mite Psoroptes ovis, which can infect horses, sheep, buffaloes, rabbits, other domestic animals, deer, wild camels, foxes, minks, lemurs, alpacas, elks and other wild animals. Features of the disease include intense pruritus and dermatitis, depilation and hyperkeratosis, which ultimately result in emaciation or death caused by secondary bacterial infections. The infestation is usually transmitted by close contact between animals. Psoroptic mange is widespread in the world. In this paper, the transcriptome of P. ovis is described following sequencing and analysis of transcripts from samples of larvae (i.e. the Pso_L group and nymphs and adults (i.e. the Pso_N_A group. The study describes differentially expressed genes (DEGs and genes encoding allergens, which help understanding the biology of P. ovis and lay foundations for the development of vaccine antigens and drug target screening. Methods The transcriptome of P. ovis was assembled and analyzed using bioinformatic tools. The unigenes of P. ovis from each developmental stage and the unigenes differentially between developmental stages were compared with allergen protein sequences contained in the allergen database website to predict potential allergens. Results We identified 38,836 unigenes, whose mean length was 825 bp. On the basis of sequence similarity with seven databases, a total of 17,366 unigenes were annotated. A total of 1,316 DEGs were identified, including 496 upregulated and 820 downregulated in the Pso_L group compared with the Pso_N_A group. We predicted 205 allergens genes in the two developmental stages similar to genes from other mites and ticks, of these, 14 were among the upregulated DEGs and 26 among the downregulated DEGs. Conclusion This study provides a reference transcriptome of P. ovis in absence of a reference genome. The analysis of DEGs and

  10. Preliminary analysis of a new IAEA lichen AQCS material

    International Nuclear Information System (INIS)

    Grass, F.; Bichler, M.; Dorner, J.; Ismail, S.; Kregshammer, P.; Zamini, S.; Gwozdz, R.

    2000-01-01

    Lichen with a higher content on interesting trace elements were analyzed by activation analysis and by X-RF measurements on pressed lichen samples. The activation analyses were performed in three different ways: Short-time AA in the Fast Irradiation and Measurement System. Up to 580mg of lichen were irradiated 5-300s in polyethylene containers. Single spectra and spectra of 6 samples were summed up and evaluated. Longer irradiation at the ASTRA-Reactor: 2h at 8E13/s cm 2 . 100-150mg of lichen were irradiated in quartz suprasil vials. Longer irradiation at the Institute's TRIGA-Reactor: 6-7h at 1.8E12/s cm 2 , sample size: 7-48g of lichen were irradiated in polyethylene containers and after irradiation transferred to new measurement containers and measured in a device constructed by Gwozdz. The X-RF analysis was performed with a Spectrace 5000 energy dispersive X-ray fluorescence analyzer with a rhodium anode tube for excitation. From the activation analyses, the following elements were determined: Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Hf, Hg, I, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sr, Ta, Tb, Th, Ti, U, V, Yb, Zn. From the X-RF measurements, the elements Ag, Al, Ba, Br, Ca, Cd, Cu, Fe, I, K, Mg, Mn, P, Pb, Rb, S, Sb, Si, Sn, Sr, Ti, Y, Zn, and Zr were evaluated. From the X-RF data as well as from the AA-data of samples of different weight it is apparent that milling to a particle size of 200m is not sufficient for all elements, especially not for gold, cadmium, and cobalt which may be present as nuggets or accessory heavy minerals. It is therefore advisable to mill the sample to a particle size which is an order of magnitude smaller and remove the not adhering dust, even if this lowers the content of these elements. (author)

  11. Preliminary results of standard quantitative analysis by ED-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Alessandro L. de; Franca, Alana C.; Neto, Manoel R.M.; Paschuk, Sergei A., E-mail: alellara@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dept. de Fisica; Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe (IPPP), Curitiba, PR (Brazil)

    2013-07-01

    A comparison between the results of elemental concentration proposed by XRS-FP software , using data obtained by EDXRF technique with those obtained by stoichiometric calculation was performed. For this purpose, five standard samples of known compounds were produced: two lead- oxide, magnesium chloride and iodine in controlled amounts. The compounds were subsequently mixed and compressed to form tablets. The samples were irradiated in three endpoints, according to an orientation. The measurements were performed at the Laboratory for Radiological UTFPR using X-123SDD the Amptek detector and X-ray tube with silver target from the same manufacturer. The operating conditions tube were 05μA current to a 40 kV voltage. Finally, the 15 spectra analyzed with the software to determine the concentration of chlorine, iodine and lead. Data from this analysis were compared with results expected in stoichiometric calculations. The data provided by the program, a convergence of results, indicating homogeneity of the samples was found. Compared to the stoichiometric calculation, a considerable discrepancy that may be the result of a misconfiguration or contamination of the sample was found. At the end, we created a proposal for continuation of the work using an auxiliary calculation should be developed in the next step.

  12. A preliminary study of DTI Fingerprinting on stroke analysis.

    Science.gov (United States)

    Ma, Heather T; Ye, Chenfei; Wu, Jun; Yang, Pengfei; Chen, Xuhui; Yang, Zhengyi; Ma, Jingbo

    2014-01-01

    DTI (Diffusion Tensor Imaging) is a well-known MRI (Magnetic Resonance Imaging) technique which provides useful structural information about human brain. However, the quantitative measurement to physiological variation of subtypes of ischemic stroke is not available. An automatically quantitative method for DTI analysis will enhance the DTI application in clinics. In this study, we proposed a DTI Fingerprinting technology to quantitatively analyze white matter tissue, which was applied in stroke classification. The TBSS (Tract Based Spatial Statistics) method was employed to generate mask automatically. To evaluate the clustering performance of the automatic method, lesion ROI (Region of Interest) is manually drawn on the DWI images as a reference. The results from the DTI Fingerprinting were compared with those obtained from the reference ROIs. It indicates that the DTI Fingerprinting could identify different states of ischemic stroke and has promising potential to provide a more comprehensive measure of the DTI data. Further development should be carried out to improve DTI Fingerprinting technology in clinics.

  13. FFTF vertical sodium storage tank preliminary thermal analysis

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1995-01-01

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  14. Preliminary analysis of the proposed BN-600 benchmark core

    International Nuclear Information System (INIS)

    John, T.M.

