WorldWideScience

Sample records for preliminary aluminum deposition

  1. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  2. Corrosion properties of aluminum based alloys deposited by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Enders, B.; Krauss, S.; Wolf, G.K.

    1994-01-01

    The replacement of cadmium coatings by other protective measures is an important task because of the environmentally detrimental properties of cadmium. Therefore, aluminum and aluminum alloy coatings containing elements such as silicon or magnesium with more positive or negative positions in the galvanic series in relation to pure aluminum were deposited by ion beam assisted deposition onto glass and low carbon steel. Pure aluminum films were deposited onto low carbon steel in order to study the influence of the ion-to-atom arrival ratio and the angle of ion incidence on the corrosion properties. For examination of the pitting behavior as a function of the concentration of alloying element, quasipotentiostatic current-potential and potentiostatic current-time plots were measured in chlorine-containing acetate buffer. It is shown that these alloys can protect steel substrates under uniform and pitting corrosion conditions considerably better than pure aluminum coatings. ((orig.))

  3. Electrochemical Deposition of Aluminum from NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H. A.; Berg, Rolf W.

    1990-01-01

    Electrochemical deposition of aluminum from NaAlCl4 melts saturated with NaCl onto a glassy carbon electrode at175°C has been studied by voltammetry, chronoamperometry, and constant current deposition. The deposition of aluminumwas found to proceed via a nucleation/growth mechanism, and the nucle......Electrochemical deposition of aluminum from NaAlCl4 melts saturated with NaCl onto a glassy carbon electrode at175°C has been studied by voltammetry, chronoamperometry, and constant current deposition. The deposition of aluminumwas found to proceed via a nucleation/growth mechanism......, and the nucleation process was found to be progressive.The morphology of aluminum deposits was examined with photomicroscopy. It was shown that depending on the currentdensities (c.d.) applied, three types of aluminum deposits could be obtained, namely, spongy deposits formed at lower c.d.(below 0.7 mA/cm2), smooth...... layers deposited at intermediate c.d. (between 2 and 10 mA/cm2), and dendritic or porous depositsobtained at high c.d. (above 15 mA/cm2). However, the smooth aluminum deposits were about five times more voluminousthan the theoretical value. The spongy deposits were formed due to difficulties...

  4. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  5. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  6. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  7. Formation of aluminum films on silicon by ion beam deposition: a comparison with ionized cluster beam deposition

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D.; Tanaka, S.; Yamada, A.; Yamada, I.

    1991-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically analyzed ion beam to low energies (10-200 eV) for direct deposition onto the substrate under UHV conditions. The aluminum-on-silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. This technique has produced intriguing results for aluminum, with oriented crystalline films being formed at room temperature in spite of the 25% mismatch in lattice constant between aluminum and silicon. In this work, we have studied the formation of such films by IBD, with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40 to 300degC and with ion energies of 30-120 eV per ion. Completed films were analyzed by ion scattering, X-ray diffraction, scanning-electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are comparable to those for similar films grown by ICB deposition. (orig.)

  8. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  9. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    Science.gov (United States)

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  10. Aluminum-containing dense deposits of the glomerular basement membrane: identification by energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Smith, D.M. Jr.; Pitcock, J.A.; Murphy, W.M.

    1982-01-01

    Heavy metals, including gold, mercury, lead, bismuth, and cadmium, have the potential to cause renal disease. With the development of X-ray microanalysis, these heavy metals can now be identified in tissue deposits. This report describes a case of renal failure, probably related to dysproteinemia, in which granular, electron-opaque dense deposits were present in the glomerular basement membranes. Energy dispersive X-ray analysis demonstrated that these dense deposits contained aluminum. An analysis of this patient's history in relation to the current knowledge of aluminum metabolism suggests that the aluminum deposition occurred secondary to previous glomerular injury. This case emphasizes the need to utilize heavy metal identification technology whenever granular, electron-opaque dense deposits are identified and represents, to our knowledge, the first study to document aluminum deposits within the glomerular basement membrane of humans

  11. Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1990-01-01

    Effects of the additives MnCl2, sulfide, and their combined influence on aluminum deposition and dissolution inNaAlCl4 saturated with NaCl have been studied by polarization measurements, galvanostatic deposition, and current reversalchronopotentiometry (CRC). The solubility of MnCl2 was found...... to be 0.086 ± 0.006 m/o in the melt at 175°C. Aluminum-manganesealloys can be deposited in NaAlCl4 saturated with both NaCl and MnCl2, resulting in a slight increase incathodic overpotentials. The codeposition of the binary alloys at current densities below 4 mA/cm2 gave rise to formationof deposits so...

  12. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  13. Aluminum-silicon co-deposition by FB-CVD on austenitic stainless steel AISI 316

    International Nuclear Information System (INIS)

    Marulanda, J L; Perez, F J; Remolina-Millán, A

    2013-01-01

    Aluminum-silicon coatings were deposited on stainless steel AISI 316 in the temperature range of 540 to 560°C by CVD-FBR. It was used a fluidized bed with 2.5% silicon and 7.5% aluminum powder and 90% inert (alumina). This bed was fluidized with Ar and as an activator a mixture of HCl/H2 in ratios of 1/10 to 1/16. Furthermore, the deposition time of the coatings was varied between 45 minutes to 1.5 hours, with a 50% active gas, neutral gases 50%. Thermodynamic simulation was conducted with the Thermocalc software to get the possible compositions and amount of material deposited for the chosen conditions. The coatings presented the follow compounds FeAl 2 Si, FeAl 2 and Fe 2 Al 5 . Aluminum-silicon coatings were heat treated to improve its mechanical properties and its behavior against oxidation for the inter diffusion of the alloying elements. The heat treatment causes the aluminum diffuse into the substrate and the iron diffuse into coating surface. This leads to the transformation of the above compounds in FeAl, Al 2 FeSi, Cr 3 Si, AlFeNi and AlCrFe

  14. Optoelectronic properties of expanding thermal plasma deposited textured zinc oxide : effect of aluminum doping

    NARCIS (Netherlands)

    Groenen, R.; Kieft, E.R.; Linden, J.L.; Sanden, van de M.C.M.

    2006-01-01

    Aluminum-doped zinc oxide films exhibiting a rough surface morphol. are deposited on glass substrates utilizing expanding thermal plasma. Spectroscopic ellipsometry is used to evaluate optical and electronic film properties. The presence of aluminum donors in doped films is confirmed by a shift in

  15. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  16. Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses

    NARCIS (Netherlands)

    Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the

  17. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  18. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  19. Deposition of aluminum coatings on bio-composite laminates

    Science.gov (United States)

    Boccarusso, L.; Viscusi, A.; Durante, M.; Astarita, A.; De Fazio, D.; Sansone, R.; Caraviello, A.; Carrino, L.

    2018-05-01

    As a result of the increasing environmental awareness, the concern for environmental sustainability and the growing global waste problem, the interest of bio-composites materials is growing rapidly in the last years in order to use them in various engineering fields. Tremendous advantages and opportunities are associated with the use of these materials. On the other hand, some issues are related to the superficial properties of the bio-laminates, in particular the wear properties, the flame resistance and the aesthetic appearance have to be improved in order to extend the application fields of these materials. Aiming to these goals this paper deals with the study of the deposition of aluminum coating through cold spray process on hemp/PLA bio-composites manufactured by using the compression molding technique. Therefore, SEM observations, roughness analyses, bending tests, pin on disk and scratch tests were carried out in order to study the feasibility of the process and to investigate on the properties of the coated samples. The experimental results proved that when the process parameters of the deposition process are properly set, no damages are induced in the composite panel and that the aluminum coating, under specific load conditions, resulted to be able to protect the substrate.

  20. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Krawczak Ewelina

    2017-01-01

    Full Text Available The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  1. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  2. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  3. Influence of Substrates on the Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Berg, Rolf W.

    1991-01-01

    The deposition and dissolution of aluminum in NaAlCl4 melts saturated with NaCl have been investigated by voltammetryand potentiometry for different electrode materials at 175°C. The tungsten and glassy carbon electrodes are shownto be electrochemically inert in the melts, whereas copper is elect......The deposition and dissolution of aluminum in NaAlCl4 melts saturated with NaCl have been investigated by voltammetryand potentiometry for different electrode materials at 175°C. The tungsten and glassy carbon electrodes are shownto be electrochemically inert in the melts, whereas copper...... is electrochemically active; it dissolves into the melts at a lowanodic potential. On a nickel substrate, nickel dichloride will be formed at a potential of ca. 1.0 V vs. an aluminum referenceelectrode. The reversibility (of deposition and dissolution of aluminum) is found to be strongly affected by currentdensity...... investigated. Nickel and, to some extent,tungsten electrodes proved to be appropriate as working anodes in the Al/NaCl-AlCl3/Ni battery system....

  4. Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates.

    Science.gov (United States)

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C

    2017-04-01

    Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

  5. Rapid Solidification of a New Generation Aluminum-Lithium Alloy via Electrospark Deposition

    Science.gov (United States)

    Heard, David W.; Boselli, Julien; Gauvin, Raynald; Brochu, Mathieu

    Electrospark deposition (ESD) is a rapid solidification processing technique capable of depositing a metal onto a conductive substrate. The short pulse duration and high pulse frequency, combined with the small amount of material transferred during each pulse, results in high cooling rates being realized, on the order of 105-106 C/sec. This study investigates the ability to induce solute trapping behavior, for a new generation aluminum-lithium alloy, AA2199, using ESD.

  6. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  7. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  8. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    International Nuclear Information System (INIS)

    Ghrib, M.; Gaidi, M.; Ghrib, T.; Khedher, N.; Ben Salam, M.; Ezzaouia, H.

    2011-01-01

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  9. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  10. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  11. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  12. Optimization of Uranium Molecular Deposition for Alpha-Counting Sources

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Ellen [Univ. of Minnesota, Duluth, MN (United States); Parsons-Moss, Tashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Genetti, Victoria [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, Kimberly [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-12

    Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control under the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.

  13. Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jin; Park, Jae-Won

    2012-01-01

    We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.

  14. Atomic layer deposition and etching methods for far ultraviolet aluminum mirrors

    Science.gov (United States)

    Hennessy, John; Moore, Christopher S.; Balasubramanian, Kunjithapatham; Jewell, April D.; Carter, Christian; France, Kevin; Nikzad, Shouleh

    2017-09-01

    High-performance aluminum mirrors at far ultraviolet wavelengths require transparent dielectric materials as protective coatings to prevent oxidation. Reducing the thickness of this protective layer can result in additional performance gains by minimizing absorption losses, and provides a path toward high Al reflectance in the challenging wavelength range of 90 to 110 nm. We have pursued the development of new atomic layer deposition processes (ALD) for the metal fluoride materials of MgF2, AlF3 and LiF. Using anhydrous hydrogen fluoride as a reactant, these films can be deposited at the low temperatures required for large-area surface-finished optics and polymeric diffraction gratings. We also report on the development and application of an atomic layer etching (ALE) procedure to controllably etch native aluminum oxide. Our ALE process utilizes the same chemistry used in the ALD of AlF3 thin films, allowing for a combination of high-performance evaporated Al layers and ultrathin ALD encapsulation without requiring vacuum transfer. Progress in demonstrating the scalability of this approach, as well as the environmental stability of ALD/ALE Al mirrors are discussed in the context of possible future applications for NASA LUVOIR and HabEx mission concepts.

  15. Investigation of aluminum and iron deposition on metaplastic bones in three patients with diffuse pulmonary ossification.

    Science.gov (United States)

    Ohtsuki, Yuji; Mori, Kousuke; Ohnishi, Hirozo; Enzan, Hideaki; Iguchi, Mitsuko; Lee, Gang-Hong; Furihata, