WorldWideScience

Sample records for preliminary design effort

  1. Design aspects of the Alpha Repository. I. Preliminary results of facility layout, room stability, and equipment selection efforts. Summary progress report RSI-0024

    Energy Technology Data Exchange (ETDEWEB)

    Gnirk, P.F.; Grams, W.H.; Zeller, T.J.; Ellis, D.B.; Pariseau, W.G.; Fossum, A.F.; Ratigan, J.L.; Hansen, F.D.

    1975-04-14

    Results of preliminary analysis of the stability of mines in salt formations underlying Eddy and Lea Counties in New Mexico are presented. Methods and equipment for drilling canister emplacement holes in these formations were evaluated along with methods for excavating storage areas and transport of the excavated salt. Progress during the period is reported in chapters on geological and rock properties at the repository site, preliminary mine layout, basic requirements for repository usage, excavation geometries, drill selection, excavation systems, and safety requirements. (JRD)

  2. KALIMER preliminary conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report.

  3. Preliminary format design guidelines

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Nørregaard, J.

    2013-01-01

    The strategic research centre PolyNano aims at becoming the Danish competence centre for production-ready fabrication of polymer, nano-scale lab-on-a-chip (LoC) devices. In order to provide a competitive edge for Danish biotech companies launching LoC products by removal of the technology barrier...... between lab-scale proof-of-principle and high-volume low-cost production of LoCs, the PolyNano project will develop a readily accessible fabrication platform for those companies aiming at developing and manufacturing their LoCs design.......The strategic research centre PolyNano aims at becoming the Danish competence centre for production-ready fabrication of polymer, nano-scale lab-on-a-chip (LoC) devices. In order to provide a competitive edge for Danish biotech companies launching LoC products by removal of the technology barrier...

  4. Breckinridge Project, initial effort. Report II. Breckinridge Project design basis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The Breckinridge Project is a pioneer endeavor involving the engineering, construction, and operation of a commercial facility that will convert 23,000 tons per day of run-of-mine, high-sulfur coal into 50,000 barrels per day of liquid hydrocarbons equivalent to those produced from crude oil. The Initial Effort, now complete, was executed under Cooperative Agreement No. DE-FC05-80OR20717 between the Department of Energy and the Participants, Ashland Synthetic Fuels, Inc., and Airco Energy Company, Inc. The Initial Effort produced a preliminary design, capital estimate, and economic analysis of the commercial plant, as well as a plan for the design, construction, and operation of that plant. The extensive and rigorous attention given to environmental, socioeconomic, safety, and health considerations is indicative of the high priority these issues will continue to receive throughout the life of the project. The Breckinridge Energy Company, a partnership of several major corporations, is being formed to finance, own, and manage the Breckinridge Project. Report II is intended for the reader who is primarily interested in less detailed discussion of the coal liquefaction process and Breckinridge facility than presented in the eleven volumes of Reports IV and V. The overview section describes the project goals and briefly introduces the coal liquefaction process. The report continues with a discussion of the history of the project and the H-COAL process from its concept to the proposed commercialization technology. The report describes the site, the Breckinridge Facility, and concludes with a summary of the eleven reports that contain the deliverable documentation of the Initial Effort or Development Phase of the project.

  5. Ship design methodologies of preliminary design

    CERN Document Server

    Papanikolaou, Apostolos

    2014-01-01

    This book deals with ship design and in particular with methodologies of the preliminary design of ships. The book is complemented by a basic bibliography and five appendices with useful updated charts for the selection of the main dimensions and other basic characteristics of different types of ships (Appendix A), the determination of hull form  from the data of systematic hull form series (Appendix B), the detailed description of the relational method for the preliminary estimation of ship weights (Appendix C), a brief review of the historical evolution of shipbuilding science and technology from the prehistoric era to date (Appendix D) and finally a historical review of regulatory developments of ship's damage stability to date (Appendix E).  The book can be used as textbook for ship design courses or as additional reading for university or college students of naval architecture courses and related disciplines; it may also serve as a reference book for naval architects, practicing engineers of rel...

  6. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. [Argonne National Lab., IL (United States); Zhang, Z.Y. [Polytechnic Univ., Brooklyn, NY (United States); Myers, G.; Cvercko, A. [Sterling Engineering, Westchester, IL (United States); Williams, J.R. [Alfred Benesch and Co., Chicago, IL (United States)

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  7. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  8. Preliminary design for a MAGLEV development facility

    Science.gov (United States)

    Coffey, H. T.; He, J. L.; Chang, S. L.; Bouillard, J. X.; Chen, S. S.; Cai, Y.; Hoppie, L. O.; Lottes, S. A.; Rote, D. M.; Zhang, Z. Y.

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh from 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  9. Preliminary design data package. Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-25

    The design requirements, design philosophy, method and assumptions, and preliminary computer-aided design of the Near-Term Hybrid Vehicle including its electric and heat power units, control equipment, transmission system, body, and overall vehicle characteristics are presented. (LCL)

  10. ERIS: preliminary design phase overview

    Science.gov (United States)

    Kuntschner, Harald; Jochum, Lieselotte; Amico, Paola; Dekker, Johannes K.; Kerber, Florian; Marchetti, Enrico; Accardo, Matteo; Brast, Roland; Brinkmann, Martin; Conzelmann, Ralf D.; Delabre, Bernard A.; Duchateau, Michel; Fedrigo, Enrico; Finger, Gert; Frank, Christoph; Rodriguez, Fernando G.; Klein, Barbara; Knudstrup, Jens; Le Louarn, Miska; Lundin, Lars; Modigliani, Andrea; Müller, Michael; Neeser, Mark; Tordo, Sebastien; Valenti, Elena; Eisenhauer, Frank; Sturm, Eckhard; Feuchtgruber, Helmut; George, Elisabeth M.; Hartl, Michael; Hofmann, Reiner; Huber, Heinrich; Plattner, Markus P.; Schubert, Josef; Tarantik, Karl; Wiezorrek, Erich; Meyer, Michael R.; Quanz, Sascha P.; Glauser, Adrian M.; Weisz, Harald; Esposito, Simone; Xompero, Marco; Agapito, Guido; Antichi, Jacopo; Biliotti, Valdemaro; Bonaglia, Marco; Briguglio, Runa; Carbonaro, Luca; Cresci, Giovanni; Fini, Luca; Pinna, Enrico; Puglisi, Alfio T.; Quirós-Pacheco, Fernando; Riccardi, Armando; Di Rico, Gianluca; Arcidiacono, Carmelo; Dolci, Mauro

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1' patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the

  11. Methodology for Preliminary Design of Electrical Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Richard P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stamp, Jason E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Henry, Jordan M [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Abdallah, Tarek [U.S. Army Corps of Engineers, Washington, DC (United States)

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  12. Preliminary design package for Sunair SEC-601 solar collector

    Science.gov (United States)

    1978-01-01

    The preliminary design of the Owens-Illinois model Sunair SEC-601 tubular air solar collector is presented. Information in this package includes the subsystem design and development approaches, hazard analysis, and detailed drawings available as the preliminary design review.

  13. Preliminary aerothermodynamic design method for hypersonic vehicles

    Science.gov (United States)

    Harloff, G. J.; Petrie, S. L.

    1987-01-01

    Preliminary design methods are presented for vehicle aerothermodynamics. Predictions are made for Shuttle orbiter, a Mach 6 transport vehicle and a high-speed missile configuration. Rapid and accurate methods are discussed for obtaining aerodynamic coefficients and heat transfer rates for laminar and turbulent flows for vehicles at high angles of attack and hypersonic Mach numbers.

  14. A Toolbox for Rotorcraft Preliminary Design

    OpenAIRE

    Lier, Max; Krenik, Alex; Kunze, Philipp; Kohlgrüber, Dieter; Schwinn, Dominik; Lützenberger, Marius

    2015-01-01

    The German Aerospace Center (DLR) developed a toolbox, which is able to reflect the conceptual and preliminary design process of rotorcraft configuration. Such a toolbox is a valuable aid for the design engineer and can be used for the assessment of new technologies with regard to the overall configuration. This toolbox is currently extended to model novel rotorcraft configurations. Automated optimization procedures will be added in the future as well. This paper describes the too...

  15. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  16. Preliminary design report for OTEC stationkeeping subsystems (SKSS)

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-12

    Lockheed Ocean Systems with IMODCO prepared these preliminary designs for OTEC Stationkeeping Subsystems (SKSS) under contract to NOAA in support of the Department of Energy OTEC program. The results of Tasks III, V, and VI are presented in this design report. The report consists of five sections: introduction, preliminary designs for the multiple anchor leg (MAL) and tension anchor leg (TAL), costs and schedule, and conclusions. Extensive appendixes provide detailed descriptions of design methodology and include backup calculations and data to support the results presented. The objective of this effort is to complete the preliminary designs for the barge-MAL and Spar-TAL SKSS. A set of drawings is provided for each which show arrangements, configuration, component details, engineering description, and deployment plan. Loads analysis, performance assessment, and sensitivity to requirements are presented, together with the methodology employed to analyze the systems and to derive the results presented. Life cycle costs and schedule are prepared and compared on a common basis. Finally, recommendations for the Commercial Plant SKSS are presented for both platform types.

  17. Preliminary designs: passive solar manufactured housing. Technical status report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-12

    The criteria established to guide the development of the preliminary designs are listed. Three preliminary designs incorporating direct gain and/or sunspace are presented. Costs, drawings, and supporting calculations are included. (MHR)

  18. Preliminary design of a coffee harvester

    Directory of Open Access Journals (Sweden)

    Raphael Magalhães Gomes Moreira

    2016-10-01

    Full Text Available Design of an agricultural machine is a highly complex process due to interactions between the operator, machine, and environment. Mountain coffee plantations constitute an economic sector that requires huge investments for the development of agricultural machinery to improve the harvesting and post-harvesting processes and to overcome the scarcity of work forces in the fields. The aim of this study was to develop a preliminary design for a virtual prototype of a coffee fruit harvester. In this study, a project methodology was applied and adapted for the development of the following steps: project planning, informational design, conceptual design, and preliminary design. The construction of a morphological matrix made it possible to obtain a list of different mechanisms with specific functions. The union between these mechanisms resulted in variants, which were weighed to attribute scores for each selected criterion. From each designated proposal, two variants with the best scores were selected and this permitted the preparation of the preliminary design of both variants. The archetype was divided in two parts, namely the hydraulically articulated arms and the harvesting system that consisted of the vibration mechanism and the detachment mechanism. The proposed innovation involves the use of parallel rods, which were fixed in a plane and rectangular metal sheet. In this step, dimensions including a maximum length of 4.7 m, a minimum length of 3.3 m, and a total height of 2.15 m were identified based on the functioning of the harvester in relation to the coupling point of the tractor.

  19. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Kappes

    1999-09-16

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M&O 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS).

  20. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  1. ISSA/TSS power preliminary design

    Science.gov (United States)

    Main, John A.

    1996-01-01

    A projected power shortfall during the initial utilization flights of the International Space Station Alpha (ISSA) has prompted an inquiry into the use of the Tethered Satellite System (TSS) to provide station power. The preliminary design of the combined ISSA/TSS system is currently underway in the Preliminary Design Office at the Marshall Space Flight Center. This document focuses on the justification for using a tether system on space station, the physical principles behind such a system, and how it might be operated to best utilize its capabilities. The basic components of a simple DC generator are a magnet of some type and a conductive wire. Moving the wire through the magnetic field causes forces to be applied to the electric charges in the conductor, and thus current is induced to flow. This simple concept is the idea behind generating power with space-borne tether systems. The function of the magnet is performed by the earth's magnetic field, and orbiting a conductive tether about the earth effectively moves the tether through the field.

  2. CTF3 Design Report Preliminary Phase

    CERN Document Server

    Allard, D; Bernard, M; Bertuzzi, J P; Bienvenu, G; Bonzano, R; Bossart, Rudolf; Braun, H; Bravin, Enrico; Borburgh, J; Buttkus, J; Chazarenc, E; Chaput, R; Chohan, V; Cloye, J J; Corsini, R; Coudert, G; Damiani, M; Deghaye, S; Delahaye, J P; Di Maio, F; Dobers, T; Dubief, P; Dupuy, B; Durieu, L; Ferrari, A; Garvey, Terence; Geschonke, Günther; Hansen, J; Hellgren, H; Hourican, M; Lamidon, M; Le Duff, J; Lefèvre, T; Lewis, J H; Lindroos, J; Mahner, E; McMonagle, G; Monteiro, J; Mourier, J; Mouton, B; Odier, P; Otto, T; Pearce, P; Pittin, R; Poehler, M; Potier, J P; Raich, U; Rettig, M; Rinolfi, Louis; Risselada, Thys; Riva, R; Rossat, G; Royer, P; Sermeus, L; Setas, K; Simonet, G; Sladen, Jonathan P H; Søby, L; Tanner, L; Tecker, F A; Thomi, J C; Wilson, Ian H; Yvon, G

    2001-01-01

    The design of CLIC is based on a two-beam scheme, where the short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP. In the first stage of the project, the "Preliminary Phase", the existing LIL linac and the EPA ring, both modified to suit the new requirements, are used to investigate the technique of frequency multiplication by means of interleaving bunches from subsequent trains. This report describes the design of this phase.

  3. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  4. Central receiver solar thermal power system. Phase 1. CDRL item 2; Pilot Plant preliminary design report. Volume II. System decription and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    An active system analysis and integration effort has been maintained. These activities have included the transformation of initial program requirements into a preliminary system design, the evolution of subsystem requirements which lay the foundation for subsystem design and test activity, and the overseeing of the final preliminary design effort to ensure that the subsystems are operationally compatible and capable of producing electricity at the lowest possible cost per unit of energy. Volume II of the Preliminary Design Report presents the results of the overall system effort that went on during this contract. The effort is assumed to include not only the total system definition and design but also all subsystem interactions.

  5. NSLS-II Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility

  6. NSLS-II Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility

  7. Preliminary conceptual design about the CEPC calorimeters

    Science.gov (United States)

    Yang, Haijun

    2016-11-01

    The Circular Electron Positron Collider (CEPC) as a Higgs factory was proposed in September 2013. The preliminary conceptual design report was completed in 2015.1 The CEPC detector design was using International Linear Collider Detector — ILD2 as an initial baseline. The CEPC calorimeters, including the high granularity electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL), are designed for precise energy measurements of electrons, photons, taus and hadronic jets. The basic resolution requirements for the ECAL and HCAL are about 16%E (GeV) and 50%E (GeV), respectively. To fully exploit the physics potential of the Higgs, W, Z and related Standard Model processes, the jet energy resolution is required to reach 3%-4%, or 30%/E (GeV) at energies below about 100 GeV. To achieve the required performance, a Particle Flow Algorithm (PFA) — oriented calorimetry system is being considered as the baseline design. The CEPC ECAL detector options include silicon-tungsten or scintillator-tungsten structures with analog readout, while the HCAL detector options have scintillator or gaseous detector as the active sensor and iron as the absorber. Some latest R&D studies about ECAL and HCAL within the CEPC working group is also presented.

  8. Preliminary Opto-Mechanical Design for the X2000 Transceiver

    Science.gov (United States)

    Hemmati, H.; Page, N. A.

    2000-01-01

    Preliminary optical design and mechanical conceptual design for a 30 cm aperture transceiver are described. A common aperture is used for both transmit and receive. Special attention was given to off-axis and scattered light rejection and isolation of the receive channel from the transmit channel. Requirements, details of the design and preliminary performance analysis of the transceiver are provided.

  9. Preliminary design package for Sunair SEC-601 solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report presents the preliminary design of the Owens-Illinois mode Sunair SEC-601 tubular air solar collector. Information in this package includes the Subsystem Design and Development Approaches, hazard analysis, and detailed drawings available as the Preliminary Design Review.

  10. Preliminary Tritium Management Design Activities at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Logsdon, Randall J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFarlane, Joanna [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment. In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritium mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year’s efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.

  11. Emergency design framework: a satellite preliminary scheme design

    Institute of Scientific and Technical Information of China (English)

    TENG Hongfei; WANG Yishou; ZHANG Bao

    2007-01-01

    The emergency design of mechanical products or equipment(such as a satellite)is significant for disaster relief when the natural disasters occur.Most of us are unaware about the little information that is available in literature about emergency designs.Against the background of the preliminary scheme design of satellite payloads,emergency design was studied in the case of natural disasters.We presented some definitions about emergency design.Then,we proposed the basic ideas of how to realize the emergency design.These ideas were inspired by two aspects:1)the evolutionary algorithms,the agent,the human-computer cooperation,and the collaborative design theory;2)the emergency behaviors in ant colonies.Following the ideas,first we constructed the human-computer cooperation agents(hereinafter called the HC-Agents)that combine the human intelligence with evolutionary algorithms.These HC-Agents had specific features like the division of labor in the ant colony.Second,we developed the multiagents cooperative design system on the basis of a hybrid P2P(peer-to-peer)model.Therefore,the emergency design system has shown some capabilities,such as anti-interference,adaptation,and rapid response.

  12. Preliminary design of pseudo satellites: Basic methods and feasibility criteria

    Science.gov (United States)

    Klimenko, N. N.

    2016-12-01

    Analytical models of weight and energy balances, aerodynamic models, and solar irradiance models to perform pseudo-satellite preliminary design are presented. Feasibility criteria are determined in accordance with the aim of preliminary design dependent on mission scenario and type of payload.

  13. The deuteron accelerator preliminary design for BISOL

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.X., E-mail: sxpeng@pku.edu.cn; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z.Y.

    2016-06-01

    BISOL, which was named as Beijing-ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He{sup 2+} beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  14. STACEE-32: Design, performance, and preliminary results

    Science.gov (United States)

    Ong, Rene A.

    2000-06-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is designed to detect astrophysical sources of γ-rays at energies between 25 and 500 GeV. STACEE uses large solar mirrors (heliostats) to collect the atmospheric Cherenkov radiation produced in γ-ray air showers. The use of a large mirror collection area will allow STACEE to probe γ-ray sources at energies above the reach of the Compton Gamma Ray Observatory (CGRO), but below the reach of conventional Cherenkov telescopes. During the 1998-99 observing season, a portion of STACEE using 32 heliostats was installed at the National Solar Thermal Test Facility (NSTTF) of Sandia National Laboratories (Albuquerque, NM). This initial configuration (STACEE-32) observed a number of astronomical sources, including the Crab and several active galactic nuclei (AGN). Here we report on these observations. We highlight the experimental configuration and the preliminary results from the Crab data. The full STACEE experiment using 64 heliostats will be commissioned in 2000. .

  15. Preliminary design of surrounding heliostat fields

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Zaragoza University, Dpto. de Ingenieria Mecanica, CPS-B, Maria de Luna 3, 50018 Zaragoza (Spain)

    2009-05-15

    Recently, the author has shown elsewhere a simplified model that allows quick evaluations of the annual overall energy collected by a surrounding heliostat field. This model is the combination of an analytical flux density function produced by a heliostat, developed by the own author, and an optimized mirror density distribution developed by University of Houston for the Solar One Project. As main conclusion of this previous work, it was recognized that such pseudo-continuous simplified model should not substitute much more accurate discrete evaluations, which manage thousands of individual heliostat coordinates. Here in this work, the difficulty of generating a preliminary discrete layout of a large number of heliostats is addressed. The main novelty is the direct definition of thousands of heliostat coordinates through basically two parameters i.e. a simplified blocking factor and an additional security distance. Such procedure, which was formerly theoretically suggested by the author, is put into practice here, showing examples and commenting their problems and advantages. Getting a previous set of thousands of heliostat coordinates would be a major first step in the complex process of designing solar power tower (SPT). (author)

  16. ALMA Nutator Design and Preliminary Performance

    CERN Document Server

    Martin-Cocher, Pierre; Koch, Patrick M; Ni, Chih-Wen; Chen, Wei-Long; Chen, Ming-Tang; Raffin, Philippe; Ong, Chin-Long; Ho, Paul T P; Symmes, Arthur

    2013-01-01

    We report the past two years of collaboration between the di?erent actors on the ALMA nutator. Building on previous developments, the nutator has seen changes in much of the design. A high-modulus carbon ?fiber structure has been added on the back of the mirror in order to transfer the voice coils forces with less deformation, thus reducing delay problems due to flexing. The controller is now an off?-the-shelf National Instrument NI-cRIO, and the ampli?fier a class D servo drive from Advanced Motion Controls, with high peak power able to drive the coils at 300 Volts DC. The stow mechanism has been totally redesigned to improve on the repeatability and precision of the stow position, which is also the reference for the 26 bits Heidenhain encoders. This also improves on the accuracy of the stow position with wind loading. Finally, the software, written largely with National Instrument's LabView, has been developed. We will discuss these changes and the preliminary performances achieved to date. Keywords: ALMA, ...

  17. The deuteron accelerator preliminary design for BISOL

    Science.gov (United States)

    Peng, S. X.; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z. Y.

    2016-06-01

    BISOL, which was named as Beijing_ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He2+ beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  18. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [ed.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  19. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  20. Reliability of single sample experimental designs: comfortable effort level.

    Science.gov (United States)

    Brown, W S; Morris, R J; DeGroot, T; Murry, T

    1998-12-01

    This study was designed to ascertain the intrasubject variability across multiple recording sessions-most often disregarded in reporting group mean data or unavailable because of single sample experimental designs. Intrasubject variability was assessed within and across several experimental sessions from measures of speaking fundamental frequency, vocal intensity, and reading rate. Three age groups of men and women--young, middle-aged, and elderly--repeated the vowel /a/, read a standard passage, and spoke extemporaneously during each experimental session. Statistical analyses were performed to assess each speaker's variability from his or her own mean, and that which consistently varied for any one speaking sample type, both within or across days. Results indicated that intrasubject variability was minimal, with approximately 4% of the data exhibiting significant variation across experimental sessions.

  1. Preliminary design package for prototype solar heating system

    Science.gov (United States)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.

  2. Preliminary design review: Brayton Isotope Power System

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1977-03-01

    The design aspects covered include flight system design, design criteria/margins/reliability, GDS design, system analysis, materials, system assembly procedure, and government furnished equipment-BTPS. (TFD)

  3. Efficient GO2/GH2 Injector Design: A NASA, Industry and University Cooperative Effort

    Science.gov (United States)

    Tucker, P. K.; Klem, M. D.; Fisher, S. C.; Santoro, R. J.

    1997-01-01

    Developing new propulsion components in the face of shrinking budgets presents a significant challenge. The technical, schedule and funding issues common to any design/development program are complicated by the ramifications of the continuing decrease in funding for the aerospace industry. As a result, new working arrangements are evolving in the rocket industry. This paper documents a successful NASA, industry, and university cooperative effort to design efficient high performance GO2/GH2 rocket injector elements in the current budget environment. The NASA Reusable Launch Vehicle (RLV) Program initially consisted of three vehicle/engine concepts targeted at achieving single stage to orbit. One of the Rocketdyne propulsion concepts, the RS 2100 engine, used a full-flow staged-combustion cycle. Therefore, the RS 2100 main injector would combust GO2/GH 2 propellants. Early in the design phase, but after budget levels and contractual arrangements had been set the limitations of the current gas/gas injector database were identified. Most of the relevant information was at least twenty years old. Designing high performance injectors to meet the RS 2100 requirements would require the database to be updated and significantly enhanced. However, there was no funding available to address the need for more data. NASA proposed a teaming arrangement to acquire the updated information without additional funds from the RLV Program. A determination of the types and amounts of data needed was made along with test facilities with capabilities to meet the data requirements, budget constraints, and schedule. After several iterations a program was finalized and a team established to satisfy the program goals. The Gas/Gas Injector Technology (GGIT) Program had the overall goal of increasing the ability of the rocket engine community to design efficient high-performance, durable gas/gas injectors relevant to RLV requirements. First, the program would provide Rocketdyne with data on

  4. Preliminary perspectives on DNA collection in anti-human trafficking efforts.

    Science.gov (United States)

    Katsanis, Sara H; Kim, Joyce; Minear, Mollie A; Chandrasekharan, Subhashini; Wagner, Jennifer K

    2014-01-01

    Forensic DNA methodologies have potential applications in the investigation of human trafficking cases. DNA and relationship testing may be useful for confirmation of biological relationship claims in immigration, identification of trafficked individuals who are missing persons, and family reunification of displaced individuals after mass disasters and conflicts. As these applications rely on the collection of DNA from non-criminals and potentially vulnerable individuals, questions arise as to how to address the ethical challenges of collection, security, and privacy of collected samples and DNA profiles. We administered a survey targeted to victims' advocates to gain preliminary understanding of perspectives regarding human trafficking definitions, DNA and sex workers, and perceived trust of authorities potentially involved in DNA collection. We asked respondents to consider the use of DNA for investigating adoption fraud, sex trafficking, and post-conflict child soldier cases. We found some key differences in perspectives on defining what qualifies as "trafficking." When we varied terminology between "sex worker" and "sex trafficking victim" we detected differences in perception on which authorities can be trusted. Respondents were supportive of the hypothetical models proposed to collect DNA. Most were favorable of DNA specimens being controlled by an authority outside of law enforcement. Participants voiced concerns focused on privacy, misuse of DNA samples and data, unintentional harms, data security, and infrastructure. These preliminary data indicate that while there is perceived value in programs to use DNA for investigating cases of human trafficking, these programs may need to consider levels of trust in authorities as their logistics are developed and implemented.

  5. Underwater Munitions Expert System: Preliminary Design Report

    Science.gov (United States)

    2015-08-21

    coral   reefs ,  can  be  added  to  future  versions  of  UnMES.     For  this  preliminary  UnMES...administer  areas   polluted  by  discarded  munitions.    Towards  this  end,  SERDP  is   sponsoring   the   development...estimating   seawater   pollution   from   dissolved   chemical   components  of  munitions.    

  6. Preliminary design package for prototype solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  7. A glance of technology efforts for design-for-manufacturing in nano-scale CMOS processes

    Institute of Scientific and Technical Information of China (English)

    CHENG YuHua

    2008-01-01

    This paper overviews design for manufacturing (DFM) for IC design in nano-CMOS technologies. Process/device issues relevant to the manufacturability of ICs in advanced CMOS technologies will be presented first before an exploration on process/device modeling for DFM is done. The discussion also covers a brief in-troduction of DFM-aware of design flow and EDA efforts to better handle the design-manufacturing interface in very large scale IC design environment.

  8. Preliminary design review report - sludge offload system

    Energy Technology Data Exchange (ETDEWEB)

    Mcwethy, L.M. Westinghouse Hanford

    1996-06-05

    This report documents the conceptual design review of the sludge offload system for the Spent Nuclear Fuel Project. The design description, drawings, available analysis, and safety analysis were reviewed by a peer group. The design review comments and resolutions are documented.

  9. Preliminary Design of a Femtosecond Oscilloscope

    CERN Document Server

    Gazazyan, Edmond D; Kalantaryan, Davit K; Laziev, Edouard; Margaryan, Amour

    2005-01-01

    The calculations on motion of electrons in a finite length electromagnetic field of linearly and circularly polarized laser beams have shown that one can use the transversal deflection of electrons on a screen at a certain distance after the interaction region for the measurement of the length and longitudinal particle distribution of femtosecond bunches. In this work the construction and preliminary parameters of various parts of a device that may be called femtosecond oscilloscope are considered. The influence of various factors, such as the energy spread and size of the electron bunches, are taken into account. For CO2 laser intensity 1016 W/cm2 and field free drift length 1m the deflection is 5.3 and 0.06 cm, while the few centimeters long interaction length between 2 mirrors requires assembling accuracy 6 mm and 1.3 micron for 20 MeV to 50 keV, respectively.

  10. Effort minimization in UI development by reusing existing DGML based UI design for qualitative software development

    CERN Document Server

    Suri, P K

    2010-01-01

    This paper addresses the methodology for achieving the user interface design reusability of a qualitative software system and effort minimization by applying the inference on the stored design documents. The pictorial design documents are stored in a special format in the form of keyword text [DGML tag based design]. The design document storage mechanism will expose the keywords per design stored. This methodology is having an inference engine. Inference mechanism search for the requirements and find the match for them in the available design repository. A match found will success in reusing it after checking the quality parameters of the found design module in the result set. DGML notations produces qualitative designs which helps in minimizing the efforts of software development life cycle.

  11. A Method for A Priori Implementation Effort Estimation for Hardware Design

    DEFF Research Database (Denmark)

    Abildgren, Rasmus; Diguet, Jean-Philippe; Gogniat, Guy;

    2008-01-01

    This paper presents a metric-based approach for estimating the hardware implementation effort (in terms of time) for an application in relation to the number of independent paths of its algorithms. We define a metric which exploits the relation between the number of independent paths...... in an algorithm and the corresponding implementation effort. Furthermore, we complement the metric with a correction function taking the designer's experience into account. Our experimental results show that with the proposed approach it is possible to estimate the hardware implementation effort, and thereby...... facilitating designers and managers needs for estimating the time-to-market schedule....

  12. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    Science.gov (United States)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  13. Preliminary conceptual design of DEMO EC system

    Energy Technology Data Exchange (ETDEWEB)

    Garavaglia, S., E-mail: garavaglia@ifp.cnr.it; Bin, W.; Bruschi, A.; Granucci, G.; Moro, A.; Rispoli, N. [Institute of Plasma Physics “P.Caldirola”, National Research Council of Italy, Milan (Italy); Grossetti, G.; Strauss, D. [IAM-AWP, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Jelonnek, J. [IHM, KIT, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Tran, Q. M. [CRPP, EPFL, EURATOM Association, CH-1015 Lausanne (Switzerland); Franke, T. [EUROfusion Consortium, Boltzmannstr. 2, D-85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

  14. Preliminary Conceptual Design for Safety Parameter display System of PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyunju; Seong, Seunghwan; Kim, Wansu; Kim, Donghoon; Son, Kwangseop; Jang, Gwisook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A PGSFR (prototype Gen-IV sodium-cooled fast reactor) is under development at KAERI. A safety parameter display system (SPDS) should be designed for licensing the PGSFR in order to cope with the TMI action plan requirements. Thus, a preliminary conceptual design for the SPDS of PGSFR including licensing requirements, intrinsic function, critical variables and alarm legs for the SPDS of the PGSFR is studied herein. At first, some documents issued by NRC related to install a SPDS include the following: - NUREG-0737, Clarification of TMI Action Plan Requirements - NUREG-0696, Functional Criteria for Emergency Response Facilities - NUREG-0835, Human Factors Acceptance Criteria for the Safety Parameter display System, Draft Report for Comment. The preliminary concept design for the SPDS of the PGSFR was studied. In designing of the PGSFR, the studied design concept will be refined and implemented through further studies to acquire the approval of a safety analysis report of the PGSFR.

  15. A decision support system for preliminary design

    NARCIS (Netherlands)

    Groot, E.H. de; Mallory, S.M.; Zutphen, R.H.M. van; Vries, B. de

    1999-01-01

    The design of buildings is a complex task for a variety of reasons. In the conceptual stage, particularly in the inception phase, a small number of people make decisions that have far reaching impact on the final result in terms of efficiency and effectiveness. Decision-making in the inception phase

  16. Aeroelastic Considerations in the Preliminary Design Aircraft

    Science.gov (United States)

    1983-09-01

    DESIGN OBJECTIVES FEM FASO MODELINGWEGS TRNFRAIS SIZING RIGID AtP .FIRST FIRST FLEX FIRST FLEXSTATICLOADS [ IZING STATIC LOADS SIZING UPDATEFLEX SIZING...Structural Optimization by ASAT A computer software system called ASAT (Automatische Struktur Auslegung von Trag- flchen) exists at MBB which allows

  17. A decision support system for preliminary design

    NARCIS (Netherlands)

    Groot, E.H. de; Mallory, S.M.; Zutphen, R.H.M. van; Vries, B. de

    1999-01-01

    The design of buildings is a complex task for a variety of reasons. In the conceptual stage, particularly in the inception phase, a small number of people make decisions that have far reaching impact on the final result in terms of efficiency and effectiveness. Decision-making in the inception phase

  18. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...

  19. Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.

  20. Preliminary design data package, appendix C. [hybrid electric vehicles

    Science.gov (United States)

    1979-01-01

    The data and documentation required to define the preliminary design of a near term hybrid vehicle and to quantify its operational characteristics are presented together with the assumptions and rationale behind the design decisions. Aspects discussed include development requirements for the propulsion system, the chassis system, the body, and the vehicle systems. Particular emphasis is given to the controls, the heat engine, and the batteries.

  1. Preliminary Thermal Design of Cryogenic Radiation Shielding

    Science.gov (United States)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  2. Preliminary Mechanical Design of FHX for PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jinyup; Koo, G. H.; Kim, S. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, more specific data from analysis and mechanical method of approach to design will be addressed. Especially, frame of tube bundle and housing of FHX. Heretofore, it is concept design by mechanical basic knowledge and research of various structures that are activating in realities. Especially, to reduce thermal stress, we have planning to attach insulations inside the housing. In as much as FHX is as important on SFR as the other part, hereafter, we will develop FEM to check feasibility of the FHX's housing design in order to perform static and thermal analysis as well as bucking, seismic and so on. The Forced-draft sodium-to-air Heat Exchanger system (FHX) (employed in the Active Decay Heat Removal System (ADHRS) is a shell-and-tube type counter-current flow heat exchanger with serpentine finned-tube arrangement. Liquid sodium flows over the finned tubes. The unit is placed above the reactor building and has function of dumping the system heat load into the final heat sink, i. e., the atmosphere. Heat is transmitted from the primary hot sodium pool into the ADHRS sodium loop via Decay Heat Exchanger (DHX), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX sodium tube wall. Cold atmospheric air is introduced into the air inlet duct at the lower part of the unit by using an electrically driven air blower. Air flows across the finned tube bank rising upward direction to make uniform air flow with perfect mixing across the tubes. The finned tube bundle is placed inside a well-insulated casing. The air heated at the tube bank region is collected at the top of the unit and then is discharged through the air stack above the unit. Although a blower supplies atmospheric air into the FHX unit, a tall air stack is also provided to secure natural draft head of natural circulation air flow against a loss power supply. The stack also has rain protecting structures to prevent inflow of rain drops or undesired

  3. A preliminary design of a knot undulator.

    Science.gov (United States)

    Xi, Fuchun; Shi, Tan; Fan, Qingyan; Prestemon, Soren; Wan, Weishi; An, Zhenghua; Qiao, S

    2013-01-01

    The magnetic field configuration of the previously proposed knot undulator [Qiao et al. (2009). Rev. Sci. Instrum. 80, 085108] is realised in the design of a hybridized elliptically polarized undulator, which is presented. Although the details of the field distribution are not the same as those in the theoretical proposal, it is demonstrated that the practical knot undulator could work perfectly. In order to understand the minor discrepancies of the two, mathematical formulae of the synchrotron radiation are derived based on the Fourier transform of the magnetic field. From the results of calculations by simulation program, the discrepancies could be well interpreted by the corresponding formulae. The results show the importance of optimization of the end sections of the knot undulator to suppress the on-axis heat load. Furthermore, a study of the impact of the undulator on beam dynamics of the storage ring was conducted using the Shanghai Synchrotron Radiation Facility as an example and the results show that the knot undulator has little effect on the beam.

  4. Preliminary design of the Space Station internal thermal control system

    Science.gov (United States)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  5. Gemini Planet Imager: Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2007-05-10

    completely limited by quasi-static wave front errors, so that contrast does not improve with integration times longer than about 1 minute. Using the rotation of the Earth to distinguish companions from artifacts or multiwavelength imaging improves this somewhat, but GPI will still need to surpass the performance of existing systems by one to two orders of magnitude--an improvement comparable to the transition from photographic plates to CCDs. This may sound daunting, but other areas of optical science have achieved similar breakthroughs, for example, the transition to nanometer-quality optics for extreme ultraviolet lithography, the development of MEMS wave front control devices, and the ultra-high contrast demonstrated by JPL's High Contrast Imaging Test-bed. In astronomy, the Sloan Digital Sky Survey, long baseline radio interferometry, and multi-object spectrographs have led to improvements of similar or greater order of magnitude. GPI will be the first project to apply these revolutionary techniques to ground-based astronomy, with a systems engineering approach that studies the impact of every design decision on the key metric--final detectable planet contrast.

  6. A Priori Implementation Effort Estimation for HW Design Based on Independent-Path Analysis

    DEFF Research Database (Denmark)

    Abildgren, Rasmus; Diguet, Jean-Philippe; Bomel, Pierre

    2008-01-01

    in an algorithm and the corresponding implementation effort. We propose an adaptation of the concept of cyclomatic complexity, complemented with a correction function to take designers' learning curve and experience into account. Our experimental results, composed of a training and a validation phase, show...

  7. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    Science.gov (United States)

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…

  8. Variant Designing in the Preliminary Small Ship Design Process

    Directory of Open Access Journals (Sweden)

    Karczewski Artur

    2017-06-01

    Full Text Available Ship designing is a complex process, as the ship itself is a complex, technical multi-level object which operates in the air/water boundary environment and is exposed to the action of many different external and internal factors resulting from the adopted technical solutions, type of operation, and environmental conditions. A traditional ship design process consists of a series of subsequent multistage iterations, which gradually increase the design identification level. The paper presents problems related to the design of a small untypical vessel with the aid of variant methodology making use of optimisation algorithms. The computer-aided design methodology has been developed which does not need permanent reference to already built real ships and empirical-statistical relations. Possibilities were indicated for integrating together early design stages, and parallel designing of hull shape and parameters.

  9. Preliminary Design Report for the Yakima/Klickitat Production Project.

    Energy Technology Data Exchange (ETDEWEB)

    US Bonneville Power Administration

    1990-04-01

    A master plan for the Yakima/Klickitat Production Project (YKPP) was developed by the Northwest Power Planning Council (Council) on October 15, 1987, as a reasonable basis upon which the Bonneville Power Administration (BPA) could proceed to fund predesign work on the project. The Council approved the predesign work on the condition that eight preliminary tasks were completed. These tasks are: Task 1. Agreement on a refined statement of project goals. Task 2. Completion of a technical analysis of water supplies. Task 3. Completion of an experimental design plan. Task 4. Development of a harvest management plan. Task 5. Assessment of potential genetic risks. Task 6. Project coordination with all other affected parties. Task 7. Submission of a preliminary design report to the Council. Task 8. Develop a project management structure. The preliminary design report summarizes the work completed on these tasks. It provides a description of the preliminary design, engineering, and construction phases of project development, and gives an estimate of project costs. Also included is a description of other studies that were conducted to support YKPP planning. The results of studies conducted during the last 30 months indicate that hatchery facilities can be built in the Yakima and Klickitat subbasins to provide harvest benefits and to supplement natural production. Planning for the Yakima subbasin is at a more advanced stage of development than for the Klickitat subbasin because of greater availability of basic resource information. The information needed to proceed with final design and construction for the Klickitat subbasin will be available by 1992, as ongoing predesign work continues. This schedule is consistent with the anticipated phased completion of the YKPP by 1997.