    2000-01-01

    The Indira Gandhi Centre for Atomic Research is actively involved in the design of Fast Power Reactors in India. The core physics calculations are performed by the computer codes that are developed in-house or by the codes obtained from other laboratories and suitably modified to meet the computational requirements. The basic philosophy of the core physics calculations is to use the diffusion theory codes with the 25 group nuclear cross sections. The parameters that are very sensitive is the core leakage, like the power distribution at the core blanket interface etc. are calculated using transport theory codes under the DSN approximations. All these codes use the finite difference approximation as the method to treat the spatial variation of the neutron flux. Criticality problems having geometries that are irregular to be represented by the conventional codes are solved using Monte Carlo methods. These codes and methods have been validated by the analysis of various critical assemblies and calculational benchmarks. Reactor core design procedure at IGCAR consists of: two and three dimensional diffusion theory calculations (codes ALCIALMI and 3DB); auxiliary calculations, (neutron balance, power distributions, etc. are done by codes that are developed in-house); transport theory corrections from two dimensional transport calculations (DOT); irregular geometry treated by Monte Carlo method (KENO); cross section data library used CV2M (25 group)

  15. Social network analysis in identifying influential webloggers: A preliminary study

    Science.gov (United States)

    Hasmuni, Noraini; Sulaiman, Nor Intan Saniah; Zaibidi, Nerda Zura

    2014-12-01

    In recent years, second generation of internet-based services such as weblog has become an effective communication tool to publish information on the Web. Weblogs have unique characteristics that deserve users' attention. Some of webloggers have seen weblogs as appropriate medium to initiate and expand business. These webloggers or also known as direct profit-oriented webloggers (DPOWs) communicate and share knowledge with each other through social interaction. However, survivability is the main issue among DPOW. Frequent communication with influential webloggers is one of the way to keep survive as DPOW. This paper aims to understand the network structure and identify influential webloggers within the network. Proper understanding of the network structure can assist us in knowing how the information is exchanged among members and enhance survivability among DPOW. 30 DPOW were involved in this study. Degree centrality and betweenness centrality measurement in Social Network Analysis (SNA) were used to examine the strength relation and identify influential webloggers within the network. Thus, webloggers with the highest value of these measurements are considered as the most influential webloggers in the network.

  16. Preliminary results of standard quantitative analysis by ED-XRF

    International Nuclear Information System (INIS)

    Lara, Alessandro L. de; Franca, Alana C.; Neto, Manoel R.M.; Paschuk, Sergei A.

    2013-01-01

    A comparison between the results of elemental concentration proposed by XRS-FP software , using data obtained by EDXRF technique with those obtained by stoichiometric calculation was performed. For this purpose, five standard samples of known compounds were produced: two lead- oxide, magnesium chloride and iodine in controlled amounts. The compounds were subsequently mixed and compressed to form tablets. The samples were irradiated in three endpoints, according to an orientation. The measurements were performed at the Laboratory for Radiological UTFPR using X-123SDD the Amptek detector and X-ray tube with silver target from the same manufacturer. The operating conditions tube were 05μA current to a 40 kV voltage. Finally, the 15 spectra analyzed with the software to determine the concentration of chlorine, iodine and lead. Data from this analysis were compared with results expected in stoichiometric calculations. The data provided by the program, a convergence of results, indicating homogeneity of the samples was found. Compared to the stoichiometric calculation, a considerable discrepancy that may be the result of a misconfiguration or contamination of the sample was found. At the end, we created a proposal for continuation of the work using an auxiliary calculation should be developed in the next step

  17. Preliminary analysis of space mission applications for electromagnetic launchers

    Science.gov (United States)

    Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

    1984-01-01

    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

  18. A simplified procedure of linear regression in a preliminary analysis

    Directory of Open Access Journals (Sweden)

    Silvia Facchinetti

    2013-05-01

    Full Text Available The analysis of a statistical large data-set can be led by the study of a particularly interesting variable Y – regressed – and an explicative variable X, chosen among the remained variables, conjointly observed. The study gives a simplified procedure to obtain the functional link of the variables y=y(x by a partition of the data-set into m subsets, in which the observations are synthesized by location indices (mean or median of X and Y. Polynomial models for y(x of order r are considered to verify the characteristics of the given procedure, in particular we assume r= 1 and 2. The distributions of the parameter estimators are obtained by simulation, when the fitting is done for m= r + 1. Comparisons of the results, in terms of distribution and efficiency, are made with the results obtained by the ordinary least square methods. The study also gives some considerations on the consistency of the estimated parameters obtained by the given procedure.

  19. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  20. Electrical field of electrical appliances versus distance: A preliminary analysis

    International Nuclear Information System (INIS)

    Mustafa, Nur Badariah Ahmad; Nordin, Farah Hani; Ismail, Fakaruddin Ali Ahmad; Alkahtani, Ammar Ahmed; Balasubramaniam, Nagaletchumi; Hock, Goh Chin; Shariff, Z A M

    2013-01-01

    Every household electrical appliance that is plugged in emits electric field even if it is not operating. The source where the appliance is plugged into and the components of household electrical appliance contribute to electric field emission. The electric field may cause unknown disturbance to the environment or also affect the human health and the effect might depends on the strength of the electric field emitted by the appliance. This paper will investigate the strength of the electric field emitted by four different electrical appliances using spectrum analyser. The strength will be captured at three different distances; (i) 1m (ii) 2m and (iii) 3m and analysis of the strength of the electrical field is done based on the three different distances. The measurement results show that the strength of the electric field is strongest when it is captured at 1m and the weakest at 3m from the electrical appliance. The results proved that the farther an object is located from the electrical appliance; the less effect the magnetic field has.

  1. Gas cooled fast reactor 2400 MWTh, status on the conceptual design studies and preliminary safety analysis

    International Nuclear Information System (INIS)

    Malo, J.Y.; Alpy, N.; Bentivoglio, F.

    2009-01-01

    The Gas cooled Fast Reactor (GFR) is considered by the French Commissariat a l'Energie Atomique as a promising concept, combining the benefits of fast spectrum and high temperature, using Helium as coolant. A status on the GFR preliminary viability was made at the end of 2007, ending the pre-conceptual design phase. A consistent overall systems arrangement was proposed and a preliminary safety analysis based on operating transient calculations and a simplified PSA had established a global confidence in the feasibility and safety of this baseline concept. Its potential for attractive performances had been pointed out. Compare to the more mature Sodium Fast Reactor technology, no demonstrator has ever been built and the feasibility demonstration will required a longer lead time. The next main project milestone is related to the GFR viability, scheduled in 2012. The current studies consist in revisiting the reactor reference design options as selected at the end of 2007. Most of them are being consolidated by going more in depth in the analysis. Some possible alternatives are assessed. The paper will give a status on the last studies performed on the core design and corresponding neutronics and cycle performance, the Decay Heat Removal strategy and preliminary safety analysis, systems design and balance of plant... This paper is complementary to the Icapp'09 papers 9062 dealing with the Gas cooled Fast Reactor Demonstrator ALLEGRO and 9378 related to GFR transients analysis. (author)

  2. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  3. Clinical registry for rheumatoid arthritis; a preliminary analysis

    International Nuclear Information System (INIS)

    Fakhr, A.; Hakim, F.; Zaidi, S.K.; Sharif, A.

