WorldWideScience

Sample records for preliminary design effort

  1. Preliminary design of an osmotic-type salinity gradient energy converter. Phase I, design effort

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-30

    The base case that was studied for this Phase I Interim Report is a 50 kWe design with 3.5% salt water (seawater) on one side and saturated salt water on the other side of the semi-permeable membrane. This case included a solar evaporation pond. The report includes system descriptions, system component descriptions, siting restrictions, environmental considerations, pretreatment, membrane characteristics, preliminary system capital costs, and recommendations for further work. During the course of the study and investigations, it was decided to extend the review to develop an additional basic flow sheet using brackish water instead of seawater with a solar pond. This option requires reduced flow rates and therefore can utilize smaller and less expensive components as compared to the seawater base case. Based on data for reverse osmosis water purification systems, the operating costs for pretreatment and labor would also be expected to be less for the brackish water system than for the seawater system. Finally, the use of brackish water systems greatly increases the potential number of sites available for a practical Osmo-Hydro Power System.

  2. BIPS-FS preliminary design, miscellaneous notes

    International Nuclear Information System (INIS)

    1976-01-01

    A compendium of flight system preliminary design internal memos and progress report extracts for the Brayton Isotope Power System Preliminary Design Review to be held July 20, 21, and 22, 1975 is presented. The purpose is to bring together those published items which relate only to the preliminary design of the Flight System, Task 2 of Phase I. This preliminary design effort was required to ensure that the Ground Demonstration System will represent the Flight System as closely as possible

  3. Design aspects of the Alpha Repository. I. Preliminary results of facility layout, room stability, and equipment selection efforts. Summary progress report RSI-0024

    International Nuclear Information System (INIS)

    Gnirk, P.F.; Grams, W.H.; Zeller, T.J.; Ellis, D.B.; Pariseau, W.G.; Fossum, A.F.; Ratigan, J.L.; Hansen, F.D.

    1975-01-01

    Results of preliminary analysis of the stability of mines in salt formations underlying Eddy and Lea Counties in New Mexico are presented. Methods and equipment for drilling canister emplacement holes in these formations were evaluated along with methods for excavating storage areas and transport of the excavated salt. Progress during the period is reported in chapters on geological and rock properties at the repository site, preliminary mine layout, basic requirements for repository usage, excavation geometries, drill selection, excavation systems, and safety requirements

  4. OMEGA Upgrade preliminary design

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1989-10-01

    The OMEGA laser system at the Laboratory for Laser Energetics of the University of Rochester is the only major facility in the United States capable of conducting fully diagnosed, direct-drive, spherical implosion experiments. As such, it serves as the national Laser Users Facility, benefiting scientists throughout the country. The University's participation in the National Inertial Confinement Fusion (ICF) program underwent review by a group of experts under the auspices of the National Academy of Sciences (the Happer Committee) in 1985. The Happer Committee recommended that the OMEGA laser be upgraded in energy to 30 kJ. To this end, Congress appropriated $4,000,000 for the preliminary design of the OMEGA Upgrade, spread across FY88 and FY89. This document describes the preliminary design of the OMEGA Upgrade. The proposed enhancements to the existing OMEGA facility will result in a 30-kHJ, 351-nm, 60-beam direct-drive system, with a versatile pulse-shaping facility and a 1%--2% uniformity of target drive. The Upgrade will allow scientists to explore the ignition-scaling regime, and to study target behavior that is hydrodynamically equivalent to that of targets appropriate for a laboratory microfusion facility (LMF). In addition, it will be possible to perform critical interaction experiments with large-scale-length uniformly irradiated plasmas

  5. Incentive Design and Mis-Allocated Effort

    OpenAIRE

    Schnedler, Wendelin

    2013-01-01

    Incentives often distort behavior: they induce agents to exert effort but this effort is not employed optimally. This paper proposes a theory of incentive design allowing for such distorted behavior. At the heart of the theory is a trade-off between getting the agent to exert effort and ensuring that this effort is used well. The theory covers various moral-hazard models, ranging from traditional single-task to multi-task models. It also provides -for the first time- a formalization and proof...

  6. V and V Efforts of Auroral Precipitation Models: Preliminary Results

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Rastaetter, Lutz; Hesse, Michael

    2011-01-01

    Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models.

  7. Preliminary Hazard Classification for the Remediation of the 100-B/C Area Remaining Sites (Confirmatory Sampling Effort)

    International Nuclear Information System (INIS)

    Routt, T.M.

    2000-01-01

    This document provides the preliminary hazard classification for the sampling and characterization activities to be conducted at the 100-B/C confirmatory sampling effort sites in support of remedial design and eventual remediation of these sites

  8. Preliminary design county plan Zeeland

    International Nuclear Information System (INIS)

    1987-01-01

    The preliminary design 'Streekplan Zeeland' (Country plan Zeeland, with regard to the location of additional nuclear power plants in Zeeland, the Netherlands) has passed through a consultation and participation round. Thereupon 132 reactions have been received. These have been incorporated and answered in two notes. This proposal deals with the principal points of the preliminary design and treats also the remarks of the committees Environmental (town and country) Planning (RO), Provincial (town and country) Planning Committee (PPC) and Association of Communities of Zeeland (VZG), on the reply notes. The preliminary design with the modifications, collected in appendix 3, is proposed to be the starting point in the drawing-up of the design-country-plan. This design subsequently will pass the formal country-plan procedure. (author). 1 fig

  9. Space reactor preliminary mechanical design

    International Nuclear Information System (INIS)

    Meier, K.L.

    1983-01-01

    An analysis was performed on the SABRE reactor space power system to determine the effect of the number and size of heat pipes on the design parameters of the nuclear subsystem. Small numbers of thin walled heat pipes were found to give a lower subsystem mass, but excessive fuel swelling resulted. The SP-100 preliminary design uses 120 heat pipes because of acceptable fuel swelling and a minimum nuclear subsystem mass of 1875 kg. Salient features of the reactor preliminary design are: individual fuel modules, ZrO 2 block core mounts, bolted collar fuel module restraints, and a BeO central plug

  10. 1996 Design effort for IFMIF HEBT

    International Nuclear Information System (INIS)

    Blind, B.

    1997-01-01

    The paper details the 1996 design effort for the IFMIF HEBT. Following a brief overview, it lists the primary requirements for the beam at the target, describes the design approach and design tools used, introduces the beamline modules, gives the results achieved with the design at this stage, points out possible improvements and gives the names and computer locations of the TRACE3-D and PARMILA files that sum up the design work. The design does not fully meet specifications in regards to the flatness of the distribution at the target. With further work, including if necessary some backup options, the flatness specifications may be realized. It is not proposed that the specifications, namely flatness to ±5% and higher-intensity ridges that are no more than 15% above average, be changed at this time. The design also does not meet the requirement that the modules of all beamlines should operate at the same settings. However, the goal of using identical components and operational procedures has been met and only minor returning is needed to produce very similar beam distributions from all beamlines. Significant further work is required in the following areas: TRACE3-D designs and PARMILA runs must be made for the beams coming from accelerators No. 3 and No. 4. Transport of 30-MeV and 35-MeV beams to the targets and beam dump must be studied. Comprehensive error studies must be made. These must result in tolerance specifications and may require design iterations. Detailed interfacing with target-spot instrumentation is required. This instrumentation must be able to check all aspects of the specifications

  11. Preliminary PBFA II design

    International Nuclear Information System (INIS)

    Johnson, D.L.; VanDevender, J.P.; Martin, T.H.

    1980-01-01

    The upgrade of Sandia National Laboratories particle beam fusion accelerator, PBFA I, to PBFA II presents several interesting and challenging pulsed power design problems. PBFA II requires increasing the PBFA I output parameters from 2 MV, 30 TW, 1 MJ to 4 MV, 100 TW, 3.5 MJ with the constraint of using much of the same PBFA I hardware. The increased PBFA II output will be obtained by doubling the number of modules (from 36 to 72), increasing the primary energy storage (from 4 MJ to 15 MJ), lowering the pulse forming line (PFL) output impedance, and adding a voltage doubling network

  12. Design review report for the hydrogen interlock preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-01-01

    This report documents the completion of a preliminary design review for the hydrogen interlock. The hydrogen interlock, a proposed addition to the Rotary Mode Core Sampling (RMCS) system portable exhauster, is intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  13. KALIMER preliminary conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report.

  14. KALIMER preliminary conceptual design report

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report

  15. Versator divertor experiment: preliminary designs

    International Nuclear Information System (INIS)

    Wan, A.S.; Yang, T.F.

    1984-08-01

    The emergence of magnetic divertors as an impurity control and ash removal mechanism for future tokamak reactors bring on the need for further experimental verification of the divertor merits and their ability to operate at reactor relevant conditions, such as with auxiliary heating. This paper presents preliminary designs of a bundle and a poloidal divertor for Versator II, which can operate in conjunction with the existing 150 kW of LHRF heating or LH current drive. The bundle divertor option also features a new divertor configuration which should improve the engineering and physics results of the DITE experiment. Further design optimization in both physics and engineering designs are currently under way

  16. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  17. Ship design methodologies of preliminary design

    CERN Document Server

    Papanikolaou, Apostolos

    2014-01-01

    This book deals with ship design and in particular with methodologies of the preliminary design of ships. The book is complemented by a basic bibliography and five appendices with useful updated charts for the selection of the main dimensions and other basic characteristics of different types of ships (Appendix A), the determination of hull form  from the data of systematic hull form series (Appendix B), the detailed description of the relational method for the preliminary estimation of ship weights (Appendix C), a brief review of the historical evolution of shipbuilding science and technology from the prehistoric era to date (Appendix D) and finally a historical review of regulatory developments of ship's damage stability to date (Appendix E).  The book can be used as textbook for ship design courses or as additional reading for university or college students of naval architecture courses and related disciplines; it may also serve as a reference book for naval architects, practicing engineers of rel...

  18. Preliminary design of smart fuel

    International Nuclear Information System (INIS)

    Kim, Y.; Ha, D.; Park, S.; Nahm, K.; Lee, K.; Kim, J.

    2007-01-01

    SMART (System-integrated Modular Advanced Reactor) is a novel light water rector with a modular, integral primary system configuration. This concept has been developing a 660 MWt by Korean Nuclear Power Industry Group with KAERI. SMART is being developed for use as an energy source for small-scale power generation and seawater desalination. Although the design of SMART is based on the current pressurized water reactor technology, new technologies such as enhanced safety, and passive safety have been applied, and system simplification and modularization, innovations in manufacturing and installation technologies have been implemented culminating in a design that has enhanced safety and economy, and is environment -friendly. In this paper described the preliminary design of the nuclear Fuel for this SMART, the design concept and the characteristics of SMART Fuel. In specially this paper describe the optimization of grid span adjustment to improve the thermal performance of the SMART Fuel as well as to improve the seismic resistance performance of the SMART Fuel, it is not easy to improve the both performance simultaneously because of design parameter of each performance inversely proportional. SMART Fuel enable to extra-long extended fuel cycle length and resistance of proliferation, enhanced safety, improved economics and reduced nuclear waste

  19. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  20. Preliminary design data package. Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-25

    The design requirements, design philosophy, method and assumptions, and preliminary computer-aided design of the Near-Term Hybrid Vehicle including its electric and heat power units, control equipment, transmission system, body, and overall vehicle characteristics are presented. (LCL)

  1. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  2. IRIS: Proceeding Towards the Preliminary Design

    International Nuclear Information System (INIS)

    Carelli, M.; Miller, K.; Lombardi, C.; Todreas, N.; Greenspan, E.; Ninokata, H.; Lopez, F.; Cinotti, L.; Collado, J.; Oriolo, F.; Alonso, G.; Morales, M.; Boroughs, R.; Barroso, A.; Ingersoll, D.; Cavlina, N.

    2002-01-01

    The IRIS (International Reactor Innovative and Secure) project has completed the conceptual design phase and is moving towards completion of the preliminary design, scheduled for the end of 2002. Several other papers presented in this conference provide details on major aspects of the IRIS design. The three most innovative features which uniquely characterize IRIS are, in descending order of impact: 1. Safety-by-design, which takes maximum advantage of the integral configuration to eliminate from consideration some accidents, greatly lessen the consequence of other accident scenarios and decrease their probability of occurring; 2. Optimized maintenance, where the interval between maintenance shutdowns is extended to 48 months; and 3. Long core life, of at least four years without shuffling or partial refueling. Regarding feature 1, design and analyses will be supplemented by an extensive testing campaign to verify and demonstrate the performance of the integral components, individually as well as interactive systems. Test planning is being initiated. Test results will be factored into PRA analyses under an overall risk informed regulation approach, which is planned to be used in the IRIS licensing. Pre-application activities with NRC are also scheduled to start in mid 2002. Regarding feature 2, effort is being focused on advanced online diagnostics for the integral components, first of all the steam generators, which are the most critical component; several techniques are being investigated. Finally, a four year long life core design is well underway and some of the IRIS team members are examining higher enrichment, eight to ten year life cores which could be considered for reloads. (authors)

  3. Preliminary I&C Design for LORELEI

    International Nuclear Information System (INIS)

    Korotkin, S.; Kaufman, Y.; Guttmann, E. B.; Levy, S.; Amidan, D.; Gdalyho, B.; Cahana, T.; Ellenbogen, A.; Arad, M.; Weiss, Y.; Sasson, A.; Ferry, L.; Bourrelly, F.; Cohen, Y.

    2014-01-01

    This document summarizes the preliminary I&C design for LORELEI experiment The preliminary design deals with considerations regarding appropriate safety and service instrumentation. The determined closed loop control rules for temperature and position will be implemented in the detailed design. The Computer Aided Operator Decisions System (CAODS) will be used for prediction of hot spot temperature and thickness of oxidation layer using Baker-Just correlation. The proposed hybrid simulation system comprising of both virtual and real hardware will be in-cooperated for LORELEI verification. It will perform both integration cold tests for a partial hardware loop and virtual tests for the final I&C design

  4. Preliminary Design of Alborz Tokamak

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.; Saramad, S.

    2012-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. The most important part of the tokamak design is the design of TF coils. In this paper a refined design of the TF coil system for the Alborz tokamak is presented. This design is based on cooper cable conductor with 5 cm width and 6 mm thickness. The TF coil system is consist of 16 rectangular shape coils, that makes the magnetic field of 0.7 T at the plasma center. The stored energy in total is 160 kJ, and the power supply used in this system is a capacitor bank with capacity of C = 1.32 mF and V max = 14 kV.

  5. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  6. Preliminary design report for the prototypical fuel rod consolidation system

    International Nuclear Information System (INIS)

    Rosa, J.M.

    1986-01-01

    This report documents NUTECH's preliminary design of a dry, spent fuel rod consolidation system. This preliminary design is the result of Phase I of a planned four phase project. The present report on this project provides a considerable amount of detail for a preliminary design effort. The design and all of its details are described in this Preliminary Design Report (PDR). The NUTECH dry rod consolidation system described herein is remotely operated. It provides for automatic operation, but with operator hold points between key steps in the process. The operator has the ability to switch to a manual operation mode at any point in the process. The system is directed by the operator using an executive computer which controls and coordinates the operation of the in-cell equipment. The operator monitors the process using an in-cell closed circuit television (CCTV) system with audio output and equipment status displays on the computer monitor. The in-cell mechanical equipment consists of the following: (1) two overhead cranes with manipulators; (2) a multi-degree of freedom fuel handling table and its clamping equipment; (3) a fuel assembly end fitting removal station and its tools; (4) a consolidator (which pulls rods, assembles the consolidated bundle and loads the canister); (5) a canister end cap welder and weld inspection system; (6) decontamination systems; and (7) the CCTV and microphone systems

  7. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  8. Methodology for Preliminary Design of Electrical Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Richard P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stamp, Jason E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Henry, Jordan M [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Abdallah, Tarek [U.S. Army Corps of Engineers, Washington, DC (United States)

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  9. KALIMER fuel system preliminary design description

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B.O.; Nam, C.; Paek, S.K.

    1998-10-01

    This document provides general design concepts, design basis, preliminary design specification and design technologies which are needed for designing the fuel/non-fuel rods and assembly ducts of the KALIMER fuel system. The core of LMFBR consists of driver fuel assembly, blanket assembly, reflector assembly, shielding assembly, control assembly and GEM (Gas Expansion Module) as well as USS, dummy assembly, detector assembly. These core components must be designed to withstand the high temperature, high flux for a long irradiation exposure time. Due to the high temperature and high flux, irradiation creep and swelling as well as thermal-mechanical deformation are occurred at the fuel/non-fuel system and cause the deformations of materials and the geometric deflections at fuel/non-fuel rods, assembly ducts and components. In order to overcome these intricate phenomena through the engineering design, the design basis including theoretical analysis methodologies and design considerations, material characteristics of fuel system, and the specifications and drawings of fuel/non-fuel rods and assembly ducts, respectively, are presented. This document is preliminary design description which is produced in the conceptual design stage, and does not present the detailed and finalized design data which can be for the manufacturing. (author). 22 refs

  10. Safety performance of preliminary KALIMER conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong [Korea atomic Energy Resarch Inst., Taejon (Korea)

    1999-07-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  11. Safety performance of preliminary KALIMER conceptual design

    International Nuclear Information System (INIS)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong

    1999-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  12. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  13. Preliminary core design of IRIS-50

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Franceschini, Fausto

    2009-01-01

    IRIS-50 is a small, 50 MWe, advanced PWR with integral primary system. It evolved employing the same design principles as the well known medium size (335 MWe) IRIS. These principles include the 'safety-by-design' philosophy, simple and robust design, and deployment flexibility. The 50 MWe design addresses the needs of specific applications (e.g., power generation in small regional grids, water desalination and biodiesel production at remote locations, autonomous power source for special applications, etc.). Such applications may favor or even require longer refueling cycles, or may have some other specific requirements. Impact of these requirements on the core design and refueling strategy is discussed in the paper. Trade-off between the cycle length and other relevant parameters is addressed. A preliminary core design is presented, together with the core main reactor physics performance parameters. (author)

  14. Preliminary designs: passive solar manufactured housing. Technical status report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-12

    The criteria established to guide the development of the preliminary designs are listed. Three preliminary designs incorporating direct gain and/or sunspace are presented. Costs, drawings, and supporting calculations are included. (MHR)

  15. Preliminary design of a coffee harvester

    Directory of Open Access Journals (Sweden)

    Raphael Magalhães Gomes Moreira

    2016-10-01

    Full Text Available Design of an agricultural machine is a highly complex process due to interactions between the operator, machine, and environment. Mountain coffee plantations constitute an economic sector that requires huge investments for the development of agricultural machinery to improve the harvesting and post-harvesting processes and to overcome the scarcity of work forces in the fields. The aim of this study was to develop a preliminary design for a virtual prototype of a coffee fruit harvester. In this study, a project methodology was applied and adapted for the development of the following steps: project planning, informational design, conceptual design, and preliminary design. The construction of a morphological matrix made it possible to obtain a list of different mechanisms with specific functions. The union between these mechanisms resulted in variants, which were weighed to attribute scores for each selected criterion. From each designated proposal, two variants with the best scores were selected and this permitted the preparation of the preliminary design of both variants. The archetype was divided in two parts, namely the hydraulically articulated arms and the harvesting system that consisted of the vibration mechanism and the detachment mechanism. The proposed innovation involves the use of parallel rods, which were fixed in a plane and rectangular metal sheet. In this step, dimensions including a maximum length of 4.7 m, a minimum length of 3.3 m, and a total height of 2.15 m were identified based on the functioning of the harvester in relation to the coupling point of the tractor.

  16. Exploratory shaft facility preliminary designs - Gulf Interior Region salt domes

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Gulf Interior Region, is to provide a description of the preliminary design for an Exploratory Shaft Facility on the Richton Dome, Mississippi. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description and Construction Cost Estimate

  17. Exploratory shaft facility preliminary designs - Paradox Basin. Technical report

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Paradox Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Paradox Basin, Utah. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling Method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers is included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references

  18. Business System Planning Project, Preliminary System Design

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time

  19. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  20. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    International Nuclear Information System (INIS)

    Kappes, J.A.

    1999-01-01

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M andO 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS)

  1. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  2. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  3. Preliminary ALARA design concept for SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs

  4. NSLS-II Preliminary Design Report

    International Nuclear Information System (INIS)

    Dierker, S.

    2007-01-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES and H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the

  5. NSLS-II Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility

  6. Preliminary design of RDE feedwater pump impeller

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2018-01-01

    Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Experimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MW th , and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm. (author)

  7. Preliminary Tritium Management Design Activities at ORNL

    International Nuclear Information System (INIS)

    Harrison, Thomas J.; Felde, David K.; Logsdon, Randall J.; McFarlane, Joanna; Qualls, A. L.

    2016-01-01

    Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment. In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritium mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year's efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.

  8. Preliminary Tritium Management Design Activities at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Logsdon, Randall J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFarlane, Joanna [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment. In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritium mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year’s efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.

  9. Preliminary Opto-Mechanical Design for the X2000 Transceiver

    Science.gov (United States)

    Hemmati, H.; Page, N. A.

    2000-01-01

    Preliminary optical design and mechanical conceptual design for a 30 cm aperture transceiver are described. A common aperture is used for both transmit and receive. Special attention was given to off-axis and scattered light rejection and isolation of the receive channel from the transmit channel. Requirements, details of the design and preliminary performance analysis of the transceiver are provided.

  10. Central receiver solar thermal power system. Phase 1. CDRL item 2; Pilot Plant preliminary design report. Volume II. System decription and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    An active system analysis and integration effort has been maintained. These activities have included the transformation of initial program requirements into a preliminary system design, the evolution of subsystem requirements which lay the foundation for subsystem design and test activity, and the overseeing of the final preliminary design effort to ensure that the subsystems are operationally compatible and capable of producing electricity at the lowest possible cost per unit of energy. Volume II of the Preliminary Design Report presents the results of the overall system effort that went on during this contract. The effort is assumed to include not only the total system definition and design but also all subsystem interactions.

  11. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  12. Preliminary design of a tandem mirror reactor

    International Nuclear Information System (INIS)

    Strohmayer, J.N.

    1984-04-01

    The purpose of this thesis is to examine the TARA mirror experiment as a possible tandem mirror reactor configuration. This is a preliminary study to size the coil structure based on using the smallest end cell axial length that physics and engineering allow, zeroing the central cell parallel currents and having interchange stability. The input powers are estimated for the final reactor design so a Q value may be estimated. The Q value is defined as the fusion power divided by the total injected power absorbed by the plasma. A computer study was performed on the effect of the transition size, the transition vertical spacing and transition current. These parameters affect the central cell parallel currents, the recircularization of the flux tube and the ratio of central cell beta to anchor beta needed for marginal stability. Two designs were identified. The first uses 100 keV and 13 keV neutral beams to pump the ions that trap in the thermal barrier. The Q value of this reactor is 11.3. The second reactor uses a pump beam at 40 keV. This energy is chosen because there is a resonance for the charge exchange cross section between D 0 and He 2+ at this energy, thus the alpha ash will be pumped along with the deuterium and tritium. The Q value of this reactor is 11.6

  13. Preliminary design of the repository, stage 2

    International Nuclear Information System (INIS)

    Saanio, T.; Kirkkomaeki, T.; Keto, P.; Kukkola, T.; Raiko, H.

    2007-01-01

    Spent nuclear fuel from Finnish nuclear power plants will be disposed of in deep bedrock in Olkiluoto, Eurajoki. The repository is planned to be excavated at a depth of 400 - 500 metres. Access routes to the repository include a 1:10 inclined access tunnel, and vertical shafts. The fuel is encapsulated in the encapsulation plant above ground and transferred to the repository in the canister lift. Deposition tunnels, central tunnels and technical rooms are excavated at the disposal level. The canisters are deposited in deposition holes that are covered with bentonite blocks. The deposition holes are bored in the floors of the deposition tunnels. The central tunnel system consists of two parallel central tunnels that are inter-connected at certain distances. Two parallel central tunnels improve the fire safety of the rooms and also allow flexible backfilling and closing of the deposition tunnels in stages at the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level to support and confirm investigations carried out from above ground. ONKALO is designed so that it can later serve as part of the repository. ONKALO excavations were started in 2004. The repository will be excavated in the 2010s and operation will start in 2020. The fifth nuclear power unit makes the operational phase of the repository very long. Parts of the repository will be excavated and closed over the long operational period. The repository can be constructed at one or several levels. The one-storey alternative is the so-called reference alternative in this preliminary design report. The two-storey alternative is also taken into account in the ONKALO designs. The preliminary designs of the repository are presented as located in Olkiluoto. The location of the repository will be revised when more information on the bedrock has been gained. More detailed data of the circumstances will be obtained from above ground investigations

  14. Preliminary design of the repository. Stage 2

    International Nuclear Information System (INIS)

    Saanio, T.; Kirkkomaeki, T.; Keto, P.; Kukkola, T.; Raiko, H.

    2007-04-01

    Spent nuclear fuel from Finnish nuclear power plants will be disposed of in deep bedrock in Olkiluoto, Eurajoki. The repository is planned to be excavated at a depth of 400 - 500 metres. Access routes to the repository include a 1:10 inclined access tunnel, and vertical shafts. The fuel is encapsulated in the encapsulation plant above ground and transferred to the repository in the canister lift. Deposition tunnels, central tunnels and technical rooms are excavated at the disposal level. The canisters are deposited in deposition holes that are covered with bentonite blocks. The deposition holes are bored in the floors of the deposition tunnels. The central tunnel system consists of two parallel central tunnels that are inter-connected at certain distances. Two parallel central tunnels improve the fire safety of the rooms and also allow flexible backfilling and closing of the deposition tunnels in stages at the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level to support and confirm investigations carried out from above ground. ONKALO is designed so that it can later serve as part of the repository. ONKALO excavations were started in 2004. The repository will be excavated in the 2010s and operation will start in 2020. The fifth nuclear power unit makes the operational phase of the repository very long. Parts of the repository will be excavated and closed over the long operational period. The repository can be constructed at one or several levels. The one-storey alternative is the so-called reference alternative in this preliminary design report. The two-storey alternative is also taken into account in the ONKALO designs. The preliminary designs of the repository are presented as located in Olkiluoto. The location of the repository will be revised when more information on the bedrock has been gained. More detailed data of the circumstances will be obtained from above ground investigations

  15. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  16. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    Science.gov (United States)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  17. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  18. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  19. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  20. Preliminary design review: Brayton Isotope Power System

    International Nuclear Information System (INIS)

    The design aspects covered include flight system design, design criteria/margins/reliability, GDS design, system analysis, materials, system assembly procedure, and government furnished equipment-BTPS

  1. Preliminary radiation shielding design for BOOMERANG

    International Nuclear Information System (INIS)

    Donahue, Richard J.

    2002-01-01

    Preliminary radiation shielding specifications are presented here for the 3 GeV BOOMERANG Australian synchrotron light source project. At this time the bulk shield walls for the storage ring and injection system (100 MeV Linac and 3 GeV Booster) are considered for siting purposes

  2. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of this document includes the LWT cask with fuel baskets, impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. The results of the tradeoff studies and evaluations that were performed during the preliminary design are presented in Appendix A to this report. 51 figs., 17 tabs

  3. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  4. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  5. Preliminary bridge design navigation tool for novices

    OpenAIRE

    Boulanger, Sylvie

    1997-01-01

    The motivation of the thesis comes from the frustrations of young engineers confronted with real design problems. The inspiration of the thesis evolved from observations of bridge designers and analyses of bridge design competitions. Not only do designers adopt more than one strategy during design, they rarely perform a fixed sequence of tasks. Not only do designers consider more than one criterion during design, their priorities shift during the determination of parameters. The choice of tas...

  6. Preliminary bridge design navigation tool for novices

    OpenAIRE

    Boulanger, Sylvie; Hirt, Manfred A.

    2008-01-01

    The motivation of the thesis comes from the frustrations of young engineers confronted with real design problems. The inspiration of the thesis evolved from observations of bridge designers and analyses of bridge design competitions. Not only do designers adopt more than one strategy during design, they rarely perform a fixed sequence of tasks. Not only do designers consider more than one criterion during design, their priorities shift during the determination of parameters. The choice of tas...

  7. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1984-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II. Since the actively cooled limiter blade is the component in direct contact with the plasma edge, and thus subject to the severe plasma environment, most preliminary design efforts have concentrated on analysis of the blade. The screening process which led to the recommended preliminary design consisting of a dispersion strenghthened copper or OFHC copper cover plate over an austenitic stainless steel base plate is discussed. A 1 to 3 mm thick low atomic number coating consisting of a graded plasma-sprayed Silicon Carbide-Aluminium composite is recommended subject to further experiment and evaluation. Thermal-hydraulic and stress analyses of the limiter blade are also discussed. (orig.)

  8. Aberrations in preliminary design of ITER divertor impurity influx monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: kitazawa.siniti@jaea.go.jp [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Ogawa, Hiroaki [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Katsunuma, Atsushi; Kitazawa, Daisuke [Core Technology Center, Nikon Corporation, Yokohama 244-8533 (Japan); Ohmori, Keisuke [Customized Products Business Unit, Nikon Corporation, Mito 310-0843 (Japan)

    2015-12-15

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  9. Aberrations in preliminary design of ITER divertor impurity influx monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki; Katsunuma, Atsushi; Kitazawa, Daisuke; Ohmori, Keisuke

    2015-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  10. Preliminary perspectives on DNA collection in anti-human trafficking efforts.

    Science.gov (United States)

    Katsanis, Sara H; Kim, Joyce; Minear, Mollie A; Chandrasekharan, Subhashini; Wagner, Jennifer K

    2014-01-01

    Forensic DNA methodologies have potential applications in the investigation of human trafficking cases. DNA and relationship testing may be useful for confirmation of biological relationship claims in immigration, identification of trafficked individuals who are missing persons, and family reunification of displaced individuals after mass disasters and conflicts. As these applications rely on the collection of DNA from non-criminals and potentially vulnerable individuals, questions arise as to how to address the ethical challenges of collection, security, and privacy of collected samples and DNA profiles. We administered a survey targeted to victims' advocates to gain preliminary understanding of perspectives regarding human trafficking definitions, DNA and sex workers, and perceived trust of authorities potentially involved in DNA collection. We asked respondents to consider the use of DNA for investigating adoption fraud, sex trafficking, and post-conflict child soldier cases. We found some key differences in perspectives on defining what qualifies as "trafficking." When we varied terminology between "sex worker" and "sex trafficking victim" we detected differences in perception on which authorities can be trusted. Respondents were supportive of the hypothetical models proposed to collect DNA. Most were favorable of DNA specimens being controlled by an authority outside of law enforcement. Participants voiced concerns focused on privacy, misuse of DNA samples and data, unintentional harms, data security, and infrastructure. These preliminary data indicate that while there is perceived value in programs to use DNA for investigating cases of human trafficking, these programs may need to consider levels of trust in authorities as their logistics are developed and implemented.

  11. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  12. Preliminary Design of a Femtosecond Oscilloscope

    CERN Document Server

    Gazazyan, Edmond D; Kalantaryan, Davit K; Laziev, Edouard; Margaryan, Amour

    2005-01-01

    The calculations on motion of electrons in a finite length electromagnetic field of linearly and circularly polarized laser beams have shown that one can use the transversal deflection of electrons on a screen at a certain distance after the interaction region for the measurement of the length and longitudinal particle distribution of femtosecond bunches. In this work the construction and preliminary parameters of various parts of a device that may be called femtosecond oscilloscope are considered. The influence of various factors, such as the energy spread and size of the electron bunches, are taken into account. For CO2 laser intensity 1016 W/cm2 and field free drift length 1m the deflection is 5.3 and 0.06 cm, while the few centimeters long interaction length between 2 mirrors requires assembling accuracy 6 mm and 1.3 micron for 20 MeV to 50 keV, respectively.

  13. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  14. Practical Recommendations for the Preliminary Design Analysis of ...

    African Journals Online (AJOL)

    Interior-to-exterior shear ratios for equal and unequal bay frames, as well as column inflection points were obtained to serve as practical aids for preliminary analysis/design of fixed-feet multistory sway frames. Equal and unequal bay five story frames were analysed to show the validity of the recommended design ...

  15. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  16. A preliminary study on the relevancy of sustainable building design ...

    African Journals Online (AJOL)

    This preliminary study aims to explore the relationship between sustainable building design paradigms and commercial property depreciation, to assist in the understanding of sustainable building design impact towards commercial building value and rental de employs the qualitative method and analyses valuers' current ...

  17. Preliminary System Design of the SWRL Financial System.

    Science.gov (United States)

    Ikeda, Masumi

    The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…

  18. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  19. Preliminary A ampersand PCT multiple detector design

    International Nuclear Information System (INIS)

    Roberson, G.P.; Martz, H.E.; Camp, D.C.; Decman, D.J.; Johansson, E.M.

    1997-01-01

    The next generation, multi-detector active and passive computed tomography (A ampersand PCT) scanner will be optimized for speed and accuracy. At the Lawrence Livermore National Lab (LLNL) we have demonstrated the trade-offs between different A ampersand PCT design parameters that affect the speed and quality of the assay results. These fundamental parameters govern the optimum system design. Although the multi-detector scanner design has priority put on speed to increase waste drum throughput, higher speed should not compromise assay accuracy. One way to increase the speed of the A ampersand PCT technology is to use multiple detectors. This yields a linear speedup by a factor approximately equal to the number of detectors used without a compromise in system accuracy. There are many different design scenarios that can be developed using multiple detectors. Here we describe four different scenarios and discuss the trade-offs between them. Also, some considerations are given in this design description for the implementation of a multiple detector technology in a field- deployable mobile trailer system

  20. Preliminary design of an asteroid hopping mission

    Science.gov (United States)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  1. Sewage Solids Irradiator Transportation System (SSITS) cask: preliminary design description

    International Nuclear Information System (INIS)

    Eakes, R.G.; Kempka, S.N.; Lamoreaux, G.H.; Sutherland, S.H.