  10. Preliminary design of the ITER ECH Upper Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, D., E-mail: dirk.strauss@kit.edu [Karlsruhe Institute of Technology, Assoc. KIT-EURATOM, D-76021 Karlsruhe (Germany); Aiello, G. [Karlsruhe Institute of Technology, Assoc. KIT-EURATOM, D-76021 Karlsruhe (Germany); Chavan, R. [Centre de Recherches en Physique des Plasmas, CRPP–EPFL, CH-1015 Lausanne (Switzerland); Cirant, S. [Istituto di Fisica del Plasma CNR, Euratom Association, 20125 Milano (Italy); Baar, M. de [FOM, Van Vollenhovenlaan 659, 3527 JP, Utrecht (Netherlands); Farina, D. [Istituto di Fisica del Plasma CNR, Euratom Association, 20125 Milano (Italy); Gantenbein, G. [Karlsruhe Institute of Technology, Assoc. KIT-EURATOM, D-76021 Karlsruhe (Germany); Goodman, T.P. [Centre de Recherches en Physique des Plasmas, CRPP–EPFL, CH-1015 Lausanne (Switzerland); Henderson, M.A. [ITER Organization, 13108 Saint-Paul-lez-Durance (France); Kasparek, W. [Institut für Plasmaforschung, IPF, D-70569 Stuttgart (Germany); Kleefeldt, K. [Karlsruhe Institute of Technology, Assoc. KIT-EURATOM, D-76021 Karlsruhe (Germany); Landis, J.-D. [Centre de Recherches en Physique des Plasmas, CRPP–EPFL, CH-1015 Lausanne (Switzerland); Meier, A. [Karlsruhe Institute of Technology, Assoc. KIT-EURATOM, D-76021 Karlsruhe (Germany); Moro, A.; Platania, P. [Istituto di Fisica del Plasma CNR, Euratom Association, 20125 Milano (Italy); Plaum, B. [Institut für Plasmaforschung, IPF, D-70569 Stuttgart (Germany); Poli, E. [Max-Planck-IPP, Euratom Association, D-85748 Garching (Germany); Ramponi, G. [Istituto di Fisica del Plasma CNR, Euratom Association, 20125 Milano (Italy); Ronden, D. [FOM, Van Vollenhovenlaan 659, 3527 JP, Utrecht (Netherlands); Saibene, G. [Fusion for Energy, Barcelona (Spain); and others

    2013-11-15

    Highlights: • Front steering mirror design. • Plasma facing blanket shield module/first wall panel design. • Fixed frequency torus CVD diamond window serving as first tritium barrier. • Prototypes and tests of the above key components in the Launcher Handling and Testing Facility. -- Abstract: The design of the ITER electron cyclotron launchers recently reached the preliminary design level - the last major milestone before design finalization. The ITER ECH system contains 24 installed gyrotrons providing a maximum ECH injected power of 20 MW through transmission lines towards the tokamak. There are two EC launcher types both using a front steering mirror; one equatorial launcher (EL) for plasma heating and four upper launchers (UL) for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). A wide steering angle range of the ULs allows focusing of the beam on magnetic islands which are expected on the rational magnetic flux surfaces q = 1 (sawtooth instability), q = 3/2 and q = 2 (NTMs). In this paper the preliminary design of the ITER ECH UL is presented, including the optical system and the structural components. Highlights of the design include the torus CVD-diamond windows, the frictionless, front steering mechanism and the plasma facing blanket shield module (BSM). Numerical simulations as well as prototype tests are used to verify the design.

  11. Preliminary design study of the TMT Telescope structure system: overview

    Science.gov (United States)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  12. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  13. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  14. Influence of door handles design in effort perception: accessibility and usability.

    Science.gov (United States)

    Paschoarelli, Luis Carlos; Santos, Raquel; Bruno, Paula

    2012-01-01

    The application of ergonomics in product design is essential to its accessibility and usability. The development of manual devices should be based on ergonomic principles. Effort perception analysis is an essential approach to understand the physical and subjective aspects of the interface. The objective of the present study was to analyze the effort perception during a simulated task with different door handles by Portuguese subjects of both genders and different ages. This transversal study agreed with ethical aspects. 180 subjects of both genders pertaining to three age groups have participated. Five door handles with different shapes were evaluated. A subjective numeric rating scale of 5 levels was used to evaluate the effort. For statistical analysis it was applied the Friedman non-parametric test. The results have showed no significant differences of effort perception in door handles "A" and "B"; "A" and "D"; and "D" and "C". Door handle "E" presented the lowest values of all. In general, there's an inverse relationship between the results of biomechanical studies and the effort perception of the same task activity. This shows that door handles design influence directly these two variables and can interfere in the accessibility and usability of these kinds of products.

  15. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  16. Preliminary design of large reflectors with flat facets

    Science.gov (United States)

    Agrawal, P. K.; Anderson, M. S.; Card, M. F.

    1981-01-01

    A concept for approximating curved antenna surfaces using flat facets is discussed. A preliminary design technique for determining the size of the reflector surface facets necessary to meet antenna surface accuracy requirements is presented. A proposed large microwave radiometer satellite (MRS) is selected as an application, and the far-field electromagnetic response of a faceted reflector surface is compared with that from a spherical reflector surface.

  17. OSU TOMF Program Site Selection and Preliminary Concept Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Spadling, Steve [Oklahoma State Univ., Stillwater, OK (United States)

    2012-05-10

    The purpose of this report is to confirm the programmatic requirements for the new facilities, identify the most appropriate project site, and develop preliminary site and building concepts that successfully address the overall project goals and site issues. These new facilities will be designed to accommodate the staff, drivers and maintenance requirements for the future mixed fleet of passenger vehicles, Transit Style Buses and School Buses.

  18. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  19. Biomechanics of injury prediction for anthropomorphic manikins - preliminary design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Engin, A.E. [Univ. of South Alabama, Mobile, AL (United States)

    1996-12-31

    The anthropomorphic manikins are used in automobile safety research as well as in aerospace related applications. There is now a strong need to advance the biomechanics knowledge to determine appropriate criteria for injury likelihood prediction as functions of manikin-measured responses. In this paper, three regions of a manikin, namely, the head, knee joint, and lumbar spine are taken as examples to introduce preliminary design considerations for injury prediction by means of responses of theoretical models and strategically placed sensing devices.

  20. Preliminary design of the PANSAT electrical power subsystem

    OpenAIRE

    Noble, Michael Lynn

    1990-01-01

    Approved for public release; distribution unlimited. This thesis presents a preliminary design of the electrical power system (EPS) for the Naval Postgraduate School's Petite Amateur Navy Satellite (PANSAT). The EPS is a photovoltaic silicon cell system consisting of solar array, batteries, battery charge regulator (BCR), and dc-dc convertors. The EPS provides power for up to two years of low earth orbit (480 km) operations. The solar array consists of 17 panels with thirty-two 2x4 cm sola...

  1. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  2. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  3. Preliminary Design of the Brazilian's National Institute for Space Research Broadband Radiometer for Solar Observations

    Science.gov (United States)

    Berni, L. A.; Vieira, L. E. A.; Savonov, G. S.; Dal Lago, A.; Mendes, O.; Silva, M. R.; Guarnieri, F.; Sampaio, M.; Barbosa, M. J.; Vilas Boas, J. V.; Branco, R. H. F.; Nishimori, M.; Silva, L. A.; Carlesso, F.; Rodríguez Gómez, J. M.; Alves, L. R.; Vaz Castilho, B.; Santos, J.; Silva Paula, A.; Cardoso, F.

    2017-10-01

    The Total Solar Irradiance (TSI), which is the total radiation arriving at Earth's atmosphere from the Sun, is one of the most important forcing of the Earths climate. Measurements of the TSI have been made employing instruments on board several space-based platforms during the last four solar cycles. However, combining these measurements is still challenging due to the degradation of the sensor elements and the long-term stability of the electronics. Here we describe the preliminary efforts to design an absolute radiometer based on the principle of electrical substitution that is under development at Brazilian's National Institute for Space Research (INPE).

  4. Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design

    Science.gov (United States)

    1974-08-30

    by estimation, compound helicopter performance, to think of the air- plots of effective lift and drag areas and pitching mo- craft as a biplane having...stncural design problems but may produce loads that where are critikal locally. A = presented arms ft’ Ca = drag coefficient, dimensionless F• V = wind speed...groups is to be provided in accordance with MIL-STD- 1374, Part I. The useful load condition shall be as I. W. H. Ballhaus, Clear Design Thinking Using

  5. Preliminary design package for solar heating and hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Levine, P.; Meyer, R.; White, James S.

    1977-01-01

    A collection of documents submitted by the Fern Engineering Company for the preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition. One of the two prototype units will be installed in Lansing, Michigan, and the other in Tunkhannock, Pennsylvania.

  6. Bates solar industrial process-steam application: preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-07

    The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

  7. Design and preliminary testing of the RIC hybrid knee prosthesis.

    Science.gov (United States)

    Lenzi, T; Sensinger, J; Lipsey, J; Hargrove, L; Kuiken, T

    2015-08-01

    We present a novel hybrid knee prosthesis that uses a motor, transmission and control system only for active dynamics tasks, while relying on a spring/damper system for passive dynamics activities. Active dynamics tasks require higher torque, lower speed, and occur less frequently than passive dynamic activities. By designing the actuation system around active tasks alone, we achieved a lightweight design (1.7 Kg w/o battery) without sacrificing peak torque (85Nm repetitive). Preliminary tests performed by an able-bodied person using a bypass orthosis show that the hybrid knee can support reciprocal stairs ambulation with low electrical energy consumption.

  8. AGC-1 Experiment and Final Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Bratton; Tim Burchell

    2006-08-01

    This report details the experimental plan and design as of the preliminary design review for the Advanced Test Reactor Graphite Creep-1 graphite compressive creep capsule. The capsule will contain five graphite grades that will be irradiated in the Advanced Test Reactor at the Idaho National Laboratory to determine the irradiation induced creep constants. Seven other grades of graphite will be irradiated to determine irradiated physical properties. The capsule will have an irradiation temperature of 900 C and a peak irradiation dose of 5.8 x 10{sup 21} n/cm{sup 2} [E > 0.1 MeV], or 4.2 displacements per atom.

  9. Basic Research and Development Effort to Design a Micro Nuclear Power Plant for Brazilian Space Applications

    Science.gov (United States)

    Guimares, L. N. F.; Camillo, G. P.; Placco, G. M.; Barrios, G., A., Jr.; Do Nascimento, J. A.; Borges, E. M.; De Castro Lobo, P. D.

    For some years the Nuclear Energy Division of the Institute for Advanced Studies is conducting the TERRA (Portuguese abbreviation for advanced fast reactor technology) project. This project aims at research and development of the key issues related with nuclear energy applied to space technology. The purpose of this development is to allow future Brazilian space explorers the access of a good and reliable heat, power and/or propulsion system based on nuclear energy. Efforts are being made in fuel and nuclear core design, designing and building a closed Brayton cycle loop for energy conversion, heat pipe systems research for passive space heat rejection, developing computational programs for thermal loop safety analysis and other technology that may be used to improve efficiency and operation. Currently there is no specific mission that requires these technology development efforts; therefore, there is a certain degree of freedom in the organization and development efforts. This paper will present what has been achieved so far, what is the current development status, where efforts are heading and a proposed time table to meet development objectives.

  10. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presented as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.

  11. 4MOST systems engineering: from conceptual design to preliminary design review

    Science.gov (United States)

    Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland

    2016-08-01

    The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.

  12. Voltage-Controlled Sapphire Oscillator: Design, Development, and Preliminary Performance

    Science.gov (United States)

    Wang, R. T.; Dick, G. J.; Tjoelker, R. L.

    2007-08-01

    We present the design for a new short-term frequency standard, the voltage-controlled sapphire oscillator, as a practical and lower-cost alternative to a cryogenic sapphire oscillator operating at liquid helium temperatures. Performance goals are a frequency stability of 1 x 10^-14 (1 second equal to or less than tau equal to or less than 100 seconds), more than 2 years of continuous operation, and practical operability. Key elements include the sapphire resonator, low-power and long-life cryocooler, frequency compensation method, and cryo-Pound design. We report the design verification, experimental results, and test results of the cryocooler environmental sensitivity, as well as a preliminary stability measurement.

  13. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  14. Breckinridge Project, initial effort. Report XI, Volume IV. Critical review of the design basis. [Critical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Report XI, Technical Audit, is a compendium of research material used during the Initial Effort in making engineering comparisons and decisions. Volumes 4 and 5 of Report XI present those studies which provide a Critical Review of the Design Basis. The Critical Review Report, prepared by Intercontinental Econergy Associates, Inc., summarizes findings from an extensive review of the data base for the H-Coal process design. Volume 4 presents this review and assessment, and includes supporting material; specifically, Design Data Tabulation (Appendix A), Process Flow Sheets (Appendix B), and References (Appendix C). Volume 5 is a continuation of the references of Appendix C. Studies of a proprietary nature are noted and referenced, but are not included in these volumes. They are included in the Limited Access versions of these reports and may be reviewed by properly cleared personnel in the offices of Ashland Synthetic Fuels, Inc.

  15. Breckinridge Project, initial effort. Report XI, Volume V. Critical review of the design basis. [Critical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Report XI, Technical Audit, is a compendium of research material used during the Initial Effort in making engineering comparisons and decisions. Volumes 4 and 5 of Report XI present those studies which provide a Critical Review of the Design Basis. The Critical Review Report, prepared by Intercontinental Econergy Associates, Inc., summarizes findings from an extensive review of the data base for the H-Coal process design. Volume 4 presents this review and assessment, and includes supporting material; specifically, Design Data Tabulation (Appendix A), Process Flow Sheets (Appendix B), and References (Appendix C). Volume 5 is a continuation of the references of Appendix C. Studies of a proprietary nature are noted and referenced, but are not included in these volumes. They are included in the Limited Access versions of these reports and may be reviewed by properly cleared personnel in the offices of Ashland Synthetic Fuels, Inc.

  16. A preliminary design for a satellite power system

    Science.gov (United States)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  17. System Synthesis in Preliminary Aircraft Design Using Statistical Methods

    Science.gov (United States)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and early preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically Design of Experiments (DOE) and Response Surface Methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an Overall Evaluation Criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in an innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting in solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a High Speed Civil Transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabilistic designs (and eventually robust ones).

  18. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  19. Preliminary Design Through Graphs: A Tool for Automatic Layout Distribution

    Directory of Open Access Journals (Sweden)

    Carlo Biagini

    2015-02-01

    Full Text Available Diagrams are essential in the preliminary stages of design for understanding distributive aspects and assisting the decision-making process. By drawing a schematic graph, designers can visualize in a synthetic way the relationships between many aspects: functions and spaces, distribution of layouts, space adjacency, influence of traffic flows within a facility layout, and so on. This process can be automated through the use of modern Information and Communication Technologies tools (ICT that allow the designers to manage a large quantity of information. The work that we will present is part of an on-going research project into how modern parametric software influences decision-making on the basis of automatic and optimized layout distribution. The method involves two phases: the first aims to define the ontological relation between spaces, with particular reference to a specific building typology (rules of aggregation of spaces; the second entails the implementation of these rules through the use of specialist software. The generation of ontological relations begins with the collection of data from historical manuals and analyses of case studies. These analyses aim to generate a “relationship matrix” based on preferences of space adjacency. The phase of implementing the previously defined rules is based on the use of Grasshopper to analyse and visualize different layout configurations. The layout is generated by simulating a process involving the collision of spheres, which represents specific functions of the design program. The spheres are attracted or rejected as a function of the relationships matrix, as defined above. The layout thus obtained will remain in a sort of abstract state independent of information about the exterior form, but will still provide a useful tool for the decision-making process. In addition, preliminary results gathered through the analysis of case studies will be presented. These results provide a good variety

  20. Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, M.

    2011-04-30

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  1. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A. (Global Energy Concepts, LLC, Kirkland, WA)

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  2. Preliminary Design Study of the Hollow Electron Lens for LHC

    CERN Document Server

    Perini, Diego; CERN. Geneva. ATS Department

    2017-01-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of superconducting solenoids. The first step of the design is the definition of the magnetic fields that drive the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB® tool is presented. The influence of the main geometrical and electrical parameters are analysed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the preliminary design of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar ...

  3. City of Hoboken Energy Surety Analysis: Preliminary Design Summary

    Energy Technology Data Exchange (ETDEWEB)

    Stamp, Jason Edwin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Smith, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Guttromson, Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Henry, Jordan M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Critical Infrastructure Systems Dept.; Jensen, Richard Pearson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2014-09-01

    In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.

  4. Development and implementation of rotorcraft preliminary design methodology using multidisciplinary design optimization

    Science.gov (United States)

    Khalid, Adeel Syed

    Rotorcraft's evolution has lagged behind that of fixed-wing aircraft. One of the reasons for this gap is the absence of a formal methodology to accomplish a complete conceptual and preliminary design. Traditional rotorcraft methodologies are not only time consuming and expensive but also yield sub-optimal designs. Rotorcraft design is an excellent example of a multidisciplinary complex environment where several interdependent disciplines are involved. A formal framework is developed and implemented in this research for preliminary rotorcraft design using IPPD methodology. The design methodology consists of the product and process development cycles. In the product development loop, all the technical aspects of design are considered including the vehicle engineering, dynamic analysis, stability and control, aerodynamic performance, propulsion, transmission design, weight and balance, noise analysis and economic analysis. The design loop starts with a detailed analysis of requirements. A baseline is selected and upgrade targets are identified depending on the mission requirements. An Overall Evaluation Criterion (OEC) is developed that is used to measure the goodness of the design or to compare the design with competitors. The requirements analysis and baseline upgrade targets lead to the initial sizing and performance estimation of the new design. The digital information is then passed to disciplinary experts. This is where the detailed disciplinary analyses are performed. Information is transferred from one discipline to another as the design loop is iterated. To coordinate all the disciplines in the product development cycle, Multidisciplinary Design Optimization (MDO) techniques e.g. All At Once (AAO) and Collaborative Optimization (CO) are suggested. The methodology is implemented on a Light Turbine Training Helicopter (LTTH) design. Detailed disciplinary analyses are integrated through a common platform for efficient and centralized transfer of design

  5. Preliminary design of the INPE's Solar Vector Magnetograph

    CERN Document Server

    Vieira, L E A; Lago, A Dal; Wrasse, C; Echer, E; Guarnieri, F L; Cardoso, F Reis; Guerrero, G; Costa, J Rezende; Palacios, J; Balmaceda, L; Alves, L Ribeiro; da Silva, L; Costa, L L; Sampaio, M; Soares, M C Rabello; Barbosa, M; Domingues, M; Rigozo, N; Mendes, O; Jauer, P; Dallaqua, R; Branco, R H; Stekel, T; Gonzalez, W; Kabata, W

    2016-01-01

    We describe the preliminary design of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and of the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the CEA's space weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is acquiring progressively the know-how to build state-of-art sol...

  6. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  7. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  8. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    CERN Document Server

    Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Freire, M M; Fuchs, B; Fujii, T; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Hemery, N; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kuempel, D; Mezek, G Kukec; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Louedec, K; Lu, L; Lucero, A; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zhu, Y; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-01-01

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m$^2$ plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  9. Preliminary design for a pierce wiggler beamstick and addendum

    Energy Technology Data Exchange (ETDEWEB)

    Pirkle, D.

    1988-05-01

    Lawrence Livermore National Laboratory is developing a fast tunable microwave source for operation at 250 GHz and 10kW peak output power. This report presents the preliminary design of a Pierce gun and solenoid magnet that will be compatible with a Pierce-wiggler electron beam formation system (beamstick). The beamstick will be an appropriate power source for a tunable gyro-BWO at 250 GHz. Figure 1 presents the major components of the Pierce-wiggler beamstick: the electron gun, solenoid, beam tunnel, wiggler, and vacuum valve. Figure 2 shows an artistic conception of how the beamstick will interface with the interaction magnet, modulator and gyro-BWO circuit at MIT. 15 figs.

  10. Preliminary design of 600 MWt HTGR-gas turbine plant

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi; Miyamoto, Yoshiaki; Shiozawa, Shusaku [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-07-01

    In JAERI a feasibility study of the High Temperature Gas-cooled Reactor - Gas Turbine (HTGR-GT) system has been carried out since January, 1997 as an assigned work by the Science and Technology Agency. This paper describes a result of a preliminary design for a direct cycle plant of 600 MWt carried out in 1997 fiscal year within the framework of this feasibility study. A reactor inlet gas temperature of 460degC, a reactor outlet gas temperature of 850degC and a helium gas pressure of 6 MPa were selected. A power density of 6 MW/m{sup 3} and the maximum burnup of 10{sup 5} MWD/ton were achieved. A single-shaft horizontal turbomachine of 3600 rpm was selected and placed in a turbine vessel. A net thermal efficiency of 45.7% is expected to be achieved. (author)

  11. Design of Radial Basis Function Neural Networks for Software Effort Estimation

    Directory of Open Access Journals (Sweden)

    Ali Idri

    2010-07-01

    Full Text Available In spite of the several software effort estimation models developed over the last 30 years, providing accurate estimates of the software project under development is still unachievable goal. Therefore, many researchers are working on the development of new models and the improvement of the existing ones using artificial intelligence techniques such as: case-based reasoning, decision trees, genetic algorithms and neural networks. This paper is devoted to the design of Radial Basis Function Networks for software cost estimation. It shows the impact of the RBFN network structure, especially the number of neurons in the hidden layer and the widths of the basis function, on the accuracy of the produced estimates measured by means of MMRE and Pred indicators. The empirical study uses two different software project datasets namely, artificial COCOMO'81 and Tukutuku datasets.

  12. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  13. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  14. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  15. Cost-based optimization of a nuclear reactor core design: a preliminary model

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Wagner F.; Alves Filho, Hermes [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Modelagem Computacional]. E-mails: wfsacco@iprj.uerj.br; halves@iprj.uerj.br; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Div. de Reatores]. E-mail: cmnap@ien.gov.br

    2007-07-01

    A new formulation of a nuclear core design optimization problem is introduced in this article. Originally, the optimization problem consisted in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the radial power peaking factor in a three-enrichment zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. Here, we address the same problem using the minimization of the fuel and cladding materials costs as the objective function, and the radial power peaking factor as an operational constraint. This cost-based optimization problem is attacked by two metaheuristics, the standard genetic algorithm (SGA), and a recently introduced Metropolis algorithm called the Particle Collision Algorithm (PCA). The two algorithms are submitted to the same computational effort and their results are compared. As the formulation presented is preliminary, more elaborate models are also discussed (author)

  16. Preliminary Design of IHTS Cold Trap for PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jewhan; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The main impurities in liquid sodium of the IHTS are oxygen and hydrogen. These impurities form oxides and hydrides with sodium and cause various problems. In order to eliminate the impurities the Cold Trap is installed in the loop. The life and capacity of the IHTS cold Trap depends the amount of impurities. For IHTS loop, the hydrogen has been identified as the major contamination from Steam Generator (SG) during the normal operation. In this study, the sizing of cold trap based on the source rate of hydrogen from SG from past experiences was conducted. Empirical relations among different variables were adopted to establish the temperature distribution, pressure drops, flow rates and geometries for the cold trap and its associated component. In this study, the IHTS cold trap for normal operation has been analyzed and the preliminary design of corresponding cold trap and economizer has been carried out. For further detailed design, R and D on basic sodium technology will be essential to optimize the Cold Trap.

  17. Summary of the Preliminary Optical ICHMI Design Study: A Preliminary Engineering Design Study for a Standpipe Viewport

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Qiao, Hong (Amy); Berglin, Eric J.; Hatchell, Brian K.

    2013-12-26

    This summary report examines an in-vessel optical access concept intended to support standoff optical instrumentation, control and human-machine interface (ICHMI) systems for future advanced small modular reactor (AdvSMR) applications. Optical-based measurement and sensing systems for AdvSMR applications have several key benefits over traditional instrumentation and control systems used to monitor reactor process parameters, such as temperature, flow rate, pressure, and coolant chemistry (Anheier et al. 2013). Direct and continuous visualization of the in-vessel components can be maintained using external cameras. Many optical sensing techniques can be performed remotely using open optical beam path configurations. Not only are in-vessel cables eliminated by these configurations, but also sensitive optical monitoring components (e.g., electronics, lasers, detectors, and cameras) can be placed outside the reactor vessel in the instrument vault, containment building, or other locations where temperatures and radiation levels are much lower. However, the extreme AdvSMR environment present challenges for optical access designs and optical materials. Optical access is not provided in any commercial nuclear power plant or featured in any reactor design, although successful implementation of optical access has been demonstrated in test reactors (Arkani and Gharib 2009). This report outlines the key engineering considerations for an AdvSMR optical access concept. Strict American Society of Mechanical Engineers (ASME) construction codes must be followed for any U.S. nuclear facility component (ASME 2013); however, the scope of this study is to evaluate the preliminary engineering issues for this concept, rather than developing a nuclear-qualified design. In addition, this study does not consider accident design requirements. In-vessel optical access using a standpipe viewport concept serves as a test case to explore the engineering challenges and performance requirements

  18. Preliminary Design Values, U.S., 2015, EPA/OAR/OAQPS/AQAD

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains a map layer with preliminary design values for 2015. In July 2017 the 2015 design values will become official. At that time they will added...

  19. Preliminary design concept of a subcritical reactor using available resources

    Energy Technology Data Exchange (ETDEWEB)

    Churnetski, E.L. [Oak Ridge Y-12 Plant, TN (United States); Hoyny, V.; Chaudhuri, B.R.; Taprantzis, A.; Yavas, A. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    1993-12-31

    During the Fall 1993 semester, a project was initiated within the Nuclear Engineering Department of the University of Tennessee with the objective of developing a design for a subcritical reactor with maximized multiplication factor using materials currently available. Such a device, if constructed, would serve as a teaching tool for the Department of Nuclear Engineering. Design work was conducted as a large number of computer calculations, with trial pile configurations based on fundamental nuclear engineering principles, in an effort to maximize multiplication factor through fuel element geometry, moderator type, fissile/moderator ratio, and reflector character. The principal objective of the design group for the early phase of this project was to present several possible ``baseline`` reactor designs and identify directions for improvements. For the sake of calculational ease, the cores analyzes to date have been of nearly cubic shape. The SCALE CSAS25 software which runs KENO.Va, a Monte Carlo code, was used for all neutronics calculations. The baseline reactors resulting from work to date are cuboidal in shape and graphite reflected. Two types of fuel element geometries are proposed, a typical triangular pitch rod lattice and an arrangement of discrete fuel slugs placed in a lattice corresponding to body centered cubic packing. The latter arrangement provides slightly higher multiplication factors than the former. Calculations were performed for both graphite and heavy water moderation with heavy water moderation producing considerably higher multiplication factors, as expected. In general, the maximum k{sub eff} for the reactors are in the range of 0.5 to 0.9, well subcritical, except in the cases of the extreme possible values of fuel assay where critical configurations are possible. In these cases, designs with reduced fuel loading are recommended to assure a subcritical multiplication factor.

  20. The Large Synoptic Survey Telescope preliminary design overview

    Science.gov (United States)

    Krabbendam, V. L.; Sweeney, D.

    2010-07-01

    The Large Synoptic Survey Telescope (LSST) Project is a public-private partnership that is well into the design and development of the complete observatory system to conduct a wide fast deep survey and to process and serve the data. The telescope has a 3-mirror wide field optical system with an 8.4 meter primary, 3.4 meter secondary, and 5 meter tertiary mirror. The reflective optics feed three refractive elements and a 64 cm 3.2 gigapixel camera. The LSST data management system will reduce, transport, alert and archive the roughly 15 terabytes of data produced nightly, and will serve the raw and catalog data accumulating at an average of 7 petabytes per year to the community without any proprietary period. The project has completed several data challenges designed to prototype and test the data management system to significant pre-construction levels. The project continues to attract institutional partners and has acquired non-federal funding sufficient to construct the primary mirror, already in progress at the University of Arizona, build the secondary mirror substrate, completed by Corning, and fund detector prototype efforts, several that have been tested on the sky. A focus of the project is systems engineering, risk reduction through prototyping and major efforts in image simulation and operation simulations. The project has submitted a proposal for construction to the National Science Foundation Major Research Equipment and Facilities Construction (MREFC) program and has prepared project advocacy papers for the National Research Council's Astronomy 2010 Decadal Survey. The project is preparing for a 2012 construction funding authorization.

  1. Design, integration and preliminary results of the IXV Catalysis experiment

    Science.gov (United States)

    Viladegut, Alan; Panerai, F.; Chazot, O.; Pichon, T.; Bertrand, P.; Verdy, C.; Coddet, C.

    2016-08-01

    The CATalytic Experiment (CATE) is an in-flight demonstration of catalysis effects at the surface of thermal protection materials. A high-catalytic coating was applied over the baseline ceramic material on the windward side of the intermediate experimental vehicle (IXV). The temperature jump due to different catalytic activities was detected during re-entry through measurements made with near-surface thermocouples on the windward side of the vehicle. The experiment aimed at contributing to the development and validation of gas/surface interaction models for re-entry applications. The present paper summarizes the design of CATE and its integration on the windward side of the IXV. Results of a qualification campaign at the Plasmatron facility of the von Karman Institute for Fluid Dynamics are presented. They provided an experimental evidence of the temperature jump at the low-to-high catalytic interface of the heat shield under aerothermal conditions relevant to the actual IXV flight. These tests also gave confidence so that the high-catalytic patch would not endanger the integrity of the vehicle and the safety of the mission. A preliminary assessment of flight data from the thermocouple measurements shows consistency with results of the qualification tests.

  2. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    Science.gov (United States)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  3. Platform for dynamic tests: preliminary studies, design and construction

    Directory of Open Access Journals (Sweden)

    J. E. Campuzano

    Full Text Available This paper is about the design and construction of a platform for dynamic tests especially with people jumping, walking, etc. Initially it was tried to find out projects already implemented in platforms and dynamic tests and to study the loads produced by movement of people on slabs and the structural response to these loads. The limits established by different standards have been also studied for these dynamic responses, taking into account the ultimate limit state, as well as the structure in service, since the human body is very sensitive to structural vibrations. Parametric studies were performed considering various configurations of slabs (different spans, thicknesses and conditions of support have been done, looking for a configuration that could have natural frequency close to the frequencies of the human loads. The slab should have dimensions compatible with the available physical space, fundamental frequency below 5 Hz and maximum immediate deflection compatible with the indications of the Brazilian standard NBR6118: 2007. Based on these criteria was chosen a rectangular structure consists of a solid reinforced concrete rectangular slab studded in two opposite edges of steel beams with shear connectors type U. The other two edges are free. The steel beams supporting the slab, in turn, are supported on eight metal profiles (two in each corner of the slab that are supported on two to two short columns of steel profile H. Profiles U in steel are welded to four columns, forming a horizontal frame. Numerical analysis of the dynamic test platform have been performed for free and forced vibration, for obtaining the natural frequencies and corresponding vibration modes, considering the self-weight of the structure and the load that simulates people's weight. After obtaining a structural configuration that fulfilled the stipulated requirements, the design of the slab taking into account the recommendations of the Brazilian standard NBR6118: 2007

  4. Participatory design of a preliminary safety checklist for general practice.

    Science.gov (United States)

    Bowie, Paul; Ferguson, Julie; MacLeod, Marion; Kennedy, Susan; de Wet, Carl; McNab, Duncan; Kelly, Moya; McKay, John; Atkinson, Sarah

    2015-05-01

    The use of checklists to minimise errors is well established in high reliability, safety-critical industries. In health care there is growing interest in checklists to standardise checking processes and ensure task completion, and so provide further systemic defences against error and patient harm. However, in UK general practice there is limited experience of safety checklist use. To identify workplace hazards that impact on safety, health and wellbeing, and performance, and codesign a standardised checklist process. Application of mixed methods to identify system hazards in Scottish general practices and develop a safety checklist based on human factors design principles. A multiprofessional 'expert' group (n = 7) and experienced front-line GPs, nurses, and practice managers (n = 18) identified system hazards and developed and validated a preliminary checklist using a combination of literature review, documentation review, consensus building workshops using a mini-Delphi process, and completion of content validity index exercise. A prototype safety checklist was developed and validated consisting of six safety domains (for example, medicines management), 22 sub-categories (for example, emergency drug supplies) and 78 related items (for example, stock balancing, secure drug storage, and cold chain temperature recording). Hazards in the general practice work system were prioritised that can potentially impact on the safety, health and wellbeing of patients, GP team members, and practice performance, and a necessary safety checklist prototype was designed. However, checklist efficacy in improving safety processes and outcomes is dependent on user commitment, and support from leaders and promotional champions. Although further usability development and testing is necessary, the concept should be of interest in the UK and internationally. © British Journal of General Practice 2015.

  5. Analysis of Design Basis Events in a Preliminary Specific Design of PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    KAERI(Korea Atomic Energy Research Institute) has been developing a preliminary specific design of the PGSFR(Prototype Gen-IV Sodium-cooled Fast Reactor), which is a pool type sodium cooled fast reactor with a thermal power of 392.2 MW. Many alterations were made on a preliminary specific design of the PGSFR compared with a conceptual design: a heat removal capability of the DHRS was decreased, the DHXs were submerged in a cold pool, a pressure drop through the core was increased, and a shape of a redon was changed to a peanut type, etc. For identification of safety characteristics including the design changes, 5 DBE's(Design Bases Events) were analyzed using MARS-LMR code. The representative DBE's are TOP(Transient of Over Power), LOF(Loss Of Flow), LOHS(Loss Of Heat Sink), Reactor Vessel Leak and Pipe Break accidents. The representative DBE's were analyzed using the MARS-LMR code. As a result, it was identified that the PGSFR were appropriately tripped by the RPS(Reactor Protection System) and cooled by the DHRS. But a high cladding temperature was estimated in a pipe break accident. Therefore, integrity of the structure should be evaluated in the further study.

  6. An overview of the Tokamak Physics Experiment vacuum vessel preliminary design

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, R.E. [Raytheon Engineers and Constructors, Inc., Princeton, NJ (United States)

    1995-12-31

    The mission of the Tokamak Physics Experiment (TPX) Project is to develop the scientific basis for a compact and continuously operating tokamak fusion reactor. The vacuum vessel, which consists of a double walled torus, ports and supports, is a major element of the TPX machine. This paper provides an overview of the vacuum vessel preliminary design work. The design of the vacuum vessel is being carried out by an industrial team under subcontract to the Princeton Plasma Physics Laboratory. The respective work scopes of this team are discussed. The role of concurrent engineering is presented in the context of this design-build subcontract. A discussion of the engineering requirements, material selection rationale and vacuum vessel configuration is provided. Titanium 6Al-4V will be used to fabricate the vacuum vessel. Significant material concerns were identified with the use of titanium; hydrogen embrittlement and the effects of borated water were the major issues. A research and development (R and D) program was established to resolve these material issues as well as to develop the vessel weld details. A comprehensive analytical effort was established to perform the structural and thermal analysis of the vessel. Design details of the vessel, supports, ports, and flanges are presented.

  7. Nursing home emancipation: A preliminary study of efforts by centers for independent living in urban and rural areas.

    Science.gov (United States)

    Seekins, Tom; Ravesloot, Craig; Katz, Marsha; Liston, Bob; Oxford, Mike; Altom, Billy; White, Glen; Petty, Richard; Kafka, Bob

    2011-10-01

    The U.S. Supreme Court's Olmstead decision affirmed the right of individual with disabilities to live in the community. Centers for independent living (CILs) and other disability advocacy organizations have initiated a wide range of efforts to emancipate (i.e., transition) adults with disabilities from undesired nursing home placements to community living. There is, however, a paucity of published information about the nursing home transition process for adults with disabilities. The objectives of this research were to: (1) assess the levels of nursing home emancipation services and barriers to nursing home transitions, including the role of secondary health conditions, and (2) to assess nursing home transition policies and procedures. We conducted 2 studies. First, we surveyed 165 CILs operating nursing home emancipation programs. Second, we reviewed the written transition policy and procedures documents of 28 CILs from 14 states. Respondents reported transitioning a total of 2,389 residents from nursing homes back to community living arrangements during the previous year, with only 4% of those returning to a nursing home for any reason. While most of the policies reflected many components of a standard model, several components appeared underrepresented. Findings suggest the need to expand on established programs to build evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    Energy Technology Data Exchange (ETDEWEB)

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  9. Parametric Fuselage Geometry Generation and Aerodynamic Performance Prediction in Preliminary Rotorcraft Design

    OpenAIRE

    Kunze, Philipp

    2013-01-01

    The creation of an integrated rotorcraft conceptual and preliminary design framework at DLR involved the development of geometry and fuselage aerodynamics modules at the Institute of Aerodynamics and Flow Technology. After a short revision of the RIDE rotorcraft design environment architecture this paper focuses on the implementation of these disciplinary modules. The aim of the geometry module is to bridge the gap between conceptual and preliminary design and to allow for geometry parameter ...

  10. Development of a preliminary design of a method to measure the effectiveness of virus exclusion during water process reclamation at zero-G

    Science.gov (United States)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.; Linnecke, C. B.

    1976-01-01

    Organon Diagnostics has developed, under NASA sponsorship, a monitoring system to test the capability of a water recovery system to reject the passage of viruses into the recovered water. In this system, a non-pathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. An engineering preliminary design has been performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings present a preliminary instrument design of a fully functional laboratory prototype capable of zero-G operation.

  11. Development of a preliminary design of a method to measure the effectiveness of virus exclusion during water process reclamation at zero-G

    Science.gov (United States)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.; Linnecke, C. B.

    1976-01-01

    Organon Diagnostics has developed, under NASA sponsorship, a monitoring system to test the capability of a water recovery system to reject the passage of viruses into the recovered water. In this system, a non-pathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. An engineering preliminary design has been performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings present a preliminary instrument design of a fully functional laboratory prototype capable of zero-G operation.

  12. Biosurveillance: Efforts to Develop a National Biosurveillance Capability Need a National Strategy and a Designated Leader

    Science.gov (United States)

    2010-06-01

    currently covered are cattle, sheep, goats, equine , swine, commercial poultry, and commercial food fish. The system is a joint effort of the U.S...tuberculosis. However, it can often be prevented with vaccines and can usually be treated with antibiotics or antiviral drugs. Page 77 GAO-10-645 Federal...goats, equine , swine, commercial poultry, and commercial food fish. The National Animal Health Reporting System is a joint effort of the U.S. Animal

  13. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, L [DIMS - Department of Mechanical and Structural Engineering, University of Trento, via Mesiano, 77, 38050 Trento (Italy); Soraperra, G [TOZZI NORD wind turbines, via S. Sebastian s.n.c. 38100 Trento (Italy); Fedrizzi, R [DIMS - Department of Mechanical and Structural Engineering, University of Trento, via Mesiano, 77, 38050 Trento (Italy); Zanne, L [DIMS - Department of Mechanical and Structural Engineering, University of Trento, via Mesiano, 77, 38050 Trento (Italy)

    2007-07-15

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics.

  14. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhou, E-mail: zhaozhou@swip.ac.cn; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-02-15

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li{sub 4}SiO{sub 4} pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  15. Drain Tank Information for Developing Design Basis of the Preliminary Design

    Energy Technology Data Exchange (ETDEWEB)

    Ferrada, Juan J [ORNL

    2012-02-01

    Tokamak Cooling Water System (TCWS) drain tanks (DTs) serve two functions: normal operation and safety operation. Normal DTs are used for regular maintenance operations when draining is necessary. Safety DTs are used to receive the water leaked into the Vacuum Vessel (VV) after an in-vessel loss of coolant accident (LOCA) event. The preliminary design of the DTs shall be based on the information provided by this document. The capacity of the normal DTs is estimated based on the internal volume of in-vessel components [e.g., First Wall/Blanket (FW/BLK) and Divertor (DIV)]; Neutral Beam Injector (NBI) components; and TCWS piping, heat exchangers, electric heaters, pump casing, pressurizers, and valves. Water volumes have been updated based on 2004-design information, changes adopted because of approved Project Change Requests (PCRs), and data verification by US ITER and AREVA Federal Services, the US ITER A and E Company. Two tanks will store water from normal draining operations of the FW/BLK and DIV Primary Heat Transfer Systems (PHTSs). One tank will store water from normal draining operations of the NBI PHTS. The capacity of the safety DTs is based on analysis of a design basis accident: a large leak from in-vessel components. There are two safety DTs that will receive water from a VV LOCA event and drainage from the VV, as needed. In addition, there is one sump tank for the DIV that will be used for collecting drain water from the draining and drying processes and specifically for draining the DIV system as the DIV cassette lines are at a lower elevation than the DT connection point. Information documented in this report must be refined and verified during the preliminary design of the DTs, and there are several aspects to be considered to complete the preliminary design. Input to these design considerations is discussed in this report and includes, but is not limited to, water inventory; operating procedures/maintenance; Failure Modes and Effects Analysis (FMEA

  16. Drain Tank Information for Developing Design Basis of the Preliminary Design - R00

    Energy Technology Data Exchange (ETDEWEB)

    Ferrada, Juan J [ORNL

    2011-01-01

    Tokamak Cooling Water System (TCWS) drain tanks (DTs) serve two functions: normal operation and safety operation. Normal DTs are used for regular maintenance operations when draining is necessary. Safety DTs are used to receive the water leaked into the Vacuum Vessel (VV) after an in-vessel loss of cooling accident (LOCA) event. The preliminary design of the DTs shall be based on the information provided by this document. The capacity of the normal DTs is estimated based on the internal volume of in-vessel components [e.g., First Wall/Blanket (FW/BLK) and Divertor (DIV)], Neutral Beam Injector (NBI) components, and TCWS piping, heat exchangers, electric heaters, pump casing, pressurizers, and valves. Water volumes have been updated based on 2004 design information, changes adopted because of approved Project Change Requests (PCRs), and data verification by U.S. ITER. Two tanks will store water from normal draining operations of the FW/BLK and DIV Primary Heat Transfer Systems (PHTSs). One tank will store water from normal draining operations of the NBI PHTS. The capacity of the safety DTs is based on analysis of a design-basis accident:1 a large leak from in-vessel components. There are two safety DTs that will receive water from a VV LOCA event and drainage from the VV, as needed. In addition, there is one sump tank for the DIV that will be used for collecting drain water from the draining and drying processes and specifically for draining the DIV system as the DIV cassettes lines are at a lower elevation than the DT connection point. Information documented in this report must be refined and verified during the preliminary design of the DTs, and there are several aspects to be considered to complete the preliminary design. Input to these design considerations is discussed in this report and includes, but is not limited to, water inventory; operating procedures/maintenance; Failure Modes and Effects Analysis (FMEA); tank layout anddimensions, including design

  17. Preliminary Design of a Pendulum Experiment for Searching for a Lorentz-Violation Signal

    CERN Document Server

    Shao, Cheng-Gang; Tan, Yu-Jie

    2016-01-01

    This work mainly presents a preliminary design for a pendulum experiment with both the source mass and the test mass in a striped pattern to amplify the Lorentz-violation signal, since the signal is sensitive to edge effects.

  18. Current Mooring Design in Partner WECs and Candidates for Preliminary Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    This report is the combined report of Commercial Milestone "CM1: Design and Cost of Current Mooring Solutions of Partner WECs" and Milestone "M3: Mooring Solutions for Preliminary Analysis" of the EUDP project "Mooring Solutions for Large Wave Energy Converters". The report covers a description...... of the current mooring design of the partner Wave Energy Converter (WEC) developers in the project, together with a preliminary cost estimate of the systems....

  19. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    Science.gov (United States)

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  20. Preliminary Design Study of a Hybrid Airship for Flight Research

    Science.gov (United States)

    Browning, R. G. E.

    1981-01-01

    The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.

  1. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    Science.gov (United States)

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  2. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  3. A knowledge-based design framework for airplane conceptual and preliminary design

    Science.gov (United States)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  4. Design of a New Research Reactor: Preliminary Conceptual Design (3rd Year)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T. and others

    2006-01-15

    A research reactor design is a kind of integral engineering project and a process to obtain a concrete shape through several years of concept development, conceptual design, basic design and detail design. So it requires close cooperation in various areas as well as lots of manpower and cost. The overall process at each stage may be said to be similar except for some stage-specific works. In 2005 as last year of a concept development stage, investigations on the various concepts of the fuel, reactor structure and systems which can meet the requirements established. The requirements for the process systems and I and C systems have also been embodied. The major tasks planned at the early of 2005 have been performed for each area of reactor design as follows: Establishment of the fuel and reactor core concept, and the core analysis, Preliminary thermal-hydraulic and safety analyses for the conceptual cores, Establishment and improvement of analysis system, Concept developments of the reactor structures and major systems, Test and test plan to verify the developed concepts, International cooperation to establish the foundations for exporting a research reactor.

  5. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  6. Engineering specification and system design for CAD/CAM of custom shoes: UMC project effort

    Science.gov (United States)

    Bao, Han P.

    1991-01-01

    The goal of this project is to supplement the footwear design system of North Carolina State University (NCSU) with a software module to design and manufacture a combination sole. The four areas of concentration were: customization of NASCAD (NASA Computer Aided Design) to the footwear project; use of CENCIT data; computer aided manufacturing activities; and beginning work for the bottom elements of shoes. The task of generating a software module for producing a sole was completed with a demonstrated product realization. The software written in C was delivered to NCSU for inclusion in their design system for custom footwear known as LASTMOD. The machining process of the shoe last was improved using a spiral tool path approach.

  7. JPL Mission Design Software: Current Efforts to Support Low-Cost Missions

    Science.gov (United States)

    Fordyce, J.

    1994-01-01

    Over the last several decades, engineers at the Jet Propulsion Laboratory have developed a collection of analytical tools to design missions to Earth orbit, the moon, sun, planets and various other bodies in our solar system, and beyond.

  8. Samples Selection for Artificial Neural Network Training in Preliminary Structural Design

    Institute of Scientific and Technical Information of China (English)

    TONG Fei; LIU Xila

    2005-01-01

    An artificial neural network (ANN) is applied in the preliminary structural design of reticulated shells. Major efforts are made to enhance the generalization ability of networks through well-selected training samples. Number-theoretic methods (NTMs) are adopted to generate samples with low discrepancy, i.e., uniformly scattered in the domain, where discrepancy is a quantitative measurement of the uniformity. The discrepancy of the NTM-based sample set is 1/6-1/7 that of samples with equal spacing. In a case study, networks trained by NTM-based samples are compared with those trained by equal-spaced samples in generalizing performance. The results show that both the computational precision and stability of the former ANNs are more satisfactory than those of the latter. It is concluded that the flexibility of ANNs in generalizing can be effectively increased by use of uniformly distributed training samples rather than simply piling data. More reliable uniformity should be obtained, however, through NTMs instead of equal-spaced samples.

  9. DOE's effort to reduce truck aerodynamic drag : joint experiments and computations lead to smart design.

    Energy Technology Data Exchange (ETDEWEB)

    Yaste, David M (NASA Ames Research Center, Moffet Field, CA); Salari, Kambiz (Lawrence Livermore National Laboratory, Livermore, CA); Hammache, Mustapha (University of Southern California, Los Angeles, CA); Browand, Fred (University of Southern California, Los Angeles, CA); Pointer, W. David (Argonne National Laboratory, Argonne, IL); Ortega, Jason M. (Lawrence Livermore National Laboratory, Livermore, CA); McCallen, Rose (Lawrence Livermore National Laboratory, Livermore, CA); Walker, Stephen M (NASA Ames Research Center, Moffet Field, CA); Heineck, James T (NASA Ames Research Center, Moffet Field, CA); Hassan, Basil; Roy, Christopher John (Auburn University, Auburn, AL); Storms, B. (NASA Ames Research Center, Moffet Field, CA); Satran, D. (NASA Ames Research Center, Moffet Field, CA); Ross, James (NASA Ames Research Center, Moffet Field, CA); Englar, Robert (Georgia Tech Research Institute, Atlanta, GA); Chatalain, Philippe (Caltech, Pasadena, CA); Rubel, Mike (Caltech, Pasadena, CA); Leonard, Anthony (Caltech, Pasadena, CA); Hsu, Tsu-Ya (University of Southern California, Los Angeles, CA); DeChant, Lawrence Justin.

    2004-06-01

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  10. Preliminary design of a satellite observation system for Space Station Freedom

    Science.gov (United States)

    Cabe, Greg (Editor); Gallagher, Chris; Wilson, Brian; Rehfeld, James; Maurer, Alexa; Stern, Dan; Nualart, Jaime; Le, Xuan-Trang

    1992-01-01

    Degobah Satellite Systems (DSS), in cooperation with the University Space Research Association (USRA), NASA - Johnson Space Center (JSC), and the University of Texas, has completed the preliminary design of a satellite system to provide inexpensive on-demand video images of all or any portion of Space Station Freedom (SSF). DSS has narrowed the scope of the project to complement the work done by Mr. Dennis Wells at Johnson Space Center. This three month project has resulted in completion of the preliminary design of AERCAM, the Autonomous Extravehicular Robotic Camera, detailed in this design report. This report begins by providing information on the project background, describing the mission objectives, constraints, and assumptions. Preliminary designs for the primary concept and satellite subsystems are then discussed in detail. Included in the technical portion of the report are detailed descriptions of an advanced imaging system and docking and safing systems that ensure compatibility with the SSF. The report concludes by describing management procedures and project costs.

  11. Current design efforts for the gas-cooled fast reactor (GFR)

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.D. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-3850 (United States)]. e-mail: Kevan.Weaver@inl.gov

    2005-07-01

    Current research and development on the Gas-Cooled Fast Reactor (GCFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFC I) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GCFR: a helium-cooled, direct Brayton cycle power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GCFR. These are EURATOM (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, EURATOM (including the United Kingdom), France, Japan, and Switzerland have active research activities with respect to the GCFR. The research includes GCFR design and safety, and fuels/in-core materials/fuel cycle projects. This paper outlines the current design status of the GCFR, and includes work done in the areas mentioned above. (Author)

  12. Preliminary design report for the K basins integrated water treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  13. A Preliminary Study on Gender Differences in Studying Systems Analysis and Design

    Science.gov (United States)

    Lee, Fion S. L.; Wong, Kelvin C. K.

    2017-01-01

    Systems analysis and design is a crucial task in system development and is included in a typical information systems programme as a core course. This paper presented a preliminary study on gender differences in studying a systems analysis and design course of an undergraduate programme. Results indicated that male students outperformed female…

  14. Preliminary report on the design of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-01-01

    While a rather detailed Conceptual Design Report will be available in April, an Superconducting Super Collider (SSC) it is appropriate to give a preview, now that the primary parameters for the Conceptual Design Report have been put down. In this preview the leading two chapters give the historical and scientific-technical background for the SSC and deal at somelength with the physics issues to be explored by the SSC. A third chapter reviews briefly the engineering and accelerator physics foundations for the developing SSC design, while the fourth lists the primary design parameters and describes the overall design. The fifth chapter describes briefly the principal engineering systems that will appear in the Conceptual Design Report, including the rather extensive injector system required. A sixth and final chapter outlines the beginnings of a ``construction plan`` put together for the purposes of exploring practical schedules and defining the critical design, development and planning paths for the overall facility and its major sub-systems.

  15. IPACS Electronics: Comments on the Original Design and Current Efforts at Langley Research Center

    Science.gov (United States)

    Gowdey, J. C.

    1983-01-01

    The development of the integrated power altitude control system (IPACS) is described. The power bridge was fabricated, and all major parts are in hand. The bridge was tested with a 1/4 HP motor for another program. The PWM, Control Logic, and upper bridge driver power supply are breadboarded and are debugged prior to starting testing on a passive load. The Hall sensor circuit for detecting rotor position is in design.

  16. Design and preliminary test results of Daya Bay RPC modules*

    Energy Technology Data Exchange (ETDEWEB)

    Hackenburg, R.

    2011-09-01

    Resistive Plate Chamber (RPC) modules will be used as one part of the cosmic muon veto system in the Daya Bay reactor neutrino experiment. A total of 189 RPC modules will cover the three water pools in the experiment. To achieve track reconstruction and high efficiency, each module consists of 4 layers, each of which contains two sizes of bare chambers. The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas. The module efficiency and patch efficiency were studied both in simulation and test of the data analysis. 143 modules have been constructed and tested. The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%.

  17. Design and preliminary test results of Daya Bay RPC modules

    Institute of Scientific and Technical Information of China (English)

    XU Ji-Lei; Logan Lebanowski; Cullen Newsom; Lin Shih-Kai; Jonathan Link; MA Lie-Hua; Viktor Pě(c); Vit Vorobel; CHEN Jin; LIU Jin-Chang; ZHOU Yong-Zhao; GUAN Meng-Yun; LIANG Hao; YANG Chang-Gen; WANG Yi-Fang; ZHANG Jia-Wen; LU Chang-Guo; Kirk McDonald; Robert Hackenburg; Kwong Lau

    2011-01-01

    Resistive Plate Chamber(RPC)modules will be used as one part of the cosmic muon veto system in the Days Bay reactor neutrino experiment.A total of 189 RPC modules will cover the three water pools in the experiment.To achieve track reconstruction and high efficiency,each module consists of 4 layers,each of which contains two sizes of bare chambers.The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas.The module efficiency and patch efficiency were studied both in simulation and test of the data analysis.143 modules have been constructed and tested.The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%.

  18. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

  19. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  20. Preliminary Design and Analysis of ITER In-Wall Shielding

    Institute of Scientific and Technical Information of China (English)

    LIU Changle; YU Jie; WU Songtao; CAI Yingxiang; PAN Wanjiang

    2007-01-01

    ITER in-wall shielding (IIS) is situated between the doubled shells of the ITER Vacuum Vessel (IVV). Its main functions are applied in shielding neutron, gamma-ray and toroidal field ripple reduction. The structure of IIS has been modelled according to the IVV design criteria which has been updated by the ITER team (IT). Static analysis and thermal expansion analysis were performed for the structure. Thermal-hydraulic analysis verified the heat removal capability and resulting temperature, pressure, and velocity changes in the coolant flow. Consequently, our design work is possibly suitable as a reference for IT's updated or final design in its next step.

  1. Improvement in Product Development: Use of back-end data to support upstream efforts of Robust Design Methodology

    Directory of Open Access Journals (Sweden)

    Vanajah Siva

    2012-12-01

    Full Text Available In the area of Robust Design Methodology (RDM less is done on how to use and work with data from the back-end of the product development process to support upstream improvement. The purpose of this paper is to suggest RDM practices for the use of customer claims data in early design phases as a basis for improvements. The back-end data, when systematically analyzed and fed back into the product development process, aids in closing the product development loop from claims to improvement in the design phase. This is proposed through a flow of claims data analysis tied to an existing tool, namely Failure Mode and Effects Analysis (FMEA. The systematic and integrated analysis of back-end data is suggested as an upstream effort of RDM to increase understanding of noise factors during product usage based on the feedback of claims data to FMEA and to address continuous improvement in product development.

  2. Greater Cognitive Effort for Better Learning: Tailoring an Instructional Design for Learners with Different Levels of Knowledge and Motivation

    Directory of Open Access Journals (Sweden)

    Seffetullah Kuldas

    2014-08-01

    Full Text Available The capacity limitation of working memory is a widely recognised determinant of human learning. A cognitive load exceeding the capacity hampers learning. Cognitive load can be controlled by tailoring an instructional design to levels of learner prior knowledge. However, such as design does not necessarily motivate to use the available capacity for better learning. The present review examines literatures on the effects of instructional design, motivation, emotional state, and expertise level on cognitive load and cognitive effort, which ultimately affect working memory performance and learning. This examination suggests further studies on the effects of motivation and negative emotional states on the use of working memory. Prospective findings would help better explain and predict individual differences in the use of working memory for cognitive learning and task performance.

  3. Preliminary design and optimization of slotted tube grain for solid rocket motor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,design and optimization technique of slotted tube grain for solid rocket motors has been discussed.In doing so,the design objectives and constraints have been set,geometric parameters identified,performance prediction parameters calculated,thereafter preliminary designs completed and finally optimal design reached.Geometric model for slotted tube grain configuration has been developed.Average thrust has been taken as the objective function with constraints of burning time,mass of propellant,fixed length and diameter of chamber case.Lumped parameter method has been used for calculating the performance prediction parameters.A set of preliminary designs has been completed and an analysis of these results conducted.Although all the preliminary results fulfill the design requirements in terms of objective function and constraints,however in order tO attain the optimal design,Sequen-tial quadratic programming optimization technique has been adopted.As the slotted tube grain ge-ometry is totally dependent upon various independent variables and each of these variables has a bearing on explicit characteristic of grain designing,hence affects of the independent variables on performance parameters have been examined,thus variation laws have been developed.Basing on the variation laws and the analysis of preliminary design results,upper and lower limits have been defined for the independent geometric variables and an initial guess provided for conducting optimi-zation.Resuhs attained exhibits that an optimal result has been attained and the value of objective function has been maximized.All the design constraint limits have also been met while ensuring sound values of volumetric loading fraction,web fraction and neutrality.This methodology of design and optimization of slotted tube grain for solid rocket motors can be used by engineers as a reference guide for actual design and engineering purposes.

  4. Preliminary design of an energy storing orthosis for providing gait to people with spinal cord injury.

    Science.gov (United States)

    Boughner, Kyle J; Durfee, William K

    2014-01-01

    A new design is proposed for an energy storing orthosis (ESO) that restores walking to people with spinal cord injury by combining functional electrical stimulation of the quadriceps muscle with a mechanical brace that uses elastic elements to store and transfer energy between hip and knee joints. The new ESO is a variation of a previous design and uses constant force springs for energy storage. Based on the detailed design and on dynamic simulations, the concept has demonstrated preliminary technical feasibility.

  5. Preliminary Design of an Automated White Board Cleaner

    African Journals Online (AJOL)

    Toshiba

    An International Multidisciplinary Journal, Ethiopia. Vol. 8 (2), Serial No. ... The mechanism of the automated board cleaner entails a horizontal motion. The design is aimed ..... The production cost of chains is relatively high. (ii) The chain drive.

  6. Preliminary of Optical Lens Design for Micro-Satellite

    Science.gov (United States)

    Rachim, Elvira; Mukhtar Tahir, Andi; Herawan, Agus

    2017-01-01

    The development of micro satellites for the last two decades is emerging rapidly as the need of satellite communication usage is increasing. Earth observation is one of the example of how satellites are on demand. Most observation satellites consist of sensors and imaging system on-board. One of the key element to have a good imaging system is a special optical lens system design. Such lens is designed specifically by calculating every parameter such as refractive, reflective indexes, type of surface, distance and many more. Manufactured lenses sometimes do not match the requirement of an imager system hence the special lens design is needed. This paper will first briefly describe the history of optic, theory related to lens system, then the design and the analysis of lens system for micro-satellites generally and LAPAN A4 particularly.

  7. Preliminary engineering design of sodium-cooled CANDLE core

    Science.gov (United States)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  8. DOE's Effort to Reduce Truck Aerodynamic Drag-Joint Experiments and Computations Lead to Smart Design

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B

    2004-06-17

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  9. Preliminary design study of a central solar heating plant with seasonal storage at the University of Massachusetts, Amherst

    Science.gov (United States)

    Breger, D. S.; Sunderland, J. E.

    1991-04-01

    This report documents the design development and selection of the final preliminary design of a Central Solar Heating Plant with Seasonal Storage (CSHPSS) for the University of Massachusetts in Amherst (UMass). The effort has been performed by the Department of Mechanical Engineering at UMass under contract with the U.S. Department of Energy. Phase 1 of this project was directed at site selection for the CSHPSS project and was reported earlier. This report focuses on the Phase 2 development of the site conditions and analytical study of project design, performance, and cost. The UMass site presents an excellent opportunity of a CSHPSS project in terms of land availability for a large collector array, a 100 foot deep deposit of soft, saturated clay for seasonal thermal energy storage, and appropriate low temperature heating loads. The project under study represents the first implementation of this solar technology in the United States and results from the International Energy Agency collaboration on CSHPSS since 1979. The preliminary design calls for a large 10,000 m(exp 2) parabolic trough collector array, 70,000 m(exp 3) storage volume in clay with heat transfer through 900 boreholes. Design optimization is based on computer simulations using MINSUN and TRNSYS. The design is expected to provide 95 percent of the 3500 MWh heating and hot water load. A project cost of $3.12 million (plus $240,000 for HVAC load retrofit) is estimated, which provides an annualized cost of $66.2/MWh per unit solar energy delivered. The project will proceed into an engineering phase in Spring 1991.

  10. Commercial building design and energy conservation: a preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, A.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titlted windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given. (MCW)

  11. OTEC SKSS preliminary designs. Volume IV. Appendixes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-02-29

    This volume contains appendices to the Station Keeping Subsystem design study for the 40 MeW Modular Experiment OTEC platforms. Appendices presented include: detailed drag calculations; sample CALMS computer printouts for SPAR and BARGE static analyses; sample time domain computer printouts (Hydromechanics, Inc.) program; extreme value and fatigue load calculations; anchor design calculations; deployment calculations; bottom slope plots; time domain analysis report by Hydromechanics Inc.; detailed cost analysis; control systems study report by Sperry Systems Management; cost estimates for model basin tests; and hydrodynamic loading on the mooring cables. (WHK)

  12. Preliminary design of multi-function LIGA beamline

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    One design of multi-function LIGA beamline has been reported. In this design, two plane mirrors and a series of filters have been employed. One can choose the spectrum range of X-ray easily according to the exposure requirement by adjusting the grazing angle of mirrors and the thickness of filters. And the spot size in the horizontal direction is up to 120mm, which is large enough for exposing 5 inch silicon slice. The typical exposure time is about 1.2h, 1.8h, 0.5h, corresponding to PMMA thickness of 500 μ m, 200 μ m, 20 t m, respectively.

  13. Preliminary Design of IHTS Piping Support for PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Hyun; Koo, Gyeong-Hoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A pipe support is a designed element that transfer the load from pipe to the supporting structures. Providing sufficient pipe wall thickness and installing proper supports are most important elements for structural integrity of the piping system. Piping supports are generally referred to as device used in supporting the weight of the piping. The weight includes that of the pipe proper, the content the pipe carries, and the pipe converting, such as insulation. A FE analysis was performed to select variable spring hanger of IHTS hot-leg piping for PGSFR. The calculated values will be used to design variable spring hanger.

  14. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, H.A. [Lawrence Livermore National Lab., CA (United States)

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  15. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, H.A. [Lawrence Livermore National Lab., CA (United States)

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  16. Preliminary design package for Sunspot Domestic Hot Water Heating System

    Science.gov (United States)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  17. Soft Drink Design. USMES Teacher's Resource Book, Preliminary Edition.

    Science.gov (United States)

    Education Development Center, Inc., Newton, MA.

    This USMES unit challenges students to invent a new soft drink that would be popular and produced at a low cost. The teacher resource book for the Soft Drink Design unit contains five sections. The first section describes the USMES approach to student-initiated investigations of real problems, including a discussion of the nature of the USMES…

  18. Preliminary safety analysis for key design features of KALIMER-600

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. B.; Chang, W. P.; Suk, S. D.; Ha, K. S.; Jeong, H. Y.; Heo, S

    2004-03-01

    KAERI is developing the conceptual design of a Liquid Metal Reactor, KALIMER-600 (Korea Advanced LIquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER-600 addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, key safety design features are described and safety analyses results for typical ATWS accidents in the KALIMER design with breakeven core are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the event categorization and acceptance criteria for the KALIMER-600 safety analysis are described in Chapter 2. In Chapter 3, results of inherent safety evaluations for the KALIMER-600 conceptual design are presented. The KALIMER-600 core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated Anticipated Transient Without Scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER-600 system response to the events. They are categorized as Bounding Events (BEs) because of their low probability of occurrence. In Chapter 4, the analysis of flow blockage for KALIMER-600 with the MATRA-LMR-FB code, which has been developed for the internal flow blockage in a LMR subassembly. The cases with a blockage of 6-subchannel, 24-subchannel, and 54-subchannel are analyzed.The performance analysis of the KALIMER-600 containment and some evaluations for the behaviors during HCDA will be performed later.

  19. Preliminary design and parametric study of 1400 m partially earth-anchored cable-stayed bridge

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The preliminary design and parametric study of 1400 m partially earth-anchored cable-stayed bridge are described. Static per-formance of this new type of bridge is discussed. Compared with fully self-anchored cable-stayed bridge, its advantages in fin-ished state are summarized. Based on numerical calculation, effects of several structural parameters on static performance are presented.

  20. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used for these des......We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...

  1. Yakima/Klickitat Production Preliminary Design Report, Appendix C: Yakima and Klickitat Preliminary Engineering Reports.

    Energy Technology Data Exchange (ETDEWEB)

    CH2M Hill; R.W. Beck and Associates.

    1990-03-01

    This chapter describes the biological and physical fish culture requirements of the hatchery system from which the concepts for the design are formulated. It includes a discussion of the program goals for fish production in the Yakima Basin followed by a brief summary of selected sites. The biological criteria are presented for the water system, adult holding, incubation, rearing, and finally transportation and release. The biological criteria address the water and space requirements, the number and type of vessels, and the related support requirements. To be assured that the components of the system meet all program demands, each life phase from adult capture to the juvenile or smolt transfer into the acclimation sites is analyzed.

  2. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  3. Preliminary design study of the Tandem Mirror Reactor (TMR)

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1978-07-15

    This report describes work done in Fiscal Year 1977 by the Fusion Reactor Studies Group of LLL on the conceptual design of a 1000-MW(e) Tandem Mirror Reactor (TMR). The high Q (defined as the ratio of fusion power to injection power) predicted for the TMR (approximately 5) reduces the recirculating power to a nondominant problem and results in an attractive mirror fusion power plant. The fusion plasma of the TMR is contained in the 100-m-long central cell where the magnetic field strength is a modest 2 T. The blanket for neutron energy recovery and tritium breeding is cylindrical and, along with the solenoidal magnet, is divided into 3-m-long modules to facilitate maintenance. The central cell is fueled (but not heated) by the injection of low-energy neutral beams near its ends. Thus, the central cell is simple and of low technology. The end-cell plasmas must be of high density and high energy in order to plug and heat (via the electrons) the central-cell plasma. The present conceptual design uses 1.2-MeV neutral-beam injection for the end plugs and a cryogenic-aluminum, Yin-Yang magnet that produces an incremental field of about 1 T over a field of 16 T produced by a pair of Nb/sub 3/Sn superconducting solenoids. Important design problems remain in both the neutral-beam injector and in the end-plug magnet. Also remaining are important physics questions such as alpha-beam particle transport and end-plug stability. These questions are discussed at length in the report and suggestions for future work are given.

  4. Preliminary Design Options for Meteor Burst Communications Systems Buoy Relays

    Science.gov (United States)

    1986-12-01

    the lithium - thionyl chloride cell exhibit specific energies of the order of 500 watt hours per kilogram, more than 50 percent higher than previous...Supply Buoy Design Type 90 Day Storage Weight Type Energy Type Size (lb) Remote Lithium 2.2 kWh Deployable 8" x 8" x 4’ 200 Battery Pendulous Master...however, that there are various typcs of lithium batteries presently being developed that have energy densities equal to’fuel cell power systems. It is

  5. Preliminary structural evaluation and design of the HL-20

    Science.gov (United States)

    Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.

    1993-02-01

    Several concepts have been proposed to meet the requirements of a Personnel Launch System. A lifting body concept, the HL-20, was designed at NASA Langley Research Center. A structural analysis of a proposed HL-20 configuration with a cylindrical pressurized crew cabin is presented in this paper. Loads for the vehicle are assembled from mission loading conditions such as abort, on-orbit pressurization, blast overpressure, aerodynamic maneuver, and touchdown. The critical loading conditions are identified and resultant loads mapped onto the structure in order to review the effects of the mission loading conditions. The HL-20 structural concept is sized for the mission loads and the resulting structural weights are calculated.

  6. Design of Pulsed Strong Magnetic Fields Generator and Preliminary Application

    Institute of Scientific and Technical Information of China (English)

    WEN Jun; QU Xue-min; WANG Xi-gang; LONG Kai-ping

    2015-01-01

    Objective: This paper aims to designing a pulsed strong magnetic fields generator. Methods: A large value capacitor was used to store electric energy, coil was used for producing magnetic fields, main control, circuit control charge, sampling, discharge, etc. Results: The generator provided a pulsed magnetic field with the ampli-tude of intensity from 0.1-2 T and variable time interval of pulse from 4 s-1 min. It was not only to be operated easily but also performed reliably. Conclusion:The generator will be applied in special clinical diagnosis, therapy and other fields.

  7. Building Case—Based Preliminary Design Systems:A Hopfield Network Approach

    Institute of Scientific and Technical Information of China (English)

    吴维; 盛之进; 等

    1994-01-01

    This paper addresses the issue of building a case-based preliminary desing system by using Hopfield networks.One limitation of Hopfield networks is that it cannot be trained,i.e.the weights between two neurons must be set in advance.A pattern stored in Hopfield networks cannot be recalled if the pattern is not a local minimum.Two concepts are proposed to deal with this problem.They are the multiple training encoding method and the puppet encoding method.The multiple training encoding method,which guarantees to recall a single stored pattern under appropriate initial conditions of data,is theoreticall analyzed,and the minimal number of times for using a pattern for training to guarantee recalling of the pattern among a set of patterns is derived.The puppet encoding method is proved to be able to guarantee recalling of all stored patterns if attaching puppet data to the stored patterns is available. An integrated software PDS (Preliminary Design System),which is developed from two aspects,is described.One is from a case-based expert system--CPDS(Case-based Preliminary Design System),which is based on the algorithm of the Hopfield and developed for uncertain problems in PDS;the other is RPDS (Rule-based Preliminary Design System),which attacks logic or deduced problems in PDS.Based on the results of CPDS,RPDS can search for feasible solution in design model.CPDS is demonstrated to be useful in the domains of preliminary designs of cable-stayed bridges in this paper.

  8. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described.

  9. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  10. Kemper County IGCC (tm) Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

    2012-07-01

    The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

  11. Design and preliminary assessment of Vanderbilt hand exoskeleton.

    Science.gov (United States)

    Gasser, Benjamin W; Bennett, Daniel A; Durrough, Christina M; Goldfarb, Michael

    2017-07-01

    This paper presents the design of a hand exoskeleton intended to enable or facilitate bimanual activities of daily living (ADLs) for individuals with chronic upper extremity hemiparesis resulting from stroke. The paper describes design of the battery-powered, self-contained exoskeleton and presents the results of initial testing with a single subject with hemiparesis from stroke. Specifically, an experiment was conducted requiring the subject to repeatedly remove the lid from a water bottle both with and without the hand exoskeleton. The relative times required to remove the lid from the bottles was considerably lower when using the exoskeleton. Specifically, the average amount of time required to grasp the bottle with the paretic hand without the exoskeleton was 25.9 s, with a standard deviation of 33.5 s, while the corresponding average amount of time required to grasp the bottle with the exoskeleton was 5.1 s, with a standard deviation of 1.9 s. Thus, the task time involving the paretic hand was reduced by a factor of five, while the standard deviation was reduced by a factor of 16.

  12. Preliminary Design Study for a National Digital Seismograph Network

    Science.gov (United States)

    Peterson, Jon; Hutt, Charles R.

    1981-01-01

    Introduction Recently, the National Research Council published a report by the Panel on National, Regional, and Local Seismograph Networks of the Committee on Seismology in which the principal recommendation was for the establishment of a national digital seismograph network (NDSN). The Panel Report (Bolt, 1980) addresses both the need and the scientific requirements for the new national network. The purpose of this study has been to translate the scientific requirements into an instrumentation concept for the NSDS. There are literally hundreds, perhaps thousands, of seismographs in operation within the United States. Each serves an important purpose, but most have limited objectives in time, in region, or in the types of data that are being recorded. The concept of a national network, funded and operated by the Federal Government, is based on broader objectives that include continuity of time, uniform coverage, standardization of data format and instruments, and widespread use of the data for a variety of research purposes. A national digital seismograph network will be an important data resource for many years to come; hence, its design is likely to be of interest to most seismologists. Seismologists have traditionally been involved in the development and field operation of seismic systems and thus have been familiar with both the potential value and the limitations of the data. However, in recent years of increasing technological sophistication, the development of data sstems has fallen more to system engineers, and this trend is likely to continue. One danger in this is that the engineers may misinterpret scientific objectives or subordinate them to purely technological considerations. Another risk is that the data users may misuse or misinterpret the data because they are not aware of the limitations of the data system. Perhaps the most important purpose of a design study such as this is to stimulate a dialogue between system engineers and potential data users

  13. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    CERN Document Server

    Croft, S; Chard-Mj, P; Estop, J R; Martancik, D; Sheila-Melton; Young, B

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nucli...

  14. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    CERN Document Server

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  15. Preliminary design and R&D of ITER diagnostic-radial X-ray camera

    Science.gov (United States)

    Hu, L.; Chen, K.; Chen, Y.; Cao, H.; Li, S.; Yu, H.; Zhan, J.; Shen, J.; Qin, S.; Sheng, X.; Zhao, J.; Niu, L.; Feng, C.; Ge, J.; Zhang, S.; Zhang, B.

    2017-10-01

    Preliminary design of ITER Radial X-ray Camera (RXC) has been finished. The structure design is optimized and installation process is studied considering the simplification and easiness of maintenance. Remote handling procedures are designed for the system maintenance after being activated. For detector cooling against high environment temperature which can be up to 240°, a dedicated gas cooling system using heat exchanger is designed. The structure analysis indicates that the stresses and displacements of most of the components under load combinations are within the allowable limits and no Safety Important Component (SIC) boundary is damaged. Through putting B4C material in the front part of DSM and around detectors for neutron shielding, the detectors are expected to survive the whole D-D phase. As for electronics, preliminary design of highly integrated pre-amplifier and program controllable mid-amplifier has been completed, both with bandwidth greater than 100 kHz to meet time resolution requirement of 20 kHz. To protect the electronics from intensive neutron and gamma irradiation, shielding cabinet capable of attenuating neutron flux down to 0.0001 and gamma dose 0.01 is designed. Besides, many R&D has been done to support the design. The tests of pre-amplifier and mid-amplifier indicated the electronics had no functional problem when debugging together and generally passed preliminary ElectroMagnetic Compatibility (EMC) test and nuclear test. The highly-integrated compact pre-amplifier has been used in EAST and proved useful. To test the feasibility of dedicated gas cooling system for detectors, a cooling test platform was built and preliminary cooling test has been done, indicating that during 250°baking the detector temperature is promising to be cooled down to the detector temperature limit of 75°. To increase signal to noise ratio, large area detector with dark current less than 2nA has been manufactured and worked steadily in EAST experiments.

  16. Farm Fuel Alcohol Project: preliminary report on facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pile, R S; Badger, P C; Roetheli, J C; Waddell, Jr, E L

    1979-09-01

    This report describes the design of a farm-based ethanol production system to be built by TVA at Muscle Shoals, Alabama. This facility will include cooking, fermentation, and distillation equipment to allow production of 8000 to 12,000 gallons of fuel ethanol during a three to four month period each year. Output will be about 10 gallons of 190-proof ethanol per hour. Present components are sized to allow 12 to 14 hour daily operation as a semi-continuous batch system. Intent of the project is to document equipment and energy requirements, ethanol yields, and feasibility of small farm-based ethanol plants for farm fuel self-sufficiency. Cooking and fermentation will be batch-type operations, and packed distillation columns will be used for separating ethanol from the fermented beer. Energy recovery and waste heat use are integrated when feasible. The fermented beer will be fed directly to the distillation columns without separation of solids. Although this is an area of concern, an economical method of separation could not be identified.

  17. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  18. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    Westinghouse has completed the Preliminary Desigh Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume presents the preliminary design configuration and system optimization. (WHK)

  19. Design of Organic Transformations at Ambient Conditions: Our Sincere Efforts to the Cause of Green Chemistry Practice.

    Science.gov (United States)

    Brahmachari, Goutam

    2016-02-01

    This account summarizes our recent efforts in designing a good number of important organic transformations leading to the synthesis of biologically relevant compounds at room temperature and pressure. Currently, the concept of green chemistry is globally acclaimed and has already advanced quite significantly to emerge as a distinct branch of chemical sciences. Among the principles of green chemistry, one principle is dedicated to the "design of energy efficiency" - that is, to develop synthetic strategies that require less or the minimum amount of energy to carry out a specific reaction with optimum productivity - and the most effective way to save energy is to develop strategies/protocols that are capable enough to carry out the transformations at ambient temperature! As part of on-going developments in green synthetic strategies, the design of reactions under ambient conditions coupled with other green aspects is, thus, an area of current interest. The concept of developing reaction strategies at room temperature and pressure is now an emerging field of research in organic chemistry and is progressing steadily. This account is aimed to offer an overview of our recent research works directly related to this particular field of interest, and highlights the green chemistry practice leading to carbon-carbon and carbon-heteroatom bond-forming reactions of topical significance. Green synthetic routes to a variety of biologically relevant organic molecules (heterocyclic, heteroaromatic, alicyclic, acyclic, etc.) at room temperature and pressure are discussed.

  20. Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

  1. Preliminary Design Report for the Yakima/Klickitat Production Project; Executive Summary.

    Energy Technology Data Exchange (ETDEWEB)

    US Bonneville Power Administration.

    1990-03-01

    A master plan for the Yakima/Klickitat Production Project (YKPP) was developed by the Northwest Power Planning Council (Council) on October 15, 1987, as a reasonable basis upon which the Bonneville Power Administration (BPA) could proceed to fund predesign work on the project. The Council approved the predesign work on the condition that eight preliminary tasks were completed. These tasks are: Agreement on a refined statement of project goals. Completion of a technical analysis of water supplies. Completion of an experimental design plan. Development of a harvest management plan. Assessment of potential genetic risks. Project coordination with all other affected parties. Submission of a preliminary design report to the Council. Develop a project management structure. The preliminary design report summarizes the work completed on these tasks. It provides a description of the preliminary design, engineering, and construction phases of project development, and gives an estimate of project costs. Also included is a description of other studies that were conducted to support YKPP planning. The results of studies conducted during the last 30 months indicate that hatchery facilities can be built in the Yakima and Klickitat subbasins to provide harvest benefits and to supplement natural production. Planning for the Yakima subbasin is at a more advanced stage of development than for the Klickitat subbasin because of greater availability of basic resource information. The information needed to proceed with final design and construction for the Klickitat subbasin will be available by 1992, as ongoing predesign work continues. This schedule is consistent with the anticipated phased completion of the YKPP by 1997.

  2. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    Science.gov (United States)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  3. Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

  4. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    Science.gov (United States)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for

  5. Power system development: Ocean Thermal Energy Conversion (OTEC). Preliminary design report: appendices, Part 2 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the electrical system, instrumentation and control, ammonia pump evaluation study, ammonia and nitrogen support subsystems, piping and support design calculations, and plant availability. (WHK)

  6. Preliminary Reactor Head Bolt Design of Prototype Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Insu; Koo, Gyeonghoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    As structural requirements, the reactor head is designed to withstand all of the pressure, temperatures and forces which are likely to be imposed on it. The bolts that fasten the head to the vessel flange. Design of the reactor head bolts so as to withstand the loads applied should be designed. Currently, preliminary design of the PGSFR reactor bolts is progressed. So far, we have designed and evaluated example. The number and cross-sectional areas of bolts were determined using the procedure given in ASME BPVC Section III, Division 1, Appendix E. The purpose of this study is to conduct design the number and cross-sectional area of bolts attaching the PGSFR reactor head to the reactor vessel, using the ASME procedure. In this paper, preliminary bolt design for PGSFR was carried out according to the ASME procedure. Detailed calculations were carried out for bolt root diameter = 80 mm and number of bolts Nb = 45. It should be noted that the seating pressure recommended in the ASME code is only a suggested value, not mandatory appendix E. It does not guarantee a leak-tight joint. So these quantities are needed to carry out fatigue analysis of the bolts and to assure leak tightness of the joint during operation. For the future work, the fatigue and seismic analysis will be performed.

  7. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    Energy Technology Data Exchange (ETDEWEB)

    FRANZ GR; MEICHLE RH

    2011-07-18

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  8. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  9. Preliminary design of a public transportation system to support a theme park

    OpenAIRE

    Malacane, Christine Ann

    1994-01-01

    The purpose of this project was to develop the preliminary design of a public transportation system (PTS) that would support a theme park. Disney's America, a theme park originally planned for Northern Virginia, was used as the basis for this project. The problem was that the primary interstate that serves the park site was already overcrowded; this project was intended to expand the realm of possible transportation solutions to include public-transit solutions. The following report identi...