    2017-01-01

    To establish a clinical registry for Rheumatoid Arthritis and delineate the most common symptoms that rheumatoid arthritis (RA) patients experience in our set up. Study Design: Cross sectional study. Place and Duration of Study: Study was carried out at Military Hospital (MH) Rawalpindi at Rheumatology Department during the period of Jan 2013 to Jun 2015. Material and Methods: A clinical registry for Rheumatoid Arthritis was developed as per criteria jointly developed by American College of Rheumatology (ACR) along with European League against Rheumatism (EULAR) (2010). Fifty-eight patients were registered after their informed consent and approval by Military Hospital (MH) Rawalpindi ethical committee. Age, gender and relevant clinical parameters of RA patients were recorded on case report forms and stored for analysis in the RA registry in Excel 2010. The figures were reported in frequencies and percentages. Results: Multiple joint pains (48.28%), fever (24.14%), morning stiffness of joints (22.41%) were the most common symptoms in RA patients. Other clinical manifestations included painful bilateral swollen joints (13.79%), pain in different parts of the body (10.34%), Raynaud's phenomenon (10.34%), malaise (8.62%), swollen body parts (8.62%), ulcers (8.62%), fatigue (6.90%), nodules on skin/elbow/interphalangeal joints (6.90%), deformities of fingers/ hand (3.45%), redness of eyes (3.45%), body rash (3.45%), inability to walk (3.45%), cervical lymphadenopathy (1.72%), stiffness of spine (1.72%) and myalgias (1.72%). Conclusion: It is concluded that multiple joint pains, fever and morning stiffness of joints are the most common symptoms of RA patients. (author)

  4. Advanced analysis of finger-tapping performance: a preliminary study.

    Science.gov (United States)

    Barut, Cağatay; Kızıltan, Erhan; Gelir, Ethem; Köktürk, Fürüzan

    2013-06-01

    The finger-tapping test is a commonly employed quantitative assessment tool used to measure motor performance in the upper extremities. This task is a complex motion that is affected by external stimuli, mood and health status. The complexity of this task is difficult to explain with a single average intertap-interval value (time difference between successive tappings) which only provides general information and neglects the temporal effects of the aforementioned factors. This study evaluated the time course of average intertap-interval values and the patterns of variation in both the right and left hands of right-handed subjects using a computer-based finger-tapping system. Cross sectional study. Thirty eight male individuals aged between 20 and 28 years (Mean±SD = 22.24±1.65) participated in the study. Participants were asked to perform single-finger-tapping test for 10 seconds of test period. Only the results of right-handed (RH) 35 participants were considered in this study. The test records the time of tapping and saves data as the time difference between successive tappings for further analysis. The average number of tappings and the temporal fluctuation patterns of the intertap-intervals were calculated and compared. The variations in the intertap-interval were evaluated with the best curve fit method. An average tapping speed or tapping rate can reliably be defined for a single-finger tapping test by analysing the graphically presented data of the number of tappings within the test period. However, a different presentation of the same data, namely the intertap-interval values, shows temporal variation as the number of tapping increases. Curve fitting applications indicate that the variation has a biphasic nature. The measures obtained in this study reflect the complex nature of the finger-tapping task and are suggested to provide reliable information regarding hand performance. Moreover, the equation reflects both the variations in and the general

  5. Diisocyanate emission from a paint product: a preliminary analysis.

    Science.gov (United States)

    Jarand, Curtis W; Akapo, Samuel O; Swenson, Lonie J; Kelman, Bruce J

    2002-07-01

    Exposure of workers to diisocyanates in the polyurethane foam manufacturing industry is well documented. However, very little quantitative data have been published on exposure to diisocyanates from the use of paints and coatings. The purpose of this study was to evaluate emission of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate (2,6-TDI), and isophorone diisocyanate from a commercially available two-stage concrete coating and sealant. A laboratory model of an outdoor deck coating process was developed and diisocyanate concentrations determined by derivatization with 1-(2-methoxyphenol)-piperazine and subsequent high performance liquid chromatographic analysis with UV detection. The detection limit for 2,4-toluene diisocyanate and 2,6-toluene diisocyanate urea derivatives was 0.6 microg TDI/gm wet product, and 0.54 microg IPDI/gm wet product for the isophorone diisocyanate urea derivative. No 2,4-toluene diisocyanate or isophorone diisocyanate was detected in the mixed product. A maximum mean 2,6-TDI emission rate of 0.32 microg of 2,6-TDI/gram of wet product applied/hour was observed for the 1-hour sampling time, 0.38 microg of 2,6-TDI/gram of wet product applied/hour was observed for the 5-hour sampling time, and 0.02 micrpg of 2,6-TDI/gram of wet product applied/hour was observed for the 15-hour sampling time. The decrease in rate of 2,6-TDI emission over the 15-hour period indicates that emission of 2,6-TDI is virtually complete after 5 hours. These emission rates should allow industrial hygienists to calculate exposures to isocyanates emitted from at least one curing sealant.

  6. Cognitive Task Analysis of Business Jet Pilots' Weather Flying Behaviors: Preliminary Results

    Science.gov (United States)

    Latorella, Kara; Pliske, Rebecca; Hutton, Robert; Chrenka, Jason

    2001-01-01

    This report presents preliminary findings from a cognitive task analysis (CTA) of business aviation piloting. Results describe challenging weather-related aviation decisions and the information and cues used to support these decisions. Further, these results demonstrate the role of expertise in business aviation decision-making in weather flying, and how weather information is acquired and assessed for reliability. The challenging weather scenarios and novice errors identified in the results provide the basis for experimental scenarios and dependent measures to be used in future flight simulation evaluations of candidate aviation weather information systems. Finally, we analyzed these preliminary results to recommend design and training interventions to improve business aviation decision-making with weather information. The primary objective of this report is to present these preliminary findings and to document the extended CTA methodology used to elicit and represent expert business aviator decision-making with weather information. These preliminary findings will be augmented with results from additional subjects using this methodology. A summary of the complete results, absent the detailed treatment of methodology provided in this report, will be documented in a separate publication.

