WorldWideScience

Sample records for preliminary cofire test

  1. USDOE/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    International Nuclear Information System (INIS)

    D. Tillman; E. Hughes

    1999-01-01

    The Eleventh Quarter of the USDOE-EPRI contract, April 1, 1999 through June 30, 1999, was characterized by extensive testing at the Seward cofiring demonstration of GPU Genco and the Bailly Unit No.7 demonstration of NIPSCO. Technical work that proceeded during the eleventh quarter of the contract included the following: Testing at up to(approx)15 percent cofiring on a mass basis ((approx)7 percent cofiring on a Btu basis) at the Seward Generating Station No.12 boiler, focusing upon the operability of the separate injection system and the combustion/emission formation characteristics of the cofiring process; and Testing at up to(approx)10 percent cofiring of waste wood on a mass basis ((approx)5 percent cofiring on a Btu basis) at the Bailly Generating Station No.7 boiler, focusing upon the impacts of urban wood waste blended with a mixture of eastern high sulfur coal and western low sulfur coal Both tests demonstrated the following general, and expected, results from cofiring at these locations: (1) Cofiring did not impact boiler capacity; (2) Cofiring did cause a modest reduction in boiler efficiency; (3) Cofiring did reduce NOx emissions; (4) Cofiring did reduce fossil CO2 emissions; and (5) Other impacts of cofiring were modest

  2. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    International Nuclear Information System (INIS)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

    2002-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO(sub x) emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been

  3. USDOE/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    International Nuclear Information System (INIS)

    D. Tillman; E. Hughes

    1999-01-01

    During the period of April 1, 1999 through June 30, 1999, wood cofiring testing at both Seward Generating Station of GPU Genco and Bailly Generating Station of Northern Indiana Public Service Company provided the focus for all activities. In both cases, the testing was directed at the impacts of cofiring on efficiency, operability, and NO(sub x) emissions. This report summarizes the activities during the second calendar quarter in 1999 of the USDOE/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of testing activities at both generating stations

  4. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  5. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  6. USDOE/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    Energy Technology Data Exchange (ETDEWEB)

    D. Tillman; E. Hughes

    1999-04-01

    During the period of January 1, 1999 through March 31, 1999, construction was performed in support of two major demonstrations. Major progress was made on several projects including cofiring at Seward (GPU Genco), and Bailly (NIPSCO). Most of the work was focused on construction and system commissioning activities at the Seward and Bailly Generating Stations. Additionally, petroleum coke cofiring testing was completed at the Bailly Generating Station. This report summarizes the activities during the first calendar quarter in 1999--the fourth contract quarter in 1998--of the USDOE/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of construction activities and related events.

  7. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  8. Co-firing biomass and fossil fuels

    International Nuclear Information System (INIS)

    Junge, D.C.

    1991-01-01

    In June 1989, the Alaska Energy Authority and the University of Alaska Anchorage published a monograph summarizing the technology of co-firing biomass and fossil fuels. The title of the 180 page monograph is 'Use of Mixed Fuels in Direct Combustion Systems'. Highlights from the monograph are presented in this paper with emphasis on the following areas: (1) Equipment design and operational experience co-firing fuels; (2) The impact of co-firing on efficiency; (3) Environmental considerations associated with co-firing; (4) Economic considerations in co-firing; and (5) Decision making criteria for co-firing

  9. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Among these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.

  10. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  11. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    International Nuclear Information System (INIS)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed

  12. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  13. Modelling methods for co-fired pulverised fuel furnaces

    Energy Technology Data Exchange (ETDEWEB)

    L. Ma; M. Gharebaghi; R. Porter; M. Pourkashanian; J.M. Jones; A. Williams [University of Leeds, Leeds (United Kingdom). Energy and Resources Research Institute

    2009-12-15

    Co-firing of biomass and coal can be beneficial in reducing the carbon footprint of energy production. Accurate modelling of co-fired furnaces is essential to discover potential problems that may occur during biomass firing and to mitigate potential negative effects of biomass fuels, including lower efficiency due to lower burnout and NOx formation issues. Existing coal combustion models should be modified to increase reliability of predictions for biomass, including factors such as increased drag due to non-spherical particle sizes and accounting for organic compounds and the effects they have on NOx emission. Detailed biomass co-firing models have been developed and tested for a range of biomass fuels and show promising results. 32 refs., 4 figs., 3 tabs.

  14. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    Energy Technology Data Exchange (ETDEWEB)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  15. Development of cofired type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Hiroaki; Sakamoto, Sadaaki; Zhou, Hua-Bing [Murata Manufacturing Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    We have developed fabrication process for planar SOFC fabricated with cofired anode/electrolyte/cathode multilayers and interconnects. By cofiring technique for the multilayers, we expect to reduce the thickness of the electrolyte layers, resulting in decrease of innerimpedance, and achieve low production cost. On the other hand, the cofiring technique requires that the sintering temperature, the shrinkage profiles and the thermal expansion characteristics of all component materials should be compatible with the other. It is, therefore, difficult to cofire the multilayers with large area. Using the multilayers with surface area of 150cm{sup 2}, we fabricated the multiple cell stacks. The maximum power of 5x4 multiple cell stack (5 planes of cells in series, 4 cells in parallel in each planes 484cm{sup 2} effective electrode area of each cell planes) was 601W (0.25Wcm{sup -2}, Uf=40%). However, the terminal voltage of the multiple cell stack decreased by the cause of cell cracking, gas leakage and degradation of cofired multilayers. This paper presents the improvements of cofired multilayers, and the performance of multiple cell stacks with the improved multilayers.

  16. EPRI-USDOE COOPERATIVE AGREEMENT: COFIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    David A. Tillman

    2001-09-01

    The entire Electric Power Research Institute (EPRI) cofiring program has been in existence of some 9 years. This report presents a summary of the major elements of that program, focusing upon the following questions: (1) In pursuit of increased use of renewable energy in the US economy, why was electricity generation considered the most promising target, and why was cofiring pursued as the most effective near-term technology to use in broadening the use of biomass within the electricity generating arena? (2) What were the unique accomplishments of EPRI before the development of the Cooperative Agreement, which made developing the partnership with EPRI a highly cost-effective approach for USDOE? (3) What were the key accomplishments of the Cooperative Agreement in the development and execution of test and demonstration programs-accomplishments which significantly furthered the process of commercializing cofiring?

  17. Biomass co-firing under oxy-fuel conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2014-01-01

    This paper presents an experimental and numerical study on co-firing olive waste (0, 10%, 20% on mass basis) with two coals in an entrained flow reactor under three oxy-fuel conditions (21%O2/79%CO2, 30%O2/70%CO2 and 35%O2/65%CO2) and air–fuel condition. Co-firing biomass with coal was found...... to have favourable synergy effects in all the cases: it significantly improves the burnout and remarkably lowers NOx emissions. The reduced peak temperatures during co-firing can also help to mitigate deposition formation in real furnaces. Co-firing CO2-neutral biomass with coals under oxy-fuel conditions...... the model can be used to aid in design and optimization of large-scale biomass co-firing under oxy-fuel conditions....

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  19. Evaluating the sustainability of co-firing in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Jeremy; Tipper, Richard; Brown, Gareth; Diaz-Chavez, Rocio; Lovell, Jessica; de Groot, Peter

    2006-10-09

    The objectives of the study were: Assess the overall carbon balance for co-firing; Investigate the other sustainability issues relating to co-firing; Assess the scope for incentivising the most sustainable forms of co-firing. The main questions to be addressed were: Is the overall carbon balance for co-firing positive? What is the difference in carbon balance between energy crops and other biomass? Are some kinds of energy crops better than others? How big a factor is transport in the carbon balance? Under what circumstances (fuel, transport, process, etc.) are the greatest benefits of co-firing in terms of carbon balance and sustainability? Are there any circumstances (as above) that could raise serious carbon balance or sustainability issues? How does the carbon balance compare between co-firing, dedicated biomass, and biomass heat? Is there any scope for encouraging the most sustainable forms of co-firing - perhaps through using existing or currently in development accreditation schemes? The report concludes that: Co-firing could be expanded to make a significant and low risk contribution to Government and EU renewable energy policy targets; Real environmental and social benefits could arise from the expansion of co-firing markets, both in the UK and in poor developing countries, given responsible development policy; There is no clear environmental or social case, for an arbitrary cap on the amount of co-firing; Co-firing could expand and enhance clean coal Carbon and Capture and Sequestration (CCS). This report focuses solely on the carbon (GHG) and broader sustainability impacts of co-firing in the UK. It does not include an economic evaluation. It provides an overview of the existing materials being used as feedstocks for co-firing and a summary life-cycle assessment of the GHG balances and sustainability (environmental and social) impacts of the provision and use of those feedstocks. A clear distinction is made between the use of residues and dedicated

  20. Evaluating the sustainability of co-firing in the UK

    International Nuclear Information System (INIS)

    Woods, Jeremy; Tipper, Richard; Brown, Gareth; Diaz-Chavez, Rocio; Lovell, Jessica; de Groot, Peter

    2006-01-01

    The objectives of the study were: Assess the overall carbon balance for co-firing; Investigate the other sustainability issues relating to co-firing; Assess the scope for incentivising the most sustainable forms of co-firing. The main questions to be addressed were: Is the overall carbon balance for co-firing positive? What is the difference in carbon balance between energy crops and other biomass? Are some kinds of energy crops better than others? How big a factor is transport in the carbon balance? Under what circumstances (fuel, transport, process, etc.) are the greatest benefits of co-firing in terms of carbon balance and sustainability? Are there any circumstances (as above) that could raise serious carbon balance or sustainability issues? How does the carbon balance compare between co-firing, dedicated biomass, and biomass heat? Is there any scope for encouraging the most sustainable forms of co-firing - perhaps through using existing or currently in development accreditation schemes? The report concludes that: Co-firing could be expanded to make a significant and low risk contribution to Government and EU renewable energy policy targets; Real environmental and social benefits could arise from the expansion of co-firing markets, both in the UK and in poor developing countries, given responsible development policy; There is no clear environmental or social case, for an arbitrary cap on the amount of co-firing; Co-firing could expand and enhance clean coal Carbon and Capture and Sequestration (CCS). This report focuses solely on the carbon (GHG) and broader sustainability impacts of co-firing in the UK. It does not include an economic evaluation. It provides an overview of the existing materials being used as feedstocks for co-firing and a summary life-cycle assessment of the GHG balances and sustainability (environmental and social) impacts of the provision and use of those feedstocks. A clear distinction is made between the use of residues and dedicated

  1. EPRI-USDOE COOPERATIVE AGREEMENT: COFIRING BIOMASS WITH COAL; FINAL

    International Nuclear Information System (INIS)

    David A. Tillman

    2001-01-01

    The entire Electric Power Research Institute (EPRI) cofiring program has been in existence of some 9 years. This report presents a summary of the major elements of that program, focusing upon the following questions: (1) In pursuit of increased use of renewable energy in the US economy, why was electricity generation considered the most promising target, and why was cofiring pursued as the most effective near-term technology to use in broadening the use of biomass within the electricity generating arena? (2) What were the unique accomplishments of EPRI before the development of the Cooperative Agreement, which made developing the partnership with EPRI a highly cost-effective approach for USDOE? (3) What were the key accomplishments of the Cooperative Agreement in the development and execution of test and demonstration programs-accomplishments which significantly furthered the process of commercializing cofiring?

  2. Biomass co-firing for Delta Electricity

    International Nuclear Information System (INIS)

    Anon

    2014-01-01

    Electricity generator Delta Electricity has implemented a biomass co-firing program at its Vales Point power station on the Central Coast to reduce its reliance on coal and emissions of CO 2 . The program comprises two parts: direct co-firing with coal of up to 5% biomass; and development of Continuous Biomass Converter (CBC) technology with the Crucible Group to remove technology constraints and enable much higher rates of biomass co-firing. It is talking industrial scale tests. Delta increased biomass co-firing in 2013/14 to 32,000 tonnes, up from just 3,000 tonnes the previous year, and conducted biochar co-firing trials at a rate equivalent to 400,000 tonnes per annum to demonstrate the potential of CBC technology. It reduced CO 2 emissions in 2013/14 by more than 32,000 tonnes. 'Legislation and regulations define biomass as renewable,' said Delta Electricity sustainability manager Justin Flood. 'By preferring biomass over coal, the carbon in the coal is not burnt and remains locked up.' One biomass source is wood waste that would normally go to landfill, but the primary driver of Delta's recent increase in co-firing is sawmill residues. 'Previously there was a higher value market for the residues for paper pulp. However, when that market evaporated the timber industry was left with a sizable problem in terms of what to do with its residues and the loss of revenue,' said Flood. The way greenhouse gas accounting is conducted in Australia, with carbon emissions based on site activities, makes it difficult to undertake a life cycle assessment of the program. 'However, some of the international studies looking at this issue have concluded that the net carbon emissions of the biomass system are significantly lower than the coal system because of the uptake of carbon during biomass growth,' said Flood. Delta identified two challenges, sourcing the feedstock and that biomass conversion to electricity is slightly less

  3. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    International Nuclear Information System (INIS)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completed and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed

  4. COFIRING OF BIOMASS AT THE UNIVERSITY OF NORTH DAKOTA

    Energy Technology Data Exchange (ETDEWEB)

    Phillip N. Hutton

    2002-01-01

    A project funded by the U.S. Department of Energy's National Energy Technology Laboratory was completed by the Energy & Environmental Research Center to explore the potential for cofiring biomass at the University of North Dakota (UND). The results demonstrate how 25% sunflower hulls can be cofired with subbituminous coal and provide a 20% return on investment or 5-year payback for the modifications required to enable firing biomass. Significant outcomes of the study are as follows. A complete resource assessment presented all biomass options to UND within a 100-mile radius. Among the most promising options in order of preference were sunflower hulls, wood residues, and turkey manure. The firing of up to 28% sunflower hulls by weight was completed at the university's steam plant to identify plant modifications that would be necessary to enable cofiring sunflower hulls. The results indicated investments in a new equipment could be less than $408,711. Data collected from test burns, which were not optimized for biomass firing, resulted in a 15% reduction in sulfur and NO{sub x} emissions, no increase in opacity, and slightly better boiler efficiency. Fouling and clinkering potential were not evaluated; however, no noticeable detrimental effects occurred during testing. As a result of this study, UND has the potential to achieve a cost savings of approximately $100,000 per year from a $1,500,000 annual fossil fuel budget by implementing the cofiring of 25% sunflower hulls.

  5. Cofiring biomass with coal: Opportunities for Malaysia

    International Nuclear Information System (INIS)

    Rahman, A A; Shamsuddin, A H

    2013-01-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  6. Cofiring biomass with coal: Opportunities for Malaysia

    Science.gov (United States)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  7. Biomass Cofiring in Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  8. What's flexibility worth? The enticing case of natural gas cofiring

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Honious, J.C.; Bluestein, J.

    1992-01-01

    The purpose of this article is to show how decision trees can be used to calculate the flexibility of a utility plan, and to demonstrate the method by quantifying the flexibility benefits of cofiring natural gas. Cofiring is the burning of gas in the primary combustion zone continuously or seasonally, as partial replacement for coal. The authors summarize the benefits of cofiring. There they point out that previous analyses, by ignoring uncertainty, could not evaluate cofiring's flexibility and may therefore have understated its attractiveness. They then present a simple example that illustrates how flexibility can be quantified using decision trees. The authors close by summarizing a study in which they estimate cofiring's flexibility for a midwestern utility. They conclude that cofiring gives that system significantly more flexibility than flue gas desulfurization, buying allowances, or switching to low-sulfur coal

  9. Cofiring of biofuels in coal fired boilers: Results of case study analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, D.A. [Ebasco Environmental, Sacramento, CA (United States); Hughes, E. [Electric Power Research Institute, Palo Alto, CA (United States); Gold, B.A. [TVA, Chattanooga, TN (United States)

    1993-12-31

    Ebasco Environmental and Reaction Engineering, under contract to EPRI, performed a case study analysis of cofiring biomass in coal-fired boilers of the Tennessee Valley Authority (TVA). The study was also sponsored by DOE. This analysis included evaluating wood fuel receiving, preparation, and combustion in pulverized coal (PC) boilers and cyclone furnaces and an assessment of converting wood into pyrolysis oil or low Btu gas for use in a new combined cycle combustion turbine (CCCT) installation. Cofiring wood in existing coal-fired boilers has the most immediate potential for increasing the utilization of biofuels in electricity generation. Cofiring biofuels with coal can potentially generate significant benefits for utilities including: (1) reducing emissions of SO{sub 2} and NO{sub x}; (2) reducing the net emissions of CO{sub 2}; (3) potentially reducing the fuel cost to the utility depending upon local conditions and considering biomass is potentially exempt from the proposed Btu tax and may get a 1.5 cent/kWh credit for energy generated by wood combustion; (4) supporting local industrial forest industry; and (5) providing a long term market for the development of a biofuel supply and delivery industry. Potential benefits are reviewed in the context of cofiring biofuel at a rate of 15% heat input to the boiler, and compares this cofiring strategy and others previously tested or developed by other utilities. Other issues discussed include: (1) wood fuel specifications as a function of firing method; (2) wood fuel receiving and preparation system requirements; (3) combustion system requirements for cofiring biofuels with coal; (4) combustion impacts of firing biofuels with coal; (5) system engineering issues; (6) the economics of cofiring biofuel with coal. The Allen, TN 330 MW(e) cyclone boiler and Kingston, TN 135 MW(e) Boiler {number_sign}1, a tangentially fired PC unit, case studies are then summarized in the paper, highlighting the cofiring opportunities.

  10. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Montgomery, Melanie; Larsen, Ole Hede

    2007-01-01

    and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes...... to 575 degrees C and for the flue gas from 1025 to 1300 degrees C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical...

  11. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  12. Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust

    Science.gov (United States)

    Bellmann, B.; Creutzenberg, O.; Ernst, H.; Muhle, H.

    2009-02-01

    The health effects of 6 different fly ash samples from biomass combustion plants (bark, wood chips, waste wood, and straw), and co-firing plants (coal, co-firing of coal and sawdust) were investigated in a 28-day nose-only inhalation study with Wistar WU rats. Respirable fractions of carbon black (Printex 90) and of titanium dioxide (Bayertitan T) were used as reference materials for positive and negative controls. The exposure was done 6 hours per day, 5 days per week at an aerosol concentration of 16 mg/m3. The MMAD of all fly ash samples and reference materials in the inhalation unit were in the range from 1.5 to 3 μm. The investigations focused predominantly on the analysis of inflammatory effects in the lungs of rats using bronchoalveolar lavage (BAL) and histopathology. Different parameters (percentage of polymorphonuclear neutrophils (PMN), interleukin-8 and interstitial inflammatory cell infiltration in the lung tissue) indicating inflammatory effects in the lung, showed a statistically significant increase in the groups exposed to carbon black (positive control), C1 (coal) and C1+BM4 (co-firing of coal and sawdust) fly ashes. Additionally, for the same groups a statistically significant increase of cell proliferation in the lung epithelium was detected. No significant effects were detected in the animal groups exposed to BM1 (bark), BM2 (wood chips), BM3 (waste wood), BM6 (straw) or titanium dioxide.

  13. Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust

    International Nuclear Information System (INIS)

    Bellmann, B; Creutzenberg, O; Ernst, H; Muhle, H

    2009-01-01

    The health effects of 6 different fly ash samples from biomass combustion plants (bark, wood chips, waste wood, and straw), and co-firing plants (coal, co-firing of coal and sawdust) were investigated in a 28-day nose-only inhalation study with Wistar WU rats. Respirable fractions of carbon black (Printex 90) and of titanium dioxide (Bayertitan T) were used as reference materials for positive and negative controls. The exposure was done 6 hours per day, 5 days per week at an aerosol concentration of 16 mg/m 3 . The MMAD of all fly ash samples and reference materials in the inhalation unit were in the range from 1.5 to 3 μm. The investigations focused predominantly on the analysis of inflammatory effects in the lungs of rats using bronchoalveolar lavage (BAL) and histopathology. Different parameters (percentage of polymorphonuclear neutrophils (PMN), interleukin-8 and interstitial inflammatory cell infiltration in the lung tissue) indicating inflammatory effects in the lung, showed a statistically significant increase in the groups exposed to carbon black (positive control), C1 (coal) and C1+BM4 (co-firing of coal and sawdust) fly ashes. Additionally, for the same groups a statistically significant increase of cell proliferation in the lung epithelium was detected. No significant effects were detected in the animal groups exposed to BM1 (bark), BM2 (wood chips), BM3 (waste wood), BM6 (straw) or titanium dioxide.

  14. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  15. Co-firing: panacea or potential monster?

    Energy Technology Data Exchange (ETDEWEB)

    Grundy, M.; Lilley, P. [Mott MacDonald Ltd., Brighton (United Kingdom). Energy Division

    2004-01-01

    Co-firing with fossil fuels could well be the only practical and economic way to introduce a significant biomass contribution to UK renewables. But, in the hands of the large generators, co-firing is a potential monster, capable of destroying the carefully-constructed incentive structure for 'real' renewables such as wind power and dedicated biomass plants. Both views contain an element of truth, but the conflict between them could endanger the infant energy crop industry. 1 fig., 2 photos.

  16. The cofiring problem of a power plant under policy regulations

    International Nuclear Information System (INIS)

    Kangas, Hanna-Liisa; Lintunen, Jussi; Uusivuori, Jussi

    2009-01-01

    Cofiring of fossil and renewable fuels can contribute to reaching tightening climate and renewable energy goals. The increase in biomass share in cofiring decreases the use of fossil fuel and increases renewable energy production. We study how energy and climate policies promote that increase. First, we present and solve an electricity producer's profit-maximization problem with detailed technical description of cofiring. We then study the effectiveness of policy instruments (e.g. feed-in laws and emission trading) on biomass utilization in cofiring. The study offers a novel approach to explore the cofiring problem, because of the endogenous fuel choice combined with the policy analysis. We study two different power plants that are located in two different European electricity market areas. Our analysis shows that both feed-in tariff and feed-in premium can have unexpected weaknesses, when they are introduced together with emission trading. Therefore decision-makers should be well informed and cautious when introducing these policies. (author)

  17. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  18. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  19. GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Huang, An-Lei; Wen, Tzai-Hung

    2013-01-01

    Rice straw, a rich agricultural byproduct in Taiwan, can be used as biomass feedstock for cofiring systems. In this study, we analyzed the penetration of rice straw cofiring systems in the Taiwanese power market. In the power generation system, rice straw is cofired with fossil fuel in existing electricity plants. The benefits of cofiring systems include increasing the use of renewable energy, decreasing the fuel cost, and lowering greenhouse gas emissions. We established a linear complementarity model to simulate the power market equilibrium with cofiring systems in Taiwan. GIS-based analysis was then used to analyze the geospatial relationships between paddy rice farms and power plants to assess potential biomass for straw-power generation. Additionally, a sensitivity analysis of the biomass feedstock supply system was conducted for various cofiring scenarios. The spatial maps and equilibrium results of rice straw cofiring in Taiwanese power market are presented in the paper. - Highlights: ► The penetration of straw cofiring systems in the power market is analyzed. ► GIS-based analysis assesses potential straw-power generation. ► The spatial maps and equilibrium results of rice straw cofiring are presented

  20. Benefits of Allothermal Biomass Gasification for Co-Firing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meijden, C.M.; Van der Drift, A.; Vreugdenhil, B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-04-15

    Many countries have set obligations to reduce the CO2 emissions from coal fired boilers. Co-firing of biomass in existing coal fired power plants is an attractive solution to reduce CO2 emissions. Co-firing can be done by direct mixing of biomass with coal (direct co-firing) or by converting the biomass into a gas or liquid which is fired in a separate burner (indirect co-firing). Direct co-firing is a rather simple solution, but requires a high quality and expensive biomass fuel (e.g. wood pellets). Indirect co-firing requires an additional installation that converts the solid biomass into a gas or liquid, but has the advantage that it can handle a wide range of cheap biomass fuels (e.g. demolition wood) and most of the biomass ash components are separated from the gas before it enters the boiler. Separation of biomass ash can prevent fouling issues in the boiler. Indirect co-firing, using biomass gasification technology, is already common practice. In Geertruidenberg (the Netherlands) a 80 MWth Lurgi CFB gasifier produces gas from demolition wood which is co-fired in the Amer PC boiler. In Ruien (Belgium) a 50 MWth Foster Wheeler fluidized bed gasifier is in operation. The Energy research Centre of the Netherlands (ECN) developed a 'second generation' allothermal gasifier called the MILENA gasifier. This gasifier has some major advantages over conventional fluidized bed gasifiers. The heating value of the produced gas is approximately 2.5 times higher than of gas produced by conventional bubbling / circulating fluidized bed gasifiers. This results in smaller adaptations to the membrane wall of the boiler for the gas injection, thus lower costs. A major disadvantage of most fluidized bed gasifiers is the incomplete conversion of the fuel. Typical fuel conversions vary between 90 and 95%. The remaining combustible material, also containing most of the biomass ash components, is blown out of the gasifier and removed from the gas stream by a cyclone to

  1. Support mechanisms for cofiring secondary fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This report discusses the enabling and supporting mechanisms for coal/biomass cofiring in selected countries that have either considerable operational experience or potential in this technology. It investigates Europe, the USA, Australia and China as case studies and discusses the main supporting incentives adopted in consideration of the specific characteristics of renewable energy markets and the government’s position in clean energy and climate change in each of these countries. As such, this report provides not only a policy overview but also a collation of the measures adopted by the policymakers in each country to promote cofiring biomass in coal-fired power stations.

  2. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I; SEMIANNUAL

    International Nuclear Information System (INIS)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-01-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere

  3. Low-Temperature Co-Fired Unipoled Multilayer Piezoelectric Transformers.

    Science.gov (United States)

    Gao, Xiangyu; Yan, Yongke; Carazo, Alfredo Vazquez; Dong, Shuxiang; Priya, Shashank

    2018-03-01

    The reliability of piezoelectric transformers (PTs) is dependent upon the quality of fabrication technique as any heterogeneity, prestress, or misalignment can lead to spurious response. In this paper, unipoled multilayer PTs were investigated focusing on high-power composition and co-firing profile in order to provide low-temperature synthesized high-quality device measured in terms of efficiency and power density. The addition of 0.2 wt% CuO into Pb 0.98 Sr 0.02 (Mg 1/3 Nb 2/3 ) 0.06 (Mn 1/3 Nb 2/3 ) 0.06 (Zr 0.48 Ti 0.52 ) 0.88 O 3 (PMMnN-PZT) reduces the co-firing temperature from 1240 °C to 930 °C, which allows the use of Ag/Pd inner electrode instead of noble Pt inner electrode. Low-temperature synthesized material was found to exhibit excellent piezoelectric properties ( , , %, pC/N, and °C). The performance of the PT co-fired with Ag/Pd electrode at 930 °C was similar to that co-fired at 1240 °C with Pt electrode (25% reduction in sintering temperature). Both high- and low-temperature synthesized PTs demonstrated 5-W output power with >90% efficiency and 11.5 W/cm 3 power density.

  4. GASIFICATION BASED BIOMASS CO-FIRING

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate

  5. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Science.gov (United States)

    David Nicholls; John. Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  6. COFIRING BIOMASS WITH LIGNITE COAL; FINAL

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy and Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO(sub x) emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a$1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community

  7. Influence of the co-firing on the leaching of trace pollutants from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Natalia Moreno; Oriol Font; Xavier Querol; Esther Alvarez; Diano Antenucci; Henk Nugteren; Yolanda Luna; Constantino Fernandez-Pereira [Institute of Earth Sciences ' Jaume Almera' (CSIC), Barcelona (Spain)

    2008-08-15

    The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash. 34 refs., 4 figs., 3 tabs.

  8. Co-firing of imported wood pellets – An option to efficiently save CO2 emissions in Europe?

    International Nuclear Information System (INIS)

    Ehrig, Rita; Behrendt, Frank

    2013-01-01

    In this paper the energy and carbon footprints of pellet imports from Australia, West Canada, and Russia for co-firing in Europe are investigated. Their ecologic and economic performances are proven by applying the Belgian and UK co-firing subsidy systems, which require dedicated sustainability evaluations. Based on the modelling of different subsidy schemes and price scenarios, the present paper identifies favourable conditions for the use of biomass co-firing in Germany and Austria, which currently do not have dedicated co-firing incentives. The present paper shows that under present conditions, co-firing has a narrow financial gap to coal with −3 to 4 € Cent/kWh el and has low CO 2 mitigation costs compared to other renewables. Moreover, it is shown that co-firing is one of the most cost-attractive options to reach the EU-2020 targets. For policy makers, the support of co-firing is found to be very efficient in terms of cost-benefit ratio. It is proven that the co-firing subsidy schemes might direct supply chain decisions towards options with low energy and carbon impacts. - Highlights: • Co-firing has a low financial gap and allows for advantageous CO 2 mitigation costs compared to other renewable. • Belgian and UK's co-firing subsidies are reasonable options to promote cost-effective renewable electricity generation. • Co-firing subsidy schemes can effectively direct supply chain decisions towards low energy and carbon options

  9. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  10. Biomass Co-Firing in Suspension-Fired Power Plants

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Hvid, Søren Lovmand; Baxter, Larry

    , in the future it is expected to become relevant to cofire in more advanced plants as the trend in the power plant structure is towards older plants having fewer operating hours or being decommissioned. A major product of this project is an experimentally validated computational fluid dynamics (CFD) based...... modelling tool adapted to accommodate biomass cofiring combustion features. The CFD tool will be able to predict deposit accumulation, particle conversion, fly ash composition, temperatures, velocities, and composition of furnace gases, etc. The computer model will primarily be used in the development...

  11. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  12. The feasibility of co-firing biomass for electricity in Missouri

    International Nuclear Information System (INIS)

    Liu, Zuoming; Altman, Ira; Johnson, Thomas G.

    2014-01-01

    Bioenergy is one of the most significant energy resources with potential to serve as a partial replacement for fossil. As an agricultural state, Missouri has great potential to use biomass for energy production. In 2008, Missouri adopted a renewable portfolio standard (RPS) yet about 80% of its power supply still comes from coal. This paper describes a feasibility study of co-firing biomass in existing coal-powered plants in Missouri. Specifically, this study developed a linear programming model and simulated six scenarios to assess the economic feasibility and greenhouse gas impacts of co-firing biomass in existing qualified coal power plants in Missouri. The results of this study indicate that although co-firing can reduce the emissions of GHG and environmental pollutants, it is still not an economically feasible option for power generation without additional economic or policy incentives or regulations which could take environmental costs into account. Based on these results, strategies and policies to promote the utilization of biomass and to increase its competitiveness with fossil fuels are identified and discussed. - Highlights: • This paper reports on a study of the economic feasibility and environmental effects of co-firing biomass for electricity. • The feasibility of co-firing biomass varies by location depending on local availability of biomass and size of facility. • We apply a linear optimization model that generates economic and environmental indicators for each of several locations. • This paper will appeal to power generators, academic researchers and consultants interested in the feasibility of biopower

  13. Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    2013-01-01

    sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic...

  14. Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson

    2014-01-01

    Cofiring forest biomass residues with coal to generate electricity is often cited for its potential to offset fossil fuels and reduce greenhouse gas emissions, but the extent to which cofiring achieves these objectives is highly dependent on case specific variables. This paper uses facility and forest specific data to examine emissions from cofiring forest biomass with...

  15. Experimental analysis of a combustion reactor under co-firing coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabyo Luiz; Bazzo, Edson; Oliveira Junior, Amir Antonio Martins de [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). LabCET], e-mail: ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Complexo Termeletrico Jorge Lacerda, Capivari de Baixo, SC (Brazil)], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Mitigation of greenhouse gases emission is one of the most important issues in energy engineering. Biomass is a potential renewable source but with limited use in large scale energy production because of the relative smaller availability as compared to fossil fuels, mainly to coal. Besides, the costs concerning transportation must be well analysed to determine its economic viability. An alternative for the use of biomass as a primary source of energy is the co-firing, that is the possibility of using two or more types of fuels combined in the combustion process. Biomass can be co-fired with coal in a fraction between 10 to 25% in mass basis (or 4 to 10% in heat-input basis) without seriously impacting the heat release characteristics of most boilers. Another advantage of cofiring, besides the significant reductions in fossil CO{sub 2} emissions, is the reduced emissions of NO{sub x} and SO{sub x}. As a result, co-firing is becoming attractive for power companies worldwide. This paper presents results of some experimental analysis on co-firing coal with rice straw in a combustion reactor. The influence of biomass thermal share in ash composition is also discussed, showing that alkali and earth alkaline compounds play the most important role on the fouling and slagging behavior when co-firing. Some fusibility correlations that can assist in the elucidation of these behavior are presented and discussed, and then applied to the present study. Results show that for a biomass thermal share up to 20%, significant changes are not expected in fouling and slagging behavior of ash. (author)

  16. Combustion, cofiring and emissions characteristics of torrefied biomass in a drop tube reactor

    International Nuclear Information System (INIS)

    Ndibe, Collins; Maier, Jörg; Scheffknecht, Günter

    2015-01-01

    The study investigates cofiring characteristics of torrefied biomass fuels at 50% thermal shares with coals and 100% combustion cases. Experiments were carried out in a 20 kW, electrically heated, drop-tube reactor. Fuels used include a range of torrefied biomass fuels, non-thermally treated white wood pellets, a high volatile bituminous coal and a lignite coal. The reactor was maintained at 1200 °C while the overall stoichiometric ratio was kept constant at 1.15 for all combustion cases. Measurements were performed to evaluate combustion reactivity, emissions and burn-out. Torrefied biomass fuels in comparison to non-thermally treated wood contain a lower amount of volatiles. For the tests performed at a similar particle size distribution, the reduced volatile content did not impact combustion reactivity significantly. Delay in combustion was only observed for test fuel with a lower amount of fine particles. The particle size distribution of the pulverised grinds therefore impacts combustion reactivity more. Sulphur and nitrogen contents of woody biomass fuels are low. Blending woody biomass with coal lowers the emissions of SO 2 mainly as a result of dilution. NO X emissions have a more complex dependency on the nitrogen content. Factors such as volatile content of the fuels, fuel type, furnace and burner configurations also impact the final NO X emissions. In comparison to unstaged combustion, the nitrogen conversion to NO X declined from 34% to 9% for air-staged co-combustion of torrefied biomass and hard coal. For the air-staged mono-combustion cases, nitrogen conversion to NO X declined from between 42% and 48% to about 10%–14%. - Highlights: • Impact of torrefaction on cofiring was studied at high heating rates in a drop tube. • Cofiring of torrefied biomasses at high thermal shares (50% and higher) is feasible. • Particle size impacts biomass combustion reactivity more than torrefaction. • In a drop tube reactor, torrefaction has no negative

  17. Field test corrosion experiments in Denmark with biomass fuels Part II Co-firing of straw and coal

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2002-01-01

    undertaken where coal has been co-fired with 10% straw and 20% straw (% energy basis) for up to approx. 3000 hours. Two types of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing...... and potassium sulphate. These components give rise to varying degrees of accelerated corrosion. This paper concerns co-firing of straw with coal to reduce the corrosion rate from straw to an acceptable level. A field investigation at Midtkraft Studstrup suspension-fired power plant in Denmark has been...... for 100% straw-firing. The corrosion products and course of corrosion for the various steel types were investigated using light optical and scanning electron microscopy. Catastrophic corrosion due to potassium chloride was not observed. Instead a more modest corrosion rate due to potassium sulphate rich...

  18. Co-firing straw and coal in a 150-MWe utility boiler: in situ measurements

    DEFF Research Database (Denmark)

    Hansen, P. F.B.; Andersen, Karin Hedebo; Wieck-Hansen, K.

    1998-01-01

    A 2-year demonstration program is carried out by the Danish utility I/S Midtkraft at a 150-MWe PF-boiler unit reconstructed for co-firing straw and coal. As a part of the demonstration program, a comprehensive in situ measurement campaign was conducted during the spring of 1996 in collaboration...... with the Technical University of Denmark. Six sample positions have been established between the upper part of the furnace and the economizer. The campaign included in situ sampling of deposits on water/air-cooled probes, sampling of fly ash, flue gas and gas phase alkali metal compounds, and aerosols as well...... deposition propensities and high temperature corrosion during co-combustion of straw and coal in PF-boilers. Danish full scale results from co-firing straw and coal, the test facility and test program, and the potential theoretical support from the Technical University of Denmark are presented in this paper...

  19. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  20. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    International Nuclear Information System (INIS)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-01-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives

  1. Effective technology of wood and gaseous fuel co-firing for clean energy production

    International Nuclear Information System (INIS)

    Zake, M.; Barmina, I.; Gedrovics, M.; Desnickis, A.

    2007-01-01

    The main aim of the study was to develop and optimise a small-scale experimental co-firing technique for the effective and clean heat energy production by replacing a proportion of fossil fuel (propane) with renewable one (wood biomass). Technical solutions of propane co-fire presenting two different ways of additional heat supply to the wood biomass are proposed and analysed. The experiments have shown that a better result can be obtained for the direct propane co-fire of the wood biomass, when the rate of wood gasification and the ignition of volatiles are controlled by additional heat energy supply to the upper portion of wood biomass. A less effective though cleaner way of heat energy production is the direct propane co-fire of volatiles when low-temperature self-sustaining burnout of the wood biomass controls the rate of the volatile formation, while additional heat energy supply to the flow of volatiles controls their burnout. The effect of propane co-fire on the heat production rate and the composition of polluting emissions is studied and analysed for different rates of the additional heat supply to the wood biomass and of the swirling air supply as well as for different charge of wood biomass above the inlet of the propane flame flow. (Authors)

  2. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  3. COFIRING BIOMASS WITH LIGNITE COAL; F

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2001-01-01

    As of September 28, 2001, all the major project tasks have been completed. A presentation was given to the North Dakota State Penitentiary (NDSP) and the North Dakota Division of Community Services (DCS). In general, the feasibility study has resulted in the following conclusions: (1) Municipal wood resources are sufficient to support cofiring at the NDSP. (2) Steps have been taken to address all potential fuel-handling issues with the feed system design, and the design is cost-effective. (3) Fireside issues of cofiring municipal wood with coal are not of significant concern. In general, the addition of wood will improve the baseline performance of lignite coal. (4) The energy production strategy must include cogeneration using steam turbines. (5) Environmental permitting issues are small and do not affect economics. (6) The base-case economic scenario provides for a 15-year payback of a 20-year municipal bond and does not include the broader community benefits that can be realized

  4. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  5. Noise characteristics of resistors buried in low-temperature co-fired ceramics

    International Nuclear Information System (INIS)

    Kolek, A; Ptak, P; Dziedzic, A

    2003-01-01

    The comparison of noise properties of conventional thick film resistors prepared on alumina substrates and resistors embedded in low-temperature co-fired ceramics (LTCCs) is presented. Both types of resistors were prepared from commercially available resistive inks. Noise measurements of LTCC resistors below 1 kHz show Gaussian 1/f noise. This is concluded from the calculations of the second spectra as well as from studying the volume dependence of noise intensity. It has occurred that noise index of LTCC resistors on average is not worse than that of conventional resistors. A detailed study of co-fired surface resistors and co-fired buried resistors show that burying a resistor within LTCC substrate usually leads to (significant) enhancement of resistance but not of noise intensity. We interpret this behaviour as another argument in favour of tunnelling as the dominant conduction mechanism in LTCC resistors

  6. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    International Nuclear Information System (INIS)

    K. Payette; D. Tillman

    2001-01-01

    During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker

  7. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  8. High density microelectronics package using low temperature cofirable ceramics

    International Nuclear Information System (INIS)

    Fu, S.-L.; Hsi, C.-S.; Chen, L.-S.; Lin, W. K.