  10. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    Science.gov (United States)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1990-01-01

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  11. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  12. Preliminary Design Report of Fluid System of PDRC Performance Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-Ho; Eoh, Jae-Hyuk; Seong, Seung-Hwan; Han, Ji-Woong; Choi, Byoung-Hae; Kim, Seong-O

    2008-10-15

    PDRC (Passive Decay Heat Removal Circuit) is a safety grade passive residual heat removal system of KALIMER-600. In order to assess the long- and short-term cooling capabilities of PDRC and produce the experimental data for the verification of the performance and safety analysis codes, PDRC performance test was planned for. In this study, the overall design requirements and the preliminary design data for the fluid system of test facility are presented. The fluid system of the facility is composed of the primary heat transport system, the PDRC, the IHX air cooling system and the sodium supply/purification system. The preliminarily designed facility is scaled-down to 1/4 for length, 1/400 for volume from the primary heat transport system and the PDRC of KALIMER-600 based on a reliable scaling method. It can simulate the cooling of primary heat transport system for the full temperature condition in case of the reactor and pump trips. The produced preliminary design data will be used in the future as the basic information for a detailed design, an establishment of experimental requirement and an assessment of the appropriateness of facility design.

  13. Preliminary Design of Large Scale Sodium Thermal-Hydraulic Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Ho; Kim, Tae Joon; Eoh, Jae Hyuk; Lee, Hyeong Yeon; Lee, Jae Han; Jeong, Ji Young; Park, Su Ki; Han, Ji Woong; Yoo, Yong Hwan; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    A large scale sodium thermal-hydraulic test facility is being designed for verification of the advanced design concept of the passive decay heat removal circuit (PDRC) in a medium- or large-sized pool-type SFR. In the test, its cooling capability during the long- and short-term periods after the reactor trip will be evaluated, and also the produced experimental data will be utilized for the assessment and verification of the safety and performance analysis codes. Starting with the preliminary design of the test facility this year using KALIMER-600 as a reference reactor, the basic and the detailed designs will be made through 2011-2012 based on the demonstration reactor which is intended to be constructed by 2028 according to a long-term national SFR development plan. The installation is scheduled to be completed by the end of 2013, and the main experiments will commence from 2015 after the startup test in 2014. This paper briefly introduces the preliminary design features which were produced as a first step to assess the appropriateness of the facility design methodology.

  14. A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1

    Science.gov (United States)

    Rais-Rohani, Masoud

    1998-01-01

    This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.

  15. Preliminary design study of a quiet, high flow fan (QHF) stage. [turbofans - quiet engine program

    Science.gov (United States)

    Walker, C. L.; Kisner, L. S.; Delaney, R. A.; Beguhn, A. A.; Frye, D. E.

    1974-01-01

    Concepts selected to reduce fan generated noise in a turbofan are presented. Near-sonic flow at the fan inlet to reduce upstream propagated noise and the use of long-chord vanes to reduce downstream noise is discussed. The near-sonic condition at the rotor inlet plane was achieved by designing for high specific mass flow and by maintaining the high flow at reduced power by variable stators and variable fan exhaust nozzle. The long-chord vanes reduce response to unsteady flow. The acoustic design showed that long-chord stators would significantly reduce turbofan source noise and that other stator design parameters have no appreciable effect on noise for the spacing and chord length of the turbofan design. Four rig flow paths studied in the aerodynamic preliminary design are discussed. Noise prediction results indicate that a turbofan powered aircraft would be under federal air regulations levels without any acoustic treatment.

  16. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  17. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  18. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  19. Heat recovery and seed recovery development project: preliminary design report (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  20. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  1. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    Science.gov (United States)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  2. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    Westinghouse has completed the Preliminary Design Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume describes system operation, a complete test program to verify mechanical reliability and thermal performance, fabrication and installation operations, and a cost analysis. (WHK)

  3. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    Science.gov (United States)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  4. Preliminary design of a high speed civil transport: The Opus 0-001

    Science.gov (United States)

    1992-01-01

    Based on research into the technology and issues surrounding the design, development, and operation of a second generation High Speed Civil Transport, HSCT, the Opus 0-001 team completed the preliminary design of a sixty passenger, three engine aircraft. The design of this aircraft was performed using a computer program which the team wrote. This program automatically computed the geometric, aerodynamic, and performance characteristic of an aircraft whose preliminary geometry was specified. The Opus 0-001 aircraft was designed for a cruise Mach number of 2.2, a range of 4,700 nautical miles and its design was based in current or very near term technology. Its small size was a consequence of an emphasis on a profitable, low cost program, capable of delivering tomorrow's passengers in style and comfort at prices that make it an attractive competitor to both current and future subsonic transport aircraft. Several hundred thousand cases of Cruise Mach number, aircraft size and cost breakdown were investigated to obtain costs and revenues for which profit was calculated. The projected unit flyaway cost was $92.0 million per aircraft.

  5. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms.

  6. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  7. Mental effort

    NARCIS (Netherlands)

    Kirschner, Paul A.; Kirschner, Femke

    2013-01-01

    Kirschner, P. A., & Kirschner, F. (2012). Mental effort. In N. Seel (Ed.), Encyclopedia of the sciences of learning, Volume 5 (pp. 2182-2184). New York, NY: Springer. doi:10.1007/978-1-4419-1428-6_226

  8. The Square Kilometre Array Science Data Processor. Preliminary compute platform design

    Science.gov (United States)

    Broekema, P. C.; van Nieuwpoort, R. V.; Bal, H. E.

    2015-07-01

    The Square Kilometre Array is a next-generation radio-telescope, to be built in South Africa and Western Australia. It is currently in its detailed design phase, with procurement and construction scheduled to start in 2017. The SKA Science Data Processor is the high-performance computing element of the instrument, responsible for producing science-ready data. This is a major IT project, with the Science Data Processor expected to challenge the computing state-of-the art even in 2020. In this paper we introduce the preliminary Science Data Processor design and the principles that guide the design process, as well as the constraints to the design. We introduce a highly scalable and flexible system architecture capable of handling the SDP workload.

  9. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  10. Effect of running therapy on depression (EFFORT-D. Design of a randomised controlled trial in adult patients [ISRCTN 1894

    Directory of Open Access Journals (Sweden)

    Kruisdijk Frank R

    2012-01-01

    Full Text Available Abstract Background The societal and personal burden of depressive illness is considerable. Despite the developments in treatment strategies, the effectiveness of both medication and psychotherapy is not ideal. Physical activity, including exercise, is a relatively cheap and non-harmful lifestyle intervention which lacks the side-effects of medication and does not require the introspective ability necessary for most psychotherapies. Several cohort studies and randomised controlled trials (RCTs have been performed to establish the effect of physical activity on prevention and remission of depressive illness. However, recent meta-analysis's of all RCTs in this area showed conflicting results. The objective of the present article is to describe the design of a RCT examining the effect of exercise on depressive patients. Methods/Design The EFFect Of Running Therapy on Depression in adults (EFFORT-D is a RCT, studying the effectiveness of exercise therapy (running therapy (RT or Nordic walking (NW on depression in adults, in addition to usual care. The study population consists of patients with depressive disorder, Hamilton Rating Scale for Depression (HRSD ≥ 14, recruited from specialised mental health care. The experimental group receives the exercise intervention besides treatment as usual, the control group receives treatment as usual. The intervention program is a group-based, 1 h session, two times a week for 6 months and of increasing intensity. The control group only performs low intensive non-aerobic exercises. Measurements are performed at inclusion and at 3,6 and 12 months. Primary outcome measure is reduction in depressive symptoms measured by the HRSD. Cardio-respiratory fitness is measured using a sub maximal cycling test, biometric information is gathered and blood samples are collected for metabolic parameters. Also, co-morbidity with pain, anxiety and personality traits is studied, as well as quality of life and cost

  11. Design and methods for a randomized clinical trial comparing three outreach efforts to improve screening mammography adherence

    Directory of Open Access Journals (Sweden)

    Reed George

    2011-06-01

    Full Text Available Abstract Background Despite the demonstrated need to increase screening mammography utilization and strong evidence that mail and telephone outreach to women can increase screening, most managed care organizations have not adopted comprehensive outreach programs. The uncertainty about optimum strategies and cost effectiveness have retarded widespread acceptance. While 70% of women report getting a mammogram within the prior 2 years, repeat mammography rates are less than 50%. This 5-year study is conducted though a Central Massachusetts healthcare plan and affiliated clinic. All womenhave adequate health insurance to cover the test. Methods/Design This randomized study compares 3 arms: reminder letter alone; reminder letter plus reminder call; reminder letter plus a second reminder and booklet plus a counselor call. All calls provide women with the opportunity to schedule a mammogram in a reasonable time. The invention period will span 4 years and include repeat attempts. The counselor arm is designed to educate, motivate and counsel women in an effort to alleviate PCP burden. All women who have been in the healthcare plan for 24 months and who have a current primary care provider (PCP and who are aged 51-84 are randomized to 1 of 3 arms. Interventions are limited to women who become ≥18 months from a prior mammogram. Women and their physicians may opt out of the intervention study. Measurement of completed mammograms will use plan billing records and clinic electronic records. The primary outcome is the proportion of women continuously enrolled for ≥24 months who have had ≥1 mammogram in the last 24 months. Secondary outcomes include the number of women who need repeat interventions. The cost effectiveness analysis will measure all costs from the provider perspective. Discussion So far, 18,509 women aged 51-84 have been enrolled into our tracking database and were randomized into one of three arms. At baseline, 5,223 women were eligible

  12. Effortful echolalia.

    Science.gov (United States)

    Hadano, K; Nakamura, H; Hamanaka, T

    1998-02-01

    We report three cases of effortful echolalia in patients with cerebral infarction. The clinical picture of speech disturbance is associated with Type 1 Transcortical Motor Aphasia (TCMA, Goldstein, 1915). The patients always spoke nonfluently with loss of speech initiative, dysarthria, dysprosody, agrammatism, and increased effort and were unable to repeat sentences longer than those containing four or six words. In conversation, they first repeated a few words spoken to them, and then produced self initiated speech. The initial repetition as well as the subsequent self initiated speech, which were realized equally laboriously, can be regarded as mitigated echolalia (Pick, 1924). They were always aware of their own echolalia and tried to control it without effect. These cases demonstrate that neither the ability to repeat nor fluent speech are always necessary for echolalia. The possibility that a lesion in the left medial frontal lobe, including the supplementary motor area, plays an important role in effortful echolalia is discussed.

  13. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  14. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  15. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  16. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6: simulation design and preliminary results

    Directory of Open Access Journals (Sweden)

    B. Kravitz

    2015-06-01

    simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1 GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  17. Preliminary optical design of an Active Optics test bench for space applications.

    Science.gov (United States)

    Calcines, A.; Bitenc, U.; Rolt, S.; Reeves, S.; Doelman, N.; Human, J.; Morris, T.; Myers, R.; Talbot, G.

    2017-03-01

    This communication presents a preliminary optical design for a test bench conceived within the European Space Agency's TRP project (Active Optics Correction Chain (AOCC) for large monolithic mirrors) with the goal of designing and developing an Active Optics system able to correct in space on telescopes apertures larger than 3 meters. The test bench design uses two deformable mirrors of 37.5 mm and 116 mm, the smallest mirror to generate aberrations and the largest one to correct them. The system is configured as a multi-functional test bench capable of verifying the performance of a Shack-Hartmann wavefront sensor as well as of a Phase Diversity based wavefront sensor. A third optical path leads to a high-order Shack-Hartmann wavefront sensor to monitor the entire system performance.

  18. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  19. Euler Technology Assessment program for preliminary aircraft design employing SPLITFLOW code with Cartesian unstructured grid method

    Science.gov (United States)

    Finley, Dennis B.

    1995-01-01

    This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  20. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  1. Energy efficient engine flight propulsion system preliminary analysis and design report

    Science.gov (United States)

    Gardner, W. B.

    1979-01-01

    A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.

  2. A dispersion model approach to the preliminary design of adsorber beds for trace contaminants

    Science.gov (United States)

    Madey, R.; Czayka, M.; Forsythe, R.; Povlis, J.; Yin, K.

    1976-01-01

    It is shown that a dispersion model for the transport of a gas through a porous medium can be useful in the preliminary design of adsorber beds for the control of trace contaminants. The transmission function is considered, taking into account the transmission of 102-ppm acetaldehyde in helium flowing at various flow rates through an absorber bed. The experiments were conducted at a temperature of 25.0 C. Attention is given to a representation of the experimental breakthrough curve, the volume adsorption capacity, temperature studies, and correlations.

  3. Preliminary Design of Control Network for HT-7U Tokamak Cryogenic System

    Institute of Scientific and Technical Information of China (English)

    Jin Yibin(金毅彬); Zhuang Ming(庄明); Bai Hongyu(白宏宇)

    2003-01-01

    In the course of the cryoplant modernization, a control network will be set up in order to facilitate the control, the supervision, the centralized data acquisition and the alarm handling of the cryogenic system for HT-7U tokamak. The paper introduces the preliminary design of control network based on the Controller Link Network for HT-7U tokamak cryogenic system. The multi-layer structure mentioned in the paper is the mainstream of automatic control.The control philosophy, the structure of the network and the components for control are also presented.

  4. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1: Executive summary

    Science.gov (United States)

    1981-05-01

    A preliminary design study of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations was performed. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented.

  5. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  6. Design and methods for a randomized clinical trial comparing three outreach efforts to improve screening mammography adherence.

    Science.gov (United States)

    Costanza, Mary E; Luckmann, Roger; White, Mary Jo; Rosal, Milagros C; Cranos, Caroline; Reed, George; Clark, Robin; Sama, Susan; Yood, Robert

    2011-06-03

    Despite the demonstrated need to increase screening mammography utilization and strong evidence that mail and telephone outreach to women can increase screening, most managed care organizations have not adopted comprehensive outreach programs. The uncertainty about optimum strategies and cost effectiveness have retarded widespread acceptance. While 70% of women report getting a mammogram within the prior 2 years, repeat mammography rates are less than 50%. This 5-year study is conducted though a Central Massachusetts healthcare plan and affiliated clinic. All women have adequate health insurance to cover the test. This randomized study compares 3 arms: reminder letter alone; reminder letter plus reminder call; reminder letter plus a second reminder and booklet plus a counselor call. All calls provide women with the opportunity to schedule a mammogram in a reasonable time. The invention period will span 4 years and include repeat attempts. The counselor arm is designed to educate, motivate and counsel women in an effort to alleviate PCP burden.All women who have been in the healthcare plan for 24 months and who have a current primary care provider (PCP) and who are aged 51-84 are randomized to 1 of 3 arms. Interventions are limited to women who become ≥ 18 months from a prior mammogram. Women and their physicians may opt out of the intervention study.Measurement of completed mammograms will use plan billing records and clinic electronic records. The primary outcome is the proportion of women continuously enrolled for ≥ 24 months who have had ≥ 1 mammogram in the last 24 months. Secondary outcomes include the number of women who need repeat interventions. The cost effectiveness analysis will measure all costs from the provider perspective. So far, 18,509 women aged 51-84 have been enrolled into our tracking database and were randomized into one of three arms. At baseline, 5,223 women were eligible for an intervention. We anticipate that the outcome will provide

  7. In Silico Analog Design for Terbinafine Against Trichophyton rubrum: A Preliminary Study.

    Science.gov (United States)

    Karumuri, Sudha; Singh, Puneet Kumar; Shukla, Pratyoosh

    2015-09-01

    The diseases caused by dermatophytes are common among several other infections which cause serious threat to human health. It is evident that enzyme squalene epoxidase is responsible for prolonged dermatophyte infection and it is appealing to note that this enzyme is also responsible for fatty acid synthesis in these groups of fungi. In the present study, terbinafine drug which targets enzyme squalene epoxidase has been explored to design its various novel analogues. The present study suggests that many more prominent drug analogues could be constituted which may be crucial towards designing new drug candidates. In the present study, we have designed a series of such analogues viz. [(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)(naphthalen-1-ylmethyl)amine, N-[8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]-2-(sulfoamino) acetamide, {[4-(dihydroxyamino)-8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]sulfanyl}methanol and (R)-{[4-({[(2E,6R)-6,7-dimethyloct-2-en-4-yn-1-yl](methyl)amino}methyl)-5-[(hydroxysulfamoyl)amino]naphthalen-1-yl]amino}sulfinic acid. Moreover, further by molecular docking approach the binding between enzyme and designed analogues was further analysed. The present preliminary report suggested a considerably good docking interaction score of -338.75 kcal/mol between terbinafine and squalene epoxidase from Trichophyton rubrum. This preliminary study implies that few designed candidate ligands can be effectual towards the activity of this enzyme and can play crucial role in pathogenesis control of T. rubrum.

  8. Software requirements flow-down and preliminary software design for the G-CLEF spectrograph

    Science.gov (United States)

    Evans, Ian N.; Budynkiewicz, Jamie A.; DePonte Evans, Janet; Miller, Joseph B.; Onyuksel, Cem; Paxson, Charles; Plummer, David A.

    2016-08-01

    The Giant Magellan Telescope (GMT)-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, precision radial velocity (PRV) optical echelle spectrograph that will be the first light instrument on the GMT. The G-CLEF instrument device control subsystem (IDCS) provides software control of the instrument hardware, including the active feedback loops that are required to meet the G-CLEF PRV stability requirements. The IDCS is also tasked with providing operational support packages that include data reduction pipelines and proposal preparation tools. A formal, but ultimately pragmatic approach is being used to establish a complete and correct set of requirements for both the G-CLEF device control and operational support packages. The device control packages must integrate tightly with the state-machine driven software and controls reference architecture designed by the GMT Organization. A model-based systems engineering methodology is being used to develop a preliminary design that meets these requirements. Through this process we have identified some lessons that have general applicability to the development of software for ground-based instrumentation. For example, tasking an individual with overall responsibility for science/software/hardware integration is a key step to ensuring effective integration between these elements. An operational concept document that includes detailed routine and non- routine operational sequences should be prepared in parallel with the hardware design process to tie together these elements and identify any gaps. Appropriate time-phasing of the hardware and software design phases is important, but revisions to driving requirements that impact software requirements and preliminary design are inevitable. Such revisions must be carefully managed to ensure efficient use of resources.

  9. A preliminary design of interior structure and foundation of an inflatable lunar habitat

    Science.gov (United States)

    Yin, Paul K.

    1989-01-01

    A preliminary structural design and analysis of an inflatable habitat for installation on the moon was completed. The concept takes the shape of a sphere with a diameter of approximately 16 meters. The interior framing provides five floor levels and is enclosed by a spherical air-tight membrane holding an interior pressure of 14.7 psi (101.4kpa). The spherical habitat is to be erected on the lunar surface with the lower one third below grade and the upper two thirds covered with a layer of lunar regolith for thermal insulation and shielding against radiation and meteoroids. The total dead weight (earth weight) of the structural aluminum, which is of vital interest for the costly space transportation, is presented. This structural dead weight represents a preliminary estimate without including structural details. The design results in two versions: one supports the weight of the radiation shielding in case of deflation of the fabric enclosure and the other assumes that the radiation shielding is self supporting. To gain some indication of the amount of structural materials needed if the identical habitat were installed on Mars and Earth, three additional design versions were generated where the only difference is in gravity. These additional design versions are highly academic since the difference will be much more than in gravity alone. The lateral loading due to dust storms on Mars and wind loads on Earth are some examples. The designs under the lunar gravity are realistic. They may not be adequate for final material procurement and fabrication, however, as the connection details, among other reasons, may effect the sizes of the structural members.

  10. Customer Relationship Management System in Occupational Safety & Health Companies: Research on Practice and Preliminary Design Solution

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2011-10-01

    Full Text Available One of the most prominent contemporary trends in formation of companies is the approach to development of a customer-oriented company. In this matter, various versions related to the intensity of this orientation are differentiated. Customer relationship management (CRM system is a well-known concept, and its practice is being studied and improved in connection to various sectors. Companies providing services of occupational safety and health (OHS mainly cooperate with a large number of customers and the quality of this cooperation largely affects the occupational safety and health of employees. Therefore, it is of both scientific and wider social interest to study and improve the relationship of these companies with their customers. This paper investigates the practice of applying CRM in Croatian OHS companies. It identifies the existing conditions and suggests possible improvements in the practice of CRM, based on experts’ assessments using analytic hierarchy process evaluation. Universal preliminary design was created as a framework concept for the formation of a typical customer-oriented OHS services company. Preliminary design includes a structural view, which provides more details through system diagrams, and an illustration of main cooperation processes of a company with its customer.

  11. Ocean thermal energy conversion cold water pipe preliminary design project. Task 2. Analysis for concept selection

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-01

    The successful performance of the CWP is of crucial importance to the overall OTEC system; the pipe itself is considered the most critical part of the entire operation. Because of the importance the CWP, a project for the analysis and design of CWP's was begun in the fall of 1978. The goals of this project were to study a variety of concepts for delivering cold water to an OTEC plant, to analyze and rank these concepts based on their relative cost and risk, and to develop preliminary design for those concepts which seemed most promising. Two representative platforms and sites were chosen: a spar buoy of a Gibbs and Cox design to be moored at a site off Punta Tuna, Puerto Rico, and a barge designed by APL/Johns Hopkins University, grazing about a site approximately 200 miles east of the coast of Brazil. The approach was to concentrate on the most promising concepts and on those which were either of general interest or espoused by others (e.g., steel and concrete concepts). Much of the overall attention, therefore, focused on analyzing rigid and compliant wall design, while stockade (except for the special case of the FRP stockade) and bottom-mounted concepts received less attention. A total of 67 CWP concepts were initially generated and subjected to a screening process. Of these, 16 were carried through design analysis, costing, and ranking. Study results are presented in detail. (WHK)

  12. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  13. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  14. TPX: Contractor preliminary design review. Volume 5, Manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.F.; Urban, W.M.; Hartman, D. [Everson Electric Co., Bekthlehem, PA (United States)

    1995-08-04

    TPX Insulation & Impregnation R&D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed.

  15. Ocean Thermal Energy Conservation (OTEC) power system development (PDS) II. Preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-10

    This report documents the results and conclusions of the PDS II, Phase I, preliminary design of a 10 MWe OTEC power system, using enhanced plate type heat exchangers, and of representative 0.2 MWe test articles. It further provides the documentation (specifications, drawings, trade studies, etc.) resulting from the design activities. The data and discussions of the technical concepts are organized to respond to the PDS II, Phase II proposal evaluation criteria. This volume, which specifically addresses the three evaluation categories (heat exchangers, rotating machinery, and power system configuration and performance) is an integral part of the Phase II plans (proposal) which describe the technical approach to delivering test articles to OTEC-1. In addition, there is a section which addresses power system cost and net energy analysis and another which discusses the results of stainless steel feasibility studies. Supporting documentation is contained in two appendix volumes.

  16. Preliminary Design of a Modular Unmanned Research Vehicle. Volume 2. Subsystem Technical Development Design Study

    Science.gov (United States)

    1988-12-01

    for real-time analysis, or post-test aaalvsis innaediate;y foliowing the tesi , in a form that was iure easily interpreted. Because the test site will...in the baseline MURV design is the Teledyne 320. 11.6.2.4 Fuel Loading Trade Study With the propulsion system characteristics de- cided , the optimal

  17. The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    Science.gov (United States)

    Datte, P.; Ross, J. S.; Froula, D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G.; Weaver, J.; Vergel de Dios, G.; Vitalich, M.

    2016-05-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion programs. We report on the preliminary design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beamsplitter and gratings before the shot. A deep-UV probe beam (λ0 between 185-215 nm) will optimally collect Thomson scattered light from plasma densities of 5 x 1020 electrons/cm3 while a 3ω probe will optimally collect Thomson scattered light from plasma densities of 1 x 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS recording system to measure background levels at NIF and phase II will include the integration of a probe laser.

  18. Preliminary design of a NIR prime focus corrector for the Galileo Telescope

    CERN Document Server

    Pernechele, C; Conconi, P; Gardiol, D; Molinari, E; Zerbi, F M; Pernechele, Claudio; Bortoletto, Favio; Conconi, Paolo; Gardiol, Daniele; Molinari, Emilio; Zerbi, Filippo

    2000-01-01

    In this paper a preliminary design for a prime focus corrector to be mounted at the Telescopio Nazionale Galileo (TNG) is presented. The telescope is located on La Palma (Canary Islands) and has a primary mirror of 3.5 m with a hyperbolic sag. Two optical designs have been considered in order to exploit detectors with 1k x 1k and 2k x 2k pixels. Each design makes use of four lenses, two of which are aspherical. The first lens diameters are, respectively, of 140 mm and 320 mm for the two kind of detectors. For both designs the telescope pupil is deliberately not re-imaged, and therefore it will not be possible to insert a cold stop. For such a reason particular care has been dedicated to the telescope thermal background study, in order to optimise the baffling system. The optics is able to correct fields of 11' x 11' and of 60'x60', depending on the design. It should be considered that the particular geometry of the focal plane array mosaic does not permit a full exploitation of the entire field, being based o...

  19. Impact of product development efforts on product introduction and product customization abilities:investigating the effects of product design complexity and product development order winners

    OpenAIRE

    Chaudhuri, Atanu; Dawar, Saloni

    2014-01-01

    This paper investigates the impact of efforts in new product development-manufacturing integration (NPDMI) on new product introduction (NPI) and product customization (PC) abilities and the moderating effects of product design complexity and importance of new product development order winners (NPIOW) on the above relationships. The results from the data on 136 Indian manufacturing plants show that NPDMI, product design complexity and NPIOW all have significant positive impact on NPI and PC ab...

  20. High risk cohort study for psychiatric disorders in childhood: rationale, design, methods and preliminary results.

    Science.gov (United States)

    Salum, Giovanni Abrahão; Gadelha, Ary; Pan, Pedro Mario; Moriyama, Tais Silveira; Graeff-Martins, Ana Soledade; Tamanaha, Ana Carina; Alvarenga, Pedro; Valle Krieger, Fernanda; Fleitlich-Bilyk, Bacy; Jackowski, Andrea; Sato, João Ricardo; Brietzke, Elisa; Polanczyk, Guilherme Vanoni; Brentani, Helena; de Jesus Mari, Jair; Do Rosário, Maria Conceição; Manfro, Gisele Gus; Bressan, Rodrigo Affonseca; Mercadante, Marcos Tomanik; Miguel, Eurípedes Constantino; Rohde, Luis Augusto

    2015-03-01

    The objective of this study is to present the rationale, methods, design and preliminary results from the High Risk Cohort Study for the Development of Childhood Psychiatric Disorders. We describe the sample selection and the components of each phases of the study, its instruments, tasks and procedures. Preliminary results are limited to the baseline phase and encompass: (i) the efficacy of the oversampling procedure used to increase the frequency of both child and family psychopathology; (ii) interrater reliability and (iii) the role of differential participation rate. A total of 9937 children from 57 schools participated in the screening procedures. From those 2512 (random = 958; high risk = 1554) were further evaluated with diagnostic instruments. The prevalence of any child mental disorder in the random strata and high-risk strata was 19.9% and 29.7%. The oversampling procedure was successful in selecting a sample with higher family rates of any mental disorders according to diagnostic instruments. Interrater reliability (kappa) for the main diagnostic instrument range from 0.72 (hyperkinetic disorders) to 0.84 (emotional disorders). The screening instrument was successful in selecting a sub-sample with "high risk" for developing mental disorders. This study may help advance the field of child psychiatry and ultimately provide useful clinical information.

  1. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  2. Design and preliminary test of precision segment positioning actuator for the California Extremely Large Telescope

    Science.gov (United States)

    Lorell, Kenneth R.; Aubrun, Jean-Noel; Clappier, Robert R.; Shelef, Ben; Shelef, Gad

    2003-01-01

    In order for the California Extremely Large Telescope (CELT) to achieve the required optical performance, each of its 1000 primary mirror segments must be positioned relative to adjacent segments with nanometer-level accuracy. This can be accomplished using three actuators for each segment to actively control the segment in tip, tilt, and piston. The Keck telescopes utilize a segmented primary mirror similar to CELT employing a highly successful actuator design. However, because of its size and the shear number of actuators (3000 vs. 108 for Keck), CELT will require a different design. Sensitivity to wind loads and structural vibrations, the large dynamic range, low operating power, and extremely reliable operation, all achieved at an affordable unit cost, are the most demanding design requirements. This paper examines four actuator concepts and presents a trade-off between them. The concept that best met the CELT requirements is described along with an analysis of its performance. The concept is based on techniques that achieve the required accuracy while providing a substantial amount of vibration attenuation and damping. A prototype actuator has been built to validate this concept. Preliminary tests confirm predicted behavior and future tests will establish a sound baseline for final design and production.

  3. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6: simulation design and preliminary results

    Directory of Open Access Journals (Sweden)

    B. Kravitz

    2015-10-01

    Full Text Available We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP. This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6, builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1 GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  4. Novel modular 2-DOF microsurgical forceps for transoral laser microsurgeries: Ergonomic design and preliminary evaluation.

    Science.gov (United States)

    Chauhan, Manish; Barresi, Giacinto; Deshpande, Nikhil; Caldwell, Darwin G; Mattos, Leonardo S

    2016-08-01

    Transoral Laser Microsurgeries (TLM) demand a great level of control and precision in intraoperative tissue manipulation. The optimal eradication of the diseased tissue is possible only with coordinated control of the laser aiming for incision and the microsurgical tools for orienting and stretching the tissue. However, the traditional microsurgical tools are long, single purpose, one degree-of-freedom (DOF), rigid tools with small range of motion and a normal grasping handle inducing non-ergonomic usage. This paper presents a novel, modular microsurgical tool to overcome the challenges of the traditional tools and improve the surgeon-tool usage experience. The novel design adds a rotational DOF to expand the reach and functionality of the tool. The device is provided with an ergonomic grasping handle that avoids extreme wrist excursions and is capable of adapting to the variety of tools used in TLM within the same design. The performance of the new microsurgical tool was evaluated through a subjective assessment with both medical students and expert surgeons. The evaluation demonstrated a general acceptance of the new forceps tool, with the expert surgeons providing positive appraisals for the improved functionality and user experience with the tool, which indicates towards the potential suitability of the device for TLM. The parameters assessed in the preliminary evaluation not only provide a sense of the advantages of the novel design, but also guide future evolution of the tool design.

  5. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    Science.gov (United States)

    Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J. M.; Irvine, P. J.; Jones, A.; Lawrence, M. G.; MacCracken, M.; Muri, H.; Moore, J. C.; Niemeier, U.; Phipps, S. J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S.

    2015-10-01

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  6. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    Science.gov (United States)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  7. Design of a Regenerative Life Support System for a Moon Base. Preliminary Results.

    Science.gov (United States)

    Duatis Juarez, Jordi; Guirado, Víctor; Lasseur, Christophe

    NTE-SENER has finalised a study under an ESA contract, to define a preliminary system design of an European Module to provide Environmental Control and Life Support to a potential Moon base. The design is based on current Life Support System technologies under development in Europe (MELiSSA, GWRU, Sabatier Reactor and UTU) along with contamination and microbial detection technologies (ANITA, MIDASS). The ECLSS is sized to provide water, air and up to the 40 As a support to the study a simulator has been developed to analyse the energy, volume and mass and the flow rates and efficiencies of the different components. The study applied the basics of the ALISSE criteria to evaluate the technologies taking as a source the results of the simulations. Detailed models of the different technologies have been developed including feedback from the pilot designs. The results of the study have showed up opportunities of improvement and many points that need to be further investigated. The technologies used in the study are based on the MELiSSA Pilot Plant reactors implementation and the results could affect their design in the near fu-ture in aspects such as carbon recycling, irrigation methods, energy consumption, technologies involved, etc.

  8. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    Science.gov (United States)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  9. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  10. MICE -- Absorber and focus coil safety working group design document: Preliminary design and assessments

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Giles; Baynham, Elwyn; Black, Edgar; Bradshaw, Tom; Cummings, Mary Anne; Green, Michael A.; Ishimoto, Shigeru; Ivanyushenkov, Yury; Lau, Wing; Zisman, Michael

    2003-12-04

    A Neutrino Factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly the discovery of leptonic CP violation. it is also the first step toward a muon collider. To develop a stored-muon-beam facility to serve as a Neutrino Factory, it is necessary to ''cool'' a muon beam (decrease its phase-space volume). The short lifetime of the muon, 2.2 {micro}s at rest, eliminates all currently demonstrated cooling techniques and requires that a new, heretofore untried, technique--ionization cooling--be employed. Although ionization cooling of muons has never been demonstrated in practice, it has been shown by end-to-end simulation and design studies to be an important factor both for the performance and for the cost of a Neutrino Factory. This motivates an international program of R and D, including an experimental demonstration at Rutherford Appleton Laboratory (RAL). The aims of the international Muon Ionization Cooling Experiment are: (1) to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory; and (2) to place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling. The MICE collaboration has designed an experiment in which a section of an ionization cooling channel is exposed to a muon beam. This cooling channel assembles liquid-hydrogen absorbers providing energy loss and high-gradient radio frequency (RF) cavities to re-accelerate the particles, all tightly contained in a magnetic channel. It reduces the beam transverse emittance by > 10% for muon momenta between 140 and 240 MeV/c. The layout of the experiment is shown. They utilize one complete magnetic cell of the cooling channel, comprising three absorber-focus-coil (AFC) modules and two RF-coupling-coil (RFCC) modules. Spectrometers placed before

  11. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.

    Science.gov (United States)

    O'Neill, Ciaran T; Phipps, Nathan S; Cappello, Leonardo; Paganoni, Sabrina; Walsh, Conor J

    2017-07-01

    In this paper, we present a soft wearable robot for the shoulder which has the potential to assist individuals suffering from a range of neuromuscular conditions affecting the shoulder to perform activities of daily living. This wearable robot combines two types of soft textile pneumatic actuators which were custom developed for this particular application to support the upper arm through shoulder abduction and horizontal flexion/extension. The advantage of a textile-based approach is that the robot can be lightweight, low-profile, comfortable and non-restrictive to the wearer, and easy to don like an item of clothing. The actuator's ability to fold flat when not in use allows the robot to be almost invisible under clothing, potentially allowing the user to avoid any stigma associated with using assistive devices in public. To abduct the arm, a textilebased pneumatic actuator was developed to fit within the axilla to push the arm upwards, while a pair of smaller actuators pivot the abduction actuator to allow for horizontal extension and flexion. The individual textile actuators were experimentally evaluated before being integrated into a wearable garment. Human subject testing was performed to evaluate the ability of the robot to assist the arm by monitoring changes in biological muscle activity when comparing the robot powered on and off. Preliminary results show large reductions in muscular effort in targeted muscles, demonstrating the feasibility and promise of such a soft wearable robot for the shoulder.

  12. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    Energy Technology Data Exchange (ETDEWEB)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

  13. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Science.gov (United States)

    Torrisi, Giuseppe; Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Sorbello, Gino; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Isernia, Tommaso; Gammino, Santo

    2016-02-01

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 1011-1013 cm-3 and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called "frequency sweep" method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  14. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    Science.gov (United States)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  15. Software tools and preliminary design of a control system for the 40m OAN radiotelescope

    Science.gov (United States)

    de Vicente, P.; Bolaño, R.

    2004-07-01

    The Observatorio Astronómico Nacional (OAN) is building a 40m radiotelescope in its facilities in Yebes (Spain) which will be delivered by April 2004. The servosystem will be controlled by an ACU (Antenna Control Unit), a real time computer running VxWorks which will be commanded from a remote computer (RCC) or from a local computer (LCC) which will act as console. We present the tools we have chosen to develop and use the control system for the RCC and the criteria followed for the choices we made. We also present a preliminary design of the control system on which we are currently working. The RCC will run a server which communicates with the ACU using sockets and with the clients, receivers and backends using OmniOrb, a free implementation of CORBA. Clients running Python will allow the users to control the antenna from any host connected to a LAN or a secure Internet connection.

  16. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, Giuseppe [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University Mediterranea of Reggio Calabria, Reggio Calabria (Italy); Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Gammino, Santo [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Sorbello, Gino [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University of Catania, Catania, Italy and INFN-LNS, Catania (Italy); Isernia, Tommaso [University Mediterranea of Reggio Calabria, Reggio Calabria (Italy)

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  17. Preliminary design review package for the solar heating and cooling central data processing system

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-25

    This preliminary design review package, consisting of the Software Performance Specification, Hardware Performance Specification, and the Verification Plan for the Central Data Processing System (CDPS), was prepared by the IBM Corporation. The Central Data Processing System, located at IBM's FSD facility in Huntsville, Alabama, provides the resources required to assess the performance of solar heating and cooling systems at remote sites. These sites include residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications.

  18. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  19. PORFLOW MODELING FOR A PRELIMINARY ASSESSMENT OF THE PERFORMANCE OF NEW SALTSTONE DISPOSAL UNIT DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.

    2012-08-06

    At the request of Savannah River Remediation (SRR), SRNL has analyzed the expected performance obtained from using seven 32 million gallon Saltstone Disposal Units (SDUs) in the Z-Area Saltstone Disposal Facility (SDF) to store future saltstone grout. The analysis was based on preliminary SDU final design specifications. The analysis used PORFLOW modeling to calculate the release of 20 radionuclides from an SDU and transport of the radionuclides and daughters through the vadose zone. Results from this vadose zone analysis were combined with previously calculated releases from existing saltstone vaults and FDCs and a second PORFLOW model run to calculate aquifer transport to assessment points located along a boundary 100 m from the nearest edge of the SDF sources. Peak concentrations within 12 sectors spaced along the 100 m boundary were determined over a period of evaluation extending 20,000 years after SDF closure cap placement. These peak concentrations were provided to SRR to use as input for dose calculations.

  20. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a Spacelab mission payload

    Science.gov (United States)

    1976-01-01

    The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.

  1. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  2. Utilization of Optimal Study Design for Maternal and Fetal Sheep Propofol Pharmacokinetics Study: A Preliminary Study

    Science.gov (United States)

    Sherwin, Catherine M. T.; Ngamprasertwong, Pornswan; Sadhasivam, Senthilkumar; Vinks, Alexander A.

    2017-01-01

    Multiple blood samples are generally required for measurement of pharmacokinetic (PK) parameters. D-optimal design is a popular and frequently used approach for determination of sampling time points in order to minimize the number of samples, while optimizing the estimation of PK parameters. Optimal design utilizing ADAPT (v5, BSR, University of Southern California, Los Angeles) developed a sparse sampling strategy to determine measurement of propofol in pregnant sheep. Propofal was administered as supplemental anesthetic agent to inhalation anesthesia to mimic anesthesia for open fetal surgery. In our preliminary study, propofol 3 mg/kg was given as a bolus to the ewe, followed by propofol infusion at rate 450 mcg/kg/min for 60 minutes, then decreased to 75 mcg/kg/min for 90 more minutes and then ceased. A three compartment model described the PK parameters with the fetus assumed as the third compartment. Initially, sampling times were chosen from thirteen time points as previously stated in the literature. Using priori propofol PK estimates, the final 9 sample time points were proposed in an optimal design with a change in infusion rate occurring between 65 and 75 minutes and sampling proposed at 5, 15, 25, 65, 75, 100, 110, 150, and 180 minutes. D-optimal design optimized the number and timing of samplings, which led to a reduction of cost and man power in the study protocol while preserving the ability to estimate propofol PK parameters in the maternal and fetal sheep model. Initial evaluation of samples collected from three sheep using the optimal design strategy confirmed the performance of the design in obtaining effective PK parameter estimates. PMID:24219004

  3. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  4. Preliminary designs for modular OTEC platform station-keeping subsystems. Final report. MR and S Report No. 6042-6

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-29

    This volume of the report presents the results of the third through the sixth tasks of the Station Keeping Subsystem (SKSS) design studies for 10/40 MW/sub e/ capacity OTEC Modular Experiment platforms (MEP). Tasks 3 through 6 are: (3) complete preliminary designs for one SKSS for each of the two platforms (SPAR and BARGE); (4) development and testing recommendations for the MEP SKSS; (5) cost-time analysis; and (6) commercial plant recommendations. The overall conclusions and recommendations for the modular, as well as the commercial, OTEC platform station keeping subsystems are delineated. The basic design assumptions made during the process, the technical approach followed, and the results of design iterations, reliability and performance analyses are given. A complete description of the preliminary design SKSS concept is presented. The summary cost estimates for each of the alternative SKSS concepts considered are presented and a time schedule for the recommended concept is provided. The effects of varying some of the important parameters used in SKSS design on the performance and cost of the mooring system are investigated and results presented. The tests required and other developmental recommendations in order to verify and confirm the basic design assumptions are discussed. Finally, the experience gained in the MEP preliminary designs are extended to future commercial OTEC plants' SKSS designs. (WHK)

  5. Telescopio San Pedro Mártir Observatory preliminary design and project approach

    Science.gov (United States)

    Teran, Jose; Lee, William H.; Richer, Michael G.; Sánchez, Beatriz S.; Urdaibay, David; Hill, Derek; Adriaanse, David; Hernandez-Limonchi, Regina

    2016-07-01

    The Instituto de Astronomia of the Universidad Nacional Autónoma de México (UNAM) along with Instituto Nacional de Astrofisica, Optica y Electronica, the University of Arizona and the Smithsonian Astrophysical Observatory are developing the Telescopio San Pedro Mártir (TSPM) project, a 6.5m diameter optical telescope. M3 Engineering and Technology Corp. (M3) is the design and construction management firm responsible for all site infrastructure, enclosure and support facilities. The Telescopio San Pedro Mártir project (TSPM) will be located within the San Pedro Mártir National Park in Baja California, Mexico at 2,830 m. above sea level, approximately 65 km. east of the Pacific Ocean, 55km west of the Sea of Cortes (Gulf of California) and 180km south of the United States and México border. The aim of the paper is to present the preliminary design of the site infrastructure, enclosure and support facilities to date and share the design and construction approach.

  6. Preliminary design of the full-Stokes UV and visible spectropolarimeter for UVMag/Arago

    CERN Document Server

    Pertenais, Martin; Pares, Laurent; Petit, Pascal; Snik, Frans; van Harten, Gerard

    2015-01-01

    The UVMag consortium proposed the space mission project Arago to ESA at its M4 call. It is dedicated to the study of the dynamic 3D environment of stars and planets. This space mission will be equipped with a high-resolution spectropolarimeter working from 119 to 888 nm. A preliminary optical design of the whole instrument has been prepared and is presented here. The design consists of the telescope, the instrument itself, and the focusing optics. Considering not only the scienti?c requirements, but also the cost and size constraints to ?t a M-size mission, the telescope has a 1.3 m diameter primary mirror and is a classical Cassegrain-type telescope that allows a polarization-free focus. The polarimeter is placed at this Cassegrain focus. This is the key element of the mission and the most challenging to be designed. The main challenge lies in the huge spectral range offered by the instrument; the polarimeter has to deliver the full Stokes vector with a high precision from the FUV (119 nm) to the NIR (888 nm...

  7. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    Science.gov (United States)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  8. Design concept and preliminary experimental demonstration of MEMS gyroscopes with 4-DOF master-slave architecture

    Science.gov (United States)

    Acar, Cenk; Shkel, Andrei M.

    2002-07-01

    This paper reports a design concept for MEMS gyroscopes that shifts the complexity of the design from control architecture to system dynamics, utilizing the passive disturbance rejection capability of the 4-DOF dynamical system. Specifically, a novel wide-bandwidth micromachined gyroscope design approach based on increasing the degrees-of-freedom of the oscillatory system by the use of two independently oscillating interconnected proof masses is presented along with preliminary experimental demonstration of implementation feasibility. With the concept of using a 4-DOF system, inherent disturbance rejection is achieved due to the wide operation frequency range of the dynamic system, providing reduced sensitivity to structural and thermal parameter fluctuations. Thus, less demanding active control strategies are required for operation under presence of perturbations. The fabricated prototype dual-mass gyroscopes successfully demonstrated a dramatically wide driving frequency range within where the drive direction oscillation amplitude varies insignificantly without any active control, in contrast to the conventional gyroscopes where the mass has to be sustained in constant amplitude oscillation in a very narrow frequency band. Mechanical amplification of driven mass oscillation by the sensing element was also experimentally demonstrated, providing large oscillation amplitudes, which is crucial for sensor performance.

  9. Preliminary GN&C Design for the On-Orbit Autonomous Assembly of Nanosatellite Demonstration Mission

    Science.gov (United States)

    Pei, Jing; Walsh, Matt; Roithmayr, Carlos; Karlgaard, Chris; Peck, Mason; Murchison, Luke

    2017-01-01

    Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.

  10. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  11. New shipyard layout design for the preliminary phase & case study for the green field project

    Directory of Open Access Journals (Sweden)

    Young Joo Song

    2013-03-01

    Full Text Available For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.

  12. Preliminary optical design of PANIC, a wide-field infrared camera for CAHA

    Science.gov (United States)

    Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.

    2008-07-01

    In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.

  13. Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

  14. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  15. Preliminary design of a vacuum pressure swing adsorption process for natural gas upgrading based on amino-functionalized MIL-53

    NARCIS (Netherlands)

    Serra-Crespo, P.; Wezendonk, T.A.; Bach-Samario, C.; Sundar, N.; Verouden, K.; Zweemer, M.; Gascon, J.; van den Berg, Henderikus; Kapteijn, F.

    2015-01-01

    A preliminary study based on a conceptual process design methodology that includes a technical evaluation and an economic study has been carried out for the use of the metal-organic framework NH2-MIL-53(Al) as adsorbent for the separation of carbon dioxide from methane. Among the alternatives

  16. Design and preliminary test of a free-air ionization chamber for low-energy X-ray

    Institute of Scientific and Technical Information of China (English)

    吴金杰; 杨元第; 王培玮; 陈靖; 柳加成

    2011-01-01

    A free-air ionization chamber in low-energy X-ray has been designed and manufactured at the National Institute of Metrology (NIM, China) according to the defination of air-kerma. The results of a preliminary test show that the leakage current of ionizatio

  17. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  18. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  19. Preliminary design of a small air loop for system analysis and validation of Cathare code

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, M.; Saez, M.; Tauveron, N.; Tenchine, D.; Germain, T.; Geffraye, G.; Ruby, G.P. [CEA Grenoble (DEN/DER/SSTH), 38 (France)

    2007-07-01

    The French Atomic Energy Commission (Cea) is carrying on the design of a Small Air Loop for System Analysis (SALSA), devoted to the study of gas cooled nuclear reactors behaviour in normal and incidental/accidental operating conditions. The reduced size of the SALSA components compared to a full-scale reactor and air as gaseous coolant instead of Helium will allow an easy management of the loop. The main purpose of SALSA will be the validation of the associated thermal hydraulic safety simulation codes, like CATHARE. The main goal of this paper is to present the methodology used to define the characteristics of the loop. In a first step, the study has been focused on a direct-cycle system for the SALSA loop with few global constraints using a similarity analysis to support the definition and design of the loop. Similarity requirements have been evaluated to determine the scale factors which have to be applied to the SALSA loop components. The preliminary conceptual design of the SALSA plant with a definition of each component has then be carried out. The whole plant has been modelled using the CATHARE code. Calculations of the SALSA steady-state in nominal conditions and of different plant transients in direct-cycle have been made. The first system results obtained on the global behaviour of the loop confirm that SALSA can be representative of a Gas-Cooled nuclear reactor with some minor design modifications. In a second step, the current prospects focus on the SALSA loop capability to reproduce correctly the heat transfer occurring in specific incidental situations. Heat decay removal by natural convection is a crucial point of interest. The first results show that the behaviour and the efficiency of the loop are strongly influenced by the definition of the main parameters for each component. A complete definition of SALSA is under progress. (authors)

  20. Preliminary conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR). Status report, January 1978--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.L. (ed.)

    1978-03-01

    The DTHR preliminary conceptual design consists of a magnetically confined fusion reactor fitted with a fertile thorium blanket. The fusion driver concept is based on a beam driven plasma, but at sufficiently high plasma densities that neutrons originating from the interactions of bulk plasma ions contribute significantly to the wall loading. The tokamak has a major radius of 5.2 m, a minor radius of 1.2 m, and the elongation is 1.6. All of the magnetic coil systems are superconducting Nb/sub 3/Sn based on the Large Coil Project (LCP) technology. The toroidal field (TF) coils employ an innovative concept, the ''compact D'' configuration. An engineered bundle divertor concept has been developed based on the bundle divertor design techniques developed for TNS and ISX-B. A thermal power of 150MW of 200 keV deuterium is injected into the plasma through six ducts of a positive ion, neutral beam injection system (NBIS). A water cooled, 316 stainless steel vacuum vessel concept was developed and initial scoping analyses look encouraging. The fusile fuel handling system was evaluated and defined. Details of the tritium injection system remain to be developed. Tritium breeding will be assessed in subsequent phases of the DTHR operation. The fusion driver provides a neutron first wall loading of 2MW/m/sup 2/ for fissile production in the blanket.

  1. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  2. New technologies and new performances of the JCMT radio-telescope: a preliminary design study

    Science.gov (United States)

    Mian, S.; De Lorenzi, S.; Ghedin, L.; Rampini, F.; Marchiori, G.; Craig, S.

    2012-09-01

    With a diameter of 15m the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimeter wavelength region of the spectrum. It is situated close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. Its primary reflector currently consists of a steel geodesic supporting structure and pressed aluminium panels on a passive mount. The major issues of the present reflector are its thermal stability and its panels deterioration. A preliminary design study for the replacement of the JCMT antenna dish is here presented. The requested shape error for the new reflector is antenna performance in terms of both stiffness and thermal stability, so that the required surface accuracy of the primary can be achieved even by adopting a passive panels system. Moreover thanks to CFRP, a considerable weight reduction of the elevation structure can be attained. The performance of the proposed solution for the JCMT antenna has been investigated through FE analyses and the assessed deformation of the structure under different loading cases has been taken into account for subsequent error budgeting. Results show that the proposed solution is in line with the requested performance. With this new backing structure, the JCMT would have the largest CFRP reflector ever built.

  3. A fast-track preliminary thermo-mechanical design of oil export pipelines from P-56 platform

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Rafael F.; Mendonca, Salete M. de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Franco, Luciano D.; Walker, Alastair; El-Gebaly, Sherif H. [INTECSEA, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The oil export pipelines of Marlim Sul field Module 3, Campus Basin, offshore Brazil, will operate in high pressure and temperature conditions, and will be laid on seabed crossing ten previously laid pipelines along the routes. In terms of thermo-mechanical design, these conditions turn out to be great challenges. In order to obtain initial results and recommendations for detail design, a preliminary thermo-mechanical design of pipelines was carried out as a fast-track design before the bid. This way, PETROBRAS can assess and emphasize the susceptibility of these lines to lateral buckling and pipeline walking behavior. Therefore, PETROBRAS can present a preliminary mitigation strategy for lateral buckling showing solutions based on displacement controlled criteria and by introducing buckle initiation along the pipeline using distribution buoyancy. Besides that, axial displacements and loads at the pipeline ends can be furnished also in order to provide a basis for the detailed design. The work reported in this paper follows the SAFEBUCK JIP methodology and recommendation, which were used to determine the allowable strain and maximum allowable VAS (Virtual Anchor Spacing) considered in the buckling mitigation strategy. The paper presents also the formation of uncontrolled buckles on the seabed and the propensity for pipeline walking in its sections between buckles. The buckling mitigation strategy established in this preliminary design confirms that the oil pipeline specifications are adequate to maintain integrity during design life. (author)

  4. Preliminary greenhouse design for a Martian colony: Structural, solar collection, and light distribution systems

    Science.gov (United States)

    1990-11-01

    The design of a greenhouse that will be a component of a long-term habitat on Mars is presented. The greenhouse will be the primary food source for people stationed on Mars. The food will be grown in three identical underground modules, pressurized at 1 atm to allow a shirt-sleeve environment within the greenhouse. The underground location will support the structure, moderate the large environmental variations on the surface, and protect the crops from cosmic radiation. The design effort is concentrated on the outer structure and the lighting system for the greenhouse. The structure is inflatable and made of a Kevlar 49/Epoxy composite and a pipe-arched system that is corrugated to increase stiffness. This composite is pliable in an uncured state, which allows it to be efficiently packaged for transport. The lighting system consists of several flat-plate fiber optic solar collectors with dual-axis tracking systems that will continually track the sun. This design is modeled after the Himawari collector, which was designed by Dr. Kei Mori and is currently in use in Japan. The light will pass through Fresnel lenses that filter out undesirable wavelengths and send the light into the greenhouses by way of fiber optic cables. When the light arrives at the greenhouse, it is dispersed to the plants via a waveguide and diffuser system.

  5. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix C: preliminary design data package. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Piccolo, R.

    1979-07-31

    The assumptions made, analysis methods used, and preliminary results of research to determine the design specifications for a hybrid electric-powered and internal combustion engine-powered vehicle that would optimize the fuel economy of passenger automobiles are described. Information is included on body and component design, selection of spark-ignition engine and Ni-Zn batteries, life-cycle costs and life-cycle fuel consumption. (LCL)

  6. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.; Shankar, P. S.; Nuclear Engineering Division

    2007-04-05

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made a preliminary assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. Two IHX designs namely, shell and tube and compact heat exchangers were considered in the assessment. Printed circuit heat exchanger, among various compact heat exchanger (HX) designs, was selected for the analysis. Irrespective of the design, the material considerations for the construction of the HX are essentially similar, except may be in the fabrication of the units. As a result, we have reviewed in detail the available information on material property data relevant for the construction of HX and made a preliminary assessment of several relevant factors to make a judicious selection of the material for the IHX. The assessment included four primary candidate alloys namely, Alloy 617 (UNS N06617), Alloy 230 (UNS N06230), Alloy 800H (UNS N08810), and Alloy X (UNS N06002) for the IHX. Some of the factors addressed in this report are the tensile, creep, fatigue, creep fatigue, toughness properties for the candidate alloys, thermal aging effects on the mechanical properties, American Society of Mechanical Engineers (ASME) Code compliance

  7. Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander

    Science.gov (United States)

    Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak

    2010-01-01

    Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to

  8. Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander

    Science.gov (United States)

    Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak

    2010-01-01

    Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to

  9. The cooperative learning: Understanding and increasing the knowledge of the facilities design without a professor extra effort

    Directory of Open Access Journals (Sweden)

    C. Ferrera

    2014-09-01

    Full Text Available Lecturing has been prevailing in higher education. This teaching and learning model hinders the understanding of fundamental concepts in practical courses. The cooperative learning allows an improvement in the student’s achievements, attitudes and persistence. The main goal of this work is to implement the cooperative learning in the teaching of the design of industrial facilities. This methodology aims to solve part of the problems of recently graduate students when they undertake engineering projects lacking knowledge. Finally, the results of an end-of-course satisfaction survey, conducted to assess this experience, are also presented.

  10. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    Science.gov (United States)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  11. Construction of Design FMEA and Fail Mode and Effort Analysis Databae%FMEA设计与失效分析数据库的建设

    Institute of Scientific and Technical Information of China (English)

    蔡春水

    2009-01-01

    This paper introduces construction of design FMEA and fail mode and effort analysis Databae Summarizing design guide according to fail mode and effort analysis and material research.In the mean time, R&D engineer can visit DB management system con-veniently to check it according to the design guide which can avoid any mistake The system is applied widely in all kinds of product of Newland Computer co, Itd,Which improves quality of product design and reduces product development period.%文章主要介绍FMEA(Fail Mode and Effect Analysis)设计与失效分析数据库的建设,通过失效分析、器件研究总结出设计准则,同时设计人员能方便通过网络髓陆失效分析数据库管理系统导出设计准则并进行实时查询核对并开展FMEA评审,以规避设计失误,该系统建立完成后在该公司各类产品上广泛应用,产品设计质量明显提高,开发周期也得以缩短.

  12. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  13. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  14. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    Science.gov (United States)

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  15. Georgetown University Integrated Community Energy System (GU-ICES). Phase III, Stage II. Preliminary design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    Results are presented for two elements in the Georgetown University ICES program - the installation of a 2500-kW backpressure steam-turbine generator within a new extension to the heating and cooling plant (cogeneration) and the provision of four additional ash silos for the university's atmospheric fluidized-bed boiler plant (added storage scheme). The preliminary design and supporting documentation for the work items and architectural drawings are presented. Section 1 discusses the basis for the report, followed by sections on: feasibility analysis update; preliminary design documents; instrumentation and testing; revised work management plan; and appendices including outline constructions, turbine-generator prepurchase specification, design calculations, cost estimates, and Potomac Electric Company data. (MCW)

  16. Design and preliminary validation of a tool for the simulation of train braking performance

    Institute of Scientific and Technical Information of China (English)

    Luca Pugi; Monica Malvezzi; Susanna Papini; Gregorio Vettori

    2013-01-01

    Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train’s subsystems. This paper presents a modular tool for the prediction of train braking performance, with a par-ticular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety require-ments prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experi-mental data, considering as benchmark case an Ansaldo EMU V250 train-a European high-speed train-currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were avail-able. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results.

  17. Kelly Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center preliminary design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Longyear, A.B. (ed.)

    1980-08-01

    A Phase 1 Preliminary Design, Construction Planning and Economic Analysis has been conducted for the Kelly Hot Spring Agricultural Center in Modoc County, California. The core activity is a 1360 breeding sow, swine raising complex that utilizes direct heat energy from the Kelly Hot Spring geothermal resource. The swine is to be a totally confined operation for producing premium pork in controlled-environment facilities. The complex contains a feed mill, swine raising buildings and a complete waste management facility that produces methane gas to be delivered to a utility company for the production of electricity. The complex produces 6.7 million pounds of live pork (29,353 animals) shipped to slaughter per year; 105,000 cu. ft. of scrubbed methane per day; and fertilizer. Total effluent is less than 200 gpm of agricultural quality-water with full odor control. The methane production rate made possible with geothermal direct heat is equivalent to at least 400 kw continuous. Sale of the methane on a co-generation basis is being discussed with the utility company. The use of geothermal direct heat energy in the complex displaces nearly 350,000 gallons of fuel oil per year. Generation of the biogas displaces an additional 300,000 gallons of fuel oil per year.

  18. Kinetics experiments and bench-scale system: Background, design, and preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rofer, C.K.

    1987-10-01

    The project, Supercritical Water Oxidation of Hazardous Chemical Waste, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to obtain information for use in understanding the basic technology and for scaling up and applying oxidation in supercritical water as a viable process for treating a variety of DOE-DP waste streams. This report gives the background and rationale for kinetics experiments on oxidation in supercritical water being carried out as a part of this HAZWRAP Research and Development task. It discusses supercritical fluid properties and their relevance to applying this process to the destruction of hazardous wastes. An overview is given of the small emerging industry based on applications of supercritical water oxidation. Factors that could lead to additional applications are listed. Modeling studies are described as a basis for the experimental design. The report describes plug flow reactor and batch reactor systems, and presents preliminary results. 28 refs., 4 figs., 5 tabs.

  19. Euler technology assessment for preliminary aircraft design employing OVERFLOW code with multiblock structured-grid method

    Science.gov (United States)

    Treiber, David A.; Muilenburg, Dennis A.

    1995-01-01

    The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.

  20. Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES

    Institute of Scientific and Technical Information of China (English)

    XUE JiShan; ZHUANG ShiYu; ZHU GuoFu; ZHANG Hua; LIU ZhiQuan; LIU Yan; ZHUANG ZhaoRong

    2008-01-01

    The scientific design and preliminary results of the data assimilation component of the Global-Regional Prediction and Assimilation System (GRAPES) recently developed in China Meteorological Administra-tion (CMA) are presented in this paper. This is a three-dimensional variational (3DVar) assimilation system set up on global and regional grid meshes favorable for direct assimilation of the space-based remote sensing data and matching the frame work of the prediction model GRAPES. The state variables are assumed to decompose balanced and unbalanced components. By introducing a simple transfor-mation from the state variables to the control variables with a recursive or spectral filter, the conver-gence rate of iteration for minimization of the cost function in 3DVar is greatly accelerated. The defini-tion of dynamical balance depends on the characteristic scale of the circulation considered. The ratio of the balanced to the unbalanced parts is controlled by the prescribed statistics of background errors. Idealized trials produce the same results as the analytic solution. The results of real data case studies show the capability of the system to improve analysis compared to the traditional schemes. Finally, further development of the system is discussed.

  1. Minimally invasive strabismus surgery versus paralimbal approach: A randomized, parallel design study is minimally invasive strabismus surgery worth the effort?

    Directory of Open Access Journals (Sweden)

    Richa Sharma

    2014-01-01

    Full Text Available Introduction : Minimal access surgery is common in all fields of medicine. We compared a new minimally invasive strabismus surgery (MISS approach with a standard paralimbal strabismus surgery (SPSS approach in terms of post-operative course. Materials and Methods: This parallel design study was done on 28 eyes of 14 patients, in which one eye was randomized to MISS and the other to SPSS. MISS was performed by giving two conjunctival incisions parallel to the horizontal rectus muscles; performing recession or resection below the conjunctival strip so obtained. We compared post-operative redness, congestion, chemosis, foreign body sensation (FBS, and drop intolerance (DI on a graded scale of 0 to 3 on post-operative day 1, at 2-3 weeks, and 6 weeks. In addition, all scores were added to obtain a total inflammatory score (TIS. Statistical Analysis: Inflammatory scores were analyzed using Wilcoxon′s signed rank test. Results: On the first post-operative day, only FBS (P = 0.01 and TIS (P = 0.04 showed significant difference favoring MISS. At 2-3 weeks, redness (P = 0.04, congestion (P = 0.04, FBS (P = 0.02, and TIS (P = 0.04 were significantly less in MISS eye. At 6 weeks, only redness (P = 0.04 and TIS (P = 0.05 were significantly less. Conclusion: MISS is more comfortable in the immediate post-operative period and provides better cosmesis in the intermediate period.

  2. Characterization of the designer benzodiazepine diclazepam and preliminary data on its metabolism and pharmacokinetics.

    Science.gov (United States)

    Moosmann, Bjoern; Bisel, Philippe; Auwärter, Volker

    2014-01-01

    Designer benzodiazepines, first offered in online shops selling 'research chemicals' in 2012, provide an attractive alternative to prescription-only benzodiazepines as they are readily available over the Internet at a low price. However, as data regarding pharmacokinetic parameters, metabolism, and detectability in biological fluids are limited, they present a challenge for forensic laboratories. Most recently, diclazepam (other names: 2-chlorodiazepam, Ro 5-3448 or 7-chloro-5-(2-chlorophenyl)-1-methyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one) emerged as a new compound in this class of drugs. In this paper, this new designer benzodiazepine was characterized utilizing nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS) as well as liquid chromatography tandem mass spectrometry (LC-MS/MS) techniques. Furthermore, a self-experiment was performed to gain preliminary data on pharmacokinetic properties and to identify the main metabolites. For this purpose, one tablet of diclazepam (declared amount: 1 mg) was ingested by one of the authors, and serum as well as urine samples were collected for 14 and 21 days, respectively. Based on this study, diclazepam has an approximate elimination half-life of 42 h and is metabolized into the pharmacologically active benzodiazepines delorazepam, lorazepam, and lormetazepam which can be detected in urine for 6, 19, and 11 days, respectively, when applying the presented LC-MS/MS method. In serum, the consumption could be proven between 99 h post-intake targeting the parent compound and up to 10 days targeting the metabolite delorazepam. As immunochemical assays are applied for screening purposes quite often, detectability using this technique was assessed, especially since detection of low-dosed benzodiazepines can be sometimes problematic. However, only one of the utilized immunochemical assays was capable of detecting the intake of one tablet diclazepam, and the positive results were restricted to a few urine

  3. Preliminary design of a space system operating a ground-penetrating radar

    Science.gov (United States)

    D'Errico, Marco; Ponte, Salvatore; Grassi, Michele; Moccia, Antonio

    2005-12-01

    Ground-penetrating radars (GPR) are currently used only in ground campaigns or in few airborne installations. A feasibility analysis of a space mission operating a GPR for archaeological applications is presented in this work with emphasis on spacecraft critical aspects: antenna dimension and power required for achieving adequate depth and accuracy. Sensor parametric design is performed considering two operating altitudes (250 and 500 km) and user requirements, such as minimum skin depth, vertical and horizontal resolution. A 500-km altitude, 6 a.m.-6 p.m. sun-synchronous orbit is an adequate compromise between atmospheric drag and payload transmitted average power (12 kW) to achieve a 3-m penetration depth. The satellite bus preliminary design is then performed, with focus on critical subsystems and technologies. The payload average power requirement can be kept within feasible limits (1 kW) by using NiH2 batteries to supply the radar transmitter, and with a strong reduction of the mission duty cycle ( 40km×1100km are observed per orbit). As for the electric power subsystem, a dual-voltage strategy is adopted, with the battery charge regulator supplied at 126 V and the bus loads at 50 V. The overall average power (1.9 kW), accounting for both payload and bus needs, can be supplied by a 20m2 GaAs solar panel for a three-year lifetime. Finally, the satellite mass is kept within reasonable limits (1.6 tons) using inflatable-rigidisable structure for both the payload antenna and the solar panels.

  4. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    Science.gov (United States)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  5. Design and Preliminary Evaluation of the r-Gamma Display Concept Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed Phase II SBIR effort is to continue Phase I efforts to develop and assess the feasibility of an innovative new flight instrument...

  6. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.

  7. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  8. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part I. High Temperature Structure Design Guide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A preliminary guideline for the design and evaluation of LMR high temperature structure is presented based upon ASME B and PV Code, Section III, Subsection NH. The main contents of this guideline are the materials, general design, vessel, piping, core support structure, pumps, valves, fabrication, examination, and testing for the class 1 components. The ratcheting evaluation, enhanced creep assessment, welds design and evaluation, inelastic analysis approach, piping design alternatives, and bellows design method are described in appendices. A user of this guideline should follow the essential procedures and may refer to other pertinent codes, standards, laws, regulations, or other pertinent documents when this guideline does not lead to proper design of the structure. While this guideline adopts major procedures of Subsection NH, it refers to the RCC-MR and/or DDS in some amount for the items where these codes have excellency to improve this guideline.

  9. Preliminary Design and Evaluation of an Airfoil with Continuous Trailing-Edge Flap

    Science.gov (United States)

    Shen, Jinwei; Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Liu, Yi

    2012-01-01

    This paper presents the preliminary design and evaluation of an airfoil with active continuous trailing-edge flap (CTEF) as a potential rotorcraft active control device. The development of structural cross-section models of a continuous trailing-edge flap airfoil is described. The CTEF deformations with MFC actuation are predicted by NASTRAN and UM/VABS analyses. Good agreement is shown between the predictions from the two analyses. Approximately two degrees of CTEF deflection, defined as the rotation angle of the trailing edge, is achieved with the baseline MFC-PZT bender. The 2D aerodynamic characteristics of the continuous trailing-edge flap are evaluated using a CFD analysis. The aerodynamic efficiency of a continuous trailing-edge flap is compared to that of a conventional discrete trailing-edge flap (DTEF). It is found that the aerodynamic characteristics of a CTEF are equivalent to those of a conventional DTEF with the same deflection angle but with a smaller flap chord. A fluid structure interaction procedure is implemented to predict the deflection of the continuous trailingedge flap under aerodynamic pressure. The reductions in CTEF deflection are overall small when aerodynamic pressure is applied: 2.7% reduction is shown with a CTEF deflection angle of two degrees and at angle of attack of six degrees. In addition, newly developed MFC-PMN actuator is found to be a good supplement to MFC-PZT when applied as the bender outside layers. A mixed MFC-PZT and MFC-PMN bender generates 3% more CTEF deformation than an MFC-PZT only bender and 5% more than an MFC-PMN only bender under aerodynamic loads.

  10. Grid-Connected Integrated Community Energy System. Phase II: detailed feasibility analysis and preliminary design. Final report, Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The purpose of this study was to determine the economic and environmental feasibility of a Grid-Connected Integrated Community Energy System (ICES) based on a multifuel (gas, oil, treated solid wastes, and coal) design with which to serve any or all the institutions within the Louisiana Medical Complex in cooperation with the Health Education Authority of Louisiana (HEAL). In this context, a preliminary design is presented which consists of ICES plant description and engineering analyses. This demonstration system is capable of meeting 1982 system demands by providing 10,000 tons of air conditioning and, from a boiler plant with a high-pressure steam capacity of 200,000 lb/h, approximately 125,000 lb/h of 185 psig steam to the HEAL institutions, and at the same time generating up to 7600 kW of electrical power as byproduct energy. The plant will consist of multiple-fuel steam boilers, turbine generator, turbine driven chillers and necessary auxiliaries and ancillary systems. The preliminary design for these systems and for the building to house the central plant systems are presented along with equipment and instrumentation schedules and outline specifications for major components. Costs were updated to reflect revised data. The final preliminary cost estimate includes allowances for contingencies and escalation, as well as cost for the plant site and professional fees. This design is for a facility specifically with coal burning capability, recognizing that it is more capital-intensive than a gas/oil facility. In the opinion of the Louisiana Department of Natural Resources (DNR), the relatively modest allocations made for scrubbing and ash removal involve less than is implied in standard industry (EPRI) cost increments of over 30% for these duties. The preliminary environmental assessment is included. (LCL)

  11. Phase 1 of the near team hybrid passenger vehicle development program. Appendix C: Preliminary design data package, volume 1

    Science.gov (United States)

    Piccolo, R.

    1979-01-01

    The methodology used for vehicle layout and component definition is described as well as techniques for system optimization and energy evaluation. The preliminary design is examined with particular attention given to body and structure; propulsion system; crash analysis and handling; internal combustion engine; DC motor separately excited; Ni-Zn battery; transmission; control system; vehicle auxiliarries; weight breakdown, and life cycle costs. Formulas are given for the quantification of energy consumption and results are compared with the reference vehicle.

  12. Preliminary Considerations on the Thermodynamic Feasibility and Possible Design of Ultra-, Micro- and Nano-Gas Turbines

    Directory of Open Access Journals (Sweden)

    Enrico Sciubba

    2006-06-01

    Full Text Available The paper describes a preliminary feasibility analysis of a nano-GT (50÷200 W for portable power generation. The system is examined under both a thermodynamic and an operative point of view. The technical problems posed by a practical implementation of an operative system are assessed first via a preliminary calculation of the overall thermodynamic performance of the real cycle, and then via a first-order design of the main components. The extremely small size of the device makes a preliminary estimate of the components performance problematic (the available data are scant and unreliable: it is likely that a real advance in this field must go through a series of detailed fluid-dynamic simulations. The results of our preliminary sizing are compared with the existing technical literature in an attempt to further define the material selection, in view of a possible prototype production. Some considerations are also offered about the final utilisation of nano-GTs: in our opinion, they represent a realistic alternative to batteries for powering optical, GPS and other satellite devices, or in medical applications.

  13. Advanced multi-frequency radar: Design, preliminary measurements and particle size distribution retrieval

    Science.gov (United States)

    Majurec, Ninoslav

    lower output power of klystron amplifiers (comparing to magnetrons) is compensated by use of pulse compression (linear FM). The problem of range sidelobes (pulse compression artifacts) has been solved by using appropriate windowing functions in the receiver. Satisfactory sidelobe suppression level of 45 dB has been demonstrated in the lab. The currently best achievable range resolution of the AMFR system is 30 m (corresponds to 5 MHz receiver BW, set by the sampling rate of the Analog-to-Digital card). During the design stage, various polarization schemes have been investigated. The polarization scheme analysis showed the switching polarization scheme to be the best suited for the AMFR system. The AMFR subsystems were partially finished in the winter of 2005. Some preliminary tests were conducted in January 2006. Antenna platform was fabricated in summer 2006. The final assembly took place in the fall of 2006. Early results are presented in the dissertation. These results were helpful in revealing of certain problems in the radar system (i.e. immediate processing computer synchronization) that needed to be addressed during system development. Stratiform rain event occurred on December 18 2006 has been analyzed in detail. A number of commonly used theoretical particle size distributions is presented. Furthermore, it is shown that a fully calibrated multi-frequency radar system has capability of separating scattering and attenuation effects. This was accomplished by fitting the theoretical models into the measured data. An alternative method of estimating rain rate that relies on the dual wavelength ratios is also presented. Although not as powerful as theoretical model fitting, it has its merits for off-zenith observations. During January 2007, AMFR system participated in the C3VP experiment (Canadian CloudSat/CALIPSO Validation Project) in south Ontario, Canada. Some of the data obtained during C3VP experiment has been analyzed and presented. Analysis of these two

  14. Preliminary design and analysis of a process for the extraction of lithium from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Dang, V.D.

    1975-09-01

    The U.S. demand for lithium by the industrial sector and by a fusion power economy in the future is discussed. For a one million MW(e) CTR (D-T fuel cycle) economy, growing into the beginning of the next century (the years 2000 to 2030), the cumulative demand for lithium is estimated to range from (0.55 to 4.7) x 10/sup 7/ to 1.0 x 10/sup 9/ kg. Present estimates of the available U.S. supply are 6.9 x 10/sup 8/ kg of lithium from mineral resources and 4.0 x 10/sup 9/ kg of lithium from concentrated natural brines. There is, however, a vast supply of lithium in seawater: 2.5 x 10/sup 14/ kg. A preliminary process design for the extraction of lithium from seawater is presented: seawater is first evaporated by solar energy to increase the concentration of lithium and to decrease the concentration of other cations in the bittern which then passes into a Dowex-50 ion exchange bed for cation adsorption. Lithium ions are then eluted with dilute hydrochloric acid forming an aqueous lithium chloride which is subsequently concentrated and electrolyzed. The energy requirement for lithium extraction varies between 0.08 and 2.46 kWh(e)/gm for a range of production rates varying between 10/sup 4/ and 10/sup 8/ kg/y; this is small compared to the energy produced from the use of lithium in a CTR having a value of 3400 kWh(e)/g Li. Production cost of the process is estimated to be in the range of 2.2 to 3.2 cents/g Li. As a basis for the process design, it is recommended that a phase equilibria study of the solid--liquid crystallization processes of seawater be conducted. Uncertainties exist in the operation of large solar ponds for concentrating large quantities of seawater. A search for a highly selective adsorbent or extractant for Li from low concentration aqueous solutions should be made. Other physical separation processes such as using membranes should be investigated. 9 tables. (DLC)

  15. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH. Appendix E: Lower reservoir

    Science.gov (United States)

    1981-04-01

    Operational, construction, and geotechnical requirements were examined. Overriding considerations including operating range, volume, construction methods, cavern cross section and reservoir layout were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to a preliminary arrangement of fourteen parallel caverns, each 60 ft wide by 85 ft high in cross section and 3610 ft in length. The requirements for and preliminary design of the intermediate reservoir in the case of a two step UPH facility is also described. The design and the cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage at a nominal head of 4600 ft.

  16. Design and Preliminary Thermal Performance of the Mars Science Laboratory Rover Heat Exchangers

    Science.gov (United States)

    Mastropietro, A. J.; Beatty, John; Kelly, Frank; Birur, Gajanana; Bhandari, Pradeep; Pauken, Michael; Illsley, Peter; Liu, Yuanming; Bame, David; Miller, Jennifer

    2010-01-01

    The challenging range of proposed landing sites for the Mars Science Laboratory Rover requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 degrees Centigrade and as warm as 38 degrees Centigrade, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 degrees Centigrade to 50 degrees Centigrade range. The MPFL also manages significant waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG). The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Two similar Heat Exchanger (HX) assemblies were designed to both acquire the heat from the MMRTG and radiate waste heat from the onboard electronics to the surrounding Martian environment. Heat acquisition is accomplished on the interior surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the MPFL to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aerogel as an insulator inside composite honeycomb sandwich panels. A complex assembly of hand welded and uniquely bent aluminum tubes are bonded onto the HX panels and were specifically designed to be easily mated and demated to the rest of the Rover Heat Recovery and Rejection System (RHRS) in order to ease the integration effort. During the cruise phase to Mars, the HX assemblies serve the additional function of transferring heat from the Rover MPFL to the separate Cruise Stage MPFL so that heat

  17. The liver toxicity biomarker study: phase I design and preliminary results.

    Science.gov (United States)

    McBurney, Robert N; Hines, Wade M; Von Tungeln, Linda S; Schnackenberg, Laura K; Beger, Richard D; Moland, Carrie L; Han, Tao; Fuscoe, James C; Chang, Ching-Wei; Chen, James J; Su, Zhenqiang; Fan, Xiao-Hui; Tong, Weida; Booth, Shelagh A; Balasubramanian, Raji; Courchesne, Paul L; Campbell, Jennifer M; Graber, Armin; Guo, Yu; Juhasz, Peter J; Li, Tricin Y; Lynch, Moira D; Morel, Nicole M; Plasterer, Thomas N; Takach, Edward J; Zeng, Chenhui; Beland, Frederick A

    2009-01-01

    Drug-induced liver injury (DILI) is the primary adverse event that results in withdrawal of drugs from the market and a frequent reason for the failure of drug candidates in development. The Liver Toxicity Biomarker Study (LTBS) is an innovative approach to investigate DILI because it compares molecular events produced in vivo by compound pairs that (a) are similar in structure and mechanism of action, (b) are associated with few or no signs of liver toxicity in preclinical studies, and (c) show marked differences in hepatotoxic potential. The LTBS is a collaborative preclinical research effort in molecular systems toxicology between the National Center for Toxicological Research and BG Medicine, Inc., and is supported by seven pharmaceutical companies and three technology providers. In phase I of the LTBS, entacapone and tolcapone were studied in rats to provide results and information that will form the foundation for the design and implementation of phase II. Molecular analysis of the rat liver and plasma samples combined with statistical analyses of the resulting datasets yielded marker analytes, illustrating the value of the broad-spectrum, molecular systems analysis approach to studying pharmacological or toxicological effects.

  18. Towards a Tissue-Engineered Ligament: Design and Preliminary Evaluation of a Dedicated Multi-Chamber Tension-Torsion Bioreactor

    Directory of Open Access Journals (Sweden)

    Cédric P. Laurent

    2014-02-01

    Full Text Available Tissue engineering may constitute a promising alternative to current strategies in ligament repair, providing that suitable scaffolds and culture conditions are proposed. The objective of the present contribution is to present the design and instrumentation of a novel multi-chamber tension-torsion bioreactor dedicated to ligament tissue engineering. A preliminary biological evaluation of a new braided scaffold within this bioreactor under dynamic loading is reported, starting with the development of a dedicated seeding protocol validated from static cultures. The results of these preliminary biological characterizations confirm that the present combination of scaffold, seeding protocol and bioreactor may enable us to head towards a suitable ligament tissue-engineered construct.

  19. Design Compiler 2010 makes further efforts on production efficiency improvement%Design Compiler 2010:20年生产效率提升之见证

    Institute of Scientific and Technical Information of China (English)

    王伟

    2010-01-01

    @@ 1988年,全球领先的半导体设计、验证和制造的软件及知识产权(IP)供应商新思科技有限公司(Nas-daq:SNPS)首次推出RTL综合工具Design Compiler,实现了从版图级设计到RTL级设计的转变,帮助设计师们缩短设计周期并提高生产效率.

  20. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    Science.gov (United States)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  1. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Mouradian, E. M.

    1983-12-31

    Thermal analyses for the preliminary design phase of the Receiver of the Carrizo Plains Solar Power Plant are presented. The sodium reference operating conditions (T/sub in/ = 610/sup 0/F, T/sub out/ = 1050/sup 0/F) have been considered. Included are: Nominal flux distribution on receiver panal, Energy input to tubes, Axial temperature distribution; sodium and tubes, Sodium flow distribution, Sodium pressure drop, orifice calculations, Temperature distribution in tube cut (R-0), Backface structure, and Nonuniform sodium outlet temperature. Transient conditions and panel front face heat losses are not considered. These are to be addressed in a subsequent design phase. Also to be considered later are the design conditions as variations from the nominal reference (operating) condition. An addendum, designated Appendix C, has been included describing panel heat losses, panel temperature distribution, and tube-manifold joint thermal model.

  2. Preliminary Design Wave Forces on Wave Star's Ø5m Floats

    DEFF Research Database (Denmark)

    Kramer, Morten; Kristensen, Tom Sten; Hjørnet, Niels Kyhn

    This document gives several estimates on the design force, but only one estimate on the design wave climate.......This document gives several estimates on the design force, but only one estimate on the design wave climate....

  3. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-12

    This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for

  4. Design and Preliminary Evaluation of the r-Gamma Display Concept Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed Phase I SBIR effort is to develop and assess the feasibility of an innovative new flight instrument proposed to replace the...

  5. Potential flow calculations and preliminary wing design in support of an NLF variable sweep transition flight experiment

    Science.gov (United States)

    Waggoner, E. G.; Phillips, P. S.; Viken, J. K.; Davis, W. H.

    1985-01-01

    NASA Langley and NASA Ames-Dryden have defined a variable-sweep transition-flight experiment utilizing the F-14 aircraft to enhance understanding of the interaction of crossflow and Tollmien-Schlichting instabilities on a laminar-boundary-layer transition. The F-14 wing outer panel will be modified to generate favorable pressure gradients on the upper wing surface over a wide range of flight conditions. Extensive computations have been performed using two-dimensional and three-dimensional transonic analysis codes. Flight-test and computational data are compared and shown to validate the applicability of the three-dimensional codes (WBPPW and TAWFIVE). In addition, results from two preliminary glove designs derived from two different approaches to the design problem are presented. Advantages and disadvantages of each approach are identified, and it is concluded that coupling an analysis code with an automated design procedure yields a powerful code with distinct advantages over a 'cut-and-dry' approach.

  6. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

  7. Coastal California's Fog as a Unique Habitable Niche: Design for Autonomous Sampling and Preliminary Aerobiological Characterization

    Science.gov (United States)

    Gentry, Diana; Cynthia Ouandji; Arismendi, Dillon; Guarro, Marcello; Demachkie, Isabella; Crosbie, Ewan; Dadashazar, Hossein; MacDonald, Alex B.; Wang, Zhen; Sorooshian, Armin; hide

    2017-01-01

    Just as on the land or in the ocean, atmospheric regions may be more or less hospitable to life. The aerobiosphere, or collection of living things in Earth's atmosphere, is poorly understood due to the small number and ad hoc nature of samples studied. However, we know viable airborne microbes play important roles, such as providing cloud condensation nuclei. Knowing the distribution of such microorganisms and how their activity can alter water, carbon, and other geochemical cycles is key to developing criteria for planetary habitability, particularly for potential habitats with wet atmospheres but little stable surface water. Coastal California has regular, dense fog known to play a major transport role in the local ecosystem. In addition to the significant local (1 km) geographical variation in typical fog, previous studies have found that changes in height above surface of as little as a few meters can yield significant differences in typical concentrations, populations and residence times. No single current sampling platform (ground-based impactors, towers, balloons, aircraft) is capable of accessing all of these regions of interest.A novel passive fog and cloud water sampler, consisting of a lightweight passive impactor suspended from autonomous aerial vehicles (UAVs), is being developed to allow 4D point sampling within a single fog bank, allowing closer study of small-scale (100 m) system dynamics. Fog and cloud droplet water samples from low-altitude aircraft flights in nearby coastal waters were collected and assayed to estimate the required sample volumes, flight times, and sensitivity thresholds of the system under design.125 cloud water samples were collected from 16 flights of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) instrumented Twin Otter, equipped with a sampling tube collector, occurring between 18 July and 12 August 2016 below 1 km altitude off the central coast. The collector was flushed first with 70 ethanol

  8. Radical university-industry innovation – research design and preliminary findings from an on-going qualitative case study

    DEFF Research Database (Denmark)

    Gertsen, Frank; Nielsen, René Nesgaard

    and it is arguing that there is a lack of in-depth understanding of such collaborative radical innovation processes. The paper then suggests an abductive research design for an explorative in-depth case study of collaborative radical innovation involving a university and an established Danish manufacturing firm....... Some preliminary findings are presented and briefly discussed, including the role of the university’s formal set-up to deal with IPR/commercialisation and the researchers’ personal networking with industry as well as challenges concerning the sharing of IPR/commercialisation outcomes....

  9. Design and preliminary test of a free-air ionization chamber for low-energy X-ray

    Institute of Scientific and Technical Information of China (English)

    WU Jin-Jie; YANG Yuan-Di; WANG Pei-Wei; CHEN Jing; LIU Jia-Cheng

    2011-01-01

    A free-air ionization chamber in low-energy X-ray has been designed and manufactured at theNational Institute of Metrology (NIM, China) according to the defination of alr-kerma. The results of a preliminary test show that the leakage current of ionization chamber is around 2×10A, and the correction factor of ion recombination for the ionization chamber is also obtained. The free-air ionization chamber is suitable for the primary standard in low-energy X-rays.

  10. Ocean thermal energy conversion (OTEC) power system development (PSD) II. Preliminary design report. Appendix I: specifications and drawings

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.O.

    1979-08-10

    This volume contains the specifications and drawings prepared in support of the preliminary design of a 10MWe OTEC power system using enhanced plate type heat exchangers. Included are: (1) the specification tree; (2) system specification; (3) 10 MWe heat exchangers; (4) nitrogen storage, conditioning and supply subsystem specification; (5) ammonia storage, conditioning and supply specification; (6) electrical power distribution and control subsystem specification; (7) equipment valves, instruments and live lists and specifications; (8) drawing tree; (9) drawing package; and (10) 0.2 MWe test articles procurement specifications. (WHK)

  11. Learning Environment and Student Effort

    Science.gov (United States)

    Hopland, Arnt O.; Nyhus, Ole Henning

    2016-01-01

    Purpose: The purpose of this paper is to explore the relationship between satisfaction with learning environment and student effort, both in class and with homework assignments. Design/methodology/approach: The authors use data from a nationwide and compulsory survey to analyze the relationship between learning environment and student effort. The…

  12. Ocean thermal energy conversion power system development: I. Preliminary design report. Phase I. Volume 5. Appendixes H, I, J, and K. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume of the report includes the following appendices: H) conceptual design description of the electrical systems; I) control and instrumentation; J) OTEC power module assembly; and K) cost estimates for each of the cost components. (WHK)

  13. Designing eHealth Applications to Reduce Cognitive Effort for Persons With Severe Mental Illness: Page Complexity, Navigation Simplicity, and Comprehensibility

    Science.gov (United States)

    Spring, Michael R; Hanusa, Barbara H; Eack, Shaun M; Haas, Gretchen L

    2017-01-01

    usability outcomes. Most other variables were significantly related to 2 or 3 of these usability outcomes. With the 5 tested websites, 7 of the 19 variables of the FEDM overlapped with other variables, resulting in 12 distinct variable groups. The 3 design dimensions had acceptable coefficient alphas. Both navigational simplicity and comprehensibility were significantly related to correctly identifying whether information was available on a website. Page complexity and navigational simplicity were significantly associated with the ability and time to find information and ease-of-use ratings. Conclusions The 19 variables and 3 dimensions (page complexity, navigational simplicity, and comprehensibility) of the FEDM offer evidence-based design guidance intended to reduce the cognitive effort required to effectively use eHealth applications, particularly for persons with SMI, and potentially others, including those with cognitive impairments and limited skills or experience with technology. The new variables we examined (topic areas, navigational areas, columns) offer additional and very simple ways to improve simplicity. PMID:28057610

  14. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P. [Bechtel Corp, San Francisco, CA (United States)

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  15. Thermal energy storage in aquifiers: preliminary information

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.

    1979-12-01

    Topics discussed include: conceptual designs; numerical modelling; field experiments; relevant technical information; feasibility studies; preliminary aquifer selection considerations; and preliminary design and operating considerations. (TFD)

  16. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    Science.gov (United States)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  17. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  18. MCNP5 and GEANT4 comparisons for preliminary Fast Neutron Pencil Beam design at the University of Utah TRIGA system

    Science.gov (United States)

    Adjei, Christian Amevi

    The main objective of this thesis is twofold. The starting objective was to develop a model for meaningful benchmarking of different versions of GEANT4 against an experimental set-up and MCNP5 pertaining to photon transport and interactions. The following objective was to develop a preliminary design of a Fast Neutron Pencil Beam (FNPB) Facility to be applicable for the University of Utah research reactor (UUTR) using MCNP5 and GEANT4. The three various GEANT4 code versions, GEANT4.9.4, GEANT4.9.3, and GEANT4.9.2, were compared to MCNP5 and the experimental measurements of gamma attenuation in air. The average gamma dose rate was measured in the laboratory experiment at various distances from a shielded cesium source using a Ludlum model 19 portable NaI detector. As it was expected, the gamma dose rate decreased with distance. All three GEANT4 code versions agreed well with both the experimental data and the MCNP5 simulation. Additionally, a simple GEANT4 and MCNP5 model was developed to compare the code agreements for neutron interactions in various materials. Preliminary FNPB design was developed using MCNP5; a semi-accurate model was developed using GEANT4 (because GEANT4 does not support the reactor physics modeling, the reactor was represented as a surface neutron source, thus a semi-accurate model). Based on the MCNP5 model, the fast neutron flux in a sample holder of the FNPB is obtained to be 6.52×107 n/cm2s, which is one order of magnitude lower than gigantic fast neutron pencil beam facilities existing elsewhere. The MCNP5 model-based neutron spectrum indicates that the maximum expected fast neutron flux is at a neutron energy of ~1 MeV. In addition, the MCNP5 model provided information on gamma flux to be expected in this preliminary FNPB design; specifically, in the sample holder, the gamma flux is to be expected to be around 108 γ/cm 2s, delivering a gamma dose of 4.54×103 rem/hr. This value is one to two orders of magnitudes below the gamma

  19. Mod-5A wind turbine generator program design report. Volume 2: Conceptual and preliminary design, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind tunnel generator is documented. There are four volumes. In Volume 2, book 2 the requirements and criteria for the design are presented. The development tests, which determined or characterized many of the materials and components of the wind turbine generator, are described.

  20. Analysis of Empirical Software Effort Estimation Models

    CERN Document Server

    Basha, Saleem

    2010-01-01

    Reliable effort estimation remains an ongoing challenge to software engineers. Accurate effort estimation is the state of art of software engineering, effort estimation of software is the preliminary phase between the client and the business enterprise. The relationship between the client and the business enterprise begins with the estimation of the software. The credibility of the client to the business enterprise increases with the accurate estimation. Effort estimation often requires generalizing from a small number of historical projects. Generalization from such limited experience is an inherently under constrained problem. Accurate estimation is a complex process because it can be visualized as software effort prediction, as the term indicates prediction never becomes an actual. This work follows the basics of the empirical software effort estimation models. The goal of this paper is to study the empirical software effort estimation. The primary conclusion is that no single technique is best for all sit...

  1. Human Factors engineering criteria and design for the Hanford Waste Vitrification Plant preliminary safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.A.; Schur, A.; Stitzel, J.C.L.

    1993-09-01

    This report provides a rationale and systematic methodology for bringing Human Factors into the safety design and operations of the Hanford Waste Vitrification Plant (HWVP). Human Factors focuses on how people perform work with tools and machine systems in designed settings. When the design of machine systems and settings take into account the capabilities and limitations of the individuals who use them, human performance can be enhanced while protecting against susceptibility to human error. The inclusion of Human Factors in the safety design of the HWVP is an essential ingredient to safe operation of the facility. The HWVP is a new construction, nonreactor nuclear facility designed to process radioactive wastes held in underground storage tanks into glass logs for permanent disposal. Its design and mission offer new opposites for implementing Human Factors while requiring some means for ensuring that the Human Factors assessments are sound, comprehensive, and appropriately directed.

  2. PRELIMINARY DESIGN OF THE BEAM LOSS MONITORING SYSTEM FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.; GASSNER,D.

    2002-05-06

    The SNS to be built at Oak Ridge National Laboratory will provide a high average intensity 1 GeV beam to produce spallation neutrons. Loss of a even small percentage of this intense beam would result in high radiation. The Beam Loss Monitor (ELM) system must detect such small, long term losses yet be capable of measuring infrequent short high losses. The large dynamic range presents special problems for the system design. Ion chambers will be used as the detectors. A detector originally designed for the FNAL Tevatron, was considered but concerns about ion collection times and low collection efficiency at high loss rates favor a new design. The requirements and design concepts of the proposed approach will be presented. Discussion of the design and testing of the ion chambers and the analog j-Point end electronics will be presented. The overall system design will be described.

  3. Rotorcraft pilot coupling susceptibility accompanying handling qualities prospects in preliminary rotorcraft design.

    OpenAIRE

    Yilmaz, D; Dang Vu, B.; M. Jones

    2012-01-01

    Due to expensive and risky Rotorcraft-Pilot Couplings (RPC) that can develop during flight testing phases of any new prototype aircraft, it is beneficial to crosscheck the RPC susceptibility of the vehicle as early as possible during the design process. One of the objectives of the European project ARISTOTEL (2010-2013) is to provide guidelines to designers and simulator programs to reveal RPC aspects of the vehicle to be designed. First, a methodology to assess the sensitivity of Handling Qu...

  4. Courthouse Design Principles to Dignify Spaces for Indigenous Users: preliminary observations

    Directory of Open Access Journals (Sweden)

    Thalia Anthony

    2016-11-01

    Full Text Available Historically, Australian court architecture layout, design and details are intimately tied to the physical aspects of British imperial institutions.  Displaying the visual features of the Empire’s institutions has the effect of alienating Indigenous people within courts. This is compounded by design that is oblivious to the needs of Indigenous users and consequently places these users in situations that threaten their privacy, safety and wellbeing. This article contends that architectural design that seeks to accommodate Indigenous cultural and socio- spatial needs brings into sharp relief the barriers and harms otherwise confronting Indigenous people in courts. This article discusses three court complexes designed in collaboration with Indigenous communities to accommodate Indigenous connections to the environment surrounding the courthouse and to enhance access to justice. Indigenous collaborations in the design of the Indigenous-inclusive court complexes at Port Augusta (South Australia, Kalgoorlie and Kununurra (Western Australia produced spatially distinct courthouses that eschew some historical court design principles and attempt to introduce features relevant to local Indigenous nations. This illustration essay discusses the emergence of Indigenous design principles that may inform courthouse redesign, the application of some of these principles in new courthouse designs and the need for local Indigenous oversight in the design processes. It provides a framework for further research into how Indigenous architectural collaborations in courthouse designs may promote safer and fairer environments for Indigenous court users. It also raises some potential disjuncture between court design and use of court space that may undermine the vision embedded in cultural design principles.

  5. Analysis of Optimization for Preliminary Design of Multi-Component Mooring Systems

    Institute of Scientific and Technical Information of China (English)

    YU Long; TAN Jia-hua

    2005-01-01

    Multi-component mooring systems become widely used in deep water position-keeping of drilling and production platforms. However, versatile materials make it difficult to design appropriate mooring lines made of several segments. Based on catenary equations of a multi-component mooring line at a specific water depth, this paper establishes a minimum model for designing this kind of lines. The model is solved by Genetic Algorithm and Multi-Objective Planning respectively. The model is verified by its application to a practical mooring design assignment-a quasi-static analysis for a large semi-submersible. The optimal result is finally obtained with the aid of design graphs.

  6. Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task II. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-27

    The study is presented in five sections: design loads, conceptual designs, trade studies, cost analysis and concept evaluation and ranking. Extensive appendixes provide back up calculations and data to support the results. Environmental forces and yaw moments acting on the barge and spar in the various design sea states are presented including wave, wind and current effects. A parametric analysis illustrates the impact on holding power requirement of varying the return periods for operational and extreme sea state. The conceptual designs are presented for the barge followed by those for the spar, including configuration definition, performance characteristics, interfaces, areas for development, and deployment scenarios for selected concepts. The concept definition is followed by a set of trade studies that were performed to evaluate candidate anchor types and anchor leg materials. Parametric variations in anchor leg characteristics, wire-rope-to-chain length ratio for example, illustrate the influence of the significant design parameters on performance. An extensive cost analysis of the candidate SKSS concepts is presented, including cost estimates, life cycle cost scenarios leading to expected value of life cycle cost, and cost equivalence of operational failures. An evaluation of the eight SKSS concepts is presented, including assessment of performance and rankings based on risk versus cost and technology development. The appendixes include a report on the Electrical Transmission System interface, wave drift force, typical cost disbursement schedule and computer program listing, the IMODCO conceptual design report, and static configuration results.

  7. Preliminary probabilistic design accident evaluation of the cold source facilities of the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, R.M.; Ramsey, C.T.

    1995-08-01

    Consistent with established Advanced Neutron Source (ANS) project policy for the use of probabilistic risk assessment (PRA) in design, a task has been established to use PRA techniques to help guide the design and safety analysis of the ANS cold sources. The work discussed in this report is the first formal output of the cold source PRA task. The major output at this stage is a list of design basis accidents, categorized into approximate frequency categories. This output is expected to focus attention on continued design work to define and optimize the design such that design basis accidents are better defined and have acceptable outcomes. Categorizing the design basis events (DBEs) into frequency categories should prove helpful because it will allow appropriate acceptance criteria to be applied. Because the design of the cold source is still proceeding, it is beyond the scope of this task to produce detailed event probability calculations or even, in some cases, detailed event sequence definitions. That work would take place as a logically planned follow-on task, to be completed as the design matures. Figure 1.1 illustrates the steps that would typically be followed in selecting design basis accidents with the help of PRA. Only those steps located above the dashed line on Fig. 1.1 are included in the scope of the present task. (Only an informal top-level failure modes and effects analysis was done.) With ANS project closeout expected in the near future, the scope of this task has been abbreviated somewhat beyond the state of available design information on the ANS cold sources, or what could be achieved in a reasonable time. This change was necessary to ensure completion before the closeout and because the in-depth analytical support necessary to define fully some of the accidents has already been curtailed.

  8. Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, M.P. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States); Bauer, S.J. [Sandia National Labs., Albuquerque, NM (United States)

    1991-12-01

    Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs.

  9. Design, fabrication, and preliminary results of a novel below knee prosthesis for snowboarding: A case report

    NARCIS (Netherlands)

    Minnoye, A.L.M.; Plettenburg, D.H.

    2010-01-01

    Snowboarding with a below-knee prosthesis is compromised by the limited rotation capabilities of the existing below-knee prostheses, which are designed for use in normal walking. Based on snowboarding range of motion analyses, a novel below-knee prosthesis was designed with the aim to achieve simila

  10. Preliminary Design of a Computerized Information System for Teacher Education Centers in Greater Cleveland.

    Science.gov (United States)

    O'Gorman, David E.

    This report describes an information system designed to aid individuals within the Greated Cleveland Teacher Education Centers. Three components of the system are specified: information gathering or input, a data bank, and reports. Following an overview of the teacher education centers and information system, the primary design of the information…

  11. Characterizing the Experimental Procedure in Science Laboratories: A Preliminary Step towards Students Experimental Design

    Science.gov (United States)

    Girault, Isabelle; d'Ham, Cedric; Ney, Muriel; Sanchez, Eric; Wajeman, Claire

    2012-01-01

    Many studies have stressed students' lack of understanding of experiments in laboratories. Some researchers suggest that if students design all or parts of entire experiment, as part of an inquiry-based approach, it would overcome certain difficulties. It requires that a procedure be written for experimental design. The aim of this paper is to…

  12. The preliminary design of an annular combustor for a mini gas turbine

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2015-10-01

    Full Text Available This study involves the redesign of the combustor liner for a 200N mini gas turbine engine using first principles and the design methods of the NREC series as shown in Figure 1. The combustor design was performed using five different operating...

  13. Some New Bases and Needs for Interior Design from Environmental Research. A Preliminary Survey.

    Science.gov (United States)

    Kleeman, Walter, Jr.

    Research which can form new bases for interior design is being greatly accelerated. Investigations in psychology, anthropology, psychiatry, and biology, as well as interdisciplinary projects, turn up literally hundreds of studies, the results of which will vitally affect interior design. This body of research falls into two parts--(1) human…

  14. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    Science.gov (United States)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  15. Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials.

    Science.gov (United States)

    Ciocchetti, Marco; Massaroni, Carlo; Saccomandi, Paola; Caponero, Michele A; Polimadei, Andrea; Formica, Domenico; Schena, Emiliano

    2015-09-14

    Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR

  16. Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials

    Directory of Open Access Journals (Sweden)

    Marco Ciocchetti

    2015-09-01

    Full Text Available Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG sensors, placed on the upper thorax (UT. FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR, duration of inspiratory (TI and expiratory (TE phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG sensors, placed on the upper thorax (UT. FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period

  17. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment.

    Science.gov (United States)

    Shaw, G; Martin, M Z; Martin, R; Biewer, T M

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collection probe, and the expected results.

  18. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boenig, H.J. [Los Alamos National Lab., NM (United States); Bogdan, F.; Morris, G.C. [ABB Drives Inc., New Berlin, WI (United States); Ferner, J.A.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States); Rumrill, R.H.; Rumrill, R.S. [Alpha Scientific Electronics Inc., Hayward, CA (United States)

    1993-11-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 {times} 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented.

  19. Mapping telemedicine efforts

    DEFF Research Database (Denmark)

    Kierkegaard, Patrick

    2015-01-01

    are being utilized? What medical disciplines are being addressed using telemedicine systems? Methods: All data was surveyed from the "Telemedicinsk Landkort", a newly created database designed to provide a comprehensive and systematic overview of all telemedicine technologies in Denmark. Results......Objectives: The aim of this study is to survey telemedicine services currently in operation across Denmark. The study specifically seeks to answer the following questions: What initiatives are deployed within the different regions? What are the motivations behind the projects? What technologies......: The results of this study suggest that a growing number of telemedicine initiatives are currently in operation across Denmark but that considerable variations existed in terms of regional efforts as the number of operational telemedicine projects varied from region to region. Conclusions: The results...

  20. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 2. Design drawings

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report consists of design drawings for this plant.

  1. Preliminary conceptual design for electrical and I and C system of a new research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Kim, Y. K.; Kim, M. J.; Kim, H. K.; Ryu, J. S

    2004-01-01

    The core type and the process system design will be varied according to the reactor's application and capacity. A New research reactor is being designed by KAERI since 2002 and the process systems are not fixed yet. But control and instrument systems are similar to each other even though the application and the size are not same. So the C and I system that encompasses reactor protection system, reactor control system, and computer system was designed conceptually according to the requirements based on new digital technology and HANARO's proven design. The plant electrical system consists of off-site system that delivers bulk electrical power to the reactor site and on-site system that distributes and controls electrical power at the facility. The electrical system includes building service system that consist of lighting, communication, fire detection, grounding, cathodic protection, etc. also. This report describes the design requirements of on-site and off-site electric power system that set up from the codes and standards and the conceptual design based on the design requirements.

  2. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  3. THE EFFECTIVENESS OF PANORAMIC MAPS DESIGN: A PRELIMINARY STUDY BASED ON MOBILE EYE-TRACKING

    Directory of Open Access Journals (Sweden)

    R. Balzarini

    2016-06-01

    Full Text Available This paper presents preliminary results from an ongoing research based on the study of visual attention through mobile eye-tracking techniques. The visual-cognitive approach investigates the reading-comprehension of a particular territorial representation: ski trails maps. The general issue of the study is to provide insights about the effectiveness of panoramic ski maps and more broadly, to suggest innovative efficient representation of the geographic information in mountain. According to some mountain operators, the information provided by paper ski maps no longer meets the needs of a large part of the customers; the question now arises of their adaptation to new digital practices (iPhone, tablets. In a computerized process perspective, this study particularly focuses on the representations, and the inferred information, which are really helpful to the users-skiers to apprehend the territory and make decisions, and which could be effectively replicated into a digital system. The most interesting output relies on the relevance of the panorama view: panorama still fascinates, but contrary to conventional wisdom, the information it provides does not seem to be useful to the skier. From a socio-historical perspective this study shows how empirical evidence-based approach can support the change: our results enhance the discussion on the effectiveness of the message that mountain operators want to convey to the tourist and therefore, on the renewal of (geographical information in ski resorts.

  4. Clinical assessment, neuroimaging and immunomarkers in Chagas disease study (CLINICS: rationale, study design and preliminary findings

    Directory of Open Access Journals (Sweden)

    Jamary Oliveira-Filho

    Full Text Available ABSTRACT Chagas disease (CD is an important cause of cardiomyopathy and stroke in Brazil. Brain infarcts and atrophy seem to occur independently of cardiomyopathy severity and cognitive impairment is understudied. Objective: Compare the prevalence of brain magnetic resonance imaging abnormalities between patients with or without CD; determine if inflammatory biomarkers are increased in CD; and determine the efficacy of aspirin in reducing the rate of microembolization in these patients. Methods: 500 consecutive patients with heart failure will undergo a structured cognitive evaluation, biomarker collection and search for microembolic signals on transcranial Doppler. The first 90 patients are described, evaluated with cognitive tests and brain magnetic resonance imaging to measure N-acetyl aspartate (NAA, choline (Cho, myo-inositol (MI and creatine (Cr. Results: Mean age was 55±11 years, 51% female, 38 (42% with CD. Mean NAA/Cr ratio was lower in patients with CD as compared to other cardiomyopathies. Long-term memory and clock-drawing test were also significantly worse in CD patients. In the multivariable analysis correcting for ejection fraction, age, sex and educational level, reduced NAA/Cr (p=0.006 and cognitive dysfunction (long-term memory, p=0.023; clock-drawing test, p=0.015 remained associated with CD. Conclusion: In this preliminary sample, CD was associated with cognitive impairment and decreased NAA/Cr independently of cardiac function or educational level.

  5. GNC architecture for autonomous robotic capture of a non-cooperative target: Preliminary concept design

    Science.gov (United States)

    Jankovic, Marko; Paul, Jan; Kirchner, Frank

    2016-04-01

    Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.

  6. Design, synthesis and preliminary biological evaluation of brain targeting L-ascorbic acid prodrugs of ibuprofen

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Wu; Xiao-Cen Li; Jie Mi; Jing You; Li Hai

    2013-01-01

    L-Ascorbic acid (AA,vitamin C) exhibits a high concentration in the brain.The transportation of AA in brain is mainly mediated by the glucose transporter 1 (GLUT1) and the Na+-dependent vitamin C transporter SVCT2.While L-ascorbic acid C6-O conjugation has been investigated as a tool to enhance brain drug delivery,C5-O conjugation and C5-O & C6-O conjugation as brain targeting tools have not been reported.In this letter,ibuprofen was linked directly to C5-O,C6-O and C5-O & C6-O positions of L-ascorbic acid with eater bonds,providing prodrug 1,2 and 3,respectively,to improve their targeting abilities in the brain.Prodrug 1,2 and 3 were synthesized in facile ways with good yields.And the preliminary evaluation in vivo illustrated that prodrug 2 had a better targeting ability than prodrug 1.Moreover,prodrug 3,whose C5-O & C6-O positions were both modified,had good targeting ability for brain which will provide an important evidence for our further study on C5-O-& C6-O-di-derivatives of L-ascorbic acid.

  7. Preliminary conceptual designs for advanced packages for the geologic disposal of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1979-04-01

    The present study assumes that the spent fuel will be disposed of in mined repositories in continental geologic formations, and that the post-emplacement control of the radioactive species will be accomplished independently by both the natural barrier, i.e., the geosphere, and the engineered barrier system, i.e., the package components consisting of the stabilizer, the canister, and the overpack; and the barrier components external to the package consisting of the hole sleeve and the backfill medium. The present document provides an overview of the nature of the spent fuel waste; the general approach to waste containment, using the defense-in-depth philosophy; material options, both metallic and nonmetallic, for the components of the engineered barrier system; a set of strawman criteria to guide the development of package/engineered barrier systems; and four preliminary concepts representing differing approaches to the solution of the containment problem. These concepts use: a corrosion-resistant meta canister in a special backfill (2 barriers); a mild steel canister in a corrosion-resistant metallic or nonmetallic hole sleeve, surrounded by a special backfill (2 barriers); a corrosion-resistant canister and a corrosion-resistant overpack (or hole sleeve) in a special backfill (3 barriers); and a mild steel canister in a massive corrosion-resistant bore sleeve surrounded by a polymer layer and a special backfill (3 barriers). The lack of definitive performance requirements makes it impossible to evaluate these concepts on a functional basis at the present time.

  8. The Effectiveness of Panoramic Maps Design: a Preliminary Study Based on Mobile Eye-Tracking

    Science.gov (United States)

    Balzarini, R.; Murat, M.

    2016-06-01

    This paper presents preliminary results from an ongoing research based on the study of visual attention through mobile eye-tracking techniques. The visual-cognitive approach investigates the reading-comprehension of a particular territorial representation: ski trails maps. The general issue of the study is to provide insights about the effectiveness of panoramic ski maps and more broadly, to suggest innovative efficient representation of the geographic information in mountain. According to some mountain operators, the information provided by paper ski maps no longer meets the needs of a large part of the customers; the question now arises of their adaptation to new digital practices (iPhone, tablets). In a computerized process perspective, this study particularly focuses on the representations, and the inferred information, which are really helpful to the users-skiers to apprehend the territory and make decisions, and which could be effectively replicated into a digital system. The most interesting output relies on the relevance of the panorama view: panorama still fascinates, but contrary to conventional wisdom, the information it provides does not seem to be useful to the skier. From a socio-historical perspective this study shows how empirical evidence-based approach can support the change: our results enhance the discussion on the effectiveness of the message that mountain operators want to convey to the tourist and therefore, on the renewal of (geographical) information in ski resorts.

  9. An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Liou, May-Fun; Benson, Thomas J.; Trefny, Charles J.

    2010-01-01

    This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.

  10. Preliminary structural design conceptualization for composite rotor for verdant power water current turbine

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, J. A.

    2012-03-01

    Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

  11. Solar Pilot Plant, Phase I. Preliminary design report. Volume III. Collector subsystem. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    The Honeywell collector subsystem features a low-profile, multifaceted heliostat designed to provide high reflectivity and accurate angular and spatial positioning of the redirected solar energy under all conditions of wind load and mirror attitude within the design operational envelope. The heliostats are arranged in a circular field around a cavity receiver on a tower halfway south of the field center. A calibration array mounted on the receiver tower provides capability to measure individual heliostat beam location and energy periodically. This information and weather data from the collector field are transmitted to a computerized control subsystem that addresses the individual heliostat to correct pointing errors and determine when the mirrors need cleaning. This volume contains a detailed subsystem design description, a presentation of the design process, and the results of the SRE heliostat test program.

  12. Preliminary design of axial flow hydrocarbon turbine/generator set for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, B.; Samurin, N.A.; Shields, J.R.

    1979-05-01

    This report outlines the design of a 65 MW (e) gross turbine generator set in which a hydrocarbon gas mixture is used as the motive fluid. The turbine generator set is part of a geothermal binary cycle electric power plant proposed for the Heber site in the Imperial Valley, California. Aerodynamic design considerations and estimated unit performance for three hydrocarbon gas mixtures are presented. Real gas properties and equations of state are reviewed as they affect the turbine design and the thermodynamic cycle. The mechanical designs for the casing, rotor dynamics, shaft sealing and unit construction are detailed. Support systems such as the lube and seal supply system, turbine controls, etc., are reviewed. An extensive hydrocarbon turbine general specification is also included.

  13. Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task I. Design requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The results of Task I, Design Requirements, are presented. Environmental conditions for the Punta Tuna, Puerto Rico site are reviewed and synthesized to provide definition of current, wind and wave severity, direction, and occurrence for service, operational, and extreme sea states. SKSS performance requirements, including design life and watch circle, are followed by interface considerations particularly for the electrical transmission riser cable, and design criteria including safety and load factors. The SKSS concepts will be analyzed to evaluate performance, reliability, and cost. Performance analysis conducted included catenary anchor leg static calculations to size components, as well as drag due to environmental loads in the operational and extreme sea states for both ship and spar platforms. Dynamic analyses and trade studies to be conducted in Task II are presented. A reliability and risk assessment analysis of the three basic SKSS types - single-, multiple-, and tension-anchor-leg moors - was completed, indicating that the multiple-anchor-leg/multiple-point rotary or turret moor has the lowest risk-criticality for the ship, while that for the spar is the multiple-anchor-leg/multiple-point moor. The catenary single-anchor-leg/single-point moor has insufficient reliability for both platforms. The life cycle cost analysis methodology, including work breakdown structure, cost estimating, and cost minimization define the approach to costing to be followed throughout the study. The results of these design trades and analyses will first be applied to concept ranking required for recommendation of a SKSS concept for each platform.

  14. The design of an insulin pump - preliminary requirements (a technical note)

    Science.gov (United States)

    Hawlas, Hubert J.; Lewenstein, Krzysztof

    2009-01-01

    The material presented in this paper is an attempt to lay down requirements for the planned design of an insulin pump. An insulin pump is a device for continuous dosage of insulin at a selected rate, which facilitates treatment and improves the lives of diabetic patients. This paper is a compilation of medical requirements and user suggestions of presently offered insulin pumps. It seems important to establish proper requirements for a device before starting developing any design for an insulin pump.

  15. A preliminary design study on an acoustic muffler for the laminar flow transition research apparatus

    Science.gov (United States)

    Abrahamson, A. L.

    1984-01-01

    An acoustic muffler design of a research tool for studying laminar flow and the mechanisms of transition, the Laminar Flow and Transition Research Apparatus (LFTRA) is investigated. Since the presence of acoustic pressure fluctuations is known to affect transition, low background noise levels in the test section of the LFTRA are mandatory. The difficulties and tradeoffs of various muffler design concepts are discussed and the most promising candidates are emphasized.

  16. 上、卸卷小车设计概要%Preliminary Design of Coil Car

    Institute of Scientific and Technical Information of China (English)

    杨妤; 刘建新; 胡兵; 孙红刚

    2015-01-01

    The paper summarized structure types of coiI car,it described the principIes to be foI owed in the design and it demonstrated necessary design calcuIations.%文章对上、卸卷小车的结构形式做了归纳,阐述了小车设计选择中遵循的原则以及必要的计算。

  17. Divertor remote handling for DEMO: Concept design and preliminary FMECA studies

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Di Gironimo, G. [ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2015-10-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor mover: hydraulic telescopic boom concept design. • An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • FMECA studies started on the DEMO divertor mover. - Abstract: The paper describes a concept design of a remote handling (RH) system for replacing divertor cassettes and cooling pipes in future DEMO fusion power plant. In DEMO reactor design important considerations are the reactor availability and reliable maintenance operations. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative designs of the end effector to grip and manipulate the divertor cassette are presented in this work. Both concepts are hydraulically actuated, based on ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. Taking advantage of the ITER RH background and experience, the proposed hydraulic RH system is compared with the rack and pinion system currently designed for ITER and is an object of simulations at Divertor Test Platform (DTP2) in VTT's Labs of Tampere, Finland. Pros and cons will be put in evidence.

  18. Quality by Design approach in the development of a magnetic transducer for biomedical measurements: preliminary results on Design Space configuration

    Science.gov (United States)

    Louzada, D. R.; Monteiro, E. C.; Rivero, A. M.; Fortaleza, L. G. S.; Barbosa, C. R. H.; Velázquez, D. R. T.; Silva, E. C.; Gusmão, L. A. P.

    2016-11-01

    The concept of Quality by Design (QbD) has been widely used by the pharmaceutical industry since 2004, changing the focus on inspections to embrace greater control in the manufacturing process. This new approach contributed to lower production costs and higher quality of medicines. This work discusses the first steps towards the implementation of a QbD approach aimed at ensuring the quality of a biomedical device under development. This device will be applied as a non-magnetic metallic foreign body localization system for surgical removal guidance. It should be highlighted that a new approach was used to define the Design Space, based on fuzzy logic rather than the typical statistical techniques.

  19. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  20. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  1. Preliminary electromagnetic, thermal and mechanical design for first wall and vacuum vessel of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Lucca, F., E-mail: Flavio.Lucca@LTCalcoli.it [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Bertolini, C. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Crescenzi, F.; Crisanti, F. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Di Gironimo, G. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Labate, C. [CREATE, Università di Napoli Parthenope, Via Acton 38, 80133 Napoli (Italy); Manzoni, M.; Marconi, M.; Pagani, I. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, G. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Renno, F. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Roccella, M. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Roccella, S. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Viganò, F. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)

    2015-10-15

    The fusion advanced study torus (FAST), with its compact design, high toroidal field and plasma current, faces many of the problems met by ITER, and at the same time anticipates much of the DEMO relevant physics and technology. The conceptual design of the first wall (FW) and the vacuum vessel (VV) has been defined on the basis of FAST operative conditions and of “Snow Flakes” (SF) magnetic topology, which is also relevant for DEMO. The EM loads are one of the most critical load components for the FW and the VV during plasma disruptions and a first dimensioning of these components for such loads is mandatory. During this first phase of R&D activities the conceptual design of the FW and VV have been assessed estimating, by means of FE simulations, the EM loads due to a typical vertical disruption event (VDE) in FAST. EM loads were then transferred on a FE mechanical model of the FAST structures and the mechanical response of the FW and VV design for the analyzed VDE event was assessed. The results indicate that design criteria are not fully satisfied by the current drawing of the VV and FW components. The most critical regions have been individuated and the effect of some geometrical and material changes has been checked in order to improve the structure.

  2. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 1. Design description

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report discusses in detail the design of the collector system, heat transport system, thermal storage subsystem, heat transport loop, steam generation subsystem, electrical, instrumentation, and control systems, power conversion system, master control system, and balance of plant. The performance, facility cost estimate and economic analysis, and development plan are also discussed.

  3. Design and preliminary performance evaluation of airborne hyper-spectral imaging spectograph Air-OPUS

    Science.gov (United States)

    Okumura, Shin-ichiro; Suzuki, Makoto; Yoshida, Shigeomi; Sano, Takuki; Watanabe, Masaharu; Ogawa, Toshihiro

    2003-06-01

    Air-OPUS is a hyper spectral imaging spectrograph, with 0.34 nm spectral step, 190-455 nm spectral coverage, and 330 spatial channels covering 15 degrees field of view (FOV). It is designed as an airborne instrument for the demonstration of spaceborne-OPUS. After two-demonstration campaign using the Gulfstream-II aircraft, the performances of AIR-OPUS, such as spectral resolution, signal-to-noise ration (SNR) have been evaluated. It is concluded that the performances have agreed with designed value. This paper describes design, the performance, and the first results of Air-OPUS. Concept of next generation Air-OPUS, with wider FOV and visible/near-IR spectral coverage, will be also briefly presented.

  4. Preliminary Design on Screw Press Model of Palm Oil Extraction Machine

    Science.gov (United States)

    Firdaus, Muhammad; Salleh, S. M.; Nawi, I.; Ngali, Z.; Siswanto, W. A.; Yusup, E. M.

    2017-01-01

    The concept of the screw press is to compress the fruit bunch between the main screw and travelling cones to extract the palm oil. Visual inspection, model development and simulation of screw press by using Solidworks 2016 and calculation of design properties were performed to support the investigation. The project aims to analyse different design of screw press which improves in reducing maintenance cost and increasing lifespan. The currently existing of screw press can endure between 500 to 900 hours and requires frequent maintenance. Different configurations have been tried in determination of best design properties in screw press. The results specify that screw press with tapered inner shaft has more total lifespan (hours) compared existing screw press. The selection of the screw press with tapered inner shaft can reduce maintenance cost and increase lifespan of the screw press.

  5. Solar Pilot Plant, Phase I. Preliminary design report. Volume V. Thermal storage subsystem. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Design, specifications, and diagrams for the thermal storage subsystem for the 10-MW pilot tower focus power plant are presented in detail. The Honeywell thermal storage subsystem design features a sensible heat storage arrangement using proven equipment and materials. The subsystem consists of a main storage containing oil and rock, two buried superheater tanks containing inorganic salts (Hitec), and the necessary piping, instrumentation, controls, and safety devices. The subsystem can provide 7 MW(e) for three hours after twenty hours of hold. It can be charged in approximately four hours. Storage for the commercial-scale plant consists of the same elements appropriately scaled up. Performance analysis and tradeoff studies are included.

  6. Preliminary conceptual design of inspection and maintenance for KALIMER reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Seok Hun; Yoo, Bong

    2000-08-01

    In-service inspection and maintenance are very important for improving the safety and availability of nuclear power plants. The conceptual requirements of in-service inspection and maintenance should be reflected in the earlier design process for the verification of the plant operability and reliability. In this report the fundamental approaches of the inspection and maintenance for KALIMER are established to ensure the structural integrity and operability for KALIMER. The general strategy and methodology of maintenance and inspection for the reactor system and components are proposed and described for satisfying the intents of the section XI, division 3, of ASME code and considering the design characteristics of KALIMER.

  7. SP-100 planetary mission/system preliminary design study. Final report, technical information report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.M. [ed.

    1986-02-01

    This report contains a discussion on many aspects of a nuclear electric propulsion planetary science mission and spacecraft using the proposed SP-100 nuclear power subsystem. A review of the science rationale for such missions is included. A summary of eleven nuclear electric propulsion planetary missions is presented. A conceptual science payload, mission design, and spacecraft design is included for the Saturn Ring Rendezvous mission. Spacecraft and mission costs have been estimated for two potential sequences of nuclear electric propulsion planetary missions. The integration issues and requirements on the proposed SP-100 power subsystems are identified.

  8. Preliminary assessment of existing experimental data for validation ofreactor physics codes and data for NGNP design and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Terry, W. K.; Jewell, J. K.; Briggs, J. B.; Taiwo, T. A.; Park, W.S.; Khalil, H. S.

    2005-10-25

    The Next Generation Nuclear Plant (NGNP), a demonstration reactor and hydrogen production facility proposed for construction at the INEEL, is expected to be a high-temperature gas-cooled reactor (HTGR). Computer codes used in design and safety analysis for the NGNP must be benchmarked against experimental data. The INEEL and ANL have examined information about several past and present experimental and prototypical facilities based on HTGR concepts to assess the potential of these facilities for use in this benchmarking effort. Both reactors and critical facilities applicable to pebble-bed and prismatic block-type cores have been considered. Four facilities--HTR-PROTEUS, HTR-10, ASTRA, and AVR--appear to have the greatest potential for use in benchmarking codes for pebble-bed reactors. Similarly, for the prismatic block-type reactor design, two experiments have been ranked as having the highest priority--HTTR and VHTRC.

  9. Ocean thermal energy conversion cold water pipe preliminary design project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-20

    As part of a DOE goal to develop one or more OTEC Modular Experiment Plants, TRW performed designs, analyses, and evaluations of cold water pipe (CWP) concepts for NOAA. After reviewing the results of the CWP concept selection phase NOAA/DOE selected three concepts for a baseline design: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physics Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme (this is TRW's preferred approach); (2) an elastomer CWP suspended from the APL/JHU barge off the southeast coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontal deployment scheme. TRW has developed a baseline design for each of these configurations. Detailed designs and analyses for the FRP, polyethylene, and elastomer concepts, respectively, are described. A discussion of fabrication plans and processes, schedules for mobilization of facilities and equipment, installation plans, and cost breakdown are given for each concept. (WHK)

  10. A Solar Powered Wireless Computer Mouse: Design, Assembly and Preliminary Testing of 15 Prototypes

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.; Reich, N.H.; Alsema, E.A.; Netten, M.P.; Veefkind, M.; Silvester, S.; Elzen, B.; Verwaal, M.

    2007-01-01

    The concept and design of a solar powered wireless computer mouse has been completed, and 15 prototypes have been successfully assembled. After necessary cutting, the crystalline silicon cells show satisfactory efficiency: up to 14% when implemented into the mouse device. The implemented voltage

  11. Designing "Geometry 2.0" Learning Environments: A Preliminary Study with Primary School Students

    Science.gov (United States)

    Prieto, Nuria Joglar; Sordo Juanena, José María; Star, Jon R.

    2014-01-01

    The information and communication technologies of Web 2.0 are arriving in our schools, allowing the design and implementation of new learning environments with great educational potential. This article proposes a pedagogical model based on a new geometry technology-integrated learning environment, called "Geometry 2.0," which was tested…

  12. A Solar Powered Wireless Computer Mouse: Design, Assembly and Preliminary Testing of 15 Prototypes

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.; Reich, N.H.; Alsema, E.A.; Netten, M.P.; Veefkind, M.; Silvester, S.; Elzen, B.; Verwaal, M.

    2007-01-01

    The concept and design of a solar powered wireless computer mouse has been completed, and 15 prototypes have been successfully assembled. After necessary cutting, the crystalline silicon cells show satisfactory efficiency: up to 14% when implemented into the mouse device. The implemented voltage con

  13. Development of Artistic Perception in Students of Graphic Design: A Preliminary Report.

    Science.gov (United States)

    Hanson, Glenn

    This study is an attempt to determine what level of artistic perception or art taste is brought into the classroom by students in schools of journalism and whether it can be demonstrated that design instruction can raise the level of artistic perception among journalism and advertising students. It was hypothesized that women would score higher in…

  14. Preliminary Comparative Evaluation Study on Reference Design of GEN-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Yoon Sub; Kim, Yeong Il; Hong, Ser Gi (and others)

    2005-11-15

    A fast reactor has a good transmutation capability and it enables breeding of fuel and use of a closed fuel cycle. By these characteristics of a fast reactor, the limited uranium resources of the world can be much more effectively utilized and the nuclear wastes of a high level of radioactivity and toxicity from the current nuclear power reactors of LWRs and HWRs can be drastically reduced in its volume and the management of the wastes can be easily treated. Also electricity can be generated more effectively since a fast reactor has the feature of high operation temperature. These features of a fast reactor makes it inevitable on a long term basis to construct fast reactors in Korea. The domestic fast reactor technology level, however, is at the level of coming out of a beginning stage and needs utilization of international expertise. Recently an international cooperation program called GIF has been formulated and our KALIMER was selected as one of the two reference designs for the international joint R and D works with JSFR of Japan. In the current frame of the GIF program, the two selected reference designs are supposed to be evaluated against each other in future and one design is to be finally selected. To make the international cooperation program directed more useful to our fast reactor technology development, it is required to strengthen the competitiveness of KALIMER so that it can be selected. To meet the necessity, a study was made in this research for pre-evaluation of the GIF reference designs and setting up plans for development of designs and technology that will enhance the competitiveness of KALIMER.

  15. Preliminary Design of Muses Control System Based on RT-Corba and Java

    CERN Document Server

    Tanabé, T; Ohnishi, J; Takano, M; Katayama, T; Tanabe, Toshiya; Masuoka, Toshikatsu; Ohnishi, Jun-ichi; Takano, Motonobu; Katayama, Takeshi

    2001-01-01

    Common Object Request Broker Architecture (CORBA) based control system has been utilized for the first phase of RIKEN-RI Beam Factory (RIBF) [1] at the developing stage. Software sharing with Jozef Stefan Institute (JSI) in Slovenia via CORBA/JavaBeans has been successfully demonstrated. Accelerator Beans (Abeans) [2] components developed in JDK1.2.2 have been ported to RIKEN's CORBA server. The second phase of the RIBF project is named "Multi-Use Experimental Storage rings" (MUSES) project, which includes an accumulator cooler ring (ACR) and collider rings. Due to the much larger number of controlled objects and more stringent timing requirement than the first-phase project, we contemplate using recently established real-time (RT) CORBA specification [3]. Summary of our efforts to test RT-CORBA with the existing JaveBeans components and other related subjects are described in this paper. [1] http://ribfweb1.riken.go.jp/ [2] http://kgb.ijs.si/KGB/ [3] http://www.omg.org/

  16. Compressed-air energy storage preliminary design and site development program in an aquifer. Volume 5, Part 1: Turbomachinery design

    Science.gov (United States)

    Berman, P. A.; Bonk, J. S.; Kobett, W. F.; Kosanovich, N. S.; Long, L. J.; Marinacci, D. J.

    1982-11-01

    The development of the design approach for a combustion turbine heat cycle and the major mechanical equipment for use by an electric utility at a selected aquifer air storage site is documented. A compressed air energy storage (CAES) system utilizes off peak electric power, available from base load power plants, to store compressed air underground in an aquifer. During subsequent periods, the stored air is extracted from the aquifer and used as an air supply for a generating combustion turbine expander. The aquifer has an initial discovery pressure of 840 psia. An initial air injection temperature of 1500 F was selected. The major mechanical equipment considered includes: the turbine motor/generator compressor train, intercooler and aftercooler system, and the exhaust gas regenerator. The cycle and machinery configuration and the specific mechanical equipment were selected for their Media site characteristics. These characteristics and the effect of component interdependency are considered when a conservative component design approach is established which satisfies the Media site CAES system requirements.

  17. Compressed air energy storage: Preliminary design and site development program in an aquifer. Task 1: Establish facility design criteria and utility benefits

    Science.gov (United States)

    1980-10-01

    Compressed air energy storage (CAES) stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. Essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the system results in increased net generation and greater premium fuel economy. Work performed in establishing facility design criteria for a CAES system with aquifer storage includes: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

  18. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

  19. Design and preliminary analysis of a vaginal inserter for speculum-free cervical cancer screening.

    Science.gov (United States)

    Asiedu, Mercy Nyamewaa; Agudogo, Júlia; Krieger, Marlee S; Miros, Robert; Proeschold-Bell, Rae Jean; Schmitt, John W; Ramanujam, Nimmi

    2017-01-01

    Cervical cancer screening usually requires use of a speculum to provide a clear view of the cervix. The speculum is one potential barrier to screening due to fear of pain, discomfort and embarrassment. The aim of this paper is to present and demonstrate the feasibility of a tampon-sized inserter and the POCkeT Colposcope, a miniature pen sized-colposcope, for comfortable, speculum-free and potentially self-colposcopy. We explored different designs using 3D computer-aided design (CAD) software and performed mechanical testing simulations on each. Designs were rapid prototyped and tested using a custom vaginal phantom across a range of vaginal pressures and uterine tilts to select an optimal design. Two final designs were tested with fifteen volunteers to assess cervix visualization, comfort and usability compared to the speculum and the optimal design, the curved-tip inserter, was selected for testing in volunteers. We present a vaginal inserter as an alternative to the standard speculum for use with the POCkeT Colposcope. The device has a slim tubular body with a funnel-like curved tip measuring approximately 2.5 cm in diameter. The inserter has a channel through which a 2 megapixel (MP) mini camera with LED illumination fits to enable image capture. Mechanical finite element testing simulations with an applied pressure of 15 cm H2O indicated a high factor of safety (90.9) for the inserter. Testing of the device with a custom vaginal phantom, across a range of supine vaginal pressures and uterine tilts (retroverted, anteverted and sideverted), demonstrated image capture with a visual area comparable to the speculum for a normal/axial positioned uteri and significantly better than the speculum for anteverted and sideverted uteri (pcancer screening and also enables acetic acid/Lugol's iodine application and insertion of swabs for Pap smear sample collection. This study demonstrates the feasibility of an inserter and miniature-imaging device for comfortable cervical

  20. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [ODSP-3 code; OTEC Steady-State Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)

  1. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  2. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  3. Design and preliminary in vivo validation of a robotic laparoscope holder for minimally invasive surgery.

    Science.gov (United States)

    Herman, Benoît; Dehez, Bruno; Duy, Khanh Tran; Raucent, Benoît; Dombre, Etienne; Krut, Sébastien

    2009-09-01

    Manual manipulation of the camera is a major source of difficulties encountered by surgeons while performing minimally invasive laparoscopic surgery. A survey of laparoscopic procedures and a review of existing active and passive holders were conducted. Based on these analyses, essential requirements were highlighted for such devices. Pursuant to this, a novel active laparoscope manipulator was designed, paying particular attention to ergonomics and ease of use. Several trials on the pelvitrainer and a first in vivo procedure were performed to validate the original design of our device. Phantom experiments demonstrated ease of use of the robot and advantages of the intuitive joystick with omnidirectional displacements and speed control. The compactness of the device and image stability were appreciated during the surgical trial. A novel robotic laparoscope holder has been developed and produced. An in vivo trial proved its value in clinical practice, enabling surgeons to work more comfortably.

  4. A Smart Insole to Promote Healthy Aging for Frail Elderly Individuals: Specifications, Design, and Preliminary Results

    OpenAIRE

    Piau, Antoine; Charlon, Yoann; Campo, Eric; Vellas, Bruno; Nourhashemi, Fati

    2015-01-01

    Background Older individuals frequently experience reversible ?frailty syndrome,?, increasing incidence of disability. Although physical exercise interventions may delay functional decline, there are difficulties in implementing them and performing seamless follow-up at home. Very few technological solutions attempt to address this challenge and improve individual participation. Objective Our objectives are to (1) develop a technological solution designed to support active aging of frail olde...

  5. Preliminary Design Study of High-Power H2+ Cyclotrons for the DAEdALUS Experiment

    CERN Document Server

    Calabretta, L; Gammino, S; Rifuggiato, D; Ciavola, G; Maggiore, M; Piazza, L A C; Alonso, J R; Barletta, W A; Calanna, A; Conrad, J M

    2011-01-01

    This report provides a first design for H2+ accelerators as the DAEdALUS neutrino sources. A description of all aspects of the system, from the ion source to the extracted beam, is provided. The analysis provides a first proof of principle of a full cyclotron system which can provide the necessary beam power for the CP violation search proposed by the DAEdALUS Collaboration.

  6. A Knowledge Based Approach for Automated Modelling of Extended Wing Structures in Preliminary Aircraft Design

    OpenAIRE

    Dorbath, Felix; Nagel, Björn; Gollnick, Volker

    2011-01-01

    This paper introduces the concept of the ELWIS model generator for Finite Element models of aircraft wing structures. The physical modelling of the structure is extended beyond the wing primary structures, to increase the level of accuracy for aircraft which diverge from existing configurations. Also the impact of novel high lift technologies on structural masses can be captured already in the early stages of design by using the ELWIS models. The ELWIS model generator is able to c...

  7. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    Science.gov (United States)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  8. Conceptual and Preliminary Design of a Low-Cost Precision Aerial Delivery System

    Science.gov (United States)

    2016-06-01

    actuators, parachutes and telemetry components frequently did not survive even the reduced impact forces at landing, the design prioritized the...ability to provide synchronous dual control line pitch control. As a result of these limitations, the author, in conjunction with Lieutenant...transient interruption in the power supply or telemetry link could cause the Pixhawk to change flight modes and negatively impact its ability to

  9. Ocean thermal energy conversion cold water pipe preliminary design project. Appendices to final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-20

    NOAA/DOE has selected three concepts for a baseline design of the cold water pipe (CWP) for OTEC plants: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physical Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme; (2) an elastomer CWP suspended from the APL/JHU barge off the southeast coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontal deployment scheme. TRW has developed a baseline design for each of these configurations. This volume of the report includes the following appendices: (A) fiberglass reinforced plastic cold water pipe (specification and drawingss); (B) specification for polyethylene CWP; (C) elastomer pipe drawings; (D) drawings for OTEC 10/40 hull/CWP transitions; (E) structural design of OTEC 10/40 CWP support and CWP transitions; (F) universal transition joint for CWP; (G) dynamic spherical seal of CWP; (H) at-sea deployment loads - surface towing loads; (I) OTEC 10/40 CWP deployment up-ending loads; (J) cost estimates for OTEC 10/40 hull/CWP transitions; and (K) OTEC 10/40 CWP deployment scenario and cost estimate. (WHK)

  10. Preliminary Design of the HiLumi-LHC Triplet Area Beam Screen

    CERN Document Server

    Kersevan, R; Kos, N

    2014-01-01

    The so-called beam screen (BS) is a proven solution for intercepting the thermal loads caused by the circulating beams in the cryogenically-cooled sections of the LHC and minimizing dynamic vacuum effects [1]. The new triplet area foreseen for the HiLumi-LHC (HL-LHC) machine upgrade [2] has the additional feature of needing internal tungsten shields to reduce the amount of collision debris which is deflected by the high-gradient triplet magnets towards the superconducting magnets' cold masses and coils. The very aggressive optics design, based on large beam separations, calls for a maximum of physical space to remain available to the counter rotating beams in the common BS. This places severe constraints to the fabrication and installation tolerances of the BS itself, in addition to affecting the design and routing of the cryogenic lines in the area. The latest version of the BS design will be shown and discussed, together with future plans for testing materials, fabrication procedures, and installation.

  11. Euler Technology Assessment for Preliminary Aircraft Design: Compressibility Predictions by Employing the Cartesian Unstructured Grid SPLITFLOW Code

    Science.gov (United States)

    Finley, Dennis B.; Karman, Steve L., Jr.

    1996-01-01

    The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  12. An Approximate Method for Calculation of Mean Statistical Value of Ship Service Speed on a Given Shipping Line , Useful in Preliminary Design Stage

    Directory of Open Access Journals (Sweden)

    Żelazny Katarzyna

    2015-01-01

    Full Text Available During ship design, its service speed is one of the crucial parameters which decide on future economic effects. As sufficiently exact calculation methods applicable to preliminary design stage are lacking the so called contract speed which a ship reaches in calm water is usually applied. In the paper [11] a parametric method for calculation of total ship resistance in actual weather conditions (wind, waves, sea current, was presented. This paper presents a parametric model of ship propulsion system (screw propeller - propulsion engine as well as a calculation method, based on both models, of mean statistical value of ship service speed in seasonal weather conditions occurring on shipping lines. The method makes use of only basic design parameters and may be applied in preliminary design stage.

  13. Preliminary Design for the Motor and Body of the IVTM in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Koo, G. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The motor size of the gripper driving part which can move up and down the core assembly is determined by considering the gear arrangement, the gear reduction ratio and the maximum torque between the gripper and the drive motor. In this mechanism, the relative geometrical positions for each joint are calculated using the Scott Russell Perfect Strait Line Mechanism. Torque for the Gripper Vertical Movement The IVTM in the PGSFR withdraw the core assembly from the reactor core by using the gripper to handle the core assembly inside the reactor during the refueling time. The gripper transforms the driving force transmitted from the motor into the vertical movement of the gripper using the ball screw shaft and nut installed inside the pantograph arm. By means of this movement, the gripper can move up and down inside the pantograph arm. During the operation, we can assume a condition that is impossible for a withdrawal due to the deformation of the core assembly and another malfunction. We define the load at this time as the maximum value of the refueling load and consider it as the design load. Under this loading condition, the bending moment in the ball screw shaft inside the gripper occurs due to the load applied to the gripper and the friction force on the contact surface is generated. On the basis of this working load, the maximum design torque is calculated based on the design formula of the ball screw. The friction coefficient on the contact surface and the efficiency in the ball screw are assumed to be 0.3 and 0.9, respectively. As a result of the calculation, the maximum torque required for this refueling load is calculated as 155.3 N.m.

  14. Design and evaluation of a patient website to reduce crowding in emergency departments: a preliminary study.

    Science.gov (United States)

    Schiro, Jessica; Marcilly, Romaric; Leroy, Nicolas; Wawrzyniak, Clément; Martinot, Alain; Pelayo, Sylvia

    2015-01-01

    The study aims to identify the information useful to support a patients' EDs' choice in order to design a patient Web-based system. For that purpose, a focus group and a formative user test have been performed. The results show that five types of information can be relevant. The spontaneous favored information is the "distance" to EDs. The "Wait time", that is sanctified in literature, is only used in a second time. A larger summative evaluation should be planned to evaluate and validate the befits of this kind of tool.

  15. Amplitude Tapers for Planar Arrays Using the McClellan Transformation: Concepts and Preliminary Design Experiments

    Science.gov (United States)

    2010-04-29

    transformation: a phase-only prototype transforms to a two-dimensional taper that lacks the phase-only property. A straightforward IEEE Xplore subject search...A 2-D FIR filter structure derived from the Chebyshev recursion,” IEEE Trans. Circuits and Systems, vol. 24, no. 7, pp. 372–378, July 1977. [Online...transformations for two-dimensional digital filtering—Part I: Design,” IEEE Trans. Circuits and Systems, 3It is odd to associate the term “recursion” with FIR

  16. A preliminary study on designing ecological corridors in Xishuangbanna National Nature Reserve with 3S techniques

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is based on the fieldwork in Xishuang-banna Natioanl Nature Reserve in Yunnan Province of China. GPS data of Asian elephants were collected and analyzed with the remote sensing satellite photos of the region to estimate the landform physiognomy of different colors. We also analyzed a series of ecological factors includ-ing altitude, landform, relief, villages and roads which affected the distribution and movement of Asian elephants. The results suggested the possibility of designing and estab-lishing corridors in Xishuangbanna National Nature Reserve to protect the population of wild elephants in the region.

  17. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  18. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchinson, Jesson D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-20

    The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational performance of a compact reactor configuration that closely resembles the flight unit to be used by NASA to execute a deep space exploration mission. The reactor design will include heat pipes coupled to Stirling engines to demonstrate how one can generate electricity when extracting energy from a “nuclear generated” heat source. This series of experiments is a larger scale follow up to the DUFF series of experiments1,2 that were performed using the Flat-Top assembly.

  19. Synthesis of preliminary system designs for offshore oil and gas production

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sin, Gürkan; Elmegaard, Brian

    2016-01-01

    The present work deals with the design of oil and gas platforms, with a particular focus on the developmentof integrated and intensified petroleum processing plants. It builds on a superstructure based approach that includes all the process steps, transformations and interconnections of relevance...... the platform, (ii) the oil and gas recoveries are markedly impacted by the number of separation stages and heat exchangers, and (iii) disregarding the interactions between the several plant sections lead to sub-optimum solutions. The application of this framework proves to be useful for eliminating inadequate...

  20. Preliminary design, construction and evaluation of robot of tomato seed planting for the trays of greenhouse

    Directory of Open Access Journals (Sweden)

    J Ghezavati

    2015-09-01

    Full Text Available Introduction: From an economic viewpoint, tomato is considered as the second most valuable crop after potato. It is also preceded by the potato in terms of per capita consumption in the world. In 2008, the cultivation area used for the tomato as equal to 163,539 hectares in Iran and the production of it was equal to 5,887,715 tons with an average production of 117,887 tons in 4352 hectares in the provinces, respectively. Having high production volume and quality, costly hybrid seeds are currently used for the major planting areas of vegetable in Iran. Most of the used transplanted seedlings are 83%. Since the seeds are expensive, the percentage of seedlings and healthy and disease-free seeds should be used for maximized germination and be transferred to the fields of open space. Preparing seedlings in transplanting trays is a technology to respond to this need. Trays are covered with a layer of Peat and Miculite fertilizers. Then, one seed is manually placed in each cell after gauging and preparing a suitable field. However, manually placing seeds is time-consuming and requires hard labor. Sixteen working labors per hour are required for 15 × 7 cell in order to have 10200 seedlings grown in 100 trays. Due to lack of adequate labor, production capacity of greenhouses is reduced, especially in the farming season when finding labor for planting vegetable sprouts is laborious. Therefore, mechanizing tray seeding operations is essential to increase the capacity of the growing industry of greenhouses in Iran. Materials and Methods: Initially, the tomato seeds were examined in the laboratory. The most important parameters of the study included size, shape, weight, the speed of getting out of the tank and the minimum carrying speed. Then, a vacuum-based single seed picking unit was prepared to investigate the factors influencing the design, so that a single tomato seed can be harvested from the masses. The most important factors considered in the

  1. Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yanping He

    2012-10-01

    Full Text Available Currently, floating wind turbines (FWTs may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP was developed for the NREL 5-MW offshore wind turbine according to site-specific environmental conditions, which are the same as the OC3-Hywind (NREL conditions. The general arrangement, main structure and mooring system were also designed and investigated through hydrodynamic and natural frequency analyses. The complete system avoids resonance through the rotor excitations. An aero-hydro-servo-elastic coupled analysis was carried out in the time domain with the numerical tool FAST. Statistics of the key parameters were obtained and analysed and comparisons to MIT/NREL TLP are made. As a result, the design requirements were shown to be satisfied, and the proposed WindStar TLP was shown to have favourable motion characteristics under extreme wind and wave conditions with a lighter and smaller structure. The new concept holds great potential for further development.

  2. Preliminary design features of the RASCAL - A NASA/Army rotorcraft in-flight simulator

    Science.gov (United States)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1992-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-latitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  3. Preliminary design features of the RASCAL: A NASA /Army rotorcraft in-flight simulator

    Science.gov (United States)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1993-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-altitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  4. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  5. Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy.

    Science.gov (United States)

    Yang, Yuxiang; Wang, Jue; Yu, Gang; Niu, Feilong; He, Ping

    2006-12-01

    Portable bioimpedance spectroscopy (BIS) devices are of great value for monitoring the pathological status of biological tissues in clinical and home environments. The two traditional techniques for measuring complex bioimpedance, the bridge method and quadrature demodulation method, are either time-consuming or often associated with high cost, high power consumption, and large board space, and therefore are not ideally suitable for designing a portable device for BIS measurement. This paper describes a novel design of a portable BIS device based on the magnitude-ratio and phase-difference detection method and its implementation using the newest generation of analog electronic products which greatly decrease the complexity of both hardware and software. In order to improve the accuracy of the device, a three-reference calibration algorithm was applied. Experimental sweep-frequency measurements on RC circuits were carried out to preliminarily evaluate the performances of the device. The results obtained by the device were found to be in good agreement with the results measured by a commercial impedance analyzer HP4194, with an overall mean error of 0.014% in magnitude and 0.136 degrees in phase over a frequency range of 20 kHz to 1 MHz.

  6. A Preliminary Interaction Region Design for a Super B-Factory

    CERN Document Server

    Sullivan, Michael K; Donald, Martin; Ecklund, Stanley; Novokhatski, Alexander; Seeman, John; Wienands, Ulrich

    2005-01-01

    The success of the two B-Factories (PEP-II and KEKB) has encouraged us to look at design parameters for a B-Factory with a 30-50 times increase in the luminosity of the present machines (L~1e36). In order to achieve this high luminosity, the beta y* values are reduced to 3-2 mm, the bunch spacing is minimized (0.6-0.3 m) and the bunch currents are increased. Total beam currents range from 5-25 A. The interaction region (IR) of these "SuperB" designs presents special challenges. Synchrotron radiation fans from local bending in shared magnets and from upstream sources pose difficulties due to the high power levels in these fans. High-order-mode(HOM)heating, effects that have been seen in the present B-factories, will become much more pronounced with the very short bunches and high beam currents. Masking the detector beam pipe from synchrotron radiation must take into account effects of HOM power generation. Backgrounds that are a function of the luminosity will become very important. We presen...

  7. Preliminary Design of the Continuous ADRs for the Primordial Inflation Explorer (PIXIE)

    Science.gov (United States)

    Shirron, Peter J.; Dipirro, Michael James; Fixsen, Dale J.; Kogut, Alan J.

    2017-01-01

    PIXIE is a recently proposed middle-class explorer mission designed to produce full-sky maps of polarization in the Cosmic Microwave Background (CMB). PIXIEs challenging science goals require not only measuring the extremely faint b-modes of the CMB, but distinguishing between true CMB signatures and 1) polarized light reflecting off local dust, and 2) signals arising from within the instrument. PIXIEs detectors will operate at 100 mK in order to achieve the required sensitivity. Instrument errors will be minimized in part by operating the telescope and optics at an average temperature close to that of the CMB (2.72 K) and systematically varying the temperature of various components by a small amount (10-20 mK). Signals appearing at the frequency of those variations can then be subtracted out. For this to be successful at the level required, it is necessary for the pattern of temperatures to be stable over very long time frames. Consequently, cooling of the detectors and telescope will be done using two 3-stage ADR assemblies that will produce continuous cooling, one at 100 mK and the other at approximately 2.65 K. The latter will act as the heat sink for 100 mK ADR and establish a base temperature from which the telescope and optics will be regulated. Its heat sink is a 4.5 K cryocooler. The design and operation of the ADRs will be discussed.

  8. A Sensitivity Analysis of a Pipe Break Accident in a Preliminary Specific Design of the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Jeong, Jae Ho; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is a pool type sodium cooled fast reactor with a thermal power of 392.1 MW which has been developed in accord with an enhanced safety, an efficient utilization of uranium resources and a reduction of a high level waste volume in the Korea Atomic Energy Research Institute (KAERI) since 2012 under a National Nuclear R and D Program. The PGSFR has an inherent safety characteristic owing to the design to have a negative power reactivity coefficient during all operation modes and it has a passive safety characteristic due to the design of a passive decay heat removal circuit. In order to assess the inherent safety features of the PGSFR, a safety analysis was performed for a pipe break accident with MARS-LMR. And, the sensitivity studies were also performed to find the most conservative condition. As a result, the PGSFR was appropriately tripped by a high power to PHTS flow ratio using the method of extracting the PHTS flow rate from the pressure drop. The air flow rate was the most sensitive variable in the sensitivity analysis. Therefore, it is important to know the accurate uncertainty of the air flow rate in the AHX.

  9. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Béjar Alonso, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Brüning, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lamont, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  10. Preliminary test results in support of integrated EPP and SMT design methods development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sham, T. -L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-09

    The proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology consists of incorporating a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid using the creep-fatigue interaction diagram (the D diagram) and to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed code rules and to verify their applicability, a series of thermomechanical tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen. The second test concept is the two-bar thermal ratcheting tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. This report summaries the previous SMT results on Alloy 617, SS316H and SS304H and presents the recent development on SMT approach on Alloy 617. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed integrated EPP and SMT design methods development. The previous two-bar thermal ratcheting test results on Alloy 617 and SS316H are also summarized and the new results from two bar thermal ratcheting tests on SS316H at a lower temperature range are reported.

  11. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  12. Preliminary Design of ICI-based Multimedia for Reconceptualizing Electric Conceptions at Universitas Pendidikan Indonesia

    Science.gov (United States)

    Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.

    2016-08-01

    Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.

  13. Preliminary design, construction and evaluation of robot of tomato seed planting for the trays of greenhouse

    Directory of Open Access Journals (Sweden)

    J Ghezavati

    2015-09-01

    Full Text Available Introduction: From an economic viewpoint, tomato is considered as the second most valuable crop after potato. It is also preceded by the potato in terms of per capita consumption in the world. In 2008, the cultivation area used for the tomato as equal to 163,539 hectares in Iran and the production of it was equal to 5,887,715 tons with an average production of 117,887 tons in 4352 hectares in the provinces, respectively. Having high production volume and quality, costly hybrid seeds are currently used for the major planting areas of vegetable in Iran. Most of the used transplanted seedlings are 83%. Since the seeds are expensive, the percentage of seedlings and healthy and disease-free seeds should be used for maximized germination and be transferred to the fields of open space. Preparing seedlings in transplanting trays is a technology to respond to this need. Trays are covered with a layer of Peat and Miculite fertilizers. Then, one seed is manually placed in each cell after gauging and preparing a suitable field. However, manually placing seeds is time-consuming and requires hard labor. Sixteen working labors per hour are required for 15 × 7 cell in order to have 10200 seedlings grown in 100 trays. Due to lack of adequate labor, production capacity of greenhouses is reduced, especially in the farming season when finding labor for planting vegetable sprouts is laborious. Therefore, mechanizing tray seeding operations is essential to increase the capacity of the growing industry of greenhouses in Iran. Materials and Methods: Initially, the tomato seeds were examined in the laboratory. The most important parameters of the study included size, shape, weight, the speed of getting out of the tank and the minimum carrying speed. Then, a vacuum-based single seed picking unit was prepared to investigate the factors influencing the design, so that a single tomato seed can be harvested from the masses. The most important factors considered in the

  14. Preliminary design report for SCDAP/RELAP5 lower core plate model

    Energy Technology Data Exchange (ETDEWEB)

    Coryell, E.W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Griffin, F.P. [Oak Ridge National Lab., TN (United States)

    1998-07-01

    The SCDAP/RELAP5 computer code is a best-estimate analysis tool for performing nuclear reactor severe accident simulations. Under primary sponsorship of the US Nuclear Regulatory Commission (NRC), Idaho National Engineering and Environmental Laboratory (INEEL) is responsible for overall maintenance of this code and for improvements for pressurized water reactor (PWR) applications. Since 1991, Oak Ridge National Laboratory (ORNL) has been improving SCDAP/RELAP5 for boiling water reactor (BWR) applications. The RELAP5 portion of the code performs the thermal-hydraulic calculations for both normal and severe accident conditions. The structures within the reactor vessel and coolant system can be represented with either RELAP5 heat structures or SCDAP/RELAP5 severe accident structures. The RELAP5 heat structures are limited to normal operating conditions (i.e., no structural oxidation, melting, or relocation), while the SCDAP portion of the code is capable of representing structural degradation and core damage progression that can occur under severe accident conditions. DCDAP/RELAP5 currently assumes that molten material which leaves the core region falls into the lower vessel head without interaction with structural materials. The objective of this design report is to describe the modifications required for SCDAP/RELAP5 to treat the thermal response of the structures in the core plate region as molten material relocates downward from the core, through the core plate region, and into the lower plenum. This has been a joint task between INEEL and ORNL, with INEEL focusing on PWR-specific design, and ORNL focusing upon the BWR-specific aspects. Chapter 2 describes the structures in the core plate region that must be represented by the proposed model. Chapter 3 presents the available information about the damage progression that is anticipated to occur in the core plate region during a severe accident, including typical SCDAP/RELAP5 simulation results. Chapter 4 provides a

  15. The 2003 Australian Breast Health Survey: survey design and preliminary results

    Directory of Open Access Journals (Sweden)

    Favelle Simone

    2008-01-01

    Full Text Available Abstract Background The Breast Health Surveys, conducted by the National Breast Cancer Centre (NBCC in 1996 and 2003, are designed to gain insight into the knowledge, attitudes and behaviours of a nationally representative sample of Australian women on issues relevant to breast cancer. In this article, we focus on major aspects of the design and present results on respondents' knowledge about mammographic screening. Methods The 2003 BHS surveyed English-speaking Australian women aged 30–69 without a history of breast cancer using computer-assisted telephone interviewing. Questions covered the following themes: knowledge and perceptions about incidence, mortality and risk; knowledge and behaviour regarding early detection, symptoms and diagnosis; mammographic screening; treatment; and accessibility and availability of information and services. Respondents were selected using a complex sample design involving stratification. Sample weights against Australian population benchmarks were used in all statistical analyses. Means and proportions for the entire population and by age group and area of residence were calculated. Statistical tests were conducted using a level of significance of 0.01. Results Of the 3,144 respondents who consented to being interviewed, 138 (4.4% had a previous diagnosis of breast cancer and were excluded leaving 3,006 completed interviews eligible for analysis. A majority of respondents (61.1% reported ever having had a mammogram and 29.1% identified mammography as being the best way of finding breast cancer. A majority of women (85.9% had heard of the BreastScreen Australia (BSA program, the national mammographic screening program providing free biennial screening mammograms, with 94.5% believing that BSA attendance was available regardless of the presence or absence of symptoms. There have been substantial gains in women's knowledge about mammographic screening over the seven years between the two surveys. Conclusion The

  16. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    Science.gov (United States)

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  17. A preliminary analysis of climate change effect on long-term risk-based design of flood defense

    Science.gov (United States)

    Wang, L.; Van Gelder, P. H. A. J. M.; Vrijling, J. K.

    2012-04-01

    The lifetime of a flood defense usually lasts for decades or centuries. The future flood probabilistic distribution is not stationary due to climate change. Therefore in the long-term design of flood defense systems, the effect of climate change should be taken into account. The design height of Bengbu dike segment (about 10 km) along Huai River in China is studied as an example to explore the potential effects of climate change on long-term risk-based design. The economic-optimal design height of the dike is determined based on cost-benefit analysis. In this analysis the incremental investments in more safety are balanced with the reduction of the risk. Since climate change will result in the change of flood probability and hence the change of flooding risk, the optimal height might be shifted. To describe the possible future climate, the ensemble prediction of Global Climate Models (GCMs) is used in the study. River runoff series, which is required in deriving annual probability of peak runoff, is obtained by forcing a hydrological model with each GCM climate prediction. Then the probability of high water level in the river is derived based on the relationship between water level and peak runoff. The probability of flooding is assumed to equal to the exceedance probability of the high water level in the river. The possible future flood risk is calculated based on the flooding probability estimates, and is corresponding to each member of the GCMs ensemble. The result will provide information about the significance of potential effects of climate change on the long-term design of flood defense. With comparison to the baseline period, the shift of risk curve in future will be shown on the cost-benefit diagram as well as the change of economic optimal design dike height. As it is a preliminary analysis in this study a sensitivity analysis will be carried out. The sensitivity of use of GCMs ensemble, the damage value and the investment cost will be investigated.

  18. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advance Studies), Toki 509-5292 (Japan); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan); Reinke, M. L.; Canik, J. M.; Lore, J. D.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Eden, G. G. van [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands)

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a time resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.

  19. Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    Science.gov (United States)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.

  20. Preliminary design of the Visible Spectro-Polarimeter for the Advanced Technology Solar Telescope

    CERN Document Server

    de Wijn, Alfred G; Nelson, Peter G; Huang, Pei

    2012-01-01

    The Visible Spectro-Polarimeter (ViSP) is one of the first light instruments for the Advanced Technology Solar Telescope (ATST). It is an echelle spectrograph designed to measure three different regions of the solar spectrum in three separate focal planes simultaneously between 380 and 900 nm. It will use the polarimetric capabilities of the ATST to measure the full Stokes parameters across the line profiles. By measuring the polarization in magnetically sensitive spectral lines the magnetic field vector as a function of height in the solar atmosphere can be obtained, along with the associated variation of the thermodynamic properties. The ViSP will have a spatial resolution of 0.04 arcsec over a 2 arcmin field of view (at 600 nm). The minimum spectral resolving power for all the focal planes is 180,000. The spectrograph supports up to 4 diffraction gratings and is fully automated to allow for rapid reconfiguration.

  1. Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; CHEN Yi-Xue; WANG Wei-Jin; YANG Shou-Hai; WU Jun; YIN Wen; LIANG Tian-Jiao; JIA Xue-Jun

    2011-01-01

    The construction of China Spallation Neutron Source (CSNS) has been initiated in Dongguan,Guangdong, China.Thus a detailed radiation transport analysis of the shutter neutron beam stop is of vital importance. The analyses are performed using the coupled Monte Carlo and multi-dimensional discrete ordinates method. The target of calculations is to optimize the neutron beamline shielding design to guarantee personal safety and minimize cost. Successful elimination of the primary ray effects via the two-dimensional uncollided flux and the first collision source methodology is also illustrated. Two-dimensional dose distribution is calculated. The dose at the end of the neutron beam line is less than 2.5μSv/h. The models have ensured that the doses received by the hall staff members are below the standard limit required.

  2. MCAO for the E-ELT: preliminary design overview of the MAORY module

    Science.gov (United States)

    Foppiani, Italo; Diolaiti, Emiliano; Lombini, Matteo; Baruffolo, Andrea; Biliotti, Valdemaro; Bregoli, Giovanni; Cosentino, Giuseppe; Delabre, Bernard; Marchetti, Enrico; Schreiber, Laura; Conan, Jean-Marc; D'Odorico, Sandro; Hubin, Norbert

    MAORY is the Multi-conjugate Adaptive Optics RelaY module for the European Extremely Large Telescope. It will be located on the Nasmyth platform of the telescope to feed scientific instruments. The module is supposed to re-image one to one the telescope focal plane with diffraction limited optical quality and to provide multi-conjugate adaptive optics correction of the wavefront distortion induced by the atmosphere. The system is based on six laser guide stars for sensing the wavefront distortion and three deformable mirrors for correcting it. A dichroic is used to split the laser light from the light of the scientific and natural guide stars channel. Two output ports, selected by the dichroic orientation, are foreseen: one in a gravity invariant configuration and one in a vertical position to feed large instruments. In this article the current optical and mechanical design are presented together with the thermal analysis.

  3. Preliminary research on the design of flexible barriers for debris flow

    Institute of Scientific and Technical Information of China (English)

    Huan ZHANG; Li-zhou ZHANG

    2014-01-01

    Rigid barriers,including check dams,steel cells and retaining wal s,are widely utilized for debris flow mitigation.It has to be said that these rigid structures are general y effective and technical feasible.However,with the enhancement of environmental awareness and innovative materials,flexible barriers have been being created which are very engineering effective,envi-ronmental friendly,material saving as wel as easy construction in rugged terrain.Although the merits of such structures are summarized in above,the understanding of such barriers are very limited.Most of constructions are just on the basis of engineering experience and largely depend on the factor of safety to eliminate the uncertainties.In this paper,method for debris flow dynam-ics calibration and conventional ideas for the design of flexible barriers wil be il ustrated and an advanced method-finite element wil be used to analyze the debris flow.

  4. Preliminary Design of Neutron Flux and Spectrum Diagnostics in NT-TBM

    Institute of Scientific and Technical Information of China (English)

    YANG Jinwei; FENG Kaiming; CHENG Zhi

    2007-01-01

    A special neutron diagnostic system is proposed that facilitates the measurement of neutron fluxes and spectra in the neutronics and tritium production-test blanket module (NTTBM) without interrupting the operation of the International Thermal-nuclear Experimental Reactor (ITER),for studying the multiplication rate in the neutron multiplier and breeding ratio of tritium in the breeder.This system includes an encapsulated foil activation system,micro-fission chamber detectors (MFC),and a compact neutron spectrometer using a natural diamond detector (NDD).A helium coolant loop with a reasonable diameter is designed carefully for every measurement channel that ensures that the neutron detectors and preamplifiers would work well under a high temperature scenario and that the filling rates of the neutron multiplier (beryllium pebble)and tritium breeder material (Li4Si04) would not decrease excessively (the expected value≥80%)due to the dimensions of the helium coolant loop.

  5. Synthesis of preliminary system designs for offshore oil and gas production

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sin, Gürkan; Elmegaard, Brian

    2016-01-01

    The present work deals with the design of oil and gas platforms, with a particular focus on the developmentof integrated and intensified petroleum processing plants. It builds on a superstructure based approach that includes all the process steps, transformations and interconnections of relevance...... the platform, (ii) the oil and gas recoveries are markedly impacted by the number of separation stages and heat exchangers, and (iii) disregarding the interactions between the several plant sections lead to sub-optimum solutions. The application of this framework proves to be useful for eliminating inadequate......, to generate and compare a large number of alternatives. The superstructure is formulated based on engineering knowledge and is coupled to process models developed in Aspen and Matlab,together with multi-objective optimisation routines and uncertainty assessments. It takes actual measurements from North Sea...

  6. Designing Geometry 2.0 learning environments: a preliminary study with primary school students

    Science.gov (United States)

    Joglar Prieto, Nuria; María Sordo Juanena, José; Star, Jon R.

    2014-04-01

    The information and communication technologies of Web 2.0 are arriving in our schools, allowing the design and implementation of new learning environments with great educational potential. This article proposes a pedagogical model based on a new geometry technology-integrated learning environment, called Geometry 2.0, which was tested with 39 sixth grade students from a public school in Madrid (Spain). The main goals of the study presented here were to describe an optimal role for the mathematics teacher within Geometry 2.0, and to analyse how dynamic mathematics and communication might affect young students' learning of basic figural concepts in a real setting. The analyses offered in this article illustrate how our Geometry 2.0 model facilitates deeply mathematical tasks which encourage students' exploration, cooperation and communication, improving their learning while fostering geometrical meanings.

  7. Designing assisted living technologies ‘in the wild’: preliminary experiences with cultural probe methodology

    Directory of Open Access Journals (Sweden)

    Wherton Joseph

    2012-12-01

    Full Text Available Abstract Background There is growing interest in assisted living technologies to support independence at home. Such technologies should ideally be designed ‘in the wild’ i.e. taking account of how real people live in real homes and communities. The ATHENE (Assistive Technologies for Healthy Living in Elders: Needs Assessment by Ethnography project seeks to illuminate the living needs of older people and facilitate the co-production with older people of technologies and services. This paper describes the development of a cultural probe tool produced as part of the ATHENE project and how it was used to support home visit interviews with elders with a range of ethnic and social backgrounds, family circumstances, health conditions and assisted living needs. Method Thirty one people aged 60 to 98 were visited in their homes on three occasions. Following an initial interview, participants were given a set of cultural probe materials, including a digital camera and the ‘Home and Life Scrapbook’ to complete in their own time for one week. Activities within the Home and Life Scrapbook included maps (indicating their relationships to people, places and objects, lists (e.g. likes, dislikes, things they were concerned about, things they were comfortable with, wishes (things they wanted to change or improve, body outline (indicating symptoms or impairments, home plan (room layouts of their homes to indicate spaces and objects used and a diary. After one week, the researcher and participant reviewed any digital photos taken and the content of the Home and Life Scrapbook as part of the home visit interview. Findings The cultural probe facilitated collection of visual, narrative and material data by older people, and appeared to generate high levels of engagement from some participants. However, others used the probe minimally or not at all for various reasons including limited literacy, physical problems (e.g. holding a pen, lack of time or energy

  8. Preliminary investigation into the design of thermally responsive Forster resonance energy transfer colloids

    Science.gov (United States)

    Bedford, Monte Scott

    While nuclear imaging techniques (Magnetic Resonance Imaging, Computed Tomography, and Positron Emission Tomography) have proven effective for diagnosis and treatment of disease in the human body, fluorescence-enhanced optical imaging offers additional benefits. Fluorescent imaging provides high resolution with real-time response, persistent lifetime (hours to days), cell targeting, and transdermal penetration with minimal physical encumbrance. Malignant cells can be targeted by absorbance of exogenous fluorescent nanoprobe contrast agents. Imaging is improved by fluorescent enhancement, especially by energy transfer between attached dyes. Also for use against cancer are heat-active treatments, such as hyperthermal, photothermal, and chemothermal therapies. Helpful to these treatments is the thermal response from nanoprobes, within human cells, which provide real-time feedback. The present study investigates the design and feasibility of a nanoprobe molecular device, absorbable into malignant human cells, which provides real-time tracking and thermal response, as indicated by enhanced fluorescence by energy transfer. A poly(propargyl acrylate) colloidal suspension was synthesized. The particles were modified with a triblock copolymer, previously shown to be thermally responsive, and an end-attached fluorescent dye. A second dye was modeled for attachment in subsequent work. When two fluorescent dyes are brought within sufficiently close proximity, and excitation light is supplied, energy can be transferred between dyes to give enhanced fluorescence with a large Stokes shift (increase in wavelength between excitation and emission). The dye pair was modeled for overlap of emission and absorbance wavelengths, and energy transfer was demonstrated with 23% efficiency and a 209 nm Stokes shift. The quantum yield of the donor dye was determined at 70%, and the distance for 50% energy transfer was calculated at 2.9 nm, consistent with reports for similar compounds. When

  9. Preliminary methodology investigation of mask pattern fidelity for 250-nm design rules

    Science.gov (United States)

    Coleman, Thomas P.; Sauer, Charles A.; Naber, Robert J.; Hamaker, Henry Chris

    1995-07-01

    Techniques have been developed that can quickly and accurately measure corner rounding and contact fill as key indicators of pattern fidelity. Using these techniques, we have examined writing variables for their effect on the lithographic quality of 1.0 micrometers contact. A small contact is perhaps the most demanding figure to achieve, so the results shown can be considered the worst case for 4X radicle manufacturing at 250 nm design rules. A MEBES 4500 was used as the writing tool, using PBS resist on quartz masks. Standard printing methods, single-phase printing (SPP) and multiphase printing (2X MPP) were examined. Results indicate that excellent corner rounding results can be achieved with small address sizes, regardless of the writing strategy or the dose used. As expected, larger spot sizes increase the amount of corner rounding, regardless of the address. As the pattern address is increased, judicious choices of spot size reduce potential pattern fidelity loss when imaging small contracts and other fine features. Multiphase printing is a technique that offers advantages to the user. Its use of offset scan voting (OSV) is a significant factor in reducing placement errors. MPP (2X) has an additional advantage of providing higher dosages. This provides flexibility in resist choices and in the selection of a process window. With 2X MPP, the user has a wide range of addresses and spot sizes that will give excellent results. The dynamic range of operating conditions possible with 2X MPP when writing 1.0 micrometers contacts is a reduced subset of those available using SPP, due to the 2X writing grid (output address). Implementation of 2X MPP has been limited on previous MEBES models due to increased write times of multipass writing. The MEBES 4500 data path supports 2X MPP with write times that approximate SPP. The practical operating envelope of both writing strategies are detailed in this paper. Overall, the MEBES 4500 has a large dynamic operating range. When

  10. Building a transnational biosurveillance network using semantic web technologies: requirements, design, and preliminary evaluation.

    Science.gov (United States)

    Teodoro, Douglas; Pasche, Emilie; Gobeill, Julien; Emonet, Stéphane; Ruch, Patrick; Lovis, Christian

    2012-05-29

    Antimicrobial resistance has reached globally alarming levels and is becoming a major public health threat. Lack of efficacious antimicrobial resistance surveillance systems was identified as one of the causes of increasing resistance, due to the lag time between new resistances and alerts to care providers. Several initiatives to track drug resistance evolution have been developed. However, no effective real-time and source-independent antimicrobial resistance monitoring system is available publicly. To design and implement an architecture that can provide real-time and source-independent antimicrobial resistance monitoring to support transnational resistance surveillance. In particular, we investigated the use of a Semantic Web-based model to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Following the agile software development methodology, we derived the main requirements needed for effective antimicrobial resistance monitoring, from which we proposed a decentralized monitoring architecture based on the Semantic Web stack. The architecture uses an ontology-driven approach to promote the integration of a network of sentinel hospitals or laboratories. Local databases are wrapped into semantic data repositories that automatically expose local computing-formalized laboratory information in the Web. A central source mediator, based on local reasoning, coordinates the access to the semantic end points. On the user side, a user-friendly Web interface provides access and graphical visualization to the integrated views. We designed and implemented the online Antimicrobial Resistance Trend Monitoring System (ARTEMIS) in a pilot network of seven European health care institutions sharing 70+ million triples of information about drug resistance and consumption. Evaluation of the computing performance of the mediator demonstrated that, on average, query response time was a few seconds (mean 4.3, SD 0.1 × 10

  11. Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Mark [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-04-22

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes

  12. PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement.

    Science.gov (United States)

    Zhang, Zizhu; Chong, Yizheng; Chen, Xinru; Jin, Congjun; Yang, Lijun; Liu, Tong

    2015-12-01

    A prompt gamma neutron activation analysis (PGNAA) system has been recently developed at the 30-kW research reactor In-Hospital Neutron Irradiator (IHNI) in Beijing. Neutrons from the specially designed thermal neutron beam were used. The thermal flux of this beam is 3.08×10(6) cm(-2) s(-1) at a full reactor power of 30 kW. The PGNAA system consists of an n-type high-purity germanium (HPGe) detector of 40% efficiency, a digital spectrometer, and a shielding part. For both the detector shielding part and the neutron beam shielding part, the inner layer is composed of (6)Li2CO3 powder and the outer layer lead. The boron-10 sensitivity of the PGNAA system is approximately 2.5 cps/ppm. Two calibration curves were produced for the 1-10 ppm and 10-50 ppm samples. The measurement results of the control samples were in accordance with the inductively coupled plasma atomic emission spectroscopy (ICP-AES) results.

  13. OPTIMIZATION PROCEDURE FOR PRELIMINARY DESIGN STAGE OF CAIRO-DAMIETTA SELF-PROPELLED GRAIN BULK SHIPS

    Directory of Open Access Journals (Sweden)

    M.M. Moustafa

    2016-01-01

    Full Text Available The global logistics center for the storage and handling of grain which will be constructed at Damietta port will extremely increase the annual movement of grain through Cairo-Damietta waterway. Therefore, the demand for inland grain bulk ships has increased significantly in the recent years. This paper introduces a procedure to find out the fleet size and optimum characteristics of self-propelled grain bulk ships working between Cairo and Damietta through River Nile. The characteristics of the Cairo–Damietta waterway are investigated to define the constraints on dimensions and speed for such ship type. Also, mathematical model for the objective function was developed considering: powering, voyage, weight, stability and cost calculation. In this research, Specific cost (Sc, cost of transporting one ton of cargo a distance of one kilometre, is considered as the objective function for this optimization process. This optimization problem is handled as a single objective nonlinear constrained optimization problem using a specially developed computer program. Solutions are generated by varying design variables systematically in certain steps. The best of these solutions is then taken as the estimated optimum. Finally, the problem is presented, the main constrains analyzed and the optimum solution shown.

  14. The principle of complementarity in the design of reserve networks to conserve biodiversity: a preliminary history

    Indian Academy of Sciences (India)

    James Justus; Sahotra Sarkar

    2002-07-01

    Explicit, quantitative procedures for identifying biodiversity priority areas are replacing the often ad hoc procedures used in the past to design networks of reserves to conserve biodiversity. This change facilitates more informed choices by policy makers, and thereby makes possible greater satisfaction of conservation goals with increased efficiency. A key feature of these procedures is the use of the principle of complementarity, which ensures that areas chosen for inclusion in a reserve network complement those already selected. This paper sketches the historical development of the principle of complementarity and its applications in practical policy decisions. In the first section a brief account is given of the circumstances out of which concerns for more explicit systematic methods for the assessment of the conservation value of different areas arose. The second section details the emergence of the principle of complementarity in four independent contexts. The third section consists of case studies of the use of the principle of complementarity to make practical policy decisions in Australasia, Africa, and America. In the last section, an assessment is made of the extent to which the principle of complementarity transformed the practice of conservation biology by introducing new standards of rigor and explicitness.

  15. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  16. Design, synthesis, and preliminary pharmacological evaluation of new imidazolinones as L-DOPA prodrugs.

    Science.gov (United States)

    Giorgioni, Gianfabio; Claudi, Francesco; Ruggieri, Sabrina; Ricciutelli, Massimo; Palmieri, Giovanni F; Di Stefano, Antonio; Sozio, Piera; Cerasa, Laura S; Chiavaroli, Annalisa; Ferrante, Claudio; Orlando, Giustino; Glennon, Richard A

    2010-03-01

    L-DOPA, the immediate biological precursor of dopamine, is still considered the drug of choice in the treatment of Parkinson's disease. However, therapy with L-DOPA is associated with a number of acute problems. With the aim to increase the bioavailability after oral administration, we designed a multi-protected L-DOPA prodrugs able to release the drug by both spontaneous chemical or enzyme catalyzed hydrolysis. The new compounds have been synthesized and preliminarily evaluated for their water solubility, log P, chemical stability, and enzymatic stability. The results indicate that the incorporation of the amino acidic moiety of L-DOPA into an imidazoline-4-one ring provides prodrugs sufficiently stable to potentially cross unchanged the acidic environment of the stomach, and to be absorbed from the intestine. They also might be able to release L-DOPA in human plasma after enzymatic hydrolysis. The ability of prodrugs 6a-b to increase basal levels of striatal DA, and influence brain neurochemistry associated with dopaminergic activity following oral administration, as well as the radical-scavenging activity against DPPH for compounds 6a-b and 15a are also reported.

  17. Preliminary safety calculations to improve the design of Molten Salt Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Capellan, N.; Ghetta, V.; Laureau, A. [LPSC, CNRS/IN2P3, Grenoble INP, 53,rue des Martyrs, 38026 Grenoble Cedex (France)

    2012-07-01

    Molten salt reactors are liquid fuel reactors so that they are flexible in operation but very different in the safety approach from solid fuel reactors. This study bears on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the R and D studies. This paper presents the first step of the safety approach: the systematic description of the MSFR, limited here to the main systems surrounding the core. This systematic description is the basis on which we will be able to devise accidental scenarios. Thanks to the negative reactivity feedback coefficient, most accidental scenarios lead to reactor shut down. Because of the decay heat generated in the fuel salt, it must be cooled. After the description of the tools developed to calculate the residual heat, the different contributions are discussed in this study. The decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing that transfers the fission products to the gas reprocessing unit. As a result, the contribution of the actinides is significant (0.5% of nominal power). The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (> 1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system. (authors)

  18. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design

    Science.gov (United States)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.

    2009-07-01

    The Next Generation Nuclear Plant, with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 850-950 °C. In this concept, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, a nitrogen/helium mixture, or a molten salt. This paper assesses the issues pertaining to shell-and-tube and compact heat exchangers. A detailed thermal-hydraulic analysis was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in heat exchanger designs, and material properties of structural alloys. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt heat exchangers.

  19. Yakima/Klickitat Production Preliminary Design Report, Appendix B: Water Supply Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bureau of Reclamation.

    1990-03-01

    From May 1988 to January 1990 the Bureau of Reclamation, under an interagency agreement with the Bonneville Power Administration, conducted the water supply analysis required by Task II of the Northwest Power Planning Council's (Council) approval of predesign work on the Yakima/Klickitat Production Project. The purposes of the analysis were to (1) document the adequacy of water supplies (quantity and quality) for the proposed artificial production facilities, and for anadromous fish spawning, incubation, rearing, and migration in the Yakima and Klickitat Rivers and their tributaries; (2) determine the availability and quality of existing anadromous fish habitat in both basins; (3) document existing constraints to achieving anadromous fish production potentials in both basins; and (4) develop a listing of streams in both basins where existing water supplies, access, and habitat are adequate for anadromous fish production; where water supplies, access, and habitat would be adequate if improvements were made and agreements reached with existing water users; and where existing water supplies, access, and habitat are inadequate or unattainable in the near term (design of the proposed production project facilities.

  20. [The design of plantar pressure distribution monitoring system and preliminary clinical application].

    Science.gov (United States)

    Zhu, Xianfeng; Zhao, Zilei; Xu, Donghao; Xu, Dongming

    2014-04-01

    Plantar pressure distribution can reflect the force of several key points on foot while standing and walking. A comprehensive understanding of the plantar pressure distribution makes great sense in the following aspects: the understanding of the normal foot biomechanics and function, clinical diagnosis, measurement of disease extent, postoperative efficacy evaluation, and rehabilitation research. A simple plantar pressure measurement device was designed in this study. This paper uses FlexiForce flexible sensor to pickup plantar pressure signal and USB A/D board to do data acquisition. The data are transferred into a laptop and processed by a VB-based software which can display, remember and replay the data. We chose patients with hallux valgus and normal people to measure the pressure distribution and make contrast analysis of plantar pressure with this device. It can be concluded that people with hallux valgus have higher pressure on the second metatarsophalangeal joint and the distribution move outward. The plantar pressure of patients postoperative could be greatly improved compared to the preoperative. The function of this device has been confirmed.

  1. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Chen, Tao; Sun, Qi; Wang, Jie [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • A theoretical analysis is used to predict the total graphite dust release for an AVR LOCA. • Similarity criteria must be satisfied between the experiment and the actual HTGR system. • Model experiments should be conducted to predict the graphite dust resuspension rate. - Abstract: The graphite dust movement behavior is significant for the safety analyses of high-temperature gas cooled reactor (HTGR). The graphite dust release for accident conditions is an important source term for HTGR safety analyses. Depressurization release tests are not practical in HTGR because of a radioactivity release to the environment. Thus, a theoretical analysis and similarity principles were used to design a group of modeling experiments. Modeling experiments for fan start-up and depressurization process and actual experiments of helium circulator start-up in an HTGR were used to predict the rate of graphite dust resuspension and the graphite dust concentration, which can be used to predict the graphite dust release during accidents. The modeling experiments are easy to realize and the helium circulator start-up test does not harm the reactor system or the environment, so this experiment program is easily achieved. The revised Rock’n’Roll model was then used to calculate the AVR reactor release. The calculation results indicate that the total graphite dust releases during a LOCA will be about 0.65 g in AVR.

  2. Psychiatric Assessment and Screening for the Elderly in Primary Care: Design, Implementation, and Preliminary Results

    Directory of Open Access Journals (Sweden)

    Robert C. Abrams

    2015-01-01

    Full Text Available Introduction. We describe the design and implementation of a psychiatric collaborative care model in a university-based geriatric primary care practice. Initial results of screening for anxiety and depression are reported. Methods and Materials. Screens for anxiety and depression were administered to practice patients. A mental health team, consisting of a psychiatrist, mental health nurse practitioner, and social worker, identified patients who on review of screening and chart data warranted evaluation or treatment. Referrals for mental health interventions were directed to members of the mental health team, primary care physicians at the practice, or community providers. Results. Subjects (N=1505 comprised 38.2% of the 3940 unique patients seen at the practice during the 4-year study period. 37.1% (N=555 screened positive for depression, 26.9% (N=405 for anxiety, and 322 (21.4% screened positive for both. Any positive score was associated with age (P<0.033, female gender (P<0.006, and a nonsignificant trend toward living alone (P<0.095. 8.87% had suicidal thoughts. Conclusions. Screening captured the most affectively symptomatic patients, including those with suicidal ideation, for intervention. The partnering of mental health professionals and primary care physicians offers a workable model for addressing the scarcity of expertise in geriatric psychiatry.

  3. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  4. RBANS embedded measures of suboptimal effort in dementia: effort scale has a lower failure rate than the effort index.

    Science.gov (United States)

    Burton, Rachel L; Enright, Joe; O'Connell, Megan E; Lanting, Shawnda; Morgan, Debra

    2015-02-01

    The importance of evaluating effort in neuropsychological assessments has been widely acknowledged, but measuring effort in the context of dementia remains challenging due to the impact of dementia severity on effort measure scores. Two embedded measures have been developed for the repeatable battery for the assessment of neuropsychological status (RBANS; Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The repeatable battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20 (3), 310-319): the Effort Index (EI; Silverberg, N. D., Wertheimer, J. C., & Fichtenberg, N. L. (2007). An effort index for the repeatable battery for the assessment of neuropsychological status (RBANS). Clinical Neuropsychologist, 21 (5), 841-854) and the Effort Scale (ES; Novitski, J., Steele, S., Karantzoulis, S., & Randolph, C. (2012). The repeatable battery for the assessment of neuropsychological status effort scale. Archives of Clinical Neuropsychology, 27 (2), 190-195). We explored failure rates on these effort measures in a non-litigating mixed dementia sample (N = 145). Failure rate on the EI was high (48%) and associated with dementia severity. In contrast, failure on the ES was 14% but differed based on type of dementia. ES failure was low (4%) when dementia was due to Alzheimer disease (AD), but high (31%) for non-AD dementias. These data raise concerns about use of the RBANS embedded effort measures in dementia evaluations.

  5. Design, synthesis and preliminary evaluation of dopamine-amino acid conjugates as potential D1 dopaminergic modulators.

    Science.gov (United States)

    Tutone, Marco; Chinnici, Aurora; Almerico, Anna Maria; Perricone, Ugo; Sutera, Flavia Maria; De Caro, Viviana

    2016-11-29

    The dopamine-amino acid conjugate DA-Phen was firstly designed to obtain a useful prodrug for the therapy of Parkinson's disease, but experimental evidence shows that it effectively interacts with D1 dopamine receptors (D1DRs), leading to an enhancement in cognitive flexibility and to the development of adaptive strategies in aversive mazes, together with a decrease in despair-like behavior. In this paper, homology modelling, molecular dynamics, and site mapping of D1 receptor were carried out with the aim of further performing docking studies on other dopamine conjugates compared with D1 agonists, in the attempt to identify new compounds with potential dopaminergic activity. Two new conjugates (DA-Trp 2C, and DA-Leu 3C) have been identified as the most promising candidates, and consequently synthesized. Preliminary evaluation in terms of distribution coefficient (D(pH7.4)), stability in rat brain homogenate, and in human plasma confirmed that DA-Trp (2C), and DA-Leu (3C) could be considered as very valuable candidates for further in vivo studies as new dopaminergic drugs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Design, Implementation, Use, and Preliminary Evaluation of SEBASTIAN, a Standards-Based Web Service for Clinical Decision Support

    Science.gov (United States)

    Kawamoto, Kensaku; Lobach, David F.

    2005-01-01

    Despite their demonstrated ability to improve care quality, clinical decision support systems are not widely used. In part, this limited use is due to the difficulty of sharing medical knowledge in a machine-executable format. To address this problem, we developed a decision support Web service known as SEBASTIAN. In SEBASTIAN, individual knowledge modules define the data requirements for assessing a patient, the conclusions that can be drawn using that data, and instructions on how to generate those conclusions. Using standards-based XML messages transmitted over HTTP, client decision support applications provide patient data to SEBASTIAN and receive patient-specific assessments and recommendations. SEBASTIAN has been used to implement four distinct decision support systems; an architectural overview is provided for one of these systems. Preliminary assessments indicate that SEBASTIAN fulfills all original design objectives, including the re-use of executable medical knowledge across diverse applications and care settings, the straightforward authoring of knowledge modules, and use of the framework to implement decision support applications with significant clinical utility. PMID:16779066

  7. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, A.A.; Girola, S. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Valda, A.A., E-mail: valda@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Minsky, D.M.; Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)] [CONICET, Buenos Aires (Argentina); Sanchez, G. [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)

    2011-12-15

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: Black-Right-Pointing-Pointer Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. Black-Right-Pointing-Pointer Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. Black-Right-Pointing-Pointer Calculations: Monte Carlo simulations with the MCNP code. Black-Right-Pointing-Pointer Measured and calculated figure-of-merit parameters in agreement with those of IAEA. Black-Right-Pointing-Pointer Initial MCNP dose calculations for a treatment room to define future design actions.

  8. HEAL G-C ICES, Phase II: detailed feasibility analysis and preliminary design. Final report, Stage 1

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    In this preliminary report for Phase II of Health Education Authority of Louisiana's (HEAL) ICES program, specific elements of the basic intitutional issues were readdressed, as requested by the U.S. Department of Energy. The draft environmental assessment was reassessed and updated. Thermal energy demand profiles for the major community sectors, i.e., the five institutions comprising the HEAL Complex, were refined on a month-by-month basis and resulted in establishing ICES plant systems design capacities of 121,500 pounds per hour demand and 418,175,000 pounds per year for steam; 10,000 tons demand and 38,885,000 ton-hours per year for cooling. From these values the concept of the plant was developed. The Phase I capital cost estimate was updated. Total capital cost is now indicated as $29,960,500. The Phase I operating cost estimate was updated, with that figure now $8,468,479. The Phase I financial analysis was updated, producing an estimated annual revenue level of $9,907,062.

  9. Design process and preliminary psychometric study of a video game to detect cognitive impairment in senior adults

    Directory of Open Access Journals (Sweden)

    Sonia Valladares-Rodriguez

    2017-06-01

    Full Text Available Introduction Assessment of episodic memory has been traditionally used to evaluate potential cognitive impairments in senior adults. Typically, episodic memory evaluation is based on personal interviews and pen-and-paper tests. This article presents the design, development and a preliminary validation of a novel digital game to assess episodic memory intended to overcome the limitations of traditional methods, such as the cost of its administration, its intrusive character, the lack of early detection capabilities, the lack of ecological validity, the learning effect and the existence of confounding factors. Materials and Methods Our proposal is based on the gamification of the California Verbal Learning Test (CVLT and it has been designed to comply with the psychometric characteristics of reliability and validity. Two qualitative focus groups and a first pilot experiment were carried out to validate the proposal. Results A more ecological, non-intrusive and better administrable tool to perform cognitive assessment was developed. Initial evidence from the focus groups and pilot experiment confirmed the developed game’s usability and offered promising results insofar its psychometric validity is concerned. Moreover, the potential of this game for the cognitive classification of senior adults was confirmed, and administration time is dramatically reduced with respect to pen-and-paper tests. Limitations Additional research is needed to improve the resolution of the game for the identification of specific cognitive impairments, as well as to achieve a complete validation of the psychometric properties of the digital game. Conclusion Initial evidence show that serious games can be used as an instrument to assess the cognitive status of senior adults, and even to predict the onset of mild cognitive impairments or Alzheimer’s disease.

  10. Geographic overlaps between priority areas for forest carbon-storage efforts and those for delivering peacebuilding programs: implications for policy design

    Science.gov (United States)

    Castro-Nunez, Augusto; Mertz, Ole; Sosa, Chrystian C.

    2017-05-01

    Of the countries considering national-level policies for incentivizing reductions in forest-based greenhouse gas emissions (REDD+), some 25 are experiencing (or are emerging from) armed-conflicts. It has been hypothesized that the outcomes of the interactions between carbon-storage and peacebuilding efforts could result in either improved or worsened forest conservation and likewise increased or decreased conflict. Hence, for this study we explore potential interactions between forest carbon-storage and peacebuilding efforts, with Colombia as a case study. Spatial associations between biomass carbon and three conflict-related variables suggest that such interactions may exist. Nonetheless, while priority areas for carbon-focused conservation are presumably those at highest risks of deforestation, our research indicates that forests with lower risk of deforestation are typically those affected by armed-conflict. Our findings moreover highlight three possible roles played by Colombian forested municipalities in armed groups’ military strategies: venues for battle, hideouts, and sources of natural resources to finance war.

  11. Preliminary Neutronics Design and Analysis of D2O Cooled High Conversion PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hikaru Hiruta; Gilles Youinou

    2012-09-01

    isotopes at the end than at the beginning of the irradiation) and the void coefficient would be negative. The addition of 1 cm of U-238 blanket at the top and bottom of the fuel would bring the fissile Pu mass balance from -7.5% to -6.5% but would also impact the void coefficient in the wrong way. In fact, it turns out that the void coefficient is so sensitive to the presence of axial blanket that it limits its size to only a few cm for driver fuel height of about 50-60 cm. For reference, the fissile Pu mass balance is about -35% in a standard PWR MOX fuel such as those used in France. In order to reduce the fissile Pu deficit and potentially reach a true breeding regime (i.e. a positive Pu mass balance), it would be necessary to make extensive use of radial blankets, both internal and external. Even though this was not addressed in detail here, it is reasonable to believe that at least as much U-238 blanket subassemblies as MOX driver fuel subassemblies would be necessary to breed enough Pu to compensate for the Pu deficit in the driver fuel. Hence, whereas a relatively simple D2O-cooled PWR core design makes it possible to obtain a near-breeder core, it may be necessary to more than double the mass of heavy metal in the core as well as the mass of heavy metal to reprocess per unit of energy produced in order to breed the few percents of Pu missing to reach a true breeding regime. It may be interesting to quantify these aspects further in the future.

  12. Design, Development and Preliminary Student Evaluation of Virtual Field Guides as aids to teaching and learning in the Earth sciences

    Science.gov (United States)

    Stott, Tim

    2010-05-01

    , J., Kneale, P., Sougnez, Y., Stewart, M., and Stott, T. A. (2003). Carrying out Pedagogic research into the Constructive Alignment of Fieldwork. Planet Special Edition 5: Linking Teaching and Research and undertaking Pedagogic Research in Geography, Earth and Environmental Sciences, 51-52. Carmichael, P. (2008) ‘The Semantic Web and ‘Web 3.0' in: Selwyn, N. (ed.) Education 2.0? Designing the web for teaching and learning. London: ESRC Teaching and Learning Research Programme. Fletcher, S., France, D., Moore, K. and Robinson, G. (2002). Fieldwork education and technology: A GEES perspective, Planet 4, 17-19. Fletcher, S., France, D., Moore, K. and Robinson, G. (2007). Putting technology into fieldwork education: A pedagogic evaluation. Journal of Geography in Higher Education 31, 2, 319 - 330 Maskall, J., Stokes, A., Truscott, J. B., Bridge, A., Magnier, K. and Calderbank, V. (2007) Supporting fieldwork using information technology, Planet 18, 18-21. Stott, TA., Nuttall, AM. and McCloskey, J. (2009a) Design, Development and Student Evaluation of a Virtual Alps Field Guide www.virtualalps.co.uk. Planet 22, 64-71. Publication of the Higher Education Academy Subject Centre for Geography, Earth and Environmental Sciences, Learning & Teaching Support Network www.gees.ac.uk/planet/. Stott, TA, Clark, H., Milson, C., McCloskey, J. and Crompton, K. (2009b) The Ingleton Waterfalls Virtual Field Trip: Design, Development and Preliminary Evaluation, Teaching Earth Sciences 34 (1), 13-19, Magazine of the Earth Science Teachers Association.

  13. Status of Progress Made Toward Preliminary Design Concepts for the Inventory in Select Media for DOE-Managed HLW/SNF

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Park, Heeho Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    As the title suggests, this report provides a summary of the status and progress for the Preliminary Design Concepts Work Package. Described herein are design concepts and thermal analysis for crystalline and salt host media. The report concludes that thermal management of defense waste, including the relatively small subset of high thermal output waste packages, is readily achievable. Another important conclusion pertains to engineering feasibility, and design concepts presented herein are based upon established and existing elements and/or designs. The multipack configuration options for the crystalline host media pose the greatest engineering challenges, as these designs involve large, heavy waste packages that pose specific challenges with respect to handling and emplacement. Defense-related Spent Nuclear Fuel (DSNF) presents issues for post-closure criticality control, and a key recommendation made herein relates to the need for special packaging design that includes neutron-absorbing material for the DSNF. Lastly, this report finds that the preliminary design options discussed are tenable for operational and post-closure safety, owing to the fact that these concepts have been derived from other published and well-studied repository designs.

  14. Preliminary Design and Experimental Investigation of a Novel Pneumatic Conveying Method to Disperse Natural Fibers in Thermoset Polymers

    Directory of Open Access Journals (Sweden)

    Mahi Fahimian

    2016-07-01

    Full Text Available Natural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles. Dispersion and mixing these short fibers with resin to manufacture high quality, high volume fraction composites presents a significant challenge. In this paper, a novel pneumatic design for dispersion of natural fibers in their original discontinuous form is described. In this design, compressed air is used to create vacuum to feed and convey fibres while breaking down fibre clumps and dispersing them in an aerosolized resin stream. Model composite materials, made using proof-of-concept prototype equipment, were imaged with both optical and X-ray tomography to evaluate fibre and resin dispersion. The images indicated that the system was capable of providing an intimate mixture of resin and detangled fibres for two different resin viscosities. The new pneumatic process could serve as the basis of a system to produce well-dispersed high-volume fraction composites containing discontinuous natural fibres drawn directly from a loosely packed source.

  15. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  16. Grid connected integrated community energy system. Phase II: final state 2 report. Preliminary design waste management and institutional analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The Preliminary Design of a Regional, Centralized Solid Waste Management System for the Twin Cities Metropolitan Region in Minnesota is presented. The concept has been developed for the sound environmental and safe disposal of solid waste generated from its health care industry, although some additional waste supplements are included as economic assistance in order to approach a competitive alternative to current health care solid waste disposal costs. The system design focuses on a 132 tons per day high-temperature, slagging pyrolysis system manufactured by Andco Incorporated, Andco-Torrax Division Design criteria are given. A Collection and Transportation System (CTS) has been planned for the movements of solid waste (General and Special) from the generating HHC facilities within a 10-mile waste-shed zone, for municipal solid waste from a local transfer station currently processing municipal solid waste, and for pyrolysis residue to final disposal. Each of these facilities is now considered as service contract operations. Approximately 15 vehicle trips per day are estimated as vehicle traffic delivering the refuse to the pyrolysis facility. Cost estimates for the CTS have been determined in conjunction with current municipal refuse haulers in the TCMR, and valued at the following: HHC General Solid Waste (HHC/GSW) at 6.00 $/T; HHC Special Solid Waste (HHC/SSW) at 20.00 $/T; Municipal Transfer at 4.00 to be paid the pyrolysis system as a drop charge. Special box-bag containers are to be required in handling the HHC/SSW at a cost of 30.19 $/T estimate. The total operating cost for the pyrolysis system has been estimated to be 13.73 $/T, with a steam credit of 11.70 $/T, to yield a net cost of 2.03 $/T. Capital cost has been estimated to be 7,700,800 dollars, 1978. A back-up facility capital investment of $163,000 dollars, 1978 has been estimated, which should be applied to the existing University of Minnesota incinerator.

  17. Aero-gravity Assisted Manoeuvers within Preliminary Interplanetary Mission Design: a Multi-objective Evolutive Algorithm Approach

    Science.gov (United States)

    Povoleri, A.; Lavagna, M.; Finzi, A. E.

    The paper presents a new approach to deal with the preliminary space mission analysis design of particularly complex trajectories focused on interplanetary targets. According to an optimisation approach, a multi-objective strategy is selected on a mixed continuous and discrete state variables domain in order to deal with possible multi-gravity assist manoeuvres (GAM) as further degrees of freedom of the problem, in terms of both number and planets sequence selection to minimize both the ?v expense and the time trip time span. A further added value to the proposed algorithm stays in that, according to planets having an atmosphere, aero-gravity assist manoeuvres (AGAM) are considered too within the overall mission design optimisation, and the consequent optimal control problem related to the aerodynamic angles history, is solved. According to the target planet different capture strategies are managed by the algorithm, the aerocapture manoeuvre too, whenever possible (e.g. Venus, Mars target planets). In order not to be trapped in local solution the Evolutionary Algorithms (EAs) have been selected to solve such a complex problem. Simulations and comparison with already designed space missions showed the ability of the proposed architecture in correctly selecting both the sequences and the planets type of either GAMs or AGAMs to optimise the selected criteria vector, in a multidisciplinary environment, switching on the optimal control problem whenever the atmospheric interaction is involved in the optimisation by the search process. Symbols δ = semi-angular deviation for GAM between the v∞ -, v∞ + inoutcoming vectors [rad] φ = Angular deviation for AGAM between the v∞ -, v∞ + inoutcoming vectors [rad] ρ = Atmospheric density [kgm-3 ] γ = Flight path angle [rad] µ = Bank angle [rad] δ?ttransf j = j-th heliocentric transfer time variation with respect to the linked conics solution ?|v∞| = Relative velocity losses because of drag [ms-1 ] ωI = i

  18. Grid connected Integrated Community Energy System: Phase II. Detailed feasibibility analysis and preliminary design. Final report, Stage 2. Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The preliminary design and cost analysis of a proposed Integrated Community Energy System (ICES) to serve a multi-million square footage medical complex of the Health Education Authority of Louisiana are presented. This ICES is designed as a multi-fuel plant (coal or natural gas), operation is to begin in 1982, and the system will initially supply 40 x 10/sup 6/ kWh of electric power and 854 x 10/sup 0/ lbs of steam annually to meet the heating, refrigeration, and power demands of the complex. The total construction cost of the ICES is estimated as $35 million. (LCL)

  19. Design and proof of function of a closure system for an HLW-repository in rock salt. Results of the preliminary safety analysis for the Gorleben site (VSG)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Hoeppe, Nina; Breustedt, Michael; Engelhardt, Hans-Joachim; Wolf, Johanna [DBE Technology GmbH, Peine (Germany); Buhmann, Dieter; Czaikowski, Oliver; Herbert, Horst-Juergen; Wieczorek, Klaus; Xie, Mingliang [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Braunschweig (Germany)

    2015-07-01

    Within the preliminary safety analysis for the Gorleben site (VSG), a closure system was designed in order to complement the containment providing rock zone (CRZ) by sealing and backfilling measures. The design procedure as well as the technical proof of function was mainly performed according to standard procedures in civil engineering. In the context of VSG, rough individual technical proofs of several measures were carried out. Meanwhile, this gap has been closed by subsequent investigations. Altogether the results of all the individual technical proofs of function indicate that safe containment of radioactive waste is a realistic possibility at the Gorleben site.

  20. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

    1995-02-22

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.