  7. Crystallization and preliminary X-ray diffraction analysis of rat autotaxin

    International Nuclear Information System (INIS)

    Day, Jacqueline E.; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Hausmann, Jens; Kamtekar, Satwik

    2010-01-01

    Autotaxin (ATX), a pyrophosphatase/phosphodiesterase enzyme, is a promising drug target for many indications and is only distantly related to enzymes of previously determined structure. Here, the cloning, expression, purification, crystallization and preliminary diffraction analysis of ATX are reported. Rat autotaxin has been cloned, expressed, purified to homogeneity and crystallized via hanging-drop vapour diffusion using PEG 3350 as precipitant and ammonium iodide and sodium thiocyanate as salts. The crystals diffracted to a maximum resolution of 2.05 Å and belonged to space group P1, with unit-cell parameters a = 53.8, b = 63.3, c = 70.5 Å, α = 98.8, β = 106.2, γ = 99.8°. Preliminary X-ray diffraction analysis indicated the presence of one molecule per asymmetric unit, with a solvent content of 47%

  8. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.

  9. Crystallization and preliminary X-ray diffraction analysis of West Nile virus

    International Nuclear Information System (INIS)

    Kaufmann, Bärbel; Plevka, Pavel; Kuhn, Richard J.; Rossmann, Michael G.

    2010-01-01

    Crystals of infectious West Nile virus were obtained and diffracted at best to about 25 Å resolution. Preliminary analysis of the diffraction pattern suggested tight hexagonal packing of the intact virus. West Nile virus, a human pathogen, is closely related to other medically important flaviviruses of global impact such as dengue virus. The infectious virus was purified from cell culture using polyethylene glycol (PEG) precipitation and density-gradient centrifugation. Thin amorphously shaped crystals of the lipid-enveloped virus were grown in quartz capillaries equilibrated by vapor diffusion. Crystal diffraction extended at best to a resolution of about 25 Å using synchrotron radiation. A preliminary analysis of the diffraction images indicated that the crystals had unit-cell parameters a ≃ b ≃ 480 Å, γ = 120°, suggesting a tight hexagonal packing of one virus particle per unit cell

  10. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    Science.gov (United States)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  11. Preliminary X-ray analysis of twinned crystals of sarcosine dimethylglycine methyltransferase from Halorhodospira halochoris

    International Nuclear Information System (INIS)

    Kallio, Juha Pekka; Jänis, Janne; Nyyssölä, Antti; Hakulinen, Nina; Rouvinen, Juha

    2009-01-01

    The crystallization and preliminary X-ray diffraction analysis of sarcosine dimethylglycine methyltransferase from H. halochoris is reported. Sarcosine dimethylglycine methyltransferase (EC 2.1.1.157) is an enzyme from the extremely halophilic anaerobic bacterium Halorhodospira halochoris. This enzyme catalyzes the twofold methylation of sarcosine to betaine, with S-adenosylmethionine (AdoMet) as the methyl-group donor. This study presents the crystallization and preliminary X-ray analysis of recombinant sarcosine dimethylglycine methyltransferase produced in Escherichia coli. Mass spectroscopy was used to determine the purity and homogeneity of the enzyme material. Two different crystal forms, which initially appeared to be hexagonal and tetragonal, were obtained. However, on analyzing the diffraction data it was discovered that both crystal forms were pseudo-merohedrally twinned. The true crystal systems were monoclinic and orthorhombic. The monoclinic crystal diffracted to a maximum of 2.15 Å resolution and the orthorhombic crystal diffracted to 1.8 Å resolution

  12. Preliminary Disposal Analysis for Selected Accelerator Production of Tritium Waste Streams

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.

    1998-06-01

    A preliminary analysis was performed for two selected Accelerator Production of Tritium (APT) generated mixed and low-level waste streams to determine if one mixed low-level waste (MLLW) stream that includes the Mixed Waste Lead (MWL) can be disposed of at the Nevada Test Site (NTS) and at the Hanford Site and if one low-level radioactive waste (LLW) stream, that includes the Tungsten waste stream (TWS) generated by the Tungsten Neutron Source modules and used in the Target/Blanket cavity vessel, can be disposed of in the LLW Vaults at the Savannah River Plant (SRP). The preliminary disposal analysis that the radionuclide concentrations of the two selected APT waste streams are not in full compliance with the Waste Acceptance Criteria (WAC) and the Performance Assessment (PA) radionuclide limits of the disposal sites considered

  13. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    International Nuclear Information System (INIS)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E.

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC

  14. National Data Center Preparedness Exercise 2015 (NPE 2015): MY-NDC Preliminary Analysis Result

    International Nuclear Information System (INIS)

    Faisal Izwan Abdul Rashid; Muhammed Zulfakar Zolkaffly

    2016-01-01

    Malaysia has established the CTBT National Data Centre (MY-NDC) in December 2005. MY-NDC is tasked to perform Comprehensive Nuclear-Test-Ban-Treaty (CTBT) data management as well as provide information for Treaty related events to Nuclear Malaysia as CTBT National Authority. In 2015, MY-NDC has participated in the National Data Centre Preparedness Exercise 2015 (NPE 2015). This paper aims at presenting MY-NDC preliminary analysis result of NPE 2015. In NPE 2015, MY-NDC has performed five different analyses, namely, radionuclide, atmospheric transport modelling (ATM), data fusion, seismic analysis and site forensics. The preliminary findings show the hypothetical scenario in NPE 2015 most probably is an uncontained event resulted high release of radionuclide to the air. (author)

  15. Preliminary safety analysis of the HTTR-IS nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Tachibana, Yukio; Sakaba, Nariaki

    2010-06-01

    Japan Atomic Energy Agency is planning to demonstrate hydrogen production by thermochemical water-splitting IS process utilizing heat from the high-temperature gas-cooled reactor HTTR (HTTR-IS system). The previous study identified that the HTTR modification due to the coupling of hydrogen production plant requires an additional safety review since the scenario and quantitative values of the evaluation items would be altered from the original HTTR safety review. Hence, preliminary safety analyses are conducted by using the system analysis code. Calculation results showed that evaluation items such as a coolant pressure, temperatures of heat transfer tubes at the pressure boundary, etc., did not exceed allowable values. Also, the peak fuel temperature did not exceed allowable value and therefore the reactor core was not damaged and cooled sufficiently. This report compiles calculation conditions, event scenarios and the calculation results of the preliminary safety analysis. (author)

  16. Preliminary Hazards Analysis of K-Basin Fuel Encapsulation and Storage

    International Nuclear Information System (INIS)

    Strickland, G.C.