    1983-02-01

    The preliminary design of the Sewage Solids Irradiator Transportation System (SSITS) Cask is presented in this document. The SSITS cask is to be used for the transport of radioactive cesium chloride and strontium fluoride capsules which are of use in irradiators or as heat sources. The SSITS cask is approximately 1.4 m in diameter, 1.3 m high, weighs roughly 9 t, provides 33 cm of steel shielding, and can dissipate up to 5.2 kW of decay heat. The cask design criteria are identified and a description of the cask design and operation is provided. Detailed analyses of the design were performed to demonstrate licensability of the cask by the Nuclear Regulatory Commission (NRC). Results of the analyses indicate that the preliminary design is in compliance with the pertinent regulatory requirements for licensing of a radioactive material transportation container

  2. Preliminary Design of the AEGIS Test Facility

    CERN Document Server

    Dassa, Luca; Cambiaghi, Danilo

    2010-01-01

    The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

  3. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Blue, B.; Dunn, P.

    1994-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  4. Preliminary systems design study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept

  5. Preliminary design review report for K Basin Dose Reduction Project

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design

  6. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of the document includes the LWT cask with fuel baskets; impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. 75 figs., 48 tabs

  7. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  8. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG ampersand G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used

  9. Preliminary Mechanical Design of FHX for PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jinyup; Koo, G. H.; Kim, S. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, more specific data from analysis and mechanical method of approach to design will be addressed. Especially, frame of tube bundle and housing of FHX. Heretofore, it is concept design by mechanical basic knowledge and research of various structures that are activating in realities. Especially, to reduce thermal stress, we have planning to attach insulations inside the housing. In as much as FHX is as important on SFR as the other part, hereafter, we will develop FEM to check feasibility of the FHX's housing design in order to perform static and thermal analysis as well as bucking, seismic and so on. The Forced-draft sodium-to-air Heat Exchanger system (FHX) (employed in the Active Decay Heat Removal System (ADHRS) is a shell-and-tube type counter-current flow heat exchanger with serpentine finned-tube arrangement. Liquid sodium flows over the finned tubes. The unit is placed above the reactor building and has function of dumping the system heat load into the final heat sink, i. e., the atmosphere. Heat is transmitted from the primary hot sodium pool into the ADHRS sodium loop via Decay Heat Exchanger (DHX), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX sodium tube wall. Cold atmospheric air is introduced into the air inlet duct at the lower part of the unit by using an electrically driven air blower. Air flows across the finned tube bank rising upward direction to make uniform air flow with perfect mixing across the tubes. The finned tube bundle is placed inside a well-insulated casing. The air heated at the tube bank region is collected at the top of the unit and then is discharged through the air stack above the unit. Although a blower supplies atmospheric air into the FHX unit, a tall air stack is also provided to secure natural draft head of natural circulation air flow against a loss power supply. The stack also has rain protecting structures to prevent inflow of rain drops or undesired

  10. Preliminary systems design study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem

  11. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Quapp, W.J.; Feizollahi, F.; Del Signore, J.C.

    1991-07-01

    The System Design Study (SDS), part of the Waste Technology Development Department at Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic (TRU) waste stored at the Radioactive Waste Management Complex's (RWMC's) Subsurface Disposal Area (SDA) at INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. SDS resulted in the development of technology requirements including demonstration, testing and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume 1 contains an executive summary. The SDS summary and analysis of results are presented in volume 2. Volumes 3 through 7 contain detailed descriptions of twelve system and four subsystem concepts. Volume 8 contains the appendices. 3 figs., 3 tabs

  12. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Quapp, W.J.; Feizollahi, F.; Del Signore, J.C.

    1991-07-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume 1 contains an executive summary. The SDS summary and analysis of results are presented in Volume 2. Volumes 3 through 7 contain detailed descriptions of twelve system and four subsystem concepts. Volume 8 contains the appendixes. 23 refs., 23 figs., 16 tabs

  13. Preliminary 2D design study for A ampersand PCT

    International Nuclear Information System (INIS)

    Keto, E.; Azevedo, S.; Roberson, P.

    1995-03-01

    Lawrence Livermore National Laboratory is currently designing and constructing a tomographic scanner to obtain the most accurate possible assays of radioactivity in barrels of nuclear waste in a limited amount of time. This study demonstrates a method to explore different designs using laboratory experiments and numerical simulations. In particular, we examine the trade-off between spatial resolution and signal-to-noise. The simulations are conducted in two dimensions as a preliminary study for three dimensional imaging. We find that the optimal design is entirely dependent on the expected source sizes and activities. For nuclear waste barrels, preliminary results indicate that collimators with widths of 1 to 3 inch and aspect ratios of 5:1 to 10:1 should perform well. This type of study will be repeated in 3D in more detail to optimize the final design

  14. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    Science.gov (United States)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  15. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  16. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, ''WIPP and TRAMPAC Acceptable.'' The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4)

  17. Preliminary design study for a corkscrew gantry

    International Nuclear Information System (INIS)

    Koehler, A.M.

    1987-01-01

    For two years or more a group including the author has been working together to study some problems related to the design of a gentry system for flexible direction of a proton beam for clinical treatments. Some consideration was given to the classic gantry geometry. Attempting to reduce the radius of the gantry arm by reducing the drift space after the scattering foils led to an analysis of the significance of inverse square intensity effects. The conclusion reached is that a drift space of about 3 meters is required to preserve some skin sparing for larger targets. To circumvent this problem the scattering foils ere put somewhere inside or even before the gantry system, accepting the fact that magnet apertures would have to be increased. This gantry system has the interesting ability to produce oblong fields of excellent uniformity with reasonable efficiency, preferentially with the long axis of the field parallel to the axis of rotation. It was disappointing, however, to find that the overall size of the gantry with its counterweights remained very large. Another change in geometry was proposed therefore in order to reduce the space taken up by the gantry and its counterweight. The beam is bent 45 0 in the horizontal plane and then again by 45 0 so that it is pointing away from isocenter, but in the plan of rotation of the gantry. The beam is now bent in that plane of rotation until it is pointed at isocenter. This is accomplished by two bends of 135 0 each with a suitable drift space between them so that the beam is pointed vertically downward at isocenter. The three dimensional complexity of the beam trajectory led to the name Corkscrew Gantry

  18. The 'Reacteur Jules Horowitz': The preliminary design

    International Nuclear Information System (INIS)

    Ballagny, A.; Frachet, S.; Minguet, J.L.; Leydier, C.

    1999-01-01

    The 'Reactor Jules Horowitz' is a new research reactor project dedicated to materials and nuclear fuels testing, the location of which is foreseen at the CEA-Cadarache site, and the start-up in 2008. The launching of this project arises from a double finding: 1) the development of nuclear power plants aimed at satisfying the energy needs of the next century cannot be envisaged without the disposal of experimental reactors which are unrivalled for the validation of new concepts of nuclear fuels, materials, and components as well as for their qualification under irradiation. 2) the present park of experimental reactors is 30 to 40 years old and it is advisable to examine henceforth the necessity and the nature of a new reactor to take over and replace, at the beginning of next century, the reactors shut-down in the mean time or at the very end of their lives. Within this framework, the CEA has undertaken, in the last years, a reflection on the mid and long term irradiations needs, to determine the main features and performances of this new reactor. The concept of the reactor will have to fulfil the thermal neutron irradiation requirements as well as the fast neutron experimental needs, with a great potential versatility for any new irradiation programs. The selected reactor project, among several different concepts, is finally a light water open pool concept, with 100 MW thermal power. It could reach neutronic fluxes twice those of present French reactors, and allows many irradiations in the core and around the core, under high neutron fluxes. The reactor will satisfy the highest level of safety in full accordance with international safety recommendations and French safety approach for this kind of nuclear facility, thus giving an added safety margin keeping in mind the versatility of research reactors. The feasibility studies have been focused on the main items, and have permit to determine: the core and fuel designs, with added pressurisation; the different core

  19. Gemini Planet Imager: Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2007-05-10

    completely limited by quasi-static wave front errors, so that contrast does not improve with integration times longer than about 1 minute. Using the rotation of the Earth to distinguish companions from artifacts or multiwavelength imaging improves this somewhat, but GPI will still need to surpass the performance of existing systems by one to two orders of magnitude--an improvement comparable to the transition from photographic plates to CCDs. This may sound daunting, but other areas of optical science have achieved similar breakthroughs, for example, the transition to nanometer-quality optics for extreme ultraviolet lithography, the development of MEMS wave front control devices, and the ultra-high contrast demonstrated by JPL's High Contrast Imaging Test-bed. In astronomy, the Sloan Digital Sky Survey, long baseline radio interferometry, and multi-object spectrographs have led to improvements of similar or greater order of magnitude. GPI will be the first project to apply these revolutionary techniques to ground-based astronomy, with a systems engineering approach that studies the impact of every design decision on the key metric--final detectable planet contrast.

  20. Preliminary design study of a steady state tokamak device

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)

    1992-09-01

    Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)

  1. Preliminary design studies for the DESCARTES and CIDER codes

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.

    1992-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) project is developing several computer codes to model the release and transport of radionuclides into the environment. This preliminary design addresses two of these codes: Dynamic Estimates of Concentrations and Radionuclides in Terrestrial Environments (DESCARTES) and Calculation of Individual Doses from Environmental Radionuclides (CIDER). The DESCARTES code will be used to estimate the concentration of radionuclides in environmental pathways, given the output of the air transport code HATCHET. The CIDER code will use information provided by DESCARTES to estimate the dose received by an individual. This document reports on preliminary design work performed by the code development team to determine if the requirements could be met for Descartes and CIDER. The document contains three major sections: (i) a data flow diagram and discussion for DESCARTES, (ii) a data flow diagram and discussion for CIDER, and (iii) a series of brief statements regarding the design approach required to address each code requirement

  2. A Priori Implementation Effort Estimation for HW Design Based on Independent-Path Analysis

    DEFF Research Database (Denmark)

    Abildgren, Rasmus; Diguet, Jean-Philippe; Bomel, Pierre

    2008-01-01

    that with the proposed approach it is possible to estimate the hardware implementation effort. This approach, part of our light design space exploration concept, is implemented in our framework ‘‘Design-Trotter'' and offers a new type of tool that can help designers and managers to reduce the time-to-market factor......This paper presents a metric-based approach for estimating the hardware implementation effort (in terms of time) for an application in relation to the number of linear-independent paths of its algorithms. We exploit the relation between the number of edges and linear-independent paths...... in an algorithm and the corresponding implementation effort. We propose an adaptation of the concept of cyclomatic complexity, complemented with a correction function to take designers' learning curve and experience into account. Our experimental results, composed of a training and a validation phase, show...

  3. A preliminary conceptual design study for Korean fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Kim, Hyoung Chan; Oh, Sangjun; Lee, Young Seok; Yeom, Jun Ho; Im, Kihak; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Kessel, Charles; Brown, Thomas; Titus, Peter [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2013-10-15

    Highlights: ► Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. ► Present design guidelines and requirements of Korean DEMO reactor. ► Present a preliminary design of TF (toroidal field) and CS (central solenoid) magnet. ► Present a preliminary result of the radial build scheme of Korean DEMO reactor. -- Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy, so called fast-track approach. Korean strategy for fusion energy can be regarded as a fast-track approach and one special concept discussed in this paper is a two-stage development plan. At first, a steady-state Korean DEMO Reactor (K-DEMO) is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). The major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. By using high performance Nb{sub 3}Sn-based superconducting cable currently available, high magnetic field at the plasma center above 8 T can be achieved. A design concept for TF magnets and radial builds for the K-DEMO considering a vertical maintenance scheme, are presented together with preliminary design parameters.

  4. Preliminary design study of the TMT Telescope structure system: overview

    Science.gov (United States)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  5. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  6. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  7. Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.

  8. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  9. OSU TOMF Program Site Selection and Preliminary Concept Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Spadling, Steve [Oklahoma State Univ., Stillwater, OK (United States)

    2012-05-10

    The purpose of this report is to confirm the programmatic requirements for the new facilities, identify the most appropriate project site, and develop preliminary site and building concepts that successfully address the overall project goals and site issues. These new facilities will be designed to accommodate the staff, drivers and maintenance requirements for the future mixed fleet of passenger vehicles, Transit Style Buses and School Buses.

  10. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  11. A Generative Computer Model for Preliminary Design of Mass Housing

    Directory of Open Access Journals (Sweden)

    Ahmet Emre DİNÇER

    2014-05-01

    Full Text Available Today, we live in what we call the “Information Age”, an age in which information technologies are constantly being renewed and developed. Out of this has emerged a new approach called “Computational Design” or “Digital Design”. In addition to significantly influencing all fields of engineering, this approach has come to play a similar role in all stages of the design process in the architectural field. In providing solutions for analytical problems in design such as cost estimate, circulation systems evaluation and environmental effects, which are similar to engineering problems, this approach is being used in the evaluation, representation and presentation of traditionally designed buildings. With developments in software and hardware technology, it has evolved as the studies based on design of architectural products and production implementations with digital tools used for preliminary design stages. This paper presents a digital model which may be used in the preliminary stage of mass housing design with Cellular Automata, one of generative design systems based on computational design approaches. This computational model, developed by scripts of 3Ds Max software, has been implemented on a site plan design of mass housing, floor plan organizations made by user preferences and facade designs. By using the developed computer model, many alternative housing types could be rapidly produced. The interactive design tool of this computational model allows the user to transfer dimensional and functional housing preferences by means of the interface prepared for model. The results of the study are discussed in the light of innovative architectural approaches.

  12. European passive plant program preliminary safety analyses to support system design

    International Nuclear Information System (INIS)

    Saiu, Gianfranco; Barucca, Luciana; King, K.J.

    1999-01-01

    In 1994, a group of European Utilities, together with Westinghouse and its Industrial Partner GENESI (an Italian consortium including ANSALDO and FIAT), initiated a program designated EPP (European Passive Plant) to evaluate Westinghouse Passive Nuclear Plant Technology for application in Europe. In the Phase 1 of the European Passive Plant Program which was completed in 1996, a 1000 MWe passive plant reference design (EP1000) was established which conforms to the European Utility Requirements (EUR) and is expected to meet the European Safety Authorities requirements. Phase 2 of the program was initiated in 1997 with the objective of developing the Nuclear Island design details and performing supporting analyses to start development of Safety Case Report (SCR) for submittal to European Licensing Authorities. The first part of Phase 2, 'Design Definition' phase (Phase 2A) was completed at the end of 1998, the main efforts being design definition of key systems and structures, development of the Nuclear Island layout, and performing preliminary safety analyses to support design efforts. Incorporation of the EUR has been a key design requirement for the EP1000 form the beginning of the program. Detailed design solutions to meet the EUR have been defined and the safety approach has also been developed based on the EUR guidelines. The present paper describes the EP1000 approach to safety analysis and, in particular, to the Design Extension Conditions that, according to the EUR, represent the preferred method for giving consideration to the Complex Sequences and Severe Accidents at the design stage without including them in the design bases conditions. Preliminary results of some DEC analyses and an overview of the probabilistic safety assessment (PSA) are also presented. (author)

  13. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    Science.gov (United States)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  14. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  15. AGC-1 Experiment and Final Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Bratton; Tim Burchell

    2006-08-01

    This report details the experimental plan and design as of the preliminary design review for the Advanced Test Reactor Graphite Creep-1 graphite compressive creep capsule. The capsule will contain five graphite grades that will be irradiated in the Advanced Test Reactor at the Idaho National Laboratory to determine the irradiation induced creep constants. Seven other grades of graphite will be irradiated to determine irradiated physical properties. The capsule will have an irradiation temperature of 900 C and a peak irradiation dose of 5.8 x 10{sup 21} n/cm{sup 2} [E > 0.1 MeV], or 4.2 displacements per atom.

  16. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  17. A Method for A Priori Implementation Effort Estimation for Hardware Design

    DEFF Research Database (Denmark)

    Abildgren, Rasmus; Diguet, Jean-Philippe; Gogniat, Guy

    2008-01-01

    This paper presents a metric-based approach for estimating the hardware implementation effort (in terms of time) for an application in relation to the number of independent paths of its algorithms. We define a metric which exploits the relation between the number of independent paths in an algori...... facilitating designers and managers needs for estimating the time-to-market schedule....

  18. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    Science.gov (United States)

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…

  19. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    International Nuclear Information System (INIS)

    1995-01-01

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presented as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors

  20. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presented as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.

  1. Preliminary design considerations for automatic refueling at N Reactor

    International Nuclear Information System (INIS)

    Quapp, W.J.; Yount, J.A.

    1985-01-01

    The Refueling Enhancement Program is an effort to upgrade and improve the N Reactor refueling operation. Primary goals of this effort are to reduce personnel exposure, reduce effluents to the environment, and, where possible, increase the refueling rate. Recent advances in available commercial robotics systems have prompted a look at automating the Charge/Discharge (C/D) operations. Current efforts will culminate in a conceptual design report (CDR) and accompanying economic and risk analysis in January 1986. Based on the results in that report, DOE will review the viability of the approach as a future capital project. Implementation of automation in existing plants raises questions regarding both the programmatic (how does one implement such an effort) and technical (what equipment is available; how will it be applied) concerns. This paper addresses both aspects

  2. Preliminary design study of a large scale graphite oxidation loop

    International Nuclear Information System (INIS)

    Epel, L.G.; Majeski, S.J.; Schweitzer, D.G.; Sheehan, T.V.

    1979-08-01

    A preliminary design study of a large scale graphite oxidation loop was performed in order to assess feasibility and to estimate capital costs. The nominal design operates at 50 atmospheres helium and 1800 F with a graphite specimen 30 inches long and 10 inches in diameter. It was determined that a simple single walled design was not practical at this time because of a lack of commercially available thick walled high temperature alloys. Two alternative concepts, at reduced operating pressure, were investigated. Both were found to be readily fabricable to operate at 1800 F and capital cost estimates for these are included. A design concept, which is outside the scope of this study, was briefly considered

  3. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  4. Preliminary Design Concept for a Reactor-internal CRDM

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Jong Wook; Kim, Tae Wan; Choi, Suhn; Kim, Keung Koo

    2013-01-01

    A rod ejection accident may cause severer result in SMRs because SMRs have relatively high control rod reactivity worth compared with commercial nuclear reactors. Because this accident would be perfectly excluded by adopting a reactor-internal CRDM (Control Rod Drive Mechanism), many SMRs accept this concept. The first concept was provided by JAERI with the MRX reactor which uses an electric motor with a ball screw driveline. Babcock and Wilcox introduced the concept in an mPower reactor that adopts an electric motor with a roller screw driveline and hydraulic system, and Westinghouse Electric Co. proposes an internal Control Rod Drive in its SMR with an electric motor with a latch mechanism. In addition, several other applications have been reported thus far. The reactor-internal CRDM concept is now widely adopted in many SMR designs, and this concept may also be applied in an evolutionary reactor development. So the preliminary study is conducted based on the SMART CRDM design. A preliminary design concept for a reactor-internal CRDM was proposed and evaluated through an electromagnetic analysis. It was found that there is an optimum design for the motor housing, and the results may contribute to the realization a reactor-internal CRDM for an evolutionary reactor development. More detailed analysis results will be reported later

  5. Review of SFR Design Safety using Preliminary Regulatory PSA Model

    International Nuclear Information System (INIS)

    Na, Hyun Ju; Lee, Yong Suk; Shin, Andong; Suh, Nam Duk

    2013-01-01

    The major objective of this research is to develop a risk model for regulatory verification of the SFR design, and thereby, make sure that the SFR design is adequate from a risk perspective. In this paper, the development result of preliminary regulatory PSA model of SFR is discussed. In this paper, development and quantification result of preliminary regulatory PSA model of SFR is discussed. It was confirmed that the importance PDRC and ADRC dampers is significant as stated in the result of KAERI PSA model. However, the importance can be changed significantly depending on assumption of CCCG and CCF factor of PDRC and ADRC dampers. SFR (sodium-cooled fast reactor) which is Gen-IV nuclear energy system, is designed to accord with the concept of stability, sustainability and proliferation resistance. KALIMER-600, which is under development in Korea, includes passive safety systems (e. g. passive reactor shutdown, passive residual heat removal, and etc.) as well as active safety systems. Risk analysis from a regulatory perspective is needed to support the regulatory body in its safety and licensing review for SFR (KALIMER-600). Safety issues should be identified in the early design phase in order to prevent the unexpected cost increase and delay of the SFR licensing schedule that may be caused otherwise

  6. Preliminary Design Progress of the HCCR TBM for ITER testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Park, Sung Dae; Kim, Dong Jun; Jin, Hyung Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea has designed a helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield, which is called the TBM-set, to be tested in ITER, a Nuclear Facility INB-174. Through the conceptual design review (CDR), its design integrity was successfully demonstrated at the conceptual design level at various loads. After CD approval, preliminary design (PD) was started and the progress is introduced in the present study. After PD review and approval, final design and then fabrication will be started. The main purpose of PD is to design the TBM-set according to the fabrication aspect and more detailed design for interfaces with ITER machine, such as installed TBM port plug and frame. With these considering, PD of TBM-set was started. PD for HCCR TBM has been performed (so far v0.24) from the CD model. FW, BZ, SW, TES/NAS, BM, and connecting support design were performed through the analyses, if necessary. The manufacturability was the main concern for PD model development. Thermal hydraulic analysis will be performed to evaluate the temperature and pressure drop in TBM-set. The structural integrity of TBM-set will be confirmed with combined various loads condition.

  7. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  8. Preliminary shielding design evaluation for reactor assembly of SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kang, Chang M.; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    This report describes a preliminary evaluations of SMART shielding design near the reactor core by using the DORT two-dimensional discrete ordinates transport code. The results indicate that maximum neutron fluence at the bottom of reactor vessel is 1.64x10 17 n/cm 2 and that on the radial surface of reactor vessel is 6.71x10 16 n/cm 2 . These results meet the requirement, 1.0x10 20 n/cm 2 , in 10 CFR 50.61 and the integrity of SMART reactor vessel is confirmed during the lifetime of reactor. (Author). 20 refs., 11 tabs., 8 figs

  9. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  10. Space Launch Systems Block 1B Preliminary Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  11. Radiology workstation for mammography: preliminary observations, eyetracker studies, and design

    Science.gov (United States)

    Beard, David V.; Johnston, Richard E.; Pisano, Etta D.; Hemminger, Bradley M.; Pizer, Stephen M.

    1991-07-01

    For the last four years, the UNC FilmPlane project has focused on constructing a radiology workstation facilitating CT interpretations equivalent to those with film and viewbox. Interpretation of multiple CT studies was originally chosen because handling such large numbers of images was considered to be one of the most difficult tasks that could be performed with a workstation. The authors extend the FilmPlane design to address mammography. The high resolution and contrast demands coupled with the number of images often cross- compared make mammography a difficult challenge for the workstation designer. This paper presents the results of preliminary work with workstation interpretation of mammography. Background material is presented to justify why the authors believe electronic mammographic workstations could improve health care delivery. The results of several observation sessions and a preliminary eyetracker study of multiple-study mammography interpretations are described. Finally, tentative conclusions of what a mammographic workstation might look like and how it would meet clinical demand to be effective are presented.

  12. Preliminary design of an energy-conversion unit of radiation-voltaic battery

    International Nuclear Information System (INIS)

    Yang Yuqing; Wang Guanquan; Hu Rui; Gao Hui; Liu Yebing; Zhang Huaming; Luo Shunzhong

    2010-01-01

    Based on the principle of radiation-voltaic effect, a preliminary energy-conversion unit of radiation-voltaic battery was designed. Three energy-conversion units were manufactured and their electric I-V properties under irradiation of solid sources of 63 Ni and 3 H were measured. The I-V curves were analyzed and some ideas for improvement were presented. It was found that the designed energy-conversion unit deteriorated dramatically under irradiation of 241 Am source. The best U oc and I sc gained under irradiation of 2.96 x 10 8 Bq 63 Ni were 0.267 V and 28.4 nA, and were 0.260 V and 62.8 nA under irradiation of a 5.09 x 10 9 Bq 3 H source. Further efforts are being made to improve the design. (authors)

  13. Preliminary study of magnet design for an SSC

    International Nuclear Information System (INIS)

    Taylor, C.E.; Meuser, R.B.

    1983-08-01

    The overriding design consideration for the SSC magnets is that cost of the facility be minimized; at 8 T, approximately 40 km of bending magnets is required for each ring of a 20 TeV collider. We present some results of a parametric study of two-in-one, iron-core magnets for an SSC. These results are necessarily preliminary in nature, and are intended only to show some of the trade-offs for a wide range of the variables. We show also some results for a reference design that produces 6.5 T in the aperture at 4.4 K for a coil inside diameter of 40 mm. It is not to be inferred that we have established this to be an optimum in any sense

  14. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  15. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  16. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  17. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  18. Preliminary Design Through Graphs: A Tool for Automatic Layout Distribution

    Directory of Open Access Journals (Sweden)

    Carlo Biagini

    2015-02-01

    Full Text Available Diagrams are essential in the preliminary stages of design for understanding distributive aspects and assisting the decision-making process. By drawing a schematic graph, designers can visualize in a synthetic way the relationships between many aspects: functions and spaces, distribution of layouts, space adjacency, influence of traffic flows within a facility layout, and so on. This process can be automated through the use of modern Information and Communication Technologies tools (ICT that allow the designers to manage a large quantity of information. The work that we will present is part of an on-going research project into how modern parametric software influences decision-making on the basis of automatic and optimized layout distribution. The method involves two phases: the first aims to define the ontological relation between spaces, with particular reference to a specific building typology (rules of aggregation of spaces; the second entails the implementation of these rules through the use of specialist software. The generation of ontological relations begins with the collection of data from historical manuals and analyses of case studies. These analyses aim to generate a “relationship matrix” based on preferences of space adjacency. The phase of implementing the previously defined rules is based on the use of Grasshopper to analyse and visualize different layout configurations. The layout is generated by simulating a process involving the collision of spheres, which represents specific functions of the design program. The spheres are attracted or rejected as a function of the relationships matrix, as defined above. The layout thus obtained will remain in a sort of abstract state independent of information about the exterior form, but will still provide a useful tool for the decision-making process. In addition, preliminary results gathered through the analysis of case studies will be presented. These results provide a good variety

  19. Breckinridge Project, initial effort. Report XI, Volume V. Critical review of the design basis. [Critical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Report XI, Technical Audit, is a compendium of research material used during the Initial Effort in making engineering comparisons and decisions. Volumes 4 and 5 of Report XI present those studies which provide a Critical Review of the Design Basis. The Critical Review Report, prepared by Intercontinental Econergy Associates, Inc., summarizes findings from an extensive review of the data base for the H-Coal process design. Volume 4 presents this review and assessment, and includes supporting material; specifically, Design Data Tabulation (Appendix A), Process Flow Sheets (Appendix B), and References (Appendix C). Volume 5 is a continuation of the references of Appendix C. Studies of a proprietary nature are noted and referenced, but are not included in these volumes. They are included in the Limited Access versions of these reports and may be reviewed by properly cleared personnel in the offices of Ashland Synthetic Fuels, Inc.

  20. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  1. Preliminary Design Study of the Hollow Electron Lens for LHC

    CERN Document Server

    Perini, Diego; CERN. Geneva. ATS Department

    2017-01-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of superconducting solenoids. The first step of the design is the definition of the magnetic fields that drive the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB® tool is presented. The influence of the main geometrical and electrical parameters are analysed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the preliminary design of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar ...

  2. Preliminary evaluation of FY98 KALIMER shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Kang, Chang Mu; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    This report describes a preliminary evaluation of the shielding design of FY98 KALIMER. The KALIMER shielding design includes the Inner Fixed Shield of a stainless cylinder located inside the support barrel; the Radial PSDRS Shields which are three B{sub 4}C cylinders located outside the support barrel at core level; the Lower IHX shield of a cylindrical B{sub 4}C plate located above the flow guide; and Inner and Outer IHX shields of B{sub 4}C cylinders located inside and outside of the support barrel, respectively. The DORT3.1 two-dimensional transport code was used to evaluate the KALIMER shielding design. The reactor system was represented by four axial zones, each of which was modeled in the R-Z geometry. The KAFAX-F22 library was used in the analyses, which was generated from the JEF-2.2 of OECD/NEA files for LMR applications by KAERI. The performance of the KALIMER shielding design is compared against the shielding design criteria. The results indicate that the support barrel, upper grid plate, and other reactor structures meet the maximum neutron fluence and DPA limits established in the shielding design criteria. Activities of the air effluent in the PSDRS were also evaluated and are shown to satisfy the maximum permissible concentration (MPC) limits in 10 CFR Part 20. In the future, the validation of the DORT model by a detailed three dimensional calculation such as MCNP and the justification of the current shielding design limits are needed. (author). 13 refs., 23 figs., 31 tabs.

  3. Finite-element model evaluation of barrier configurations to reduce infiltration into waste-disposal structures: preliminary results and design considerations

    International Nuclear Information System (INIS)

    Lu, A.H.; Phillips, S.J.; Adams, M.R.

    1982-09-01

    Barriers to reduce infiltration into waste burial disposal structures (trenches, pits, etc.) may be required to provide adequate waste confinement. The preliminary engineering design of these barriers should consider interrelated barrier performance factors. This paper summarizes preliminary computer simulation activities to further engineering barrier design efforts. Several barrier configurations were conceived and evaluated. Models were simulated for each barrier configuration using a finite element computer code. Results of this preliminary evaluation indicate that barrier configurations, depending on their morphology and materials, may significantly influence infiltration, flux, drainage, and storage of water through and within waste disposal structures. 9 figures

  4. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  5. Preliminary design for a pierce wiggler beamstick and addendum

    International Nuclear Information System (INIS)

    Pirkle, D.

    1988-05-01

    Lawrence Livermore National Laboratory is developing a fast tunable microwave source for operation at 250 GHz and 10kW peak output power. This report presents the preliminary design of a Pierce gun and solenoid magnet that will be compatible with a Pierce-wiggler electron beam formation system (beamstick). The beamstick will be an appropriate power source for a tunable gyro-BWO at 250 GHz. Figure 1 presents the major components of the Pierce-wiggler beamstick: the electron gun, solenoid, beam tunnel, wiggler, and vacuum valve. Figure 2 shows an artistic conception of how the beamstick will interface with the interaction magnet, modulator and gyro-BWO circuit at MIT. 15 figs

  6. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  7. City of Hoboken Energy Surety Analysis: Preliminary Design Summary

    Energy Technology Data Exchange (ETDEWEB)

    Stamp, Jason Edwin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Smith, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Guttromson, Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Henry, Jordan M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Critical Infrastructure Systems Dept.; Jensen, Richard Pearson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2014-09-01

    In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.

  8. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  9. Preliminary conceptual design of target system. Pt. 1. System configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Haga, Katsuhiro; Kaminaga, Masanori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-07-01

    In the 21st century, neutron is expected to play a very important role in the fields of structural biology, nuclear physics, material science if a very high-intensity neutron source will be built because of its superior nature as an probe to investigate material structure and its function. The Japan Atomic Energy Research Institute has launched the Neutron Science Project for construction and utilization of a high-intensity spallation neutron source coupled with a proton accelerator. In the project, a neutron scattering facility is planned to be constructed in an early stage. Development of a 5MW spallation neutron source is one of the most difficult technical challenges in this project. A two-step development plan of the target was established to construct a 5MW-target station In the 1st step, a 1.5MW target will be constructed to develop 5MW target technology. The preliminary conceptual design was conducted to clarify the specifications of the target system of 1.5MW and 5MW including system layout, scale etc. This report describes (1) a design policy, (2) a layout of system consisting of the target, remote-handling devices, bio-shieldings etc., (3) specifications of components and facilities such as cooling systems for target and moderators, beam-port shutter and air conditioning system, (4) overhaul procedures by remote-handling devices, (5) safety assessment, and (6) necessary R and D items derived from the design activity. (author)

  10. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  11. Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, M.

    2011-04-30

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  12. Development of Mix Design Method in Efforts to Increase Concrete Performance Using Portland Pozzolana Cement (PPC)

    Science.gov (United States)

    Krisnamurti; Soehardjono, A.; Zacoeb, A.; Wibowo, A.

    2018-01-01

    Earthquake disaster can cause infrastructure damage. Prevention of human casualties from disasters should do. Prevention efforts can do through improving the mechanical performance of building materials. To achieve high-performance concrete (HPC), usually used Ordinary Portland Cement (OPC). However, the most widely circulating cement types today are Portland Pozzolana Cement (PPC) or Portland Composite Cement (PCC). Therefore, the proportion of materials used in the HPC mix design needs to adjust to achieve the expected performance. This study aims to develop a concrete mix design method using PPC to fulfil the criteria of HPC. The study refers to the code/regulation of concrete mixtures that use OPC based on the results of laboratory testing. This research uses PPC material, gravel from Malang area, Lumajang sand, water, silica fume and superplasticizer of a polycarboxylate copolymer. The analyzed information includes the investigation results of aggregate properties, concrete mixed composition, water-binder ratio variation, specimen dimension, compressive strength and elasticity modulus of the specimen. The test results show that the concrete compressive strength achieves value between 25 MPa to 55 MPa. The mix design method that has developed can simplify the process of concrete mix design using PPC to achieve the certain desired performance of concrete.

  13. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  14. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  15. Preliminary drift design analyses for nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    Hardy, M.P.; Brechtel, C.E.; Goodrich, R.R.; Bauer, S.J.