    1997-01-01

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe 2/3 W 1/3 ) x (Fe l/2 Nb l/2 ) y Ti 2 O 3 was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  9. High density microelectronics package using low temperature cofirable ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S -L; Hsi, C -S; Chen, L -S; Lin, W K [Kaoshiung Polytechnic Institute Ta-Hsu, Kaoshiung (China)

    1998-12-31

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe{sub 2/3}W{sub 1/3}){sub x}(Fe{sub l/2}Nb{sub l/2}){sub y}Ti{sub 2}O{sub 3} was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  10. Co-firing Bosnian coals with woody biomass: Experimental studies on a laboratory-scale furnace and 110 MWe power unit

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2012-01-01

    Full Text Available This paper presents the findings of research into cofiring two Bosnian cola types, brown coal and lignite, with woody biomass, in this case spruce sawdust. The aim of the research was to find the optimal blend of coal and sawdust that may be substituted for 100% coal in large coal-fired power stations in Bosnia and Herzegovina. Two groups of experimental tests were performed in this study: laboratory testing of co-firing and trial runs on a large-scale plant based on the laboratory research results. A laboratory experiment was carried out in an electrically heated and entrained pulverized-fuel flow furnace. Coal-sawdust blends of 93:7% by weight and 80:20% by weight were tested. Co-firing trials were conducted over a range of the following process variables: process temperature, excess air ratio and air distribution. Neither of the two coal-sawdust blends used produced any significant ash-related problems provided the blend volume was 7% by weight sawdust and the process temperature did not exceed 1250ºC. It was observed that in addition to the nitrogen content in the co-fired blend, the volatile content and particle size distribution of the mixture also influenced the level of NOx emissions. The brown coal-sawdust blend generated a further reduction of SO2 due to the higher sulphur capture rate than for coal alone. Based on and following the laboratory research findings, a trial run was carried out in a large-scale utility - the Kakanj power station, Unit 5 (110 MWe, using two mixtures; one in which 5%/wt and one in which 7%/wt of brown coal was replaced with sawdust. Compared to a reference firing process with 100% coal, these co-firing trials produced a more intensive redistribution of the alkaline components in the slag in the melting chamber, with a consequential beneficial effect on the deposition of ash on the superheater surfaces of the boiler. The outcome of the tests confirms the feasibility of using 7%wt of sawdust in combination

  11. Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA

    International Nuclear Information System (INIS)

    Loeffler, Dan; Anderson, Nathaniel

    2014-01-01

    Highlights: • Case study using audited fuel consumption and emissions data from a coal mine and power plant. • Model emissions tradeoffs of cofiring forest biomass with coal up to 20% by heat input value. • Substituting forest biomass with coal displaces fossil energy with an otherwise waste material. • Substantially less system emissions overall are generated when cofiring forest biomass. • Cofiring forest biomass has positive global and local greenhouse gas and human health implications. - Abstract: Cofiring forest biomass residues with coal to generate electricity is often cited for its potential to offset fossil fuels and reduce greenhouse gas emissions, but the extent to which cofiring achieves these objectives is highly dependent on case specific variables. This paper uses facility and forest specific data to examine emissions from cofiring forest biomass with coal ranging up to 20% substitution by heat value in southwest Colorado, USA. Calculations for net system emissions include five emissions sources: coal mining, power plant processes, forest biomass processes, boiler emissions, and forest biomass disposal. At the maximum displacement of 20% of heat demand using 120,717 t of forest biomass per year, total system emissions are projected to decrease by 15% for CO 2 , 95% for CH 4 , 18% for NO X , 82% for PM 10 , and 27% for SO X . PM 10 and CH 4 emissions benefits are closely tied to reducing open burning for residue disposal. At maximum displacement, 189,240 t of CO 2 emissions equivalent to the annual CO 2 emissions from 36,200 passenger vehicles, 440,000 barrels of oil, or nearly 990 railcars of coal are avoided. When forest biomass is not cofired, emissions equivalent to144,200 t of CO 2 are emitted from open burning. In addition to exploring the details of this case, we provide a methodology for assessing the emissions tradeoffs related to using forest biomass for cogeneration that incorporates the operational aspects of managing forest

  12. Biomass for electricity in the EU-27: Potential demand, CO2 abatements and breakeven prices for co-firing

    International Nuclear Information System (INIS)

    Bertrand, Vincent; Dequiedt, Benjamin; Le Cadre, Elodie

    2014-01-01

    This paper analyses the potential of biomass-based electricity in the EU-27 countries, and interactions with climate policy and the EU ETS. We estimate the potential biomass demand from the existing power plants, and we match our estimates with the potential biomass supply in Europe. Furthermore, we compute the CO2 abatement associated with the co-firing opportunities in European coal plants. We find that the biomass demand from the power sector may be very high compared with potential supply. We also identify that co-firing can produce high volumes of CO 2 abatements, which may be two times larger than that of the coal-to-gas fuel switching. We also compute biomass and CO2 breakeven prices for co-firing. Results indicate that biomass-based electricity remains profitable with high biomass prices, when the carbon price is high: a Euros 16–24 (25–35, respectively) biomass price (per MWh prim ) for a Euros 20 (50, respectively) carbon price. Hence, the carbon price appears as an important driver, which can make profitable a high share of the potential biomass demand from the power sector, even with high biomass prices. This aims to gain insights on how biomass market may be impacted by the EU ETS and others climate policies. - Highlights: • Technical potential of biomass (demand and CO 2 abatement) in European electricity. • Calculation for co-firing and biomass power plants; comparison with potential biomass supply in EU-27 countries. • Calculation of biomass and CO 2 breakeven prices for co-firing. • Potential demand is 8–148% of potential supply (up to 80% of demand from co-firing). • High potential abatement from co-firing (up to 365 Mt/yr); Profitable co-firing with €16-24 (25–35) biomass price for €20 (50) CO 2 price

  13. Assessment of the economics of basic natural gas cofiring in coal-fired stoker boilers. Topical report, June 1991-June 1992

    International Nuclear Information System (INIS)

    Bluestein, J.

    1992-06-01

    The report analyzes the possible benefits of basic gas cofiring in coal-fired stoker boilers. It presents data on the population of stoker boilers, the potential benefits of basic cofiring in stoker boilers and their value to the boiler operator. In particular, it quantifies the economic value of environmental and operational benefits known or thought to arise from cofiring

  14. Norwegian wood? Biomass co-firing at Drax

    Energy Technology Data Exchange (ETDEWEB)

    Probert, T.

    2009-11-15

    PEi reports on a visit to the giant Drax coal fired power station in North Yorkshire, UK. The second largest coal plant in Europe is the site of a co-firing system that will allow for the displacement of ten per cent of its coal throughput in favour of biomass, thus reducing its sizeable carbon footprint by around two million tonnes a year. Tests on a pilot plant have shown that Drax can burn up to 60 types of biomass using existing coal burners. The majority of biomass will be imported - most likely wood from Scandinavia, The Baltics and North America. Drax would be eligible for one-half of a Renewable Obligation Certificate. Carbon dioxide emissions should be reduced by around 2 million tonnes per year. 3 photos.

  15. The effect of Co-firing with Straw and Coal on High Temperature Corrosion

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Larsen, OH

    2001-01-01

    As a part of ELSAMS development programme into alternative energy sources, various concepts of straw-firing have been investigated. This paper concerns co-firing of straw with coal to reduce the corrosion rate observed in straw-fired power plants. Co-firing with coal reduces the amount of potassium......: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing superheaters. A range of austenitic and ferritic steels was exposed in the steam temperature region of 520-580°C. The flue gas temperature ranged from 925-1100°C....... The corrosion products for the various steel types were investigated using light optical and scanning electron microscopy. Corrosion mechanisms for the austenitic and ferritic steels are presented. These are discussed in relation to temperature and deposit composition. Co-firing with coal has removed potassium...

  16. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    Directory of Open Access Journals (Sweden)

    Shinichiro Kawada

    2015-11-01

    Full Text Available Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  17. Co-firing behavior of ZnTiO3-TiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters

    International Nuclear Information System (INIS)

    Wang Mao; Zhou Ji; Yue Zhenxing; Li Longtu; Gui Zhilun

    2003-01-01

    The low-temperature co-firing compatibility between ferrite and dielectric materials is the key issue in the production process of multi-layer chip LC filters. This paper presents the co-firing behavior and interfacial diffusion of ZnTiO 3 -TiO 2 dielectric/Co 2 Z hexagonal ferrite multi-layer composites. It has been testified that proper constitutional modification is feasible to diminish co-firing mismatch and enhance co-firing compatibility. Interfacial reactions occur at the interface, which can strengthen combinations between ferrite layers and dielectric layers. Titanium and barium tend to concentrate at the interface; iron and zinc have a wide diffusion range

  18. BENEFIT COST FOR BIOMASS CO-FIRING IN ELECTRICITY GENERATION: CASE OF UTAH, U.S.

    Directory of Open Access Journals (Sweden)

    Man-Keun Kim

    2015-07-01

    Full Text Available Policy making regarding biomass co-firing is difficult. The article provides a benefit-cost analysis for decision makers to facilitate policy making process to implement efficient biomass co-firing policy. The additional cost is the sum of cost of the biomass procurement and biomass transportation. Co-benefits are sales of greenhouse gas emission credits and health benefit from reducing harmful air pollutants, especially particulate matter. The benefit-cost analysis is constructed for semi-arid U.S. region, Utah, where biomass supply is limited. Results show that biomass co-firing is not economically feasible in Utah but would be feasible when co-benefits are considered. Benefit-cost ratio is critically dependent upon biomass and carbon credit prices. The procedure to build the benefit-cost ratio can be applied for any region with other scenarios suggested in this study.

  19. Biomass fuel characterization for NOx emissions in cofiring applications

    NARCIS (Netherlands)

    Di Nola, G.

    2007-01-01

    This dissertation investigates the impact of various biomass fuels and combustion conditions on the NOx emissions during biomass co-firing. Fossil fuels dominated the energy scenario since the industrial revolution. However, in the last decades, increasing concerns about their availability and

  20. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40

  1. Numerical simulation of the gasification based biomass cofiring on a 600 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R.; Dong, C.Q.; Yang, Y.P.; Zhang, J.J. [Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, Beijing (China); North China Electric Power Univ., Beijing (China). Key Laboratory of Security and Clean Energy Technology

    2008-07-01

    Biomass cofiring is the practice of supplementing a base fuel with biomass fuels such as wood waste, short rotation woody crops, short rotation herbaceous crops, alfalfa stems, various types of manure, landfill gas and wastewater treatment gas. The practice began in the 1980s and is becoming commonplace in Europe and the United States. The benefits include reduced carbon dioxide emissions and other airborne emissions such as nitrous oxides (NOx), sulphur dioxide and trace metals; potential for reduced fuel cost; and supporting economic development among wood products and agricultural industries in a given service area. However, technical challenges remain when biomass is directly cofired with coal. These include limited percentage of biomass for cofiring; fuel preparation, storage, and delivery; ash deposition and corrosion associated with the high alkali metal and chlorine content in biomass; fly ash utilization; and impacts on the selective catalytic reduction (SCR) system. This study involved a numerical simulation of cofiring coal and biomass gas in a 600 MWe tangential PC boiler using Fluent software. Combustion behaviour and pollutant formation in the conventional combustion and cofiring cases were compared. The study revealed that reduced NOx emissions can be achieved when producer gas is injected from the lowest layer burner. The nitrogen monoxide (NO) removal rate was between 56.64 and 70.37 per cent. In addition, slagging can be reduced because of the lower temperature. It was concluded that the convection heat transfer area should be increased or the proportion of biomass gas should be decreased to achieve higher boiler efficiency. 8 refs., 4 tabs., 8 figs.

  2. Special emission measurements on Riley Stoker's advanced CFB pilot facility co-firing non-recyclable de-inking paper fiber and high sulfur eastern bituminous coal

    International Nuclear Information System (INIS)

    Dixit, V.B.; Mongeon, R.K.; Reicker, E.L.

    1993-01-01

    Riley Stoker has developed advanced industrial CFB designs that utilize eastern bituminous coals as fuel, and have the potential to use coal in combination with other fuels. Various fiber waste streams in paper recycling processes have sufficient carbonaceous content to be considered as possible sources of such fuels that could fire FBC combustors. The American Paper Institute estimates that by the mid-1990's more than 40% of the waste paper will be recycled, reaching much higher numbers by the year 2000. To evaluate the effectiveness of co-firing such fuels, a test program was conducted on Riley's pilot-scale circulating fluidized bed test facility. A de-inked newsprint derived fiber waste was successfully co-fired with high sulfur coal. The waste fiber material containing approximately 50% moisture had a heating value of 3500 Btu/lb. The coal was strip-mined and contained a lot of clay and excessive quantities of fines making it difficult to burn in conventional boilers. Tests were also conducted with a combination fuel consisting of coal, fiber waste and a high carbon fly ash. In addition to obtaining performance data on combustion efficiency, sulfur capture, and NO x emissions, special emission measurements were also made to quantify the organics, trace metals and hydrochloric acid levels in the flue gas. The co-firing tests achieved a maximum combustion efficiency of 98% and sulfur capture of 90%. The effect of Ca/S mole ratio and temperature is discussed. Although there are no formal regulations in place for FBC systems regarding special emissions, the levels measured were far below the allowable limits for waste incinerators. Materials handling experience on the pilot facility relating to co-firing is also discussed. This is done to identify special considerations for designing commercial facilities. A brief overview of the de-inking waste fiber combustion market is also presented

  3. Cofiring of rice straw and coal in a coal-fired utility boiler: thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia, Capivari de Baixo, SC (Brazil)], E-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Cofiring combustion of biomass and coal is a near-term, low cost alternative for reduction fossil greenhouse gas emissions in coal fired power plants. Recent reviews identified over 288 applications in over 16 countries with promising results for different coal and biomass combinations. In Brazil, there is no previous experience of cofiring biomass and coal, resulting in new challenges to fuel handling and boiler operation. A first experience is now proposed into an existing coal power plant, using rice straw as biomass fuel. A thermodynamic model was developed in order to predict operating and emissions data, which should be used in cofiring system design. For 10% of biomass input, the total CO{sub 2} emission is expected to slightly increase. However, considering only the coal CO{sub 2} emission, it is expected to decrease in about 10%. Also, the corresponding SO{sub 2} emission decreases in about 8%. (author)

  4. Co-firing of biomass and other wastes in fluidised bed systems

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Lopes, H.; Boavida, D.; Abelha, P. [INETI/DEECA, Lisboa (Portugal); Werther, J.; Hartge, E.-U.; Wischnewski, R. [TU Hamburg-Harburg (Georgia); Leckner, B.; Amand, L.-E.; Davidsson, K. [Chalmers Univ. of Technology (Sweden); Salatino, P.; Chirone, R.; Scala, F.; Urciuolo, M. [Dipartimento di Ingegneria Chimica, Universita di Napoli Frederico II and Istituto di Ricerche sulla Combustione (Italy); Oliveira, J.F.; Lapa, N.

    2006-07-01

    A project on co-firing in large-scale power plants burning coal is currently funded by the European Commission. It is called COPOWER. The project involves 10 organisations from 6 countries. The project involves combustion studies over the full spectrum of equipment size, ranging from small laboratory-scale reactors and pilot plants, to investigate fundamentals and operating parameters, to proving trials on a commercial power plant in Duisburg. The power plant uses a circulating fluidized bed boiler. The results to be obtained are to be compared as function of scale-up. There are two different coals, 3 types of biomass and 2 kinds of waste materials are to be used for blending with coal for co-firing tests. The baseline values are obtained during a campaign of one month at the power station and the results are used for comparison with those to be obtained in other units of various sizes. Future tests will be implemented with the objective to achieve improvement on baseline values. The fuels to be used are already characterized. There are ongoing studies to determine reactivities of fuels and chars produced from the fuels. Reactivities are determined not only for individual fuels but also for blends to be used. Presently pilot-scale combustion tests are also undertaken to study the effect of blending coal with different types of biomass and waste materials. The potential for synergy to improve combustion is investigated. Simultaneously, studies to verify the availability of biomass and waste materials in Portugal, Turkey and Italy have been undertaken. Techno-economic barriers for the future use of biomass and other waste materials are identified. The potential of using these materials in coal fired power stations has been assessed. The conclusions will also be reported.

  5. Potential to cofire high-sulfur coal and MSW/RDF in Illinois utility boilers: A survey and analysis

    International Nuclear Information System (INIS)

    South, D.W.

    1993-01-01

    The disposal of refuse is of ever-increasing concern for municipalities and other organizations and agencies throughout the United States. Disposal in landfills is becoming more costly, and new landfills are more difficult to site because of stricter environmental regulations. Mass burning incinerators for municipal solid wastes (MSW) have also met with increased public resistance due to excessive emissions. Nevertheless, increased awareness of the need for alternative disposal techniques has led to a new interest in cofiring MSW with coal. In addition to solid waste concerns, the requirements to reduce SO 2 and NO x emissions from coal-fired utility boilers in the Clean Air Act Amendments of 1990, present an opportunity to cofire MSW/RDF with coal as an emission control measure. These issues were the impetus for a 1992 study (conducted by ANL for the Illinois Clean Coal Institute) to examine the potential to cofire coal with MSW/RDF in Illinois utility boilers. This paper will provide a synopsis of the ANL/ICCI report. It will summarize (1) the combustibility and emission characteristics of high-sulfur coal and MSW/RDF; (2) the facilities firing RDF and/or producing/selling RDF, together with their combustion and emissions experience; (3) the applicable emissions regulations in Illinois; and (4) the analysis of candidate utility boilers in Illinois capable of cofiring, together with the effect on coal consumption and SO 2 and NO x emissions that would result from 20% cofiring with RDF/MSW

  6. A review on biomass classification and composition, cofiring issues and pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  7. On Preliminary Test Estimator for Median

    OpenAIRE

    Okazaki, Takeo; 岡崎, 威生

    1990-01-01

    The purpose of the present paper is to discuss about estimation of median with a preliminary test. Two procedures are presented, one uses Median test and the other uses Wilcoxon two-sample test for the preliminary test. Sections 3 and 4 give mathematical formulations of such properties, including mean square errors with one specified case. Section 5 discusses their optimal significance levels of the preliminary test and proposes their numerical values by Monte Carlo method. In addition to mea...

  8. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  9. A low temperature co-fired ceramic power inductor manufactured using a glass-free ternary composite material system

    Science.gov (United States)

    Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua

    2018-03-01

    A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.

  10. From biomass to biocarbon : trends and tradeoffs when CO-firing

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, H. [Alterna Energy Inc., Prince George, BC (Canada)

    2009-07-01

    This study examined current market dynamics for biomass-based fuels produced in British Columbia (BC) and consumed by utilities in Sweden. The aim of the study was to compare and develop the properties of 3 biofuels suitable for co-firing: (1) dry wood pellets; (2) torrefied wood pellets; and (3) biocarbon pellets. Biocarbon fuels are processed at higher temperatures to produce a higher energy density fuel per unit weight at a lower overall mass yield. The processing mass balances and physical properties of the pellets were investigated as well as the production and transportation costs of biofuels. Market value, profit, and maximum production costs of the pellets were examined. The study showed that the biofuel supply chain includes significant transportation costs relative to the cost of the raw biomass and biofuel conversion processes. It was concluded that higher energy density biocarbon pellets represent the most cost-effective biofuel option for co-firing with coal. 10 refs., 3 tabs., 4 figs.

  11. From biomass to biocarbon : trends and tradeoffs when CO-firing

    International Nuclear Information System (INIS)

    McLaughlin, H.

    2009-01-01

    This study examined current market dynamics for biomass-based fuels produced in British Columbia (BC) and consumed by utilities in Sweden. The aim of the study was to compare and develop the properties of 3 biofuels suitable for co-firing: (1) dry wood pellets; (2) torrefied wood pellets; and (3) biocarbon pellets. Biocarbon fuels are processed at higher temperatures to produce a higher energy density fuel per unit weight at a lower overall mass yield. The processing mass balances and physical properties of the pellets were investigated as well as the production and transportation costs of biofuels. Market value, profit, and maximum production costs of the pellets were examined. The study showed that the biofuel supply chain includes significant transportation costs relative to the cost of the raw biomass and biofuel conversion processes. It was concluded that higher energy density biocarbon pellets represent the most cost-effective biofuel option for co-firing with coal. 10 refs., 3 tabs., 4 figs.

  12. Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern U.S.

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Past studies have established measures of co-firing potential at varying spatial scales to assess opportunities for renewable energy generation from woody biomass. This study estimated physical availability, within ecological and public policy constraints, and associated harvesting and delivery costs of woody biomass for co-firing in selected power plants of the...

  13. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  14. A Greenhouse Gas Balance of Electricity Production from Co-firing Palm Oil Products from Malaysia

    International Nuclear Information System (INIS)

    Wicke, B.; Dornburg, V.; Faaij, A.; Junginger, M.

    2007-05-01

    The Netherlands imports significant quantities of biomass for energy production, among which palm oil has been used increasingly for co-firing in existing gas-fired power plants for renewable electricity production. Imported biomass, however, can not simply be considered a sustainable energy source. The production and removal of biomass in other places in the world result in ecological, land-use and socio-economic impacts and in GHG emissions (e.g. for transportation). As a result of the sustainability discussions, the Cramer Commission in the Netherlands has formulated (draft) criteria and indicators for sustainable biomass production. This study develops a detailed methodology for determining the GHG balance of co-firing palm oil products in the Netherlands based on the Cramer Commission methodology. The methodology is applied to a specific bio-electricity chain: the production of palm oil and a palm oil derivative, palm fatty acid distillate (PFAD), in Northeast Borneo in Malaysia, their transport to the Netherlands and co-firing with natural gas for electricity production at the Essent Claus power plant

  15. X-Ray Characterization of Resistor/Dielectric Material for Low Temperature Co-Fired Ceramic Packages

    International Nuclear Information System (INIS)

    DIMOS, DUANE B.; KOTULA, PAUL G.; RODRIGUEZ, MARK A.; YANG, PIN

    1999-01-01

    High temperature XRD has been employed to monitor the devitrification of Dupont 951 low temperature co-fired ceramic (LTCC) and Dupont E84005 resistor ink. The LTCC underwent devitrification to an anorthite phase in the range of 835-875 C with activation energy of 180 kJ/mol as calculated from kinetic data. The resistor paste underwent devitrification in the 835-875 C range forming monoclinic and hexagonal celcian phases plus a phase believed to be a zinc-silicate. RuO(sub 2) appeared to be stable within this devitrified resistor matrix. X-ray radiography of a co-fired circuit indicated good structural/chemical compatibility between the resistor and LTCC

  16. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements.

    Science.gov (United States)

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-02-16

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO₃ (48.5%), SiO₂ (21.1%), Al₂O₃ (13.8%), SO₃ (10.06%), Fe₂O₃ (2.25%) and others (4.29%). SA fly ash consists of Al₂O₃ (19.7%), SiO₂ (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al₂O₃ (15%), SiO₂ (25.4%), Zn (20.6%), SO₃ (10.9%), Fe₂O₃ (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7-14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements.

  17. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  18. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  19. Characterisation of solid recovered fuels for direct co-firing in large-scale PF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dunnu, Gregory

    2013-04-01

    Solid Recovered Fuels are solid fuels prepared from high calorific fractions of non-hazardous waste materials intended to be co-fired in coal power plants and industrial furnaces (CEN/TC 343). They are composed of a variety of materials of which some, although recyclable in theory, may be in a form that makes their recycling an unsound option. The SRF with a typical size range of 3 mm through 25 mm are to be directly co-fired in an existing pulverised coal power plant. In comparison to pulverised coal, the particle size distribution of the SRF is of several magnitudes higher, resulting in a different burnout behaviour. Size reduction of the SRF to a fraction similar to coal is not economically feasible. The aim here is, therefore, the direct co-firing of the solid recovered fuels in the boilers without any further size reduction. This approach, however, bears the risk of incomplete combustion if the injection points of the solid recovered fuels are not optimally selected. Accordingly, the prediction of the burner levels, at which the solid recovered fuels should be injected and whether or not a complete combustion will be achieved under full load condition, is the primary objective of this dissertation. In this research work, laboratory experiments have been conducted to forecast the success of co-firing the SRF in a commercial pulverised coal power plant. It involves the analyses of the fuel and its intermediate chars generated at conditions comparable to boiler conditions to determine some characteristic parameters, namely the burnout time, the aerodynamic lift velocity, the drag coefficient and the apparent densities. The data gathered from the laboratory experiments are transferred to boiler conditions to determine the particle trajectories and the maximum distance likely to travel before they are completely converted in the boiler. Different scenarios are examined and based on the results the best boiler injection points are predicted. Furthermore, an on

  20. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    The properties of the ash from co-firing of coal and straw have a large influence on boiler operation, flue gas cleaning equipment and appropriate utilization of the fly ash. A study on the fuel composition and local conditions influence on fly ash properties has been done by making entrained flo...

  1. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    International Nuclear Information System (INIS)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III

    2001-01-01

    During the second quarter, important preparatory work was continued so that the experimental activities can begin toward the end of the third quarter or early in the fourth quarter. The Environmental Questionnaire was submitted to the U.S. DOE National Energy Technology Laboratory (NETL), after thorough review by the Bellefield Boiler Plant (BBP). Letters were submitted to the Allegheny County Health Department (ACHD) and the Pennsylvania Department of Environmental Protection (PADEP) to seek R and D variances for permits at the BBP, the J. A. Rutter Company (JARC), and Emery Tree Service (ETS) for their portion of the project. Memoranda of understanding were executed by the University of Pittsburgh (University) with the BBP, JARC and ETS. Construction wood was collected from Thompson Properties. Discussions were held with the BBP and Energy Systems Associates (ESA), the BBP's engineering consultant. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the American Chemical Society (ACS), the Federal Energy Management Program (FEMP), the Upgraded Coal Interest Group (UCIG) of the Electric Power Research Institute (EPRI), the Engineering Center for Environment and Energy (ECEE) of the University of Pittsburgh, the Pittsburgh Coal Conference (PCC), the Pennsylvania Ethanol Workshop, BioEnergy 2000 and the Kick-Off Meeting of the Biomass Cofiring Opportunities Solicitation Projects

  2. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  3. CFD simulation of coal and straw co-firing

    DEFF Research Database (Denmark)

    Junker, Helle; Hvid, Søren L.; Larsen, Ejvind

    This paper presents the results of a major R&D program with the objective to develop CFD based tools to assess the impact of biomass co-firing in suspension fired pulverized coal power plants. The models have been developed through a series of Danish research projects with the overall objective...... to collect results from fundamental research and make it operational in boiler design through implementation in a Computational Fluid Dynamics based simulation tool. This paper summarizes the developments in modeling of; particle motion, particle conversion, ash deposition on heat transfer surfaces, and NOx...

  4. Preliminary results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Matsumoto, T.; Komine, K.; Arai, S.

    1997-01-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented

  5. Sulphur capture by co-firing sulphur containing fuels with biomass fuels - optimization

    International Nuclear Information System (INIS)

    Nordin, A.

    1992-12-01

    Previous results concerning co-firing of high sulphur fuels with biomass fuels have shown that a significant part of the sulphur can be absorbed in the ash by formation of harmless sulphates. The aim of this work has been to (i) determine the maximum reduction that can be obtained in a bench scaled fluidized bed (5 kW); (ii) determine which operating conditions will give maximum reduction; (iii) point out the importance and applicability of experimental designs and multivariate methods when optimizing combustion processes; (iv) determine if the degree of sulphur capture can be correlated to the degree of slagging, fouling or bed sintering; and (v) determine if further studies are desired. The following are some of the more important results obtained: - By co-firing peat with biomass, a total sulphur retention of 70 % can be obtained. By co-firing coal with energy-grass, the total SO 2 emissions can be reduced by 90 %. - Fuel feeding rate, amount of combustion air and the primary air ratio were the most important operating parameters for the reduction. Bed temperature and oxygen level seem to be the crucial physical parameters. - The NO emissions also decreased by the sulphur reducing measures. The CO emissions were relatively high (130 mg/MJ) compared to large scale facilities due to the small reactor and the small fluctuations in the fuel feeding rate. The SO 2 emissions could however be reduced without any increase in CO emissions. - When the reactor was fired with a grass, the bed sintered at a low temperature ( 2 SO 4 and KCl are formed no sintering problems were observed. (27 refs., 41 figs., 9 tabs., 3 appendices)

  6. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  7. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--UNIVERSITY OF IOWA

    Science.gov (United States)

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  8. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined

  9. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken....... This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other corrosion mechanisms...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment...

  10. Computational fluid dynamics (CFD) modelling of coal/biomass co-firing in pulverised fuel boilers

    Energy Technology Data Exchange (ETDEWEB)

    Moghtaderi, B.; Meesri, C. [University of Newcastle, Callaghan, NSW (Australia). CRC for Coal in Sustainable Development, Dept. of Chemical Engineering

    2002-07-01

    The present study is concerned with computational fluid dynamics (CFD) modelling of coal/biomass blends co-fired under conditions pertinent to pulverised fuel (PF) boilers. The attention is particularly focused on the near burner zone to examine the impact of biomass on the flame geometry and temperature. The predictions are obtained by numerical solution of the conservation equations for the gas and particle phases. The gas phase is solved in the Eulerian domain using steady-state time-averaged Navier-Stokes equations while the solution of the particle phase is obtained from a series of Lagrangian particle tracking equations. Turbulence is modelled using the {kappa}-{epsilon} and Reynolds Stress models. The comparison between the predictions and experimental measurement reported in the literature resulted in a good agreement. Other influences of biomass co-firing are observed for fuel devolatilisation and burnout. 19 refs., 6 figs.

  11. Feedlot biomass co-firing: a renewable energy alternative for coal-fired utilities. Paper no. IGEC-1-128

    International Nuclear Information System (INIS)

    Arumugam, S.; Thien, B.; Annamalai, K.; Sweeten, J.

    2005-01-01

    The swiftly growing feedlot industry in the United States upshots in the production of manure from one or more animal species in excess of what can safely be applied to farmland in accordance with nutrient management plans. Disposal of the vast quantity of manure produced as a by-product of the cattle feeding industry is one of the major operating tasks of the industry. Aside from the traditional means of disposal as fertilizer, an alternative and attractive way of overcoming this threat is to develop processes that make use of manure as an energy resource. In the present study, the feasibility of using of manure as a fuel in existing coal fired power plants is considered and appropriately termed Feedlot Biomass (FB). The technology of co-firing coal: feedlot biomass facilitates an environment friendly utilization of animal waste for the production of valuable power/steam concurrently addressing the renewable energy, groundwater contamination, and greenhouse gas concerns. Co-firing tests were performed at the Texas AandM University 30 kW t (100,000 Btu/h) laboratory-scale facility. The trials revealed the enhanced combustion of the blends. The NO emissions were less for the blend even with higher nitrogen content of FB as compared to coal. (author)

  12. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    modification to the motion and reaction due to their non-sphericity. The simulation results show a big difference between the two cases and indicate it is very significant to take into account the non-sphericity of biomass particles in order to model biomass combustion more accurately. Methods to improve...... of numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion...... and reaction of a particle. To better understand biomass combustion and thus improve the design for co-firing biomass in wall-fired burners, non-sphericity of biomass particles is considered. To ease comparison, two cases are numerically studied in a 10m long gas/biomass co-fired burner model. (1) The biomass...

  13. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... undertaken. This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  14. Health and environmental effects of refuse derived fuel (RDF) production and RDF/coal co-firing technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Toole, J.J.; Wessels, T.E.; Lynch, J.F.; Fassel, V.A.; Lembke, L.L.; Kniseley, R.N.; Norton, G.A.; Junk, G.A.; Richard, J.J.; Dekalb, E.L.; Dobosy, R.J.

    1981-10-01

    Six facilities, representing the scope of different co-firing techniques with their associated RDF production systems were reviewed in detail for combustion equipment, firing modes, emission control systems, residue handling/disposal, and effluent wastewater treatment. These facilities encompass all currently operational or soon to be operational co-firing plants and associated RDF production systems. Occupational health and safety risks for these plants were evaluated on the basis of fatal and nonfatal accidents and disease arising from the respective fuel cycles, coal and RDF. Occupational risks include exposure to pathogenic organisms in the workplace. Unusual events that are life threatening in the RDF processing industry (e.g., explosions) are also discussed and remedial and safety measures reviewed. 80 refs., 4 figs., 30 tabs.

  15. EOSLT Consortium Biomass Co-firing. WP 4. Biomass co-firing in oxy-fuel combustion. Part 1. Lab- Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fryda, L.E. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2011-07-15

    In the frame of WP4 of the EOS LT Co-firing program, the ash formation and deposition of selected coal/biomass blends under oxyfuel and air conditions were studied experimentally in the ECN lab scale coal combustor (LCS). The fuels used were Russian coal, South African coal and Greek Lignite, either combusted separately or in blends with cocoa and olive residue. The first trial period included tests with the Russian and South African coals and their blends with cocoa, the second trial period included Lignite with olive residue tests and a final period firing only Lignite and Russian coal, mainly to check and verify the observed results. During the testing, also enriched air combustion was applied, in order to establish conclusions whether a systematic trend on ash formation and deposition exists, ranging from conventional air, to enriched air (improving post combustion applications) until oxyfuel conditions. A horizontal deposition probe equipped with thermocouples and heat transfer sensors for on line data acquisition, and a cascade impactor (staged filter) to obtain size distributed ash samples including the submicron range at the reactor exit were used. The deposition ratio and the deposition propensity measured for the various experimental conditions were higher in all oxyfuel cases. No significant variations in the ash formation mechanisms and the ash composition were established. Finally the data obtained from the tests performed under air and oxy-fuel conditions were utilised for chemical equilibrium calculations in order to facilitate the interpretation of the measured data; the results indicate that temperature dependence and fuels/blends ash composition are the major factors affecting gaseous compound and ash composition rather than the combustion environment, which seems to affect neither the ash and fine ash (submicron) formation, nor the ash composition. The ash deposition mechanisms were studied in more detail in Part II of this report.

  16. Increased electricity production from straw by co-firing with woody biomass; Oekad elproduktion med halm genom sameldning med traedbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, Henry; Nordgren, Daniel; Bostroem, Dan; Oehman, Marcus; Padban, Nader

    2011-01-15

    The use of straw in pulverised fuel-fired boiler is great technical challenge, especially when it comes to dealing with problems from slagging and fouling. Introduction of straw in the fuel mix of Swedish boilers will most likely be done by co-firing of woody biomass with straw, and this can provide a means to reduce the (well-documented) problems with fouling and slagging from straw. The project will focus on the faith of alkali metals (K and Na) as well as studies on the slagging and fouling propensity in pulverised fuel-fired boilers when straw is co-fired with woody biomass. A total of 5 different fuel mixtures has been fired in a 150 kW pilot-scale pulverised fuel-fired burner: (i) straw 100 %, (ii) straw/bark 50/50 %, (iii) straw/bark 75/25 % (iv) straw/wood 75/25 % (v) straw/wood 50/50 % (wt-%). The adding of woody biomass to straw has in all of the above-mentioned cases had some positive effect. In general, in all of the ash deposits, an increase in the concentration of Calcium (Ca) has been observed as well as a decrease in the concentrations of Potassium (K) and Silicon (Si). These general trends should be considered as a positive when combustion of straw is considered. Out of all ash deposits collected in the furnace, the characteristics of the bottom ash displayed the largest (positive) change and visual inspections and chemical analysis of the bottom ash showed that the ash had become more porous and contained more Calcium as more woody biomass was introduced in the fuel mix. The deposit build-up rate on the air cooled probes was reduced when more woody biomass was co-fired with straw. The reduction was highest in the trial where 50% woody biomass was used and the most apparent changes in composition could be seen in Calcium (increase) and Potassium (decrease). Danish experiences from introducing straw in pulverised fuel-fired boiler indicate that extra soot-blowers should be considered at the furnace walls and in connection to screen-tubes (if any

  17. Evaluation of BaZr0.1Ce0.7Y0.2O3-δ-based proton-conducting solid oxide fuel cells fabricated by a one-step co-firing process

    International Nuclear Information System (INIS)

    Sun Wenping; Wang Yanfei; Fang Shumin; Zhu Zhiwen; Yan Litao; Liu Wei

    2011-01-01

    Proton-conducting solid oxide fuel cells, incorporating BaZr 0.1 Ce 0.7 Y 0.2 O 3-δ (BZCY) electrolyte, NiO-BZCY anode, and Sm 0.5 Sr 0.5 CoO 3-δ -Ce 0.8 Sm 0.2 O 2-δ (SSC-SDC) cathode, were successfully fabricated by a combined co-pressing and printing technique after a one-step co-firing process at 1100, 1150, or 1200 o C. Scanning electron microscope (SEM) results revealed that the co-firing temperature significantly affected not only the density of the electrolyte membrane but the grain size and porosity of the electrodes. Influences of the co-firing temperature on the electrochemical performances of the single cells were also studied in detail. Using wet hydrogen (2% H 2 O) as the fuel and static air as the oxidant, the cell co-fired at 1150 o C showed the highest maximum power density (PD max ) of 552 and 370 mW cm -2 at 700 and 650 o C, respectively, while the one co-fired at 1100 o C showed the highest PD max of 276 and 170 mWcm -2 at 600 and 550 o C, respectively. The Arrhenius equation was proposed to analyze the dependence of the PD max on the operating temperature, and revealed that PD max of the cell co-fired at a lower temperature was less dependent on operating temperature. The influences of the co-firing temperature on the resistances of the single cells, which were estimated from the electrochemical impedance spectroscopy measured under open circuit conditions, were also investigated.

  18. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  19. Sustainability of biomass for cofiring

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    There are many items to include when considering the sustainability of biomass for cofiring, and some of them are hard to quantify. The focus of this report is on the greenhouse gas emission aspects of sustainability. The reduction of greenhouse gas emissions achieved by substituting biomass for coal depends on a number of factors such as the nature of the fossil fuel reference system, the source of the biomass, and how it is produced. Relevant issues in biomass production include the energy balance, the greenhouse gas balance, land use change, non-CO2 greenhouse gas emission from soils, changes to soil organic carbon, and the timing of emissions and removal of CO2 which relates to the scale of biomass production. Certification of sustainable biomass is slow to emerge at the national and international level, so various organisations are developing and using their own standards for sustainable production. The EU does not yet have sustainability standards for solid biomass, but the UK and Belgium have developed their own.

  20. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    H. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Salema; M. Freire; R. Pereira; I. Cabrita [INETI, Lisbon (Portugal). DEECA

    2009-12-15

    In the scope of the COPOWER project SES6-CT-2004 to investigate potential synergies of co-combustion of different biofuels with coal, a study of emissions of particulate matter and PCDD/F was carried out. The biofuels tested were meat and bone meal (MBM), sewage sludge biopellets (BP), straw pellets (SP), olive bagasse (OB) and wood pellets (WP). The tests performed include co-firing of 5%, 15% and 25% by weight of biofuels with coals of different origin. Both monocombustion and co-firing were carried out. Combustion tests were performed on a pilot fluidised bed, equipped with cyclones and air staging was used in order to achieve almost complete combustion of fuels with high volatile contents and to control gaseous emissions. Particulate matter emissions were isokinetically sampled in the stack and their particle size analysis was performed with a cascade impactor (Mark III). The results showed that most particles emitted were below 10 {mu}m (PM10) for all the tests, however, with the increasing share of biofuels and also during combustion of pure biofuels, especially olive bagasse, straw and MBM, very fine particles, below about 1 {mu}m were present. With the exception of sewage sludge, greater amounts of biofuels appeared to give rise to the decrease in particulate mean diameters and increase in PM percentages below 1 {mu}m. The formation of very fine particles could be related with the presence of aerosol forming elements such as K, Na (in the case of MBM) and Cl in biofuels, which even resulted in higher PM emissions when the ash content of fuels decreased. A correlation wasverified between the increase of PCDD/F with the decrease of PM mean diameter. This may be due to higher specific surface area and greater Cu concentration in the fly ashes. 33 refs., 11 figs., 4 tabs.

  1. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--MINNESOTA POWER'S RAPIDS ENERGY CENTER

    Science.gov (United States)

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  2. Combustion behaviour and deposition characteristics of Cynara Cardunculus/Greek lignite co-firing under various thermal shares in a thermal pilot-scale facility

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Aaron; Maier, Joerg; Scheffknecht, Guenter [Stuttgart Univ. (Germany). Inst. of Combustion and Power Plant Technology; Pawlak-Kruczek, Halina [Wroclaw Univ. of Technology (Poland). Inst. of Heat Engineering and Fluid Mechanics; Karampinis, Emmanouil; Grammelis, Panagiotis; Kakaras, Emmanuel [Centre for Research and Technology Hellas, Ptolemais (Greece). Chemical Process and Energy Resources Inst.; National Technical Univ. of Athens (Greece). Lab. of Steam Boilers and Thermal Plants

    2013-06-01

    The combustion of herbaceous biomass in industrial boilers, either as co-firing fuel or in dedicated combustion units, possess significant operating challenges due to increased risks for corrosion and slagging/fouling. The present work aims at investigating the combustion behaviour of Cynara Cardunculus (cardoon) in a range of thermal shares (0 to 100 %) with a Greek lignite. Combustion tests were performed in a 0.5 MW thermal input pulverised fuel pilot-scale test facility. Deposits were characterised in terms of morphological and ash fusion behaviour, and slagging/fouling tendencies were determined. (orig.)

  3. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  5. Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)

    2010-07-15

    Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)

  6. Energy utilisation of biowaste - Sunflower-seed hulls for co-firing with coal

    Energy Technology Data Exchange (ETDEWEB)

    Raclavska, Helena; Juchelkova, Dagmar; Roubicek, Vaclav; Matysek, Dalibor [VSB-Technical University of Ostrava, 17. listopadu 15, CZ-70833 Ostrava (Czech Republic)

    2011-01-15

    Sunflower-seed hulls (SSH) represent a source of combustible biomass characterised by high contents of potassium and phosphorus and a low silica content. The relatively high net calorific value of 20 MJ/kg d.m. is mainly influenced by the lignin content. Potassium and phosphorus are very important elements in biomass combustion for fuel, influencing slagging and fouling problems. Mixtures with different ratios of brown coal and sunflower-seed hulls (0-22% SSH) were co-fired in the Olomouc power plant. The behaviour of elements in the fly ash and the bottom ash (SiO{sub 2}, Al{sub 2}O{sub 3}, K{sub 2}O, P{sub 2}O{sub 5}, Zn, Cu and Cd) varied in relation to the amount of SSH added to the coal. The fly ash from the co-firing of 20% SSH with coal had a high content of water-leachable sulphates and total dissolved solids. The utilisation of fly ash in civil engineering (land reclamation) should fulfil criteria established by the Council Decision 2003/33/EC for non-hazardous waste. To ensure that the required water-leachable sulphate concentrations are within regulatory limits the fuel may contain a maximum of 14% SSH. (author)

  7. Results of performance and emission testing when co-firing blends of dRDF/COAL in a 440 MWe cyclone fired combustor

    International Nuclear Information System (INIS)

    Ohlsson, O.O.

    1993-01-01

    Argonne National Laboratory (ANL) together with the University of North Texas (UNT) have developed an improved method for converting refuse (residential, commercial and institutional waste) into an environmentally safe and economical fuel. In this method, recyclable metals, glass, and some plastic products are separated from the refuse. The remaining fraction, consisting primarily of cellulosic materials is then combined with a calcium hydroxide binding additive and formed into cylindrical pellets. These pellets are dense and odorless, can be stored for extended periods of time without biological or chemical degradation, and due to their increased bulk density are more durable and can be more easily conveyed, handled, and transported than other types of waste-derived fuel pellets. Laboratory and pilot-scale research studies, followed by full-scale combustion tests undertaken by DOE, ANL and UNT, in June--July of 1987 have indicated that binder-enhanced dRDF pellets can be successfully cofired with high sulfur coal in spreader-stoker combustors. The results of these combustion tests indicated significant reductions of SO 2 , NO x and CO 2 in the flue gases, and the reduction of heavy metals and organics in the ash residue. Dioxins and furans, both in the flue gas and in the ash residues were below detectable levels. Additional commercial-scale combustion tests have recently been conducted by DOE, NREL, ANL and several industrial participants including Otter Tail Power Company, Reuter, Inc., XL Recycling and Marblehead Lime Company, under a collaborative research and development agreement (CRADA). A large 440 MW e cyclone-fired combustor was tested at Big Stone City, South Dakota on October 26--27, 1992. This paper describes the cyclone-fired combustion tests, the flue gas emission and ash samples that were collected, the analyses that were performed on these samples, and the final test results

  8. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 3: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, O.

    1994-07-01

    This report contains the data resulting from the co-firing of b-dRDF pellets and coal in a 440-MW{sub e} cyclone-fired combustor. These tests were conducted under a Collaborative Research and Development Agreement (CRADA). The CRADA partners included the U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), Otter Tail Power Company, Green Isle Environmental, Inc., XL Recycling Corporation, and Marblehead Lime Company. The report is made up of three volumes. This volume contains other supporting information, along with quality assurance documentation and safety and test plans. With this multi-volume approach, readers can find information at the desired level of detail, depending on individual interest or need.

  9. Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lkhagvadorj, Sh; Kim, Sang In; Lim, Ho; Kim, Seung Mo; Jeon, Chung Hwan [Pusan National Univ., Busan (Korea, Republic of); Lee, Byoung Hwa [Doosan Heavy Industries and Construction, Ltd., Changwon (Korea, Republic of)

    2016-01-15

    Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

  10. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    Energy Technology Data Exchange (ETDEWEB)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  11. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  12. The importance of ash for the favourable properties of sewage sludge in co-firing; Askans betydelse foer roetslams goda samfoerbraenningsegenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, K.; Jones, F.; Niklasson, F.; Ryde, D. [SP Sveriges Tekniska Forskningsinstitut, Boraas, (Sweden); Gustafsson, G. [Boraas Energi och Miljoe, Boraas (Sweden); Herstad Svaerd, S. [WSP Kraft and Vaerme, Goeteborg (Sweden)

    2012-11-01

    Sewage sludge has been shown to have positive properties during cofiring with difficult fuels. The sludge mitigates deposition and corrosion which occur because of the fuels content of chlorine and alkali. The reason for the positive properties of sludge are its content of sulphur, phosphorus and aluminium silicates. Its high content of ash has also been discussed because the fly ash would constitute a large surface for alkali chlorides to condensate on and thereby avoid condensation on e.g. superheater surfaces. The ash could also blast the surface and thereby keeping them clean. The present project aims at testing the hypothesis that the ash in the sludge mitigates the deposition. Tests have been performed with synthetically produced waste pellets of which some were doped with inert particles in form of aluminium oxide. The tests were done in a lab-scale bubbling fluidised bed. Deposit probes collected deposits during the combustion of doped and un-doped waste pellets, and the deposits were chemically analysed. The result shows that the inert particles do not have any effect on the amount of hard attached deposits. The particles ended up on the lee side of the probe where they deposited because of gravitation, but they could be easily removed. The remaining deposit was analysed and the effect of inert particles was a small decrease of the content of chlorine. Tests were also performed with pellets doped with sludge. In this case the amount of deposit and its content of chlorine decreased significantly. Different sewage sludges have different properties. The present results show that sludge for cofiring should not be chosen for its amount of ash but rather for its content of sulphur, phosphorous and aluminium.

  13. The importance of ash for the favourable properties of sewage sludge in co-firing; Askans betydelse foer roetslams goda samfoerbraenningsegenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, K.; Jones, F.; Niklasson, F.; Ryde, D. [SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden); Gustafsson, G. [Boraas Energi och Miljoe, Boraas (Sweden); Herstad Svaerd, S. [WSP Kraft and Vaerme, Stockholm (Sweden)

    2012-07-01

    Sewage sludge has been shown to have positive properties during cofiring with difficult fuels. The sludge mitigates deposition and corrosion which occur because of the fuels content of chlorine and alkali. The reason for the positive properties of sludge are its content of sulphur, phosphorus and aluminium silicates. Its high content of ash has also been discussed because the fly ash would constitute a large surface for alkali chlorides to condensate on and thereby avoid condensation on e.g. superheater surfaces. The ash could also blast the surface and thereby keeping them clean. The present project aims at testing the hypothesis that the ash in the sludge mitigates the deposition. Tests have been performed with synthetically produced waste pellets of which some were doped with inert particles in form of aluminium oxide. The tests were done in a lab-scale bubbling fluidised bed. Deposit probes collected deposits during the combustion of doped and un-doped waste pellets, and the deposits were chemically analysed. The result shows that the inert particles do not have any effect on the amount of hard attached deposits. The particles ended up on the lee side of the probe where they deposited because of gravitation, but they could be easily removed. The remaining deposit was analysed and the effect of inert particles was a small decrease of the content of chlorine. Tests were also performed with pellets doped with sludge. In this case the amount of deposit and its content of chlorine decreased significantly. Different sewage sludges have different properties. The present results show that sludge for cofiring should not be chosen for its amount of ash but rather for its content of sulphur, phosphorous and aluminium.

  14. Availability of Biomass Residues for Co-Firing in Peninsular Malaysia: Implications for Cost and GHG Emissions in the Electricity Sector

    Directory of Open Access Journals (Sweden)

    W. Michael Griffin

    2014-02-01

    Full Text Available Fossil fuels comprise 93% of Malaysia’s electricity generation and account for 36% of the country’s 2010 Greenhouse Gas (GHG emissions. The government has targeted the installation of 330 MW of biomass electricity generation capacity by 2015 to avoid 1.3 Mt of CO2 emissions annually and offset some emissions due to increased coal use. One biomass option is to co-fire with coal, which can result in reduced GHG emissions, coal use, and costs of electricity. A linear optimization cost model was developed using seven types of biomass residues for Peninsular Malaysia. Results suggest that about 12 Mt/year of residues are available annually, of which oil-palm residues contribute 77%, and rice and logging residues comprise 17%. While minimizing the cost of biomass and biomass residue transport, co-firing at four existing coal plants in Peninsular Malaysia could meet the 330 MW biomass electricity target and reduce costs by about $24 million per year compared to coal use alone and reduces GHG emissions by 1.9 Mt of CO2. Maximizing emissions reduction for biomass co-firing results in 17 Mt of CO2 reductions at a cost of $23/t of CO2 reduced.

  15. Biomass low-temperature gasification in a rotary reactor prior to cofiring of syngas in power boilers

    International Nuclear Information System (INIS)

    Ostrowski, Piotr; Maj, Izabella; Kalisz, Sylwester; Polok, Michał

    2017-01-01

    Highlights: • An innovative method of gasification with use of flue gas was investigated. • Gasification temperature ranging from 350 °C was considered. • Discussed gasification unit is connected to a power boiler. • Syngas with combustible components is recirculated to the boiler. • Wide range of biomass and waste fuels can be used as a feedstock. - Abstract: The paper presents results of the investigation of an innovative biomass and alternative fuel low-temperature gasification method before co-firing in industrial or power plant boilers. Before running industrial-size installation, laboratory tests were carried out to determine usability of alternative fuels to low-temperature gasification process. Tests were conducted in a laboratory reactor designed and constructed specifically for this purpose. The experimental stand enables recording of the weight loss of a sample and syngas composition. The process occurs for a fuel sample of a constant weight and known granulation and with a flue gas of known composition used as a gasifying agent. The aim of the laboratory research was to determine the usability of selected biomass fuel for indirect co-firing in power boilers and to build a knowledge base for industrial-size process by defining the process kinetics (time for fuel to remain in the reactor), recommended fuel granulation and process temperature. Presented industrial-size gasification unit has been successfully built in Marcel power plant in Radlin town, Poland. It consist an innovative rotary gasification reactor. Gasification process takes place with use of flue gas from coal and coke-oven fired boiler as a gasifying agent with recirculation of resulting gas (syngas) with combustible components: CO, H 2 , CH 4 . C n H m to the boiler’s combustion chamber. The construction of the reactor allows the use of a wide range of fuels (biomass, industrial waste and municipal waste). This paper presents the results of the reactor tests using coniferous

  16. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  17. Evaluating the impact of three incentive programs on the economics of cofiring willow biomass with coal in New York State

    International Nuclear Information System (INIS)

    Tharakan, P.J.; Volk, T.A.; Lindsey, C.A.; Abrahamson, L.P.; White, E.H.

    2005-01-01

    Plantations of fast-growing willow shrubs are being promoted as a source quality biomass feedstock for bioenergy and bioproducts in New York State (NY). In the near-term, cofiring of the feedstock--in combination with other woody biomass--with coal in existing utility power boilers is considered to be the most promising conversion method for energy generation. Despite the clear technological viability and associated environmental benefits, cofiring of willow has not been widely adopted. The relatively high production cost of the willow feedstock, which is over twice that of coal, is the primary reason for this lack of interest. Taxes that account for some of the social costs of using coal and/or incentives that appropriate value for some of the social benefits of using willow are essential for eliminating most or the entire current price differential. This paper presents an integrated analysis of the economics of power generation from cofiring willow biomass feedstock with coal, from the perspective of the grower, aggregator and the power plant. Emphasis is placed on analyzing the relative impact of a green premium price, a closed-loop biomass tax credit, and payments to growers under the proposed Conservation Reserve Program (CRP) harvesting exemption policy. The CRP payments reduced the delivered cost of willow by 36-35%, to $1.90 GJ -1 and $1.70 GJ -1 , under current and increased yield conditions, respectively. These prices are still high, relative to coal. Other incentives are required to ensure commercial viability. The required levels of green premium price (0.4-1.0 cents kWh -1 ) and biomass tax credit (0.75-2.4 cents kWh -1 ) vary depending on whether the incentives were being applied by themselves or in combination, and whether current yield or potential increased yields were being considered. In the near term, cofiring willow biomass and coal can be an economically viable option for power generation in NY if the expected overall beneficial effects

  18. Combustion aerosols from co-firing of coal and solid recovered fuel in a 400 mw pf-fired power plant

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Wu, Hao; Jappe Frandsen, Flemming

    2010-01-01

    In this work, combustion aerosols (i.e. fine particles fired power plant was sampled with a low-pressure impactor, and analysed by transmission and scanning electron microscopy. The power plant was operated at both dedicated coal combustion conditions...... and under conditions with cofiring of up to 10% (thermal basis) of solid recovered fuel (SRF). The SRFs were characterized by high contents of Cl, Ca, Na and trace metals, while the coal had relatively higher S, Al, Fe and K content. The mass-based particle size distribution of the aerosols was found...... to be bi-modal, with an ultrafine (vaporization) mode centered around 0.1 μm, and a coarser (finefragmentation) mode above 2 μm. Co-firing of SRF tended to increase the formation of ultrafine particles as compared with dedicated coal combustion, while the coarse mode tended to decrease. The increased...

  19. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Ahmad Hussain; Farid Nasir Ani

    2010-01-01

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NO x ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NO x and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  20. A Low Temperature Co-fired Ceramics Manufactured Power Inductor Based on A Ternary Hybrid Material System

    Science.gov (United States)

    Xie, Yunsong; Chen, Ru

    Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.

  1. Fabrication and performance evaluation of a high temperature co-fired ceramic vaporizing liquid microthruster

    International Nuclear Information System (INIS)

    Cheah, Kean How; Low, Kay-Soon

    2015-01-01

    This paper presents the study of a microelectromechanical system (MEMS)-scaled microthruster using ceramic as the structural material. A vaporizing liquid microthruster (VLM) has been fabricated using the high temperature co-fired ceramic (HTCC) technology. The developed microthruster consists of five components, i.e. inlet, injector, vaporizing chamber, micronozzle and microheater, all integrated in a chip with a dimension of 30 mm × 26 mm × 8 mm. In the dry test, the newly developed microheater which is deposited on zirconia substrate consumes 21% less electrical power than those deposited on silicon substrate to achieve a temperature of 100 °C. Heating temperature as high as 409.1 °C can be achieved using just 5 W of electrical power. For simplicity and safety, a functional test of the VLM with water as propellant has been conducted in the laboratory. Full vaporization of water propellant feeding at different flow rates has been successfully demonstrated. A maximum thrust of 633.5 µN at 1 µl s −1 propellant consumption rate was measured using a torsional thrust stand. (paper)

  2. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    International Nuclear Information System (INIS)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2001-01-01

    During the third quarter, important preparatory work was continued so that the experimental activities can begin early in the fourth quarter. Authorization was awaited in response to the letter that was submitted to the Allegheny County Health Department (ACHD) seeking an R and D variance for the air permit at the Bellefield Boiler Plant (BBP). Verbal authorizations were received from the Pennsylvania Department of Environmental Protection (PADEP) for R and D variances for solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS). Construction wood was acquired from Thompson Properties and Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were milled at ETS and half of the product delivered to MVTC. Discussions were held with BBP and Energy Systems Associates (ESA) about the test program. Material and energy balances on Boiler No.1 and a plan for data collection were prepared. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, and the Upgraded Coal Interest Group and the Biomass Interest Group (BIG) of the Electric Power Research Institute (EPRI). An article describing the program appeared in the Pittsburgh Post-Gazette. An application was submitted for authorization for a Pennsylvania Switchgrass Energy and Conservation Program

  3. Internal, external and location factors influencing cofiring of biomass with coal in the U.S. northern region

    Science.gov (United States)

    Francisco X. Aguilar; Michael E. Goerndt; Nianfu Song; Stephen R. Shifley

    2012-01-01

    The use of biomass as a source of energy has been identified as a viable option to diminish reliance on fossil fuels. We parameterized the effect of selected internal (e.g. coal-fire presence), external (e.g. price and renewable energy mandates) and location (e.g. biomass availability, infrastructure) variables on the likelihood of using biomass in cofiring with coal...

  4. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Science.gov (United States)

    David Nicholls; Zackery Wright; Daisy. Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  5. Preliminary test results for post irradiation examination on the HTTR fuel

    International Nuclear Information System (INIS)

    Ueta, Shohei; Umeda, Masayuki; Sawa, Kazuhiro; Sozawa, Shizuo; Shimizu, Michio; Ishigaki, Yoshinobu; Obata, Hiroyuki

    2007-01-01

    The future post-irradiation program for the first-loading fuel of the HTTR is scheduled using the HTTR fuel handling facilities and the Hot Laboratory in the Japan Materials Testing Reactor (JMTR) to confirm its irradiation resistance and to obtain data on its irradiation characteristics in the core. This report describes the preliminary test results and the future plan for a post-irradiation examination for the HTTR fuel. In the preliminary test, fuel compacts made with the same SiC-coated fuel particle as the first loading fuel were used. In the preliminary test, dimension, weight, fuel failure fraction, and burnup were measured, and X-ray radiograph, SEM, and EPMA observations were carried out. Finally, it was confirmed that the first-loading fuel of the HTTR showed good quality under an irradiation condition. The future plan for the post-irradiation tests was described to confirm its irradiation performance and to obtain data on its irradiation characteristics in the HTTR core. (author)

  6. Low temperature co-fired ceramic (LTCC) technology: general processing aspects and fabrication of 3-D structures for micro-fluidic devices

    OpenAIRE

    Birol, Hansu; Maeder, Thomas; Ryser, Peter

    2005-01-01

    LTCC technology is based on sintering of multi-layered thick-film sheets (50-250 µm) or so-called green tapes, which are screen-printed with thick-film pastes such as conductors, resistors, etc. The terms low temperature and co-fired originate from the relatively low sintering temperatures (

  7. Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning

    Directory of Open Access Journals (Sweden)

    Nihad Hodžić

    2018-02-01

    Full Text Available Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures

  8. Seismic proving test of ultimate piping strength (current status of preliminary tests)

    International Nuclear Information System (INIS)

    Suzuki, K.; Namita, Y.; Abe, H.; Ichihashi, I.; Suzuki, K.; Ishiwata, M.; Fujiwaka, T.; Yokota, H.

    2001-01-01

    In 1998 Fiscal Year, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the material tests and the piping component tests is reported. (author)

  9. International seminar on biomass and fossil fuels co-firing in power plants and heating plants in Europe; Seminaire international sur la cocombustion de biomasse et d'energies fossiles dans les centrales electriques et les chaufferies en Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of the European commission which has fixed to 12% the share of renewable energies in the total energy consumption up to 2010, is to develop the biomass sector. Co-firing is a solution that allows to increase significantly the use of biomass because it does not require important investments. Today, about 150 power plants in Europe use co-firing. An Altener project named 'Cofiring' has ben settled in order to bring together and analyze the European experience in this domain and to sustain and rationalize the design of future projects. The conclusions of this study, coordinated by VTT Energy and which involves CARMEN (Germany), CBE (Portugal), the Danish centre for landscape and planning, ITEBE (France), KOBA (Italy), SLU (Sweden), and EVA (Austria), were presented during this international seminar. (J.S.)

  10. Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    such as cracks, de-lamination and shape distortion can result as a consequence of sintering mismatch stresses caused by the strain rate difference between layers. This work seeks to understand the underlying mechanisms that occur during the co-firing of porous CGO-LSM/CGO bi-layer laminates, by evaluating...... the sintering mismatch stress and distortion development through modeling and experiments....

  11. GRIST-2 preliminary test plan and requirements for fuel fabrication and preirradiation

    International Nuclear Information System (INIS)

    Tang, I.M.; Harmon, D.P.; Torri, A.

    1978-12-01

    The preliminary version of the GRIST-2 test plan has been developed for the planned initial 5 years (1984 to 1989) of TREAT-Upgrade in-pile tests. These tests will be employed to study the phenomenology and integral behavior of GCFR core disruptive accidents (CDAs) and to support the Final Safety Analysis Report (FSAR) CDA analyses for the demonstration plant licensing. The preliminary test plan is outlined. Test Phases I and II are for the fresh fuel (preconditioned or not) CDA behavior at the beginning-of-life (BOL) reactor state. Phase III is for the reactor state that contains irradiated fuel with a saturated content of helium and fission gas. Phase IV is for larger bundle tests and scaling effects

  12. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. One additional biomass co-firing test burn was conducted during this quarter. In this test (Test 9), up to 20% by weight dry hardwood sawdust and switchgrass was injected through the center of the single-register burner with Jacobs Ranch coal. Jacobs Ranch coal is a low-sulfur Powder River Basin coal ({approx} 0.5% S). The results from Test 9 as well as for Test 8 (conducted late last quarter) are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and preparations are under way for continued pilot-scale combustion experiments with the dual-register burner. Finally, a project review was held at NETL in Pittsburgh, on November 13, 2001.

  13. Measurements of dioxin emissions during co-firing in a fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; A.T. Crujeira; P. Abelha; I. Cabrita [INETI, Lisbon (Portugal). Departamento de Engenharia Energetica e Controle Ambiental

    2007-09-15

    The emissions of dioxins could be considerable when fuels with high chlorine content are used, particularly in fluidised beds due to constraints to use temperatures in the range 800-900{sup o}C for other considerations. However, mixing of fuels with different characteristics may lead to a reduction in dioxin emissions. Studies are currently being undertaken at the above-mentioned department in mixing fuels of varying chlorine and sulphur contents to monitor the emissions of dioxins both in the gas and solid phases. Furthermore, the influence of certain elements like Cu in the ash in the emissions of dioxins is also studied to verify the catalytic effect. The INETI pilot-scale test facility is used for the combustion work. Two different coals, namely Colombian and Polish, are used as the base fuel. The supplementary fuels for co-firing include MBM and straw pellets. The combustion temperature is maintained at about 800-830{sup o}C range without any limestone addition. The residence time of over 2 s is respected. Results obtained by far suggest that the presence of sulphur in both fuels have a very strong effect on the eventual emissions of dioxins and the synergy regarding to reduce the dioxins below the levels permitted is possible by mixing fuels based on their characteristics. The paper reports the results obtained and evaluates the effect of fuel nature and operating conditions on the emissions of dioxins. 34 refs., 8 figs., 12 tabs.

  14. Preliminary Tests of a New Low-Cost Photogrammetric System

    Science.gov (United States)

    Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S. W.; Giacomini, A.

    2017-11-01

    This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  15. PRELIMINARY TESTS OF A NEW LOW-COST PHOTOGRAMMETRIC SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Santise

    2017-11-01

    Full Text Available This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B single board computer connected to a PiCamera Module V2 (8 MP and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  16. Preliminary results of testing bioassay analytical performance standards

    International Nuclear Information System (INIS)

    Fisher, D.R.; Robinson, A.V.; Hadley, R.T.

    1983-08-01

    The analytical performance of both in vivo and in vitro bioassay laboratories is being studied to determine the capability of these laboratories to meet the minimum criteria for accuracy and precision specified in the draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. This paper presents preliminary results of the first round of testing

  17. Preliminary project of installation for separation tubes tests-ITTS

    International Nuclear Information System (INIS)

    Rocha, Z.

    1984-01-01

    A consolidation of actual ideas about installation, entitled ''Installation to separation tubes tests-ITTS'', expected to CDTN is presented. The project bases, the testing to be realized, the procedures to be obeyed during the operation, the components and the space required by installation and auxiliary equipments, the presumable origin of components (nacional and international), including a preliminary list of building and operation costs are described. (author) [pt

  18. Co-firing used engine lubrication oil with LPG in furnaces

    International Nuclear Information System (INIS)

    Al-Omari, S.A.-B.; Shaheen, A.; Al Fakhr, A.; Al-Hosani, A.; Al Yahyai, M.

    2010-01-01

    Combustion and heat transfer characteristics obtained based co-firing LPG with used engine oils (UEO) in a furnace, are investigated experimentally. In an attempt to assess UEO as a fuel, the UEO-based results are compared with results obtained using two other fuels, namely diesel, and a used cooking oil (UCkO). To ease its admission to the furnace and its subsequent vaporization and combustion, UEO is preheated by allowing it to flow upwardly in a vertical pipe surrounded by hot gases generated from LPG combustion. UEO that reaches the tip of the pipe un-vaporized, spills and hence has the chance to further heatup and vaporize as it exchanges heat with the upwardly flowing LPG combustion gases, in a counter flow process. Runs are divided into three groups based on the mass ratio of the liquid-fuel/LPG and the mass flow rate of the LPG supplied to the furnace. Ranges of these quantities over which UEO qualify as a good fuel and/or good promoter to radiation have been identified.

  19. Co-firing used engine lubrication oil with LPG in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, S.A.-B.; Shaheen, A.; Al Fakhr, A.; Al-Hosani, A.; Al Yahyai, M. [Mechanical Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    2010-06-15

    Combustion and heat transfer characteristics obtained based co-firing LPG with used engine oils (UEO) in a furnace, are investigated experimentally. In an attempt to assess UEO as a fuel, the UEO-based results are compared with results obtained using two other fuels, namely diesel, and a used cooking oil (UCkO). To ease its admission to the furnace and its subsequent vaporization and combustion, UEO is preheated by allowing it to flow upwardly in a vertical pipe surrounded by hot gases generated from LPG combustion. UEO that reaches the tip of the pipe un-vaporized, spills and hence has the chance to further heatup and vaporize as it exchanges heat with the upwardly flowing LPG combustion gases, in a counter flow process. Runs are divided into three groups based on the mass ratio of the liquid-fuel/LPG and the mass flow rate of the LPG supplied to the furnace. Ranges of these quantities over which UEO qualify as a good fuel and/or good promoter to radiation have been identified. (author)

  20. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-01

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO(sub x) pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  1. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  2. Co-firing of Coal with Biomass and Waste in Full-scale Suspension-fired Boilers

    DEFF Research Database (Denmark)

    Dam-Johansen, Kim; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2013-01-01

    and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools....... The research conducted has addressed many issues important for co-firing, i.e. fuel processing, ash induced boiler deposit formation and corrosion, boiler chamber fuel conversion and emission formation, influence on flue gas cleaning equipment and the utilization of residual products. This paper provides...... research has provided results with implications for operation of milling and burner equipment, appropriate fuel mixing strategies, minimization of ash deposit formation and corrosion, minimization of NO formation, appropriate operation of SCR catalyst equipment and utilization of residual products...

  3. Preliminary test conditions for KNGR SBLOCA DVI ECCS performance test

    International Nuclear Information System (INIS)

    Bae, Kyoo Whan; Song, Jin Ho; Chung, Young Jong; Sim, Suk Ku; Park, Jong Kyun

    1999-03-01

    The Korean Next Generation Reactor (KNGR) adopts 4-train Direct Vessel Injection (DVI) configuration and injects the safety injection water directly into the downcomer through the 8.5'' DVI nozzle. Thus, the thermal hydraulic phenomena such as ECCS mixing and bypass are expected to be different from those observed in the cold leg injection. In order to investigate the realistic injection phenomena and modify the analysis code developed in the basis of cold leg injection, thermal hydraulic test with the performance evaluation is required. Preliminarily, the sequence of events and major thermal hydraulic phenomena during the small break LOCA for KNGR are identified from the analysis results calculated by the CEFLASH-4AS/REM. It is shown from the analysis results that the major transient behaviors including the core mixture level are largely affected by the downcomer modeling. Therefore, to investigate the proper thermal hydraulic phenomena occurring in the downcomer with limited budget and time, the separate effects test focusing on this region is considered to be effective and the conceptual test facility based on this recommended. For this test facility the test initial and boundary conditions are developed using the CEFLASH-4AS/REM analysis results that will be used as input for the preliminary test requirements. The final test requirements will be developed through the further discussions with the test performance group. (Author). 10 refs., 18 tabs., 4 figs

  4. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    Directory of Open Access Journals (Sweden)

    Więckol-Ryk Angelika

    2017-01-01

    Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  5. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels with multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.

  6. Preliminary Test for Nonlinear Input Output Relations in SISO Systems

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2000-01-01

    This paper discusses and develops preliminary statistical tests for detecting nonlinearities in the deterministic part of SISO systems with noise. The most referenced method is unreliable for common noise processes as e.g.\\ colored. Therefore two new methods based on superposition and sinus input...

  7. Preliminary test results and CFD analysis for moderator circulation test at Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.T. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of); Im, S.H.; Sung, H.J. [Korea Advanced Inst. of Science and Tech., Daejeon (Korea, Republic of); Seo, H.; Bang, I.C. [Ulsan National Inst. of Science and Tech., Ulsan (Korea, Republic of)

    2014-07-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out a scaled-down moderator test program to simulate the CANDU6 moderator circulation phenomena during steady state operation and accident conditions. This research program includes the construction of the Moderator Circulation Test (MCT) facility, production of the validation data for self-reliant CFD tools, and development of optical measurement system using the Particle Image Velocimetry (PIV). The MCT facility includes a primary circulation loop (pipe lines, a primary side pump, a heat exchanger, valves, flow meters) and a secondary side loop (pipe lines, a secondary side pump, and an external cooling tower). The loop leakage test and non-heating test are performed in the present work. In the present work the PIV technique is used to measure the velocity distributions in the scaled moderator tank of MCT under iso-thermal test conditions. The preliminary PIV measurement data are obtained and compared with CFX code predictions. (author)

  8. Preliminary test results and CFD analysis for moderator circulation test at Korea

    International Nuclear Information System (INIS)

    Kim, H.T.; Im, S.H.; Sung, H.J.; Seo, H.; Bang, I.C.

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out a scaled-down moderator test program to simulate the CANDU6 moderator circulation phenomena during steady state operation and accident conditions. This research program includes the construction of the Moderator Circulation Test (MCT) facility, production of the validation data for self-reliant CFD tools, and development of optical measurement system using the Particle Image Velocimetry (PIV). The MCT facility includes a primary circulation loop (pipe lines, a primary side pump, a heat exchanger, valves, flow meters) and a secondary side loop (pipe lines, a secondary side pump, and an external cooling tower). The loop leakage test and non-heating test are performed in the present work. In the present work the PIV technique is used to measure the velocity distributions in the scaled moderator tank of MCT under iso-thermal test conditions. The preliminary PIV measurement data are obtained and compared with CFX code predictions. (author)

  9. A closer look at the effect of preliminary goodness-of-fit testing for normality for the one-sample t-test.

    Science.gov (United States)

    Rochon, Justine; Kieser, Meinhard

    2011-11-01

    Student's one-sample t-test is a commonly used method when inference about the population mean is made. As advocated in textbooks and articles, the assumption of normality is often checked by a preliminary goodness-of-fit (GOF) test. In a paper recently published by Schucany and Ng it was shown that, for the uniform distribution, screening of samples by a pretest for normality leads to a more conservative conditional Type I error rate than application of the one-sample t-test without preliminary GOF test. In contrast, for the exponential distribution, the conditional level is even more elevated than the Type I error rate of the t-test without pretest. We examine the reasons behind these characteristics. In a simulation study, samples drawn from the exponential, lognormal, uniform, Student's t-distribution with 2 degrees of freedom (t(2) ) and the standard normal distribution that had passed normality screening, as well as the ingredients of the test statistics calculated from these samples, are investigated. For non-normal distributions, we found that preliminary testing for normality may change the distribution of means and standard deviations of the selected samples as well as the correlation between them (if the underlying distribution is non-symmetric), thus leading to altered distributions of the resulting test statistics. It is shown that for skewed distributions the excess in Type I error rate may be even more pronounced when testing one-sided hypotheses. ©2010 The British Psychological Society.

  10. Preliminary hazard analysis for the Brayton Isotope Ground Demonstration System (including vacuum test chamber)

    International Nuclear Information System (INIS)

    Miller, L.G.

    1975-01-01

    The Preliminary Hazard Analysis (PHA) of the BIPS-GDS is a tabular summary of hazards and undesired events which may lead to system damage or failure and/or hazard to personnel. The PHA reviews the GDS as it is envisioned to operate in the Vacuum Test Chamber (VTC) of the GDS Test Facility. The VTC and other equipment which will comprise the test facility are presently in an early stage of preliminary design and will undoubtedly undergo numerous changes before the design is frozen. The PHA and the FMECA to follow are intended to aid the design effort by identifying areas of concern which are critical to the safety and reliability of the BIPS-GDS and test facility

  11. Preliminary results of a test of a longitudinal phase-space monitor

    International Nuclear Information System (INIS)

    Kikutani, Eiji; Funakoshi, Yoshihiro; Kawamoto, Takashi; Mimashi, Toshihiro

    1994-01-01

    A prototype of a longitudinal phase-space monitor has been developed in TRISTAN Main Ring at KEK. The principle of the monitor and its basic components are explained. Also a result of a preliminary beam test is given. (author)

  12. Preliminary tests on a new near-infrared continuous-wave tissue oximeter

    Science.gov (United States)

    Casavola, Claudia; Cicco, Giuseppe; Pirrelli, Anna; Lugara, Pietro M.

    2000-11-01

    We present a preliminary study, in vitro and in vivo, with a novel device for near-infrared tissue oximetry. The light sources used are two quasi-continuous-wave LEDs, emitting at 656 and 851 nm, and the detector is a photodiode. The data are acquired in back-scattering configuration, thus allowing the non-invasive characterization of thick tissues. Stability tests were performed by placing the optical probe on a tissue- like phantom and acquiring data for periods of time ranging from 5 to 40 minutes. No significant drifts in the DC signal were observed after a warm-up period of no more than 10 minutes. We performed reproducibility tests by repositioning the optical probe on the phantom for a number of times. We found a reproducibility better than 5% in the DC signal. We also present the results of a preliminary study conducted in vivo, on the calf muscle of human subjects. We report a comparison of the results obtained with the near-infrared oximeter with the values of blood oxygenation ctO2 measured with conventional chemical tests.

  13. Availability of Biomass Residues for Co-Firing in Peninsular Malaysia: Implications for Cost and GHG Emissions in the Electricity Sector

    OpenAIRE

    W. Michael Griffin; Jeremy Michalek; H. Scott Matthews; Mohd Nor Azman Hassan

    2014-01-01

    Fossil fuels comprise 93% of Malaysia’s electricity generation and account for 36% of the country’s 2010 Greenhouse Gas (GHG) emissions. The government has targeted the installation of 330 MW of biomass electricity generation capacity by 2015 to avoid 1.3 Mt of CO 2 emissions annually and offset some emissions due to increased coal use. One biomass option is to co-fire with coal, which can result in reduced GHG emissions, coal use, and costs of electricity. A linear optimization cost model wa...

  14. Preliminary Test on Hydraulic Rotation Device for Neutron Transmutation Doping

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Kang, Han-Ok; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing a new Research Reactor (KJRR) which will be located at KIJANG in the south-eastern province of Korea. The KJRR will be mainly utilized for isotope production, NTD production, and the related research activities. During the NTD process, the irradiation rig containing the silicon ingot rotates at the constant speed to ensure precisely defined homogeneity of the irradiation. A new NTD Hydraulic Rotation Device (NTDHRD) is being developed to rotate the irradiation rigs at the required speed. In this study, the preliminary test and the analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are described. A new NTD hydraulic rotation device is being developed for the purpose of application to the KIJANG research reactor (KJRR). The preliminary test and analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are conducted in experimental apparatus. The film thickness by the thrust bearing is measured and the minimum required mass flow rate for stable rotation is determined

  15. Preliminary results of the round-robin testing of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, K.; Yamanouchi, N.; Tohyama, A.

    1996-10-01

    Preliminary results of metallurgical, physical and mechanical properties of low activation ferritic steel F82H (IEA heat) were obtained in the round-robin test in Japan. The properties of IEA heat F82H were almost the same as the original F82H.

  16. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  17. The picture test of separation and individuation - preliminary research

    Directory of Open Access Journals (Sweden)

    Gregor Žvelc

    2000-06-01

    Full Text Available Authors introduce a new instrument, which they developed for measuring separation and individuation process and attachment in adolescence and adulthood. The Picture Test of Separation and Individuation (PTSI is a semi–projective test. It consists of various pictures, which represent relationships with significant others. PTSI is divided into three subtests: Relationship with Mother, Relationship with Father and Attachment. In a preliminary research on a sample of college and university students authors studied basic properties of the test. The results of the research indicate that PTSI is consistent with theoretical background, has good sensitivity and is economical. The Picture Test of Separation and Individuation enables quick but complex insight into individual's relationships with significant others as well as into his/her stage of separation and individuation process. Considering satisfying results of pilot study, authors suggest further research for validation of the test.

  18. Synthesis of Nanocrystalline CaWO4 as Low-Temperature Co-fired Ceramic Material: Processing, Structural and Physical Properties

    Science.gov (United States)

    Vidya, S.; Solomon, Sam; Thomas, J. K.

    2013-01-01

    Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.

  19. Robustness and Versatility of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J. Ambrose; Vianco, P. T.; Johnson, M. H.; Goldammer, S.

    2011-10-09

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC). The ruggedness of a multipurpose Ti-Cu-Pt-Au stack has continued to benefit fabrication and reliability in state-of-theart modules. Space optimization is described, preserving miniaturization of critical spaces and component pads. Additional soldering details are also presented, including trends with solder-stop materials. Feature compensation becomes a simple step in the normal manufacturing flow which enables exact targeting of desired feature sizes. In addition, fine details of the manufacturing process, including ion milling, will be discussed. We will discuss full long-term aging results and structural details that reinforce the reliability and function. Different thin film materials for specific applications can be exploited for additional capabilities such as filters and other integral components. Cross sections verify the results shown. This successful integration of thin films on LTCC points to higher frequencies which require finer lines and spaces. Advancements of these applications become possible due to the associated progression of smaller skin depth and thinner metallic material.

  20. Co-firing of coal with biomass and waste in full-scale suspension-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, Kim; Frandsen, Flemming J.; Jensen, Peter A.; Jensen, Anker D. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of chemical and Biochemical Engineering

    2013-07-01

    The energy policy in Denmark has for many years focused on lowering the net CO{sub 2} emission from heat and power production by replacing fossil fuels by renewable resources. This has been done by developing dedicated grate-fired boilers for biomass and waste fuels but also by developing coal-based suspension-fired boilers to accept still higher fractions of biomass or waste material as fuels. This last development has been challenging of many reasons, including pre-treatment of fuels, and solving potential emission and operational problems during the simultaneous development of supercritical steam cycles with steam temperatures close to 600 C, providing power efficiencies close to 50% (Hein KRG, Sustainable energy supply and environment protection - strategies, resources and technologies. In: Gupta R, Wall T, Hupa M, Wigley F, Tillman D, Frandsen FJ (eds) Proceedings of international conference on impact of fuel quality on power production and the environment, Banff Conference Centre, Banff, Alberta, Canada, 29 Sept-4 Oct, 2008). For 25 years the CHEC (Combustion and Harmful Emission Control) Research Centre at DTU Chemical Engineering, has attained a leading role in research, supporting power producing industry, plant owners and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools. The research conducted has addressed many issues important for co-firing, i.e. fuel processing, ash induced boiler deposit formation and corrosion, boiler chamber fuel conversion and emission formation, influence on flue gas cleaning equipment and the utilization of residual products. This chapter provides an overview of research activities, aiming at increasing biomass shares during co-firing in suspension, conducted in close collaboration with

  1. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Univ. of Minnesota, Minneapolis, MN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  2. [New visual field testing possibilities (a preliminary report)].

    Science.gov (United States)

    Erichev, V P; Ermolaev, A P; Antonov, A A; Grigoryan, G L; Kosova, D V

    2018-01-01

    There are currently no portable mobile perimeters that allow visual field testing outside ophthalmologist's examination rooms. To develop a mobile perimetry technique based on use of a virtual reality headset (VR). The study involved 26 patients (30 eyes) with II-III stage primary open-angle glaucoma (POAG) with compensated IOP. Perimetry was performed for each patient twice - on Humphrey analyzer (test 30-2, 76 points) and employing similar strategy on a perimeter integrated into VR headset (Total Vision, Russia). Visual field testing was performed with an interval from 1 hour to 3 days. The results were comparatively analyzed. Patients tolerated the examination well. Comparative analysis of preliminary perimetry results obtained with both methods showed high degree of identity, so the results were concluded to be comparable. By visually isolating the wearer, VR headset achieves elimination of distractions and stable light conditions for visual field testing. The headset-perimeter is compact, mobile, easily transportable, can be used in the work of visiting medical teams and for examination at home.

  3. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb Jr.

    2005-02-10

    gasification project at its site. Throughout much of this total project the Principal Investigator has counseled two small businesses in developing a waxed cardboard pellet business. A recent test burn of this biofuel appears successful and a purchase contract is anticipated soon. During the past two months a major tree-trimming firm has shown an active interest in entering the wood-chip fuel market in the Pittsburgh area and has contacted the NBP, among others, as potential customers. The NBP superintendent is currently in discussion with the facilities management of the Bruceton Research Center about resuming their interest in cofiring this renewable fuel to the stoker there.

  4. Preliminary observations of gate valve flow interruption tests, Phase 2

    International Nuclear Information System (INIS)

    Steele, R. Jr.; DeWall, K.G.

    1990-01-01

    This paper presents preliminary observations from the US Nuclear Regulatory Commission/Idaho National Engineering Laboratory Flexible Wedge Gate Valve Qualification and Flow Interruption Test Program, Phase 2. The program investigated the ability of selected boiling water reactor (BWR) process line valves to perform their containment isolation function at high energy pipe break conditions and other more normal flow conditions. The fluid and valve operating responses were measured to provide information concerning valve and operator performance at various valve loadings so that the information could be used to assess typical nuclear industry motor operator sizing equations. Six valves were tested, three 6-in. isolation valves representative of those used in reactor water cleanup systems in BWRs and three 10-in. isolation valves representative of those used in BWR high pressure coolant injection (HPCI) steam lines. The concern with these normally open isolation valves is whether they will close in the event of a downstream pipe break outside of containment. The results of this testing will provide part of the technical insights for NRC efforts regarding Generic Issue 87 (GI-87), Failure of the HPCI Steam Line Without Isolation, which includes concerns about the uncertainties in gate valve motor operator sizing and torque switch settings for these BWR containment isolation valves. As of this writing, the Phase 2 test program has just been completed. Preliminary observations made in the field confirmed most of the results from the Phase 1 test program. All six valves closing in high energy water, high energy steam, and high pressure cold water require more force to close than would be calculated using the typical variables in the standard industry motor operator sizing equations

  5. Radiation Testing on State-of-the-Art CMOS: Challenges, Plans, and Preliminary Results

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2009-01-01

    At GOMAC 2007 and 2008, we discussed a variety of challenges for radiation testing of modern semiconductor devices and technologies [1, 2]. In this presentation, we provide more specific details in this on-going investigation focusing on out-of-the-box lessons observed for providing radiation effects assurances as well as preliminary test results.

  6. The impact of co-firing sunflower husk pellets with coal in a boiler on the chemical composition of flue gas

    Directory of Open Access Journals (Sweden)

    Zajemska Monika

    2017-01-01

    The calculations showed that the most important influence on the composition of the flue gas from the co-firing process of coal with sunflower husk has a composition of biomass. It should be emphasized that the results of computer simulations obtained by the authors have an useful aspect and can be applied in practice, especially to the analysis of the mechanism of chloride corrosion which is possible to occur due to the chlorine content in the biomass. They may also be useful for evaluating the unburned hydrocarbons produced by combustion of rich mixtures (λ < 1.0.

  7. Exploring evaluation to influence the quality of pulverized coal fly ash. Co-firing of biomass in a pulverized coal plant or mixing of biomass ashes with pulverized coal fly ash; Verkennende evaluatie kwaliteitsbeinvloeding poederkoolvliegas. Bijstoken van biomassa in een poederkoolcentrale of bijmenging van biomassa-assen met poederkoolvliegas

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Cnubben, P.A.J.P [ECN Schoon Fossiel, Petten (Netherlands)

    2000-08-01

    In this literature survey the consequences of co-firing of biomass and mixing of biomass ash with coal fly ash on the coal fly ash quality is evaluated. Biomass ash considered in this context is produced by gasification, pyrolysis or combustion in a fluidized bed. The irregular shape of biomass ash obtained from gasification, pyrolysis or combustion has a negative influence on the water demand in concrete applications of the coal fly ash resulting from mixing biomass ash and coal fly ash. In case of co-firing, high concentrations of elements capable of lowering the ash melting point (e.g., Ca and Mg) may lead to more ash agglomeration. This leads to a less favourable particle size distribution of the coal fly ash, which has a negative impact on the water demand in cement bound applications. Gasification, pyrolysis and combustion may lead to significant unburnt carbon levels (>10%). The unburnt carbon generally absorbs water and thus has a negative influence on the water demand in cement-bound applications. The contribution of biomass ash to the composition of coal fly ash will not be significantly different, whether the biomass is co-fired or whether the biomass ash is mixed off-line with coal fly ash. The limit values for Cl, SO4 and soluble salts can form a limitation for the use of coal fly ash containing biomass for cement-bound applications. As side effects of biomass co-firing, the level of constituents such as Na, K, Ca and Mg may lead to slagging and fouling of the boiler. In addition, a higher emission of flue gas contaminants As, Hg, F, Cl and Br may be anticipated in case more contaminated biomass streams are applied. This may also lead to a higher contamination level of gypsum produced from flue gas cleaning residues. Relatively clean biomass streams (clean wood, cacao shells, etc.) will hardly lead to critical levels of elements from a leaching point of view. More contaminated streams, such as sewage sludge, used and preserved wood, petcoke and RDF

  8. Preliminary data evaluation for thermal insulation characterization testing

    International Nuclear Information System (INIS)

    DeClue, J.F.; Moses, S.D.; Tollefson, D.A.

    1991-01-01

    The purpose of Thermal Insulation Characterization Testing is to provide physical data to support certain assumptions and calculational techniques used in the criticality safety calculations in Section 6 of the Safety Analysis Reports for Packaging (SARPs) for drum-type packaging for Department of Energy's (DOE) Oak Ridge Y-12 Plant, managed by Martin Marietta Energy Systems, Inc. Results of preliminary data evaluation regarding the fire-test condition reveal that realistic weight loss consideration and residual material characterization in developing calculational models for the hypothetical accident condition is necessary in order to prevent placement of unduly conservative restrictions on shipping requirements as a result of overly conservative modeling. This is particularly important for fast systems. Determination of the geometric arrangement of residual material is of secondary importance. Both the methodology used to determine the minimum thermal insulation mass remaining after the fire test and the treatment of the thermal insulation in the criticality safety calculational models requires additional evaluation. Specific testing to be conducted will provide experimental data with which to validate the mass estimates and calculational modeling techniques for extrapolation to generic drum-type containers

  9. Effect of biomass on burnouts of Turkish lignites during co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical Univ., Chemical and Metallurgical Engineering Faculty, Chemical Engineering Dept., 34469 Maslak, Istanbul (Turkey)

    2009-09-15

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 C at a heating rate of 40 C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management. (author)

  10. Effect of biomass on burnouts of Turkish lignites during co-firing

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.

    2009-01-01

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 deg. C at a heating rate of 40 deg. C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management.

  11. Hydraulically driven control rod concept for integral reactors: fluid dynamic simulation and preliminary test

    International Nuclear Information System (INIS)

    Ricotti, M.E.; Cammi, A.; Lombardi, C.; Passoni, M.; Rizzo, C.; Carelli, M.; Colombo, E.

    2003-01-01

    The paper deals with the preliminary study of the Hydraulically Driven Control Rod concept, tailored for PWR control rods (spider type) with hydraulic drive mechanism completely immersed in the primary water. A specific solution suitable for advanced versions of the IRIS integral reactor is under investigation. The configuration of the Hydraulic Control Rod device, made up by an external movable piston and an internal fixed cylinder, is described. After a brief description of the whole control system, particular attention is devoted to the Control Rod characterization via Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior, including dynamic equilibrium and stability properties, has been carried out. Finally, preliminary tests were performed in a low pressure, low temperature, reduced length experimental facility. The results are compared with the dynamic control model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performs correctly, allowing stable dynamic equilibrium positions for the Control Rod and stable behavior during withdrawal and insertion steps. (author)

  12. Preliminary Calculations of Bypass Flow Distribution in a Multi-Block Air Test

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il

    2011-01-01

    The development of a methodology for the bypass flow assessment in a prismatic VHTR (Very High Temperature Reactor) core has been conducted at KAERI. A preliminary estimation of variation of local bypass flow gap size between graphite blocks in the NHDD core were carried out. With the predicted gap sizes, their influence on the bypass flow distribution and the core hot spot was assessed. Due to the complexity of gap distributions, a system thermo-fluid analysis code is suggested as a tool for the core thermo-fluid analysis, the model and correlations of which should be validated. In order to generate data for validating the bypass flow analysis model, an experimental facility for a multi-block air test was constructed at Seoul National University (SNU). This study is focused on the preliminary evaluation of flow distribution in the test section to understand how the flow is distributed and to help the selection of experimental case. A commercial CFD code, ANSYS CFX is used for the analyses

  13. Preliminary investigation on determination of radionuclide distribution in field tracing test site

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Takebe, Shinichi; Guo Zede; Li Shushen; Kamiyama, Hideo.

    1993-12-01

    Field tracing tests for radionuclide migration have been conducted by using 3 H, 60 Co, 85 Sr and 134 Cs, in the natural unsaturated loess zone at field test site of China Institute for Radiation Protection. It is necessary to obtain confidable distribution data of the radionuclides in the test site, in order to evaluate exactly the migration behavior of the radionuclides in situ. An available method to determine the distribution was proposed on the basis of preliminary discussing results on sampling method of soils from the test site and analytical method of radioactivity in the soils. (author)

  14. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    International Nuclear Information System (INIS)

    Larry G. Felix; P. Vann Bush

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ((approx)1.0% S). The dual-register burner is a generic low-NO(sub x) burner that incorporates two independent wind boxes. In the second test (Test 11), regular ((approx)70% passing 200 mesh) and finely ground ((approx)90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO(sub x) and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO(sub x) emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002

  15. Results of the Preliminary Test in the 1/4-Scale RCCS of the PMR200 VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hwan; Bae, Yoon-Yeong; Hong, Sung-Deok; Kim, Chan-Soo; Cho, Bong-Hyun; Kim, Min-Hwan [Nuclear Hydrogen Reactor Technology Development Dep., Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Reactor Cavity Cooling System (RCCS) is a key ex-vessel passive safety system that will ensure the safety of the PMR200, and its performance needs to be verified. For the difficulty of the full-scale test, a 1/4-scale RCCS facility, NACEF (Natural Cooling Experimental Facility), has been constructed at KAERI, and a shakedown test has been performed. A brief design and the preliminary test results of this facility are described. A 1/4-scale RCCS mockup of PMR200, NACEF, was constructed and tested preliminarily. The functioning of the facility worked quite well. Moreover, the preliminary test results show a fairly good agreement with past work except for the conductive heat transfer region in the riser bottom. After a remedy such as the installation of more precise flow meters and a more improved insulation, the test facility is likely to work well.

  16. Preliminary environmental analysis of a geopressured-geothermal test well in Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.; Meriwether, J.

    1977-11-16

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land near Chocolate Bayou, Brazoria County, Texas, in which a geopressured-geothermal test well is to be drilled in the fall of 1977. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for the proposed well. Preliminary analyses of data revealed the eed for focusing on the following areas: potential for subsidence and fault activation, susceptibility of test well and support facilities to fresh- and salt-water flooding, possible effects of produced saline waters on biological assemblages and groundwaer resources, distribution of expansive soils, and effect of drilling and associated support activities on known archeological-cultural resources.

  17. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring.

    Science.gov (United States)

    Halonen, Niina; Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita

    2016-01-01

    Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  18. Test for Nonlinear Input Output Relations in SISO Systems by Preliminary Data Analysis

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2000-01-01

    This paper discusses and develops preliminary statistical tests for detecting nonlinearities in the deterministic part of SISO systems with noise. The most referenced method is unreliable for common noise processes as e.g.\\ colored. Therefore two new methods based on superposition and sinus input...

  19. Preliminary engineering specifications for a test demonstration multilayer protective barrier cover system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Gilbert, T.W.; Adams, M.R.

    1985-03-01

    This report presents preliminary engineering specifications for a test protective barrier cover system and support radiohydrology facility to be constructed at the Hanford Protective Barrier Test Facility (PBTF). Construction of this test barrier and related radiohydrology facility is part of a continuing effort to provide construction experience and performance evaluation of alternative barrier designs used for long-term isolation of disposed radioactive waste materials. Design specifications given in this report are tentative, based on interim engineering and computer simulation design efforts. Final definitive design specifications and engineering prints will be produced in FY 1986. 6 refs., 10 figs., 1 tab

  20. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  1. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  2. Accelerated stress testing of thin film solar cells: Development of test methods and preliminary results

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    If thin film cells are to be considered a viable option for terrestrial power generation their reliability attributes will need to be explored and confidence in their stability obtained through accelerated testing. Development of a thin film accelerated test program will be more difficult than was the case for crystalline cells because of the monolithic construction nature of the cells. Specially constructed test samples will need to be fabricated, requiring committment to the concept of accelerated testing by the manufacturers. A new test schedule appropriate to thin film cells will need to be developed which will be different from that used in connection with crystalline cells. Preliminary work has been started to seek thin film schedule variations to two of the simplest tests: unbiased temperature and unbiased temperature humidity. Still to be examined are tests which involve the passage of current during temperature and/or humidity stress, either by biasing in the forward (or reverse) directions or by the application of light during stress. Investigation of these current (voltage) accelerated tests will involve development of methods of reliably contacting the thin conductive films during stress.

  3. Preliminary Beam Irradiation Test for RI Production Targets at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Pil; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub; Seol, Kyung Tae; Song, Young Gi; Kim, Dae Il; Jung, Myung Hwan; Kim, Kye Ryung; Min, Yi Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The new beamline and target irradiation facility has been constructed for the production of therapeutic radio-isotope. Sr-82 and Cu-67 were selected as the target isotope in this facility, they are promising isotope for the PET imaging and cancer therapy. For the facility commissioning, the irradiation test for the prototype-target was conducted to confirm the feasibility of radio-isotope production, the proto-type targets are made of RbCl pellet and the natural Zn metal for Sr-82 and Cu-67 production respectively, In this paper, an introduction to the RI production targetry system and the results of the preliminary beam irradiation test are discussed. the low-flux beam irradiation tests for proto-type RI target have been conducted. As a result of the beam irradiation tests, we could obtain the evidence of Sr-82 and Cu-67 production, have confirmed the feasibility of Sr-82 and Cu-67 production at KOMAC RI production facility.

  4. Preliminary Beam Irradiation Test for RI Production Targets at KOMAC

    International Nuclear Information System (INIS)

    Yoon, Sang Pil; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub; Seol, Kyung Tae; Song, Young Gi; Kim, Dae Il; Jung, Myung Hwan; Kim, Kye Ryung; Min, Yi Sub

    2016-01-01

    The new beamline and target irradiation facility has been constructed for the production of therapeutic radio-isotope. Sr-82 and Cu-67 were selected as the target isotope in this facility, they are promising isotope for the PET imaging and cancer therapy. For the facility commissioning, the irradiation test for the prototype-target was conducted to confirm the feasibility of radio-isotope production, the proto-type targets are made of RbCl pellet and the natural Zn metal for Sr-82 and Cu-67 production respectively, In this paper, an introduction to the RI production targetry system and the results of the preliminary beam irradiation test are discussed. the low-flux beam irradiation tests for proto-type RI target have been conducted. As a result of the beam irradiation tests, we could obtain the evidence of Sr-82 and Cu-67 production, have confirmed the feasibility of Sr-82 and Cu-67 production at KOMAC RI production facility

  5. The Art Gallery Test: A Preliminary Comparison between Traditional Neuropsychological and Ecological VR-Based Tests

    Directory of Open Access Journals (Sweden)

    Pedro Gamito

    2017-11-01

    Full Text Available Ecological validity should be the cornerstone of any assessment of cognitive functioning. For this purpose, we have developed a preliminary study to test the Art Gallery Test (AGT as an alternative to traditional neuropsychological testing. The AGT involves three visual search subtests displayed in a virtual reality (VR art gallery, designed to assess visual attention within an ecologically valid setting. To evaluate the relation between AGT and standard neuropsychological assessment scales, data were collected on a normative sample of healthy adults (n = 30. The measures consisted of concurrent paper-and-pencil neuropsychological measures [Montreal Cognitive Assessment (MoCA, Frontal Assessment Battery (FAB, and Color Trails Test (CTT] along with the outcomes from the three subtests of the AGT. The results showed significant correlations between the AGT subtests describing different visual search exercises strategies with global and specific cognitive measures. Comparative visual search was associated with attention and cognitive flexibility (CTT; whereas visual searches involving pictograms correlated with global cognitive function (MoCA.

  6. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste

    International Nuclear Information System (INIS)

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations

  7. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  8. Evaluation of the preliminary auditory profile test battery in an international multi-centre study

    NARCIS (Netherlands)

    van Esch, T.E.M.; Kollmeier, B.; Vormann, M.; Lijzenga, J.; Houtgast, T.; Hallgren, M.; Larsby, B.; Athalye, S.P.; Lutman, M.E.; Dreschler, W.A.

    2013-01-01

    Objective: This paper describes the composition and international multi-centre evaluation of a battery of tests termed the preliminary auditory profile. It includes measures of loudness perception, listening effort, speech perception, spectral and temporal resolution, spatial hearing, self-reported

  9. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  10. Preliminary report on fire protection research program (July 6, 1977 test)

    International Nuclear Information System (INIS)

    Klamerus, L.J.

    1977-10-01

    This preliminary report describes a fire test performed at Sandia Laboratories on an array of cable trays filled with fire retardant (IEEE 383 qualified) electrical cable. The cable trays were arranged in an open-space horizontal configuration with the separation distances of Regulatory Guide 1.75 between those trays representing redundant safety divisions. Propane burners were used to produce a fully developed cable fire in one tray which then was allowed to interact with other trays. From this test it appears that it is possible for a fire to propagate across the vertical separation distance between safety divisions, if a fully developed cable fire is the initiating event

  11. Preliminary Test for Constitutive Models of CAP

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  12. Preliminary Test for Constitutive Models of CAP

    International Nuclear Information System (INIS)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon

    2010-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  13. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  14. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  15. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  16. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2007-01-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with 'generic' component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance

  17. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm...... conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion......-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall...

  18. Preliminary results of hydrologic testing: The composite Umtanum basalt flow top at borehole RRL-2 (3,568 - 3,781 feet)

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1982-11-01

    This report presents preliminary results and description of hydrologic test activities for the composite Umtanum basalt flow top (3,568--3,781 feet) at Borehole RRL-2. Hydrologic tests conducted include two constant discharge air-lift and four slug tests. Preliminary results indicate an observed hydraulic head for the test interval of 405.7 feet above mean sea level. Transmissivity values determined from hydrologic tests performed, range between 244 to 481 ft 2 /day, with an assigned best estimate of 480 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 157 feet, is 3.1 ft/day. 7 refs., 9 figs., 3 tabs

  19. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  20. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  1. Preliminary results of hydrologic testing of the Umtanum Basalt Fracture Zone at borehole RRL-2 (3,781 to 3,827 ft)

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1983-02-01

    This report presents preliminary results and description of hydrologic test activities for the Umtanum Basalt Fracture Zone at Borehole RRL-2, within the test interval 3,781 to 3,827 feet. Hydrologic tests conducted include two short-term, constant discharge pumping tests and two slug tests. Preliminary results indicate an observed hydraulic head for the test interval of 406.7 feet above mean sea level. Transmissivity values determined from hydrologic tests performed range between 205 and 881 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 6 feet, is 147 ft/day. 8 refs., 6 figs., 3 tabs

  2. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

    Directory of Open Access Journals (Sweden)

    Niina Halonen

    2016-11-01

    Full Text Available Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  3. Effect of fuel type and deposition surface temperature on the growth and structure of ash deposit collected during co-firing of coal with sewage-sludge, saw-dust and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Tomasz; Zajac, Krzysztof; Weber, Roman [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Energy Process Engineering and Fuel Technology

    2008-07-01

    Blends of a South African bituminous ''Middleburg'' coal and three alternative fuels (a municipal sewage-sludge, a saw-dust and a refuse derived fuel) have been fired in the slagging reactor to examine the effect of the added fuel on slagging propensity of the mixtures. Two kinds of deposition probes have been used, un-cooled ceramic probes and air-cooled steal probes. Distinct differences in physical and chemical structures of the deposits collected using the un-cooled ceramic probes and air-cooled metal probes have been observed. Glassy, easily molten deposits collected on un-cooled ceramic deposition probes were characteristic for co-firing of municipal sewage-sludge with coal. Porous, sintered (not molten) but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. Loose, easy removable deposits have been sampled on air-cooled metal deposition probe during co-firing of coal/saw-dust blends. The mass of the deposit sampled at lower surface temperatures (550-700 C) was always larger than the mass sampled at higher temperatures (1100-1300 C) since the higher temperature ash agglomerated and sintered much faster than the low temperature deposit. (orig.)

  4. Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke

    International Nuclear Information System (INIS)

    Sheng Guanghong; Li Qin; Zhai Jianping; Li Feihu

    2007-01-01

    Self-cementitious properties of fly ash from circulating fluidized bed combustion boiler co-firing coal and high-sulphur petroleum coke (CPFA) were investigated. CPFA was self-cementitious which was affected by its fineness and chemical compositions, especially the contents of SO 3 and free lime (f-CaO). Higher contents of SO 3 and f-CaO were beneficial to self-cementitious strength; the self-cementitious strength increases with a decrease of its 45 μm sieve residue. The expansive ratio of CPFA hardened paste was high because of generation of ettringite (AFt), which was influenced by its water to binder ratio (W/A), curing style and grinding of the ash. The paste cured in water had the highest expansive ratio, and grinding of CPFA was beneficial to its volume stability. The hydration products of CPFA detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were portlandite, gypsum, AFt and hydrated calcium silicate (C-S-H)

  5. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  6. Preliminary study fo the interference of proteic compounds of radiopharmaceuticals in the test of lisadode amebocitos de limulus (LAL)

    International Nuclear Information System (INIS)

    Aldana, Claudia

    1997-01-01

    In this thesis the objective was evaluate the interference of proteic compounds of the radiopharmaceuticals in the test LAL (lisado of amebocitos de limulus) for this, macroagregates of albumina (MAA) was used with metilendifosfonato (MDP) as control that is the radiopharmaceutical more used in the nuclear medicine centers of the country. Initially preliminary test were carried out to assess if some of two radiopharmaceuticals would cause interference with LAL test, after the test was validated and finally routine tests were made. With the preliminary assays was concluded that proteic compounds did not cause interference (albumina with a concentration of 2 md/dl) with the MAA. However with the MDP cause interference with LAL test. The interference was eliminated with a dilution of 1:8 of the sample. Was concluded that the success of LAL test depends on conditions such as temperature, pH, constant incubation (no minimum variations) and that is a good test for quality control of the radiopharmaceuticals

  7. Mineralogical test as a preliminary step for metallurgical proses of Kalan ores

    International Nuclear Information System (INIS)

    Affandi, K.

    1998-01-01

    Mineralogical tests as a preliminary step for hydrometallurgy of Kalan ores, including Eko Remaja and Rirang have been carried out to identify the elements and minerals content which affect the metallurgical process, especially the leaching and purification of uranium. Mineralogical tests have been done by means of radioactive and radioluxugraph tests to identify radioactive minerals; thin specimen analysis, Scanning Electron Microscopy (SEM) to identify elements and morphology, EPMA to analyse qualitatively the elements, X-ray Diffractometer (XRD) to identify of minerals content; and X-ray Fluorescence (XRF) and chemical analyses to determine total elements qualitatively and quantitatively. The experimental results show that the Eko Remaja ores contain uraninite and brannerite, iron and titan oxides, sulfides, phosphates and silicates minerals, while the Rirang ores contain uraninite, monazite and molybdenite

  8. Preliminary testing of a planar converter with uranium oxide pellets in the emitter

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.; Hatch, G.L.

    1992-01-01

    Nuclear reactor thermionic space power systems incorporating thermionic fuel element generally use refractory metal emitters, which contain the nuclear fuel. The purpose of the current work is to determine the effect, if any, of the diffusion of uranium oxide fuel through chemically vapor deposited (CVD) tungsten on converter performance. This paper describes the preliminary testing of the converter to assess the converter performance before any significant diffusion takes place. In testing, the emitter temperature was 1800 K and the collector temperature was varied from 1000 K to 1070 K. Experiments also examined pressure versus loading characteristics of the graphite

  9. Results of Preliminary Tests of PAR Bunch Cleaning

    CERN Document Server

    Yao, Chihyuan; Grelick, Arthur; Lumpkin, Alex H; Sereno, Nicholas S

    2005-01-01

    A particle accumulator ring (PAR) is used at the Advanced Photon Source (APS) to collect multiple linac bunches and compress them into a 0.3-ns (rms) single bunch for booster injection. A 9.77-MHz fundamental rf system and a 117.3-MHz harmonic rf system are employed for initial beam capture and bunch length compression. Satellite bunches with very low charge form due to rf phase drifts or beam loading change. These satellites, when injected into the booster and then into the storage ring (SR), cause bunch impurity at three buckets from the target bucket. Storage ring and booster bunch cleaning was tried but proved to be difficult due to the top-up mode of operation in the storage ring and tune drift in the booster synchrotron. Recently we implemented a PAR bunch-cleaning system with tune-modulated harmonic rf knockout. Preliminary tests gave a measured SR bunch purity of better than 10

  10. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  11. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  12. Persian competing word test: Development and preliminary results in normal children

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahim Mahdavi

    2008-12-01

    Full Text Available Background and Aim: Assessment of central auditory processing skills needs various behavioral tests in format of a test battery. There is a few Persian speech tests for documenting central auditory processing disorders. The purpose of this study was developing a dichotic test formed of one-syllabic words suitable for evaluation of central auditory processing in Persian language children and reporting its preliminary results in a group of normal children.Materials and Methods: Persian words in competing manner test was developed utilizing most frequent monosyllabic words in children storybooks reported in the previous researches. The test was performed at MCL on forty-five normal children (39 right-handed and 6 left-handed aged 5-11 years. The children did not show any obvious problem in hearing, speech, language and learning. Free (n=28 and directed listening (n=17 tasks were investigated.Results: The results show that in directed listening task, there is significant advantage for performance of pre-cued ear relative to opposite side. Right ear advantage is evident in free recall condition. Average performance of the children in directed recall is significantly better than free recall. Average row score of the test increases with the children age.Conclusion: Persian words in competing manner test as a dichotic test, can show major characteristics of dichotic listening and effect of maturation of central auditory system on it in normal children.

  13. Design and preliminary testing of a MEMS microphone phased array for aeroacoustic testing of a small-scale wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Bale, A.; Orlando, S.; Johnson, D. [Waterloo Univ., ON (Canada). Wind Energy Group

    2010-07-01

    One of the barriers preventing the widespread utilization of wind turbines is the audible sound that they produce. Developing quieter wind turbines will increase the amount of available land onto which wind farms can be built. Noise emissions from wind turbines can be attributed to the aerodynamic effects between the turbine blades and the air surrounding them. A dominant source of these aeroacoustic emissions from wind turbines is known to originate at the trailing edges of the airfoils. This study investigated the flow physics of noise generation in an effort to reduce noise from small-scale wind turbine airfoils. The trailing edge noise was studied on scale-models in wind tunnels and applied to full scale conditions. Microphone phased arrays are popular research tools in wind tunnel aeroacoustic studies because they can measure and locate noise sources. However, large arrays of microphones can be prohibitively expensive. This paper presented preliminary testing of micro-electrical mechanical system (MEMS) microphones in phased arrays for aeroacoustic testing on a small wind turbine airfoil. Preliminary results showed that MEMS microphones are an acceptable low-cost alternative to costly condenser microphones. 19 refs., 1 tab., 11 figs.

  14. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  15. Preliminary Test of Friction disk type turbine for S-CO{sub 2} cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Kim, Hyeon Tae; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Due to the relatively mild sodium-CO{sub 2} interaction, the S-CO{sub 2} Brayton cycle can reduce the accident consequence compared to the steam Rankine cycle. Also the S-CO{sub 2} power conversion cycle can achieve high efficiency for SFR core thermal condition. Moreover, the S-CO{sub 2} power cycle can reduce the total cycle footprint due to high density of the working fluid. However, the high pressure operating condition and low viscosity of the fluid cause difficulties in designing appropriate seals and multi-stage turbo machineries. To solve the problem for designing turbo machineries in a creative way, KAIST research team tested a friction disk type turbine concept for the S-CO{sub 2} cycle application. In this paper, the investigation of the Tesla turbine and preliminary test results with compressed air are covered. The KAIST research team investigated a friction disk type turbine, named as Tesla turbine, for the S-CO{sub 2} power cycle applications. Due to the robust design of the fiction disk type, the Tesla turbine technology can be utilized not only for S-CO{sub 2} turbo machinery but also for the multi-phase or sludge flow turbo machinery. The preliminary test of lab-scale Tesla turbine with compressed air was conducted. The high pressure vessel was manufactured for the S-CO{sub 2} operating condition. The test will be concentrated on the turbine efficiency measurement under various conditions and development of the design methodology.

  16. Standing the Test of Time: Reference for a Preliminary Ruling

    DEFF Research Database (Denmark)

    Butler, Graham

    2017-01-01

    It is often too easy to forget just how important the preliminary reference procedure is for the functionality of European Union law. For the Court of Justice, there are both formal and informal means of judicial dialogue. This article focuses on the formal means of dialogue through the preliminary...

  17. Preliminary results on tests of a Cerenkov ring imaging device employing a photoionizing PWC

    Energy Technology Data Exchange (ETDEWEB)

    Durkin, S.; Honma, A.; Leith, D.W.G.S.

    1978-08-01

    A brief description of techniques and problems of ring imaging Cerenkov detectors employing photoionizing PWC's is discussed. Preliminary results on a one dimensional ring imaging device tested at SLAC in May and June of 1978 are then presented. These results include rough measurements of the Cerenkov ring in nitrogen, argon, neon, and helium produced by a collimated positron beam.

  18. The development and preliminary testing of a multimedia patient–provider survivorship communication module for breast cancer survivors

    Science.gov (United States)

    Wen, Kuang-Yi; Miller, Suzanne M.; Stanton, Annette L.; Fleisher, Linda; Morra, Marion E.; Jorge, Alexandra; Diefenbach, Michael A.; Ropka, Mary E.; Marcus, Alfred C.

    2012-01-01

    Objective This paper describes the development of a theory-guided and evidence-based multimedia training module to facilitate breast cancer survivors’ preparedness for effective communication with their health care providers after active treatment. Methods The iterative developmental process used included: (1) theory and evidence-based content development and vetting; (2) user testing; (3) usability testing; and (4) participant module utilization. Results Formative evaluation of the training module prototype occurred through user testing (n = 12), resulting in modification of the content and layout. Usability testing (n = 10) was employed to improve module functionality. Preliminary web usage data (n = 256, mean age = 53, 94.5% White, 75% college graduate and above) showed that 59% of the participants accessed the communication module, for an average of 7 min per login. Conclusion The iterative developmental process was informative in enhancing the relevance of the communication module. Preliminary web usage results demonstrate the potential feasibility of such a program. Practice implications Our study demonstrates survivors’ openness to the use of a web-based communication skills training module and outlines a systematic iterative user and interface program development and testing process, which can serve as a prototype for others considering such an approach. PMID:22770812

  19. The development and preliminary testing of a multimedia patient-provider survivorship communication module for breast cancer survivors.

    Science.gov (United States)

    Wen, Kuang-Yi; Miller, Suzanne M; Stanton, Annette L; Fleisher, Linda; Morra, Marion E; Jorge, Alexandra; Diefenbach, Michael A; Ropka, Mary E; Marcus, Alfred C

    2012-08-01

    This paper describes the development of a theory-guided and evidence-based multimedia training module to facilitate breast cancer survivors' preparedness for effective communication with their health care providers after active treatment. The iterative developmental process used included: (1) theory and evidence-based content development and vetting; (2) user testing; (3) usability testing; and (4) participant module utilization. Formative evaluation of the training module prototype occurred through user testing (n = 12), resulting in modification of the content and layout. Usability testing (n = 10) was employed to improve module functionality. Preliminary web usage data (n = 256, mean age = 53, 94.5% White, 75% college graduate and above) showed that 59% of the participants accessed the communication module, for an average of 7 min per login. The iterative developmental process was informative in enhancing the relevance of the communication module. Preliminary web usage results demonstrate the potential feasibility of such a program. Our study demonstrates survivors' openness to the use of a web-based communication skills training module and outlines a systematic iterative user and interface program development and testing process, which can serve as a prototype for others considering such an approach. Copyright © 2012. Published by Elsevier Ireland Ltd.

  20. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  1. Manufacturing and preliminary tests of a 12 T ''wind and react'' coil

    International Nuclear Information System (INIS)

    Corte, A. della; Pasotti, G.; Sacchetti, N.; Spadoni, M.; Oliva, A.B.; Penco, R.; Parodi, S.; Valle, N.; Specking, W.

    1994-01-01

    As already reported ENEA is engaged in the realization of a 12 T wind and react Nb 3 Sn coil, a subsize magnet designed to simulate many technological problems to be faced in NET-ITER magnets. EM-LMI and Ansaldo are the industrial partners in this project. A preliminary winding has been built and successfully tested. This winding has been cut in pieces and carefully inspected to be sure that the impregnation process after the heat treatment works well. No particular flaws have been detected. Then manufacturing of the 12 T magnet has been started and completed in about three months. Heat treatment, impregnation and electrical tests at 300 K have been successfully performed and the magnet is now ready for final tests. In order to obtain the most significant scientific and technological information from this magnet, the original test program (insertion of the coil in the SULTAN facility) has been modified according to a decision of the Fusion Technology Steering Committee (FTSC) of EURATOM. Details of the new test programs are given in the paper

  2. Preliminary Process Theory does not validate the Comparison Question Test: A comment on Palmatier and Rovner

    NARCIS (Netherlands)

    Ben-Shakar, G.; Gamer, M.; Iacono, W.; Meijer, E.; Verschuere, B.

    2015-01-01

    Palmatier and Rovner (2015) attempt to establish the construct validity of the Comparison Question Test (CQT) by citing extensive research ranging from modern neuroscience to memory and psychophysiology. In this comment we argue that merely citing studies on the preliminary process theory (PPT) of

  3. Stress analysis of HLW containers. Preliminary ring test exercise Compas project

    International Nuclear Information System (INIS)

    1989-01-01

    This document describes the series of experiments and associated calculations performed as the Compas preliminary ring test exercise. A number of mild steel rings, representative of sections through HLW containers, some notched and pre-cracked, were tested in compression right up to and beyond their ultimate load. The Compas project partners independently modelled the behaviour of these rings using their finite element codes. Four different ring types were tested, and each test was repeated three times. For three of the ring types, the three test repetitions gave identical results. The fourth ring, which was not modelled by the partners, had a 4 mm thick layer of weld metal deposited on its surface. The three tests on this ring did not give identical results and suggested that the effect of welding methods should be addressed at a later stage of the project. Fracture was not found to be a significant cause of ring failure. The results of the ring tests were compared with the partners predictions, and additionally some time was spent assessing where the use of the codes could be improved. This exercise showed that the partners codes have the ability to produce results within acceptable limits. Most codes were unable to model stable crack growth. There were indications that some codes would not be able to cope with a significantly more complex three-dimensional analysis

  4. Biomass co-firing in coal power plants in the Netherlands. Effects on performance and air pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, K. [ECN Policy Studies, Petten (Netherlands)

    2013-07-15

    This note is intended for use in the UNECE (United Nations Economic Commission for Europe)-EGTEI (Expert Group on Techno-Economic Issues) work related to cost of emission reduction technologies for large combustion plants (LCP). This work is coordinated by KIT (Karlsruhe) and CITEPA (Paris). As the Netherlands is considered to be a valuable country for data regarding biomass co-firing in large coal fired power plants, EGTEI expressed its interest on data ECN has available. For this purpose, based on available data from annual environmental reports of power plants, ECN has looked into the relationship between the percentage of co -firing and the plant performance. It should be noted that the evaluation has been based on annual data, not on real-time simultaneous measurements of the different parameters mentioned in this note. Cumulative annual data give no insights in e.g. the effects of the load factor, of start-ups or shut-downs, seasonal circumstances, fuel qualities, etc. Therefore, the findings in this report should be treated with due care and not be generalised.

  5. Preliminary Tests Of The Decris-sc Ion Source

    CERN Document Server

    Efremov, A; Bechterev, V; Bogomolov, S L; Bondarenko, P G; Datskov, V I; Dmitriev, S; Drobin, V; Lebedev, A; Leporis, M; Malinowski, H; Nikiforov, A; Paschenko, S V; Seleznev, V; Shishov, Yu A; Smirnov, Yu; Tsvineva, G; Yakovlev, B; Yazvitsky, N Yu

    2004-01-01

    A new "liquid He-free" superconducting Electron Cyclotron Resonance Ion Source DECRIS-SC, to be used as injector for the IC-100 small cyclotron, has been designed by FLNR and LHE JINR. The main feature is that a compact refrigerator of Gifford-McMahon type is used to cool the solenoid coils. For the reason of very small cooling power at 4.2 K (about 1 W) our efforts were to optimize the magnetic structure and minimize an external heating of the coils. The maximum magnetic field strength is 3 T and 2 T in injection and extraction region respectively. For the radial plasma confinement a hexapole made of NdFeB permanent magnet is used. The source will be capable of ECR plasma heating using different frequencies (14 GHz or 18 GHz). To be able to deliver usable intensities of solids, the design is also allow axial access for evaporation oven and metal samples using the plasma sputtering technique. Very preliminary results of the source test are presented.

  6. Preliminary Single-Phase Mixing Test using Wire Mesh System in a wire-wrapped 37-rod Bundle

    International Nuclear Information System (INIS)

    Bae, Hwang; Kim, Hyungmo; Lee, Dong Won; Choi, Hae Seob; Choi, Sun Rock; Chang, Seokkyu; Kim, Seok; Euh, Dongjin; Lee, Hyeongyeon

    2014-01-01

    In this paper, preliminary tests of the wire-mesh sensor are introduced before measuring of mixing coefficient in the wire-wrapped 37-pin fuel assembly for a sodium-cooled fast reactor. Through this preliminary test, it was confirmed that city water can be used as a tracer for demineralized water as a base. A simple test was performed to evaluate the characteristics of a wire mesh with of a short pipe shape. The conductivity of de-mineralized water and city water is linearly increased for the limited temperature ranges as the temperature is increased. The reliability of the wire mesh sensor was estimated based on the averages and standard deviations of the plane image using the cross points. A wire mesh sensor is suitable to apply to a single-phase flow measurement for a mixture with de-mineralized water and city water. A wire mesh sensor and system have been traditionally used to measure the void fraction of a two-phase flow field with gas and liquid. Recently, Ylonen et al. successfully designed and commissioned a measurement system for a single-phase flow using a wire mesh sensor

  7. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC Technology

    Directory of Open Access Journals (Sweden)

    Chen Li

    2014-06-01

    Full Text Available In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the sensitivity membrane is smaller. The proposed sensor also demonstrates a greater responsivity, which reaches as high as 13 kHz/kPa in range of 0–100 kPa. During experiments, the newly fabricated sensor, which is only about 6.5 cm2, demonstrated very good performance: the repeatability error, hysteresis error, and nonlinearity of the sensor are about 4.25%, 2.13%, and 1.77%, respectively.

  8. Evaluation of Switchgrass as a co-firing fuel in the Southeast

    Energy Technology Data Exchange (ETDEWEB)

    Southern Research Institute

    2001-11-01

    The ''Evaluation of Switchgrass as a Co-Firing Fuel in the Southeast'' is a comprehensive project incorporating the highest yielding variety of switchgrass, unique harvesting methods, detailed parametric evaluations in a state-of-the-art combustion research facility, and a full-scale demonstration in a tangentially-fired Alabama Power Company power boiler. These features were incorporated into the project to reduce the technical and economic risk of yielding a practical renewable energy option for the southeastern US. There are particular incentives for proving the feasibility of switchgrass as a biomass fuel in the southeastern US. Even though agriculture is a predominant industry much of the land in this region is under-utilized, marginal farmland. As a result, some of the poorest counties in the nation are located in this region. The yields of switchgrass are substantially higher in the southeastern US than in other regions. Yield, or productivity, is a critical factor in determining the feasibility of biomass fuel. Yields in small research plots in the region averaged 25.8 Mg/ha (11.5 tons/acre) over the period 1990-1994. Achievable commercial yield in the southeastern US will likely be about 15.7 Mg/ha (7 tons/acre) with currently available varieties. Use of switchgrass as a supplemental fuel for coal-fired utility boilers could create an enormous market for growers. The Southern Company has 23,000 MW of coal-fired capacity in the southeast. If only 1% of this capacity was provided by switchgrass instead of coal, 74,500 ha (184,000 acres) of production would be needed. This would generate 1,288,000 tons of switchgrass which, if valued at $35/ton, would amount to over $45 million.

  9. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2002-01-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  10. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2011-12-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  11. Preliminary performance test of control rod position indicator for ballscrew type CEDM

    International Nuclear Information System (INIS)

    Yoo, J. Y.; Kim, J. H.; Hu, H.; Lee, J. S.; Kim, J. I.

    2003-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The prototype of control rod position indicator having the high performance for the ballscrew type CEDM was developed on the basis of RSPT technology identified through the survey. The characteristics of control rod position indicator was defined and documented through design procedure and preliminary performance test

  12. Reflooding Experimental On Beta Test Loop : The Characterisation And Preliminary Experiment

    International Nuclear Information System (INIS)

    Khairul, H.; Antariksawan, Anhar R.; Sumamo, Edy; Kiswanta; Giarno; Joko, P.; H, Ismu

    2001-01-01

    The characterisation and preliminary experiment of reflooding had been conducted. The characteristics of main system and component had been identified completely. From these characteristics the experiment condition was set up : heated rod voltage was 20 volt, frequency,of pump was 19 Hz, flow rate was 1 m3/h. The first of experiment did not show the phenomena of rewetting. Possibly because the heated rod temperature was too low. For the second experiment, the voltage of heated rod was increased to 22 Volt and the flow rate was decreased. The result was that the nucleation boiling on the surfaced of heated rod, was observed during the water re flooded the test section

  13. Evaluation of high pressure Freon decontamination. I. Preliminary tests

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1983-01-01

    High-pressure Freon blasting techniques are being evaluated for applications involving the removal of non-adherent radioactive particulate contamination at SRP. Very little waste is generated by this technique because the used Freon can be easily distilled and reused. One of the principle advantages of this technique is that decontaminated electrical equipment can be returned to service immediately without drying, unlike high-pressure water blasting techniques. Preliminary scoutin tests evaluating high-pressure Freon blasting for decontamination at SRP were carried out at Quadrex Co., Oak Ridge, TN, October 12 and 13. DWPF-type contamination (raw sludge plus volatiles) and separations area-type contamination (diluted boiling point (47.6 0 C) allow it to rapidly separate from higher boiling contaminants via distillation with filtration to remove particulate material, and distillation with condensation, the solvent may be recovered for indefinite reuse while reducing the radioactive waste to a minimum. 3 references, 5 figures, 6 tables

  14. Preliminary results for HIP bonding Ta to W targets for the materials test station

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, David E [Los Alamos National Laboratory; Maloy, Stuart A [Los Alamos National Laboratory

    2009-01-01

    Tungsten targets for the Materials Test Station (MTS) were clad with thin tantalum cover plates and a tantalum frame using hot isostatic pressing (HIP). A preliminary HIP parameter study showed good bonding and intimate mechanical contact for Ta cover plate thicknesses of 0.25 mm (0.010 inch) and 0.38 mm (0.015 inch). HIP temperatures of full HIP runs were 1500 C (2732 F). HIP pressure was 203 MPa (30 ksi).

  15. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  16. Current status of VEGA program and a preliminary test with cesium iodide

    International Nuclear Information System (INIS)

    Hidaka, A.; Nakamura, T.; Kudo, T.; Hayashida, R.; Nakamura, J.; Otomo, T.; Uetsuka, H.

    2000-01-01

    The VEGA program has been performed at JAERI to clarify the mechanism of FP release from irradiated PWR/BWR fuels including MOX fuel and to improve predictability of the source term. The principal purposes are to investigate the release of actinides and FPs including non-volatile radionuclides from irradiated fuel at 3000degC under high pressure condition up to 1.0 MPa. The short-life radionuclides will be accumulated by re-irradiation of test fuel just before the experiment using the JAERI's research reactor such as JRR-3 or NSRR. The test facility was installed into the beta/gamma concrete No.5 cell at RFEF and completed in February, 1999. Before the first VEGA-1 test in September, 1999, a preliminary test using a cold simulant, cesium iodide (CsI) was performed to confirm the fundamental capabilities of the test facility. The test results showed that the trapping efficiency of the aerosol filters is about 98%. The amount of CsI which arrived at the downstream pipe of the filters was quite small while a small amount of I 2 gas which can pass through the filters was condensed just before the cold condenser as expected in the design. (author)

  17. ERG and GRG review of the draft of ''preliminary test plan for in situ testing from an exploratory shaft in salt - October 1983''

    International Nuclear Information System (INIS)

    Kalia, H.N.

    1986-03-01

    The Engineering Review Group (ERG) and Geologic Review Group (GRG) were established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering- and geologic-related issues in the US Department of Energy's nuclear waste repository program. The January 1984 meeting of the ERG and GRG reviewed the In Situ Test Plan (ISTP) titled ''Preliminary Test Plan for In Situ Testing From an Exploratory Shaft in Salt - October 1983.'' This report documents the ERG's and GRG's comments and recommendations on this subject and the ONWI responses to the specific points raised by the ERG and GRG. 6 refs., 2 figs., 1 tab

  18. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  19. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Urbon, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Garcia, A.; Cuarental, I.; Mota, F. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Micciche, G. [CR ENEA Brasimone, I-40035 Camugnano (BO) (Italy); Ibarra, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Casal, N. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain)

    2011-10-15

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  20. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    International Nuclear Information System (INIS)

    Queral, V.; Urbon, J.; Garcia, A.; Cuarental, I.; Mota, F.; Micciche, G.; Ibarra, A.; Rapisarda, D.; Casal, N.

    2011-01-01

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  1. Preliminary Design Progress of the HCCR TBM for ITER testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Park, Sung Dae; Kim, Dong Jun; Jin, Hyung Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea has designed a helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield, which is called the TBM-set, to be tested in ITER, a Nuclear Facility INB-174. Through the conceptual design review (CDR), its design integrity was successfully demonstrated at the conceptual design level at various loads. After CD approval, preliminary design (PD) was started and the progress is introduced in the present study. After PD review and approval, final design and then fabrication will be started. The main purpose of PD is to design the TBM-set according to the fabrication aspect and more detailed design for interfaces with ITER machine, such as installed TBM port plug and frame. With these considering, PD of TBM-set was started. PD for HCCR TBM has been performed (so far v0.24) from the CD model. FW, BZ, SW, TES/NAS, BM, and connecting support design were performed through the analyses, if necessary. The manufacturability was the main concern for PD model development. Thermal hydraulic analysis will be performed to evaluate the temperature and pressure drop in TBM-set. The structural integrity of TBM-set will be confirmed with combined various loads condition.

  2. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    Science.gov (United States)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  4. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Science.gov (United States)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  5. Processing, microstructure, and electric properties of buried resistors in low-temperature co-fired ceramics

    International Nuclear Information System (INIS)

    Yang, Pin; Rodriguez, Mark A.; Kotula, Paul; Miera, Brandon K.; Dimos, Duane

    2001-01-01

    The electrical properties of ruthenium oxide based devitrifiable resistors embedded within low-temperature co-fired ceramics were investigated from -100 o C to 100 o C. Special attention was given to the processing conditions and their effects on resistance and temperature coefficient of resistance (TCR). Results indicate that within this temperature range the conductance for these buried resistors is limited by tunneling of charge carriers through the thin glass layer between ruthenium oxide particles. A modified version of the tunneling barrier model is proposed to account for the microstructure ripening observed during thermal processing. The model parameters determined from curve fitting show that charging energy (i.e., the energy required for a charge carrier to tunnel through the glass barrier) is strongly dependent on particle size and particle--particle separation between ruthenium oxide grains. Initial coarsening of ruthenium oxide grains was found to reduce the charging energy and lower the resistance. However, when extended ripening occurs, the increase in particle--particle separation increases the charging energy, reduces the tunneling probability and gives rise to a higher resistance. The tradeoff between these two effects results in an optimum microstructure with a minimum resistance and TCR. Furthermore, the TCR of these buried resistors has been shown to be governed by the magnitude of the charging energy. Model parameters determined by our analysis appear to provide quantitative physical interpretations to the microstructural changes in the resistor, which in turn, are controlled by the processing conditions

  6. Performance of Small Bore 60NiTi Hybrid Ball Bearings: Preliminary Life Test Results

    Science.gov (United States)

    Dellacorte, Christopher; Howard, S. Adam

    2016-01-01

    Small bore (R8 size) hybrid ball bearings made with 60NiTi races and silicon nitride balls are under development for highly corrosive aerospace applications that are also exposed to heavy static (shock) loads. The target application is the vacuum pump used inside the wastewater recycling system on the International Space Station. To verify bearing longevity, life tests are run at 2000rpm for time periods up to 5000 hours. Accelerometers with data tracking are used to monitor operation and the bearings are disassembled and inspected at intervals to assess wear. Preliminary tests show that bearings made from 60NiTi are feasible for this aerospace and potentially other industrial applications that must endure similar operating environments.

  7. A Preliminary Analysis for SMART-ITL SBLOCA Tests using the MARS/KS Code

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeon Sik; Ko, Yung Joo; Suh, Jae Seung [System Engineering and Technology Co., Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, a preliminary analysis was conducted for SMART-ITL SBLOCA tests using the MARS/KS Code. The results of this work are expected to be good guidelines for SBLOCA tests with the SMART-ITL, and used to understand the various thermal-hydraulic phenomena expected to occur in the integral-type reactor, SMART. An integral-effect test (IET) loop for SMART, SMART-ITL (or FESTA), has been designed using a volume scaling methodology. It was installed at KAERI and its commissioning tests were finished in 2012. Its height was preserved and its area and volume were scaled down to 1/49 compared with the prototype plant, SMART. The SMART-ITL consists of a primary system including a reactor pressure vessel with a pressurizer, four steam generators and four main coolant pumps, a secondary system, a safety system, and an auxiliary system. The objectives of IET using the SMART-ITL facility are to investigate the integral performance of the inter-connected components and possible thermal-hydraulic phenomena occurring in the SMART design, and to validate its safety for various design basis events (DBAs)

  8. A Preliminary Analysis for SMART-ITL SBLOCA Tests using the MARS/KS Code

    International Nuclear Information System (INIS)

    Cho, Yeon Sik; Ko, Yung Joo; Suh, Jae Seung

    2013-01-01

    In this paper, a preliminary analysis was conducted for SMART-ITL SBLOCA tests using the MARS/KS Code. The results of this work are expected to be good guidelines for SBLOCA tests with the SMART-ITL, and used to understand the various thermal-hydraulic phenomena expected to occur in the integral-type reactor, SMART. An integral-effect test (IET) loop for SMART, SMART-ITL (or FESTA), has been designed using a volume scaling methodology. It was installed at KAERI and its commissioning tests were finished in 2012. Its height was preserved and its area and volume were scaled down to 1/49 compared with the prototype plant, SMART. The SMART-ITL consists of a primary system including a reactor pressure vessel with a pressurizer, four steam generators and four main coolant pumps, a secondary system, a safety system, and an auxiliary system. The objectives of IET using the SMART-ITL facility are to investigate the integral performance of the inter-connected components and possible thermal-hydraulic phenomena occurring in the SMART design, and to validate its safety for various design basis events (DBAs)

  9. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    Energy Technology Data Exchange (ETDEWEB)

    Galabert, Jose, E-mail: jose.galabert@f4e.europa.eu [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); Hopper, Dave [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom); Neviere, Jean-Cristophe [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Nodwell, David [CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxfordshire (United Kingdom); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Poitevin, Yves; Ricapito, Italo [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); White, Gareth [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom)

    2017-03-15

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q{sub 2} Getter Beds, identifying some design recommendations for their sound maintainability.

  10. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    International Nuclear Information System (INIS)

    Galabert, Jose; Hopper, Dave; Neviere, Jean-Cristophe; Nodwell, David; Pascal, Romain; Poitevin, Yves; Ricapito, Italo; White, Gareth

    2017-01-01

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q_2 Getter Beds, identifying some design recommendations for their sound maintainability.

  11. Combustion Of Poultry-Derived Fuel in a CFBC

    Science.gov (United States)

    Jia, Lufei; Anthony, Edward J.

    Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

  12. Co-firing coal and hospital waste in a circulating fluidized bed boiler

    International Nuclear Information System (INIS)

    Coulthard, E.J.; Korenberg, J.; Oswald, K.D.

    1991-01-01

    The Department of Energy - Morgantown Energy Technology Center and the Pennsylvania Energy Development Authority are co-funding a project which will demonstrate the reduction of infectious hospital waste to an environmentally safe disposable ash by cofiring the waste with coal in a circulating fluidized bed (CFB). The main objective of this paper is increased utilization of coal but the project also provides a solution to a problem which has grown rapidly and become very visible in recent years (e.g., hospital waste washed up on beaches). The application of CFB boilers in hospitals introduces an economical clean coal technology into a size range and market dominated by gas and oil combustion systems. The use of CFB represents the utilization of state-of-the-art technology for burning coal in an environmentally benign manner. SO 2 , NO x , CO and particulate emissions lower than the latest New Source Performance Standards have proven to be achievable in CFB combustion systems. By processing the infectious waste in a steam generation system which operates continuously, the problem of creating excessive gaseous emissions during repeated start-ups (as is the case with current incinerator technology) is avoided. The operating conditions with respect to residence time, temperature and turbulence that are inherent to a CFB combustion system, provide an excellent environment for complete combustion and destruction of potentially hazardous solid and gaseous emissions (e.g., dioxins). The limestone, which is injected into the combustion system to reduce SO 2 emissions, will also react with chlorine. Thus chlorine compound emissions and the corrosive nature of the flue gas are reduced. The work efforts to date indicate that infectious waste thermal processing in a coal-fired CFB is a technically and economically viable on-site disposal option

  13. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  14. Modelling fireside corrosion of heat exchangers in co-fired pulverised fuel power systems

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield Univ. (United Kingdom). Energy Technology Centre; Fry, A.T. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    As a result of concerns about the effects of CO{sub 2} emissions on the global environment, there is increasing pressure to reduce such emissions from power generation systems. The use of biomass co-firing with coal in conventional pulverised fuel power stations has provided the most immediate route to introduce a class of fuel that is regarded as both sustainable and carbon neutral. In the future it is anticipated that increased levels of biomass will need to be used in such systems to achieve the desired CO{sub 2} emission targets. However there are concerns over the risk of fireside corrosion damage to the various heat exchangers and boiler walls used in such systems. Future pulverised fuel power systems will need to be designed to cope with the effects of using a wide range of coal-biomass mixes. However, such systems will also need to use much higher heat exchanger operating temperatures to increase their conversion efficiencies and counter the effects of the CO{sub 2} capture technologies that will need to be used in them. Higher operating temperatures will also increase the risk of fireside corrosion damage to the critical heat exchangers. This paper reports work that has been carried out to develop quantitative corrosion models for heat exchangers in pulverised fuel power systems. These developments have been particularly targeted at producing models that enable the evaluation of the effects of using different coal-biomass mixtures and of increasing heat exchanger operating conditions. Models have been produced that have been targeted at operating conditions and materials used in (a) superheaters/reheaters and (b) waterwalls. Data used in the development of these models has been produced from full scale and pilot scale plants in the UK using a wide range of coal and biomass mixtures, as well as from carefully targeted series of laboratory corrosion tests. Mechanistic and neural network based models have been investigated during this development process to

  15. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, S.; Campbell, C.A.

    1993-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 1800 deg F) and to simulate Regulatory Guide 1.99 database materials (austenitized at 1600 deg. F). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (U. of Michigan Test Reactor) which had never been used for this type of irradiation program. Materials taken from plate surface locations (vs. 1/4T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, is maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (500 deg. F and 550 deg. F) to determine the effect of irradiation temperature on embrittlement. The preliminary results of the irradiation program show an increase in T 30 shift of 69 deg. F for a decrease in irradiation temperature of 50 deg. F. The results suggest that for nickel bearing steels, the superior toughness of plate surface material is maintained after irradiation and for the copper content tested, nickel had no apparent effect on irradiation response. No apparent microstructure

  16. In situ vitrification: Preliminary results from the first large-scale radioactive test

    International Nuclear Information System (INIS)

    Buelt, J.L.; Westsik, J.H.

    1988-02-01

    The first large-scale radioactive test (LSRT) of In Situ Vitrification (ISV) has been completed. In Situ Vitrification is a process whereby joule heating immobilizes contaminated soil in place by converting it to a durable glass and crystalline waste form. The LSRT was conducted at an actual transuranic contaminated soil site on the Department of Energy's Hanford Site. The test had two objectives: (1) determine large-scale processing performance and (2) produce a waste form that can be fully evaluated as a potential technique for the final disposal of transuranic-contaminated soil sites at Hanford. This accomplishment has provided technical data to evaluate the ISV process for its potential in the final disposition of transuranic-contaminated soil sites at Hanford. Because of the test's successful completion, within a year technical data on the vitrified soil will be available to determine how well the process incorporates transuranics into the waste form and how well the form resists leaching of transuranics. Preliminary results available include retention of transuranics and other elements within the waste form during processing and the efficiency of the off-gas treatment system in removing contaminants from the gaseous effluents. 13 refs., 10 figs., 5 tabs

  17. Modeling and Testing of EVs - Preliminary Study and Laboratory Development

    DEFF Research Database (Denmark)

    Yang, Guang-Ya; Marra, Francesco; Nielsen, Arne Hejde

    2010-01-01

    Electric vehicles (EVs) are expected to play a key role in the future energy management system to stabilize both supply and consumption with the presence of high penetration of renewable generation. A reasonably accurate model of battery is a key element for the study of EVs behavior and the grid...... tests, followed by the suggestions towards a feasible battery model for further studies.......Electric vehicles (EVs) are expected to play a key role in the future energy management system to stabilize both supply and consumption with the presence of high penetration of renewable generation. A reasonably accurate model of battery is a key element for the study of EVs behavior and the grid...... impact at different geographical areas, as well as driving and charging patterns. Electric circuit model is deployed in this work to represent the electrical properties of a lithium-ion battery. This paper reports the preliminary modeling and validation work based on manufacturer data sheet and realistic...

  18. To test or not to test

    DEFF Research Database (Denmark)

    Rochon, Justine; Gondan, Matthias; Kieser, Meinhard

    2012-01-01

    Background: Student's two-sample t test is generally used for comparing the means of two independent samples, for example, two treatment arms. Under the null hypothesis, the t test assumes that the two samples arise from the same normally distributed population with unknown variance. Adequate...... control of the Type I error requires that the normality assumption holds, which is often examined by means of a preliminary Shapiro-Wilk test. The following two-stage procedure is widely accepted: If the preliminary test for normality is not significant, the t test is used; if the preliminary test rejects...... the null hypothesis of normality, a nonparametric test is applied in the main analysis. Methods: Equally sized samples were drawn from exponential, uniform, and normal distributions. The two-sample t test was conducted if either both samples (Strategy I) or the collapsed set of residuals from both samples...

  19. Test results with the Transrapid 06. System data from preliminary trials

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, K; Mnich, P

    1987-10-01

    Following the takeover of the Transrapid maglev facility by MVP, in spite of remaining preparatory work and conversion of the support and guidance system on the basis of a new electronic generation, interesting system data could be obtained experimentally before the planned continuous trials phase. Although the full test track length is not yet available - it is at present only 20.5 km - more than 25,000 km have already been covered in almost 1,200 test runs. Some 200 of these were for the purpose of demonstrating the Transrapid technology to visting German and foreign experts. The system data obtained from the preliminary trails were positive. Any weak points noted were mainly site-specific and not maglev-specific, but in spite of generally satisfactory results there are still many individual aspects calling for improvement and optimation before the technology can be declared ready for service. Proceeding from the positive trend of the system data obtained at up to 355 km/h, it can be said that proof of serviceability of the Transrapid transport system at speeds of up to 400 km/h can be provided in the next two years. (orig.).

  20. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  1. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    International Nuclear Information System (INIS)

    Jernigan, J.G.; Arens, J.; Vezie, D.; Collins, T.; Krider, J.; Skubic, P.

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 x 2.56 pixels 30 μm square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45 degrees. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions are presented. Preliminary calculations show spatial resolution of less than 5 μm in two dimensions

  2. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  3. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  4. Safety of high speed ground transportation systems: X2000 US demonstration vehicle dynamics trials, preliminary test report. Report for October 1992-January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, B.T.; Kesler, J.K.

    1993-01-01

    The report documents the procedures, events, and results of vehicle dynamic tests carried out on the ASEA-Brown Boveri (ABB) X2000 tilt body trainset in the US between October 1992 and January 1993. These tests, sponsored by Amtrak and supported by the FRA, were conducted to assess the suitability of the X2000 trainset for safe operation at elevated cant deficiencies and speeds in Amtrak's Northeast Corridor under existing track conditions in a revenue service demonstration. The report describes the safety criteria against which the performance of the X2000 test train was examined, the instrumentation used, the test locations, and the track conditions. Preliminary results are presented from tests conducted on Amtrak lines between Philadelphia and Harrisburg, PA, and between Washington DC and New York NY, in which cant deficiencies of 12.5 inches and speeds of 154 mph were reached in a safe and controlled manner. The significance of the results is discussed, and preliminary conclusions and recommendations are presented.

  5. Mercury exposure on potential plant Ludwigia octovalvis L. - Preliminary toxicological testing

    Science.gov (United States)

    Alrawiq, Huda S. M.; Mushrifah, I.

    2013-11-01

    The preliminary test in phytoremediation is necessaryto determine the ability of plant to survive in media with different concentrations of contaminant. It was conducted to determine the maximum concentration of the contaminant that isharmful to the plant and suppress the plant growth. This study showed the ability of Ludwigia octovalvisto resist mercury (Hg) contaminant in sand containing different concentrations of Hg (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experimental work wasperformed under greenhouse conditions for an observation period of 4 weeks. Throughout the 4 weeks duration, the resultsshowed that 66.66% of the plants withered for on exposure to Hg concentration of 4 mg/L and 100% withered at higher concentrations of 6 and 8 mg/L. The results of this study may serve as a basis for research that aims to study uptake and accumulation of Hg using potential phytoremediation plants.

  6. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nichol, Corrie Ian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-06-01

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO2 emissions would have been reduced by 350 million metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).

  7. Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-11-30

    The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To support this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.

  8. Testing a Preliminary Live with Love Conceptual Framework for cancer couple dyads: A mixed-methods study.

    Science.gov (United States)

    Li, Qiuping; Xu, Yinghua; Zhou, Huiya; Loke, Alice Yuen

    2015-12-01

    The purpose of this study was to test the previous proposed Preliminary Live with Love Conceptual Framework (P-LLCF) that focuses on spousal caregiver-patient couples in their journey of coping with cancer as dyads. A mixed-methods study that included qualitative and quantitative approaches was conducted. Methods of concept and theory analysis, and structural equation modeling (SEM) were applied in testing the P-LLCF. In the qualitative approach in testing the concepts included in the P-LLCF, a comparison was made between the P-LLCF with a preliminary conceptual framework derived from focus group interviews among Chinese couples' coping with cancer. The comparison showed that the concepts identified in the P-LLCF are relevant to the phenomenon under scrutiny, and attributes of the concepts are consistent with those identified among Chinese cancer couple dyads. In the quantitative study, 117 cancer couples were recruited. The findings showed that inter-relationships exist among the components included in the P-LLCF: event situation, dyadic mediators, dyadic appraisal, dyadic coping, and dyadic outcomes. In that the event situation will impact the dyadic outcomes directly or indirectly through Dyadic Mediators. The dyadic mediators, dyadic appraisal, and dyadic coping are interrelated and work together to benefit the dyadic outcomes. This study provides evidence that supports the interlinked components and the relationship included in the P-LLCF. The findings of this study are important in that they provide healthcare professionals with guidance and directions according to the P-LLCF on how to plan supportive programs for couples coping with cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fabrication and characterization of low temperature co-fired cordierite glass–ceramics from potassium feldspar

    International Nuclear Information System (INIS)

    Wu, Jianfang; Li, Zhen; Huang, Yanqiu; Li, Fei; Yang, Qiuran

    2014-01-01

    Highlights: • Low cost cordierite glass–ceramics were fabricated from potassium feldspar. • The glass–ceramics could be highly densified below 950 °C. • The glass–ceramics exhibit extraordinary properties. • The glass–ceramics can be used as LTCC substrates. • The excess SiO 2 improved the microstructure and properties of the glass–ceramics. -- Abstract: Cordierite glass–ceramics for low temperature co-fired ceramic (LTCC) substrates were fabricated successfully using potassium feldspar as the main raw material. The sintering and crystallization behaviors of the glass–ceramics were investigated by the differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The results indicated that the glass–ceramics could be highly densified at 850 °C and the cordierite was the main crystalline phase precipitated from the glasses in the temperature range between 900 and 925 °C. The study also evaluated the physical properties including dielectric properties, thermal expansion and flexural strength of the glass–ceramics. The glass–ceramics showed low dielectric constants in the range of 6–8 and low dielectric losses in the range of 0.0025–0.01. The coefficients of thermal expansion (CTEs) are between 4.32 and 5.48 × 10 −6 K −1 and flexural strength of the glass–ceramics are 90–130 MPa. All of those qualify the glass–ceramics for further research to be used as potential LTCC substrates in the multilayer electronic substrate field. Additionally, the excess SiO 2 acted as a great role in improving the sinterability of the glasses, and the microstructure and dielectric properties of the relevant glass–ceramics

  10. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs

  11. Preliminary tests of a high speed vertical axis windmill model

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S

    1971-01-01

    This report discusses a fixed-pitch vertical axis windmill that combines the inherent simplicity of this type of machine with a high aerodynamic efficiency and a high relative velocity. A three-bladed rotor was selected as the basic design, having constant chord symmetric airfoil blades configured in a catenary curve such that the rotor diameter is equal to the rotor height. In wind tunnel tests using a 30 inch scale model, it was found that once this rotor was given a very low rotational speed, it picked up speed and ran at a rotor tip velocity/wind speed ratio greater than 1. The number of blades was varied in the testing. A maximum power coefficient of 0.67 was achieved at 17 ft/s wind speed at a tip speed/wind speed ratio of 7.25 for a 2-bladed rotor. Increasing the number of blades above 3 did not result in higher power. The rotor could operate in gusts which double the mean wind velocity. Examination of Reynolds number effects, and taking into account the scale of the model, it was concluded that a full-scale windmill could run at lower velocity ratios than those predicted by the model tests, and that it could self-start under no-load conditions if the cut-in rpm are at least half the rpm for maximum power at the prevailing wind speed. Preliminary estimates show that a 15 ft diameter windmill of this design, designed to operate with a safety factor of 2.5 up to a maximum wind speed of 60 ft/s, would weigh ca 150 lb and could be marketed for ca $60.00, excluding the driven unit, if sufficient quantities were produced to make tooling costs negligible. Similarly, a 30 ft windmill would weigh ca 1000 lb and cost ca $400.00. 2 refs., 6 figs.

  12. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    OpenAIRE

    Matha, Denis; Sandner, Frank; Molins i Borrell, Climent; Campos Hortigüela, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provide...

  13. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  14. Preliminary research on eddy current bobbin quantitative test for heat exchange tube in nuclear power plant

    Science.gov (United States)

    Qi, Pan; Shao, Wenbin; Liao, Shusheng

    2016-02-01

    For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.

  15. MALLARD REPRODUCTIVE TESTING IN A POND ENVIRONMENT: A PRELIMINARY STUDY

    Science.gov (United States)

    A 2-year preliminary study was conducted on mallard ducks to determine the feasibility of using outdoor pond enclosures for reproductive studies and to evaluate the effects of the insecticide chlorpyrifos on mallard reproduction. No significant reproductive effects were observed ...

  16. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  17. Emotional profiles to the Rorschach test in subjects affected by Central Serous Chorioretinopathy: preliminary observations

    Directory of Open Access Journals (Sweden)

    Giovanna Gioffrè

    2013-05-01

    Full Text Available Psychological variables could be related to disorders of vision with particular interest of depressive feautures, but with little attention to dimensions such as stress and anxiety. Psychological stress associated with hyperactivation of the sympathetic autonomic nervous system, is considered the most important risk factor of a rare disorder of vision, the Central Serous Chorioretinopathy (CSC, whose etiology has not yet been clarified. This study to examine the psychological literature regarding to CSC and explore in a preliminary the projective methods of the Rorschach test, any correlations between personality variables and predisposition to CSC.

  18. Preliminary design of steam reformer in out-pile demonstration test facility for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro; Hino, Ryutaro; Inagaki, Yosiyuki; Hata, Kazuhiko; Aita, Hideki; Sekita, Kenji; Nishihara, Tetsuo; Sudo, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Yamada, Seiya

    1996-11-01

    One of the key objectives of HTTR is to demonstrate effectiveness of high-temperature nuclear heat utilization system. Prior to connecting a heat utilization system to HTTR, an out-pile demonstration test is indispensable for the development of experimental apparatuses, operational control and safety technology, and verification of the analysis code of safety assessment. For the first heat utilization system of HTTR, design of the hydrogen production system by steam reforming is going on. We have proposed the out-pile demonstration test plan of the heat utilization system and conducted preliminary design of the test facility. In this report, design of the steam reformer, which is the principal component of the test facility, is described. In the course of the design, two types of reformers are considered. The one reformer contains three reactor tubes and the other contains one reactor tube to reduce the construction cost of the test facility. We have selected the steam reformer operational conditions and structural specifications by analyzing the steam reforming characteristics and component structural strength for each type of reformer. (author)

  19. Development of low cost systems for co-utilisation of biomass in large power plant. Mid term review report

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.

    2003-07-01

    Interest in the cofiring of biomass materials with coal in large coal-fired power stations in the UK has increased significantly in recent years in response to the potential additional income from Renewables Obligation Certificates (ROCs). It is anticipated that most coal-fired power stations in the UK will have the capability to cofire biomass materials by the end of 2003. This mid-term review report examines the various stages in the route to fully commercial operation of biomass cofiring at coal-fired power stations, the availability of suitable biomass materials in the UK and the technical options for cofiring. The factors affecting the economics of biomass cofiring in large coal-fired boilers are discussed including the delivered price of biofuels, the future value of ROCs, the development costs of cofiring projects, the 25% ceiling on cofiring imposed by the Renewables Obligation Order 2002 and the use of preblending. An overview of the current status of cofiring in the UK is presented, which includes a summary of the results of trials already carried out by operators of coal-fired power stations and a discussion of the future prospects for biomass cofiring in the UK.

  20. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument

    Science.gov (United States)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc

    2014-01-01

    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a

  1. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  2. Preliminary I&C Design for LORELEI

    International Nuclear Information System (INIS)

    Korotkin, S.; Kaufman, Y.; Guttmann, E. B.; Levy, S.; Amidan, D.; Gdalyho, B.; Cahana, T.; Ellenbogen, A.; Arad, M.; Weiss, Y.; Sasson, A.; Ferry, L.; Bourrelly, F.; Cohen, Y.

    2014-01-01

    This document summarizes the preliminary I&C design for LORELEI experiment The preliminary design deals with considerations regarding appropriate safety and service instrumentation. The determined closed loop control rules for temperature and position will be implemented in the detailed design. The Computer Aided Operator Decisions System (CAODS) will be used for prediction of hot spot temperature and thickness of oxidation layer using Baker-Just correlation. The proposed hybrid simulation system comprising of both virtual and real hardware will be in-cooperated for LORELEI verification. It will perform both integration cold tests for a partial hardware loop and virtual tests for the final I&C design

  3. An artificial intelligence treatment of devolatilization for pulverized coal and biomass in co-fired flames

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, T.; Awais, M.M.; Lockwood, F.C. [Lahore University of Management & Science, Lahore (Pakistan)

    2003-02-01

    In most of the existing predictive procedures for devolatilization, combustion and emissions are modeled by a single-step, global chemical reaction, with the yield of volatile matter presumed to experience mixing-controlled combustion. Several more detailed multi-step coal devolatilization models have recently emerged. A common shortcoming of these models is that they require a large set of input data, involving kinetic parameters, gas precursor compositions, and additional parameters describing the coal's polymeric structure. The input data must be generated from an extensive series of experimental measurements for each coal of interest. Very significant computational expense and application restricted to coals, which have already been studied, are implied. All of these problems are exacerbated when coal blending or co-firing with renewable solid fuels, such as forest and agricultural waste, and sewage sludge, is considered. In this paper, a new approach based on neural networks is proposed; it is capable of handling a range of solid fuels. The model considers heating rate, fuel atomic ratios, and the temperature of the fuel particles to predict the volatiles released by the particles. The 'learning' properties of the model implicitly facilitate all the physical conditions, of devolatilization experiments, which were used during its training and validation phases. The neural-network model was implemented into an existing 3D CFD combustion code. The predictions for high- and low-NOx burners demonstrate improved prediction of in-flame data for reduced computational effort, one-fifth of that with the standard single-global-reaction devolatilization model. Its devolatilization predictions have also been compared with a detailed devolatilization model (FLASHCHAIN) and were found to be comparable.

  4. A preliminary evaluation of a combined tire- and refuse-derived fuel (TDF-RDF)

    Energy Technology Data Exchange (ETDEWEB)

    Stessel, R.I.; Amari, T.; Themelis, N.J.; Wearnick, I.K.

    1999-07-01

    In dense urban areas of the US, it is now becoming clear that waste management is far from economically-optimum. Even with the popularity of inexpensive land disposal, hauling and recycling costs are driving up the average waste bill. An historic option has been refuse-derived fuel, or RDF. Difficulties included low energy content and difficulty obtaining uniformity. Today, many resource-recovery technologies used in RDF are finding their way into materials recovery facilities (MRFs), some of which are reviving the automated processing of waste. Any MRF, automated or not, will have residue streams. Currently, one of the most significant problems is waste tires. Local options are difficult to locate in dense urban areas. As fuels, tires typically have energy contents considerably above those for which most solid-fuel combustors are designed, leading to thermal imbalances and various forms of failure. This paper suggests a new fuel that can be either co-fired with coal, or used in its own right in a combustor primarily designed for coal: TDF-RDF. A preliminary examination is undertaken of thermal and emissions characteristics, and possible costs for a few applications of the fuel. Immediately, TDF is already cleaner-burning than many coals, even in sulfur emissions. RDF has been widely-regarded as being similarly cleanly. Posited MRF residue streams should be still cleaner, and more consistent, than RDF. Overall, there is quite a potential for developing a fuel that would allow old coal powerplants in historic urban centers to be better neighbors, while helping with a few problems in municipal waste management.

  5. Preliminary tests in skull pediatric phantom for dosimetry in computerized tomography

    International Nuclear Information System (INIS)

    Martins, Elaine Wirney; Potiens, Maria da Penha de A.

    2014-01-01

    Computed tomography (CT) is one of the techniques in the field of radiology with striking technological advance in recent years. One reason for this was the increased number of channels associated with the increased power of the X-ray tube. These conditions allowed the equipment high speed in the acquisition of the cuts, reducing the patient exposure time essential characteristic for the increase of its use in pediatric patients. In this context, were developed a new pediatric skull simulator to analyze the results of measurements performed in laboratory and clinic beams with the objective of creation and use of diagnostic reference levels observing risks stochastic effects and assessing the reduction of absorbed doses in patients undergoing growing. Preliminary tests performed in clinical beams showed C w values: 2.525 ± 0.212 mGy for the developed simulator quoted and 3.362 ± 0.282 mGy for a simulator developed by IPEN called standard, both being between uncertainty values of 8.4% and 14.4% suggested by TRS number 457

  6. Preliminary Study on Mg content of hard part(Test) of a benthic foraminifer from the inner shelf, off West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Khare, N.; Nigam, R.; Iyer, S.D.

    A preliminary study has been made for trace element (Mg) in the test of benthic species Bulimina exilis from a shallow sediment core (at 22 m water depth) off west coast of India using Electron Probe Microanalyser (EPMA) The Mg content is selected...

  7. Design and preliminary testing of a Bottom-Mounted Second Shutdown Drive Mechanism for the KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sanghaun; Lee, Jin Haeng; Yoo, Yeon-Sik, E-mail: yooys@kaeri.re.kr; Cho, Yeong-Garp; Lee, Hyokwang; Sun, Jongoh; Ryu, Jeong Soo

    2016-10-15

    Highlights: • The basic design principle, features and characteristics of the BMSSDM for KJRR are described. • The current development status based on practical fabrications, performance tests, and evaluations is described. • We have verified that all of the BMSSDM components satisfied their design requirements. • All of the performance requirements are satisfied from the performance test results. • The endurance test results show there are no structural failures and the wear of the impact parts in the hydraulic cylinder assembly is negligible. - Abstract: The KiJang Research Reactor (KJRR) is now being designed and undergoing preliminary construction by the Korea Atomic Energy Research Institute (KAERI). The driving parts of the Second Shutdown Drive Mechanism (SSDM) for the KJRR are located in a Reactivity Control Mechanism (RCM) room below the reactor pool bottom. In this paper, the design principle and concept of the Bottom-Mounted SSDM (BMSSDM) for the KJRR are introduced. From the experimental evaluations of the design, fabrication and performance, we verified that all of the BMSSDM components in the current design and development status satisfy their design requirements.

  8. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1994-01-01

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design

  9. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    Science.gov (United States)

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  10. Cell emulation and preliminary results.

    Science.gov (United States)

    2016-07-01

    This report details preliminary results of the testing plan implemented by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV battery cells ar...

  11. AGR-2 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    Energy Technology Data Exchange (ETDEWEB)

    Ploger, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowciz, Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The AGR 2 irradiation experiment began in June 2010 and was completed in October 2013. The test train was shipped to the Materials and Fuels Complex in July 2014 for post-irradiation examination (PIE). The first PIE activities included nondestructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and their graphite fuel holders. Dimensional metrology was then performed on the compacts, graphite holders, and steel capsule shells. AGR 2 disassembly and metrology were performed with the same equipment used successfully on AGR 1 test train components. Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Disassembly of the AGR 2 test train and its capsules was conducted rapidly and efficiently by employing techniques refined during the AGR 1 disassembly campaign. Only one major difficulty was encountered while separating the test train into capsules when thermocouples (of larger diameter than used in AGR 1) and gas lines jammed inside the through tubes of the upper capsules, which required new tooling for extraction. Disassembly of individual capsules was straightforward with only a few minor complications. On the whole, AGR 2 capsule structural components appeared less embrittled than their AGR 1 counterparts. Compacts from AGR 2 Capsules 2, 3, 5, and 6 were in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated radial shrinkage between 0.8 to 1.7%, with the greatest shrinkage observed on Capsule 2 compacts that were irradiated at higher temperature. Length shrinkage ranged from 0.1 to 0.9%, with by far the lowest axial shrinkage on Capsule 3 compacts

  12. Development and preliminary testing of a computerized Animated Activity Questionnaire (AAQ) in patients with hip and knee osteoarthritis

    DEFF Research Database (Denmark)

    Peter, Wf; Loos, M; de Vet, Hcw

    2015-01-01

    , and to preliminary assess its reliability and validity. We hypothesize that the AAQ correlates highly with performance-based tests, and moderately with self-reports. Methods Item selection was based on 1) the pilot AAQ; 2) pre-specified conditions; 3) the International Classification of Functioning core set for OA......Objective To develop an Animated Activity Questionnaire (AAQ), based on video animations, for assessing activity limitations in patients with hip/knee osteoarthritis (OA), which combines the advantages of self-reported questionnaires and performance-based tests, without many of their limitations......, 4) existing measurement instruments, and 5) focus groups of patients. Test-retest reliability was assessed in 30/110 patients. In 110 patients correlations were calculated between AAQ and self-reported Hip disability and Knee injury Osteoarthritis Outcome ADL subscale (H/KOOS). In 45/110 patients...

  13. Construction of PREMUX and preliminary experimental results, as preparation for the HCPB breeder unit mock-up testing

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, F., E-mail: francisco.hernandez@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR) (Germany); Kolb, M. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT) (Germany); Annabattula, R. [Indian Institute of Technology Madras (IITM), Department of Mechanical Engineering (India); Weth, A. von der [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR) (Germany)

    2014-10-15

    Highlights: • PREMUX has been constructed as preparation for a future out-of-pile thermo-mechanical qualification of a HCPB breeder unit mock-up. • The rationale and constructive details of PREMUX are reported in this paper. • PREMUX serves as a test rig for the new heater system developed for the HCPB-BU mock-up. • PREMUX will be used as benchmark for the thermal and thermo-mechanical models developed in ANSYS for the pebble beds of the HCPB-BU. • Preliminary results show the functionality of PREMUX and the good agreement of the measured temperatures with the thermal model developed in ANSYS. - Abstract: One of the European blanket designs for ITER is the Helium Cooled Pebble Bed (HCPB) blanket. The core of the HCPB-TBM consists of so-called breeder units (BUs), which encloses beryllium as neutron multiplier and lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder in form of pebble beds. After the design phase of the HCPB-BU, a non-nuclear thermal and thermo-mechanical qualification program for this device is running at the Karlsruhe Institute of Technology. Before the complex full scale BU testing, a pre-test mock-up experiment (PREMUX) has been constructed, which consists of a slice of the BU containing the Li{sub 4}SiO{sub 4} pebble bed. PREMUX is going to be operated under highly ITER-relevant conditions and has the following goals: (1) as a testing rig of new heater concept based on a matrix of wire heaters, (2) as benchmark for the existing finite element method (FEM) codes used for the thermo-mechanical assessment of the Li{sub 4}SiO{sub 4} pebble bed, and (3) in situ measurement of thermal conductivity of the Li{sub 4}SiO{sub 4} pebble bed during the tests. This paper describes the construction of PREMUX, its rationale and the experimental campaign planned with the device. Preliminary results testing the algorithm used for the temperature reconstruction of the pebble bed are reported and compared qualitatively with first analyses

  14. Modeling and preliminary thermal analysis of the capsule for a creep test in HANARO

    International Nuclear Information System (INIS)

    Choi, Myoung Hwan; Cho, Man Soon; Choo, Kee Nam; Kang, Young Hwan; Sohn, Jae Min; Shin, Yoon Taeg; Park, Sung Jae; Kim, Bong Goo; Kim, Young Jin

    2005-01-01

    A creep capsule is a device to investigate the creep characteristics of nuclear materials during inpile irradiation tests. To obtain the design data of the capsule through a preliminary thermal analysis, a 2-dimensional model for the cross section of the capsule including the specimens and components is generated, and an analysis using the ANSYS program is performed. The gamma-heating rates of the materials for the HANARO power of 30MW are considered, and the effect of the gap size and the control rod position on the temperature of the specimen is discussed. From the analysis it is found that the gap between the thermal media and the external tube has a significant effect on the temperature of the specimen. The temperature by increasing the position of the control rod is decreased

  15. Economic evaluation of biogas and natural gas co-firing in gas turbine combined heat and power systems

    International Nuclear Information System (INIS)

    Kang, Jun Young; Kang, Do Won; Kim, Tong Seop; Hur, Kwang Beom

    2014-01-01

    This study investigated the economics of co-firing biogas and natural gas within a small gas turbine combined heat and power (CHP) plant. The thermodynamic performance of the CHP plant was calculated with varying gas mixing ratios, forming the basis for the economic analysis. A cost balance equation was used to calculate the costs of electricity and heat. The methodology was validated, and parametric analyses were used to investigate the influence of gas mixing ratio and heat sales ratio on the costs of electricity and heat. The cost of electricity generation from the CHP plant was compared to that of a central combined cycle power plant, and an economical gas mixing ratio range were suggested for various heat sales ratios. It was revealed that the effect of the heat sales ratio on the cost of electricity becomes greater as the proportion of natural gas is increased. It was also demonstrated that the economic return from the installation of CHP systems is substantially affected by the gas mixing ratio and heat sales ratio. Sensitivity analysis showed that influence of economic factors on the CHP plant is greater when a higher proportion of natural gas is used. - Highlights: • An appropriate method to calculate the costs of electricity (COE) and heat (COH) was established. • Both COE and COH increase with increasing natural gas mixing ratio and decreasing heat sales ratio. • The effect of the heat sales ratio on the COE becomes greater as the mixing ratio increases. • The payback period is considerably dependent on the mixing ratio and heat sales ratio

  16. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  17. Preliminary Tests in the NACA Tank to Investigate the Fundamental Characteristics of Hydrofoils

    Science.gov (United States)

    Ward, Kenneth E.; Land, Norman S.

    1940-01-01

    This preliminary investigation was made to study the hydrodynamic properties and general behavior of simple hydrofoils. Six 5- by 30-inch plain, rectangular hydrofoils were tested in the NACA tank at various speeds, angles of attack and depths below the water surface. Two of the hydrofoils had sections representing the sections of commonly used airfoils, one had a section similar to one developed Guidoni for use with hydrofoil-equipped seaplane floats, and three had sections designed to have constant chordwise pressure distributions at given values of the lift coefficient for the purpose of delaying the speed at which cavitation begins. The experimental results are presented as curves of the lift and drag coefficients plotted against speed for the various angles of attack and depths for which the hydrofoils were tested. A number of derived curves are included for the purpose of better comparing the characteristics of the hydrofoils and to show the effects of depth. Several representative photographs show the development of cavitation on the the upper surface of the hydrofoils. The results indicate that properly designed hydrofoil sections will have excellent characteristics and that the speed at which cavitation occurs may be delayed to an appreciable extent by the use of suitable sections.

  18. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl; Malinowski, K.; Czarski, T.; Kowalska-Strzęciwilk, E. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Wojeński, A.; Poźniak, K. T.; Kasprowicz, G.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P. [Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw (Poland); Vezinet, D.; Herrmann, A. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Mazon, D.; Jardin, A. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-15

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  19. Preliminary code development for seismic signal analysis related to test ban treaty questions

    International Nuclear Information System (INIS)

    Brolley, J.E.

    1977-01-01

    Forensic seismology, from a present day viewpoint, appears to be divided into several areas. Overwhelmingly important, in view of current Complete Test Ban (CTB) discussions, is the seismological study of waves generated in the earth by underground nuclear explosions. Over the last two decades intensive effort has been devoted to developing improved observational apparatus and to the interpretation of the data produced by this equipment. It is clearly desirable to extract the maximum amount of information from seismic signals. It is, therefore, necessary to quantitatively compare various modes of analysis to establish which mode or combination of modes provides the most useful information. Preliminary code development for application of some modern developments in signal processing to seismic signals is described. Applications of noncircular functions are considered and compared with circular function results. The second portion of the discussion concerns maximum entropy analysis. Lastly, the multivariate aspects of the general problem are considered

  20. Preliminary HECTOR analysis by Dragon

    Energy Technology Data Exchange (ETDEWEB)

    Presser, W; Woloch, F

    1972-06-02

    From the different cores measured in HECTOR, only ACH 4/B-B was selected for the Dragon analysis, since it presented the largest amount of uniform fuel loading in the central test region and is therefore nearest to an infinite lattice. Preliminary results are discussed.

  1. Site study plan for Deep Hydronest Test Wells, Deaf Smith County Site, Texas: Preliminary draft

    International Nuclear Information System (INIS)

    1987-05-01

    Wells called Deep Hydronest Wells will be installed at six locations at the Deaf Smith County Site to characterize hydraulic parameters in the geologic column between the top of the San Andres Formation and the base of Pennsylvanian System. Three hydronests will be drilled during early stages of site characterization to provide data for performance assessment modeling. Four wells are proposed for each of these 3 nests. Results of drilling, testing, and preliminary modeling will direct drilling and testing activities at the last 3 nests. Two wells are proposed at each of the last 3 nests for a total of 18 wells. The Salt Repository Project (SRP) Networks specify the schedule under which this program will operate. Drilling and hydrologic testing of the first Deep Hydronest will begin early in the Surface Investigation Program. Drilling and testing of the first three Deep Hydronests will require about 18 months. After 12 months of evaluating and analyzing data from the first three hydronests, the remaining three hydronests will be drilled during a 12-month period. The Technical Field Services Contractor is responsible for conducting the field program. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be used to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 36 refs., 20 figs., 6 tabs

  2. In Situ Vitrification preliminary results from the first large-scale radioactive test

    International Nuclear Information System (INIS)

    Buelt, J.L.; Westsik, J.H.

    1988-01-01

    The first large-scale radioactive test (LSRT) of In Situ Vitrification (ISV) has been completed. In Situ Vitrification is a process whereby joule heating immobilizes contaminated soil in place by converting it to a durable glass and crystalline waste form. The LSRT was conducted at an actual transuranic contaminated soil site on the Department of Energy's Hanford Site. The test had two objectives: 1) determine large-scale processing performance and 2) produce a waste form that can be fully evaluated as a potential technique for the final disposal of transuranic-contaminated soil sites at Hanford. This accomplishment has provided technical data to evaluate the ISV process for its potential in the final disposition of transuranic-contaminated soil sites at Hanford. The LSRT was completed in June 1987 after 295 hours of operation and 460 MWh of electrical energy dissipated to the molten soil. This resulted in a minimum of a 450-t block of vitrified soil extending to a depth of 7.3m (24 ft). The primary contaminants vitrified during the demonstration were Pu and Am transuranics, but also included up to 26,000 ppm fluorides. Preliminary data show that their retention in the vitrified product exceeded predictions meaning that fewer contaminants needed to be removed from the gaseous effluents by the processing equipment. The gaseous effluents were contained and treated throughout the run; that is, no radioactive or hazardous chemical releases were detected

  3. Bio-coal, torrefied lignocellulosic resources – Key properties for its use in co-firing with fossil coal – Their status

    International Nuclear Information System (INIS)

    Agar, D.; Wihersaari, M.

    2012-01-01

    Bio-coal has received generous amounts of media attention because it potentially allows greater biomass co-firing rates and net CO 2 emission reductions in pulverised-coal power plants. However, little scientific research has been published on the feasibility of full-scale commercial production of bio-coal. Despite this, several companies and research organisations worldwide have been developing patented bio-coal technologies. Are the expectations of bio-coal realistic and are they based on accepted scientific data? This paper examines strictly peer-reviewed scientific publications in order to find an answer. The findings to date on three key properties of torrefied biomass are presented and reviewed. These properties are: the mass and energy balance of torrefaction, the friability of the product and the equilibrium moisture content of torrefied biomass. It is these properties that will have a major influence on the feasibility of bio-coal production regardless of reactor technology employed in production. The presented results will be of use in modelling commercial production of bio-coal in terms of economics and green-house gas emission balance. -- Highlights: ► A technical note on torrefaction research results. ► Presents experimental values on three key properties. ► Mass-energy balance, grindability, equilibrium moisture content of torrefied biomass. ► Results useful for modelling bio-coal production schemes.

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and

  5. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  6. The neutral beam test facility cryopumping operation: preliminary analysis and design of the cryogenic system

    International Nuclear Information System (INIS)

    Gravil, B.; Henry, D.; Cordier, J.J.; Hemsworth, R.; Van Houtte, D.

    2004-01-01

    The ITER neutral beam heating and current drive system is to be equipped with a cryosorption cryopump made up of 12 panels connected in parallel, refrigerated by 4.5 K 0.4 MPa supercritical helium. The pump is submitted to a non homogeneous flux of H 2 or D 2 molecules, and the absorbed flux varies from 3 Pa.m -3 .s -1 to 35 Pa.m -3 .s -1 . In the frame of the 'ITER first injector and test facility CSU-EFDA task' (TW3-THHN-IITF1), the ITER reference cryo-system and cryo-plant designs have been assessed and compared to optimised designs devoted to the Neutral Beam Test Facility (NBTF). The 4.5 K cryo-panel, which has a mass of about 1000 kg, must be periodically regenerated up to 90 K and occasionally to 470 K. The cool-down time after regeneration depends strongly on the refrigeration capacity. Fast regeneration and cool-down of the cryo-panels are not considered a priority for the test facility operation, and an analysis of the consequences of a limited cold power refrigerator on the cooling down time has been carried out and will be discussed. This paper presents a preliminary evaluation of the NBTF cryo-plant and the associated process flow diagram. (authors)

  7. Obtaining 64Cu in a nuclear reactor from a Zn matrix: Preliminary tests

    International Nuclear Information System (INIS)

    Aguirre, Andrea; Bedregal, Patricia; Montoya, Eduardo; Cohen, Marcos Isaac

    2014-01-01

    The design and feasibility of a method for obtaining 6C u in a nuclear reactor, from the 64 Zn(n,p) 64 Cu threshold reaction of zinc, induced by the fast component of the neutron spectrum, is presented. The product obtained will be used in positron emission tomography (PET). The preliminary experiments were performed using the RP-10 research reactor at a power of 3.5 MW, followed by a radiochemical separation by solvent extraction using a chloroform solution of dithizone. The radioisotope has been identified and quantified through the full energy peak of 1345.77 keV, using a high resolution gamma spectrometry system. The preliminary yield achieved demonstrates the feasibility of the proposed method. (authors).

  8. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  9. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    International Nuclear Information System (INIS)

    Bertolucci, E.; Maiorino, M.; Mettivier, G.; Montesi, M.C.; Russo, P.

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 μm pitch) or to the Medipix2 chip (256x256 pixel, 55 μm pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-μm thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 μm circular holes with 170 μm pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order to investigate the general feasibility of this imaging probe and its resolving power. Measurements show the high resolution but low efficiency performance of the detector-collimator set, which is able to image the 122 keV source with <1 mm FWHM resolution

  11. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    Science.gov (United States)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  12. Spent Pot Lining Characterization Framework

    Science.gov (United States)

    Ospina, Gustavo; Hassan, Mohamed I.

    2017-09-01

    Spent pot lining (SPL) management represents a major concern for aluminum smelters. There are two key elements for spent pot lining management: recycling and safe storage. Spent pot lining waste can potentially have beneficial uses in co-firing in cement plants. Also, safe storage of SPL is of utmost importance. Gas generation of SPL reaction with water and ignition sensitivity must be studied. However, determining the feasibility of SPL co-firing and developing the required procedures for safe storage rely on determining experimentally all the necessary SPL properties along with the appropriate test methods, recognized by emissions standards and fire safety design codes. The applicable regulations and relevant SPL properties for this purpose are presented along with the corresponding test methods.

  13. Method of boundary testing of the electric circuits and its application for calculating electric tolerances. [electric equipment tests

    Science.gov (United States)

    Redkina, N. P.

    1974-01-01

    Boundary testing of electric circuits includes preliminary and limiting tests. Preliminary tests permit determination of the critical parameters causing the greatest deviation of the output parameter of the system. The boundary tests offer the possibility of determining the limits of the fitness of the system with simultaneous variation of its critical parameters.

  14. Preliminary Validation of Composite Material Constitutive Characterization

    Science.gov (United States)

    John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson

    2012-01-01

    This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...

  15. Using a situational judgement test for selection into dental core training: a preliminary analysis.

    Science.gov (United States)

    Rowett, E; Patterson, F; Cousans, F; Elley, K

    2017-05-12

    Objective and setting This paper describes the evaluation of a pilot situational judgement test (SJT) for selection into UK Dental Core Training (DCT). The SJT's psychometric properties, group differences based on gender and ethnicity, and candidate reactions were assessed.Methods The SJT targets four non-academic attributes important for success in DCT. Data were collected alongside live selection processes from five Health Education England local teams in the UK (N = 386). Candidates completed the pilot SJT and an evaluation questionnaire to examine their reactions to the test.Results SJT scores were relatively normally distributed and showed acceptable levels of internal reliability (α = 0.68). Difficulty level and partial correlations between scenarios and SJT total score were in the expected ranges (64.61% to 90.03% and r = 0.06 to 0.41, respectively). No group differences were found for gender, and group differences between White and BME candidates were minimal. Most candidates perceived the SJT as relevant to the target role, appropriate and fair.Conclusions This study demonstrated the potential suitability of an SJT for use in DCT selection. Future research should replicate these preliminary findings in other cohorts, and assess the predictive validity of the SJT for predicting key training and practice-based outcomes.

  16. Molecular Weiss domain polarization in piezoceramics to diaphragm, cantilever and channel construction in low-temperature-cofired ceramics for micro-fluidic applications

    International Nuclear Information System (INIS)

    Khanna, P.K.; Ahmad, S.; Grimme, R.

    2005-01-01

    This paper presents the efforts made to study the process of comminution to Weiss domain polarization and phase transition in piezoceramics together with the versatility of low-temperature-cofired ceramics-based devices and components for their ready adoption for typical applications in the area of micro-fluidics. A conceptual micro-fluidic module has been presented and few unit entities necessary for its realization have been described. The purpose of these entities is to position the sensors and actuators by using piezoelectric materials. Investigations are performed to make useful constructions like diaphragms and cantilevers for laying the sensing elements, cavities for burying the electronic chip devices, and channels for fluid transportation. In order to realize these constructions, the basic step involves machining of circular, straight line, rectangular and square-shaped structure in the green ceramic tapes followed by lamination and firing with post-machining in some cases. The diaphragm and cavity includes one or more un-machined layer stacked together with several machined layers with rectangular or square slits. The cantilever is an extension of the diaphragm creation process with inclusion of a post-machining step. The channel essentially consists of a machined green ceramic layer sandwiched between an un-machined and a partially machined layer. The fabrication for all the above constructions has been exemplified and the details have been discussed

  17. Innovative thin silicon detectors for monitoring of therapeutic proton beams: preliminary beam tests

    Science.gov (United States)

    Vignati, A.; Monaco, V.; Attili, A.; Cartiglia, N.; Donetti, M.; Fadavi Mazinani, M.; Fausti, F.; Ferrero, M.; Giordanengo, S.; Hammad Ali, O.; Mandurrino, M.; Manganaro, L.; Mazza, G.; Sacchi, R.; Sola, V.; Staiano, A.; Cirio, R.; Boscardin, M.; Paternoster, G.; Ficorella, F.

    2017-12-01

    To fully exploit the physics potentials of particle therapy in delivering dose with high accuracy and selectivity, charged particle therapy needs further improvement. To this scope, a multidisciplinary project (MoVeIT) of the Italian National Institute for Nuclear Physics (INFN) aims at translating research in charged particle therapy into clinical outcome. New models in the treatment planning system are being developed and validated, using dedicated devices for beam characterization and monitoring in radiobiological and clinical irradiations. Innovative silicon detectors with internal gain layer (LGAD) represent a promising option, overcoming the limits of currently used ionization chambers. Two devices are being developed: one to directly count individual protons at high rates, exploiting the large signal-to-noise ratio and fast collection time in small thicknesses (1 ns in 50 μm) of LGADs, the second to measure the beam energy with time-of-flight techniques, using LGADs optimized for excellent time resolutions (Ultra Fast Silicon Detectors, UFSDs). The preliminary results of first beam tests with therapeutic beam will be presented and discussed.

  18. Five-Kilometers Time Trial: Preliminary Validation of a Short Test for Cycling Performance Evaluation.

    Science.gov (United States)

    Dantas, Jose Luiz; Pereira, Gleber; Nakamura, Fabio Yuzo

    2015-09-01

    The five-kilometer time trial (TT5km) has been used to assess aerobic endurance performance without further investigation of its validity. This study aimed to perform a preliminary validation of the TT5km to rank well-trained cyclists based on aerobic endurance fitness and assess changes of the aerobic endurance performance. After the incremental test, 20 cyclists (age = 31.3 ± 7.9 years; body mass index = 22.7 ± 1.5 kg/m(2); maximal aerobic power = 360.5 ± 49.5 W) performed the TT5km twice, collecting performance (time to complete, absolute and relative power output, average speed) and physiological responses (heart rate and electromyography activity). The validation criteria were pacing strategy, absolute and relative reliability, validity, and sensitivity. Sensitivity index was obtained from the ratio between the smallest worthwhile change and typical error. The TT5km showed high absolute (coefficient of variation 0.95) reliability of performance variables, whereas it presented low reliability of physiological responses. The TT5km performance variables were highly correlated with the aerobic endurance indices obtained from incremental test (r > 0.70). These variables showed adequate sensitivity index (> 1). TT5km is a valid test to rank the aerobic endurance fitness of well-trained cyclists and to differentiate changes on aerobic endurance performance. Coaches can detect performance changes through either absolute (± 17.7 W) or relative power output (± 0.3 W.kg(-1)), the time to complete the test (± 13.4 s) and the average speed (± 1.0 km.h(-1)). Furthermore, TT5km performance can also be used to rank the athletes according to their aerobic endurance fitness.

  19. Lab-scale co-firing of virgin and torrefied bamboo species Guadua angustifolia Kunth as a fuel substitute in coal fired power plants

    International Nuclear Information System (INIS)

    Fryda, Lydia; Daza, Claudia; Pels, Jan; Janssen, Arno; Zwart, Robin

    2014-01-01

    Bamboo is a potential sustainable biomass source for renewable heat and power production as it presents common fuel characteristics with other biomass feedstocks regarding heating value and chemical composition. This paper presents an evaluation of the combustion behaviour of the bamboo species Guadua angustifolia Kunth, virgin as well as torrefied, in blends with coal or pure, comparing with other biomass feedstocks such as wood and herbaceous biomass. The bamboo pre-treatment and the combustion experiments were carried out at dedicated installations at ECN, including a laboratory scale batch torrefaction reactor and a combustion simulation test facility. The results on combustion and co-firing reveal that in terms of fouling, the untreated bamboo shows behaviour closer to herbaceous biomass rather than to wood, with specific fouling factors of wood, bamboo and herbaceous biomass of 0.91·10 −3 , 2.9·10 −3 , 3.1·10 −3  K·m 2 ·W −1 ·g −1 respectively. Dry torrefaction improves its physical properties by increasing the density and grindability without improving significantly its fouling behaviour while the fouling behaviour of wet torrefied bamboo is similar to woody biomass; the specific fouling factors of dry torrefied and wet torrefied bamboo are 2.4·10 −3 and 0.89·10 −3  K·m 2 ·W −1 ·g −1 respectively. The fouling behaviour of biomass and coal blends lies between the fuels of the blend. Alternative bamboo species were evaluated using the alkali index A i based on their fuel composition. It appears that the fouling behaviour of alternative species is better than for G. angustifolia, therefore these should be further analysed. - Highlights: • Bamboo species Guadua angustifolia is a promising feedstock for power generation. • Dry and wet torrefaction of selected samples were carried out at ECN. • Virgin (untreated) and pretreated samples were fired pure or in coal blends. • Pretreated bamboo is suitable for large scale power

  20. Preliminary rock mechanics laboratory: Investigation plan

    International Nuclear Information System (INIS)

    Oschman, K.P.; Hummeldorf, R.G.; Hume, H.R.; Karakouzian, M.; Vakili, J.E.

    1987-01-01

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  1. Preliminary results of ecotoxicological assessment of an Acid Mine Drainage (AMD) passive treatment system testing water quality of depurated lixiviates

    OpenAIRE

    Miguel Sarmiento, Aguasanta; Bonnail, Estefanía; Nieto Liñán, José Miguel; Valls Casillas, Tomás Ángel del

    2017-01-01

    The current work reports on the preliminary results of a toxicity test using screening experiments to check the efficiency of an innovative passive treatment plant designed for acid mine drainage purification. Bioassays took place with water samples before and after the treatment system and in the river, once treated water is discharged. Due to the high toxicity of the water collected at the mouth of the mine (before the treatment plant), the bioassay was designed and developed with respect t...

  2. Investigation of a zirconia co-fired ceramic calorimetric microsensor for high-temperature flow measurements

    International Nuclear Information System (INIS)

    Lekholm, Ville; Persson, Anders; Klintberg, Lena; Thornell, Greger

    2015-01-01

    This paper describes the design, fabrication and characterization of a flow sensor for high-temperature, or otherwise aggressive, environments, like, e.g. the propulsion system of a small spacecraft. The sensor was fabricated using 8 mol% yttria stabilized zirconia (YSZ8) high-temperature co-fired ceramic (HTCC) tape and screen printed platinum paste. A calorimetric flow sensor design was used, with five 80 µm wide conductors, separated by 160 µm, in a 0.4 mm wide, 0.1 mm deep and 12.5 mm long flow channel. The central conductor was used as a heater for the sensor, and the two adjacent conductors were used to resistively measure the heat transferred from the heater by forced convection. The two outermost conductors were used to study the influence of an auxiliary heat source on the sensor. The resistances of the sensor conductors were measured using four-point connections, as the gas flow rate was slowly increased from 0 to 40 sccm, with different power supplied through the central heater, as well as with an upstream or downstream heater powered. In this study, the thermal and electrical integrability of microcomponents on the YSZ8 substrate was of particular interest and, hence, the influence of thermal and ionic conduction in the substrate was studied in detail. The effect of the ion conductivity of YSZ8 was studied by measuring the resistance of a platinum conductor and the resistance between two adjacent conductors on YSZ8, in a furnace at temperatures from 20 to 930 °C and by measuring the resistance with increasing current through a conductor. With this design, the influence of ion conductivity through the substrate became apparent above 700 °C. The sensitivity of the sensor was up to 1 mΩ sccm −1 in a range of 0–10 sccm. The results show that the signal from the sensor is influenced by the integrated auxiliary heating conductors and that these auxiliary heaters provide a way to balance disturbing heat sources, e.g. thrusters or other

  3. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  4. AFFORDABLE MULTI-LAYER CERAMIC (MLC) MANUFACTURING FOR POWER SYSTEMS (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    E.A. Barringer, Ph.D.

    2002-11-27

    interconnects and resulted in selection of the most promising configuration for high-performance, low-cost SOFC stacks. During Phase II, the MTI Team successfully refined the fabrication processes and achieved low-rate production of cells and interconnects (about 100 per month). Short stacks (3-10 cells) using co-fired cells and interconnects were assembled and tested to validate the MTI multi-layer SOFC design. The team successfully demonstrated co-fired repeat units, comprised of a cell and the interconnect layers. Development of co-fired cells and multi-layer interconnects based on the new stack design was completed; all component fabrication and stack testing efforts were redirected to the new design toward the end of Phase II. Finally, low-cost alternate materials for the interconnect body and conductors within the interconnect were identified. At the end of Phase II, the MTI Team successfully transitioned the multi-layer SOFC stack development effort to the Solid State Energy Conversion Alliance (SECA) program.

  5. PHOEBUS/UHTREX: a preliminary study of a low-cost facility for transient tests of LMFBR fuel

    International Nuclear Information System (INIS)

    Kirk, W.L.

    1976-08-01

    The results of a brief preliminary design study of a facility for transient nuclear tests of fast breeder reactor fuel are described. The study is based on the use of a reactor building originally built for the UHTREX reactor, and the use of some reactor hardware and reactor design and fabrication technology remaining from the Phoebus-2 reactor of the Rover nulcear rocket propulsion program. The facility is therefore currently identified as the PHOEBUS/UHTREX facility. This facility is believed capable of providing early information regarding fast reactor core accident energetics issues which will be very valuable to the overall LMFBR safety program. Facility performance in conjunction with a reference 127-fuel pin experiment is described. Low cost and early availability of the facility were emphasized in the selection of design features and parameters

  6. PHOEBUS/UHTREX: a preliminary study of a low-cost facility for transient tests of LMFBR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, W.L. (comp.)

    1976-08-01

    The results of a brief preliminary design study of a facility for transient nuclear tests of fast breeder reactor fuel are described. The study is based on the use of a reactor building originally built for the UHTREX reactor, and the use of some reactor hardware and reactor design and fabrication technology remaining from the Phoebus-2 reactor of the Rover nulcear rocket propulsion program. The facility is therefore currently identified as the PHOEBUS/UHTREX facility. This facility is believed capable of providing early information regarding fast reactor core accident energetics issues which will be very valuable to the overall LMFBR safety program. Facility performance in conjunction with a reference 127-fuel pin experiment is described. Low cost and early availability of the facility were emphasized in the selection of design features and parameters.

  7. Method of preliminary localization of the iris in biometric access control systems

    Science.gov (United States)

    Minacova, N.; Petrov, I.

    2015-10-01

    This paper presents a method of preliminary localization of the iris, based on the stable brightness features of the iris in images of the eye. In tests on images of eyes from publicly available databases method showed good accuracy and speed compared to existing methods preliminary localization.

  8. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Energy Technology Data Exchange (ETDEWEB)

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  9. Preliminary design and definition of field experiments for welded tuff rock mechanics program

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-06-01

    The preliminary design contains objectives, typical experiment layouts, definitions of equipment and instrumentation, test matrices, preliminary design predictive modeling results for five experiments, and a definition of the G-Tunnel Underground Facility (GTUF) at the Nevada Test Site where the experiments are to be located. Experiments described for investigations in welded tuff are the Small Diameter Heater, Unit Cell-Canister Scale, Heated Block, Rocha Slot, and Miniature Heater

  10. A preliminary investigation of the imaging performance of photostimulable phosphor computed radiography using a new design of mammographic quality control test object

    International Nuclear Information System (INIS)

    Cowen, A.R.; Brettle, D.S.; Coleman, N.J.; Parkin, G.J.S.

    1992-01-01

    Leeds Test Object TOR[MAM] has been designed to supplement the current FAXIL mammography test object TOR[MAX]. It contains a range of details that have a more natural radiographic appearance and has been designed as a test that more closely approximates the image quality achieved in clinical mammography. Physical aspects of the design and implementation of TOR[MAM] are presented. The TOR[MAM] has been used in a preliminary physical evaluation of the comparative image qualities produced by conventional (screen-film) and phostostimulable phosphor computed mammography and the results are discussed. TOR[MAX] results are also presented. The influence of digital image processing (enhancement) on the image quality of computed mammograms is also considered. The results presented indicate the sensitivity of TOR[MAM]. (author)

  11. Experimental study of sodium droplet burning in free fall. Evaluation of preliminary test results

    International Nuclear Information System (INIS)

    Miyahara, Shinya; Ara, Kuniaki

    1998-08-01

    To study a sodium leak and combustion behavior phenomenologically and to construct the mechanistic evaluation method, an experimental series of a sodium droplet burning in free fall is under way. In this study, the accuracy of measurement technique used in the preliminary test was assessed and the modified technique was proposed for the next test series. Analytical study of the test results was also conducted to deduce dominant parameters and important measurement items which would play an important role in the droplet combustion behavior. The results and conclusions are as follows: (1) Assessment of measurement accuracy and modified technique proposed for the next test series. a) Control accuracy of sodium supply system using β-alumina solid electrolyte was sufficient for generation of objective size of single droplet. However, it is necessary to calibrate the correlation between the quantity of electric charge for sodium supply system and that of supplied sodium. b) Measurement accuracy of falling velocity using high-speed video was ±0.33 m/s at an upper part and ±0.48 m/s at a lower part of the measurement. To reduce the error, a high-speed stroboscopic method is recommended to measure the falling velocity of droplet. (2) Results of analytical study and deduced dominant parameters and important measurement items. a) The falling behavior of a burning droplet was described solving the equation of free falling motion for a rigid sphere. In the case of higher falling height, it is necessary to study the burning effects on the falling behavior. b) The mass burned of a falling droplet was calculated using the combustion model according to 'D 2 ' law during the full burning phase. It is necessary to study the dominant chemical reaction in the burning flame because the mass burned depends on the composition of the reaction products. c) The mass burned was calculated using surface oxidation model for preignition phase together with above model. However, it is

  12. Preliminary studies on the behavioural effects of the methanol ...

    African Journals Online (AJOL)

    The behavioural tests employed were diazepam-induced sleep onset and duration, hole board assay for exploratory activity, mouse beam walk assay for motor coordination, and the staircase test for the detection of anxiolytic compounds. Preliminary phytochemical screening was also carried out on the extract. Results: The ...

  13. Hydrogen Gas Retention and Release from WTP Vessels: Summary of Preliminary Studies

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bontha, Jagannadha R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rassat, Scot D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boeringa, Gregory K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buchmiller, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chun, Jaehun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Karri, Naveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Huidong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tran, Diana N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release from Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design

  14. Preliminary development of an advanced modular pressure relief cushion: Testing and user evaluation.

    Science.gov (United States)

    Freeto, Tyler; Mitchell, Steven J; Bogie, Kath M

    2018-02-01

    Effective pressure relief cushions are identified as a core assistive technology need by the World Health Organization Global Cooperation on Assistive Technology. High quality affordable wheelchair cushions could provide effective pressure relief for many individuals with limited access to advanced assistive technology. Value driven engineering (VdE) principles were employed to develop a prototype modular cushion. Low cost dynamically responsive gel balls were arranged in a close packed array and seated in bilayer foam for containment and support. Two modular cushions, one with high compliance balls and one with moderate compliance balls were compared with High Profile and Low Profile Roho ® and Jay ® Medical 2 cushions. ISO 16480-2 biomechanical standardized tests were applied to assess cushion performance. A preliminary materials cost analysis was carried out. A prototype modular cushion was evaluated by 12 participants who reported satisfaction using a questionnaire based on the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) instrument. Overall the modular cushions performed better than, or on par with, the most widely prescribed commercially available cushions under ISO 16480-2 testing. Users rated the modular cushion highly for overall appearance, size and dimensions, comfort, safety, stability, ease of adjustment and general ease of use. Cost-analysis indicated that every modular cushion component a could be replaced several times and still maintain cost-efficacy over the complete cushion lifecycle. A VdE modular cushion has the potential provide effective pressure relief for many users at a low lifetime cost. Copyright © 2017. Published by Elsevier Ltd.

  15. Preliminary Mass Spectrometric Analysis of Uranium on Environmental Swipe Materials

    International Nuclear Information System (INIS)

    Cheong, Chang-Sik; Jeong, Youn-Joong; Ryu, Jong-Sik; Shin, Hyung-Seon; Cha, Hyun-Ju; Ahn, Gil-Hoon; Park, Il-Jin; Min, Gyung-Sik

    2006-01-01

    It is well-known that uranium and plutonium isotopic compositions of safeguards samples are very useful to investigate the history of nuclear activities. To strengthen the capabilities of environmental sampling analysis in the ROK through MOST/DOE collaboration, round robin test for uranium and plutonium was designed in 2003. As the first round robin test, a set of dried uranium-containing solutions (∼35ng and (∼300ng) was distributed to the participating laboratories in November of 2003, with results reported in April of 2004. The KBSI (Korea Basic Science Institute) and ORNL (Oak Ridge National Laboratory) are currently in the process of analyzing uranium on cotton swipes for the second round robin test. As a preliminary test for the second round, KBSI intends to analyze home-made swipe samples into which international uranium standards are added. Here we describe technical steps of sample preparation and mass spectrometry at KBSI, and report some results of the preliminary test

  16. Phytochemical Screening and Preliminary Evaluation of Analgesic ...

    African Journals Online (AJOL)

    In this study, the methanolic root extract of Cissus polyantha was subjected to preliminary phytochemical screening, analgesic and anti-inflammatory studies. Phytochemical studies was carried out using standard phytochemical protocol while the analgesic studies was carried out using acetic acid-induced writhing tests in ...

  17. Preliminary safety analysis report for the TFTR

    International Nuclear Information System (INIS)

    Lind, K.E.; Levine, J.D.; Howe, H.J.

    A Preliminary Safety Analysis Report has been prepared for the Tokamak Fusion Test Reactor. No accident scenarios have been identified which would result in exposures to on-site personnel or the general public in excess of the guidelines defined for the project by DOE

  18. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model

    Energy Technology Data Exchange (ETDEWEB)

    Koa, A.S.; Chang, N.B. [University of Central Florida, Orlando, FL (United States). Dept. for Civil & Environmental Engineering

    2008-07-15

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO{sub 2}) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To case the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  19. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    Science.gov (United States)

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  20. Progress in the Design and Testing of In-Vessel Magnetic Pickup Coils for ITER

    Czech Academy of Sciences Publication Activity Database

    Peruzzo, S.; Brombin, M.; Palumbo, M.F.; Gonzalez, W.; Marconato, N.; Rizzolo, A.; Arshad, S.; Ma, Y.; Vayakis, G.; Suarez, A.; Ďuran, Ivan; Viererbl, L.; Lahodová, Z.

    2016-01-01

    Roč. 44, č. 9 (2016), s. 1704-1710 ISSN 0093-3813. [Symposium on Fusion Engineering (SOFE) colocated with the 20th Pulsed Power Conference/26./. Austin, 31.05.2015-04.06.2015] Institutional support: RVO:61389021 Keywords : Low-temperature cofired ceramic (LTCC) * magnetic diagnostics * mineral insulated cable (MIC) * ITER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.052, year: 2016

  1. Preliminary Report: DESiGN and Test Result of KSR-3 Rocket Magnetometers

    Directory of Open Access Journals (Sweden)

    Hyo-Min Kim

    2000-12-01

    Full Text Available The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for a scientific purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field. The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  2. Augmented Reality Cubes for Cognitive Gaming: Preliminary Usability and Game Experience Testing

    Directory of Open Access Journals (Sweden)

    Costas Boletsis

    2016-03-01

    Full Text Available Early detection is important in dementia care; however, cognitive impairment is still under-recognised and under-diagnosed. Cognitive screening and training are two important preventative treatments, which can lead to early detection of cognitive decline. In this work, the “Cognitive Augmented Reality Cubes” (CogARC system is presented, i.e. a serious game for cognitive training and screening, utilising an interaction technique based on Augmented Reality and the manipulation of tangible, physical objects (cubes. The game is a collection of cognitive mini-games of preventative nature and is, primarily, targeting elderly players (≥60 years old. A preliminary testing was conducted focusing on the game experience that CogARC offers (utilising the In-Game Experience Questionnaire, the usability of the system (using the System Usability Scale, and the specific user observations and remarks, as documented by open, semi-structured interviews.  Overall, CogARC demonstrated satisfying positive responses, however, the negative reactions indicated that there are specific problems with aspects of the interaction technique and a number of mini-games. The open interview shed more light on the specific issues of each mini-game and further interpretation of user interactions. The current study managed to provide interesting insights into the game design elements, integration of Augmented Reality, tangible interaction of the system, and on how elderly players perceive and use those interaction components. 

  3. Cyclonic valve test: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)

    2012-07-01

    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  4. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.

    1998-05-01

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.

  5. Danish Anaesthesia Allergy Centre - preliminary results

    DEFF Research Database (Denmark)

    Garvey, L H; Roed-Petersen, J; Menné, T

    2001-01-01

    BACKGROUND: Anaphylactoid reactions in anaesthesia are rare and should ideally be investigated in specialist centres. At Gentofte University Hospital, we established such a centre in 1998 as a joint venture between the Departments of Anaesthesiology and Dermatology. We present the methodology...... for chlorhexidine. Only one patient has tested positive to a neuromuscular blocking drug (NMBD) so far. DISCUSSION: Our preliminary results appear to differ in two ways from results usually found in this field. Firstly, only one patient has tested positive for a NMBD and secondly, we have had four patients...

  6. Danish Anaesthesia Allergy Centre - preliminary results

    DEFF Research Database (Denmark)

    Garvey, L H; Roed-Petersen, J; Menné, T

    2001-01-01

    BACKGROUND: Anaphylactoid reactions in anaesthesia are rare and should ideally be investigated in specialist centres. At Gentofte University Hospital, we established such a centre in 1998 as a joint venture between the Departments of Anaesthesiology and Dermatology. We present the methodology...... of in vitro testing and skin testing. Blood samples for tryptase analysis are taken at the time of reaction and a control sample is taken together with samples for specific IgE analysis 2-4 weeks after the reaction. Subsequent skin testing comprises both prick tests and intradermal tests in most cases...... for chlorhexidine. Only one patient has tested positive to a neuromuscular blocking drug (NMBD) so far. DISCUSSION: Our preliminary results appear to differ in two ways from results usually found in this field. Firstly, only one patient has tested positive for a NMBD and secondly, we have had four patients...

  7. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.

    Science.gov (United States)

    O'Neill, Ciaran T; Phipps, Nathan S; Cappello, Leonardo; Paganoni, Sabrina; Walsh, Conor J

    2017-07-01

    In this paper, we present a soft wearable robot for the shoulder which has the potential to assist individuals suffering from a range of neuromuscular conditions affecting the shoulder to perform activities of daily living. This wearable robot combines two types of soft textile pneumatic actuators which were custom developed for this particular application to support the upper arm through shoulder abduction and horizontal flexion/extension. The advantage of a textile-based approach is that the robot can be lightweight, low-profile, comfortable and non-restrictive to the wearer, and easy to don like an item of clothing. The actuator's ability to fold flat when not in use allows the robot to be almost invisible under clothing, potentially allowing the user to avoid any stigma associated with using assistive devices in public. To abduct the arm, a textilebased pneumatic actuator was developed to fit within the axilla to push the arm upwards, while a pair of smaller actuators pivot the abduction actuator to allow for horizontal extension and flexion. The individual textile actuators were experimentally evaluated before being integrated into a wearable garment. Human subject testing was performed to evaluate the ability of the robot to assist the arm by monitoring changes in biological muscle activity when comparing the robot powered on and off. Preliminary results show large reductions in muscular effort in targeted muscles, demonstrating the feasibility and promise of such a soft wearable robot for the shoulder.

  8. Energy Efficient Engine: Control system preliminary definition report

    Science.gov (United States)

    Howe, David C.

    1986-01-01

    The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.

  9. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  10. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  11. Development of e-Juba, a preliminary proof of concept unmanned ...

    African Journals Online (AJOL)

    Development of e-Juba, a preliminary proof of concept unmanned aerial vehicle designed to facilitate the transportation of microbiological test samples from remote rural clinics to National Health Laboratory Service laboratories.

  12. Preliminary screening of plant essential oils against larvae of Culex ...

    African Journals Online (AJOL)

    Preliminary screenings of 22 plant essential oils were tested for mortality of the mosquito larvae Culex quinquefasciatus under laboratory conditions. Percent (%) mortality of the mosquito larvae were obtained for each essential oil. At different exposure periods, viz. 1, 3, 6, 12 and 24 h among the 22 plant oils tested, eight ...

  13. Preliminary identification of problem soils for infrastructure projects

    CSIR Research Space (South Africa)

    Paige-Green, P

    2008-11-01

    Full Text Available soils are those within the top 1.0m or 1.5m of the soil profile, a mechanism for evaluating these materials without preliminary filed work and testing would be invaluable. Since 1971, the Department of Agriculture has systematically mapped the soils...

  14. Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere)

    International Nuclear Information System (INIS)

    Pawlak-Kruczek, Halina; Ostrycharczyk, Michał; Czerep, Michał; Baranowski, Marcin; Zgóra, Jacek

    2015-01-01

    The benefits of oxygen enrichment have been demonstrated in a variety of industrial combustion applications, but to date no implementation of oxygen enrichment in boilers has been reported, primarily due to their already high thermal efficiencies and a very large scale of such systems, which require significant amounts of oxygen. But recently, oxygen combustion in boilers has become one of the CCS technologies which can be an effective tool for reducing greenhouse gases emissions, and oxygen enriched combustion is suitable for low-calorific fuels, including biomass. This paper analyses the use of oxygen enrichment in a furnace for co-firing of different kinds of biomass with hard coal in terms of emission and burnout impact (LOI). As a part of this research, the effect of injection oxygen mode and total oxygen concentration on the flue gas emission (SO_2, NO_x) and burnout from co-firing of straw and wooden biomass in different proportions (20% and 40%) with hard coal were studied. The co-firing tests were carried out in an isothermal flow reactor. One of the benefits from the OEA (oxygen enriched atmosphere) technology is more effective separation of CO_2 owing to the higher CO_2 concentration in the flue gas. The additional advantage of the OEA combustion technology in comparison with oxy-fuel combustion is that the OEA process needs lower O_2 purities and therefore it is cost-effective. Experimental tests on co-firing of 20% straw-hard coal blend were conducted in oxygen enriched (up to 25 and 30%) atmospheres with three variants of O_2 injection modes. NO_x, SO_2 emissions and burnout for the various atmospheres in the combustion chamber were studied. Moreover, co-firing tests were performed with 40% share of wooden biomass to examine the effect of the biomass share and a type on emission of NO_x and SO_2 in OEA. The two O_2 injection modes were investigated. In each case, the emission of SO_2 increases alongside an increase of oxygen concentration in

  15. Design of a Tablet Computer App for Facilitation of a Molecular Blood Culture Test in Clinical Microbiology and Preliminary Usability Evaluation.

    Science.gov (United States)

    Samson, Lasse L; Pape-Haugaard, Louise; Meltzer, Michelle C; Fuchs, Martin; Schønheyder, Henrik C; Hejlesen, Ole

    2016-03-18

    User mobility is an important aspect of the development of clinical information systems for health care professionals. Mobile phones and tablet computers have obtained widespread use by health care professionals, offering an opportunity for supporting the access to patient information through specialized applications (apps) while supporting the mobility of the users. The use of apps for mobile phones and tablet computers may support workflow of complex tasks, for example, molecular-based diagnostic tests in clinical microbiology. Multiplex Blood Culture Test (MuxBCT) is a molecular-based diagnostic test used for rapid identification of pathogens in positive blood cultures. To facilitate the workflow of the MuxBCT, a specialized tablet computer app was developed as an accessory to the diagnostic test. The app aims to reduce the complexity of the test by step-by-step guidance of microscopy and to assist users in reaching an exact bacterial or fungal diagnosis based on blood specimen observations and controls. Additionally, the app allows for entry of test results, and communication thereof to the laboratory information system (LIS). The objective of the study was to describe the design considerations of the MuxBCT app and the results of a preliminary usability evaluation. The MuxBCT tablet app was developed and set up for use in a clinical microbiology laboratory. A near-live simulation study was conducted in the clinical microbiology laboratory to evaluate the usability of the MuxBCT app. The study was designed to achieve a high degree of realism as participants carried out a scenario representing the context of use for the MuxBCT app. As the MuxBCT was under development, the scenario involved the use of molecular blood culture tests similar to the MuxBCT for identification of microorganisms from positive blood culture samples. The study participants were observed, and their interactions with the app were recorded. After the study, the participants were debriefed to

  16. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    International Nuclear Information System (INIS)

    Ahn, Mu-Young; Cho, Seungyon; Jin, Hyung Gon; Lee, Dong Won; Park, Yi-Hyun; Lee, Youngmin

    2015-01-01

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  17. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  18. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong, E-mail: amosrxd@163.com; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun [Key Laboratory of Pulsed Power, Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-108, Mianyang, Sichuan 621999 (China); Zhou, Xiu-Wen; Yang, Yi [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-987, Mianyang, Sichuan 621999 (China)

    2015-07-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%–90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132–300 tungsten wires with 5–10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (∼50 TW) and total radiated energy (∼500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  19. Preliminary Studies on the Use of Natural Fibers in Sustainable Concrete

    International Nuclear Information System (INIS)

    Awad, E.; Mabsout, M.; Hamad, B.; Khatib, H.

    2011-01-01

    The paper reports on preliminary tests performed to produce a sustainable 'green' concrete material using natural fibers such as industrial hemp, palm, and banana leaves fibers. Such material would increse the service life and reduce the life cost of the structure, and would have a positive effect on social life and social economy. The demand for the agricultural fibers for concrete production would be a major incentive to Lebanese farmers to benefit from the social impact on the habitat level of living. In the preliminary program reported in this paper, cubes and standard flexural beams were tested to evaluate the structural and physical performance of concrete mixes prepared with different volumetric ratios of added fibers and diffeent proportions of aggregates. Test results indicated that the case of natural fibers resulted in reducing the coarse aggregate quantity without affecting the flexural performance of concrete. However, no clear trend was determined in the cubes compressive strength test results.(author)

  20. A Preliminary Study on Cathodic Prevention in Reinforced Mortar

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; Mol, J.M.C.; De Wit, J.H.W.

    2010-01-01

    This work presents the preliminary tests on the performance of cathodic prevention (CPre) in reinforced mortar, subjected to aggressive (10% NaCl environment). Cathodic prevention is an electrochemical technique for minimizing, actually "preventing" any eventual corrosion of the steel bars in

  1. Preliminary characterization of abandoned septic tank systems. Volume 1

    International Nuclear Information System (INIS)

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site

  2. Environmental and economic gains of the conversion of the Zvolen (Slovakia) district CHP plant from low quality brown coal combustion to co-firing of biomass and low-sulphur brown coal

    International Nuclear Information System (INIS)

    Ilavsky, Jan; Jankovsky, Julius

    2006-01-01

    Zvolen CHP plant was originally commissioned in 1954. Overall installed output is 311 MW in heat production and 44,3 MW in power. Annual supply to the consumers was 788,910 GJ of heat and 102,459 GJ of electricity in 2004. Some 60 % of the heat production was used for heat and hot water supply to more than 9,000 houses and apartments and 40 % to industrial consumers. It uses pulverized lignite with up to 1 % of sulphur content as fuel. The content of sulphur in emitted flue gas is as high as 3,500-4,000 mg SO 2 /m 3 . It causes serious environmental problems in the region. New national limits for greenhouse gases emissions are 1.700 mg SO 2 /m 3 and 600 mg NO x /m 3 with effect from 1 January 2007. CHP is not able to achieve them without substantial improvement of technology with very high investment costs. Several alternatives of technical changes have been analysed in a study. Shift from lignite to low-sulphur content brown coal with co-firing of biomass has been identified economically most feasible and environmentally acceptable solution. The paper presents results of the study analysing the whole chain from biomass resources in the region up to the technical solutions for boilers reconstruction. The first part of the study was focused at identification of biomass resources for energy use from forestry, wood processing industry and agriculture. Ecological, economic and operational factors limiting utilization of potential biomass resources were identified and factored into calculations. Two boilers, each of them with the output of 108 MW t , will be reconstructed for co-firing of pulverized low sulphur content brown coal and biomass. Biomass will share up to 30% of the combusted fuel. After the reconstruction one boiler will remain with the same output of 108 MW t and the other will be with the output of 65 MW t . Power will be produced by the back pressure 25 MW e turbine. Chips will be stored in 9.000 m 3 open depot and in 3.000 m 3 silo. Chips will be fed

  3. Biocontamination Control for Spacesuit Garments - A Preliminary Study

    Science.gov (United States)

    Rhodes, Richard A.; Orndoff, Evelyne; Korona, F. Adam; Poritz, Darwin; Smith, Jelanie; Wong, Wing

    2011-01-01

    This paper outlines a preliminary study that was conducted to review, test, and improve on current space suit biocontamination control. Biocontamination from crew members can cause space suit damage and objectionable odors and lead to crew member health hazards. An understanding of the level of biocontamination is necessary to mitigate its effects. A series of tests were conducted with the intent of evaluating current suit materials, ground and on-orbit disinfectants, and potential commercial off-the-shelf antimicrobial materials. Included in this paper is a discussion of the test methodology, results, and analysis method.

  4. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    Science.gov (United States)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  5. Collateral Information for Equating in Small Samples: A Preliminary Investigation

    Science.gov (United States)

    Kim, Sooyeon; Livingston, Samuel A.; Lewis, Charles

    2011-01-01

    This article describes a preliminary investigation of an empirical Bayes (EB) procedure for using collateral information to improve equating of scores on test forms taken by small numbers of examinees. Resampling studies were done on two different forms of the same test. In each study, EB and non-EB versions of two equating methods--chained linear…

  6. Role of grain refinement in hardening of structural steels at preliminary thermomechanical treatment

    International Nuclear Information System (INIS)

    Bukhvalov, A.B.; Grigor'eva, E.V.; Davydova, L.S.; Degtyarev, M.V.; Levit, V.I.; Smirnova, N.A.; Smirnov, L.V.

    1981-01-01

    The hardening mechanism during preliminary thermomechanical treatment with deformation by cold rolling or hydroextrusion is studied on structural 37KhN3M1 and 38KhN3MFA steels. Specimens have been tested on static tension, impact strength and fracture toughness. It is shown that hydroextrusion application instead of rolling does not change the hardening effect of preliminary thermomechanical treatment (PTMT). It is established that the increase of preliminary deformation degree and the use of accelerated short term hardening heating provides a bett er grain refinement and the increase of PTMT hardening effect [ru

  7. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    International Nuclear Information System (INIS)

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea; Johnsson, Filip

    2010-01-01

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO 2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  8. Preliminary Sensorimotor and Cardiovascular Results from the Joint Russian/U.S. Pilot Field Test in Preparation for the Full Field Test

    Science.gov (United States)

    Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.; hide

    2014-01-01

    Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short-duration (Space Shuttle) and long-duration (Mir and International Space Station [ISS]) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long-duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (testing at the landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long-duration space-flight crews beginning as soon after landing as possible (test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired between one and three more other times within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing included: (1) a sit-to-stand test, (2) recovery from a fall

  9. SP-100 Test Site

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.

    1988-01-01

    Preparatory activities are well under way at Hanford to convert the 309 Containment Building and its associated service wing to a 2.5 MWt nuclear test facility for the SP-100 Ground Engineering System (GES) test. Preliminary design is complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system to enclose the high temperature reactor, a test assembly cell and handling system, control and data processing systems, and safety and auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 75% complete. The facility has been cleared of obstructing equipment from its earlier reactor test. Current activities are focusing on definitive design and preparation of the Preliminary Safety Analysis Report (PSAR) aimed at procurement and construction approvals and schedules to achieve reactor criticality by January 1992. 6 refs

  10. Preliminary nuclear design for test MOX Fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Jeong, Hyung Guk; Noh, Jae Man; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Sohn, Dong Seong

    1997-10-01

    As a part of activity for future fuel development project, test MOX fuel rods are going to be loaded and irradiated in Halden reactor core as a KAERI`s joint international program with Paul Scherrer Institute (PSI). PSI will fabricate test MOX rods with attrition mill device which was developed by KAERI. The test fuel assembly rig contains three MOX rods and three inert matrix rods. One of three MOX rods will be fabricated by BNFL, the other two MOX fuel rods will be manufacturing jointly by KAERI and PSI. Three inert matrix fuel rods will be fabricated with Zr-Y-Er-Pu oxide. Neutronic evaluation was preliminarily performed for test fuel assembly suggested by PSI. The power distribution of test fuel rod in test fuel assembly was analyzed for various fuel rods position in assembly and the depletion characteristic curve for test fuel was also determined. The fuel rods position in test fuel assembly does not effect the rod power distribution, and the proposal for test fuel rods suggested by PSI is proved to be feasible. (author). 2 refs., 13 tabs., 16 figs.

  11. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....

  12. Soda-Anthraquinone Durian (Durio Zibethinus Murr.) Rind Linerboard and Corrugated Medium Paper: A Preliminary Test

    Science.gov (United States)

    Rizal Masrol, Shaiful; Irwan Ibrahim, Mohd Halim; Adnan, Sharmiza; Mubarak Sa'adon, Amir; Ika Sukarno, Khairil; Fadrol Hisham Yusoff, Mohd

    2017-08-01

    A preliminary test was conducted to investigate the characteristics of linerboard and corrugated medium paper made from durian rind waste. Naturally dried durian rinds were pulped according to Soda-Anthraquinone (Soda-AQ) pulping process with a condition of 20% active alkali, 0.1% AQ, 7:1 liquor to material ratio, 120 minutes cooking time and 170°C cooking temperature. The linerboard and corrugated medium paper with a basis weight of 120 gsm were prepared and evaluated according to Malaysian International Organization for Standardization (MS ISO) and Technical Association of the Pulp and Paper Industry (TAPPI). The results indicate that the characteristics of durian rind linerboard are comparable with other wood or non-wood based paper and current commercial paper. However, low CMT value for corrugated medium and water absorptiveness quality for linerboard could be improved in future. Based on the bulk density (0.672 g/cm3), burst index (3.12 kPa.m2/g) and RCT (2.00 N.m2/g), the durian rind has shown a good potential and suitable as an alternative raw material source for linerboard industry.

  13. Effect of preliminary plastic deformation on low temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Gur'ev, A.V.; Alkhimenkov, T.B.

    1979-01-01

    Considered is the effect of preliminary plastic deformation on the following low-temperature strength (at -196 deg C) of structural carbon steels at the room temperature. The study of regularities of microheterogenetic deformations by alloy structure elements at room and low temperatures shows that the transition on low -temperature loading is built on the base of inheritance of the general mechanism of plastic deformation, which took place at preliminary deformation; in this effect the ''memory'' of metal to the history of loading is shown. It is established that physical strengthening (cold hardening), received by the metal during preliminary loading at the room temperature is put over the strengthening connected only with decrease of test temperature

  14. Recommended well drilling and testing program

    International Nuclear Information System (INIS)

    Long, J.; Wilson, C.

    1978-07-01

    A well drilling and testing program is recommended by Lawrence Berkeley Laboratory to identify the hydrology of deep basalts in the Pasco Basin. The ultimate objective of this program is to assist in determining the feasibility of locating a nuclear waste repository on the Hanford Reservation. The recommended program has been staged for maximum effectiveness. In the first stage, six wells have been identified for drilling and testing which, when coupled with existing wells, will provide sufficient data for a preliminary overview of basin hydrology and a preliminary determination of the hydrologic suitability of the deep basalt for a repository site. The rate at which the first stage wells are drilled and tested will depend upon the date at which a preliminary determination of site suitability is required. It was assumed that a preliminary determination of suitability would be required in 1980, in which case all six first stage wells would be drilled in FY 1979. If the results of the first stage analysis are favorable for repository siting, tentative repository sites can be identified and a second stage hydrology program can be implemented to provide the necessary details of the flow system. To accomplish this stage, a number of deep wells would be required at locations both inside and outside the basin, with specific sites to be identified as the work progresses to obtain maximum utility of existing data. A program is recommended for testing in each new well and for completion of testing in each existing well. Recommended tests include borehole geophysics, pressure and permeability testing, geochemical sampling, tracer testing, hydrofracturing and borehole fracture logging. The entire data collection program is oriented toward providing the information required to establish and verify an accurate numerical model of the Pasco Basin

  15. Visual perception skills testing: preliminary results

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2009-02-01

    Full Text Available Good visual perception skills are important in the effective manipulation of Tangible User Interfaces. This paper reports on the application of a test set researchers have developed specifically to quantify the visual perception skills of children...

  16. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  17. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS; SEMIANNUAL

    International Nuclear Information System (INIS)

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-01-01

    The Energy and Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems-grate clinkering and heat exchange surface fouling-associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass-specifically wood and agricultural residuals-in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  18. Scintigraphic test of gastric emptying and motility: preliminary results in patients with chronic gastritis

    International Nuclear Information System (INIS)

    Hausmann, T.; Mueller-Schauenburg, W.; Goeke, M.; Luebeck, M.; Gratz, K.F.; Meier, P.; Manns, M.; Hundeshagen, H.

    1995-01-01

    To record gastric peristalsis using a conventional scintigraphic gastric emptying test the frame rate was increased to 1 frame per 3 s at 10, 30, and 50 min postprandially. The gastric contraction frequency was obtained from the first harmonic of a Fourier transform of a gastric region of interest (ROI) curve. The propagation of gastric contractions was better revealed from computed functional images of the phase and amplitude distribution as compared with the multiple scintigraphic images. The maximal count-rate changes per pixel were calculated as an estimate of the most prominent regional contractile activity of the gastric wall. Among 12 patients with chronic gastritis the group with more severe dyspeptic complaints (n = 6) had significantly higher count-rate changes per pixel when compared with the group with minor complaints (20.0, 21.1 and 14.2 vs 12.9, 12.0, and 10.4 counts/pixel X s at 10, 30, and 50 min. respectively; p < 0.05). The mean half-times of gastric emptying (61, SD 11 vs 54, SD 13 min) and the mean gastric contraction frequencies (2.99, SD 0.19; 3.09, SD 0.33; 3.07, SD 0.10 vs 3.15, SD 0.15; 3.17, SD 0.13; 3.23, SD 0.20 cycles/min at 10, 30, and 50 min, respectively) did not show significant differences between both groups. Our preliminary results agree with the hypothesis of the occurrence of more powerful, nonexpulsive gastric-wall contractions in patients with more severe dyspeptic complaints. Hence, additional quantification of gastric motility allowed a more detailed evaluation of gastric-motor-activity disorders that were for so long not accessible to conventional gastric-emptying tests. (orig.)

  19. Scintigraphic test of gastric emptying and motility: preliminary results in patients with chronic gastritis

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, T. [Abt. Nuklearmedizin und Spezielle Biophysik, Medizinische Hochschule Hannover (Germany); Mueller-Schauenburg, W. [Abt. Nuklearmedizin, Univ. Tuebingen (Germany); Goeke, M. [Abt. Gastroenterologie und Hepatologie, Medizinische Hochschule Hannover (Germany); Luebeck, M. [Abt. Nuklearmedizin, Univ.-Krankenhaus Eppendorf, Hamburg (Germany); Gratz, K.F. [Abt. Nuklearmedizin und Spezielle Biophysik, Medizinische Hochschule Hannover (Germany); Meier, P. [Abt. Gastroenterologie und Hepatologie, Medizinische Hochschule Hannover (Germany); Manns, M. [Abt. Gastroenterologie und Hepatologie, Medizinische Hochschule Hannover (Germany); Hundeshagen, H. [Abt. Nuklearmedizin und Spezielle Biophysik, Medizinische Hochschule Hannover (Germany)

    1995-11-01

    To record gastric peristalsis using a conventional scintigraphic gastric emptying test the frame rate was increased to 1 frame per 3 s at 10, 30, and 50 min postprandially. The gastric contraction frequency was obtained from the first harmonic of a Fourier transform of a gastric region of interest (ROI) curve. The propagation of gastric contractions was better revealed from computed functional images of the phase and amplitude distribution as compared with the multiple scintigraphic images. The maximal count-rate changes per pixel were calculated as an estimate of the most prominent regional contractile activity of the gastric wall. Among 12 patients with chronic gastritis the group with more severe dyspeptic complaints (n = 6) had significantly higher count-rate changes per pixel when compared with the group with minor complaints (20.0, 21.1 and 14.2 vs 12.9, 12.0, and 10.4 counts/pixel X s at 10, 30, and 50 min. respectively; p < 0.05). The mean half-times of gastric emptying (61, SD 11 vs 54, SD 13 min) and the mean gastric contraction frequencies (2.99, SD 0.19; 3.09, SD 0.33; 3.07, SD 0.10 vs 3.15, SD 0.15; 3.17, SD 0.13; 3.23, SD 0.20 cycles/min at 10, 30, and 50 min, respectively) did not show significant differences between both groups. Our preliminary results agree with the hypothesis of the occurrence of more powerful, nonexpulsive gastric-wall contractions in patients with more severe dyspeptic complaints. Hence, additional quantification of gastric motility allowed a more detailed evaluation of gastric-motor-activity disorders that were for so long not accessible to conventional gastric-emptying tests. (orig.)

  20. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    Science.gov (United States)

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  1. Preliminary Options Assessment of Versatile Irradiation Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The objective of this report is to summarize the work undertaken at INL from April 2016 to January 2017 and aimed at analyzing some options for designing and building a versatile test reactor; the scope of work was agreed upon with DOE-NE. Section 2 presents some results related to KNK II and PRISM Mod A. Section 3 presents some alternatives to the VCTR presented in [ ] as well as a neutronic parametric study to assess the minimum power requirement needed for a 235U metal fueled fast test reactor capable to generate a fast (>100 keV) flux of 4.0 x 1015 n /cm2-s at the test location. Section 4 presents some results regarding a fundamental characteristic of test reactors, namely displacement per atom (dpa) in test samples. Section 5 presents the INL assessment of the ANL fast test reactor design FASTER. Section 6 presents a summary.

  2. Preliminary tension effect on low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, A.N.

    1984-01-01

    Comparative bending tests of specimens deformed by tension at 65, 18 and 30% in hydrogen and vacuum were accomplished to reveal the effect of preliminary tension on low-cycle fatigue strength of 40Kh13 martensitic steel. It was found that small amounts of preliminary strains induced a considerable decrease in low-cycle durability in vacuum and hydrogen which was connected with developing defects arising at the early stages of plastic deformation. A rather high degree of preliminary tension promoted steel homogenization, hydrogen embrittlement decrease and service behaviour improvement

  3. Cocombustion of animal meal

    International Nuclear Information System (INIS)

    Roggen, M.

    2001-01-01

    The electricity production companies are prepared to co-fire animal meal in their coal-fired power stations. Tests conducted at the Maasvlakte power station, Netherlands, demonstrate that adding animal meal to the coal has no negative influence on human beings, the environment, the plant or the fly ash quality

  4. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Boenig, H.J.; Bogdan, F.; Morris, G.C.; Ferner, J.A.; Schneider-Muntau, H.J.; Rumrill, R.H.; Rumrill, R.S.

    1993-01-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 x 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented

  5. Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield. [for supersonic wind tunnels (noise reduction in wind tunnel nozzles)

    Science.gov (United States)

    Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.

    1975-01-01

    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.

  6. Warm pre-stressing, preliminary experiments

    International Nuclear Information System (INIS)

    Hedner, G.

    1984-09-01

    The beneficial effect of warm pre-stressing, WPS, on apparent fracture thoughness at low temperature is well established. Tests are usually performed with constant load during the cooling part of the load cycle. In practice load variations may occur during this part. The present paper reports a preliminary study of the influence of superimposed fatigue loads. It is found that if crack propagation occurs during cooling+fatigue loading, then the maximum load during the fatigue load cycle is the preload to be used for WPS consideration. A few tests were preformed to study the effect of preload reversal. Tensile preload was followed by a compressive load and after unloading the specimens were cooled and fractured. It was found that for the high preload level used in the tests, the beneficial effect of the tensile preload could be totally annihilated by the compressive preload. (author)

  7. Preliminary tests of holography in BEBC

    International Nuclear Information System (INIS)

    Pouyat, F.

    1982-01-01

    A collaboration has been set-up between the Institut de Recherche in St. Louis (ISL), the Rutherford Appleton Laboratory (RAL), and the BEBC Group at CERN to study possibilities for application of holographic techniques in BEBC. Laboratory tests and a first trial in BEBC have shown that holograms can be recorded with a two-beam set-up adapted to the optics system of the chamber. The object beam passing through the fish-eye windows illuminates the chamber; after reflection from the Scotchlite panel at the bottom of BEBC it falls through a large-aperture lens onto the film plane. The reference beam is projected directly onto the holographic film plane without passing through the chamber liquid. First results are presented on the influence of the BEBC magnetic field, vibrations of the BEBC expansion system, and on the limitations on resolution to be expected. An outlook is given of future plans for trying to feed a test program on holography into the physics program of the chamber. (orig.)

  8. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Kiju Lee

    2018-05-01

    Full Text Available Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach.Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept were also administered.Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously.

  9. Preliminary Monthly Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary Local Climatological Data, recorded since 1970 on Weather Burean Form 1030 and then National Weather Service Form F-6. The preliminary climate data pages...

  10. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    International Nuclear Information System (INIS)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd 3 (4,580 m 3 ) of glass gems prior to disposal. This report documents Sandia National Laboratories' preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment

  11. Preliminary Results from Second Phase Sea Testing of the Wave Dragon Prototype Wave Energy Converter

    DEFF Research Database (Denmark)

    Soerensen, Hans Chr.; Tedd, James; Friis-Madsen, Erik

    2006-01-01

    In March 2006 the prototype Wave Dragon has been redeployed to a more energetic site in Nissum Bredning an inland sea in Western Denmark. This has followed a period of renovation of many aspects of the device which have resulted in 20% higher energy output. This paper describes the preliminary...

  12. Thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock

    International Nuclear Information System (INIS)

    Madanayake, Buddhike Neminda; Gan, Suyin; Eastwick, Carol; Ng, Hoon Kiat

    2016-01-01

    Jatropha curcas seed cake is a viable feedstock for co-firing with coal as it has the advantages of being renewable, carbon-neutral and sourced from a versatile plant. Torrefaction, a mild pyrolysis treatment by heating in a N_2 atmosphere, was investigated as a technique to improve the thermochemical properties of the biomass, primarily the HHV (higher heating value). The temperature and holding time were varied in the ranges of 200–300 °C and 0–60 min, respectively, to form a 5-level full-factorial experimental matrix. An optimum envelope of torrefaction parameters was identified in the range of 280 °C to >45 min at 220–250 °C under a heating rate of 10 °C/min. This results in an enhancement of the HHV from 24 MJ/kg to more than 27 MJ/kg, which is within the range of coal, while maintaining an energy yield higher than 90%. The relationships between the HHV and the proximate fixed carbon content as well as the elemental CHO content were also investigated. Through "1"3C NMR (nuclear magnetic resonance) spectroscopy, hemicellulose was determined as the most volatile component, undergoing decomposition before 250 °C while cellulose only degraded fully in the 250–300 °C range and lignin decomposition spanned from 200 °C to beyond 300 °C. - Highlights: • The optimum parameters ranged from 280 °C to >45 min at 220–250 °C. • In this range, the higher heating value was enhanced by 20% to 27 MJ/kg. • A positive correlation exists between the HHV and the fixed carbon content. • H/C and O/C ratios of the biomass shifted towards those of coal. • Degradation of hemicellulose, cellulose and lignin components was investigated.

  13. The X-Ray Pebble Recirculation Experiment (X-PREX): Facility Description, Preliminary Discrete Element Method Simulation Validation Studies, and Future Test Program

    International Nuclear Information System (INIS)

    Laufer, Michael R.; Bickel, Jeffrey E.; Buster, Grant C.; Krumwiede, David L.; Peterson, Per F.

    2014-01-01

    This paper presents a facility description, preliminary results, and future test program of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Preliminary experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. Finally, this paper discusses additional studies in progress relevant to the design and analysis of pebble bed reactor cores including pebble recirculation in cylindrical core geometries and evaluation of forces on shut down blades inserted directly into a packed pebble bed. (author)

  14. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  15. Preliminary results of the BTF-104 experiment: an in-reactor test of fuel behaviour and fission-product release and transport under LOCA/LOECC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, L W; Elder, P H; Devaal, J W; Irish, J D; Yamazaki, A R [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The BTF-104 experiment is one of a series of in-reactor tests being performed to measure fuel behaviour and fission-product release from nuclear fuel subjected to accident conditions. The primary objective of the BTF-104 experiment was to measure fission-product releases from a CANDU-sized fuel element under combined Loss-of-Coolant Accident (LOCA) and Loss-of-Emergency-Core-Cooling (LOECC) conditions at an average fuel temperature of about 1550 deg C. The preliminary results of the BTF-104 experiment are presented in this paper. (author). 6 refs., 12 figs.

  16. Spent fuel cladding containment credit test

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-01-01

    As an initial step in addressing the effectiveness of breached cladding as a barrier to radionuclide release from the repository during the post-containment period, preliminary scoping tests have been initiated which compare radionuclide releases from spent fuel specimens with artificially induced cladding defects of various severities. The artificially induced defects are all more severe than the typical in-reactor type breaches which are expected to be the principal type of breach entering the repository for terminal storage. These preliminary scoping tests being conducted by Westinghouse Hanford Company for the Lawrence Livermore National Laboratory Waste Package Development Program in support of the Tuff repository project at the Nevada Test Site are described. Also included in this presentation are selected initial results from these tests. 22 figures

  17. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1984-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II. Since the actively cooled limiter blade is the component in direct contact with the plasma edge, and thus subject to the severe plasma environment, most preliminary design efforts have concentrated on analysis of the blade. The screening process which led to the recommended preliminary design consisting of a dispersion strenghthened copper or OFHC copper cover plate over an austenitic stainless steel base plate is discussed. A 1 to 3 mm thick low atomic number coating consisting of a graded plasma-sprayed Silicon Carbide-Aluminium composite is recommended subject to further experiment and evaluation. Thermal-hydraulic and stress analyses of the limiter blade are also discussed. (orig.)

  18. Preliminary Multi-Variable Parametric Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.

  19. Preliminary test of cigarette nicotine discrimination threshold in non-dependent versus dependent smokers.

    Science.gov (United States)

    Perkins, Kenneth A; Kunkle, Nicole; Karelitz, Joshua L; Perkins, K A; Kunkle, N; Karelitz, J L

    2017-06-01

    Despite its potential for understanding tobacco dependence, behavioral discrimination of nicotine via smoking has not been formally examined as a function of nicotine dependence level. Spectrum research cigarettes were used to compare non-dependent with dependent smokers on the lowest content of nicotine they could discriminate (i.e., "threshold"). Dependent (n=21; 16M, 5F) or non-dependent (n=7; 4M, 3F) smokers were tested on ability to discriminate between cigarettes with nicotine contents of 17, 11, 5, 2, and 1mg/g, one per session, from an "ultra-low" cigarette with 0.4mg/g (all had 9-10mg "tar"). All abstained from smoking overnight prior to sessions, and number of sessions was determined by the lowest nicotine content they could reliably discriminate from the ultra-low on >80% of trials (i.e., ≥5 of 6). Subjective perceptions and cigarette choice behavior were also assessed and related to discrimination behavior. Discrimination thresholds (and most perceptions) did not differ between dependent and non-dependent smokers, with median thresholds of 11mg/g for both subgroups. Yet, "liking" and puff choice for threshold cigarettes were greater in dependent but not non-dependent smokers, while cigarettes with nicotine contents below threshold did not support "liking" or choice in both groups. In sum, this preliminary study suggests threshold for discriminating nicotine via smoking may not vary by dependence level, and further study is needed to confirm that cigarettes unable to be discriminated are also not reinforcing. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preliminary analysis of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1997-01-01

    Sandia National Laboratories is conducting a research program to investigate the integrity of nuclear containment structures. As part of the program Sandia will construct an instrumented 1:4 scale model of a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR), which will be pressure tested up to its ultimate capacity. One of the key program objectives is to develop validated methods to predict the structural performance of containment vessels when subjected to beyond design basis loadings. Analytical prediction of structural performance requires a stepwise, systematic approach that addresses all potential failure modes. The analysis effort includes two and three-dimensional nonlinear finite element analyses of the PCCV test model to evaluate its structural performance under very high internal pressurization. Such analyses have been performed using the nonlinear concrete constitutive model, ANACAP-U, in conjunction with the ABAQUS general purpose finite element code. The analysis effort is carried out in three phases: preliminary analysis; pretest prediction; and post-test data interpretation and analysis evaluation. The preliminary analysis phase serves to provide instrumentation support and identify candidate failure modes. The associated tasks include the preliminary prediction of failure pressure and probable failure locations and the development of models to be used in the detailed failure analyses. This paper describes the modeling approaches and some of the results obtained in the first phase of the analysis effort

  1. FORMATION OF CHLORINATED DIOXINS AND FURANS IN A HAZARDOUS-WASTE-FIRING INDUSTRIAL BOILER

    Science.gov (United States)

    This research examined the potential for emissions of polychlorinated diebnzodioxin and dibenzofuran (PCDD/F) from industrial boilers that cofire hazardous waste. PCDD/F emissions were sampled from a 732 kW (2.5 x 106 Btu/h), 3-pass, firetube boiler using #2 fuel oil cofired wit...

  2. Planter unit test stand

    Science.gov (United States)

    A planter test stand was developed to evaluate individual row-crop metering units in early 2013. This test stand provided the ability to quantify actual seed metering in terms of population, seed spacing, skips, and multiples over a range of meter RPMs and vacuum pressures. Preliminary data has been...

  3. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K. L.

    2001-06-22

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  4. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1983-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II

  5. In-situ burning of Alaskan oils and emulsions: preliminary results of laboratory tests with and without waves

    International Nuclear Information System (INIS)

    Buist, I.; McCourt, J.; Karunakaran, K.; Gierer, C.; Comins, D.; Glover, N.; McKenzie, B.

    1996-01-01

    The efficiency of in-situ burning (ISB) as a response tool for oils transported in Alaska was studied. ISB can be an effective measure during an oil spill clean-up and has the potential to quickly remove large amounts of oil from the water surface. However, studies have shown that it is important to act quickly before the oil evaporates and before water-in-oil emulsions form, rendering the slick unignitable. Small-scale laboratory tests were conducted to determine the limits to ignition of slicks of four oils, and to determine the effectiveness of chemical emulsion breakers in extending the ignition limits. Results showed that while evaporation and emulsification could curtail ignition of oil slicks, the addition of a chemical emulsion breaker could extend the limits of ignition and burnability. Preliminary results also showed that waves had an effect on the burning of fresh, weathered and slightly emulsified crude oil. Burn efficiency and burn time were found to decrease with increasing wave energy. 14 refs., 18 tabs., 4 figs

  6. Finite-element pre-analysis for pressurized thermoshock tests

    International Nuclear Information System (INIS)

    Keinaenen, H.; Talja, H.; Lehtonen, M.; Rintamaa, R.; Bljumin, A.; Timofeev, B.

    1992-05-01

    The behaviour of a model pressure vessel is studied in a pressurized thermal shock loading. The tests were performed at the Prometey Institute in St. Petersburg. The calculations were performed at the Technical Research Centre of Finland. The report describes the preliminary finite-element analyses for the fourth, fifth and sixth thermoshock tests with the first model pressure vessel. Seven pressurized thermoshock tests were made with the same model using five different flaw geometries. In the first three tests the flaw was actually a blunt notch. In the two following tests (tests 4 and 5) a sharp pre-crack was produced before the test. In the last two test (tests 6 and 7) the old crack was used. According to the measurements and post-test ultrasonic examination of the crack front, the sixth test led to significant crack extension. Both temperatures and stresses were calculated using the finite-element method. The calculations were made using the idealized initial flaw geometry and preliminary material data. Both two-and three-dimensional models were used in the calculations. J-integral values were calculated from the elastic-plastic finite-element results. The stress intensity factor values were evaluated on the basis of the calculated J-integrals and compared with the preliminary material fracture toughness data obtained from the Prometey Institute

  7. Preliminary Ecotoxicity and Biodegradability Assessment of Metalworking Fluids

    Science.gov (United States)

    Gerulová, Kristína; Amcha, Peter; Filická, Slávka

    2010-01-01

    The main aim of this study was to evaluate the potential of activated sludge from sewage treatment plant to degrade selected MWFs (ecotoxicity to bacterial consortium) and to evaluate the ecotoxicity by Lemna minor-higher plant. After evaluating the ecotoxicity, biodegradations rate with activated sludge was assessed on the basis of COD measurement. Preliminary study of measuring the ecotoxicity according to OECD 221 by Lemna minor shows effective concentration of Emulzin H at the rate of 81.6 mg l-1, for Ecocool 82.9 mg l-1, for BC 25 about 99.3 mg l-1, and for Dasnobor about 97.3 mg l-1. Preliminary study of measuring the ecotoxicity by bacterial consortium according to OECD 209 (STN EN ISO 8192) shows effective concentration of Blasocut BC 25 at the rate 227.4 mg l-1. According to OECD 302B, the biodegradations level of Emulzin H, Ecocool and BC 25 achieved 80% in 10 days. It can be stated that these MWFs have potential to ultimate degradation, but the statement has to be confirmed by a biodegradability test with other parameters than COD, which exhibits some disadvantages in testing O/W emulsions.

  8. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  9. Preliminary full size test of a simplified version of the CMS link alignment system at the ISR hall

    International Nuclear Information System (INIS)

    Arce, P.; Calvo, E.; Figueroa, C.F.; Garcia, N.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A.L.; Fernandez, M.G.; Ferrando, A.; Josa, M.I.; Molinero, A.; Oller, J.C.

    1999-01-01

    A preliminary full size test of a simplified version containing some relevant elements of the CMS (compact muon solenoid) Link Alignment System has been installed in an experimental area of the ISR (interaction storage ring) tunnel at CERN. Previously a calibration bench was prepared with standard precise survey methods. The environmental conditions, temperature, atmospheric pressure and relative humidity in the hall were controlled revealing quite stable conditions all along the tests period. The stability measurements done under these conditions show that the light spot on sensors located at about 6 m from the light source are smaller than 5 μm, which satisfies the requirements. Induced changes in the environmental conditions have different effects. Air flows degrades significantly the spatial resolution (∼5μm) but the background due to the environmental light does not degrades the resolution in position reconstruction. A geodesic network defines a reference system common to all opto-mechanical components and can be used to do absolute measurements of the angle between the two light beams coming out from the splitter. The accuracy in the reconstruction of angles with the help of the geodesic network depends on the errors in the network definition. These errors propagate with a smaller or larger strength depending on the distances between the network points. In our tests, the accuracy in the angle reconstruction is 14 μrad when using 4 in and 5.9 m long arms and 17 μrad for 4 m and 2.9 m arms. We found a precision 4 μrad in the angular reconstruction. (authors)

  10. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    International Nuclear Information System (INIS)

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E.

    1995-01-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in open-quotes Institute of Berylliumclose quotes for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round open-quotes hypervapotron typeclose quotes test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of open-quotes swirl tape inside of tubeclose quotes have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces open-quotes swirl tape inside of tubeclose quotes type are given in this report

  11. Fabrication of cavities in low loss LTCC materials for microwave applications

    International Nuclear Information System (INIS)

    Malecha, Karol

    2012-01-01

    A method of buried cavity fabrication in low loss DP951 and new DP9K7 LTCC (low-temperature co-fired ceramic) materials is described in this paper. Laser micromachining and method based on sacrificial volume material (SVM) are studied. Cavities are fabricated in LTCC materials using two different SVMs—cetyl alcohol and carbon tape. The influence of laser system parameters on cutting quality of the LTCC materials is studied. Moreover, thermal properties of the LTCCs and used SVMs are analyzed using combined thermo-gravimetric analysis, differential thermal analysis and differential thermo-gravimetry. Geometries of the LTCC test structures fabricated using different SVMs are analyzed using a scanning electron microscope and x-ray tomography. Energy dispersive spectroscopy and surface wettability measurements are used to analyze changes in LTCC materials atomic composition after co-firing with SVMs. (paper)

  12. Antimicrobial susceptibility determined by the E test, Löwenstein-Jensen proportion, and DNA sequencing methods among Mycobacterium tuberculosis isolates discrepancies, preliminary results

    Directory of Open Access Journals (Sweden)

    Maria Inês Moura Freixo

    2004-02-01

    Full Text Available Mycobacterium tuberculosis strains resistant to streptomycin (SM, isoniazid (INH, and/or rifampin (RIF as determined by the conventional Löwenstein-Jensen proportion method (LJPM were compared with the E test, a minimum inhibitory concentration susceptibility method. Discrepant isolates were further evaluated by BACTEC and by DNA sequence analyses for mutations in genes most often associated with resistance to these drugs (rpsL, katG, inhA, and rpoB. Preliminary discordant E test results were seen in 75% of isolates resistant to SM and in 11% to INH. Discordance improved for these two drugs (63% for SM and none for INH when isolates were re-tested but worsened for RIF (30%. Despite good agreement between phenotypic results and sequencing analyses, wild type profiles were detected on resistant strains mainly for SM and INH. It should be aware that susceptible isolates according to molecular methods might contain other mechanisms of resistance. Although reproducibility of the LJPM susceptibility method has been established, variable E test results for some M. tuberculosis isolates poses questions regarding its reproducibility particularly the impact of E test performance which may vary among laboratories despite adherence to recommended protocols. Further studies must be done to enlarge the evaluated samples and looked possible mutations outside of the hot spot sequenced gene among discrepant strains.

  13. Thermal treatment of soil co-contaminated with lube oil and heavy metals in a low-temperature two-stage fluidized bed incinerator

    International Nuclear Information System (INIS)

    Samaksaman, Ukrit; Peng, Tzu-Huan; Kuo, Jia-Hong; Lu, Chien-Hsing; Wey, Ming-Yen

    2016-01-01

    Highlights: • Low-temperature two-stage fluidized bed incineration was applied for soil remediation. • Co-firing of polyethylene with co-contaminated soil was studied. • Co-firing of polyethylene in soil remediation can promote residue quality. • The leachability of heavy metals passed the regulatory threshold values. - Abstract: This study presents the application of a low-temperature two-stage fluidized bed incinerator to remediate contaminants in the soil. The system was designed to control emissions of both gaseous pollutants and heavy metals during combustion. Soil co-contaminated with lube oil and heavy metals such as cadmium, chromium, copper, and lead was examined. Experiments were conducted by estimating various parameters such as operating temperature in the first-stage reactor (500–700 °C), ratio of sand bed height/diameter in the second-stage reactor (H/D: 3, 4, 6), and gas velocity (0.21–0.29 m/s). Heavy metal and gaseous pollutant emissions were also investigated during contaminated soil co-firing with polyethylene. The experimental results indicated that the destruction and removal efficiency of lube oil in treated soil products ranged from 98.27 to 99.93%. On the other hand, leaching tests of bottom ashes illustrated that heavy metals such as chromium, copper, and lead in leachates were complied with the regulations. For gaseous emissions, carbon monoxide concentrations decreased apparently with increasing ratio of sand bed height/diameter in the second-stage reactor. The increase of gas velocity had significant potential to generate the lowest carbon monoxide and particulate matter emissions. Nevertheless, during co-firing with polyethylene, emissions of organic pollutants such as benzene, toluene, ethylbenzene, and xylene and polycyclic aromatic hydrocarbons decrease by using the low-temperature two-stage fluidized bed incineration system.

  14. BIPS-FS preliminary design, miscellaneous notes

    International Nuclear Information System (INIS)

    1976-01-01

    A compendium of flight system preliminary design internal memos and progress report extracts for the Brayton Isotope Power System Preliminary Design Review to be held July 20, 21, and 22, 1975 is presented. The purpose is to bring together those published items which relate only to the preliminary design of the Flight System, Task 2 of Phase I. This preliminary design effort was required to ensure that the Ground Demonstration System will represent the Flight System as closely as possible

  15. 45 CFR 150.217 - Preliminary determination.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Preliminary determination. 150.217 Section 150.217... Are Failing To Substantially Enforce HIPAA Requirements § 150.217 Preliminary determination. If, at... designees). (b) Notifies the State of CMS's preliminary determination that the State has failed to...

  16. Preliminary Evaluation Of Commercial Supercapacitors For Space Applications

    Science.gov (United States)

    Gineste, Valery; Loup, Didier; Mattesco, Patrick; Neugnot, Nicolas

    2011-10-01

    Supercapacitors are identified since years as a new technology enabling energy storage together with high power delivery capability to the system. A recent ESA study [1] led by Astrium has demonstrated the interest of these devices for space application, providing that reliability and end of life performances are demonstrated. A realistic commercial on the shelf (COTS) approach (or with limited design modification approved by potential suppliers) has been favoured (as for batteries). This paper presents preliminary test results done by Astrium on COTS supercapacitors: accelerated life tests, calendar life tests, technology analyses. Based on these results, assessment and lessons learnt are drawn in view of future exhaustive supercapacitor validation and future qualification.

  17. Patient empowerment in long-term conditions: development and preliminary testing of a new measure

    Science.gov (United States)

    2013-01-01

    Background Patient empowerment is viewed by policy makers and health care practitioners as a mechanism to help patients with long-term conditions better manage their health and achieve better outcomes. However, assessing the role of empowerment is dependent on effective measures of empowerment. Although many measures of empowerment exist, no measure has been developed specifically for patients with long-term conditions in the primary care setting. This study presents preliminary data on the development and validation of such a measure. Methods We conducted two empirical studies. Study one was an interview study to understand empowerment from the perspective of patients living with long-term conditions. Qualitative analysis identified dimensions of empowerment, and the qualitative data were used to generate items relating to these dimensions. Study two was a cross-sectional postal study involving patients with different types of long-term conditions recruited from general practices. The survey was conducted to test and validate our new measure of empowerment. Factor analysis and regression were performed to test scale structure, internal consistency and construct validity. Results Sixteen predominately elderly patients with different types of long-term conditions described empowerment in terms of 5 dimensions (identity, knowledge and understanding, personal control, personal decision-making, and enabling other patients). One hundred and ninety seven survey responses were received from mainly older white females, with relatively low levels of formal education, with the majority retired from paid work. Almost half of the sample reported cardiovascular, joint or diabetes long-term conditions. Factor analysis identified a three factor solution (positive attitude and sense of control, knowledge and confidence in decision making and enabling others), although the structure lacked clarity. A total empowerment score across all items showed acceptable levels of internal

  18. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  19. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  20. Testing of materials and scale models for impact limiters

    International Nuclear Information System (INIS)

    Maji, A.K.; Satpathi, D.; Schryer, H.L.

    1991-01-01

    Aluminum Honeycomb and Polyurethane foam specimens were tested to obtain experimental data on the material's behavior under different loading conditions. This paper reports the dynamic tests conducted on the materials and on the design and testing of scale models made out of these open-quotes Impact Limiters,close quotes as they are used in the design of transportation casks. Dynamic tests were conducted on a modified Charpy Impact machine with associated instrumentation, and compared with static test results. A scale model testing setup was designed and used for preliminary tests on models being used by current designers of transportation casks. The paper presents preliminary results of the program. Additional information will be available and reported at the time of presentation of the paper

  1. Preliminary study on AC superconducting machines

    International Nuclear Information System (INIS)

    Yamamoto, M.; Ishigohka, T.; Shimohka, T.; Mizukami, N.; Yamaguchi, M.

    1988-01-01

    This paper describes the issues involved in developing AC superconducting machines. In the first phase, as a preliminary experiment, a 4kVa AC superconducting coil which employs 100A class 50/60Hz superconductors is made and tested. And, in the second phase, as an extension of the 4kVa coil, a model superconducting transformer is made and examined. The transformer has a novel quench protection system with an auxiliary coil only in the low voltage side. The behavior of the overcurrent protection system is confirmed

  2. Velocity Measurements in Nasal Cavities by Means of Stereoscopic Piv - Preliminary Tests

    Science.gov (United States)

    Cozzi, Fabio; Felisati, Giovanni; Quadrio, Maurizio

    2017-08-01

    The prediction of detailed flow patterns in human nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics of the nasal anatomy and health problems, and ultimately led to improved surgery. The complex flow structure and the intricate geometry of the nasal cavities make achieving such goals a challenge for CFD specialists. The need for experimental data to validate and improve the numerical simulations is particularly crucial. To this aim an experimental set-up based on Stereo PIV and a silicon phantom of nasal cavities have been designed and realized at Politecnico di Milano. This work describes the main features and challenges of the set-up along with some preliminary results.

  3. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  4. CFD modeling of ash deposition for co-combustion of MBM with coal in a tangentially fired utility boiler

    NARCIS (Netherlands)

    Taha, T.J.; Stam, A.F.; Stam, K.; Brem, Gerrit

    2013-01-01

    Ash deposition is one of the main challenges that needs to be tackled in response to increased percentage of biomass co-firing in pulverized fuel boilers. In this study, a model has been developed to investigate the slagging behavior of meat and bone meal (MBM) at higher co-firing rates in the

  5. Developing test materials for dyscalculia

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Bent, Lindhardt,

    Aims, requirements and context for the development of test materials for dyscalculia are analyzed. The test materials are to be used for Grade 4 pupils in Danish primary schools. Preliminary results are presented from focus group interview with adolescents and adults, who see themselves as being...

  6. Preliminary Study of a Piston Pump for Cryogenic Fluids

    Science.gov (United States)

    Biermann, Arnold E.; Kohl, Robert C.

    1959-01-01

    Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.

  7. Change of mechanical properties of irradiated silicon iron in dependence of preliminary deformation

    International Nuclear Information System (INIS)

    Chirkina, L.A.; Okovit, V.S.; Khinkis, B.A.

    1979-01-01

    Presented are the data on the influence of the 225 MeV electron irradiation on flow limit and specific elongation of silicon iron specimens preliminary deformed by slipping and twinning. The irradiaton was carried out at the temperature up to 350 K with integral dose up to 7x10 18 el/cm 2 . The specimens were tested in the temperature range of 4-450 K. It is found that the ductile brittle transition temperature Tsub(c) and plastic deformation mode of the irradiated material heavily depends on the preliminary deformation mode. The irradiation of specimens deformed by slipping leads to the increase in transition temperature (Tsub(c)) by 80 deg and it reaches 420 K. The preliminary deformation by twinning results in the Tsub(c) increase up to 320 K

  8. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)

    2002-04-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  9. D-shaped configurations in FTU for testing liquid lithium limiter: Preliminary studies and experiments

    Directory of Open Access Journals (Sweden)

    G. Ramogida

    2017-08-01

    A possible alternative connection of the poloidal field coils in FTU is here proposed, with the aim of achieving a true X-point configuration with a magnetic single null well inside the plasma chamber and strike points on the lithium limiter. A preliminary assessment of this design allowed estimating the required power supply upgrade and showed its compatibility with the existing mechanical structure and cooling system, at least for plasmas with current up to 300 kA and flat-top duration up to 4s.

  10. Preliminary results from the hierarchical glitch pipeline

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2007-01-01

    This paper reports on the preliminary results obtained from the hierarchical glitch classification pipeline on LIGO data. The pipeline that has been under construction for the past year is now complete and end-to-end tested. It is ready to generate analysis results on a daily basis. The details of the pipeline, the classification algorithms employed and the results obtained with one days analysis on the gravitational wave and several auxiliary and environmental channels from all three LIGO detectors are discussed

  11. Philosophy, design and testing of a uniform applied load flat plate testing machine

    International Nuclear Information System (INIS)

    Quirk, A.; Crook, C.

    1976-08-01

    The presence of a central crack, and its associated plastic zones may significantly affect distribution of the stress applied by a loading machine, to a test plate. As a result the fracture stress may be affected, usually optimistically. Examples of these effects are discussed. The design of a machine in which the load is uniformly applied to the test specimen is described and preliminary test data presented. (author)

  12. Mechanical Integrity Issues at MCM-Cs for High Reliability Applications

    International Nuclear Information System (INIS)

    Morgenstern, H.A.; Tarbutton, T.J.; Becka, G.A.; Uribe, F.; Monroe, S.; Burchett, S.

    1998-01-01

    During the qualification of a new high reliability low-temperature cofired ceramic (LTCC) multichip module (MCM), two issues relating to the electrical and mechanical integrity of the LTCC network were encountered while performing qualification testing. One was electrical opens after aging tests that were caused by cracks in the solder joints. The other was fracturing of the LTCC networks during mechanical testing. Through failure analysis, computer modeling, bend testing, and test samples, changes were identified. Upon implementation of all these changes, the modules passed testing, and the MCM was placed into production

  13. A coupled mechanical-hydrological investigation of crystalline rocks: Annual technical progress report, proposed test matrix, and preliminary results

    International Nuclear Information System (INIS)

    Bastian, R.J.; Voss, C.F.; Apted, M.J.; Shotwell, L.R.

    1988-02-01

    This report reviews the Fracture Flow Behavior in Rock Study being performed at the Pacific Northwest Laboratory. The study's objective is to determine the feasibility of predicting mechanical-hydrological behavior of natural rock fractures by accurately characterizing fracture surface topography and mineralization. A laboratory-scale facility is currently being used to ensure optimum control of variables. Devising a technique to study small-scale samples is the first step to understanding the complex coupled processes encountered in geomechanics and hydrology. The major accomplishments during fiscal year 1987 were initial development of the innovative testing method, identification of appropriate specimens, substantial renovation to the facility, completion of several sets of experiments, and procurement of hardware components for a laser-imaging device used to characterize fracture surfaces. A complete set of preliminary results and findings is presented in this report. These results, gathered from a basalt core with a natural fracture, have demonstrated that the methodology is valid, and definite trends in the data are readily apparent. 10 refs., 14 figs., 1 tab

  14. Escherichia coli O26 IN RAW BUFFALO MILK: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    A. Rella

    2013-02-01

    Full Text Available Escherichia coli O26 is considered to be one of the most important food-borne pathogen. In this study, 120 buffalo milk samples collected in Lazio and in Apulia regions were tested for the presence of E. coli O26. One buffalo milk sample (0,8% tested positive for E. coli O26; the isolate was positive at the verocytotoxicity test and it showed resistance properties to different antimicrobial classes. These preliminary results highlight the need to monitor the foods of animal origin used for production and eaten by a wide range of persons, respect VTEC organism.

  15. Application of siliceous metal product for preliminary deoxidizing of metal in open-hearth furnaces

    International Nuclear Information System (INIS)

    Luk'yanenko, A.A.; Evdokimov, A.V.; Kornilov, V.N.; Il'in, V.I.; Kuleshov, Yu.V.

    1995-01-01

    Metal wastes of abrasive processes-concomitant product of synthetic corundum production containing approximately 10 % Si - were tested for preliminary deoxidizing of metal in furnace to reduce manganese loss in burning and to increase the steel deoxidizing. The technology of preliminary deoxidizing of metal by siliceous metal product was mastered in the course of low carbon steel melting (st3sp, st4sp). The results of the study has shown that the use of siliceous metal product permits reducing the consumption of manganese-containing ferroalloys. 1 tab

  16. SP-100 nuclear assembly test: Test assembly functional requirements and system arrangement

    International Nuclear Information System (INIS)

    Fallas, T.T.; Gluck, R.; Motwani, K.; Clay, H.; O'Neill, G.

    1991-01-01

    This paper describes the functional requirements and the system that will be tested to validate the reactor, flight shield, and flight controller of the SP-100 Generic Flight System (GFS). The Nuclear Assembly Test (NAT) consists of the test article (SP-100 reactor with control devices and the flight shield) and its supporting systems. The NAT test assembly is being designed by GE. Westinghouse Hanford Company (WHC) is designing the test cell and vacuum vessel system that will contain the NAT test assembly (Renkey et al. 1989). Preliminary design reviews have been completed and the final design is under way

  17. AGC-1 Experiment and Final Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Bratton; Tim Burchell

    2006-08-01

    This report details the experimental plan and design as of the preliminary design review for the Advanced Test Reactor Graphite Creep-1 graphite compressive creep capsule. The capsule will contain five graphite grades that will be irradiated in the Advanced Test Reactor at the Idaho National Laboratory to determine the irradiation induced creep constants. Seven other grades of graphite will be irradiated to determine irradiated physical properties. The capsule will have an irradiation temperature of 900 C and a peak irradiation dose of 5.8 x 10{sup 21} n/cm{sup 2} [E > 0.1 MeV], or 4.2 displacements per atom.

  18. SURVEY FOR ORGANISMS ASSOCIATED WITH DYER’S WOAD, ISATIS TINCTORIA L. (BRASSICACEAE, IN CENTRAL ITALY, AND PRELIMINARY HOST SPECIFICITY TESTS FOR SOME POTENTIAL CONTROL AGENTS (INSECTA

    Directory of Open Access Journals (Sweden)

    Gaetano Campobasso

    2008-04-01

    Full Text Available A survey conducted in central Italy found 126 species of phytophagous insects from five orders and 25 families on dyer’s woad, Isatis tinctoria L., a biennial or short-lived perennial. About 75% of the species found attacking this weed were polyphagous, 20% were restricted to the family Brassicaceae, and only 5% were restricted to the genus Isatis. Four of the one hundred twenty six species recovered were specific enough to merit further research as candidates for biological control of I. tinctoria L. in the United States. Preliminary host range tests were conducted for the weevils Ceutorhynchus rusticus Gyllenhal, Ceutorhynchus peyerimoffi Hustache, Aulacobaris fallax (H. Brisout, and the fleabeetle Psylliodes isatidis Heikertinger. All tests were conducted at the USDA-ARS-EBCL Rome substation from 2003 to 2006 and are reported herein.

  19. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  20. Field testing at the Climax Stock on the Nevada Test Site: spent fuel test and radionuclide migration experiments

    International Nuclear Information System (INIS)

    Ballou, L.B.; Isherwood, D.J.; Patrick, W.C.

    1982-01-01

    Two field tests in the Climax Stock are being conducted. The Climax Stock, a granitic instrusive, has been administratively excluded from consideration as a full-scale repository site. However, it provides a readily available facility for field testing with high-level radioactive materials at a depth (420 m) approaching that of a repository. The major test activity in the 1980 fiscal year has been initiation of the Spent Fuel Test-Climax (SFT-C). This test, which was authorized in June 1978, is designed to evaluate the generic feasibility of geologic storage and retrievability of commercial power reactor spent fuel assemblies in a granitic medium. In addition, the test is configured and instrumented to provide thermal and thermomechanical response data that will be relevant to the design of a repository in hard crystalline rock. The other field activity in the Climax Stock is a radionuclide migration test. It combines a series of field and laboratory migration experiments with the use of existing hydrologic models for pretest predictions and data interpretation. Goals of this project are to develop: (1) field measurement techniques for radionuclide migration studies in a hydrologic regime where the controlling mechanism is fracture permeability; (2) field test data on radionuclide migration; and (3) a comparison of laboratory- and field-measured retardation factors. This radionuclide migration test, which was authorized in the middle of the 1980 fiscal year, is in the preliminary design phase. The detailed program plan was prepared and subjected to formal peer review in August. In September/October researchers conducted preliminary flow tests with water in selected near-vertical fractures intersected by small horizontal boreholes. These tests were needed to establish the range of pressures, flow rates, and other operating parameters to be used in conducting the nuclide migration tests. 21 references, 14 figures, 1 table

  1. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    Science.gov (United States)

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-07

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.

  2. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  3. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  4. 28 CFR 2.48 - Revocation: Preliminary interview.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Revocation: Preliminary interview. 2.48....48 Revocation: Preliminary interview. (a) Interviewing officer. A parolee who is retaken on a warrant issued by a Commissioner shall be given a preliminary interview by an official designated by the Regional...

  5. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  6. Preliminary treatment of MSW fly ash as a way of improving electrodialytic remediation

    DEFF Research Database (Denmark)

    Ferreira, Célia Maria Dias; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2008-01-01

    In the current work electrodialytic remediation (EDR) was applied to remove heavy metals from municipal solid waste (MSW) fly ash, a hazardous waste collected during flue gas treatment. Tests were conducted to evaluate if EDR could be improved by introducing a preliminary treatment in which very...... soluble salts were removed. Three different preliminary treatments were conducted with different L:S ratios and pH. Treatment in which metal release and L/S ratio were lower was selected for EDR. Electrodialytic remediation was performed at a constant current of 38 mA, for 14 days, using gluconate...... as a solubilisation enhancement agent. Conductivity and pH were monitored and electrolyte samples were collected every 4 days to evaluate metal release over time. It was found that the preliminary treatment reduces fouling of the ion-exchange membranes used in EDR and drastically increases the removal of metals...

  7. Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations

    CERN Document Server

    AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco

    2016-01-01

    As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.

  8. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  9. NASA Hybrid Wing Aircraft Aeroacoustic Test Documentation Report

    Science.gov (United States)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Bahr, Christopher J.; Hoad, Danny; Becker, Lawrence; Humphreys, William M.; Burley, Casey L.; Stead, Dan; hide

    2016-01-01

    This report summarizes results of the Hybrid Wing Body (HWB) N2A-EXTE model aeroacoustic test. The N2A-EXTE model was tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 Tunnel) from September 12, 2012 until January 28, 2013 and was designated as test T598. This document contains the following main sections: Section 1 - Introduction, Section 2 - Main Personnel, Section 3 - Test Equipment, Section 4 - Data Acquisition Systems, Section 5 - Instrumentation and Calibration, Section 6 - Test Matrix, Section 7 - Data Processing, and Section 8 - Summary. Due to the amount of material to be documented, this HWB test documentation report does not cover analysis of acquired data, which is to be presented separately by the principal investigators. Also, no attempt was made to include preliminary risk reduction tests (such as Broadband Engine Noise Simulator and Compact Jet Engine Simulator characterization tests, shielding measurement technique studies, and speaker calibration method studies), which were performed in support of this HWB test. Separate reports containing these preliminary tests are referenced where applicable.

  10. Clinical utility of color-form naming in Alzheimer's disease: preliminary evidence

    DEFF Research Database (Denmark)

    Nielsen, Niels Peter; Wiig, Elisabeth H; Warkentin, Siegbert

    2004-01-01

    Performances on Alzheimer's Quick Test color-form naming and Mini-Mental State Examination were compared for 38 adults with Alzheimer's disease and 38 age- and sex-matched normal controls. Group means differed significantly and indicated longer naming times by adults with Alzheimer's disease...... associated with Alzheimer's disease, are preliminary given the relatively small sample....

  11. Preliminary probe of quality indicators and quality specification in total testing process in 5753 laboratories in China.

    Science.gov (United States)

    Fei, Yang; Kang, Fengfeng; Wang, Wei; Zhao, Haijian; He, Falin; Zhong, Kun; Wang, Zhiguo; Chen, Wenxiang

    2016-08-01

    The aim of the study was to promote the establishment and implementation of quality indicators (QIs) in clinical laboratories, catch up with the state of art, and provide preliminary quality specifications for established QIs. Clinical laboratories from different provinces in China were included in this QIs survey in 2015. All participants were asked to collect data related to QIs and complete QIs questionnaires. Defect percentages and sigma values were calculated for each QI. The 25th percentile, median, and the 75th percentile of defect percentages and TATs were calculated as optimum, desirable and minimum quality specifications. While 25th, median, and 75th of sigma values were calculated as minimum, desirable and optimum quality specifications, respectively. Five thousand seven hundred and fifty-three clinical laboratories from 28 provinces in China participated in this survey. Median defect percentages of pre-examination QIs varied largely from 0.01% (incorrect sample container) to 0.57% (blood culture contamination) with sigma values varied from 4.0σ to 5.1σ. Median defect percentages of examination phase QIs were all really high. The most common problem in examination phase was test uncovered by inter-laboratory comparison (86.67%). Defect percentages of critical values notification and timely critical values notification were all 0.00% (6.0σ). While the median of defect percentages of incorrect laboratory reports was only 0.01% (5.4σ). Improvements are needed in all phases of total testing process (TTP) in laboratories in China, especially in examination phase. More attention should be paid when microbiology specimens are collected and results are reported. Quality specifications can provide directions for laboratories to make effort for.

  12. Preliminary evaluation of beta-spodumene as a fusion reactor structural material

    International Nuclear Information System (INIS)

    Kelsey, P.V. Jr.; Schmunk, R.E.; Henslee, S.P.

    1982-01-01

    Beta-spodumene was investigated as a candidate material for use in fusion reactor environments. Properties which support the use of beta-spodumene include good thermal shock resistance, a very low coefficient of thermal expansion, a low-Z composition which would result in minimum impact on the plasma, and flexibility in fabrication processes. Specimens were irradiated in the Advanced Test Reactor (ATR) to a fluence of 5.3 x 10 22 n/m 2 , E > MeV, and 4.9 x 10 23 n/m 2 thermal fluence in order to obtain a preliminary evaluation of the impact of irradiation on the material. Preliminary data indicate that the mechanical properties of beta-spodumene are little affected by irradiation. Gas production and release have also been investigated. (orig.)

  13. Preliminary prediction of inflow into the D-holes at the Stripa Mine

    International Nuclear Information System (INIS)

    Long, J.C.S.; Karasaki, K.; Davey, A.; Peterson, J.; Landsfeld, M.; Kemeny, J.; Martel, S.

    1990-02-01

    Lawrence Berkeley Laboratory (LBL) is contracted by the US Department of Energy to provide an auxiliary modeling effort for the Stripa Project. Within this effort, we are making calculations of inflow to the Simulated Drift Experiment (SDE), i.e. inflow to six parallel, closely spaced D-holes, using a preliminary set of data collected in five other holes, the N- and W-holes during Stages 1 and 2 of the Site Characterization and Validation (SCV) project. Our approach has been to focus on the fracture zones rather than the general set of ubiquitous fractures. Approximately 90% of all the water flowing in the rock is flowing in fracture zones which are neither uniformly conductive nor are they infinitely extensive. Our approach has been to adopt the fracture zone locations as they have been identified with geophysics. We use geologic sense and the original geophysical data to add one zone where significant water inflow has been observed that can not be explained with the other geophysical zones. This report covers LBL's preliminary prediction of flow into the D-holes. Care should be taken in interpreting the results given in this report. As explained below, the approach that LBL has designed for developing a fracture hydrology model requires cross-hole hydrologic data. Cross-hole tests are planned for Stage 3 but were unavailable in Stage 1. As such, we have inferred from available data what a cross-hole test might show and used this synthetic data to make a preliminary calculation of the inflow into the D-holes. Then using all the Stage 3 data we will calculate flow into the Validation Drift itself. The report mainly demonstrates the use of our methodology and the simulated results should be considered preliminary

  14. DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection.

    Science.gov (United States)

    Jones, Andrew P; Hoffmann, Jeffrey W; Smith, Dennis N; Feeley, Thomas J; Murphy, James T

    2007-02-15

    Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal "above and beyond" the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166000/lb Hg removed.

  15. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  16. Preliminary considerations on the startup phase for the ASTRID core

    International Nuclear Information System (INIS)

    Mignot, G.

    2015-01-01

    This paper presents preliminary considerations on the startup phase for the ASTRID core, as well as an overview of the different steps before reaching the optimised equilibrium core. The start-up phase is assumed to cover the period between loading the dummy core into the reactor (for commissioning tests) and achieving the optimised equilibrium core. Four main stages are considered: a first stage of start-up tests before fuel core loading, a second stage related to zero power and power ramp-up tests, a third stage corresponding to the transition from the first core to the equilibrium contractual core, and the last stage to reach the optimised performance for the equilibrium core. In the two last stages, a sub-assembly surveillance plan based on post-irradiation examinations is taken into account. As this work is in its preliminary stages, the first scenarios shown for the start-up phase must not be considered as the ASTRID reference scenarios. The scenarios strongly depend on the assumptions considered in the analysis, whereas those discussed in this paper aim at outlining the content and the duration of the starting phases for the ASTRID core, which will be useful in subsequently assessing the core sub-assembly fabrication needs. Assumptions for the start-up phase will be updated in accordance with progress on the ASTRID core design development and core qualification programme. (author)

  17. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    Science.gov (United States)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2017-01-01

    This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  18. Hanford Waste Vitrification Plant: Preliminary description of waste form and canister

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1986-01-01

    In July 1985, the US Department of Energy's Office of Civilian Radioactive Waste Management established the Waste Acceptance Process as the means by which defense high-level waste producers, such as the Hanford Waste Vitrification Plant, will develop waste acceptance requirements with the candidate geologic repositories. A complete description of the Waste Acceptance Process is contained in the Preliminary Hanford Waste Vitrification Plant Waste Form Qualification Plan. The Waste Acceptance Process defines three documents that high-level waste producers must prepare as a part of the process of assuming that a high-level waste product will be acceptable for disposal in a geologic repository. These documents are the Description of Waste Form and Canister, Waste Compliance Plan, and Waste Qualification Report. This document is the Hanford Waste Vitrification Plant Preliminary Description of Waste Form and Canister for disposal of Neutralized Current Acid Waste. The Waste Acceptance Specifications for the Hanford Waste Vitrification Plant have not yet been developed, therefore, this document has been structured to corresponds to the Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form. Not all of the information required by these specifications is appropriate for inclusion in this Preliminary Description of Waste Form and Canister. Rather, this description is limited to information that describes the physical and chemical characteristics of the expected high-level waste form. The content of the document covers three major areas: waste form characteristics, canister characteristics, and canistered waste form characteristics. This information will be used by the candidate geologic repository projects as the basis for preliminary repository design activities and waste form testing. Periodic revisions are expected as the Waste Acceptance Process progresses

  19. Preliminary assessment of pump IST effectiveness

    International Nuclear Information System (INIS)

    DiBiasio, A.; Grove, E.; Carbonaro, J.

    1994-01-01

    A preliminary review of Inservice Testing (IST) effectiveness for Code Class 1, 2, and 3 pumps at nuclear power plants was performed. IST requirements are specified by ASME Section XI, and the Operations and Maintenance Standard (OM Part 6). The INPO NPRDS database was used to provide failure reports for these components for 1988 to 1992. This time frame coincides with the issuance of Generic Letter 89-04, which resulted in a more consistent application of the requirements by the licensees. For this time period, 2585 pump failures were reported. A review of these failures indicated that the majority (71.6%) were due to external leakage, and were excluded from this study since these events typically do not affect pump operability and are not detected by the measurement of IST parameters. Of the remaining 733 events, a review was performed to identify the primary failure causes, failure modes, and method of detection. Plant testing programs, consisting of IST, surveillance testing, and special testing, detected approximately 40% of these occurrences. Others were detected through operational abnormalities, routine and incidental observations, alarms, and while performing maintenance. This paper provides a discussion of the results of the study

  20. Post-test thermomechanical calulations and preliminary data analysis for the Spent Fuel Test: Climax

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Patrick, W.C.

    1985-09-01

    The Spent Fuel Test - Climax (SFT-C) was conducted to evaluate the feasibility of retrievable deep geologic storage of commercially generated, spent nuclear-reactor fuel assemblies. Thermomechanical response of the SFT-C was calculated before the test began using the finite-element structural analysis code ADINA and its companion heat transfer code ADINAT. While we found that the level of agreement between measured and calculated rock displacements was quite good, we needed to revise certain aspects of the heat transfer calculation, material properties, and in situ stresses to incorporate information obtained during and after the heated phase of the test. The post-test calculations reported here were performed using the best available input parameters, thermal and mechanical properties, and power levels that were directly measured or inferred from measurements made during the test. This report documents the results of these calculations and compares those results with selected measurements made during the 3-year heating phase and 6-month cooling phase of the SFT-C

  1. Weldon Spring, Missouri, Raffinate Pits 1, 2, 3, and 4: Preliminary grout development screening studies for in situ waste immobilization

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Gilliam, T.M.; Dole, L.R.; West, G.A.

    1987-04-01

    Results of Oak Ridge National Laboratory's initial support program to develop a preliminary grout formula to solidify in situ the Weldon Spring waste are presented. The screening study developed preliminary formulas based on a simulated composite waste and then tested the formulas on actual waste samples. Future data needs are also discussed. 1 ref., 6 figs., 9 tabs

  2. Design considerations of the irradiation test vehicle for the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  3. Design considerations of the irradiation test vehicle for the advanced test reactor

    International Nuclear Information System (INIS)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-01-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements

  4. Modified precision-husky progrind H-3045 for chipping biomass

    Science.gov (United States)

    Dana Mitchell; Fernando Seixas; John. Klepac

    2008-01-01

    A specific size of whole tree chip was needed to co-mill wood chips with coal. The specifications are stringent because chips must be mixed with coal, as opposed to a co-firing process. In co-firing, two raw products are conveyed separately to a boiler. In co-milling, such as at Alabama Power's Plant Gadsden, the chip and coal mix must pass through a series of...

  5. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  6. A preliminary conceptual design study for Korean fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Kim, Hyoung Chan; Oh, Sangjun; Lee, Young Seok; Yeom, Jun Ho; Im, Kihak; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Kessel, Charles; Brown, Thomas; Titus, Peter [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2013-10-15

    Highlights: ► Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. ► Present design guidelines and requirements of Korean DEMO reactor. ► Present a preliminary design of TF (toroidal field) and CS (central solenoid) magnet. ► Present a preliminary result of the radial build scheme of Korean DEMO reactor. -- Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy, so called fast-track approach. Korean strategy for fusion energy can be regarded as a fast-track approach and one special concept discussed in this paper is a two-stage development plan. At first, a steady-state Korean DEMO Reactor (K-DEMO) is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). The major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. By using high performance Nb{sub 3}Sn-based superconducting cable currently available, high magnetic field at the plasma center above 8 T can be achieved. A design concept for TF magnets and radial builds for the K-DEMO considering a vertical maintenance scheme, are presented together with preliminary design parameters.

  7. 16 CFR 1610.6 - Test procedure.

    Science.gov (United States)

    2010-01-01

    ... dimension of the specimen and arranged so the test flame impinges on a metallic thread. (iv) Embroidery. Embroidery on netting material shall be tested with two sets of preliminary specimens to determine the most flammable area (which offers the greatest amount of netting or embroidery in the 150 mm (6 in.) direction...

  8. Preliminary rail access study

    International Nuclear Information System (INIS)

    1990-01-01

    The Yucca Mountain site, located on the southwestern edge of the Nevada Test Site, is an undeveloped area under investigation as a potential site for nuclear waste disposal by the US Department of Energy. The site currently lacks rail service and an existing rail right-of-way. If the site is suitable and selected for development as a disposal site, rail service is desirable to the Office of Civilian Radioactive Waste Management Program because of the potential of rail to reduce number of shipments and costs relative to highway transportation. This preliminary report is a summary of progress to date for activities to identify and evaluate potential rail options from major rail carriers in the region to the Yucca Mountain site. It is currently anticipated that the rail spur will be operational after the year 2000. 9 refs., 13 figs., 2 tabs

  9. Preliminary test results from the HSST shallow-crack fracture toughness program

    International Nuclear Information System (INIS)

    Theiss, T.J.; Robinson, G.C.; Rolfe, S.T.

    1991-01-01

    The Heavy Section Steel Technology (HSST) Program under sponsorship of the Nuclear Regulatory Commission (NRC) is investigating the influence of crack depth on the fracture toughness of reactor pressure vessel steel. The ultimate goal of the investigation is the generation of a limited data base of elastic-plastic fracture toughness values appropriate for shallow flaws in a reactor pressure vessel and the application of this data to reactor vessel life assessments. It has been shown that shallow-flaws play a dominant role in the probabilistic fracture mechanics analysis of reactor pressure vessels during a pressurized-thermal-shock event. In addition, recent research has shown that the crack initiation toughness measured using specimens with shallow flaws is greater that the toughness determined with conventional, deeply notched specimens at temperatures within the transition region for non-nuclear steels. The influence of crack depth on the elastic-plastic fracture toughness for prototypic reactor material is being investigated. Preliminary results indicate a significant increase in the toughness associated with shallow-flaws which has the potential to significantly impact the conditional probability of vessel failure. 8 refs., 4 figs., 1 tab

  10. Welding of metallic fuel elements for the irradiation test in JOYO. Preliminary tests and welding execution tests (Joint research)

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Nakamura, Kinya; Iwai, Takashi; Arai, Yasuo

    2009-10-01

    Irradiation tests of metallic fuels elements in fast test reactor JOYO are planned under the joint research of Japan Atomic Energy Agency (JAEA) and Central Research Institute of Electric Power Industry (CRIEPI). Six U-Pu-Zr fuel elements clad with ferritic martensitic steel are fabricated in Plutonium Fuel Research Facility (PFRF) of JAEA-Oarai for the first time in Japan. In PFRF, the procedures of fabrication of the fuel elements were determined and the test runs of the equipments were carried out before the welding execution tests for the fuel elements. Test samples for confirming the welding condition between the cladding tube and top and bottom endplugs were prepared, and various test runs were carried out before the welding execution tests. As a result, the welding conditions were finalized by passing the welding execution tests. (author)

  11. Sintering in Biofuel and Coal-Biofuel Fired FBC's

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim

    1998-01-01

    This report presents the results of systematic experiments conducted in a laboratory scale fluidized bed combustor in order to study agglomeration phenomena during firing straw and co-firing straw with coal. The influence of operating conditions on ag-glomeration was investigated. The effect of co......-firing straw with coal on agglomeration was also examined. The results show that temperature has the most pronounced effect on the agglomeration tendency. As bed temperature increases, the defluidiza-tion time decreases sharply, which indicates an increasing tendency of agglomera-tion. When co-firing straw...... with coal, the defluidization time can be extended signifi-cantly. Examination of the agglomerates sampled during combustion by various analytical techniques indicates that the high potassium content in straw is the main cause for the formation of agglomerates. In the combustion process, potassium...

  12. INSTRUMENTATION DEVELOPMENT, MEASUREMENT AND PERFORMANCE EVALUATION OF ENVIRONMENTAL TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-07-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  13. Activation analysis by filtered neutrons. Preliminary investigation

    International Nuclear Information System (INIS)

    Skarnemark, G.; Rodinson, T.; Skaalberg, M.; Tokay, R.K.

    1986-01-01

    In order to investigate if measuring sensibility and precision by epithermal neutron activation analysis may be improved, different types of geological and biologic test samples were radiated. The test samples were enclosed in an extra filter of tungsten or sodium in order to reduce the flux of those neutrons that otherwise would induce interfering activity in the sample. The geological test samples consist of granites containing lanthanides which had been crushed in tung- sten carbide grinder. Normally such test samples show a interferins 1 87W-activity. By use of a tungsten filter the activity was reduced by up to 60%, which resulted in a considerable improvement of sensibility and precision of the measurement. The biologic test samples consisted of evaporated urine from patients treated with the cell poison cis-platinol. A reliable method to measure the platinum content has not existed so far. This method, however, enables platinum contents as low as about 0.1 ppm to be determined which is quite adequate. To sum up this preliminary study has demonstrated that activation analysis using filtered neutrons, correctly applied, is a satisfactory method of reducing interferences without complicated and time-consuming chemical separation procedures. (O.S.)

  14. 23 CFR 645.109 - Preliminary engineering.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Preliminary engineering. 645.109 Section 645.109 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS UTILITIES Utility Relocations, Adjustments, and Reimbursement § 645.109 Preliminary engineering. (a) As...

  15. Preliminary study on zinc-carbon battery performance by using neutron tomography

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Nor Abidin Ashari; Mohd Zaid Abdullah; Junita Mohamad Saleh; Azraf Azman; Megat Harun AlRashid Megat Ahmad; Rafhayudi Jamro

    2008-08-01

    This paper describes on the discharging characteristic of zinc-carbon batteries (dry cells) by using a neutron imaging technique called a monochromatic neutron tomography. Experiment was conducted on the Nuclear Malaysia neutron tomography prototype instrument which based on 1-dimensional position sensitive neutron detector. The instrument is constructed at the small angle neutron scattering (SANS) beam line built at the one of the beam ports of TRIGA MARK II Research reactor, Malaysian Nuclear Agency, Bangi, Selangor. The main aim of this preliminary experiment was to test the instrument capability on a real industrial component. It was also aimed to understand structural and chemical changes of these battery particles after experiencing a discharging process. In this preliminary work, new and used batteries used were the products of Eveready company. (Author)

  16. Preliminary Disposal Analysis for Selected Accelerator Production of Tritium Waste Streams

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.

    1998-06-01

    A preliminary analysis was performed for two selected Accelerator Production of Tritium (APT) generated mixed and low-level waste streams to determine if one mixed low-level waste (MLLW) stream that includes the Mixed Waste Lead (MWL) can be disposed of at the Nevada Test Site (NTS) and at the Hanford Site and if one low-level radioactive waste (LLW) stream, that includes the Tungsten waste stream (TWS) generated by the Tungsten Neutron Source modules and used in the Target/Blanket cavity vessel, can be disposed of in the LLW Vaults at the Savannah River Plant (SRP). The preliminary disposal analysis that the radionuclide concentrations of the two selected APT waste streams are not in full compliance with the Waste Acceptance Criteria (WAC) and the Performance Assessment (PA) radionuclide limits of the disposal sites considered

  17. Preliminary design county plan Zeeland

    International Nuclear Information System (INIS)

    1987-01-01

    The preliminary design 'Streekplan Zeeland' (Country plan Zeeland, with regard to the location of additional nuclear power plants in Zeeland, the Netherlands) has passed through a consultation and participation round. Thereupon 132 reactions have been received. These have been incorporated and answered in two notes. This proposal deals with the principal points of the preliminary design and treats also the remarks of the committees Environmental (town and country) Planning (RO), Provincial (town and country) Planning Committee (PPC) and Association of Communities of Zeeland (VZG), on the reply notes. The preliminary design with the modifications, collected in appendix 3, is proposed to be the starting point in the drawing-up of the design-country-plan. This design subsequently will pass the formal country-plan procedure. (author). 1 fig

  18. Blood-alcohol proficiency test program

    Science.gov (United States)

    1975-01-01

    A preliminary survey has been performed to ascertain the validity of the blood alcohol analysis performed by a number of laboratories on a voluntary basis. Values of accuracy and precision of the tests are presented. /Abstract from report summary pag...

  19. Reliability and preliminary evidence of validity of a Farsi version of the depression anxiety stress scales.

    Science.gov (United States)

    Bayani, Ali Asghar

    2010-08-01

    The internal consistency, test-retest reliability, and construct validity of the Farsi version of the Depression Anxiety Stress Scales were examined, with a sample of 306 undergraduate students (123 men, 183 women) ranging from 18 to 51 years of age (M age = 25.4, SD = 6.1). Participants completed the Satisfaction with Life Scale, Rosenberg Self-esteem Scale, and the Depression Anxiety Stress Scales. The findings confirmed the preliminary reliabilities and preliminary construct validity of the Farsi translation of the Depression Anxiety Stress Scales.

  20. Preliminary summary of the ETF conceptual studies

    Science.gov (United States)

    Seikel, G. R.; Bercaw, R. W.; Pearson, C. V.; Owens, W. R.

    1978-01-01

    Power plant studies have shown the attractiveness of MHD topped steam power plants for baseload utility applications. To realize these advantages, a three-phase development program was initiated. In the first phase, the engineering data and experience were developed for the design and construction of a pilot plant, the Engineering Test Facility (ETF). Results of the ETF studies are reviewed. These three parallel independent studies were conducted by industrial teams led by the AVCO Everett Research Laboratory, the General Electric Corporation, and the Westinghouse Corporation. A preliminary analysis and the status of the critical evaluation of these results are presented.