    1994-01-01

    This Preliminary Hazards Analysis (PHA) systematically examines the K-Basin facilities and their supporting systems for hazards created by abnormal operating conditions and external events (e.g., earthquakes) which have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. The operational activities examined are fuel encapsulation, fuel storage and cooling. Encapsulation of sludges in the basins is not examined. A team of individuals from Westinghouse produced a set of Hazards and Operability (HAZOP) tables documenting their examination of abnormal process conditions in the systems and activities examined in K-Basins. The purpose of this report is to reevaluate and update the HAZOP in the original Preliminary Hazard Analysis of K-Basin Fuel Encapsulation and Storage originally developed in 1991

  17. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    An economic technique for the numerical analysis of the elasto-plastic behaviour of shells of revolution would be of considerable value in the nuclear reactor industry. A numerical method based on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motion are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behaviour, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. (Auth.)

  18. Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-Tuan Chou

    2013-01-01

    Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.

  19. Preliminary spatial analysis of combined BATSE/Ulysses gamma-ray burst locations

    International Nuclear Information System (INIS)

    Kippen, R. Marc; Hurley, Kevin; Pendleton, Geoffrey N.

    1998-01-01

    We present the preliminary spatial analysis of 278 bursts that have been localized by BATSE and the two-spacecraft Compton/Ulysses Interplanetary Network. The large number and superior accuracy of the combined BATSE/Ulysses locations provides improved sensitivity to small-angle source properties. We find that the locations are consistent with large- and small-scale isotropy, with no significant small-angle clustering. We constrain the fraction of sources in clusters and discuss the implications for burst repetition

  20. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  1. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  2. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  3. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2007-01-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with 'generic' component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance

  4. Research in progress in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  5. Numerical analysis of thermoluminescence glow curves; Analisis numerico de las cruvas de termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Ros, J M; Delgado, A

    1989-07-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs.

  6. The Role of Numerical Methods in the Sensitivity Analysis of a ...

    African Journals Online (AJOL)

    The mathematical modelling of physiochemical interaction in the framework of industrial and environmental physics which relies on an initial value problem is defined by a first order ordinary differential equation. Two numerical methods of studying sensitivity analysis of physiochemical interaction data are developed.

  7. Numerical analysis for fatigue life prediction on railroad RCF crack initiation

    NARCIS (Netherlands)

    Ma, Y.; Markine, V.L.

    2015-01-01

    In the present paper, a numerical procedure for surface crack initiation analysis based on the critical plane approach is proposed. The complex stress/strain state of wheel and rail (W/R) contact is analysed by means of submodelling approach together with the transient contact nodal loads obtained

  8. The Numerical Analysis of Monopolistically Competitive Markets: The Case of a New York Fresh Apple Packer

    OpenAIRE

    Starbird, Sterling A.; Milligan, Robert A.

    1987-01-01

    The hypothesis is adduced that in some monopolistically competitive markets a firm's demand schedule evolves faster than the firm's marketing policies can adjust. A probabilistic model of this phenomenon is introduced. The numerical analysis of a New York fresh apple packer's inventory control policies illustrates the model's usefulness.

  9. Structure of unilamellar vesicles: Numerical analysis based on small-angle neutron scattering data

    International Nuclear Information System (INIS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zbytovska, J.; Almasy, L.; Aswal, V. K.; Strunz, P.; Wartewig, S.; Neubert, R.

    2006-01-01

    The structure of polydispersed populations of unilamellar vesicles is studied by small-angle neutron scattering for three types of lipid systems, namely, single-, two-and four-component vesicular systems. Results of the numerical analysis based on the separated-form-factor model are reported

  10. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene

    International Nuclear Information System (INIS)

    Ciaccafava, Alexandre; Lartigue, Audrey; Mansuelle, Pascal; Jeudy, Sandra; Abergel, Chantal

    2011-01-01

    The mimivirus L544 gene product was expressed in E. coli and crystallized; preliminary phasing of a MAD data set was performed using the selenium signal present in a crystal of recombinant selenomethionine-substituted protein. Mimivirus is the prototype of a new family (the Mimiviridae) of nucleocytoplasmic large DNA viruses (NCLDVs), which already include the Poxviridae, Iridoviridae, Phycodnaviridae and Asfarviridae. Mimivirus specifically replicates in cells from the genus Acanthamoeba. Proteomic analysis of purified mimivirus particles revealed the presence of many subunits of the DNA-directed RNA polymerase II complex. A fully functional pre-transcriptional complex appears to be loaded in the virions, allowing mimivirus to initiate transcription within the host cytoplasm immediately upon infection independently of the host nuclear apparatus. To fully understand this process, a systematic study of mimivirus proteins that are predicted (by bioinformatics) or suspected (by proteomic analysis) to be involved in transcription was initiated by cloning and expressing them in Escherichia coli in order to determine their three-dimensional structures. Here, preliminary crystallographic analysis of the recombinant L544 protein is reported. The crystals belonged to the orthorhombic space group C222 1 with one monomer per asymmetric unit. A MAD data set was used for preliminary phasing using the selenium signal present in a selenomethionine-substituted protein crystal

  11. Numerical analysis of the construction of Odelouca Dam using a Subloading Surface Soil Model

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2014-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil, and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca dam construction. In this analysis the explicit finite difference program FLAC is used. An unconventional elastoplastic soil model, a Subloadin...

  12. About numerical analysis of electromagnetic field induce in gear wheels during hardening process

    Directory of Open Access Journals (Sweden)

    Gabriel Cheregi

    2008-05-01

    Full Text Available The paper presents the results of a numericalsimulation using finite element analysis for a coupledmagneto-thermal problem, specific for inductionhardening processes. The analysis takes into account therelative movement between inductor and the heated part.Numerical simulation allows to determine accurately thethermal regime of the induction heating process and theoptimal parameters which offer maximum efficiency.Therefore the experiments number in designing processcan be decreased and a better knowledge of the processcan be obtained.

  13. Numerical Tests of the Virtual Human Model Response Under Dynamic Load Conditions Defined in Federal Aviation Regulation Part 23.562 and 25.562 – Preliminary Study

    Directory of Open Access Journals (Sweden)

    Lindstedt Lukasz

    2016-12-01

    Full Text Available The main aim of the presented research was to check mechanical response of human body model under loads that can occur during airplane accidents and compare results of analysis with some results of experimental tests described in literature. In simulations, new multi-purpose human body model, the VIRTHUMAN, was used. The whole model, as well as its particular segments, was earlier validated based on experimental data, which proved its accuracy to simulate human body dynamic response under condition typical for car crashes, but it was not validated for loads with predominant vertical component (loads acting along spinal column, typical for airplane crashes. Due to limitation of available experimental data, the authors focused on conducting calculations for the case introduced in 14 CFR: Parts 23.562 and 25.562, paragraph (b(1, knowing as the 60° pitch test. The analysis consists in comparison of compression load measured in lumbar section of spine of the FAA HIII Dummy (experimental model and in the Virthuman (numerical model. The performed analyses show numerical stability of the model and satisfactory agreement between experimental data and simulated Virthuman responses. In that sense, the Virthuman model, although originally developed for automotive analyses, shows also great potential to become valuable tool for applications in aviation crashworthiness and safety analyses, as well.

  14. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  15. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  16. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

    International Nuclear Information System (INIS)

    Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

    2017-01-01

    Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and

  17. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  18. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    Science.gov (United States)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  19. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Science.gov (United States)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  20. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  1. Sensitivity of a numerical wave model on wind re-analysis datasets

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  2. Numerical analysis of the performance of rock weirs: Effects of structure configuration on local hydraulics

    Science.gov (United States)

    Holmquist-Johnson, C. L.

    2009-01-01

    River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.

  3. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  4. Numerical and experimental analysis of a horizontal ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-03-15

    The main objective of this work is to evaluate a heat pump system using the ground as a source of heat. A ground-coupled heat pump (GCHP) system has been installed and tested at the test room, University of Firat, Elazig, Turkey. Results obtained during experimental testing are presented and discussed here. The coefficient of performance (COP{sub sys}) of the GCHP system is determined from the measured data. A numerical model of heat transfer in the ground was developed for determining the temperature distribution in the vicinity of the pipe. The finite difference approximation is used for numerical analysis. It is observed that the numerical results agree with the experimental results. (author) (author)

  5. Scalability on LHS (Latin Hypercube Sampling) samples for use in uncertainty analysis of large numerical models

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Nunez Mac Leod, J.E.

    2000-01-01

    The present paper deals with the utilization of advanced sampling statistical methods to perform uncertainty and sensitivity analysis on numerical models. Such models may represent physical phenomena, logical structures (such as boolean expressions) or other systems, and various of their intrinsic parameters and/or input variables are usually treated as random variables simultaneously. In the present paper a simple method to scale-up Latin Hypercube Sampling (LHS) samples is presented, starting with a small sample and duplicating its size at each step, making it possible to use the already run numerical model results with the smaller sample. The method does not distort the statistical properties of the random variables and does not add any bias to the samples. The results is a significant reduction in numerical models running time can be achieved (by re-using the previously run samples), keeping all the advantages of LHS, until an acceptable representation level is achieved in the output variables. (author)

  6. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    International Nuclear Information System (INIS)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard

    2007-01-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4 1 2 1 2 or P4 3 2 1 2 and diffracted to a resolution of 1.6 Å

  7. Most significant preliminary results of the probabilistic safety analysis on the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Perdomo, Manuel

    1995-01-01

    Since 1990 the Group for PSA Development and Applications (GDA/APS) is working on the Level-1 PSA for the Juragua-1 NPP, as a part of an IAEA Technical Assistance Project. The main objective of this study, which is still under way, is to assess, in a preliminary way, the Reactor design safety to find its potential 'weak points' at the construction stage, using a eneric data base. At the same time, the study allows the PSA team to familiarize with the plant design and analysis techniques for the future operational PSA of the plant. This paper presents the most significant preliminary results of the study, which reveal some advantages of the safety characteristics of the plant design in comparison with the homologous VVER-440 reactors and some areas, where including slight modifications would improve the plant safety, considering the level of detail at which the study is carried out. (author). 13 refs, 1 fig, 2 tabs

  8. Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Sin Kim; Goon-Cherl Park [Seoul National Univ., Seoul (Korea, Republic of)

    1995-09-01

    An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral loss coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.

  9. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  10. Present status of numerical analysis on transient two-phase flow

    International Nuclear Information System (INIS)

    Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.

    1987-01-01

    The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)

  11. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  12. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    A numerical method based instead on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motions are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behavior, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. The elasto-plastic constitutive relations adopted are in accordance with currently recommended constitutive equations for inelastic design analysis of FFTF Components. The Von Mises yield criteria and associated flow rule is used and the kinematic hardening law is followed. Examples are considered in which stainless steels common to LMFBR application are used

  13. Numerical modeling assistance system in finite element analysis for the structure of an assembly

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko

    2015-01-01

    The objective of structural analysis and seismic response analysis are well recognized and utilized as one of sophisticated analysis tools for design objects in the nuclear engineering. The way to design nuclear facilities is always in compromising with many index, such as costs, performance, robustness and so on, but the most important issues is the safety. It is true the structural analysis and seismic response analysis plays an important role to insure the safety, since it is well known that Japan is always facing to the earthquake. In this paper, a numerical analysis's controlling and managing system is implemented on a supercomputer, which controls the modelling process and data treating for structural robustness, although a numerical analysis's manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The analytical modeling manager executes the process by order of the lists for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Modeling process was experimentally found that may subject to the intention of designing index. The numerical experiments were carried out with static analyses and dynamic analyses. The results of its experiment introduce reasonable discussion to understand the accuracy of simulation. In the numerical experiments, K, supercomputer is utilized by using parallel computing resource with the controlling and managing system. The structural analysis and seismic response analysis are done by the FIEST, finite element analysis for the structure of an assembly, which carries out the simulation by gathering components. As components are attached to one another to build an assembly, and, therefore, the interactions between the components due to differences in material properties and their connection conditions considerably affect the behavior of an assembly. FIESTA is

  14. Variable-density groundwater flow simulations and particle tracking. Numerical modelling using DarcyTools. Preliminary site description of the Simpevarp area, version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Stigsson, Martin; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2004-12-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden, Forsmark and Simpevarp. The investigations started in 2002 and have been planned since the late 1990s. The work presented here investigates the possibility of using hydrogeochemical measurements in deep boreholes to reduce parameter uncertainty in a regional modelling of groundwater flow in fractured rock. The work was conducted with the aim of improving the palaeohydrogeological understanding of the Simpevarp area and to give recommendations to the preparations of the next version of the Preliminary Site Description (1.2). The study is based on a large number of numerical simulations of transient variable density groundwater flow through a strongly heterogeneous and anisotropic medium. The simulations were conducted with the computer code DarcyTools, the development of which has been funded by SKB. DarcyTools is a flexible porous media code specifically designed to treat groundwater flow and salt transport in sparsely fractured crystalline rock and it is noted that some of the features presented in this report are still under development or subjected to testing and verification. The simulations reveal the sensitivity of the results to different hydrogeological modelling assumptions, e.g. the sensitivity to the initial groundwater conditions at 10,000 BC, the size of the model domain and boundary conditions, and the hydraulic properties of deterministically and stochastically modelled deformation zones. The outcome of these simulations was compared with measured salinities and calculated relative proportions of different water types (mixing proportions) from measurements in two deep core drilled boreholes in the Laxemar subarea. In addition to the flow simulations, the statistics of flow related transport parameters were calculated for particle flowpaths from repository depth to ground surface for two subareas within the