    1990-01-01

    The Yucca Mountain Project (YMP) is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS). The proposed repository will be excavated in the Topopah Spring Member, which is a moderately fractured, unsaturated, welded tuff. Excavation stability will be required during construction, waste emplacement, retrieval (if required), and closure to ensure worker safety. The subsurface excavations will be subject to stress changes resulting from thermal expansion of the rock mass and seismic events associated with regional tectonic activity and underground nuclear explosions (UNEs). Analyses of drift stability are required to assess the acceptable waste emplacement density, to design the drift shapes and ground support systems, and to establish schedules and cost of construction. This paper outlines the proposed methodology to assess drift stability and then focuses on an example of its application to the YMP repository drifts based on preliminary site data. Because site characterization activities have not begun, the database currently lacks the extensive site-specific field and laboratory data needed to form conclusions as to the final ground support requirements. This drift design methodology will be applied and refined as more site-specific data are generated and as analytical techniques and methodologies are verified during the site characterization process

  16. Permian Basin, Texas: Volume 1, Text: Final preliminary design report

    International Nuclear Information System (INIS)

    1988-01-01

    This report is a description of the preliminary design for an Exploratory Shaft Facility (ESF) at the proposed 49 acre site located 21 miles north of Hereford, Texas in Deaf Smith County. Department of Energy must conduct in situ testing at depth to ascertain the engineering and environmental suitability of the site for further consideration for nuclear waste repository development. The ESF includes the construction of two 12-ft diameter engineered shafts for accessing the bedded salt horizon to conduct in situ tests to ascertain if the site should be considered a candidate site for the first High Level Nuclear Waste Repository. This report includes pertinent engineering drawings for two shafts and all support facilities necessary for shaft construction and testing program operation. Shafts will be constructed by conventional drill-and-blast methods employing ground freezing prior to shaft construction to stabilize the existing groundwater and soil conditions at the site. A watertight liner and seal system will be employed to prevent intermingling of aquifers and provide a stable shaft throughout its design life. 38 refs., 37 figs., 14 tabs

  17. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  18. Engineering specification and system design for CAD/CAM of custom shoes: UMC project effort

    Science.gov (United States)

    Bao, Han P.

    1990-01-01

    Further experimentations were made to improve the design and fabrication techniques of the integrated sole. The sole design is shown to be related to the foot position requirements and the actual shape of the foot including presence of neurotropic ulcers or other infections. Factors for consideration were: heel pitch, balance line, and rigidity conditions of the foot. Machining considerations were also part of the design problem. Among these considerations, widths of each contour, tool motion, tool feed rate, depths of cut, and slopes of cut at the boundary were the key elements. The essential fabrication techniques evolved around the idea of machining a mold then, using quick-firm latex material, casting the sole through the mold. Two main mold materials were experimented with: plaster and wood. Plaster was very easy to machine and shape but could barely support the pressure in the hydraulic press required by the casting process. Wood was found to be quite effective in terms of relative cost, strength, and surface smoothness except for the problem of cutting against the fibers which could generate ragged surfaces. The programming efforts to convert the original dBase programs into C programs so that they could be executed on the SUN Computer at North Carolina State University are discussed.

  19. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  20. Understanding Creative Design Processes by Integrating Sketching and CAD Modelling Design Environments: A Preliminary Protocol Result from Architectural Designers

    Directory of Open Access Journals (Sweden)

    Yi Teng Shih

    2015-11-01

    Full Text Available This paper presents the results of a preliminary protocol study of the cognitive behaviour of architectural designers during the design process. The aim is to better understand the similarities and differences in cognitive behaviour using Sequential Mixed Media (SMM and Alternative Mixed Media (AMM approaches, and how switching between media may impact on design processes. Two participants with at least one-year’s professional design experience and a Bachelor of Design degree, and competence in both sketching and computer-aid design (CAD modelling participated in the study. Video recordings of participants working on different projects were coded using the Function-Behaviour-Structure (FBS coding scheme. Participants were also interviewed and their explanations about their switching behaviours were categorised into three types: S→C, S/C↹R and C→S. Preliminary results indicate that switching between media may influence how designers identify problems and develop solutions. In particular, two design issues were identified.  These relate to the FBS coding scheme, where structure (S and behaviour derived from structure (Bs, change to documentation (D after switching from sketching to CAD modelling (S→C. These switches make it possible for designers to integrate both approaches into one design medium and facilitate their design processes in AMM design environments.

  1. Subseabed radionuclide migration studies and preliminary repository design concepts

    International Nuclear Information System (INIS)

    Brush, L.H.

    1982-01-01

    Geochemical research carried out by the US Subseabed Disposal Program is described. Data from studies of high-temperature interactions between sediments and pore water (seawater) and from studies of sorption and diffusion of radionuclides in oxidized, deep-sea sediments are used, along with results from heat transfer studies, to predict migration rates of raionuclides in a subseabed repository. Preliminary results for most radionuclides in oxidized sediments are very encouraging. Fission products with moderate K/sub D/ values (10 2 to 10 5 ml/g) and actinides with high K/sub D/ values (10 3 to 10 6 ml/g) would not migrate significant distances before decaying to innocuous concentrations. Among this group are 137 Cs, 90 Sr, and 239 Pu. The results for anionic species in oxidized sediments are less encouraging. Planning for field verification of these laboratory and modeling studies is currently under way. Conceptual repository designs and emplacement options are also described. 33 references, 15 figures, 1 table

  2. Minimizing Experimental Setup Time and Effort at APS beamline 1-ID through Instrumentation Design

    Energy Technology Data Exchange (ETDEWEB)

    Benda, Erika; Almer, Jonathan; Kenesei, Peter; Mashayekhi, Ali; Okasinksi, John; Park, Jun-Sang; Ranay, Rogelio; Shastri, Sarvijt

    2016-01-01

    Sector 1-ID at the APS accommodates a number of dif-ferent experimental techniques in the same spatial enve-lope of the E-hutch end station. These include high-energy small and wide angle X-ray scattering (SAXS and WAXS), high-energy diffraction microscopy (HEDM, both near and far field modes) and high-energy X-ray tomography. These techniques are frequently combined to allow the users to obtain multimodal data, often attaining 1 μm spatial resolution and <0.05º angular resolution. Furthermore, these techniques are utilized while the sam-ple is thermo-mechanically loaded to mimic real operat-ing conditions. The instrumentation required for each of these techniques and environments has been designed and configured in a modular way with a focus on stability and repeatability between changeovers. This approach allows the end station to be more versatile, capable of collecting multi-modal data in-situ while reducing time and effort typically required for set up and alignment, resulting in more efficient beam time use. Key instrumentation de-sign features and layout of the end station are presented.

  3. A preliminary design of mechanical device on industrial digital radiography equipment design

    International Nuclear Information System (INIS)

    Nur Khasan; Samuel Praptoyo

    2015-01-01

    A preliminary design of mechanical device on industrial digital radiography equipment has been done. this design is intended as a basis for the manufacture of complete facilities for the realization a prototype on industrial digital radiography equipment. the design and construction were carried out by paying attention to the general configuration of the basic design in which its mechanical design has several components with specific dimensions and heavy mass. this design consist of a main frame holder, flat panel detector support and hydraulic hand stacker for mounting the x-ray machine. this mechanical device design will then be fabricated to facilitate and assist work of digital radiographic retrieval. computer application programs sketch-up is used to draw this design and the analysis stress of autodesk inventor to analysis the strength construction design. the results of this design are the configuration drawing, sketch drawings of construction and the safety factor of construction design with a minimum value of 2.39 as well as a maximum value of 15 when to be simulated by the load 500 Kg which is 4 times of total workload. (author)

  4. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    International Nuclear Information System (INIS)

    Powers, J.

    2008-01-01

    looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system

  5. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J

    2008-10-23

    . Preliminary design studies looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system.

  6. Systems Engineering Force XXI: Experimental Analysis Integration and Systems Engineering Support to the Force XXI Design Effort

    National Research Council Canada - National Science Library

    Brock, H

    1996-01-01

    .... Effective needs are critical because the definition of a successful design effort is meeting or exceeding the effective needs of the client or stakeholder group in a cost-effective, high-quality way...

  7. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    Energy Technology Data Exchange (ETDEWEB)

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  8. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    International Nuclear Information System (INIS)

    Croft, Stephen; Martancik, David; Young, Brian; Chard MJ, Patrick; Estop J, Robert; Sheila Melton; Arnone, Gaetano J.

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL

  9. Designing instrumented walker to measure upper-extremity's efforts: A case study.

    Science.gov (United States)

    Khodadadi, Mohammad; Baniasad, Mina Arab; Arazpour, Mokhtar; Farahmand, Farzam; Zohoor, Hassan

    2018-02-26

    The high prevalence of shoulder pain in using walkers in patients who have spinal cord injury (SCI). Also, the limited options available to economically measure grip forces in walkers, which drove the need to create one. This article describes a method to obtain upper-extremities' forces and moments in a person with SCI by designing an appropriate instrumented walker. First, since the commercial multidirectional loadcells are too expensive, custom loadcells are fabricated. Ultimately, a complete gait analysis by means of VICON motion analysis and using inverse dynamic method has been held to measure upper-extremities' efforts. The results for a person with SCI using a two-wheel walker in low and high heights and a basic walker show that there are higher shoulder and elbow flexion-extension moments and also higher shoulder forces in superior-inferior direction and higher elbow and wrist forces in anterior-posterior directions. The results are not much different in using two different types of walker. By using the proposed method, upper-extremities' forces and moments were obtained and the results were compared to each other in using two different walkers.

  10. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Battisti, L; Soraperra, G; Fedrizzi, R; Zanne, L

    2007-01-01

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics

  11. Pitfalls in Designing Zero-Effort Deauthentication: Opportunistic Human Observation Attacks

    OpenAIRE

    Huhta, O.; Shrestha, P.; Udar, S.; Juuti, M.; Saxena, N.; Asokan, N.

    2015-01-01

    VK: Asokan, N. Deauthentication is an important component of any authentication system. The widespread use of computing devices in daily life has underscored the need for zero-effort deauthentication schemes. However, the quest for eliminating user effort may lead to hidden security flaws in the authentication schemes. As a case in point, we investigate a prominent zero-effort deauthentication scheme, called ZEBRA, which provides an interesting and a useful solution to a difficult problem ...

  12. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  13. Preliminary engineering cost trends for highway projects.

    Science.gov (United States)

    2011-10-21

    Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...

  14. Simplified methods and application to preliminary design of piping for elevated temperature service

    International Nuclear Information System (INIS)

    Severud, L.K.

    1975-01-01

    A number of simplified stress analysis methods and procedures that have been used on the FFTF project for preliminary design of piping operating at elevated temperatures are described. The rationale and considerations involved in developing the procedures and preliminary design guidelines are given. Applications of the simplified methods to a few FFTF pipelines are described and the success of these guidelines are measured by means of comparisons to pipeline designs that have had detailed Code type stress analyses. (U.S.)

  15. Current Status of HCCR TBM Design for the Preliminary Design Phase Preparation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) TBM-set will be installed in the equatorial port no.18 of ITER inside the vacuum vessel directly facing the plasma. TBM-set refers the TBM and associated shield and connecting support. After the Conceptual Design Review (CDR), Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design is being updated for the preparation of the preliminary design phase. The manufacturability is considered based on the TBM-set model of the conceptual design phase. In this work, the design changes for each component of the TBM-set is described in comparison with the CD phase. The current design direction and details is presented. The first wall (FW) is component facing the plasma directly. This component should have a superior cooling performance. Present Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design was described in comparison with the CD model. The manufacturability was considered in current PD phase. The detained design of the connecting support will be determined reflecting the load assessment. The structural integrity will be confirmed with a various load condition.

  16. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhou, E-mail: zhaozhou@swip.ac.cn; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-02-15

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li{sub 4}SiO{sub 4} pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  17. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    International Nuclear Information System (INIS)

    Zhao, Zhou; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-01-01

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li_4SiO_4 pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  18. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    Science.gov (United States)

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  19. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  20. Preliminary design and definition of field experiments for welded tuff rock mechanics program

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-06-01

    The preliminary design contains objectives, typical experiment layouts, definitions of equipment and instrumentation, test matrices, preliminary design predictive modeling results for five experiments, and a definition of the G-Tunnel Underground Facility (GTUF) at the Nevada Test Site where the experiments are to be located. Experiments described for investigations in welded tuff are the Small Diameter Heater, Unit Cell-Canister Scale, Heated Block, Rocha Slot, and Miniature Heater

  1. Spacecraft Charging Considerations and Design Efforts for the Orion Crew Module

    Science.gov (United States)

    Scully, Bob

    2017-01-01

    The Orion Crew Module (CM) is nearing completion for the next flight, designated as Exploration Mission 1 (EM-1). For the uncrewed mission, the flight path will take the CM through a Perigee Raise Maneuver (PRM) out to an altitude of approximately 1800 km, followed by a Trans-Lunar Injection burn, a pass through the Van Allen belts then out to the moon for a lunar flyby, a Distant Retrograde Insertion (DRI) burn, a Distant Retrograde Orbit (DRO), a Distant Retrograde Departure (DRD) burn, a second lunar flyby, an Earth Insertion (EI) burn, and finally entry and landing. All of this, with the exception of the DRO associated maneuvers, is similar to the previous Apollo 8 mission in late 1968. In recent discussions, it is now possible that EM-1 will be a crewed mission, and if this happens, the orbit may be quite different from that just described. In this case, the flight path may take the CM on an out and back pass through the Van Allen belts twice, then out to the moon, again passing through the Van Allen belts twice, then finally back home. Even if the current EM-1 mission doesn't end up as a crewed mission, EM-2 and subsequent missions will undoubtedly follow orbital trajectories that offer comparable exposures to heightened vehicle charging effects. Because of this, and regardless of flight path, the CM vehicle will likely experience a wide range of exposures to energetic ions and electrons, essentially covering the gamut between low earth orbit to geosynchronous orbit and beyond. National Aeronautical and Space Administration (NASA) and Lockheed Martin (LM) engineers and scientists have been working to fully understand and characterize the vehicle's immunity level with regard to surface and deep dielectric charging, and the ramifications of that immunity level pertaining to materials and impacts to operational avionics, communications, and navigational systems. This presentation attempts to chronicle these efforts in a summary fashion, and attempts to capture

  2. A knowledge-based design framework for airplane conceptual and preliminary design

    Science.gov (United States)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  3. Design of a New Research Reactor: Preliminary Conceptual Design (3rd Year)

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T. and others

    2006-01-01

    A research reactor design is a kind of integral engineering project and a process to obtain a concrete shape through several years of concept development, conceptual design, basic design and detail design. So it requires close cooperation in various areas as well as lots of manpower and cost. The overall process at each stage may be said to be similar except for some stage-specific works. In 2005 as last year of a concept development stage, investigations on the various concepts of the fuel, reactor structure and systems which can meet the requirements established. The requirements for the process systems and I and C systems have also been embodied. The major tasks planned at the early of 2005 have been performed for each area of reactor design as follows: Establishment of the fuel and reactor core concept, and the core analysis, Preliminary thermal-hydraulic and safety analyses for the conceptual cores, Establishment and improvement of analysis system, Concept developments of the reactor structures and major systems, Test and test plan to verify the developed concepts, International cooperation to establish the foundations for exporting a research reactor

  4. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  5. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    OpenAIRE

    Matha, Denis; Sandner, Frank; Molins i Borrell, Climent; Campos Hortigüela, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provide...

  6. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  7. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  8. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  9. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  10. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method

    Science.gov (United States)

    Astuti, Rahayu Siwi Dwi; Astuti, Arieyanti Dwi; Hadiyanto

    2018-02-01

    Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy) as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA) that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry's environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  11. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA Method

    Directory of Open Access Journals (Sweden)

    Siwi Dwi Astuti Rahayu

    2018-01-01

    Full Text Available Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry’s environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  12. A Preliminary Design of a Wire Mesh Sensor for Measurement of Void Fraction

    International Nuclear Information System (INIS)

    Hong, Seong Ho; Kim, Jong Hwan; Song, Jin Ho; Hong, Seok Boong

    2006-01-01

    Steam explosion phenomena are accompanied with a multi-dimensional and multi-phase fluid flow and heat transfer phenomena. Void fraction is one of the major parameters, which governs the premixing behavior of melt particles in water and the explosion behavior of the pre-mixed fuel. However, efforts for the development of a reliable measurement technique for void fraction are still underway, as it deals with an interaction between a melt at a very high temperature and water in a short time scale. Hundreds of conductivity type probes installed in a test section enabled monitoring of the evolution of a melt-water interaction zone in the ECO test. A technique using a dual energy X-ray system was developed to measure gas fraction, liquid fraction, and melt fraction simultaneously for a small-scale steam explosion experiment. A high-energy X-ray system for monitoring multi-phase fractions is now being developed at CEA. Recently a measurement of multi-phase fractions by using a wire mesh system has been introduced. It has an advantage that the speed of the measurement is fast and a direct measurement is possible. As a part of a feasibility study on a wire mesh technique for a steam explosion experiment, this paper discusses the design of the wire mesh and the results of the preliminary calibration tests

  13. Preliminary Design Analysis of a HGD for the NHDD Program at Korea

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, H. Y.; Lee, S. B.; Kim, Y. W.

    2007-01-01

    Korea Atomic Energy Research Institute is in the process of carrying out a Nuclear Hydrogen Development and Demonstration (NHDD) Program by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. A coaxial double-tube Hot Gas Duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger for the NHDD program. Recently, a preliminary design evaluation for the hot gas duct of the NHDD program was carried out. These preliminary design activities include a decision on the geometric dimensions, a strength evaluation, an appropriate material selection, and identifying the design code for the HGD. In this study, a preliminary strength evaluation for the HGD of the NHDD program has been undertaken based on the HTR-10 design concepts. Also, a preliminary evaluation of the creep-fatigue damage for a high temperature HGD structure has been carried out according to the draft code case for Alloy 617. Preliminary strength evaluation results for the HGD showed that the geometric dimensions of the proposed HGD would be acceptable for the design requirements

  14. Preliminary design of offshore wind turbine support structures : The importance of proper mode shape estimation

    NARCIS (Netherlands)

    Van der Male, P.

    2013-01-01

    Offshore wind turbines are highly exposed to timevarying loads. For support structures, estimation of the fatigue damage during the lifetime of the structure is an essential design aspect. This already applies for the preliminary design stage. In determining the dynamic amplification in the

  15. ICT and UD: Preliminary Study for Recommendations to Design Accessible University Courses.

    Science.gov (United States)

    Pagliara, Silvio Marcello; Sánchez Utgé, Marta; De Anna, Lucia

    2017-01-01

    Starting from the Universal Design in the educational context principles, the experiences gained during the FIRB project "Net@ccessibility" and the high-education courses for teachers' specialization on special education, this research will focus on preliminary studies in order to define the recommendations for designing accessible university courses.

  16. Status report on preliminary design activities for solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

  17. Stick and feel system design: Systèmes de restitution des efforts au manche

    National Research Council Canada - National Science Library

    Gibson, J. C; Hess, R. A

    1997-01-01

    Since the earliest days of manned flight, designers have to sought to assist the pilot in the performance of tasks by using stick and feel systems to bring these tasks within the bounds of human physical capabilities...

  18. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

  19. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...... for these designs and present test results from coatings....

  20. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  1. EXPLOSION POTENTIAL ASSESSMENT OF HEAT EXCHANGER NETWORK AT THE PRELIMINARY DESIGN STAGE

    Directory of Open Access Journals (Sweden)

    MOHSIN PASHA

    2016-07-01

    Full Text Available The failure of Shell and Tube Heat Exchangers (STHE is being extensively observed in the chemical process industries. This failure can cause enormous production loss and have a potential of dangerous consequences such as an explosion, fire and toxic release scenarios. There is an urgent need for assessing the explosion potential of shell and tube heat exchanger at the preliminary design stage. In current work, inherent safety index based approach is used to resolve the highlighted issue. Inherent Safety Index for Shell and Tube Heat Exchanger (ISISTHE is a newly developed index for assessing the inherent safety level of a STHE at the preliminary design stage. This index is composed of preliminary design variables and integrated with the process design simulator (Aspen HYSYS. Process information can easily be transferred from process design simulator to MS Excel spreadsheet owing to this integration. This index could potentially facilitate the design engineer to analyse the worst heat exchanger in the heat exchanger network. Typical heat exchanger network of the steam reforming process is presented as a case study and the worst heat exchanger of this network has been identified. It is inferred from this analysis that shell and tube heat exchangers possess high operating pressure, corrected mean temperature difference (CMTD and flammability and reactive potential needs to be critically analysed at the preliminary design stage.

  2. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    Moon, Kap S.; Lee, Doo J.; Kim, Keung K.; Chang, Moon H.; Kim, Si H.

    1997-01-01

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  3. Current design efforts for the gas-cooled fast reactor (GFR)

    International Nuclear Information System (INIS)

    Weaver, K.D.

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GCFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFC I) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GCFR: a helium-cooled, direct Brayton cycle power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GCFR. These are EURATOM (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, EURATOM (including the United Kingdom), France, Japan, and Switzerland have active research activities with respect to the GCFR. The research includes GCFR design and safety, and fuels/in-core materials/fuel cycle projects. This paper outlines the current design status of the GCFR, and includes work done in the areas mentioned above. (Author)

  4. Preliminary research on design of traveling wave reactor

    International Nuclear Information System (INIS)

    Yan Mingyu; Chen Bin; Feng Linna; Zhang Yong

    2015-01-01

    An engineering feasible conceptual core design of large scale (e.g. 1OOOMWe output) TWR is proposed with investigation and qualitative optimization on the proper design of fuel element structure, fuel pellet, liquid metal filling gap, fuel assembly structure, core reflector and shielding and shutdown control rods. The optimized design presents a flatten radial neutron flux with a better equivalent state distribution, which means the long term burning state could be defined by initial core design and further corrected by the travelling wave progress. The optimized fuel structure improves the flow distribution between the central, parallel and corner channels. Furthermore, the power control of TWR could be implemented by the adjusting of coolant pump rotation speed as the change of coolant flow. Though the load rejection and power control between 15% to 100% nominal power could not be fulfilled by flow control without the participation of bank A control rods. (authors)

  5. The Preliminary Design and Fabrication of a Manually Operated ...

    African Journals Online (AJOL)

    A ten (10) tonnes capacity agro waste manual briquetting machine have been designed and fabricated using locally available materials. The machine principal parts are made of frame, compaction chamber and base plate . Compaction ...

  6. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 1, Report

    International Nuclear Information System (INIS)

    1986-01-01

    This design report describes the NUS Preliminary Design of the Prototype Spent Nuclear Fuel Rod Consolidation Equipment for the Department of Energy. The sections of the report elaborate on each facet of the preliminary design. A concept summary is provided to assist the reader in rapidly understanding the complete design. The NUS Prototype Spent Fuel Rod Consolidation System is an automatically controlled system to consolidate a minimum of 750 MT (heavy metal)/year of US commercial nuclear reactor fuel, at 75% availability. The system is designed with replaceable components utilizing the latest state-of-the-art technology. This approach gives the system the flexibility to be developed without costly development programs, yet accept new technology as it evolves over the next ten years. Capability is also provided in the system design to accommodate a wide variety of fuel conditions and to recover from any situation which may arise

  7. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  8. Preliminary design implications of SSC fixed-target operation

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1984-06-01

    This paper covers some of the accelerator physics issues relevant to a possible fixed-target operating mode for the Superconducting Super Collider (SSC). In the brief time available, no attempt has been made to design this capability into the SSC. Rather, I have tried to evaluate what the performance of such a machine might be, and to indicate the hardware implications and extraction considerations that would be part of an actual design study. Where appropriate, parameters and properties of the present LBL design for the SSC have been used; these should be taken as being representative of the general class of small-aperture, high-field colliders being considered by the accelerator physics community. Thus, the numerical examples given here must ultimately be reexamined in light of the actual parameters of the particular accelerator being considered

  9. A University-Wide Collaborative Effort to Designing a Makerspace at an Academic Health Sciences Library.

    Science.gov (United States)

    Herron, Jennifer; Kaneshiro, Kellie

    2017-01-01

    This article describes the planning and development of a 3D printing makerspace at an academic health sciences library. At the start of 2015, a new library Technology Team was formed consisting of a team leader, an emerging technologies librarian, and a library systems analyst. One of the critical steps in the development of the proposal and with the planning of this project was collaborating and partnering with different departments and units outside the library. These connections helped shape the design of the makerspace.

  10. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    International Nuclear Information System (INIS)

    Calvin, H.A.

    1995-01-01

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System

  11. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, H.A. [Lawrence Livermore National Lab., CA (United States)

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  12. Preliminary design considerations for the stage 1 PEP lattice

    International Nuclear Information System (INIS)

    Helm, R.H.; Lee, M.J.

    1974-07-01

    A general description of the proposed PEP e + e - storage ring is discussed in the paper. We discuss the lattice and its operating characteristics in more detail, show how the design luminosity operative regions may be met and outline the limits of the operative regions of the beam parameters in several modes of operation. 18 refs., 16 figs., 1 tab

  13. Influence of AC system design on the realisation of tractive efforts by high adhesion locomotives

    Science.gov (United States)

    Spiryagin, Maksym; Wolfs, Peter; Cole, Colin; Stichel, Sebastian; Berg, Mats; Manfred, Plöchl

    2017-08-01

    The main task for heavy haul railway operators is to reduce the cost of exported minerals and enhance the long-term viability of rail transport operations through increasing productivity by running longer and heavier trains. The common opinion is that this is achievable by means of implementation of high adhesion locomotives with advanced AC traction technologies. Modern AC high adhesion locomotives are very complex mechatronic systems and can be designed with two alternative traction topologies of either bogie or individual axle controls. This paper describes a modelling approach for these two types of AC traction systems with the application of an advanced co-simulation methodology, where an electrical system and a traction algorithm are modelled in Matlab/Simulink, and a mechanical system is modelled in a multibody software package. Although the paper concentrates on the analysis of the functioning for these two types of traction control systems, the choice of reference slip values also has an influence on the performance of both systems. All these design variations and issues have been simulated for various adhesion conditions at the wheel-rail interface and their influence on the high traction performance of a locomotive equipped with two three-axle bogies has been discussed.

  14. Maraghe Observatory and an Effort towards Retrieval of Architectural Design of Astronomical Units

    Directory of Open Access Journals (Sweden)

    Javad Shekari Niri

    2015-03-01

    Full Text Available Maraghe observatory was built by such engineers as Moayiededdin Orozi etc. under supervision of Khaje Nasireddin Tousi in 7th century AH. The most significant feature associated with Maraghe observatory is the fact that architecture is employed to achieve astronomical purposes in this site. The reason for preferring observatory by astronomers was the fact that these units are superior to wooden and metal instruments with respect to accuracy, no size limitations, etc. Architectural design and function of astronomical units of Maraghe observatory site after discovery of its foundation in the course of explorations before Islamic Revolution remained unclear until recent years. After conducting required studies and investigations, the author managed to find significant cues and after some precise comparisons, he succeeded to recover the main design and function of some astronomical units of this international center. Based on these findings these astronomical structures can reliably be rebuilt. This research showed that every circular or polygonal building cannot be considered as an observatory. For example form and function of cemetery structures are completely different with astronomical ones. Following this research also valuable results were obtained in relation to stone architectural structures present on Maraghe observatory hill. In addition, claims about invention of astronomical units of Maraghe observatory by non-Iranian scientists are rejected and rights of Iranian scientists are rationally defended in this regard.

  15. The Guardian: Preliminary design of a close air support aircraft

    Science.gov (United States)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  16. Preliminary core design calculations for the ACPR Upgrade

    International Nuclear Information System (INIS)

    Pickard, P.S.

    1976-01-01

    The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)

  17. Preliminary Design of the Liquid Lead Corrosion Test Loop

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Cha, Jae Eun; Cho, Choon Ho; Song, Tae Yung; Kim, Hee Reyoung

    2005-01-01

    Recently, Lead-Bismuth Eutectic (LBE) or Lead has newly attracted considerable attraction as a coolant to get the more inherent safety. Above all, LBE is preferred as the coolant and target material for an Accelerator-Driven System (ADS) due to its high production rate of neutrons, effective heat removal, and good radiation damage properties. But, the LBE or Lead as a coolant has a challenging problem that the LBE or Lead is more corrosive to the construction materials and fuel cladding material than the sodium because the solubility of Ni, Cr and Fe is high. After all, the LBE or Lead corrosion has been considered as an important design limit factor of ADS and Liquid Metal cooled Fast Reactors (LMFR). The Korea Atomic Energy Research Institute (KAERI) has been developing an ADS called HYPER. HYPER is designed to transmute Transuranics (TRU), Tc-99 and I-129 coming from Pressurized Water Reactors (PWRs) and uses an LBE as a coolant and target material. Also, an experimental apparatuses for the compatibility of fuel cladding and structural material with the LBE or Lead are being under the construction or design. The main objective of the present paper is introduction of Lead corrosion test loop which will be built the upside of the LBE corrosion test loop by the end of October of 2005

  18. Preliminary design of a 10 MV ion accelerator

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Celata, C.M.; Faltens, A.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C + , Al + , or Al ++ ) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented

  19. Preliminary Design Requirements Document for Project W-314

    Energy Technology Data Exchange (ETDEWEB)

    MCGREW, D.L.

    2000-04-27

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1.

  20. Preliminary conceptual engineering design considerations for the MX machine

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Calderon, M.U.; Hibbs, S.M.; Kozman, T.A.

    1975-01-01

    The mirror experiment was designed to develop the technologies necessary to make the transition from the presently small-scale physics experiments (2XIIB and BBII) to large-scale steady-state DT burning systems, such as the Fusion Engineering Research Facility (FERF) and Controlled Thermonuclear Reactors (CTR) based on plasma confinement in open magnetic geometry. The confinement parameters in the design of the present machine include a 20-kG central field with a mirror ratio of 2 to 1 and an overall BL product approximately 5 times greater than that currently available with the 2XIIB compression coils (or a mirror-to-mirror length of 3.4 m). Several types of Yin-Yang minimum parallel B parallel geometries were studied, and a ''displaced'' Yin-Yang was chosen because the center of the machine is easily accessable between the coils and between the magnet lobes. Other important design considerations include the target plasma system, the vacuum system, and the injectors. The target plasma system includes a pellet generating system used to produce a 400-μm deuterium pellet and a two-arm laser system where the laser energy is produced from a 1-kJ, 10-GW CO 2 laser at 100 ns

  1. Preliminary Design Requirements Document for Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1

  2. A traditional and a less-invasive robust design: choices in optimizing effort allocation for seabird population studies

    Science.gov (United States)

    Converse, S.J.; Kendall, W.L.; Doherty, P.F.; Naughton, M.B.; Hines, J.E.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    For many animal populations, one or more life stages are not accessible to sampling, and therefore an unobservable state is created. For colonially-breeding populations, this unobservable state could represent the subset of adult breeders that have foregone breeding in a given year. This situation applies to many seabird populations, notably albatrosses, where skipped breeders are either absent from the colony, or are present but difficult to capture or correctly assign to breeding state. Kendall et al. have proposed design strategies for investigations of seabird demography where such temporary emigration occurs, suggesting the use of the robust design to permit the estimation of time-dependent parameters and to increase the precision of estimates from multi-state models. A traditional robust design, where animals are subject to capture multiple times in a sampling season, is feasible in many cases. However, due to concerns that multiple captures per season could cause undue disturbance to animals, Kendall et al. developed a less-invasive robust design (LIRD), where initial captures are followed by an assessment of the ratio of marked-to-unmarked birds in the population or sampled plot. This approach has recently been applied in the Northwestern Hawaiian Islands to populations of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. In this paper, we outline the LIRD and its application to seabird population studies. We then describe an approach to determining optimal allocation of sampling effort in which we consider a non-robust design option (nRD), and variations of both the traditional robust design (RD), and the LIRD. Variations we considered included the number of secondary sampling occasions for the RD and the amount of total effort allocated to the marked-to-unmarked ratio assessment for the LIRD. We used simulations, informed by early data from the Hawaiian study, to address optimal study design for our example cases. We found that

  3. Preliminary S-CO_2 Compressor Design for Micro Modular Reactor

    International Nuclear Information System (INIS)

    Lee, Jekyoung; Cho, Seong Kuk; Kim, Seong Gu; Lee, Jeong Ik

    2016-01-01

    Due to economic benefit of S-CO_2 Brayton cycle which is came from high efficiency and compactness, active research is currently conducted by various research groups and various approaches are suggested to take benefits of S-CO_2 Brayton cycle. KAIST research team also has been working on advanced concept for application of S-CO_2 Brayton cycle to nuclear system and Micro Modular Reactor (MMR) concept was suggested. The preliminary compressor design of S-CO_2 compressor for MMR system was carried out to observe feasibility of compressor design. Preliminary S-CO_2 compressor design for MMR system was successfully conducted and some issues are discovered from the design study. From the previous work done by Cho, conceptual design for MMR system was provided. Thus, further preliminary design should be carried out to obtain feasible S-CO_2 compressor design for MMR system. KAIST_TMD which is turbomachinery in-house code for real gases including S-CO_2 is continuously updated and currently it has 3D geometry construction and design optimization capability

  4. Effective Work Procedure design Using Discomfort and Effort Factor in Brick stacking operation-A case study

    Science.gov (United States)

    Rout, Biswaranjan; Dash, R. R.; Dhupal, D.