  15. Variable-density groundwater flow simulations and particle tracking. Numerical modelling using DarcyTools. Preliminary site description of the Simpevarp area, version 1.1

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Berglund, Sten; Svensson, Urban

    2004-12-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden, Forsmark and Simpevarp. The investigations started in 2002 and have been planned since the late 1990s. The work presented here investigates the possibility of using hydrogeochemical measurements in deep boreholes to reduce parameter uncertainty in a regional modelling of groundwater flow in fractured rock. The work was conducted with the aim of improving the palaeohydrogeological understanding of the Simpevarp area and to give recommendations to the preparations of the next version of the Preliminary Site Description (1.2). The study is based on a large number of numerical simulations of transient variable density groundwater flow through a strongly heterogeneous and anisotropic medium. The simulations were conducted with the computer code DarcyTools, the development of which has been funded by SKB. DarcyTools is a flexible porous media code specifically designed to treat groundwater flow and salt transport in sparsely fractured crystalline rock and it is noted that some of the features presented in this report are still under development or subjected to testing and verification. The simulations reveal the sensitivity of the results to different hydrogeological modelling assumptions, e.g. the sensitivity to the initial groundwater conditions at 10,000 BC, the size of the model domain and boundary conditions, and the hydraulic properties of deterministically and stochastically modelled deformation zones. The outcome of these simulations was compared with measured salinities and calculated relative proportions of different water types (mixing proportions) from measurements in two deep core drilled boreholes in the Laxemar subarea. In addition to the flow simulations, the statistics of flow related transport parameters were calculated for particle flowpaths from repository depth to ground surface for two subareas within the

  16. Contributions to mathematical analysis and to numerical approximation in plasma physics

    International Nuclear Information System (INIS)

    Besse, N.

    2009-01-01

    The author's scientific works deal with numerical analysis and the simulation of the partial differential equations that intervene in the transport of charged particles and in plasma physics. In the chapters 2 and 3, a reduction of the Vlasov equation is presented, this method is based on the Liouville geometric invariants and it leads to a mathematical model named water-bag model that can be coupled with various equations of the electromagnetic field: the Poisson equation, the quasi-neutral equation or Maxwell equations. In the chapter 3 this reduction method is applied to the Vlasov gyro-kinetic equation to form the gyro-water-bag model. The mathematical analysis of this model produces interesting analytical results such as: threshold instabilities, instability growth rate, transport coefficient and non-linear turbulence mechanisms. Simulations have been performed to study turbulence in magnetized plasmas. In these plasmas occurred numerous instabilities due to the presence of high density and temperature gradients. These instabilities generate turbulence that deteriorates plasma confinement conditions required for thermonuclear fusion. The numerical calculation of turbulent thermal diffusivities is important since confinement time is determined by these transport coefficients. The chapter 4 gathers mathematical analysis issues like convergence or prior knowledge of errors concerning several high-order numerical methods used to solve Vlasov-Poisson or Vlasov-Einstein equation systems as well as the induction equation of an idealistic MHD system. The chapter 5 presents original numerical methods to solve several non-linear Vlasov equations such as Vlasov-Poisswell, Vlasov-Darwin, Vlasov-Maxwell and Vlasov-gyrokinetic that are involved either in inertial fusion or in magnetic confinement fusion

  17. Numerical analysis of melting/solidification phenomena using a moving boundary problem analysis method X-FEM

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki

    2008-01-01

    A numerical analysis method for melting/solidification phenomena has been developed to evaluate a feasibility of several candidate techniques in the nuclear fuel cycle. Our method is based on the eXtended Finite Element Method (X-FEM) which has been used for moving boundary problems. Key technique of the X-FEM is to incorporate signed distance function into finite element interpolation to represent a discontinuous gradient of the temperature at a moving solid-liquid interface. Construction of the finite element equation, the technique of quadrature and the method to solve the equation are reported here. The numerical solutions of the one-dimensional Stefan problem, solidification in a two-dimensional square corner and melting of pure gallium are compared to the exact solutions or to the experimental data. Through these analyses, validity of the newly developed numerical analysis method has been demonstrated. (author)

  18. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    Science.gov (United States)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  19. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  20. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  1. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  2. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  3. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    DYKES, A.A.

    2000-10-11

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O&M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis.

  4. Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics

    International Nuclear Information System (INIS)

    Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo

    2010-04-01

    The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be utilized

  5. Numerical analysis of a PCM thermal storage system with varying wall temperature

    International Nuclear Information System (INIS)

    Halawa, E.; Bruno, F.; Saman, W.

    2005-01-01

    Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given

  6. Advances in variational and hemivariational inequalities theory, numerical analysis, and applications

    CERN Document Server

    Migórski, Stanisław; Sofonea, Mircea

    2015-01-01

    Highlighting recent advances in variational and hemivariational inequalities with an emphasis on theory, numerical analysis and applications, this volume serves as an indispensable resource to graduate students and researchers interested in the latest results from recognized scholars in this relatively young and rapidly-growing field. Particularly, readers will find that the volume’s results and analysis present valuable insights into the fields of pure and applied mathematics, as well as civil, aeronautical, and mechanical engineering. Researchers and students will find new results on well posedness to stationary and evolutionary inequalities and their rigorous proofs. In addition to results on modeling and abstract problems, the book contains new results on the numerical methods for variational and hemivariational inequalities. Finally, the applications presented illustrate the use of these results in the study of miscellaneous mathematical models which describe the contact between deformable bodies and a...

  7. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

    International Nuclear Information System (INIS)

    Ambrosini, W.

    1998-01-01

    In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

  8. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  9. Development of high velocity gas gun with a new trigger system-numerical analysis

    Science.gov (United States)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  10. Application of numerical analysis technique to make up for pipe wall thinning prediction program

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2009-01-01

    Flow Accelerated Corrosion (FAC) leads to wall thinning of steel piping exposed to flowing water or wet steam. Experience has shown that FAC damage to piping at fossil and nuclear plants can lead to costly outages and repairs and can affect plant reliability and safety. CHEWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data to prevent piping failures caused by FAC. However, CHECWORKS may be occasionally left out local susceptible portions owing to predicting FAC damage by pipeline group after constructing a database for all secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of the CHECWORKS prediction results in terms of numerical analysis. FAC susceptible locations based on CHECWORKS for the two pipeline groups of a nuclear plant was compared with those of numerical analysis based on FLUENT.

  11. Supplementation of Flow Accelerated Corrosion Prediction Program Using Numerical Analysis Technique

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2010-01-01

    Flow-accelerated corrosion (FAC) leads to thinning of steel pipe walls that are exposed to flowing water or wet steam. From experience, it is seen that FAC damage to piping at fossil and nuclear plants can result in outages that require expensive repairs and can affect plant reliability and safety. CHECWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data so that piping failures caused by FAC can be prevented. However, CHECWORKS may be occasionally ignore local susceptible portions when predicting FAC damage in a group of pipelines after constructing a database for all the secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of CHECWORKS prediction results using numerical analysis. FAC susceptible locations determined using CHECWORKS for two pipeline groups of a nuclear plant was compared with determined using the numerical-analysis-based FLUENT

  12. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  13. Four generations versus left-right symmetry. A comparative numerical analysis

    International Nuclear Information System (INIS)

    Heidsieck, Tillmann J.

    2012-01-01

    In this work, we present a comparative numerical analysis of the Standard Model (SM) with a sequential fourth generation (SM4) and the left-right symmetric Standard model (LRM). We focus on the constraints induced by flavour violating ΔF=2 processes in the K and B system while the results of studies of collider bounds and electroweak precision tests are taken into account as external inputs. In contrast to many previous studies of both models considered in this work, we do make not any ad-hoc assumptions on the structure of the relevant mixing matrices. Therefore, we employ powerful Monte Carlo methods in order to approximate the viable parameter space of the models. In preparation of our numerical analysis, we present all relevant formulae and review the different numerical methods used in this work. In order to better understand the patterns of new effects in ΔF=2 processes, we perform a fit including all relevant ΔF=2 constraints in the context of the Standard Model. The result of this fit is then used in a general discussion on new effects in ΔF=2 processes in the context of generic extensions of the Standard Model. Our numerical analysis of the SM4 and the LRM demonstrates that in both models the existing anomalies in Δ=2 processes can easily be resolved. We transparently show how the different observables are connected to each other by their dependence on combinations of mixing parameters. In our analysis of rare decays in the SM4, we establish patterns of flavour violation that could in principle be used to disprove this model on the basis of ΔF=1 processes alone. In the LRM, we discuss the importance of the contributions originating from the exchange of heavy, flavour changing, neutral Higgs bosons as well as the inability of the LRM to entirely solve the V ub problem.

  14. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  15. Four generations versus left-right symmetry. A comparative numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Tillmann J.

    2012-06-18

    In this work, we present a comparative numerical analysis of the Standard Model (SM) with a sequential fourth generation (SM4) and the left-right symmetric Standard model (LRM). We focus on the constraints induced by flavour violating {Delta}F=2 processes in the K and B system while the results of studies of collider bounds and electroweak precision tests are taken into account as external inputs. In contrast to many previous studies of both models considered in this work, we do make not any ad-hoc assumptions on the structure of the relevant mixing matrices. Therefore, we employ powerful Monte Carlo methods in order to approximate the viable parameter space of the models. In preparation of our numerical analysis, we present all relevant formulae and review the different numerical methods used in this work. In order to better understand the patterns of new effects in {Delta}F=2 processes, we perform a fit including all relevant {Delta}F=2 constraints in the context of the Standard Model. The result of this fit is then used in a general discussion on new effects in {Delta}F=2 processes in the context of generic extensions of the Standard Model. Our numerical analysis of the SM4 and the LRM demonstrates that in both models the existing anomalies in {Delta}=2 processes can easily be resolved. We transparently show how the different observables are connected to each other by their dependence on combinations of mixing parameters. In our analysis of rare decays in the SM4, we establish patterns of flavour violation that could in principle be used to disprove this model on the basis of {Delta}F=1 processes alone. In the LRM, we discuss the importance of the contributions originating from the exchange of heavy, flavour changing, neutral Higgs bosons as well as the inability of the LRM to entirely solve the V{sub ub} problem.

  16. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  17. Numerical analysis of temperature field during hardfacing process and comparison with experimental results

    Directory of Open Access Journals (Sweden)

    Lazić Vukić N.

    2014-01-01

    Full Text Available The three-dimensional transient nonlinear thermal analysis of the hard facing process is performed by using the finite element method. The simulations were executed on the open source Salome platform using the open source finite element solver Code_Aster. The Gaussian double ellipsoid was selected in order to enable greater possibilities for the calculation of the moving heat source. The numerical results were compared with available experimental results.

  18. Numerical Analysis of a Centrifugal Fan for Improved Performance using Splitter Vanes

    OpenAIRE

    N. Yagnesh Sharma; K. Vasudeva Karanth

    2009-01-01

    The flow field in a centrifugal fan is highly complex with flow reversal taking place on the suction side of impeller and diffuser vanes. Generally performance of the centrifugal fan could be enhanced by judiciously introducing splitter vanes so as to improve the diffusion process. An extensive numerical whole field analysis on the effect of splitter vanes placed in discrete regions of suspected separation points is possible using CFD. This paper examines the effect of sp...

  19. Preliminary analysis for model development of groundwater evolution in Horonobe area

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Yui, Mikazu

    2003-03-01

    The preliminary analysis for model development of groundwater evolution in Horonobe area was performed with data at D-1, HDB-1 and HDB-2 bore hole where hydrogen / oxygen isotope concentration, mineral property in sedimentary rock and physico-chemical parameters (pH, Eh and ionic concentrations) were measured. As a result of analysis for hydrogen and oxygen isotope concentration, saline water in marine sediment was diluted by the mixing with shallow groundwater and diffusion. And as a result of analysis for a concentration of bicarbonate from the difference of pH values measured between in-situ and under air, the estimated in-situ concentration of bicarbonate differs from that measured under air. And minerals which were assumed to be equilibrium with groundwater were selected by thermodynamic calculation. This report presents the results of preliminary analysis for groundwater evolution by using data derived from D-1, HDB-1 and HDB-2 boring research. In order to establish the model which interprets the groundwater evolution as a next step, data which satisfy the representative in-situ property of groundwater chemistry in Horonobe area are needed. Reliable measurements for physico-chemical parameter and property of minerals in sedimentary rock in dominant layer and at the variety of depth are also needed. (author)

  20. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.