    2018-02-01

    In this work a typical planning of movement of limbs and torso of the worker to be well design to reduce fatigue and energy of the worker. A simulation model is generated to suit the procedure and comply with the constraints in the workspace. It requires verifying the capability of human postures and movements in different working conditions for the evaluation of effectiveness of the new design. In this article a simple human performance measure is introduce that enable the mathematical model for evaluation of a cost function. The basic scheme is to evaluate the performance in the form of several cost factors using AI techniques. Here two main cost factors taken in to consideration are discomfort factor and effort factor in limb movements. Discomfort factor measures the level of discomfort from the most neutral position of a given limb to the position of the corresponding limb after movement and effort factor is a measure of the displacement of the corresponding limbs from the original position. The basic aim is to optimize the movement of the limbs with the above mentioned cost functions. The effectiveness of the procedure is tested with an example of working procedure of workers used for stacking of fly ash bricks in a local fly ash bricks manufacturing unit. The objective is to find out the optimised movement of the limbs to reduce discomfort level and effort required of workers. The effectiveness of the procedure in this case study illustrated with the obtained results.

  5. Preliminary design study of the Tandem Mirror Reactor (TMR)

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1978-01-01

    This report describes work done in Fiscal Year 1977 by the Fusion Reactor Studies Group of LLL on the conceptual design of a 1000-MW(e) Tandem Mirror Reactor (TMR). The high Q (defined as the ratio of fusion power to injection power) predicted for the TMR (approximately 5) reduces the recirculating power to a nondominant problem and results in an attractive mirror fusion power plant. The fusion plasma of the TMR is contained in the 100-m-long central cell where the magnetic field strength is a modest 2 T. The blanket for neutron energy recovery and tritium breeding is cylindrical and, along with the solenoidal magnet, is divided into 3-m-long modules to facilitate maintenance. The central cell is fueled (but not heated) by the injection of low-energy neutral beams near its ends. Thus, the central cell is simple and of low technology. The end-cell plasmas must be of high density and high energy in order to plug and heat (via the electrons) the central-cell plasma. The present conceptual design uses 1.2-MeV neutral-beam injection for the end plugs and a cryogenic-aluminum, Yin-Yang magnet that produces an incremental field of about 1 T over a field of 16 T produced by a pair of Nb 3 Sn superconducting solenoids. Important design problems remain in both the neutral-beam injector and in the end-plug magnet. Also remaining are important physics questions such as alpha-beam particle transport and end-plug stability. These questions are discussed at length in the report and suggestions for future work are given

  6. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    Science.gov (United States)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  7. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    International Nuclear Information System (INIS)

    JEPPSON, D.W.

    2000-01-01

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included

  8. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 2, Drawings

    International Nuclear Information System (INIS)

    1986-01-01

    This volume consists of 65 E size drawings and 4 sketches of the NUS spent fuel rod consolidation equipment. The drawings have been grouped into categories; a detailed list of the drawings is included. The sketches prepared during the preliminary design process have been included

  9. Notification: Preliminary Research on EPA's Design for the Environment Product Labeling Program OIG

    Science.gov (United States)

    Project #OPE-FY14-4012, November 06, 2013. The Office of Inspector General (OIG) is starting preliminary research on the U.S. Environmental Protection Agency’s (EPA’s) Design for the Environment (DfE) Product Labeling Program.

  10. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1983-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II

  11. Current Mooring Design in Partner WECs and Candidates for Preliminary Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    This report is the combined report of Commercial Milestone "CM1: Design and Cost of Current Mooring Solutions of Partner WECs" and Milestone "M3: Mooring Solutions for Preliminary Analysis" of the EUDP project "Mooring Solutions for Large Wave Energy Converters". The report covers a description o...

  12. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  13. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  14. Design and preliminary biomechanical analysis of artificial cervical joint complex.

    Science.gov (United States)

    Jian, Yu; Lan-Tao, Liu; Zhao, Jian-ning; Jian-ning, Zhao

    2013-06-01

    To design an artificial cervical joint complex (ACJC) prosthesis for non-fusion reconstruction after cervical subtotal corpectomy, and to evaluate the biomechanical stability, preservation of segment movements and influence on adjacent inter-vertebral movements of this prosthesis. The prosthesis was composed of three parts: the upper/lower joint head and the middle artificial vertebrae made of Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy and polyethylene with a ball-and-socket joint design resembling the multi-axial movement in normal inter-vertebral spaces. Biomechanical tests of intact spine (control), Orion locking plate system and ACJC prosthesis were performed on formalin-fixed cervical spine specimens from 21 healthy cadavers to compare stability, range of motion (ROM) of the surgical segment and ROM of adjacent inter-vertebral spaces. As for stability of the whole lower cervical spine, there was no significant difference of flexion, extension, lateral bending and torsion between intact spine group and ACJC prosthesis group. As for segment movements, difference in flexion, lateral bending or torsion between ACJC prosthesis group and control group was not statistically significant, while ACJC prosthesis group showed an increase in extension (P inter-vertebral ROM of the ACJC prosthesis group was not statistically significant compared to that of the control group. After cervical subtotal corpectomy, reconstruction with ACJC prosthesis not only obtained instant stability, but also reserved segment motions effectively, without abnormal gain of mobility at adjacent inter-vertebral spaces.

  15. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  16. Kemper County IGCC (tm) Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

    2012-07-01

    The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

  17. Design and preliminary assessment of Vanderbilt hand exoskeleton.

    Science.gov (United States)

    Gasser, Benjamin W; Bennett, Daniel A; Durrough, Christina M; Goldfarb, Michael

    2017-07-01

    This paper presents the design of a hand exoskeleton intended to enable or facilitate bimanual activities of daily living (ADLs) for individuals with chronic upper extremity hemiparesis resulting from stroke. The paper describes design of the battery-powered, self-contained exoskeleton and presents the results of initial testing with a single subject with hemiparesis from stroke. Specifically, an experiment was conducted requiring the subject to repeatedly remove the lid from a water bottle both with and without the hand exoskeleton. The relative times required to remove the lid from the bottles was considerably lower when using the exoskeleton. Specifically, the average amount of time required to grasp the bottle with the paretic hand without the exoskeleton was 25.9 s, with a standard deviation of 33.5 s, while the corresponding average amount of time required to grasp the bottle with the exoskeleton was 5.1 s, with a standard deviation of 1.9 s. Thus, the task time involving the paretic hand was reduced by a factor of five, while the standard deviation was reduced by a factor of 16.

  18. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  19. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  20. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    CERN Document Server

    Croft, S; Chard-Mj, P; Estop, J R; Martancik, D; Sheila-Melton; Young, B

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nucli...

  1. Preliminary Design Study for a National Digital Seismograph Network

    Science.gov (United States)

    Peterson, Jon; Hutt, Charles R.

    1981-01-01

    Introduction Recently, the National Research Council published a report by the Panel on National, Regional, and Local Seismograph Networks of the Committee on Seismology in which the principal recommendation was for the establishment of a national digital seismograph network (NDSN). The Panel Report (Bolt, 1980) addresses both the need and the scientific requirements for the new national network. The purpose of this study has been to translate the scientific requirements into an instrumentation concept for the NSDS. There are literally hundreds, perhaps thousands, of seismographs in operation within the United States. Each serves an important purpose, but most have limited objectives in time, in region, or in the types of data that are being recorded. The concept of a national network, funded and operated by the Federal Government, is based on broader objectives that include continuity of time, uniform coverage, standardization of data format and instruments, and widespread use of the data for a variety of research purposes. A national digital seismograph network will be an important data resource for many years to come; hence, its design is likely to be of interest to most seismologists. Seismologists have traditionally been involved in the development and field operation of seismic systems and thus have been familiar with both the potential value and the limitations of the data. However, in recent years of increasing technological sophistication, the development of data sstems has fallen more to system engineers, and this trend is likely to continue. One danger in this is that the engineers may misinterpret scientific objectives or subordinate them to purely technological considerations. Another risk is that the data users may misuse or misinterpret the data because they are not aware of the limitations of the data system. Perhaps the most important purpose of a design study such as this is to stimulate a dialogue between system engineers and potential data users

  2. Improvement in Product Development: Use of back-end data to support upstream efforts of Robust Design Methodology

    Directory of Open Access Journals (Sweden)

    Vanajah Siva

    2012-12-01

    Full Text Available In the area of Robust Design Methodology (RDM less is done on how to use and work with data from the back-end of the product development process to support upstream improvement. The purpose of this paper is to suggest RDM practices for the use of customer claims data in early design phases as a basis for improvements. The back-end data, when systematically analyzed and fed back into the product development process, aids in closing the product development loop from claims to improvement in the design phase. This is proposed through a flow of claims data analysis tied to an existing tool, namely Failure Mode and Effects Analysis (FMEA. The systematic and integrated analysis of back-end data is suggested as an upstream effort of RDM to increase understanding of noise factors during product usage based on the feedback of claims data to FMEA and to address continuous improvement in product development.

  3. Preliminary electrostatic and mechanical design of a SINGAP-MAMuG compatible accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Grando, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: luca.grando@igi.cnr.it; Dal Bello, S.; De Lorenzi, A. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Pilan, N. [DIE, Universita di Padova, Via Gradenigo 6A, I-35100 Padova (Italy); Rizzolo, A.; Zaccaria, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2009-06-15

    Each ITER NB injector shall provide 16.5 MW auxiliary power by accelerating a deuterium beam across a voltage of -1 MV. At present two possible alternatives for the accelerator are considered: the reference design, based on MAMuG electrostatic accelerator, where the total voltage is graded using five grids at intermediate steps of 200 kV, and the alternative concept, the SINGAP accelerator, for which the total voltage is held by one single gap. This paper focuses a preliminary feasibility study of integration of SINGAP accelerator grids into the support structure of a MAMuG type accelerator; the review or design of new electrostatic shields to improve the voltage withstanding capability of the system and the preliminary design of electrical and hydraulic connections routing from the bushing to the accelerator are also discussed. Electrostatic and mechanical analyses carried out to support the design are described in detail.

  4. Status of Preliminary Design on the Assembly Tools for ITER Tokamak Machine

    International Nuclear Information System (INIS)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin; Moon, Jae Hwan; Kim, Byung Seok; Lee, Jae Hyuk; Shaw, Robert

    2012-01-01

    The ITER Tokamak device is principally composed of nine 40 .deg. sectors. Each 40 .deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils (TFC) and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard vacuum vessel thermal shields. Based on the design description document and final report prepared by the ITER organization (IO) and conceptual design, Korea has carried out the preliminary design of these assembly tools. The assembly strategy and relevant tools for the 40 .deg. sector sub-assembly and sector assembly at in-pit should be developed to satisfy the basic assembly requirements of the ITER Tokamak machine. Assembly strategy, preliminary design of the sector sub-assembly and assembly tools are described in this paper

  5. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  6. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  7. Mont-Terri heater test: design and preliminary results

    International Nuclear Information System (INIS)

    Garcia-Sineriz, J.L.; Fuentes, J.L.; Mayor, J.C.; Huertas, F.

    2003-01-01

    Safety and long-term behaviour of underground permanent repositories depend on a combination of several engineered and geological barriers. The properties of the geological barriers are the natural conditions of the formation, while the performance of the engineered barriers is a result of their design and construction. The properties of the engineered barriers are deeply influenced by the interactions between both geological and engineered barriers in response to the conditions expected in a high level waste repository. These interactions need to be identified and fully understood to allow their input in models describing the behaviour of the near field to predict reliably the long-term performance and safety of a repository. The Heating Experiment (HE) project, which is taking place at the Mont-Terri underground laboratory in Switzerland, is conceived as a research project to learn more about the coupled thermo-hydro-mechanical processes in a clay formation around a heat source similar to those in a potential repository, with special emphasis on the interaction between the clay host rock and the bentonite buffer that is part of the engineered barrier, under saturated conditions. This project is co-funded by the European Commission and performed as part of the fifth EURATOM framework programme, key action Nuclear Fission (1998-2002). For that purpose, a central vertical borehole of 300 mm diameter and 7 m deep was drilled and an electrical heater surrounded with a Spanish bentonite buffer was installed inside. More than seventeen boreholes were instrumented for measuring parameters such as temperatures, total pressures, radial displacements, gas/water release and for performing geo-electric tomography. A total of 112 instruments were installed. The complexity of the issues involved requires a multi-partner approach and there exists a mutual interest of national research organisations to co-operate on a European level: two national agencies, which are responsible

  8. Design and preliminary results of the IMA plasma focus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H M; Masoud, M M [Arab Republic of Egypt, Atomic Energy Authority Plasma physics and Nuclear Fusion department, Cairo (Egypt)

    1994-12-31

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U{sub c} h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J{sub z} is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs.

  9. Design and preliminary results of the IMA plasma focus experiment

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1993-01-01

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U c h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J z is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs

  10. Preliminary design characteristics of the RB fast-thermal core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.

    1989-01-01

    The 'RB' is zero power heavy water critical assembly designed in 1958 in Yugoslavia. The reactor operated using natural metal uranium, 2% enriched metal uranium, and 80% enriched UO 2 fuel of Soviet origin. A study of design of fast neutron fields began in 1976 and three fast neutron fields were designed up to 1983: the external neutron converter, the experimental fuel channel and the internal neutron converter, as the first step to fast-thermal coupled system. The preliminary design characteristics of the HERBE - a new fast - thermal core at the RB reactor are shown in this paper. (author)

  11. A study on the development plan and preliminary design of proton accelerator for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Choi, B H; Park, C K; Chung, K S. and others

    1997-11-01

    A study on the development plan and preliminary design for the realisation of high current proton accelerator to be used as an essential component for the R and D of accelerator-driven system (ADS) for energy production and transmutation of long-lived radionuclides. Various fields of application of the accelerator such as basic nuclear physics, material science, biology, high energy physics, medicine, etc. were also investigated. From the preliminary design study, 1 GeV (20 mA) - Linac is required for the purposed of transmutation and energy production. Specification of injector, RFQ, CCTL and SL was also suggested. For the case study, a duoplasmatron ion source was designed by KAERI and fabricated by a domestic manufacturer, and the performance was also tested. (author). 71 refs., 61 tabs., 131 figs

  12. Preliminary study of an expert system for mechanical design of a pressure vessel

    International Nuclear Information System (INIS)

    Kasmuri, N.H.; Md Som, A.

    2006-01-01

    This paper describes a preliminary study of an expert system for mechanical design of a pressure vessel. The system supports the framework for the conceptual mechanical design from the initial stages within the design procedures. ASME Boiler and Pressure Vessel Code Section VIII Division 1 were applied as a design rule. The proposed methodology facilitates the development of knowledge base acquisition, knowledge base construction and the prototype implementation. This study characterizes a knowledge base (procedure) of mechanical design of a pressure vessel subjected to internal pressure including all design parameters; i.e. temperature, shell thickness, selection of materials of constructions, stress analysis procedure, support and ancillary items. The rationalization of the mechanical design is shown in the form of a schematic flow diagram. A Kappa PC expert system shell is used as a tool to develop the prototype software. It provides graphical representation for creating objects, hierarchies and rules for knowledge base used in pressure vessel design. (Author)

  13. Preliminary design report: Prototypical Spent Fuel Consolidation Equipment Demonstration Project: Phase 1

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Mitchell, J.L.; Winkler, C.J.

    1986-12-01

    This document describes the Westinghouse Preliminary Design for the Prototypical Consolidation Demonstration Project per Department of Energy (DOE) Contract No. DE-AC07-86ID12649 and under direction of the DOE Idaho Operations Office. The preliminary design is the first step to providing the Department of Energy with a fully qualified, licensable, cost-effective spent fuel rod consolidation system. The design was developed using proven technologies and equipment to create an innovative approach to previous rod consolidation concepts. These innovations will better enable the Westinghouse system to: consolidate fuel rods in a precise, fully-controlled, accountable manner; package all rods from two PWR fuel assemblies or from four BWR fuel assemblies in one 8.5 inch square consolidated rods canister; meet all functional requirements; operate with all fuel types common to the US commercial nuclear industry with minimal tooling changeouts; and meet consolidation production process rates, while maintaining operator and public health and safety. This Preliminary Design Report provides both detailed descriptions of the equipment required to perform the rod consolidation process and the supporting analyses to validate the design

  14. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  15. Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

  16. Gas cooled fast reactor 2400 MWTh, status on the conceptual design studies and preliminary safety analysis

    International Nuclear Information System (INIS)

    Malo, J.Y.; Alpy, N.; Bentivoglio, F.

    2009-01-01

    The Gas cooled Fast Reactor (GFR) is considered by the French Commissariat a l'Energie Atomique as a promising concept, combining the benefits of fast spectrum and high temperature, using Helium as coolant. A status on the GFR preliminary viability was made at the end of 2007, ending the pre-conceptual design phase. A consistent overall systems arrangement was proposed and a preliminary safety analysis based on operating transient calculations and a simplified PSA had established a global confidence in the feasibility and safety of this baseline concept. Its potential for attractive performances had been pointed out. Compare to the more mature Sodium Fast Reactor technology, no demonstrator has ever been built and the feasibility demonstration will required a longer lead time. The next main project milestone is related to the GFR viability, scheduled in 2012. The current studies consist in revisiting the reactor reference design options as selected at the end of 2007. Most of them are being consolidated by going more in depth in the analysis. Some possible alternatives are assessed. The paper will give a status on the last studies performed on the core design and corresponding neutronics and cycle performance, the Decay Heat Removal strategy and preliminary safety analysis, systems design and balance of plant... This paper is complementary to the Icapp'09 papers 9062 dealing with the Gas cooled Fast Reactor Demonstrator ALLEGRO and 9378 related to GFR transients analysis. (author)

  17. Preliminary design of bellows for the DNB beam source by EJMA and FE linear analysis

    International Nuclear Information System (INIS)

    Trapasiya, Shobhit; Muvvala, Venkata Nagaraju; Rambilas, P.; Gangadharan, Roopesh; Rotti, Chandramouli; Chakraborty, Arun Kumar; Sharma, Dheeraj Kumar

    2015-01-01

    In piping system, U-shaped Bellows are widely used among flexible elements. In general, bellows are typically design for Fatigue behavior according to the EJMA standard based on empirically generated fatigue curves. The present work proposes a methodology in the design of bellows by design by analyses and validates its design by EJMA standard. A linear FE approach is chosen to in line with the EJMA standard. The proposed methodology is benchmarked with the available literatures. The same practice is implemented in the preliminary design of a U-shaped bellows in the water line circuits of DNB beam source. DNB Beam Source is a negative ion source-based neutral beam generator for ITER operates at 100KV. The beam divergence (intrinsic) and magnetic fields from ITER torus causes deflection of beams. This calls for beam optic alignment, which are assured by BS Movement mechanism system. To accomplish the above movement requirements, bellows, which is a stringent of its kind (± 22 mm axial, ± 45 mm lateral within 400mm available space with single ply), is designed between the beam source and possible rigid interface-cooling lines coming from HVB. The paper describes right from conceptual stage to preliminary design. Optimization tools are adopted in the selecting bellow dimensions using MATLAB. At the end a coordinated approach between FE based assessment (in ANSYS) and widely applied code, EJMA is implemented for the validation of design and found FE approach is a very conservative than later in the present case. (author)

  18. Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

  19. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  20. Solid Waste Operations Complex W-113: Project cost estimate. Preliminary design report. Volume IV

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains Volume IV of the Preliminary Design Report for the Solid Waste Operations Complex W-113 which is the Project Cost Estimate and construction schedule. The estimate was developed based upon Title 1 material take-offs, budgetary equipment quotes and Raytheon historical in-house data. The W-113 project cost estimate and project construction schedule were integrated together to provide a resource loaded project network

  1. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  2. The MELiSSA GreenMOSS Study: Preliminary Design Considerations for a Greenhouse Module on the Lunar Surface

    Science.gov (United States)

    Lobascio, Cesare; Paille, Christel; Lamantea, Matteo Maria; Boscheri, Giorgio; Rossetti, Vittorio

    Extended human presence on an extraterrestrial planetary surface will be made possible by the development of life support systems affordable in the long term. The key elements to support the goal will be the maximization of closure of air and water cycles, as well as the development of cost-effective and reliable hardware, including a careful strategic effort toward reduction of spare parts and consumables. Regenerative life support systems likely represent the final step toward long term sustainability of a space crew, allowing in situ food production and regeneration of organic waste. Referring to the MELiSSA loop, a key element for food production is the Higher Plant Compartment. The paper focuses on the preliminary design of a Greenhouse at the lunar South Pole, as performed within the “Greenhouse Module for Space System” (GreenMOSS) study, under a contract from the European Space Agency. The greenhouse is in support to a relatively small crew for provision of an energetic food complement. Resources necessary for the greenhouse such as water, carbon dioxide and nitrogen are assumed available, as required. The relevant mass and energy balances for incoming resources should be part of future studies, and should help integrate this element with the interfacing MELISSA compartments. Net oxygen production and harvested crop biomass from the greenhouse system will be quantified. This work presents the results of the two major trade-offs performed as part of this study: artificial vs natural illumination and monocrop vs multicrop solutions. Comparisons among possible design solutions were driven by the ALiSSE metric as far as practicable within this preliminary stage, considering mass and power parameters. Finally, the paper presents the mission duration threshold for determining the convenience of the designed solution with respect to other resources provision strategies

  3. Preliminary design needs for pilot plant of Monazite processing into Thorium Oxide (ThO_2)

    International Nuclear Information System (INIS)

    Hafni Lissa Nuri; Prayitno; Abdul Jami; M-Pancoko

    2014-01-01

    Data and information collection aimed in order to meet the needs of the initial design for pilot plant of monazite processing into thorium oxide (ThO_2). The content of thorium in monazite is high in Indonesia between 2.9 to 4.1% and relatively abundant in Bangka Belitung Islands. Thorium can be used as fuel because of its potential is more abundant instead of uranium. Plant of thorium oxide commercially from monazite established starting from pilot uranium. Plant of thorium oxide commercially from monazite established starting from pilot plant in order to test laboratory data. Pilot plant design started from initial design, basic design, detailed design, procurement and construction. Preliminary design needs includes data feed and products, a block diagram of the process, a description of the process, the determination of process conditions and type of major appliance has been conducted. (author)

  4. General description of preliminary design of an experimental fusion reactor and the future problems

    International Nuclear Information System (INIS)

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  5. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    Science.gov (United States)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  6. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  7. Preliminary conceptual design of the blanket and power conversion system for the Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    A conceptual design of a commercial Mirror Hybrid Reactor, optimized for 239 Pu production, has been completed. This design is the product of a joint effort by Lawrence Livermore Laboratory and General Atomic Company, and follows directly from earlier work on the Mirror Hybrid. This paper describes the blanket and power conversion system of the reactor design. Included are descriptions of the prestressed concrete reactor vessel that supports the magnets and contains the blanket and power conversion system components, the blanket module design, the blanket fuel design, and the power conversion system

  8. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  9. Heat recovery and seed recovery development project: preliminary design report (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  10. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  11. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  12. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    Science.gov (United States)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  13. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  14. Preliminary structural evaluations of the STAR-LM reactor vessel and the support design

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Sienicki, James J.; Moisseytsev, Anton

    2007-01-01

    In this paper, preliminary structural evaluations of the reactor vessel and support design of the STAR-LM (The Secure, Transportable, Autonomous Reactor - Liquid Metal variant), which is a lead-cooled reactor, are carried out with respect to an elevated temperature design and seismic design. For an elevated temperature design, the structural integrity of a direct coolant contact to the reactor vessel is investigated by using a detail structural analysis and the ASME-NH code rules. From the results of the structural analyses and the integrity evaluations, it was found that the design concept of a direct coolant contact to the reactor vessel cannot satisfy the ASME-NH rules for a given design condition. Therefore, a design modification with regards to the thermal barrier is introduced in the STAR-LM design. For a seismic design, detailed seismic time history response analyses for a reactor vessel with a consideration of a fluid-structure interaction are carried out for both a top support type and a bottom support type. And from the results of the hydrodynamic pressure responses, an investigation of the minimum thickness design of the reactor vessel is tentatively carried out by using the ASME design rules

  15. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Design of Organic Transformations at Ambient Conditions: Our Sincere Efforts to the Cause of Green Chemistry Practice.

    Science.gov (United States)

    Brahmachari, Goutam

    2016-02-01

    This account summarizes our recent efforts in designing a good number of important organic transformations leading to the synthesis of biologically relevant compounds at room temperature and pressure. Currently, the concept of green chemistry is globally acclaimed and has already advanced quite significantly to emerge as a distinct branch of chemical sciences. Among the principles of green chemistry, one principle is dedicated to the "design of energy efficiency" - that is, to develop synthetic strategies that require less or the minimum amount of energy to carry out a specific reaction with optimum productivity - and the most effective way to save energy is to develop strategies/protocols that are capable enough to carry out the transformations at ambient temperature! As part of on-going developments in green synthetic strategies, the design of reactions under ambient conditions coupled with other green aspects is, thus, an area of current interest. The concept of developing reaction strategies at room temperature and pressure is now an emerging field of research in organic chemistry and is progressing steadily. This account is aimed to offer an overview of our recent research works directly related to this particular field of interest, and highlights the green chemistry practice leading to carbon-carbon and carbon-heteroatom bond-forming reactions of topical significance. Green synthetic routes to a variety of biologically relevant organic molecules (heterocyclic, heteroaromatic, alicyclic, acyclic, etc.) at room temperature and pressure are discussed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  18. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    Science.gov (United States)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  19. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations

  20. The Square Kilometre Array Science Data Processor. Preliminary compute platform design

    International Nuclear Information System (INIS)

    Broekema, P.C.; Nieuwpoort, R.V. van; Bal, H.E.

    2015-01-01

    The Square Kilometre Array is a next-generation radio-telescope, to be built in South Africa and Western Australia. It is currently in its detailed design phase, with procurement and construction scheduled to start in 2017. The SKA Science Data Processor is the high-performance computing element of the instrument, responsible for producing science-ready data. This is a major IT project, with the Science Data Processor expected to challenge the computing state-of-the art even in 2020. In this paper we introduce the preliminary Science Data Processor design and the principles that guide the design process, as well as the constraints to the design. We introduce a highly scalable and flexible system architecture capable of handling the SDP workload

  1. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  2. Preliminary structural design of composite main rotor blades for minimum weight

    Science.gov (United States)

    Nixon, Mark W.

    1987-01-01

    A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.

  3. Gas turbine designer computer program - a study of using a computer for preliminary design of gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Rickard

    1995-11-01

    This thesis presents calculation schemes and theories for preliminary design of the fan, high pressure compressor and turbine of a gas turbine. The calculations are presented step by step, making it easier to implement in other applications. The calculation schemes have been implemented as a subroutine in a thermodynamic program. The combination of the thermodynamic cycle calculation and the design calculation turned out to give quite relevant results, when predicting the geometry and performance of an existing aero engine. The program developed is able to handle several different gas turbines, including those in which the flow is split (i.e. turbofan engines). The design process is limited to the fan, compressor and turbine of the gas turbine, the rest of the components have not been considered. Output from the program are main geometry, presented both numerically and as a scale plot, component efficiencies, stresses in critical points and a simple prediction of turbine blade temperatures. 11 refs, 21 figs, 1 tab

  4. Some recent efforts toward high density implosions

    International Nuclear Information System (INIS)

    McClellan, G.E.

    1980-01-01

    Some recent Livermore efforts towards achieving high-density implosions are presented. The implosion dynamics necessary to compress DT fuel to 10 to 100 times liquid density are discussed. Methods of diagnosing the maximum DT density for a specific design are presented along with results to date. The dynamics of the double-shelled target with an exploding outer shell are described, and some preliminary experimental results are presented

  5. Preliminary safety assessment study for the conceptual design of a repository in tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-12-01

    Preliminary estimates of the upper bounds on postulated worst-case radiological releases resulting from possible accidents during the operating period of a prospective repository in tuff at Yucca Mountain are presented. Possible disrupting events are screened to identify the accidents of greatest potential consequence. The radiological dose commitments for the general public and repository personnel are estimated for postulated releases caused by natural phenomena, man-made events, and operational accidents. All postulated worst-case releases result in doses to the public that are lower than the 0.5-rem, whole-body dose-per-accident limit set by the Nuclear Regulatory Commission (NRC) in 10 CFR 60. Doses to repository personnel are within the NRC's 5.0-rem/yr occupational exposure limit set in 10 CFR 20 for normal operations. Doses are within this limit for all accidents except the transportation accident and fire in a drift. A preliminary risk assessment has also been performed. Based on this preliminary safety study, the proposed site boundaries and design criteria routinely used in constructing nuclear facilities appear to be adequate to protect the safety of the general public during the operating phase of the repository

  6. Towards a preliminary design of the ITER plasma control system architecture

    International Nuclear Information System (INIS)

    Treutterer, W.; Rapson, C.J.; Raupp, G.; Snipes, J.; Vries, P. de; Winter, A.; Humphreys, D.A.; Walker, M.; Tommasi, G. de; Cinque, M.; Bremond, S.; Moreau, P.; Nouailletas, R.; Felton, R.

    2017-01-01

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  7. Towards a preliminary design of the ITER plasma control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Rapson, C.J.; Raupp, G. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Snipes, J.; Vries, P. de; Winter, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Humphreys, D.A.; Walker, M. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Tommasi, G. de; Cinque, M. [CREATE/Università di Napoli Federico II, Napoli (Italy); Bremond, S.; Moreau, P.; Nouailletas, R. [Association CEA pour la Fusion Contrôlée, CEA Cadarache, 13108 St Paul les Durance (France); Felton, R. [CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2017-02-15

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  8. Design of Fishing Boat for Pelabuhanratu Fishermen as One of Effort to Increase Production of Capture Fisheries

    Science.gov (United States)

    Nur, Iswadi; Joko Suranto, Purwo

    2018-02-01

    Design of fishing boat for Pelabuhanratu fisherman as one of effort to increase production of capture fisheries. The fishing boat should be proper for the characteristic of its service area, as; capacity of fishing boat up to 60 GT, the fishing boat has minimum 6 fish holds and location of fish hold in the middle body, the fishing boat hull has the bilge keel plate, and the material of hull fishing boat to be made of wooden, steel, aluminium, or fiberglass. Main dimesion of fishing boat is Length Over All = 25.436 m, Breadth = 4.55 m, Draft = 1.6 m, Speed = 12.5 knots. The research had been known every thing that will be supporting the production of capture fisheries like ; amount of fish production = 25.030 ton per day, the fishing port capacity approximately 268.957GT per day, the area of fishing port industry had not completed, therefore all data research result less than standard of Oceanic Fising Port. So Pelabuhanratu National Fishing Port can not be changed to Oceanic Fishing Port.

  9. Judicial problems in connection with preliminary decision and construction design approval in nuclear licensing procedures

    International Nuclear Information System (INIS)

    Schmieder, K.

    1977-01-01

    Standardization in nuclear engineering makes two demands on a legal instrument which is to make this standardization possible and which is to promote standardization in the nuclear licensing practice: On the basis of just one licence for a constructional part or a component, its applicability in any number of subsequent facility licensing procedures has to be warranted, and by virtue of its binding effect, standardization has to create a sufficiently big confidence protection with manufacturers, constructioneers and operators to offer sufficiently effective incentives for standardization. The nuclear preliminary decision pursuant to section 7 a of the Atomic Energy Act in the form of the component preliminary decision appears to be unsuitable as a legal instrument for standardization, as the preliminary decision refers exclusively to the construction of a concrete facility. For standardization in reactor engineering, the construction design approval appears to be basically the proper legal instrument on account of its legal structure as well as its economic effect. Its binding effect encouters a limitation with regard to third parties in so far that this limitation could question again the binding effect in a subsequent site-dependent nuclear licence procedure. The legal structure of the extent of the binding effect, which is decisive for the suitability of the construction design approval, lies with the legislator. The following questions have to be regulated: Ought the applicant to have a legal claim on the granting of a construction design approval, or ought it to be at the discretion of the authorities, and secondly, the extent of the binding effect in terms of time on the basis of the fixation of a time limit, or on the basis of the possibility of subsequent conditions to be imposed, or the revocation. (orig./HP) [de

  10. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Kiju Lee

    2018-05-01

    Full Text Available Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach.Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept were also administered.Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously.

  11. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  12. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  13. The preliminary design of real-time neutron fissile material monitoring system

    International Nuclear Information System (INIS)

    Shi Jun; Ren Zhongguo; Zhang Ming; Zhao Zhiping; Chen Qi

    2013-01-01

    In this paper we present the preliminary design to carry out real-time neutron fissile material monitoring system, The system includes hardware and data acquisition software. For the hardware, it is employed with He3 proportional tubes as neutron detectors, polyethylene as moderator, and, to achieve the remote counting, RM4036 counting modules are connected to the remote computer through the 485 ports. The software with real-time data display and storage, alarm and other functions are developed using Visual Basic 6.0. (authors)

  14. Preliminary design of the beam transport system for the Milan biomedical cyclotron

    International Nuclear Information System (INIS)

    Silari, M.

    1988-01-01

    This report illustrates the preliminary design of the beam transport system for the Scanditronix MC40 cyclotron to be installed in Milan. The Cyclotron will be dedicated to biomedical research and the different experimental conditions that could occur will require a beam transport system flexible enough so as to deliver beams with the specified characteristics. The report describes the computer codes used, the calculations performed and the results obtained. The complete configuration of the beam lines serving the first two target rooms is given, together with typical beam profiles and the emittance ellipse variation along the transfer channels

  15. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  16. Preliminary neutron design of the flux flatter for silicon doping at the RA10

    International Nuclear Information System (INIS)

    Cintas, A.; Bazzana, S.

    2012-01-01

    The neutron transmutation doping of silicon (NTD) is one of the facilities under development for the RA10 project. In order to obtain high quality semiconductor, commercial requirements of NTD include achieving high axial and radial uniformity in the silicon targets. Axial uniformity is achieved locating a neutron screen around the Si ingot, obtaining a flat axial distribution of the dopant concentration. We present the neutron design of this screen, also known as flux flattener. MCNP5 was used to model the screen design. We have reached a satisfactory preliminary screen design after numerous iterations. The fluctuation in the axial distribution of the reaction capture rate ( 30 Si(n,γ) 31 Si) is under ≠1,5%, which is the required level by the semiconductor industry to accept the final product (author)

  17. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  18. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    International Nuclear Information System (INIS)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won

    2008-12-01

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process

  19. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  20. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  1. Preliminary physical design of 7 MeV proton RFQ for the accelerator driven-energy system

    International Nuclear Information System (INIS)

    Luo Zihua

    2000-01-01

    The preliminary physical design of 7 MeV proton RFQ for the ADS (Accelerator Driven-energy System) is briefly described. The design features and the basic parameters and the design version of the RFQ are discussed. The matches between IS and RFQ and between RFQ and CCDTL/DTL are also discussed. The ideas of research for the RFQ are presented

  2. Risk-informed analysis as a support to the preliminary design of the CEA GFR2400

    International Nuclear Information System (INIS)

    Bertrand, F.; Bassi, C.; Azria, P.; Bentivoglio, F.; Messie, A.; Balmain, M.

    2012-01-01

    The integration of safety issues in the early phase of the design of a 4. generation reactor of the concepts is expected. For this purpose, probabilistic insights are increasingly employed in the safety demonstration in combination with the deterministic approach in the frame of a so-called risk informed approach. The present paper deals with the safety assessment of the preliminary design of the GFR2400 developed by CEA and how it has been improved in order to fulfil deterministic criteria as well as to reach a risk level comparable to the generation III reactors. GFR2400 is a 2400 MWth, 3-loops, helium-cooled fast reactor developed at a pre-conceptual design stage whose secondary circuit is filled with a mixture of helium and nitrogen, the ternary circuit being filled with water vaporized in 3 steam generators according to a classical Rankine cycle. The resulting cycle efficiency is very close to 45 %. Considering the results obtained with a preliminary level 1 PSA (L1PSA) model, it emerged that an increased reliability of the DHR (Decay Heat Removal) function in high pressure conditions (not corresponding to a LOCA) was suitable to reduce the overall core damage frequency. On the other hand, some small break LOCA situations were not adequately mitigated according to the line of protection deterministic method. Both issues have been solved by design improvements. In addition, this final L1PSA model, characterized by success criteria based on transient calculations performed with the CATHARE2 code and performed in a perimeter extended to all representative internal initiating events at full operating power, permitted to propose design evolutions that did not increase significantly the CDF. In the same time, those evolutions enabled the DHR system to increase its redundancy level as required in the deterministic approach. Finally, a modified design has been reached implying a more extended covering of various accidental situations by means of a progressive DHR

  3. Prototype development of radio frequency cavity and quadrupole for ADSS - initial efforts by mechanical design and prototype development section

    International Nuclear Information System (INIS)

    Kumar, Manish; Kamble, Sunil; Choughule, L.S.; Kumar, Sunil; Patankar, S.R.; Phalke, V.M.; Dharmik, D.A.; Singh, Tejinder; Ram, Y.; Chaudhari, A.T.; Pathak, Kavindra; Prasad, N.K.; Marathe, V.V.; Matkar, A.W.

    2007-01-01

    Mechanical Design and Prototype Development Section has participated in the efforts for development of RF cavity and Quadrupole for ADSS. Recently prototype Super conducting RF cavity, Radio Frequency Quadrupole (RFQ), Radio Frequency Quadrupole (RFQ) Simulation Chamber and related experimental setups were developed, fabricated and delivered for the characterisation of various relevant parameters. Under the program for development of Super conducting RF Cavity for high-energy section of LINAC of ADS first prototype RF Cavity of ETP copper was developed by machining and brazing process. The prototype cavity having elliptical and circular profile is the heart of this setup. The cavity is made up of two symmetrical cups joined together by welding or brazing. Various methods are being tried out by MD and PDS for the fabrication of cups and joining them together. Manufacturing of cup by machining and joining them by conventional brazing technique to make the cavity was the first step in this direction. Another method of manufacturing and joining viz forming of cup by deep drawing and joining them by EB welding is in progress. RFQ is a versatile and efficient system for accelerating ion beams especially at low energy. It works in quadrupole mode, which is at 350M Hz. RFQ Focuses, Bunches and Accelerates the beam simultaneously. The bunching is done in this RFQ, which results in more than 95% transmission where as in the normal buncher the transmission is less than 40%. The actual RFQ, which is designed for the PURNIMA facility, will be fabricated from OFHC copper that will accelerate a deuteron (D+) ion beam from 50keV to 400keV over its 1.37meter length. For the validation of manufacturing process and characterisation of various parameters at low frequency a 500mm long prototype RFQ in Aluminium with an accuracy of ± 25microns and surface finish of 1.6 micron has been fabricated by MD and PDS. A simplified simulation chamber to facilitate the development of RFQ for

  4. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  5. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  6. Design and preliminary testing of a Bottom-Mounted Second Shutdown Drive Mechanism for the KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sanghaun; Lee, Jin Haeng; Yoo, Yeon-Sik, E-mail: yooys@kaeri.re.kr; Cho, Yeong-Garp; Lee, Hyokwang; Sun, Jongoh; Ryu, Jeong Soo

    2016-10-15

    Highlights: • The basic design principle, features and characteristics of the BMSSDM for KJRR are described. • The current development status based on practical fabrications, performance tests, and evaluations is described. • We have verified that all of the BMSSDM components satisfied their design requirements. • All of the performance requirements are satisfied from the performance test results. • The endurance test results show there are no structural failures and the wear of the impact parts in the hydraulic cylinder assembly is negligible. - Abstract: The KiJang Research Reactor (KJRR) is now being designed and undergoing preliminary construction by the Korea Atomic Energy Research Institute (KAERI). The driving parts of the Second Shutdown Drive Mechanism (SSDM) for the KJRR are located in a Reactivity Control Mechanism (RCM) room below the reactor pool bottom. In this paper, the design principle and concept of the Bottom-Mounted SSDM (BMSSDM) for the KJRR are introduced. From the experimental evaluations of the design, fabrication and performance, we verified that all of the BMSSDM components in the current design and development status satisfy their design requirements.

  7. Preliminary neutronic design of spock reactor: A nuclear system for space power generation

    International Nuclear Information System (INIS)

    Burgio, N.; Santagata, A.; Cumo, M.; Fasano, A.; Frullini, M.

    2007-01-01

    Aim of this paper is to preliminary investigates the neutronic features of an upgrade of the MAUS [1] nuclear reactor whose core will be able to supply a thermoelectric converter in order to generate 30 kW of electricity for space applications. The neutronic layout of SPOCK (Space Power Core Ka) is a compact, MOX fuelled, liquid metal cooled and totally reflected fast reactor with a control system based on neutron absorption. Spock, that during the heart and launch operation must be maintained in sub-critical state, has to start up in the outer space at 40 K temperatures with the coolant in a solid state and it will reach the operating steady condition at the maximum temperature of 1300 K with the coolant in the liquid state. The main design goal is to maintains, in the operating conditions of a typical space mission, the control of the appropriate criticality margin versus temperature and coolant physical state. For this purpose, a neutronic/thermal-hydraulic calculation chain able to assists the entire design process must be set up. As preliminary recognition, MCNPX 2.5.0 and FLUENT calculations were carried out. The emerging key features of SPOCK are: an equilateral triangular mesh of 91 cylindrical UO 2 fuel rods with a Molybdenum clad ensured by two grids of the same material, cooled by liquid Sodium and contained in an AISI 316 L vessel. The core is totally wrapped by a Beryllium reflector that hosts six absorber (B 4 C) rotating control rods. The reactor shape is cylindrical (radius = 30 cm and height = 60 cm) with a total mass of 275 kg. The excess reactivity was of 5000 PCM at 1300 K. A preliminary evaluation of the control rods worth and a power spatial distribution were also discussed. Through the definition of an ideal reference K e ff value at 300 K for the actual SPOCK configuration, a sensitivity analysis on various cross sections data and material physical properties was performed for the given mission temperature range, allowing consideration on

  8. Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency

    International Nuclear Information System (INIS)

    Oh, J.S.; Choi, J.; Suh, J.H.; Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W.; Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H.

    2013-01-01

    Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients

  9. A preliminary design of interior structure and foundation of an inflatable lunar habitat

    Science.gov (United States)

    Yin, Paul K.

    1989-01-01

    A preliminary structural design and analysis of an inflatable habitat for installation on the moon was completed. The concept takes the shape of a sphere with a diameter of approximately 16 meters. The interior framing provides five floor levels and is enclosed by a spherical air-tight membrane holding an interior pressure of 14.7 psi (101.4kpa). The spherical habitat is to be erected on the lunar surface with the lower one third below grade and the upper two thirds covered with a layer of lunar regolith for thermal insulation and shielding against radiation and meteoroids. The total dead weight (earth weight) of the structural aluminum, which is of vital interest for the costly space transportation, is presented. This structural dead weight represents a preliminary estimate without including structural details. The design results in two versions: one supports the weight of the radiation shielding in case of deflation of the fabric enclosure and the other assumes that the radiation shielding is self supporting. To gain some indication of the amount of structural materials needed if the identical habitat were installed on Mars and Earth, three additional design versions were generated where the only difference is in gravity. These additional design versions are highly academic since the difference will be much more than in gravity alone. The lateral loading due to dust storms on Mars and wind loads on Earth are some examples. The designs under the lunar gravity are realistic. They may not be adequate for final material procurement and fabrication, however, as the connection details, among other reasons, may effect the sizes of the structural members.

  10. Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.S., E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, J.; Suh, J.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W. [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H. [Hyosung Corp., 450, Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); and others

    2013-10-15

    Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients.

  11. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  12. Preliminary power train design for a state-of-the-art electric vehicle

    Science.gov (United States)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  13. Customer Relationship Management System in Occupational Safety & Health Companies: Research on Practice and Preliminary Design Solution

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2011-10-01

    Full Text Available One of the most prominent contemporary trends in formation of companies is the approach to development of a customer-oriented company. In this matter, various versions related to the intensity of this orientation are differentiated. Customer relationship management (CRM system is a well-known concept, and its practice is being studied and improved in connection to various sectors. Companies providing services of occupational safety and health (OHS mainly cooperate with a large number of customers and the quality of this cooperation largely affects the occupational safety and health of employees. Therefore, it is of both scientific and wider social interest to study and improve the relationship of these companies with their customers. This paper investigates the practice of applying CRM in Croatian OHS companies. It identifies the existing conditions and suggests possible improvements in the practice of CRM, based on experts’ assessments using analytic hierarchy process evaluation. Universal preliminary design was created as a framework concept for the formation of a typical customer-oriented OHS services company. Preliminary design includes a structural view, which provides more details through system diagrams, and an illustration of main cooperation processes of a company with its customer.

  14. Effect of running therapy on depression (EFFORT-D. Design of a randomised controlled trial in adult patients [ISRCTN 1894

    Directory of Open Access Journals (Sweden)

    Kruisdijk Frank R

    2012-01-01

    Full Text Available Abstract Background The societal and personal burden of depressive illness is considerable. Despite the developments in treatment strategies, the effectiveness of both medication and psychotherapy is not ideal. Physical activity, including exercise, is a relatively cheap and non-harmful lifestyle intervention which lacks the side-effects of medication and does not require the introspective ability necessary for most psychotherapies. Several cohort studies and randomised controlled trials (RCTs have been performed to establish the effect of physical activity on prevention and remission of depressive illness. However, recent meta-analysis's of all RCTs in this area showed conflicting results. The objective of the present article is to describe the design of a RCT examining the effect of exercise on depressive patients. Methods/Design The EFFect Of Running Therapy on Depression in adults (EFFORT-D is a RCT, studying the effectiveness of exercise therapy (running therapy (RT or Nordic walking (NW on depression in adults, in addition to usual care. The study population consists of patients with depressive disorder, Hamilton Rating Scale for Depression (HRSD ≥ 14, recruited from specialised mental health care. The experimental group receives the exercise intervention besides treatment as usual, the control group receives treatment as usual. The intervention program is a group-based, 1 h session, two times a week for 6 months and of increasing intensity. The control group only performs low intensive non-aerobic exercises. Measurements are performed at inclusion and at 3,6 and 12 months. Primary outcome measure is reduction in depressive symptoms measured by the HRSD. Cardio-respiratory fitness is measured using a sub maximal cycling test, biometric information is gathered and blood samples are collected for metabolic parameters. Also, co-morbidity with pain, anxiety and personality traits is studied, as well as quality of life and cost

  15. TPX: Contractor preliminary design review. Volume 1, Presentation and design description. Final report

    International Nuclear Information System (INIS)

    Hartman, D.; Naumovich; Walstrom, P.; Clarkson, I.; Schultheiss, J.; Burger, A.

    1995-01-01

    This first volume of the five volume set begins with a CPDR overview and then details the PF magnet system, manufacturing R ampersand D, Westinghouse R ampersand D, the central solenoid, the PF 5 ring coil, the PF 6/7 ring coil, quality assurance, and the system design description

  16. Combined Observational and Modeling Efforts to Better Understand Aerosol-Cloud-Precipitation Interactions Over Land: Preliminary Results from 7-SEAS/BASELInE 2013

    Science.gov (United States)

    Loftus, Adrian M.; Tsay, Si-Chee

    2015-01-01

    This talk presents some of the detailed observations of low-level stratocumulus over northern Vietnam during 7-SEASBASELInE 2013 by SMARTLabs' ACHIEVE W-band cloud radar and other remote sensing instruments. These observations are the first of their kind for this region and will aid in ongoing studies of biomass-burning aerosol impacts on local and regional weather and climate. Preliminary results from simulations using the Goddard Cumulus Ensemble (GCE) with recently implemented triple-moment bulk microphysics to examine the sensitivity of low-level stratocumulus over land to aerosols are also presented. Recommendations for future observational activities in the 7-SEAS northern region in collaboration with international partners will also be discussed.

  17. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  18. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    Science.gov (United States)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  19. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  20. TPX: Contractor preliminary design review. Volume 5, Manufacturing R ampersand D

    International Nuclear Information System (INIS)

    Roach, J.F.; Urban, W.M.; Hartman, D.

    1995-01-01

    TPX Insulation ampersand Impregnation R ampersand D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed

  1. Preliminary design studies of the draining tanks for the Molten Salt Fast Reactor

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Allibert, M.; Heuer, D.; Brovchenko, M.; Laureau, A.; Ghetta, V.; Rubiolo, P.

    2014-01-01

    reactor called the Molten Salt Fast Reactor (MSFR). The reference MSFR design is a 3000 MWth reactor with a total fuel salt volume of 18 m3, operated at a mean fuel temperature of 750 deg. C. The first confinement barrier of the reactor includes a salt draining system. In case of a planned reactor shut down or in case of accidents leading to an excessive increase of the temperature in the fuel circuit, the fuel configuration may be changed passively by gravitational draining of the fuel salt in dedicated draining tank located under the reactor and designed to provide adequate reactivity margins while insuring a passive cooling of the fuel salt to extract the residual heat from the short to the long term. The present preliminary assessment of this sub-critical draining system has been performed to identify the physical constraints and to give some orders of magnitude of characteristic time periods (authors)

  2. TPX: Contractor preliminary design review. Volume 5, Manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.F.; Urban, W.M.; Hartman, D. [Everson Electric Co., Bekthlehem, PA (United States)

    1995-08-04

    TPX Insulation & Impregnation R&D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed.

  3. Ocean Thermal Energy Conservation (OTEC) power system development (PDS) II. Preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-10

    This report documents the results and conclusions of the PDS II, Phase I, preliminary design of a 10 MWe OTEC power system, using enhanced plate type heat exchangers, and of representative 0.2 MWe test articles. It further provides the documentation (specifications, drawings, trade studies, etc.) resulting from the design activities. The data and discussions of the technical concepts are organized to respond to the PDS II, Phase II proposal evaluation criteria. This volume, which specifically addresses the three evaluation categories (heat exchangers, rotating machinery, and power system configuration and performance) is an integral part of the Phase II plans (proposal) which describe the technical approach to delivering test articles to OTEC-1. In addition, there is a section which addresses power system cost and net energy analysis and another which discusses the results of stainless steel feasibility studies. Supporting documentation is contained in two appendix volumes.

  4. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  5. Optimization study and preliminary design for Latina NPP early core retrieval and reactor dismantling

    International Nuclear Information System (INIS)

    Macci, E.; Zirpolo, S.; Imparato, A.; Cacace, A.; Parry, D.; Walkden, P.

    2002-01-01

    In June 2000, an agreement was established between Sogin and BNFL to enable the two companies to co-operate, using their specific experiences in the decommissioning field, for the benefit of projects in Italy, the United Kingdom and for third markets. A decommissioning strategy for the Latina NPP was initially developed in a Phase 1 Study which produced a conceptual design for the decommissioning of the reactor. This study was completed in June 2000. Since then, a second study has been completed, which has further developed the strategy and produced preliminary designs for the early dismantling of the core and reactor building at Latina. The engineering and safety data were produced in order to support Sogin in the preparation of a safety case for plant decommissioning. This safety case was submitted to the Italian Regulator, ANPA, in February 2002. (author)

  6. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.

    Science.gov (United States)

    Taheri, Hossein; Rowe, Justin B; Gardner, David; Chan, Vicki; Gray, Kyle; Bower, Curtis; Reinkensmeyer, David J; Wolbrecht, Eric T

    2014-02-04

    This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero. The goal was to make FINGER capable of assisting with motions where precise timing is important. FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero while connected to FINGER. Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (-3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject's success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects' effort and finger individuation while playing the game. Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke.

  7. Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Werner, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, John C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, Robert C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dion, Axel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ananth, Krishnan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-11-01

    The Special Purpose Reactor (SPR) is a small 5 MWt, heat pipe-cooled, fast reactor based on the Los Alamos National Laboratory (LANL) Mega-Power concept. The LANL concept features a stainless steel monolithic core structure with drilled channels for UO2 pellet stacks and evaporator sections of the heat pipes. Two alternative active core designs are presented here that replace the monolithic core structure with simpler and easier to manufacture fuel elements. The two new core designs are simply referred to as Design A and Design B. In addition to ease of manufacturability, the fuel elements for both Design A and Design B can be individually fabricated, assembled, inspected, tested, and qualified prior to their installation into the reactor core leading to greater reactor system reliability and safety. Design A fuel elements will require the development of a new hexagonally-shaped UO2 fuel pellet. The Design A configuration will consist of an array of hexagonally-shaped fuel elements with each fuel element having a central heat pipe. This hexagonal fuel element configuration results in four radial gaps or thermal resistances per element. Neither the fuel element development, nor the radial gap issue are deemed to be serious and should not impact an aggressive reactor deployment schedule. Design B uses embedded arrays of heat pipes and fuel pins in a double-wall tank filled with liquid metal sodium. Sodium is used to thermally bond the heat pipes to the fuel pins, but its usage may create reactor transportation and regulatory challenges. An independent panel of U.S. manufacturing experts has preliminarily assessed the three SPR core designs and views Design A as simplest to manufacture. Herein are the results of a preliminary neutronic, thermal, mechanical, material, and manufacturing assessment of both Design A and Design B along with comparisons to the LANL concept (monolithic core structure). Despite the active core differences, all three reactor concepts behave

  8. Multilivel interfaces for power plant control rooms II: A preliminary design space

    International Nuclear Information System (INIS)

    Vicente, K.J.

    1992-01-01

    Events that are unfamiliar to operators and that have not been anticipated by designers pose the greatest threat to system safely in nuclear power plants. The abstraction hierarchy has been proposed as a representation frame-work that can be adopted to design interfaces that support operators in dealing with these unanticipated events. It consists of a multilevel representation format that represents a plant in terms of both physical and functional constraints. In a companion article, the work that has been done on this topic in academia, industry, and research laboratories was reviewed. On the basis of the results of that review, this article proposes a preliminary design space for multilevel interfaces based on the abstraction hierarchy. This space serves several worthwhile purposes: providing a unified framework within which to compare and contrast previous and future work in this area, providing a coherent research agenda by identifying some of the dimensions that can be meaningfully manipulated and evaluated in future experiments, and finally, serving as an input design by outlining the various decisions that need to be made in developing multilevel interfaces and the different options that are currently available for each of those decisions. Consequently this article should be of interest to researchers, designers, and regulators concerned with nuclear power-plant control rooms

  9. Preliminary Design of Optimized Reactor Insulator for Severe Accident Mitigation of APR1400

    International Nuclear Information System (INIS)

    Heo, Sun; Lee, Jae-Gon; Kang, Yong-Chul

    2007-01-01

    APR1400, a Korean evolutionary advance light water reactor, has many advanced safety feature to prevent and mitigate of design basis accident (DBA) and severe accident. When reactor cooling system (RCS) fails to cooling its core, the core melted down and the molten core gathers together on bottom of reactor vessel. The molten core hurts reactor vessel and is released to containment, which raises the release of radioactive isotopes and the heating of the containment atmosphere. Finally, the corium is accumulated in the bottom of reactor cavity and it also raises the Molten Core and Concrete Interaction (MCCI) and the heating of containment atmosphere. There are two strategies to cooling molten core. Those are in-vessel retention and ex-vessel cooling. At the early stage of APR1400 design, only ex-vessel cooling which is cooling of the molten core outside the vessel after vessel failure is considered based on EPRI Utility Requirement Document (URD) for Evolutionary LWR. However, a need has been arisen to reflect current research findings on severe accident phenomena and mitigation technologies to Korean URD and IVRERVC (In-Vessel corium Retention using Ex-Reactor Vessel Cooling) was adopted APR1400. The ERVC is not considered as a licensing design basis but based on the defense-in-depth principle and safety margin basis, which is the top-tier requirement of the severe accident mitigation design as stated in the KURD. The Severe Accident Management strategy for APR1400 is intended to aid the plant operating staff to secure reactor vessel integrity in the early stage of the severe accident. As a part of a design implementation of IVR-ERVC for APR1400, we developed the preliminary design requirement, design specification and conceptual design

  10. Effortful echolalia.

    Science.gov (United States)

    Hadano, K; Nakamura, H; Hamanaka, T

    1998-02-01

    We report three cases of effortful echolalia in patients with cerebral infarction. The clinical picture of speech disturbance is associated with Type 1 Transcortical Motor Aphasia (TCMA, Goldstein, 1915). The patients always spoke nonfluently with loss of speech initiative, dysarthria, dysprosody, agrammatism, and increased effort and were unable to repeat sentences longer than those containing four or six words. In conversation, they first repeated a few words spoken to them, and then produced self initiated speech. The initial repetition as well as the subsequent self initiated speech, which were realized equally laboriously, can be regarded as mitigated echolalia (Pick, 1924). They were always aware of their own echolalia and tried to control it without effect. These cases demonstrate that neither the ability to repeat nor fluent speech are always necessary for echolalia. The possibility that a lesion in the left medial frontal lobe, including the supplementary motor area, plays an important role in effortful echolalia is discussed.

  11. MICE - Absorber and focus coil safety working group design document: Preliminary design and assessments

    International Nuclear Information System (INIS)

    Barr, Giles; Baynham, Elwyn; Black, Edgar; Bradshaw, Tom; Cummings, Mary Anne; Green, Michael A.; Ishimoto, Shigeru; Ivanyushenkov, Yury; Lau, Wing; Zisman, Michael

    2003-01-01

    A Neutrino Factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly the discovery of leptonic CP violation. it is also the first step toward a muon collider. To develop a stored-muon-beam facility to serve as a Neutrino Factory, it is necessary to ''cool'' a muon beam (decrease its phase-space volume). The short lifetime of the muon, 2.2 (micro)s at rest, eliminates all currently demonstrated cooling techniques and requires that a new, heretofore untried, technique--ionization cooling--be employed. Although ionization cooling of muons has never been demonstrated in practice, it has been shown by end-to-end simulation and design studies to be an important factor both for the performance and for the cost of a Neutrino Factory. This motivates an international program of R and D, including an experimental demonstration at Rutherford Appleton Laboratory (RAL). The aims of the international Muon Ionization Cooling Experiment are: (1) to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory; and (2) to place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling. The MICE collaboration has designed an experiment in which a section of an ionization cooling channel is exposed to a muon beam. This cooling channel assembles liquid-hydrogen absorbers providing energy loss and high-gradient radio frequency (RF) cavities to re-accelerate the particles, all tightly contained in a magnetic channel. It reduces the beam transverse emittance by > 10% for muon momenta between 140 and 240 MeV/c. The layout of the experiment is shown. They utilize one complete magnetic cell of the cooling channel, comprising three absorber-focus-coil (AFC) modules and two RF-coupling-coil (RFCC) modules. Spectrometers placed before and after the

  12. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL), a spacelab mission payload

    Science.gov (United States)

    1976-01-01

    A preliminary identification of the Supporting Research and Technology (SR&T) necessary during the planned evolution of atmospheric cloud physics is discussed. All requirements are for subsequent flights over its expected ten year lifetime. Those components identified as requiring some SR&T work prior to inclusion are listed. A data sheet is included for each item, briefly justifying the need, giving general objectives for the proposed development effort and identifying approximate schedule requirements on the program.

  13. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  14. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    Science.gov (United States)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  15. Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bauer, S.J.

    1991-12-01

    Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs

  16. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  17. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    Science.gov (United States)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  18. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  19. Preliminary concept design of the divertor remote handling system for DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Di Gironimo, G. [ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2014-11-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor Mover: Hydraulic telescopic boom concept design. An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • Transportation cask conceptual studies and logistic. - Abstract: This paper is based on the remote maintenance system project (WPRM) for the demonstration fusion power reactor (DEMO). Following ITER, DEMO aims to confirm the capability of generating several hundred of MW of net electricity by 2050. The main objective of these activities is to develop an efficient and reliable remote handling (RH) system for replacing the divertor cassettes. This paper presents the preliminary results of the concept design of the divertor RH system. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections of 4 m each, and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative design of the end effector to grip and manipulate the divertor cassette are also presented in this work. Both the concepts are hydraulically actuated, basing on the ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. The main objective of this paper is to illustrate the feasibility of DEMO divertor remote maintenance operations.

  20. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    Science.gov (United States)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  1. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  2. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    Science.gov (United States)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  3. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  4. Preliminary studi on neutronic aspect of a conceptual design of the Kartini reactor base ADS facility

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2012-01-01

    A preliminary study on neutronic aspect of a conceptual design of ADS facility with the basis of Kartini Reaktor, has been performed. The study was intended to see the feasibility from neutronic point of view of Kartini reactor, to be used as a small scale of NPP’s waste transmutation experimental facility. A SRAC code was used as the basis of calculations. The results indicate that the presence of minor actinides (MA) will give a positive reactivity, which tends to increase with the increase of MA concentrations. Based on the defined criteria of subcriticality and by considering the core power distributions and the level of reactivity contribution of MA element, it is concluded that Kartini reactor is potential enough to be used as an ADS experimental facility, mainly for MA concentration between 30 to 50 % of the assumed mixture of C-MA matrix. (author)

  5. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Waris, A., E-mail: awaris@fi.itb.ac.id; Basar, K. [Nuclear Physics & Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia); Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia)

    2016-03-11

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  6. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    International Nuclear Information System (INIS)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility

  7. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    International Nuclear Information System (INIS)

    Waris, A.; Basar, K.; Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K.

    2016-01-01

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  8. The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO

    Energy Technology Data Exchange (ETDEWEB)

    Blair, D G; Barriga, P; Coward, D; Dumas, J-C; Fan, Y; Gras, S; Howell, E; Ju, L; Miao, H [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Brooks, A F; Hosken, D J; Munch, J; Veitch, P J [Department of Physics, The University of Adelaide, Adelaide, SA, 5005 Australia (Australia); Charlton, P [School of Computing and Mathematics, Charles Sturt University, NSW 2678 (Australia); Galloway, D [School of Mathematical Sciences, Monash University, Vic 3800 (Australia); Hughes, S [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); McClelland, D E; Scott, S M; Slagmolen, B J J [Department of Physics, Australian National University, Canberra, ACT 0200 (Australia); Melatos, A [School of Physics University of Melbourne, Parkville Vic 3010 Australia (Australia)], E-mail: dgb@physics.uwa.edu.au (and others)

    2008-07-15

    The proposed southern hemisphere gravitational wave detector AIGO increases the projected average baseline of the global array of ground based gravitational wave detectors by a factor {approx}4. This allows the world array to be substantially improved. The orientation of AIGO allows much better resolution of both wave polarisations. This enables better distance estimates for inspiral events, allowing unambiguous optical identification of host galaxies for about 25% of neutron star binary inspiral events. This can allow Hubble Law estimation without optical identification of an outburst, and can also allow deep exposure imaging with electromagnetic telescopes to search for weak afterglows. This allows independent estimates of cosmological acceleration and dark energy as well as improved understanding of the physics of neutron star and black hole coalescences. This paper reviews and summarises the science benefits of AIGO and presents a preliminary conceptual design.

  9. The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO

    International Nuclear Information System (INIS)

    Blair, D G; Barriga, P; Coward, D; Dumas, J-C; Fan, Y; Gras, S; Howell, E; Ju, L; Miao, H; Brooks, A F; Hosken, D J; Munch, J; Veitch, P J; Charlton, P; Galloway, D; Hughes, S; McClelland, D E; Scott, S M; Slagmolen, B J J; Melatos, A

    2008-01-01

    The proposed southern hemisphere gravitational wave detector AIGO increases the projected average baseline of the global array of ground based gravitational wave detectors by a factor ∼4. This allows the world array to be substantially improved. The orientation of AIGO allows much better resolution of both wave polarisations. This enables better distance estimates for inspiral events, allowing unambiguous optical identification of host galaxies for about 25% of neutron star binary inspiral events. This can allow Hubble Law estimation without optical identification of an outburst, and can also allow deep exposure imaging with electromagnetic telescopes to search for weak afterglows. This allows independent estimates of cosmological acceleration and dark energy as well as improved understanding of the physics of neutron star and black hole coalescences. This paper reviews and summarises the science benefits of AIGO and presents a preliminary conceptual design

  10. Design principle of TVO's final repository and preliminary adaptation to site specific conditions

    International Nuclear Information System (INIS)

    Salo, J-P.; Reikkola, R.

    1995-01-01

    Teollisuuden Voima Oy (TVO) is responsible for the management of spent fuel produced by the Olkiluoto power plant. TVO's current programme of spent fuel management is based on the guidelines and time schedule set by the Finnish Government. TVO has studied a final disposal concept in which the spent fuel bundles are encapsulated in copper canisters and emplaced in Finnish bedrock. According to the plan the final repository for spent fuel will be in operation by 2020. TVO's updated technical plans for the disposal of spent fuel together with a performance analysis (TVO-92) were submitted to the authorities in 1992. The paper describes the design principle of TVO's final repository and preliminary adaptation of the repository to site specific conditions. (author). 10 refs., 5 figs

  11. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, Giuseppe [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University Mediterranea of Reggio Calabria, Reggio Calabria (Italy); Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Gammino, Santo [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Sorbello, Gino [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University of Catania, Catania, Italy and INFN-LNS, Catania (Italy); Isernia, Tommaso [University Mediterranea of Reggio Calabria, Reggio Calabria (Italy)

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  12. Advanced Subsonic Technology (AST) 22-Inch Low Noise Research Fan Rig Preliminary Design of ADP-Type Fan 3

    Science.gov (United States)

    Jeracki, Robert J. (Technical Monitor); Topol, David A.; Ingram, Clint L.; Larkin, Michael J.; Roche, Charles H.; Thulin, Robert D.

    2004-01-01

    This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline.

  13. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.

    Science.gov (United States)

    O'Neill, Ciaran T; Phipps, Nathan S; Cappello, Leonardo; Paganoni, Sabrina; Walsh, Conor J

    2017-07-01

    In this paper, we present a soft wearable robot for the shoulder which has the potential to assist individuals suffering from a range of neuromuscular conditions affecting the shoulder to perform activities of daily living. This wearable robot combines two types of soft textile pneumatic actuators which were custom developed for this particular application to support the upper arm through shoulder abduction and horizontal flexion/extension. The advantage of a textile-based approach is that the robot can be lightweight, low-profile, comfortable and non-restrictive to the wearer, and easy to don like an item of clothing. The actuator's ability to fold flat when not in use allows the robot to be almost invisible under clothing, potentially allowing the user to avoid any stigma associated with using assistive devices in public. To abduct the arm, a textilebased pneumatic actuator was developed to fit within the axilla to push the arm upwards, while a pair of smaller actuators pivot the abduction actuator to allow for horizontal extension and flexion. The individual textile actuators were experimentally evaluated before being integrated into a wearable garment. Human subject testing was performed to evaluate the ability of the robot to assist the arm by monitoring changes in biological muscle activity when comparing the robot powered on and off. Preliminary results show large reductions in muscular effort in targeted muscles, demonstrating the feasibility and promise of such a soft wearable robot for the shoulder.

  14. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    Science.gov (United States)

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-07

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.

  15. Preliminary evaluation of PSCM and BIPP melter design and operating conditions using physical modeling

    International Nuclear Information System (INIS)

    Skarda, R.J.; Hauser, S.G.; Fort, J.A.

    1985-05-01

    The Glass Melter Physical Modeling investigation was initiated to support Pacific Northwest Laboratory (PNL) Hanford Waste Vitrification Program. Specifically, results discussed herein are those of the modeled B-Plant Immobilization Pilot Plant (BIPP) and Pilot Scale Ceramic Melter (PSCM) designs. The purpose of this study was to evaluate various melter design features using laboratory scale models. Hydrodynamic, thermal, and electrical similarity between the modeling fluid and the molten glass were primary objectives. Stroboscopic velocity measurements (flow visualization), temperature measurements, and electrical potential measurements were used to investigate the molten glass behavior. Results from this effort are to provide input to melter design and proposed operation in addition to providing a data base for verifying numerical models. 13 refs., 48 figs., 24 tabs

  16. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  17. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    Science.gov (United States)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  18. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  19. Preliminary conceptual design and cost estimation for Korea Advanced Pyroprocessing Facility Plus (KAPF+)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il, E-mail: nwiko@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Ho Hee, E-mail: nhhlee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Sungyeol, E-mail: csy@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Ki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Byung Heung, E-mail: b.h.park@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, In Tae, E-mail: nitkim@kaeri.re.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Han Soo, E-mail: hslee5@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-10-01

    Highlights: • Conceptual design is created for a pilot pyroprocessing plant treating PWR spent fuel. • Pilot-scale design is based on a capacity of 400 tHM/yr with 60 years lifetime. • All individual processes are integrated into a single system from feed to products. • Overall facility design is developed for a pilot pyroprocessing plant. • Unit process cost is estimated for pyroprocessing with uncertainties. - Abstract: Korea has developed pyroprocessing technology as a potential option for recycling spent fuels (SFs) from pressurized water reactors (PWRs). The pyroprocessing consists of various key unit processes and a number of research activities have been focused on each process. However, to realize the whole pyroprocessing concept, there is a critical need for integrating the individual developments and addressing a material flow from feed to final products. In addition, the advancement on overall facility design is an indispensable aspect for demonstration and commercialization of the pyroprocessing. In this study, a facility named as Korea Advanced Pyroprocess Facility Plus (KAPF+) is conceptualized with a capacity of 400 tHM/yr. The process steps are categorized based on their own characteristics while the capacities of process equipment are determined based on the current technical levels. The facility concept with a site layout of 104,000 m{sup 2} is developed by analyzing the operation conditions and materials treated in each process. As an economic approach to the proposed facility, the unit cost (781 $/kgHM denominated in 2009 USD) for KAPF+ is also analyzed with the conceptual design with preliminary sensitivity assessments including decontamination and decommissioning costs, a discount rate, staffing costs, and plant lifetime. While classifying and describing cost details of KAPF+, this study compares the unit cost of KAPF+ treating PWR SF to that of the pyroprocessing facility treating sodium-cooled fast reactor (SFR) SF.

  20. New shipyard layout design for the preliminary phase & case study for the green field project

    Science.gov (United States)

    Song, Young Joo; Woo, Jong Hun

    2013-03-01

    For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.

  1. New shipyard layout design for the preliminary phase & case study for the green field project

    Directory of Open Access Journals (Sweden)

    Young Joo Song

    2013-03-01

    Full Text Available For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.

  2. Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

  3. Preliminary design of a small air loop for system analysis and validation of Cathare code

    International Nuclear Information System (INIS)

    Marchand, M.; Saez, M.; Tauveron, N.; Tenchine, D.; Germain, T.; Geffraye, G.; Ruby, G.P.

    2007-01-01

    The French Atomic Energy Commission (Cea) is carrying on the design of a Small Air Loop for System Analysis (SALSA), devoted to the study of gas cooled nuclear reactors behaviour in normal and incidental/accidental operating conditions. The reduced size of the SALSA components compared to a full-scale reactor and air as gaseous coolant instead of Helium will allow an easy management of the loop. The main purpose of SALSA will be the validation of the associated thermal hydraulic safety simulation codes, like CATHARE. The main goal of this paper is to present the methodology used to define the characteristics of the loop. In a first step, the study has been focused on a direct-cycle system for the SALSA loop with few global constraints using a similarity analysis to support the definition and design of the loop. Similarity requirements have been evaluated to determine the scale factors which have to be applied to the SALSA loop components. The preliminary conceptual design of the SALSA plant with a definition of each component has then be carried out. The whole plant has been modelled using the CATHARE code. Calculations of the SALSA steady-state in nominal conditions and of different plant transients in direct-cycle have been made. The first system results obtained on the global behaviour of the loop confirm that SALSA can be representative of a Gas-Cooled nuclear reactor with some minor design modifications. In a second step, the current prospects focus on the SALSA loop capability to reproduce correctly the heat transfer occurring in specific incidental situations. Heat decay removal by natural convection is a crucial point of interest. The first results show that the behaviour and the efficiency of the loop are strongly influenced by the definition of the main parameters for each component. A complete definition of SALSA is under progress. (authors)

  4. Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Kim, Min Gil; Bae, Seong Jun; Lee, Jeong Ik

    2013-01-01

    This paper suggests a complete modular reactor with an innovative concept of reactor cooling by using a supercritical carbon dioxide directly. Authors propose the supercritical CO 2 Brayton cycle (S-CO 2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the core and PCU in one vessel for the full modularization. This study suggests a conceptual design of small modular reactor including PCU which is named as KAIST Micro Modular Reactor (MMR). As a part of ongoing research of conceptual design of KAIST MMR, preliminary design of power generation cycle was performed in this study. Since the targets of MMR are full modularization of a reactor system with S-CO 2 coolant, authors selected a simple recuperated S-CO 2 Brayton cycle as a power conversion system for KAIST MMR. The size of components of the S-CO 2 cycle is much smaller than existing helium Brayton cycle and steam Rankine cycle, and whole power conversion system can be contained with core and safety system in one containment vessel. From the investigation of the power conversion cycle, recompressing recuperated cycle showed higher efficiency than the simple recuperated cycle. However the volume of heat exchanger for recompressing cycle is too large so more space will be occupied by heat exchanger in the recompressing cycle than the simple recuperated cycle. Thus, authors consider that the simple recuperated cycle is more suitable for MMR. More research for the KAIST MMR will be followed in the future and detailed information of reactor core and safety system will be developed down the road. More refined cycle layout and design of turbomachinery and heat exchanger will be performed in the future study

  5. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    Science.gov (United States)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  6. The neutral beam test facility cryopumping operation: preliminary analysis and design of the cryogenic system

    International Nuclear Information System (INIS)

    Gravil, B.; Henry, D.; Cordier, J.J.; Hemsworth, R.; Van Houtte, D.

    2004-01-01

    The ITER neutral beam heating and current drive system is to be equipped with a cryosorption cryopump made up of 12 panels connected in parallel, refrigerated by 4.5 K 0.4 MPa supercritical helium. The pump is submitted to a non homogeneous flux of H 2 or D 2 molecules, and the absorbed flux varies from 3 Pa.m -3 .s -1 to 35 Pa.m -3 .s -1 . In the frame of the 'ITER first injector and test facility CSU-EFDA task' (TW3-THHN-IITF1), the ITER reference cryo-system and cryo-plant designs have been assessed and compared to optimised designs devoted to the Neutral Beam Test Facility (NBTF). The 4.5 K cryo-panel, which has a mass of about 1000 kg, must be periodically regenerated up to 90 K and occasionally to 470 K. The cool-down time after regeneration depends strongly on the refrigeration capacity. Fast regeneration and cool-down of the cryo-panels are not considered a priority for the test facility operation, and an analysis of the consequences of a limited cold power refrigerator on the cooling down time has been carried out and will be discussed. This paper presents a preliminary evaluation of the NBTF cryo-plant and the associated process flow diagram. (authors)

  7. Preliminary design report for prototypical spent nuclear fuel rod consolidation equipment

    International Nuclear Information System (INIS)

    Judson, B.F.; Maillet, J.; O'Neill, G.L.; Tsitsichvili, J.; Tucoulat, D.

    1986-12-01

    The purpose of the Prototypical Consolidation Demonstration Project (PCDP) is to develop and demonstrate the equipment system that will be used to consolidate the bulk of the spent nuclear fuel generated in the United States prior to its placement in a geological repository. The equipment must thus be capable of operating on a routine production basis over a long period of time with stringent requirements for safety, reliability, productivity and cost-effectiveness. Four phases are planned for the PCDP. Phase 1 is the Preliminary Design of generic consolidation equipment that could be installed at a Monitored Retrievable Storage (MRS) facility or in the Receiving ampersand Handling Facility at a geologic repository site. Phase 2 will be the Final Design and preparation of procurement packages for the equipment in a configuration capable of being installed and tested in a special enclosure within the TAN Hot Shop at DOE's Idaho National Engineering Laboratory. In Phase 3 the equipment will be fabricated and then tested with mock fuel elements in a contractor's facility. Finally, in Phase 4 the equipment will be moved to the TAN facility for demonstration operation with irradiated spent fuel elements. 55 figs., 15 tabs

  8. Preliminary Design and Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine Blade

    International Nuclear Information System (INIS)

    Jeong, Wi S.; Kim, Tae W.; Suh, Kune Y.

    2007-01-01

    The supercritical gas turbine Brayton cycle has been adopted in the secondary loop of the Generation IV Nuclear Energy Systems, and planned to be installed in power conversion cycles of the nuclear fusion reactors as well. The supercritical carbon dioxide (SCO 2 ) is one of widely considered fluids for this concept. The potential beneficiaries include the Secure Transportable Autonomous Reactor- Liquid Metal (STAR-LM), the Korea Advanced Liquid Metal Reactor (KALIMER) and Battery Omnibus Reactor Integral System (BORIS) which is being developed at the Seoul National University. The reason for these welcomed applications is that the SCO 2 Brayton cycle can achieve higher overall energy conversion efficiency than the steam turbine Rankine cycle. Seoul National University has recently been working on the SCO 2 based Modular Optimized Brayton Integral System (MOBIS). The MOBIS design power conversion efficiency is about 45%. Gas turbine design is crucial part in achieving this high efficiency. In this paper, the preliminary analysis on first stage of gas turbine was performed using CFX as a solver

  9. A novel ultra-short scanning nuclear microprobe: Design and preliminary results

    International Nuclear Information System (INIS)

    Lebed, S.; Butz, T.; Vogt, J.; Reinert, T.; Spemann, D.; Heitmann, J.; Stachura, Z.; Lekki, J.; Potempa, A.; Styczen, J.; Sulkio-Cleff, B.

    2001-01-01

    The paper describes an optimized scanning nuclear microprobe (MP) with a new ultra-short (total length of 1.85 m) probe forming system based on a divided Russian quadruplet (DRQ) of magnetic quadrupole lenses. Modern electrostatic accelerators have a comparatively high beam brightness of about 10-25 pA/μm 2 /mrad 2 /MeV. This allows the MP proposed to provide a high lateral resolution even with large (1%) parasitic (sextupole and octupole) pole tip field components in all lenses. The features of the design permit the MP operation in the high current and low current modes with a short working distance and inexpensive quadrupole lenses. A new quadrupole doublet design has been developed for the MP. In the present work the calculated features of the new MP are compared with preliminary experimental results obtained with a similar system (total length of 2.3 m) at the INP in Cracow. The new MP is promising for studies of solids or biological samples with high resolutions (0.08-2 μm) in both modes under ambient conditions. A vertical version of the ultra-short MP can be very useful for single ion bombardments of living cells

  10. Preliminary design and economic investigations of Diffuser-Augmented Wind Turbines (DAWT)

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, K.M.

    1981-12-01

    A preferred design and configuration approach is suggested for the DAWT innovative wind energy conversion system. A preliminary economic asessment is made for limited production rates of units between 5 and 150 kw rated output. Nine point designs are used to arrive at the conclusions regarding best construction material for the diffuser and busbar cost of electricity (COE). It is estimated that for farm and REA cooperative end users, the COE can range between 2 and 3.5 cents/kWh for sites with annual average wind speeds of 16 and 12 mph (25.7 and 19.3 km/h) respectively, and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units the COE ranges between 4.0 and 6.5 cents/kWh for 16 and 12 mph sites. These estimates in 1979 dollars are lower than DOE goals set in 1978 for the rating size and end applications. Recommendations are made for future activities to maintain steady, systematic progress toward mature development of the DAWT.

  11. Preliminary conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR). Status report, January 1978--March 1978

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-03-01

    The DTHR preliminary conceptual design consists of a magnetically confined fusion reactor fitted with a fertile thorium blanket. The fusion driver concept is based on a beam driven plasma, but at sufficiently high plasma densities that neutrons originating from the interactions of bulk plasma ions contribute significantly to the wall loading. The tokamak has a major radius of 5.2 m, a minor radius of 1.2 m, and the elongation is 1.6. All of the magnetic coil systems are superconducting Nb 3 Sn based on the Large Coil Project (LCP) technology. The toroidal field (TF) coils employ an innovative concept, the ''compact D'' configuration. An engineered bundle divertor concept has been developed based on the bundle divertor design techniques developed for TNS and ISX-B. A thermal power of 150MW of 200 keV deuterium is injected into the plasma through six ducts of a positive ion, neutral beam injection system (NBIS). A water cooled, 316 stainless steel vacuum vessel concept was developed and initial scoping analyses look encouraging. The fusile fuel handling system was evaluated and defined. Details of the tritium injection system remain to be developed. Tritium breeding will be assessed in subsequent phases of the DTHR operation. The fusion driver provides a neutron first wall loading of 2MW/m 2 for fissile production in the blanket

  12. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  13. Triangular SPECT system for 3-D total organ volume imaging: Design concept and preliminary imaging results

    International Nuclear Information System (INIS)

    Lim, C.B.; Anderson, J.; Covic, J.

    1985-01-01

    SPECT systems based on 2-D detectors for projection data collection and filtered back-projection image reconstruction have the potential for true 3-D imaging, providing contiguous slice images in any orientation. Anger camera-based SPECT systems have the natural advantage supporting planar imaging clinical procedures. However, current systems suffer from two drawbacks; poor utilization of emitted photons, and inadequate system design for SPECT. A SPECT system consisting of three rectangular cameras with radial translation would offer the variable cylindrical FOV of 25 cm to 40 cm diameter allowing close detector access to the object. This system would provide optimized imaging for both brain and body organs in terms of sensitivity and resolution. For brain imaging a tight detector triangle with fan beam collimation, matching detector UFOV to the head, allows full 2 π utilization of emitted photons, resulting in >4 times sensitivity increase over the single detector system. Minification of intrinsic detector resolution in fan beam collimation further improves system resolution. For body organ imaging the three detectors with parallel hole collimators, rotating in non-circular orbit, provide both improved resolution and three-fold sensitivity increase. Practical challenges lie in ensuring perfect image overlap from three detectors without resolution degradation and artifact generation in order to benefit from the above improvements. An experimental system has been developed to test the above imaging concept and we have successfully demonstrated the superior image quality of the overlapped images. Design concept will be presented with preliminary imaging results

  14. Preliminary Core Design Analysis of a 200MWth Pebble Bed-type VHTR

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man

    2007-01-01

    This paper intends to suggest the preliminary core design analysis of a VHTR for a hydrogen production. The nuclear hydrogen system that utilizes the high temperature heat generated from the VHTR is a promising candidate for a cost effective, safe and clean supply of hydrogen in the age of hydrogen economy. Among two candidate VHTR cores, that is, a prismatic modular reactor (PMR) and a pebble bed-type reactor (PBR), we focus on the design of a 200MWth PBR (hereinafter PBR200) in this paper. Here, the 200MWth power is selected for a demonstration plant. The core configuration of the PBR200 is similar to the PBMR (Pebble Bed Modular Reactor, 400MWth) of South Africa, but the overall dimension of the reactor system is scaled-down. This paper is to suggest two candidate PBR200 cores. One is an annular core with an inner reflector (PBR200-CD1) which was presented at IWRES07, and the other is a cylindrical core without an inner reflector (PBR200-CD2)

  15. New technologies and new performances of the JCMT radio-telescope: a preliminary design study

    Science.gov (United States)

    Mian, S.; De Lorenzi, S.; Ghedin, L.; Rampini, F.; Marchiori, G.; Craig, S.

    2012-09-01

    With a diameter of 15m the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimeter wavelength region of the spectrum. It is situated close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. Its primary reflector currently consists of a steel geodesic supporting structure and pressed aluminium panels on a passive mount. The major issues of the present reflector are its thermal stability and its panels deterioration. A preliminary design study for the replacement of the JCMT antenna dish is here presented. The requested shape error for the new reflector is <20μm RMS. The proposed solution is based on a semi-monocoque backing structure made of CFRP and on high precision electroformed panels. The choice of CFRP for the backing structure allows indeed to improve the antenna performance in terms of both stiffness and thermal stability, so that the required surface accuracy of the primary can be achieved even by adopting a passive panels system. Moreover thanks to CFRP, a considerable weight reduction of the elevation structure can be attained. The performance of the proposed solution for the JCMT antenna has been investigated through FE analyses and the assessed deformation of the structure under different loading cases has been taken into account for subsequent error budgeting. Results show that the proposed solution is in line with the requested performance. With this new backing structure, the JCMT would have the largest CFRP reflector ever built.

  16. Preliminary design of a low-cost greenhouse for salt production in Indonesia

    Science.gov (United States)

    Jaziri, A. A.; Guntur; Setiawan, W.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    Salt is an assential material of industry, not only in food industry point of view but also in various industries such as chemical, oil drilling, and animal feed industries, even less than half of salt needs used to household consumption. It is crucial to ensure salt production in Indonesia reaches the national target (3.7 million tons) due to relatively low technology and production level. Thus salt production technology is developed to facilitate farmers consisted of geomembrane and filtering-threaded technology. However, the use of those technologies in producing salt was proved less effective due to unpredictable weather conditions. Therefore, greenhouse technology is proposed to be used for salt production for several good reasons. This paper describes the preliminary design of a low-cost greenhouse designed as a pyramid model that uses bamboo, mono-layer and high density polyethylene plastics. The results confirmed that the yield of salt produced by greenhouse significantly incresed compared with prior technology and the NaCl content increased as well. The cost of greenhouse was IDR 5,688,000 and easy to assembly.

  17. Preliminary conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR). Status report, January 1978--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.L. (ed.)

    1978-03-01

    The DTHR preliminary conceptual design consists of a magnetically confined fusion reactor fitted with a fertile thorium blanket. The fusion driver concept is based on a beam driven plasma, but at sufficiently high plasma densities that neutrons originating from the interactions of bulk plasma ions contribute significantly to the wall loading. The tokamak has a major radius of 5.2 m, a minor radius of 1.2 m, and the elongation is 1.6. All of the magnetic coil systems are superconducting Nb/sub 3/Sn based on the Large Coil Project (LCP) technology. The toroidal field (TF) coils employ an innovative concept, the ''compact D'' configuration. An engineered bundle divertor concept has been developed based on the bundle divertor design techniques developed for TNS and ISX-B. A thermal power of 150MW of 200 keV deuterium is injected into the plasma through six ducts of a positive ion, neutral beam injection system (NBIS). A water cooled, 316 stainless steel vacuum vessel concept was developed and initial scoping analyses look encouraging. The fusile fuel handling system was evaluated and defined. Details of the tritium injection system remain to be developed. Tritium breeding will be assessed in subsequent phases of the DTHR operation. The fusion driver provides a neutron first wall loading of 2MW/m/sup 2/ for fissile production in the blanket.

  18. Research on the Reform of the Preliminary Course of Architectural Design Based on Innovation & Practice Ability Training

    Science.gov (United States)

    Yuping, Cai; Shuang, Liang

    2017-01-01

    The traditional undergraduate education mode of architecture has been unable to adapt to the rapid development of society. Taking the junior professional course of architecture--the preliminary course of architectural design as an example, this paper analyzes the problems existing in the current professional courses of lower grades, puts forward…

  19. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  20. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  1. A fast-track preliminary thermo-mechanical design of oil export pipelines from P-56 platform

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Rafael F.; Mendonca, Salete M. de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Franco, Luciano D.; Walker, Alastair; El-Gebaly, Sherif H. [INTECSEA, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The oil export pipelines of Marlim Sul field Module 3, Campus Basin, offshore Brazil, will operate in high pressure and temperature conditions, and will be laid on seabed crossing ten previously laid pipelines along the routes. In terms of thermo-mechanical design, these conditions turn out to be great challenges. In order to obtain initial results and recommendations for detail design, a preliminary thermo-mechanical design of pipelines was carried out as a fast-track design before the bid. This way, PETROBRAS can assess and emphasize the susceptibility of these lines to lateral buckling and pipeline walking behavior. Therefore, PETROBRAS can present a preliminary mitigation strategy for lateral buckling showing solutions based on displacement controlled criteria and by introducing buckle initiation along the pipeline using distribution buoyancy. Besides that, axial displacements and loads at the pipeline ends can be furnished also in order to provide a basis for the detailed design. The work reported in this paper follows the SAFEBUCK JIP methodology and recommendation, which were used to determine the allowable strain and maximum allowable VAS (Virtual Anchor Spacing) considered in the buckling mitigation strategy. The paper presents also the formation of uncontrolled buckles on the seabed and the propensity for pipeline walking in its sections between buckles. The buckling mitigation strategy established in this preliminary design confirms that the oil pipeline specifications are adequate to maintain integrity during design life. (author)

  2. How the dual process model of human cognition can inform efforts to de-implement ineffective and harmful clinical practices: A preliminary model of unlearning and substitution.

    Science.gov (United States)

    Helfrich, Christian D; Rose, Adam J; Hartmann, Christine W; van Bodegom-Vos, Leti; Graham, Ian D; Wood, Suzanne J; Majerczyk, Barbara R; Good, Chester B; Pogach, Leonard M; Ball, Sherry L; Au, David H; Aron, David C

    2018-02-01

    account the dual process model of cognition, we may be able to design de-implementation strategies matched to clinicians' decision-making processes and avoid unintended consequence. © 2018 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons, Ltd.

  3. Designing Interventions that Last: A Classification of Environmental Behaviors in Relation to the Activities, Costs, and Effort Involved for Adoption and Maintenance

    Science.gov (United States)

    Moore, Harriet E.; Boldero, Jennifer

    2017-01-01

    Policy makers draw on behavioral research to design interventions that promote the voluntary adoption of environmental behavior in societies. Many environmental behaviors will only be effective if they are maintained over the long-term. In the context of climate change and concerns about future water security, behaviors that involve reducing energy consumption and improving water quality must be continued indefinitely to mitigate global warming and preserve scarce resources. Previous reviews of environmental behavior have focused exclusively on factors related to adoption. This review investigates the factors that influence both adoption and maintenance, and presents a classification of environmental behaviors in terms of the activities, costs, and effort required for both adoption and maintenance. Three categories of behavior are suggested. One-off behaviors involve performing an activity once, such as purchasing an energy efficient washing machine, or signing a petition. Continuous behaviors involve the performance of the same set of behaviors for adoption and for maintenance, such as curbside recycling. Dynamic behaviors involve the performance of different behaviors for adoption and maintenance, such as revegetation. Behaviors can also be classified into four categories related to cost and effort: those that involve little cost and effort for adoption and maintenance, those that involve moderate cost and effort for adoption and maintenance, those that involve a high cost or effort for adoption and less for maintenance, and those that involve less cost or effort for adoption and a higher amount for maintenance. In order to design interventions that last, policy makers should consider the factors that influence the maintenance as well as the adoption of environmental behaviors. PMID:29163265

  4. The Process of Planning and Designing Research for an Educational Telecommunications Effort. Satellite Technology Demonstration, Technical Report No. 0209.

    Science.gov (United States)

    Connolly, A. J.; And Others

    The Satellite Technology Demonstration (STD) designed research for a satellite-based communication system that would transmit educational television programs. Their procedures were subject to a series of external and internal evaluations by the project sponsors, the National Institute of Education. In regard to external evaluation, STD recommended…

  5. Suspended-Bed Reactor preliminary design, 233U--232Th cycle. Final report (revised)

    International Nuclear Information System (INIS)

    Karam, R.A.; Alapour, A.; Lee, C.C.

    1977-11-01

    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 μ thick, (2) silicon carbide pressure vessel, 30 μ thick, and (3) ZrC layer, 50 μ thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particles is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems

  6. Overview of the preliminary design of the ITER plasma control system

    Science.gov (United States)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2017-12-01

    An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.

  7. Kinetics experiments and bench-scale system: Background, design, and preliminary experiments

    International Nuclear Information System (INIS)

    Rofer, C.K.

    1987-10-01

    The project, Supercritical Water Oxidation of Hazardous Chemical Waste, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to obtain information for use in understanding the basic technology and for scaling up and applying oxidation in supercritical water as a viable process for treating a variety of DOE-DP waste streams. This report gives the background and rationale for kinetics experiments on oxidation in supercritical water being carried out as a part of this HAZWRAP Research and Development task. It discusses supercritical fluid properties and their relevance to applying this process to the destruction of hazardous wastes. An overview is given of the small emerging industry based on applications of supercritical water oxidation. Factors that could lead to additional applications are listed. Modeling studies are described as a basis for the experimental design. The report describes plug flow reactor and batch reactor systems, and presents preliminary results. 28 refs., 4 figs., 5 tabs

  8. Preliminary design of a production automation framework for a pyroprocessing facility

    Directory of Open Access Journals (Sweden)

    Moonsoo Shin

    2018-04-01

    Full Text Available Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided. Keywords: Manufacturing Execution System, Material-handling, Production Automation, Production Planning and Control, Pyroprocessing, Pyroprocessing Execution System

  9. Preliminary power supply design for the TF coil system of CIT

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Huttar, D.

    1989-01-01

    Initial operation of the Compact Ignition Tokamak (CIT) is planned with a Toroidal Field (TF) of 8 Tesla and a flat top duration of 5 seconds. Ultimately, operation will be extended beyond 8 Tesla. The power supply to be used for the initial phase of operation has been modeled using the parameters of the thyristor rectifier power supplies which are now in service for the Tokamak Fusion Test Reactor (TFTR). A subset of these existing units, or perhaps new units with similar ratings, are envisioned to be connected to the existing 138kV transmission line serving PPPL so as to take advantage of this power source for CIT. For the extended operation phase the equipment used for the initial phase of TF operation will be augmented with new equipment to permit operation up to 11 Tesla. This paper describes the preliminary design for the 8 Tesla power supply and presents results from simulation studies. In addition, issues concerning transient behavior and fault modes are discussed. 4 refs., 12 figs

  10. Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling

    International Nuclear Information System (INIS)

    Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo

    2017-01-01

    Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)

  11. Preliminary Report: DESiGN and Test Result of KSR-3 Rocket Magnetometers

    Directory of Open Access Journals (Sweden)

    Hyo-Min Kim

    2000-12-01

    Full Text Available The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for a scientific purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field. The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  12. Preliminary design of the beam loss monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Patterson, D.R.

    1992-01-01

    The preliminary design of the beam loss monitor for the ANL Advanced Photon Source is based on the use of an air dielectric coaxial cable as a long ionization chamber. Each coaxial cable section uses a high sensitivity DC current-to-voltage converter with both linear and integrating ranges. Pulse timing circuits determine the positions of individual losses by measuring the time at which the resulting voltage pulses arrive at the beginning of the coaxial ionization chamber. A possible timing ambiguity can be removed by correlating the particle bunch timing with the resulting voltage pulse timing. Measurements have shown that pulse rise times less than 15 nanoseconds can be obtained, so that determining loss locations to better than 7 feet may be possible. Best performance may be obtained when 500 VDC is applied to a 50-ohm, 7/8-inch air dielectric coaxial cable filled with approximately 8 psig of a 95% argon, 5% carbon dioxide gas mixture. Cable lengths will be between 100 and 300 feet long, depending on the part of the accelerator being monitored

  13. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  14. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  15. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    Science.gov (United States)

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  16. Georgetown University Integrated Community Energy System (GU-ICES). Phase III, Stage II. Preliminary design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    Results are presented for two elements in the Georgetown University ICES program - the installation of a 2500-kW backpressure steam-turbine generator within a new extension to the heating and cooling plant (cogeneration) and the provision of four additional ash silos for the university's atmospheric fluidized-bed boiler plant (added storage scheme). The preliminary design and supporting documentation for the work items and architectural drawings are presented. Section 1 discusses the basis for the report, followed by sections on: feasibility analysis update; preliminary design documents; instrumentation and testing; revised work management plan; and appendices including outline constructions, turbine-generator prepurchase specification, design calculations, cost estimates, and Potomac Electric Company data. (MCW)

  17. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    Science.gov (United States)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  18. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  19. Preliminary Design of Molecular Sieve for Removing Organic Iodide in Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tong Kyu; Shin, So Eun; Lee, Byung Chul [Heungdeok IT Valley Bldg., Yongin (Korea, Republic of); Kim, Hong Hyun; Lee, Kyung Jun [Gemvax and KAEL Inc., Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, to increase the DF for gaseous iodine species, especially organic iodide, molecular sieve filled by silver exchanged zeolites is proposed and designed preliminarily. Its aerodynamic analysis is also performed and presented. In order to increase the DF for gaseous organic iodide, deep-bed type molecular sieve was proposed and designed preliminarily. Total 1,620kg of silver exchanged zeolites were filled evenly in 10 beds of the molecular sieve. The safety factor in the case of 20m{sup 3}/s will be smaller than the counterpart of the standard case (6m{sup 3}/s). However, if the adsorption capacity of the zeolites is larger than 3.09mg/g when the residence time is 0.09 second, the designed molecular sieve can be used at 20m3/s of volumetric flow rate. The removal efficiency for organic iodide should be considered as well as economical aspects in the design of molecular sieve. In the event of nuclear power plant (NPP) severe accident, the nuclear reactor containment might suffer damage resulting from overpressure caused by decay heat. In order to prevent this containment damage, containment venting has been considered as one of effective methods. However, since vented gases contain radioactive fission products, they should be filtered to be released to environment. Generally, containment filtered venting system (CFVS) is installed on NPP to achieve this aim. Even though great amount of efforts have been devoted to developing the CFVS using various filtering methods, the decontaminant factor (DF) for radioactive gaseous iodide is still unsatisfactory while DFs for radioactive aerosols and elemental iodine are very high.

  20. Preliminary conceptual design for the destruction of organic/ferrocyanide constituents in the Hanford tank waste with low-temperature hydrothermal processing

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Jones, E.O.; Orth, R.J.; Cox, J.L.; Elmore, M.E.; Neuenschwander, G.G.; Hart, T.R.; Meng, C.D.

    1993-05-01

    Hydrothermal processing (HTP) is a thermal-chemical processing method that can be employed to destroy organic and ferrocyanide constituents in Hanford tank waste by using the abundant existing oxidants in the tank waste such as nitrite and nitrate. Use-temperature HTP effectively destroys organics at temperatures from 250 degree C to 400 degree C to eliminate safety hazards and improve further processing. This proposal describes a conceptual design of a low-temperature HTP system (including a preliminary flow diagram and plot plan, equipment descriptions and sizes, utility requirements, and costs); the experimental work supporting this effort at Pacific Northwest Laboratory (PNL); the reaction chemistry and kinetics; the technical maturity of the process; and a preliminary assessment of maintenance, operation, and safety of a system. Nitrate destruction using organic reductants is also described. The low-temperature hydrothermal program at PNL was initiated in January 1993. It is part of an overall program to develop organic destruction technologies, which was originally funded by Hanford's Tank Waste Remediation System program and then was transferred to the Initial Pretreatment (IPM) project. As described in the document, low-temperature HTP (1) meets or exceeds system requirements in organic, ferrocyanide, and nitrate destruction, and processing rate; (2) is technically mature with little additional technology development required; (3) is a simple process with good operational reliability; (4) is flexible and can be easily integrated in the system; (5) has reasonable costs and utility requirements; and (6) is safe and environmentally-benign

  1. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs

  2. Preliminary Characterization and Analysis of the Designs and Research-Manufacturing Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Gwendolyn Cheney; Williams Dawson; Michael Cobb; Kirby Meacham; James Stephan; Bob Remick; Harlan Anderson; Wayne Huebner; Aaron Crumm; John Holloran; Tim Armstrong

    2000-10-30

    This report summarizes the results of Phase I of a study entitled, Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells. The work was carried out by a group called the Multilayer Fuel Cell Alliance (MLFCA) led by NexTech Materials and including Adaptive Materials, Advanced Materials Technologies (AMT), Cobb & Co., Edison Materials Technology Center, Iowa State University, Gas Technology Institute (GTI), Northwestern University, Oak Ridge National Laboratory (ORNL), Ohio State University, University of Missouri-Rolla (UMR), and Wright-Patterson Air Force Base. The objective of the program is to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. In the Phase I effort, five approaches were considered: two based on NexTech's planar approach using anode and cathode supported variations, one based on UMR's ultra-thin electrolyte approach, and two based on AMI's co-extrusion technology. Based on a detailed manufacturing cost analysis, all of the approaches are projected to result in a significantly reduced production cost. Projected costs range from $139/kW to $179/kW for planar designs. Development risks were assessed for each approach and it was determined that the NexTech and UMR approaches carried the least risk for successful development. Using advanced manufacturing methods and a proprietary high power density design, the team estimated that production costs could be reduced to $94/kW.

  3. Methodology for the preliminary design of high performance schools in hot and humid climates

    Science.gov (United States)

    Im, Piljae

    A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: (1) Using an actual 2006 weather file with measured solar radiation, (2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, (3) Using actual equipment performance curves (i.e., scroll chiller), (4) Using the Winkelmann's method for the underground floor heat transfer, and (5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 code-compliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K-12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net

  4. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume V. Vacuum-pumping system. Preliminary design report

    International Nuclear Information System (INIS)

    1982-01-01

    This report summarizes Title I Preliminary Design of the EBT-P Vacuum Pumping System. The Vacuum Pumping System has been designed by the McDonnell Douglas Astronautics Co. - St. Louis (MDAC). It includes the necessary vacuum pumps and vacuum valves to evacuate the torus, the Mirror Coil Dewars (MC Dewars), and the Gyrotron Magnet Dewars. The pumping ducts, manifolds, and microwave protection system are also included. A summary of the function of each subsystem and a description of its principle components is provided below. The analyses performed during the system design are also identified

  5. Queueing in a spent fuel transportation system - preliminary analysis of implications for system design

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Wood, T.W.

    1985-01-01

    Compliance with the Nuclear Waste Policy Act of 1982 (PL 97-425) will require the transportation of large volumes of spent fuel to a central receiving facility (either a geologic repository or a monitored retrievable storage facility). Decisions on the transport mode and technology will evolve over the next several years, in anticipation of the deployment of a receiving facility in the late 1990s. Regardless of the particular transportation mode or modes and the details of cask technology, the transport system from many diverse sources to a single point will generate an essentially random arrival pattern. This random arrival pattern will lead to the formation of queues at the receiving facility. As is normal in any queueing system, the waiting time distribution caused by this queueing will depend on the receiving facility input processing rate and the characteristics of the traffic. Since this is a cyclic system, there is also a reverse effect in which (for a given size cask fleet) average wait time affects traffic intensity. Both effects must be accounted for to properly represent the system. This paper develops a simple analytic queueing model which accounts for both of these effects simultaneously. Since both effects are determined by receiving facility input rates and cask fleet size and characteristics, two major sets of system design parameters are linked by the queueing process. The model is used with estimated traffic and service parameters to predict the severity of queueing under plausible reference system conditions, and to establish shadow prices for the trade off between larger cask fleets and more efficient receiving facilities. Since many of the parameter values used in this estimation are quite preliminary, these results are presented primarily in the context of demonstrating the utility of the queueing model for future trade off studies

  6. Queueing in a spent fuel transportation system: a preliminary analysis of implications for system design

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Wood, T.W.

    1985-03-01

    Compliance with the Nuclear Waste Policy Act of 1982 (PL 97-425) will require the transportation of large volumes of spent fuel to a central receiving facility (Either a geologic repository or a monitored retrievable storage facility). Decisions on the transport mode and technology will evolve over the next several years, in anticipation of the deployment of a receiving facility in the late 1990s. Regardless of the particular transportation mode or modes and the details of cask technology, the transport system from many diverse sources to a single point will generate an essentially random arrival pattern. This random arrival pattern will lead to the formation of queues at the receiving facility. As is normal in any queueing system, the waiting time distribution caused by this queueing will depend on the receiving facility input processing rate and the characteristics of the traffic. Since this is a cyclic system, there is also a reverse effect in which (for a given size cask fleet) average wait time affects traffic intensity. Both effects must be accounted for to properly represent the system. This paper develops a simple analytic queueing model which accounts for both of these effects simultaneously. Since both effects are determined by receiving facility input and cask fleet size characteristics, two major sets of system design parameters are linked by the queueing process. The model is used with estimated traffic and service parameters to predict the severity of queueing under plausible reference system conditions, and to establish ''shadow prices'' for the trade off between larger cask fleets and more efficient receiving facilities. Since many of the parameter values used in this estimation are quite preliminary, these results are presented primarily in the context of demonstrating the utility of the queueing model for future trade off studies. 5 refs., 5 figs., 2 tabs

  7. Minimally invasive strabismus surgery versus paralimbal approach: A randomized, parallel design study is minimally invasive strabismus surgery worth the effort?

    Directory of Open Access Journals (Sweden)

    Richa Sharma

    2014-01-01

    Full Text Available Introduction : Minimal access surgery is common in all fields of medicine. We compared a new minimally invasive strabismus surgery (MISS approach with a standard paralimbal strabismus surgery (SPSS approach in terms of post-operative course. Materials and Methods: This parallel design study was done on 28 eyes of 14 patients, in which one eye was randomized to MISS and the other to SPSS. MISS was performed by giving two conjunctival incisions parallel to the horizontal rectus muscles; performing recession or resection below the conjunctival strip so obtained. We compared post-operative redness, congestion, chemosis, foreign body sensation (FBS, and drop intolerance (DI on a graded scale of 0 to 3 on post-operative day 1, at 2-3 weeks, and 6 weeks. In addition, all scores were added to obtain a total inflammatory score (TIS. Statistical Analysis: Inflammatory scores were analyzed using Wilcoxon′s signed rank test. Results: On the first post-operative day, only FBS (P = 0.01 and TIS (P = 0.04 showed significant difference favoring MISS. At 2-3 weeks, redness (P = 0.04, congestion (P = 0.04, FBS (P = 0.02, and TIS (P = 0.04 were significantly less in MISS eye. At 6 weeks, only redness (P = 0.04 and TIS (P = 0.05 were significantly less. Conclusion: MISS is more comfortable in the immediate post-operative period and provides better cosmesis in the intermediate period.

  8. Preliminary Design of Supercritical CO{sub 2} Radial Turbine for Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Kuk; Lee, Jekyoung; Kim, Seong Gu; Lee, Jeong Ik [KAIST (Korea, Republic of); Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The KAIST research team suggested an innovative concept of SMR called KAIST Micro Modular Reactor (MMR). It is aimed for achieving complete modularization of a nuclear power plant including the Power Conversion Unit (PCU) for simple transportation and installation. In consideration of the maintenance, S-CO{sub 2} has superior characteristic to the light water because it is less corrosive. Table I represents summary of the main design results of KAIST MMR. As such efforts the study on S-CO{sub 2} turbomachinery has been actively conducted because the S-CO{sub 2} Brayton cycle operates under extreme conditions such as high rotational speed, high pressure, and dramatic change of thermodynamic properties near the critical point (30.98 .deg. C, 7377kPa). To achieve higher thermal efficiency, the operation near the critical point is prerequisite in the S-CO{sub 2} Brayton cycle. For these reasons, research works on the S-CO{sub 2} turbomachinery naturally have been focused on the compressor which operates near the critical point. Due to the absence of loss models in S-CO{sub 2} field, loss models with air turbine were first utilized to design and predict the off design performance of a S-CO{sub 2} turbine. To check propriety of the code logic the code results compared with experimental data measured in air condition. The predicted values showed good agreement with the experiment data. Lastly, performance maps for S-CO{sub 2} turbine for the MMR were generated with change of mass flow rate and rotational speed.

  9. Extensions to the SCDAP/RELAP5 code for the modeling of debris oxidation and materials interactions preliminary design report

    International Nuclear Information System (INIS)

    Siefken, L.J.; Davis, K.L.

    1993-02-01

    Preliminary designs are proposed for extending the SCDAP/RELAP5 code so that it models (a) the oxidation of slumping fuel rod material and cohesive and porous debris and (b) the interaction of PWR control rod materials with the other materials in a reactor core. These extensions have the purpose of improving the code's calculation of the damage progression and hydrogen production that takes place during the early phase of a severe accident

  10. An explorative study of the technology transfer coach as a preliminary for the design of a computer aid

    OpenAIRE

    Jönsson, Oscar

    2014-01-01

    The university technology transfer coach has an important role in supporting the commercialization of research results. This thesis has studied the technology transfer coach and their needs in the coaching process. The goal has been to investigate information needs of the technology transfer coach as a preliminary for the design of computer aids.Using a grounded theory approach, we interviewed 17 coaches working in the Swedish technology transfer environment. Extracted quotes from interviews ...

  11. Grid-Connected Integrated Community Energy System. Phase II: detailed feasibility analysis and preliminary design. Final report, Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The purpose of this study was to determine the economic and environmental feasibility of a Grid-Connected Integrated Community Energy System (ICES) based on a multifuel (gas, oil, treated solid wastes, and coal) design with which to serve any or all the institutions within the Louisiana Medical Complex in cooperation with the Health Education Authority of Louisiana (HEAL). In this context, a preliminary design is presented which consists of ICES plant description and engineering analyses. This demonstration system is capable of meeting 1982 system demands by providing 10,000 tons of air conditioning and, from a boiler plant with a high-pressure steam capacity of 200,000 lb/h, approximately 125,000 lb/h of 185 psig steam to the HEAL institutions, and at the same time generating up to 7600 kW of electrical power as byproduct energy. The plant will consist of multiple-fuel steam boilers, turbine generator, turbine driven chillers and necessary auxiliaries and ancillary systems. The preliminary design for these systems and for the building to house the central plant systems are presented along with equipment and instrumentation schedules and outline specifications for major components. Costs were updated to reflect revised data. The final preliminary cost estimate includes allowances for contingencies and escalation, as well as cost for the plant site and professional fees. This design is for a facility specifically with coal burning capability, recognizing that it is more capital-intensive than a gas/oil facility. In the opinion of the Louisiana Department of Natural Resources (DNR), the relatively modest allocations made for scrubbing and ash removal involve less than is implied in standard industry (EPRI) cost increments of over 30% for these duties. The preliminary environmental assessment is included. (LCL)

  12. Preliminary Validation and Verification of TURBO{sub D}ESIGN for S-CO{sub 2} Axial Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoon Han; Kim, Seong Gu [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoon, Ho Joon; Addad, Yacine [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2012-05-15

    To use the advantages of Supercritical CO{sub 2}(S-CO{sub 2}) Brayton cycle for nuclear power plant, KAIST-Khalifa University joint research team has been focusing on S-CO{sub 2} turbomachinery development. TURBO{sub D}ESIGN code is one of the products of our researches to design a turbomachinery. The major feature of TURBO{sub D}ESIGN is that the formulation is based on the real gas and none of the ideal gas assumption was applied to the code. Thus, TURBO{sub D}ESIGN has high flexibility regarding the type of gases. In this paper, preliminary code validation and verification of TURBO{sub D}ESIGN will be discussed for axial type compressor design

  13. Preliminary design and analysis of a process for the extraction of lithium from seawater

    International Nuclear Information System (INIS)

    Steinberg, M.; Dang, V.D.

    1975-09-01

    The U.S. demand for lithium by the industrial sector and by a fusion power economy in the future is discussed. For a one million MW(e) CTR (D-T fuel cycle) economy, growing into the beginning of the next century (the years 2000 to 2030), the cumulative demand for lithium is estimated to range from (0.55 to 4.7) x 10 7 to 1.0 x 10 9 kg. Present estimates of the available U.S. supply are 6.9 x 10 8 kg of lithium from mineral resources and 4.0 x 10 9 kg of lithium from concentrated natural brines. There is, however, a vast supply of lithium in seawater: 2.5 x 10 14 kg. A preliminary process design for the extraction of lithium from seawater is presented: seawater is first evaporated by solar energy to increase the concentration of lithium and to decrease the concentration of other cations in the bittern which then passes into a Dowex-50 ion exchange bed for cation adsorption. Lithium ions are then eluted with dilute hydrochloric acid forming an aqueous lithium chloride which is subsequently concentrated and electrolyzed. The energy requirement for lithium extraction varies between 0.08 and 2.46 kWh(e)/gm for a range of production rates varying between 10 4 and 10 8 kg/y; this is small compared to the energy produced from the use of lithium in a CTR having a value of 3400 kWh(e)/g Li. Production cost of the process is estimated to be in the range of 2.2 to 3.2 cents/g Li. As a basis for the process design, it is recommended that a phase equilibria study of the solid--liquid crystallization processes of seawater be conducted. Uncertainties exist in the operation of large solar ponds for concentrating large quantities of seawater. A search for a highly selective adsorbent or extractant for Li from low concentration aqueous solutions should be made. Other physical separation processes such as using membranes should be investigated. 9 tables

  14. Materials considerations for UF6 gas-core reactor. Interim report for preliminary design study

    International Nuclear Information System (INIS)

    Wagner, P.

    1977-04-01

    The limiting materials problem in a high-temperature UF 6 core reactor is the corrosion of the core containment vessel. The UF 6 , the lower fluorides of uranium, and the fluorine that exist at the anticipated reactor operating conditions (1000 K and about one atmosphere UF 6 ) are all corrosive. Because of this, the materials evaluation effort for this reactor design study has concentrated on the identification of a viable system for the containment vessel that meets both the materials and neutronic requirements. A study of the literature has revealed that the most promising corrosion-resistant candidates are Ni or Ni-Al alloys. One of the conclusions of this work is that the containment vessel use a nickel liner or clad since the use of Ni as a structural member is precluded by its relative blackness to thermal neutrons. Estimates of corrosion rates of Ni and Ni-Al alloys, the effects of the pressure and temperature of F 2 on the corrosion rates, calculated equilibrium gas compositions at reactor core operating conditions, suggested methods of fabrication, and recommendations for future research and development are included

  15. Integrated optimization on aerodynamics-structure coupling and flight stability of a large airplane in preliminary design

    Directory of Open Access Journals (Sweden)

    Xiaozhe WANG

    2018-06-01

    Full Text Available The preliminary phase is significant during the whole design process of a large airplane because of its enormous potential in enhancing the overall performance. However, classical sequential designs can hardly adapt to modern airplanes, due to their repeated iterations, long periods, and massive computational burdens. Multidisciplinary analysis and optimization demonstrates the capability to tackle such complex design issues. In this paper, an integrated optimization method for the preliminary design of a large airplane is proposed, accounting for aerodynamics, structure, and stability. Aeroelastic responses are computed by a rapid three-dimensional flight load analysis method combining the high-order panel method and the structural elasticity correction. The flow field is determined by the viscous/inviscid iteration method, and the cruise stability is evaluated by the linear small-disturbance theory. Parametric optimization is carried out using genetic algorithm to seek the minimal weight of a simplified plate-beam wing structure in the cruise trim condition subject to aeroelastic, aerodynamic, and stability constraints, and the optimal wing geometry shape, front/rear spar positions, and structural sizes are obtained simultaneously. To reduce the computational burden of the static aeroelasticity analysis in the optimization process, the Kriging method is employed to predict aerodynamic influence coefficient matrices of different aerodynamic shapes. The multidisciplinary analyses guarantee computational accuracy and efficiency, and the integrated optimization considers the coupling effect sufficiently between different disciplines to improve the overall performance, avoiding the limitations of sequential approaches utilized currently. Keywords: Aeroelasticity, Integrated optimization, Multidisciplinary analysis, Large airplane, Preliminary design

  16. Towards a Tissue-Engineered Ligament: Design and Preliminary Evaluation of a Dedicated Multi-Chamber Tension-Torsion Bioreactor

    Directory of Open Access Journals (Sweden)

    Cédric P. Laurent

    2014-02-01

    Full Text Available Tissue engineering may constitute a promising alternative to current strategies in ligament repair, providing that suitable scaffolds and culture conditions are proposed. The objective of the present contribution is to present the design and instrumentation of a novel multi-chamber tension-torsion bioreactor dedicated to ligament tissue engineering. A preliminary biological evaluation of a new braided scaffold within this bioreactor under dynamic loading is reported, starting with the development of a dedicated seeding protocol validated from static cultures. The results of these preliminary biological characterizations confirm that the present combination of scaffold, seeding protocol and bioreactor may enable us to head towards a suitable ligament tissue-engineered construct.

  17. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Mouradian, E. M.

    1983-12-31

    Thermal analyses for the preliminary design phase of the Receiver of the Carrizo Plains Solar Power Plant are presented. The sodium reference operating conditions (T/sub in/ = 610/sup 0/F, T/sub out/ = 1050/sup 0/F) have been considered. Included are: Nominal flux distribution on receiver panal, Energy input to tubes, Axial temperature distribution; sodium and tubes, Sodium flow distribution, Sodium pressure drop, orifice calculations, Temperature distribution in tube cut (R-0), Backface structure, and Nonuniform sodium outlet temperature. Transient conditions and panel front face heat losses are not considered. These are to be addressed in a subsequent design phase. Also to be considered later are the design conditions as variations from the nominal reference (operating) condition. An addendum, designated Appendix C, has been included describing panel heat losses, panel temperature distribution, and tube-manifold joint thermal model.

  18. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    Science.gov (United States)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  19. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    International Nuclear Information System (INIS)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-01-01

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow from NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in next period

  20. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-12

    This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for

  1. Coastal California's Fog as a Unique Habitable Niche: Design for Autonomous Sampling and Preliminary Aerobiological Characterization

    Science.gov (United States)

    Gentry, Diana; Cynthia Ouandji; Arismendi, Dillon; Guarro, Marcello; Demachkie, Isabella; Crosbie, Ewan; Dadashazar, Hossein; MacDonald, Alex B.; Wang, Zhen; Sorooshian, Armin; hide

    2017-01-01

    Just as on the land or in the ocean, atmospheric regions may be more or less hospitable to life. The aerobiosphere, or collection of living things in Earth's atmosphere, is poorly understood due to the small number and ad hoc nature of samples studied. However, we know viable airborne microbes play important roles, such as providing cloud condensation nuclei. Knowing the distribution of such microorganisms and how their activity can alter water, carbon, and other geochemical cycles is key to developing criteria for planetary habitability, particularly for potential habitats with wet atmospheres but little stable surface water. Coastal California has regular, dense fog known to play a major transport role in the local ecosystem. In addition to the significant local (1 km) geographical variation in typical fog, previous studies have found that changes in height above surface of as little as a few meters can yield significant differences in typical concentrations, populations and residence times. No single current sampling platform (ground-based impactors, towers, balloons, aircraft) is capable of accessing all of these regions of interest.A novel passive fog and cloud water sampler, consisting of a lightweight passive impactor suspended from autonomous aerial vehicles (UAVs), is being developed to allow 4D point sampling within a single fog bank, allowing closer study of small-scale (100 m) system dynamics. Fog and cloud droplet water samples from low-altitude aircraft flights in nearby coastal waters were collected and assayed to estimate the required sample volumes, flight times, and sensitivity thresholds of the system under design.125 cloud water samples were collected from 16 flights of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) instrumented Twin Otter, equipped with a sampling tube collector, occurring between 18 July and 12 August 2016 below 1 km altitude off the central coast. The collector was flushed first with 70 ethanol

  2. A preliminary analysis of the BOP design management in nuclear power plant

    International Nuclear Information System (INIS)

    Tian Bin

    2014-01-01

    BOP project is an important part of nuclear power plant to maintain the normal operation and maintenance of the plant. The level of the design management has the important influences on the quality of the whole project, Design management includes the choice of the design standards, design evaluation, document control, the management of the design interface, design modification management and the management of the design service. The paper will start from various design issues in the construction of the Fuqing BOP project, analyse the causes of the problems on the design schedule management, interface, evaluation and the modification management. And then the paper also provides suggestions for improvement about all of this. (author)

  3. Simulation of lumbar and neck angle flexion while ingress of paratransit (angkot in Indonesia as a preliminary design study

    Directory of Open Access Journals (Sweden)

    Yukhi Mustaqim Kusuma Sya’bana

    2017-12-01

    Full Text Available This is the preliminary finding of a study to simulate lumbar and neck flexion while ingress to the paratransit. The result of simulation will determine design aspect criteria as a preliminary step before ideation and implementation design steps. Biomechanics of Bodies (BoB is software that used to represent passenger task during paratransit ingress simulation, with skeleton model that used is height 165 cm and weight 65 kg. Environment to represent this simulation is measured Suzuki Carry SS 2013 as a private car that has been modified into a public transportation in accordance with the Indonesian government road-worthy test. Due to the low height of the entrance and the high ground clearance, lumbar and neck joint angle was a focus of this ingress simulation. The peak angle at the neck joint is 40° when 2 s skeleton nod in the door limitation ingress and lumbar flexion is 70° when 5 s skeleton is walking while bend over that will increase the load on that area. Based on biomechanical simulation approach, we may suggest the dimension of public transportation design framework developments, especially paratransit.

  4. Radical university-industry innovation – research design and preliminary findings from an on-going qualitative case study

    DEFF Research Database (Denmark)

    Gertsen, Frank; Nielsen, René Nesgaard

    and it is arguing that there is a lack of in-depth understanding of such collaborative radical innovation processes. The paper then suggests an abductive research design for an explorative in-depth case study of collaborative radical innovation involving a university and an established Danish manufacturing firm....... Some preliminary findings are presented and briefly discussed, including the role of the university’s formal set-up to deal with IPR/commercialisation and the researchers’ personal networking with industry as well as challenges concerning the sharing of IPR/commercialisation outcomes....

  5. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

  6. Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: Reactor design and preliminary results

    International Nuclear Information System (INIS)

    Jing Dengwei; Liu Huan; Zhang Xianghui; Zhao Liang; Guo Liejin

    2009-01-01

    In despite of so many types of solar reactors designed for solar detoxification purposes, few attempts have been made for photocatalytic hydrogen production, which in our option, is one of the most promising approaches for solar to chemical energy conversion. Addressing both the similarity and dissimilarity for these two processes and by fully considering the special requirements for the latter reaction, a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar reactor has been designed for the first time. The design and optimization of this CPC based solar reactor has been discussed in detail. Preliminary results demonstrated that efficient photocatalytic hydrogen production under direct solar light can be accomplished by coupling tubular reactors with CPC concentrators. It is anticipated that this first demonstration of concentrator-based solar photocatalytic hydrogen production would draw attention for further studies in this promising direction.

  7. Preliminary Calculation for Plasma Chamber Design of Pulsed Electron Source Based on Plasma

    International Nuclear Information System (INIS)

    Widdi Usada

    2009-01-01

    This paper described the characteristics of pulsed electron sources with anode-cathode distance of 5 cm, electrode diameter of 10 cm, driven by capacitor energy of 25 J. The preliminary results showed that if the system is operated with diode resistance is 1.6 Ω, plasma resistance is 0.14 Ω, and β is 0.94, the achieved of plasma voltage is 640 V, its current is 4.395 kA with its pulse width of 0.8 μsecond. According to breakdown voltage based on Paschen empirical formula, with this achieved voltage, this system could be operated for operation pressure of 1 torr. (author)

  8. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  9. TPX superconducting Tokamak magnet system: 1995 design and status overview

    International Nuclear Information System (INIS)

    Deis, G.; Bulmer, R.; Carpenter, R.

    1995-01-01

    The TPX magnet preliminary design effort is summarized. Key results and accomplishments during preliminary design and supporting R and D are discussed, including conductor development, quench detection, TF and PF magnet design, conductor bending and forming, reaction heat treating, helium stubs, and winding pack insulation

  10. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed

  11. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed.

  12. Design and Preliminary Testing of the International Docking Adapter's Peripheral Docking Target

    Science.gov (United States)

    Foster, Christopher W.; Blaschak, Johnathan; Eldridge, Erin A.; Brazzel, Jack P.; Spehar, Peter T.

    2015-01-01

    The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.

  13. Preliminary design study of pebble bed reactor HTR-PM base using once-through-then-out fuel recirculation

    International Nuclear Information System (INIS)

    Topan Setiadipura; Jupiter S Pane; Zuhair

    2016-01-01

    Pebble Bed Reactor (PBR) is one of the advanced reactor type implementing strong passive safety feature. In this type of design has the potential to do a cogeneration useful for the treatment of various minerals in various islands in Indonesia. The operation of the PBR can be simplified by implementing once-through-then-out (OTTO) fuel recirculation scheme in which pebble fuel only pass the core once time. The purpose of this research is to understand quantitative influence of the changing of fuel element recirculation on the PBR core performance and to find preliminary optimization design of PBR type reactor with OTTO recirculation scheme. PEBBED software was used to find PBR equilibrium core. The calculation result gives quantitative data on the impact of implementing a different fuel recirculation, especially using OTTO scheme. Furthermore, an early optimized PBR design based on HTR-PM using OTTO scheme was obtained where the power must be downgraded into 115 MWt in order to preserve the safety feature. The simplicity of the reactor operation and the reduction of reactor component with OTTO scheme still make this early optimized design an interesting alternative design, despite its power reduction from the reference design. (author)

  14. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  15. Preliminary conceptual design for a 510 MeV electron/positron injector for a UCLA φ factory

    International Nuclear Information System (INIS)

    Dahlbacka, G.; Hartline, R.; Barletta, W.; Pellegrini, C.

    1991-01-01

    UCLA is proposing a compact suer conducting high luminosity (10 32-33 cm -2 sec -1 ) e + e - collider for a φ factory. To achieve the required e + e - currents, full energy injections from a linac with intermediate storage in a Positron Accumulator Ring (PAR) is used. The elements of the linac are outlined with cost and future flexibility in mind. The preliminary conceptual design starts with a high current gun similar in design to those developed at SLAC and at ANL (for the APS). Four 4-section linac modules follow, each driven by a 60 MW klystron with a 1 μsec macropulse and an average current of 8.6 A. The first 4-section model is used to create positrons in a tungsten target at 186 MeV. The three remaining three modules are used to accelerate the e + e - beam to 558 MeV (no load limit) for injection into the PAR

  16. A preliminary plant design study for the production of diesel from coal via fischer-tropsch synthesis

    International Nuclear Information System (INIS)

    Kamil, M.; Saleem, M.

    2010-01-01

    Pakistan's reliance on conventional means of producing energy has proven to be an inadequate strategy for overcoming it. The situation direly demands diversification of our energy resources not only to overcome current fiasco but also in planning for future. Among the other alternative sources, coal is the main source for producing cheaper electricity being available as huge reserves. This paper presents the preliminary plant design and cost estimation for the production of diesel from coal via coal gasification and fischer-Tropschs synthesis. Prelimnary design calculations and cost estimation are presented along with underlying assumptions. The results reveal that the diesel produced from this process might be cheaper than the crude oil based diesel. (author)

  17. Continuous prestressed concrete girder bridges volume 1 : literature review and preliminary designs.

    Science.gov (United States)

    2012-06-01

    The Texas Department of Transportation (TxDOT) is currently designing typical highway bridge structures as simply supported using standard precast, pretensioned girders. TxDOT is interested in developing additional economical design alternatives for ...

  18. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P. [Bechtel Corp, San Francisco, CA (United States)

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  19. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  20. Mod-5A wind turbine generator program design report. Volume 2: Conceptual and preliminary design, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind tunnel generator is documented. There are four volumes. In Volume 2, book 2 the requirements and criteria for the design are presented. The development tests, which determined or characterized many of the materials and components of the wind turbine generator, are described.

  1. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  2. Preliminary neutronics design studies for a 400 MWt STAR-LM

    International Nuclear Information System (INIS)

    Aliberti, G.; Yang, W. S.; Stillman, J. A.; Hill, R. N.

    2004-01-01

    Neutronics design studies for a 400 MWt high temperature fast reactor are being performed, utilizing lead coolant, transuranic (TRU) nitride fuel, and HT-9 structural material. Under the main design constraints of long fuel lifetime, natural convection heat transport, semi-autonomous control, and small unit size, parametric studies were performed to maximize the discharge burnup and minimize the burnup reactivity swing. Based on the results of these parametric studies, two point designs were developed for a single-batch once-through fuel cycle; one is a 15 full power year cycle design with core volume of 9.5 cubic meters, and the other is a 12 full power year cycle design with core volume of 7.4 cubic meters. For these two point designs, fuel cycle analyses and reactivity feedback coefficients calculations were performed. The 9.5 cubic meter design achieved an average discharge burnup of 83 MWd/kg with a maximum reactivity change over the lifetime of 0.6%. The peak fast fluence was well within the fast fluence limit of HT9, and both average and peak power densities were well below the estimated limit for natural circulation. The performances of the 7.4 cubic meter design were slightly inferior to this design. To enhance the passive safety characteristics, however, further design improvements need to be made to reduce the coolant density coefficient and to increase the radial expansion coefficient. (authors)

  3. Human Factors engineering criteria and design for the Hanford Waste Vitrification Plant preliminary safety analysis report

    International Nuclear Information System (INIS)

    Wise, J.A.; Schur, A.; Stitzel, J.C.L.

    1993-09-01

    This report provides a rationale and systematic methodology for bringing Human Factors into the safety design and operations of the Hanford Waste Vitrification Plant (HWVP). Human Factors focuses on how people perform work with tools and machine systems in designed settings. When the design of machine systems and settings take into account the capabilities and limitations of the individuals who use them, human performance can be enhanced while protecting against susceptibility to human error. The inclusion of Human Factors in the safety design of the HWVP is an essential ingredient to safe operation of the facility. The HWVP is a new construction, nonreactor nuclear facility designed to process radioactive wastes held in underground storage tanks into glass logs for permanent disposal. Its design and mission offer new opposites for implementing Human Factors while requiring some means for ensuring that the Human Factors assessments are sound, comprehensive, and appropriately directed

  4. Preliminary design of a 100 Hz, 350 kV short pulse generator

    International Nuclear Information System (INIS)

    Rohwein, G.J.; Buttram, M.T.

    1977-06-01

    This report describes a 350 kV pulser designed to generate 100 ns square pulses with 300 joules total energy at a pulse repetition frequency of 100 per second. This design incorporates a transformer charged helical coaxial pulse forming line. The considerations leading to this design are presented together with results from prototype experiments. The pulser which is presently in the construction and testing phase is described in detail. The pulser will be used for electron beam acceleration

  5. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  6. The preliminary design of an annular combustor for a mini gas turbine

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2015-10-01

    Full Text Available This study involves the redesign of the combustor liner for a 200N mini gas turbine engine using first principles and the design methods of the NREC series as shown in Figure 1. The combustor design was performed using five different operating...

  7. Synthesis of preliminary system designs for offshore oil and gas production

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sin, Gürkan; Elmegaard, Brian

    2016-01-01

    The present work deals with the design of oil and gas platforms, with a particular focus on the developmentof integrated and intensified petroleum processing plants. It builds on a superstructure based approach that includes all the process steps, transformations and interconnections of relevance...... configurations and screening potentially novel solutions at early stage designs, with respect to technical, energetic and economic criteria....

  8. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 2: Development program

    Science.gov (United States)

    1972-01-01

    A preliminary estimate is presented of the resources required to develop the basic general purpose walking boom manipulator system. It is assumed that the necessary full scale zero g test facilities will be available on a no cost basis. A four year development effort is also assumed and it is phased with an estimated shuttle development program since the shuttle will be developed prior to the space station. Based on delivery of one qualification unit and one flight unit and without including any ground support equipment or flight test support it is estimated (within approximately + or - 25%) that a total of 3551 man months of effort and $17,387,000 are required.

  9. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    Science.gov (United States)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  10. Preliminary design of steam reformer in out-pile demonstration test facility for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro; Hino, Ryutaro; Inagaki, Yosiyuki; Hata, Kazuhiko; Aita, Hideki; Sekita, Kenji; Nishihara, Tetsuo; Sudo, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Yamada, Seiya

    1996-11-01

    One of the key objectives of HTTR is to demonstrate effectiveness of high-temperature nuclear heat utilization system. Prior to connecting a heat utilization system to HTTR, an out-pile demonstration test is indispensable for the development of experimental apparatuses, operational control and safety technology, and verification of the analysis code of safety assessment. For the first heat utilization system of HTTR, design of the hydrogen production system by steam reforming is going on. We have proposed the out-pile demonstration test plan of the heat utilization system and conducted preliminary design of the test facility. In this report, design of the steam reformer, which is the principal component of the test facility, is described. In the course of the design, two types of reformers are considered. The one reformer contains three reactor tubes and the other contains one reactor tube to reduce the construction cost of the test facility. We have selected the steam reformer operational conditions and structural specifications by analyzing the steam reforming characteristics and component structural strength for each type of reformer. (author)

  11. Learning Environment and Student Effort

    Science.gov (United States)

    Hopland, Arnt O.; Nyhus, Ole Henning

    2016-01-01

    Purpose: The purpose of this paper is to explore the relationship between satisfaction with learning environment and student effort, both in class and with homework assignments. Design/methodology/approach: The authors use data from a nationwide and compulsory survey to analyze the relationship between learning environment and student effort. The…

  12. THE EFFECTIVENESS OF PANORAMIC MAPS DESIGN: A PRELIMINARY STUDY BASED ON MOBILE EYE-TRACKING

    Directory of Open Access Journals (Sweden)

    R. Balzarini

    2016-06-01

    Full Text Available This paper presents preliminary results from an ongoing research based on the study of visual attention through mobile eye-tracking techniques. The visual-cognitive approach investigates the reading-comprehension of a particular territorial representation: ski trails maps. The general issue of the study is to provide insights about the effectiveness of panoramic ski maps and more broadly, to suggest innovative efficient representation of the geographic information in mountain. According to some mountain operators, the information provided by paper ski maps no longer meets the needs of a large part of the customers; the question now arises of their adaptation to new digital practices (iPhone, tablets. In a computerized process perspective, this study particularly focuses on the representations, and the inferred information, which are really helpful to the users-skiers to apprehend the territory and make decisions, and which could be effectively replicated into a digital system. The most interesting output relies on the relevance of the panorama view: panorama still fascinates, but contrary to conventional wisdom, the information it provides does not seem to be useful to the skier. From a socio-historical perspective this study shows how empirical evidence-based approach can support the change: our results enhance the discussion on the effectiveness of the message that mountain operators want to convey to the tourist and therefore, on the renewal of (geographical information in ski resorts.

  13. Preliminary conceptual designs for advanced packages for the geologic disposal of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1979-04-01

    The present study assumes that the spent fuel will be disposed of in mined repositories in continental geologic formations, and that the post-emplacement control of the radioactive species will be accomplished independently by both the natural barrier, i.e., the geosphere, and the engineered barrier system, i.e., the package components consisting of the stabilizer, the canister, and the overpack; and the barrier components external to the package consisting of the hole sleeve and the backfill medium. The present document provides an overview of the nature of the spent fuel waste; the general approach to waste containment, using the defense-in-depth philosophy; material options, both metallic and nonmetallic, for the components of the engineered barrier system; a set of strawman criteria to guide the development of package/engineered barrier systems; and four preliminary concepts representing differing approaches to the solution of the containment problem. These concepts use: a corrosion-resistant meta canister in a special backfill (2 barriers); a mild steel canister in a corrosion-resistant metallic or nonmetallic hole sleeve, surrounded by a special backfill (2 barriers); a corrosion-resistant canister and a corrosion-resistant overpack (or hole sleeve) in a special backfill (3 barriers); and a mild steel canister in a massive corrosion-resistant bore sleeve surrounded by a polymer layer and a special backfill (3 barriers). The lack of definitive performance requirements makes it impossible to evaluate these concepts on a functional basis at the present time.

  14. The Effectiveness of Panoramic Maps Design: a Preliminary Study Based on Mobile Eye-Tracking

    Science.gov (United States)

    Balzarini, R.; Murat, M.

    2016-06-01

    This paper presents preliminary results from an ongoing research based on the study of visual attention through mobile eye-tracking techniques. The visual-cognitive approach investigates the reading-comprehension of a particular territorial representation: ski trails maps. The general issue of the study is to provide insights about the effectiveness of panoramic ski maps and more broadly, to suggest innovative efficient representation of the geographic information in mountain. According to some mountain operators, the information provided by paper ski maps no longer meets the needs of a large part of the customers; the question now arises of their adaptation to new digital practices (iPhone, tablets). In a computerized process perspective, this study particularly focuses on the representations, and the inferred information, which are really helpful to the users-skiers to apprehend the territory and make decisions, and which could be effectively replicated into a digital system. The most interesting output relies on the relevance of the panorama view: panorama still fascinates, but contrary to conventional wisdom, the information it provides does not seem to be useful to the skier. From a socio-historical perspective this study shows how empirical evidence-based approach can support the change: our results enhance the discussion on the effectiveness of the message that mountain operators want to convey to the tourist and therefore, on the renewal of (geographical) information in ski resorts.

  15. SR-can: preliminary feedback to canister fabrication, repository design and future R and D

    International Nuclear Information System (INIS)

    Hedin, A.; Sellin, P.

    2007-01-01

    This paper discusses preliminary feedback from SKB's on-going safety assessment SR-Can, to he finalized in 2006. The assessment, which is not part of a formal licence application, is an important step towards the SR-Site assessment to be delivered in 2008 and which will support a licence application for a Swedish deep repository for spent nuclear fuel. The SR-Can assessment will use data from the initial stage of the on-going site investigations at the two candidate sites at Forsmark and Oskarshamn. Review comments on SR-Can from Swedish authorities are expected in the summer of 2007 and these will be taken into account when preparing the SR-Site assessment. An Interim version of the SR-Can report was produced in September 2004 and has been reviewed by the Swedish authorities supported by an international review team. The assessment concerns a KBS 3 repository for which the key safety related features can be summarised in the primary safety function isolation and the secondary function retardation. The isolation function is more prominent in the KBS 3 method compared to many other repository concepts. (authors)

  16. Preliminary conceptual design for electrical and I and C system of a new research reactor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Kim, Y. K.; Kim, M. J.; Kim, H. K.; Ryu, J. S.

    2004-01-01

    The core type and the process system design will be varied according to the reactor's application and capacity. A New research reactor is being designed by KAERI since 2002 and the process systems are not fixed yet. But control and instrument systems are similar to each other even though the application and the size are not same. So the C and I system that encompasses reactor protection system, reactor control system, and computer system was designed conceptually according to the requirements based on new digital technology and HANARO's proven design. The plant electrical system consists of off-site system that delivers bulk electrical power to the reactor site and on-site system that distributes and controls electrical power at the facility. The electrical system includes building service system that consist of lighting, communication, fire detection, grounding, cathodic protection, etc. also. This report describes the design requirements of on-site and off-site electric power system that set up from the codes and standards and the conceptual design based on the design requirements

  17. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  18. Preliminary Investigation of Several Root Designs for Cermet Turbine Blades in Turbojet Engine III : Curved-root Design

    Science.gov (United States)

    Pinkel, Benjamin; Deutsch, George C; Morgan, William C

    1955-01-01

    Stresses om tje root fastenings of turbine blades were appreciably reduced by redesign of the root. The redesign consisted in curving the root to approximately conform to the camber of the airfoil and elimination of the blade platform. Full-scale jet-engine tests at rated speed using cermet blades of the design confirmed the improvement.

  19. Survey of customer expectation and satisfaction: preliminary research of a modular product design approach for sheep cage design

    Directory of Open Access Journals (Sweden)

    Rochman Yuli Agusti

    2018-01-01

    Full Text Available This study aims to produce a modular sheep cage design. Feeding, maintenance and integrated waste management are taking into account in the design. The modular and integrated product design provides advantages such as (1 easy way of making and modifying the product, (2 enabling the utilization of existing facilities such as shade, (3 giving the user a sense of convenience as the waste can be processed and not being a source of pollution. The Modular Quality Function Deployment (QFD method is applied to identify modules associated with the customer needs of the product. A survey about customer expectation and satisfaction was conducted in order to evaluate the gap of both. The highest value of gap between customer expectation and satisfaction of products indicates that the customer needs are the focus of the problems. The most important customer needs are considered in modification and improvement of design. These are (1 the cage is not easy to fall down, (2 the sheep cage can last for long time, (3 it uses a strong frame, (4 the roof section materials is not easy to leak, and (5 It can be used even if one part of the cage is damaged.

  20. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  1. Preliminary design and economical study of a biogas production-plant using cow manure

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2007-09-01

    Full Text Available This article presents considerations and results from designing a large- scale biogas production-plant using cow manure. The so designed plant capacity allowed processing the dung from 1,300 cows, producing 500 kW of electrical energy from operating a generator which works on a mixture of diesel and biogas fuel. The design included sizing the cowsheds, the manure-collecting systems, transporting the dung, the digester, the effluent tank and the biogas treatment system. An economic study was also done, concluding that project was viable and the importance of the cost of diesel evolving for determining return on investment time.

  2. The development of an expert system for finding fragility curves of building structural systems in the preliminary design stage

    International Nuclear Information System (INIS)

    Yee, L.Y.; Okrent, D.

    1987-01-01

    This research is a starting point for the development of an expert system for determining seismic fragility curves of structural systems in a nuclear power plant or conventional building at the preliminary design stage. The resulting system assists an engineer with moderate engineering background and limited reliability knowledge to analyze the failure functions of building structures. It simulates the performance of an expert in identifying the potential failure modes and their variabilities for a structure of interest. On reviewing the methodology of seismic fragility evaluation for existing building structures in the nuclear power plant industry, one finds that the investigation process starts with the identification of critical components or substructures, whose failures result in the functional failure of safety related equipment or the failure of structural integrity itself, and follows with complicated numerical analyses to estimate the capacity functions associated with the limit states of these components or substructures

  3. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Boenig, H.J.; Bogdan, F.; Morris, G.C.; Ferner, J.A.; Schneider-Muntau, H.J.; Rumrill, R.H.; Rumrill, R.S.

    1993-01-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 x 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented

  4. Solar Pilot Plant, Phase I. Preliminary design report. Volume III. Collector subsystem. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    The Honeywell collector subsystem features a low-profile, multifaceted heliostat designed to provide high reflectivity and accurate angular and spatial positioning of the redirected solar energy under all conditions of wind load and mirror attitude within the design operational envelope. The heliostats are arranged in a circular field around a cavity receiver on a tower halfway south of the field center. A calibration array mounted on the receiver tower provides capability to measure individual heliostat beam location and energy periodically. This information and weather data from the collector field are transmitted to a computerized control subsystem that addresses the individual heliostat to correct pointing errors and determine when the mirrors need cleaning. This volume contains a detailed subsystem design description, a presentation of the design process, and the results of the SRE heliostat test program.

  5. A preliminary assessment of the assignment of Intermediate Level Waste streams to designs of transport containers

    International Nuclear Information System (INIS)

    Mairs, J.H.

    1984-08-01

    This paper considers the assignment of ILW to designs of transport container. Estimates are made of the radiation levels penetrating the transport containers and assesses the duration of any storage required prior to transportation. (author)

  6. Divertor remote handling for DEMO: Concept design and preliminary FMECA studies

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Di Gironimo, G. [ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2015-10-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor mover: hydraulic telescopic boom concept design. • An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • FMECA studies started on the DEMO divertor mover. - Abstract: The paper describes a concept design of a remote handling (RH) system for replacing divertor cassettes and cooling pipes in future DEMO fusion power plant. In DEMO reactor design important considerations are the reactor availability and reliable maintenance operations. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative designs of the end effector to grip and manipulate the divertor cassette are presented in this work. Both concepts are hydraulically actuated, based on ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. Taking advantage of the ITER RH background and experience, the proposed hydraulic RH system is compared with the rack and pinion system currently designed for ITER and is an object of simulations at Divertor Test Platform (DTP2) in VTT's Labs of Tampere, Finland. Pros and cons will be put in evidence.

  7. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)

    2002-04-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  8. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 1. Design description

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report discusses in detail the design of the collector system, heat transport system, thermal storage subsystem, heat transport loop, steam generation subsystem, electrical, instrumentation, and control systems, power conversion system, master control system, and balance of plant. The performance, facility cost estimate and economic analysis, and development plan are also discussed.

  9. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  10. Preliminary Study for Conceptual Design of Advanced Long Life Small Modular Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, T. K. [Argonne National Laboratory, Argonne (United States)

    2015-05-15

    As one of the non-water coolant Small-Modular Reactor (SMR) core concepts for use in the mid- to long-term, ANL has proposed a 100 MWe Advanced sodium-cooled Fast Reactor core concept (AFR-100) targeting a small grid, transportable from pre-licensed factories to the remote plant site for affordable supply. Various breed-and-burn core concepts have been proposed to extend the reactor cycle length, which includes CANDLE with a cigar-type depletion strategy, TerraPower reactors with fuel shuffling for effective breeding, et al. UNIST has also proposed an ultra-long cycle fast reactor (UCFR) core concept having the power rating of 1000 MWe. By adopting the breed-and-burn strategies, the UCFR core can maintain criticality for a targeting reactor lifetime of 60 years without refueling. The objective of this project is to develop an advanced long-life SMR core concept by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. A conceptual design of long life small modular fast reactor is under development by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. The feasibility of the long-life fast reactor concepts was reviewed to obtain the core design guidelines and the reactor design requirements of long life small modular fast reactor were proposed in this study.

  11. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  12. Preliminary electromagnetic, thermal and mechanical design for first wall and vacuum vessel of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Lucca, F., E-mail: Flavio.Lucca@LTCalcoli.it [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Bertolini, C. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Crescenzi, F.; Crisanti, F. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Di Gironimo, G. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Labate, C. [CREATE, Università di Napoli Parthenope, Via Acton 38, 80133 Napoli (Italy); Manzoni, M.; Marconi, M.; Pagani, I. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, G. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Renno, F. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Roccella, M. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Roccella, S. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Viganò, F. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)

    2015-10-15

    The fusion advanced study torus (FAST), with its compact design, high toroidal field and plasma current, faces many of the problems met by ITER, and at the same time anticipates much of the DEMO relevant physics and technology. The conceptual design of the first wall (FW) and the vacuum vessel (VV) has been defined on the basis of FAST operative conditions and of “Snow Flakes” (SF) magnetic topology, which is also relevant for DEMO. The EM loads are one of the most critical load components for the FW and the VV during plasma disruptions and a first dimensioning of these components for such loads is mandatory. During this first phase of R&D activities the conceptual design of the FW and VV have been assessed estimating, by means of FE simulations, the EM loads due to a typical vertical disruption event (VDE) in FAST. EM loads were then transferred on a FE mechanical model of the FAST structures and the mechanical response of the FW and VV design for the analyzed VDE event was assessed. The results indicate that design criteria are not fully satisfied by the current drawing of the VV and FW components. The most critical regions have been individuated and the effect of some geometrical and material changes has been checked in order to improve the structure.

  13. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  14. Preliminary design study for a carbide LEU-nuclear thermal rocket

    International Nuclear Information System (INIS)

    Venneri, P.F.; Kim, Y.

    2014-01-01

    Nuclear space propulsion is a requirement for the successful exploration of the solar system. It offers the possibility of having both a high specific impulse and a relatively high thrust, allowing rapid transit times with a minimum usage of fuel. This paper proposes a nuclear thermal rocket design based on heritage NERVA rockets that makes use of Low Enriched Uranium (LEU) fuel. The Carbide LEU Nuclear Thermal Rocket (C-LEU-NTR) is designed to fulfill the rocket requirements as set forth in the NASA 2009 Mars Mission Design Reference Architecture 5.0, that is provide 25,000 lbf of thrust, operate at full power condition for at least two hours, and have a specific impulse close to 900 s. The neutronics analysis was done using MCNP5 with the ENDF/B-VII.1 neutron library. The thermal hydraulic calculations and size optimization were completed with a finite difference code being developed at the Center for Space Nuclear Research. (authors)

  15. Preliminary design requirements document (DRD) for Project W-236B, ''Initial Pretreatment Module''

    International Nuclear Information System (INIS)

    Swanson, L.M.

    1995-01-01

    The scope of this Design Requirements Document (DRD) is to identify and define the functions, with associated requirements, which must be performed to separate Hanford Site tank waste supernatants into low-level and high-level fractions. This documents sets forth function requirements, performance requirements, and design constraints necessary to begin conceptual design for the Initial Pretreatment Module (IPM). System and physical interfaces between the IPM project and the Tank Waste Remediation System (TWRS) are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. Supplemental DRDs will be prepared to provide more detailed requirements specific to systems described in the DRD

  16. Preliminary fluid channel design and thermal-hydraulic analysis of glow discharge cleaning permanent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Lijun, E-mail: cailj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Lin, Tao; Wang, Yingqiao; Wang, Mingxu [Southwestern Institute of Physics, Chengdu (China); Maruyama, So; Yang, Yu; Kiss, Gabor [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • The plasma facing closure cap has to survive after 30,000 thermal heat load cycles. • 0.35 MW/m2 radiation heat load plus nuclear heat load are very challenging for stainless steel. • Multilayer structure has been designed by using advanced welding and drilling technology to solve the neutron heating problem. • Accurate volumetric load application in analysis model by CFX has been mastered. - Abstract: Glow discharge cleaning (GDC) shall be used on ITER device to reduce and control impurity and hydrogenic fuel out-gassing from in-vessel plasma facing components. After first plasma, permanent electrode (PE) will be used to replace Temporary Electrode (TE) for subsequent operation. Two fundamental scenarios i.e., GDC and Plasma Operation State (POS) should be considered for electrode design, which requires the heat load caused by plasma radiation and neutron heating must be taken away by cooling water flowing inside the electrode. In this paper, multilayer cooling channels inside PE are preliminarily designed, and snakelike route in each layer is adopted to improve the heat exchange. Detailed thermal-hydraulic analyses have been done to validate the design feasibility or rationality. The analysis results show that during GDC the cooling water inlet and outlet temperature difference is far less than the allowable temperature rise under water flow rate 0.15 kg/s compromised by many factors. For POS, the temperature rise and pressure drop are within the design goals, but high thermal stress occurs on the front surface of closure cap of electrode. After several iterations of optimization of the closure cap, the equivalent strain range after 30,000 loading cycles for POS is well below 0.3% design goals.

  17. Preliminary Design and Model Assessment of a Supercritical CO2 Compressor

    Directory of Open Access Journals (Sweden)

    Zhiyuan Liu

    2018-04-01

    Full Text Available The compressor is a key component in the supercritical carbon dioxide (SCO2 Brayton cycle. In this paper, the authors designed a series of supercritical CO2 compressors with different parameters. These compressors are designed for 100 MWe, 10 MWe and 1 MWe scale power systems, respectively. For the 100 MWe SCO2 Brayton cycle, an axial compressor has been designed by the Smith chart to test whether an axial compressor is suitable for the SCO2 Brayton cycle. Using a specific speed and a specific diameter, the remaining two compressors were designed as centrifugal compressors with different pressure ratios to examine whether models used for air in the past are applicable to SCO2. All compressors were generated and analyzed with internal MATLAB programs coupled with the NIST REFPROP database. Finally, the design results are all checked by numerical simulations due to the lack of reliable experimental data. Research has found that in order to meet the de Haller stall criterion, axial compressors require a considerable number of stages, which introduces many additional problems. Thus, a centrifugal compressor is more suitable for the SCO2 Brayton cycle, even for a 100 MWe scale system. For the performance prediction model of a centrifugal compressor, the stall predictions are compared with steady numerical calculation, which indicates that past stall criteria may also be suitable for SCO2 compressors, but more validations are needed. However, the accuracy of original loss models is found to be inadequate, particularly for lower flow and higher pressure ratio cases. Deviations may be attributed to the underestimation of clearance loss according to the result of steady simulation. A modified model is adopted which can improve the precision to a certain extent, but more general and reasonable loss models are needed to improve design accuracy in the future.

  18. Preliminary conceptual design of inspection and maintenance for KALIMER reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Seok Hun; Yoo, Bong

    2000-08-01

    In-service inspection and maintenance are very important for improving the safety and availability of nuclear power plants. The conceptual requirements of in-service inspection and maintenance should be reflected in the earlier design process for the verification of the plant operability and reliability. In this report the fundamental approaches of the inspection and maintenance for KALIMER are established to ensure the structural integrity and operability for KALIMER. The general strategy and methodology of maintenance and inspection for the reactor system and components are proposed and described for satisfying the intents of the section XI, division 3, of ASME code and considering the design characteristics of KALIMER.

  19. Preliminary design work on a DSN VLBI correlator. [Deep Space Network

    Science.gov (United States)

    Lushbaugh, W. A.; Layland, J. W.

    1978-01-01

    The Deep Space Network is in the process of fielding high-density digital instrumentation recorders for support of the Pioneer Venus 1978 entry experiment and other related tasks. It has long been obvious that these recorders would also serve well as the recording medium for very long base interferometry (VLBI) experiments with relatively weak radio sources, provided that a suitable correlation processor for these tape recordings could be established. The overall design and current status of a VLBI correlator designed to mate with these tape recorders are described.

  20. Board and card games for studying electrochemistry: Preliminary research and early design

    Science.gov (United States)

    Kurniawan, Rizmahardian Ashari; Kurniasih, Dedeh; Jukardi

    2017-12-01

    Games in the chemistry classroom can offer engaging and fun alternative method of learning. However, only a few games in chemistry, especially in electrochemistry subject are available commercially. In this research, we developed board and card games for studying electrochemistry. We surveyed chemistry teacher and students from 10 different senior high schools in Pontianak to decide content and characteristic of the game. We have designed the game that can be played by four students or four group of students, either as a specific instruction in the classroom or as a supplementary learning material. The game was designed to help students understanding the voltaic cell configuration and its voltaic potential.

  1. A preliminary investigation of the design parameters of an air induction nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Vashahi, Foad; Ra, Sothea; Lee, Jeekeun [Chonbuk National University, Jeonju (Korea, Republic of); Choi, Yong [National Academy of Agricultural Science, Wanju (Korea, Republic of)

    2017-07-15

    In the present study, an experimental study on design parameters of an air induction nozzle was performed. These nozzles are capable of producing large size droplets, including microbubbles, which in turn results in high drift reduction. A magnified 2D version of an air induction nozzle was designed and manufactured. The manufactured geometries have the ability to be disassembled easily, thus several geometrical parameters are replaced sequentially. The effects of a venturi throat, air orifices and discharge orifice diameters along with the length of the mixing chamber are analyzed. Analysis of the parameters revealed their strength of prediction on the air liquid ratio and the nozzle performance.

  2. Preliminary design for a 20 TeV Collider in a deep tunnel at Fermilab

    International Nuclear Information System (INIS)

    1985-01-01

    The Reference Design Study for a 20 TeV Collider demonstrated the technical and cost feasibility of a 20 TeV superconducting collider facility. Based on magnets of 3T, 5T, and 6.5T the Main Ring of the Collider would have a circumference of 164 km, 113 km, or 90 km. There would be six collision regions, of which four would be developed intially. The 5T and 6.5T rings would have twelve major refrigeration stations, while the 3T design would have 24 major refrigeration stations

  3. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  4. Safety evaluation report related to the preliminary design of the Standard Reference System, RESAR-414

    International Nuclear Information System (INIS)

    1978-11-01

    The safety evaluation for the Westinghouse Standard Reactor includes information on general reactor characteristics; design criteria for systems and components; reactor coolant system; engineered safety systems; instrumentation and controls; electric power systems; auxiliary systems; steam and power conversion system; radioactive waste management; radiation protection; conduct of operations; accident analyses; and quality assurance

  5. Conceptual Designs for the Performance Improvement of APR1400 SIT and Preliminary Performance Evaluation

    International Nuclear Information System (INIS)

    Chu, In-Cheol; Kwon, Tae-Soon; Song, Chul-Hwa

    2008-01-01

    Some evolutionary type PWRs such as APR1400 and APWR adopt advanced safety injection tank (SIT). The SIT of APR1400 has a fluidic device (FD) which passively controls ECC water injection flow rate into reactor coolant system during refill and reflood phases of LB-LOCA (i.e., a high injection flow rate during the refill phase and a low injection flow rate during the reflood phase). The benefit of the FD is the elimination of the function of low pressure safety injection pump from the safety injection system. The flow controlling performance of the APR1400 FD was evaluated using a prototypical full-scale test facility, called VAPER (Valve Performance Evaluation Rig). Even though the performance of the APR1400 FD satisfied major design and licensing requirements, further improvement of the performance is expected such as the extension of total injection period, the delay of nitrogen gas discharge. Several conceptual designs have been being drawn out in order to improve the performance of the APR1400 SIT. The performance of some designs was evaluated using a small scale SIT test rig. The present paper introduces some of the conceptual designs and shows the performance evaluation experimental results

  6. Development of Artistic Perception in Students of Graphic Design: A Preliminary Report.

    Science.gov (United States)

    Hanson, Glenn

    This study is an attempt to determine what level of artistic perception or art taste is brought into the classroom by students in schools of journalism and whether it can be demonstrated that design instruction can raise the level of artistic perception among journalism and advertising students. It was hypothesized that women would score higher in…

  7. A Solar Powered Wireless Computer Mouse: Design, Assembly and Preliminary Testing of 15 Prototypes

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.; Reich, N.H.; Alsema, E.A.; Netten, M.P.; Veefkind, M.; Silvester, S.; Elzen, B.; Verwaal, M.

    2007-01-01

    The concept and design of a solar powered wireless computer mouse has been completed, and 15 prototypes have been successfully assembled. After necessary cutting, the crystalline silicon cells show satisfactory efficiency: up to 14% when implemented into the mouse device. The implemented voltage

  8. Mod-2 wind turbine system concept and preliminary design report. Volume 1: Executive summary

    Science.gov (United States)

    1979-01-01

    The configuration development of the MOD-2 wind turbine system is presented. The MOD-2 is design optimized for commercial production rates which, in multi-unit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than 4 cents per kilowatt hour.

  9. Preliminary design of ECCO: Experimental control system which is cloud oriented

    International Nuclear Information System (INIS)

    Zheng, Wei; Hu, Feiran; Zhang, Ming; Zhang, Jing; Wan, Kuanhong; Liu, Qiang; Pan, Yuan; Zhuang, Ge

    2016-01-01

    Highlights: • ECCO is a self-organized and de-centralized control system software. • ECCO integrates ECCO-SDD and ECCO-REST.. • ECCO network protocol is based on HTTP protocol and RESTful design practice, implements Hypermedia, automatic discovery, and event. • ECCO is flexible, plug-and-play, and provides a series of unified toolkits. - Abstract: As the development of the Tokamak, the scale of the facility is getting bigger and bigger. It is a great challenge to design, manage and operate a control system of such big scale. So we developed a new control system software: Experimental Control System which is Cloud Oriented (ECCO). ECCO consists two parts, ECCO-SDD and ECCO-REST. ECCO-SDD is used to design, manage and describe the whole control system, configure every subsystem statically. There is a SDD editor which is a human machine interface for control system designer to design by simply drag and drop, and it can be easily extended using plug-in. The ECCO-SDD translator is used to generate different outputs. All the system design and configuration is stored in the MongoDB database using an object relational mapping dedicated designed for ECCO-SDD. ECCO-REST mainly defines a control network protocol based on HTTP RESTful service, it also implements automatic discovery using Zero-configuration (Zeroconf) networking standard. Since this protocol is based on industrial standard and transparent protocol, it is open enough and it can be easily implemented by others. ECCO-REST application is the core of ECCO-REST, it is a cross platform control software running on distributed control units just like the EPICS IOC. It can be extended by user created models. It is configured by human readable JSON file which can be generated by ECCO-SDD translator. ECCO is a self-organized and de-centralized control system software. Based on the same protocol, every part of the system can discover each other, thus the controllers which ECCO-REST application running on can

  10. Preliminary design of ECCO: Experimental control system which is cloud oriented

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei, E-mail: zhengwei@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Feiran; Zhang, Ming; Zhang, Jing; Wan, Kuanhong; Liu, Qiang; Pan, Yuan; Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    Highlights: • ECCO is a self-organized and de-centralized control system software. • ECCO integrates ECCO-SDD and ECCO-REST.. • ECCO network protocol is based on HTTP protocol and RESTful design practice, implements Hypermedia, automatic discovery, and event. • ECCO is flexible, plug-and-play, and provides a series of unified toolkits. - Abstract: As the development of the Tokamak, the scale of the facility is getting bigger and bigger. It is a great challenge to design, manage and operate a control system of such big scale. So we developed a new control system software: Experimental Control System which is Cloud Oriented (ECCO). ECCO consists two parts, ECCO-SDD and ECCO-REST. ECCO-SDD is used to design, manage and describe the whole control system, configure every subsystem statically. There is a SDD editor which is a human machine interface for control system designer to design by simply drag and drop, and it can be easily extended using plug-in. The ECCO-SDD translator is used to generate different outputs. All the system design and configuration is stored in the MongoDB database using an object relational mapping dedicated designed for ECCO-SDD. ECCO-REST mainly defines a control network protocol based on HTTP RESTful service, it also implements automatic discovery using Zero-configuration (Zeroconf) networking standard. Since this protocol is based on industrial standard and transparent protocol, it is open enough and it can be easily implemented by others. ECCO-REST application is the core of ECCO-REST, it is a cross platform control software running on distributed control units just like the EPICS IOC. It can be extended by user created models. It is configured by human readable JSON file which can be generated by ECCO-SDD translator. ECCO is a self-organized and de-centralized control system software. Based on the same protocol, every part of the system can discover each other, thus the controllers which ECCO-REST application running on can

  11. Preliminary design concept of HYPER cooling system using Pb-Bi coolant

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam Il; Song, Tae Y.; Park, Won S.; Kim, Chang H

    2001-09-01

    The present study focuses on providing the basic concept of HYPER's cooling system based on simple and fundamental calculations. The system operating temperature was preliminarily determined as 340/510 .deg. C. The total system flow rate of HYPER is {approx} 40,000kg/sec and the flow velocity in the core is preliminarily designed to be {approx}1.5 m/sec. For hot conditions of HYPER core, the simple analytic calculation predicted that the maximum temperature of the cladding outer surface is 634 .deg. C, which is below the design limit, 650 .deg. C. However, the SLTHEN code modified for HYPER's subchannel analysis predicted that the maximum temperature of the cladding outer surface in the same conditions is higher than the design limit by 4.7 .deg. C. The comparison with the results of the analytic model and additional sensitivity calculations showed that the modified SLTHEN code can reasonably simulate the heat transfer between subchannels of the HYPER core and be used effectively for thermal hydraulic design of the HYPER core in conceptual design stage. A forced circulation is inevitable during a full power condition since natural circulation is not sufficient to cool the core with reasonable system pressure drop and reasonable system height. However, a natural circulation can be an excellent method for decay heat removal when the height difference between the core and the heat exchanger is above 10 m. In order to avoid high pressure loads on the vessel, loop configuration was chosen. The simplification of cooling system and high system efficiency were attained by removing independent target cooling system and intermediate heat transport system. A superheated rankle cycle was chosen since it is technically matured and its thermal efficiency is reasonably high.

  12. Preliminary Comparative Evaluation Study on Reference Design of GEN-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Yoon Sub; Kim, Yeong Il; Hong, Ser Gi (and others)

    2005-11-15

    A fast reactor has a good transmutation capability and it enables breeding of fuel and use of a closed fuel cycle. By these characteristics of a fast reactor, the limited uranium resources of the world can be much more effectively utilized and the nuclear wastes of a high level of radioactivity and toxicity from the current nuclear power reactors of LWRs and HWRs can be drastically reduced in its volume and the management of the wastes can be easily treated. Also electricity can be generated more effectively since a fast reactor has the feature of high operation temperature. These features of a fast reactor makes it inevitable on a long term basis to construct fast reactors in Korea. The domestic fast reactor technology level, however, is at the level of coming out of a beginning stage and needs utilization of international expertise. Recently an international cooperation program called GIF has been formulated and our KALIMER was selected as one of the two reference designs for the international joint R and D works with JSFR of Japan. In the current frame of the GIF program, the two selected reference designs are supposed to be evaluated against each other in future and one design is to be finally selected. To make the international cooperation program directed more useful to our fast reactor technology development, it is required to strengthen the competitiveness of KALIMER so that it can be selected. To meet the necessity, a study was made in this research for pre-evaluation of the GIF reference designs and setting up plans for development of designs and technology that will enhance the competitiveness of KALIMER.

  13. Design and preliminary analysis of a vaginal inserter for speculum-free cervical cancer screening.

    Directory of Open Access Journals (Sweden)

    Mercy Nyamewaa Asiedu

    Full Text Available Cervical cancer screening usually requires use of a speculum to provide a clear view of the cervix. The speculum is one potential barrier to screening due to fear of pain, discomfort and embarrassment. The aim of this paper is to present and demonstrate the feasibility of a tampon-sized inserter and the POCkeT Colposcope, a miniature pen sized-colposcope, for comfortable, speculum-free and potentially self-colposcopy.We explored different designs using 3D computer-aided design (CAD software and performed mechanical testing simulations on each. Designs were rapid prototyped and tested using a custom vaginal phantom across a range of vaginal pressures and uterine tilts to select an optimal design. Two final designs were tested with fifteen volunteers to assess cervix visualization, comfort and usability compared to the speculum and the optimal design, the curved-tip inserter, was selected for testing in volunteers.We present a vaginal inserter as an alternative to the standard speculum for use with the POCkeT Colposcope. The device has a slim tubular body with a funnel-like curved tip measuring approximately 2.5 cm in diameter. The inserter has a channel through which a 2 megapixel (MP mini camera with LED illumination fits to enable image capture. Mechanical finite element testing simulations with an applied pressure of 15 cm H2O indicated a high factor of safety (90.9 for the inserter. Testing of the device with a custom vaginal phantom, across a range of supine vaginal pressures and uterine tilts (retroverted, anteverted and sideverted, demonstrated image capture with a visual area comparable to the speculum for a normal/axial positioned uteri and significantly better than the speculum for anteverted and sideverted uteri (p<0.00001. Volunteer studies with self-insertion and physician-assisted cervix image capture showed adequate cervix visualization for 83% of patients. In addition, questionnaire responses from volunteers indicated a 92

  14. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  15. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume I. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report also discusses plant performance, operations and maintenance, development, and facility cost estimate and economic analysis.

  16. Design and preliminary test results of the quench detection system for IFSMTF

    International Nuclear Information System (INIS)

    Shen, S.S.; Walstrom, P.L.; Wilson, C.T.; Goddard, J.S.

    1985-01-01

    A unique quench detection system was designed for the International Fusion Superconducting Magnet Test Facility (IFSMTF), where a simultaneous test of six large superconducting toroidal field magnets will be carried out. The scheme was based on analog subtraction of self and neighboring pickup winding voltage from the coil voltage to yield a compensated signal proportional to a normal-zone voltage. The compensated signals were input to quench detection modules that give a quench output signal to discharge the coil if the compensated signals exceed preset thresholds for preset time durations. This paper summarizes the design and analysis of the system and presents the experimental results of the simulation tests, two-coil charging-discharging tests, and the normal-zone recovery tests

  17. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  18. Preliminary Study on GF/Carbon/Epoxy Composite Permeability in Designing Close Compartment Processing

    Science.gov (United States)

    Ya’acob, A. M.; Razali, D. A.; Anwar, U. A.; Radhi, A. H.; Ishak, A. A.; Minhat, M.; Aris, K. D. Mohd; Johari, M. K.; Casey, T.

    2018-05-01

    This project involves discovering how the permeability effect inside a close compartment in processing. After the appropriate pressure range was found, the close compartment was designed by studying the relationship between pressure output and the flow rate. A variety of pressure ranges have been used in this test to determine the effective pressure range that can be applied to the manufacturing process. Based on the results, the suitable pressure ranges were found between 55 psi to 75 psi. These pressures have been chosen based on the area covered on the product surfaces and time taken to penetrate the proposed area. The relationship between pressure and flow rate have been found to be directly proportional until 75 psi only. In conclusion, 70 psi for the proposed design of close compartment mould is suitable to be used to fulfill the required area of 120 mm square within 90 seconds.

  19. MOD-2 wind turbine system concept and preliminary design report. Volume 2: Detailed report

    Science.gov (United States)

    1979-01-01

    The configuration development of the MOD-2 wind turbine system (WTS) is documented. The MOD-2 WTS project is a continuation of DOE programs to develop and achieve early commercialization of wind energy. The MOD-2 is design optimized for commercial production rates which, in multiunit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than four cents per kilowatt hour.

  20. A preliminary design of the Los Alamos fast Kicker Magnet Pulser and Power Supply

    International Nuclear Information System (INIS)

    Winje, R.A.

    1988-01-01

    The technical design of the Kicker Magnet Pulser and Power Supply is based on the switching of a precharged pulse forming network (pfn) into a matched load. Provisions are made through the selection of the main switch tube to accommodate loads that are not matched to the pfn impedance. The paper includes a description of the major components of the power supply and a summary of the performance parameters. 4 figs., 3 tabs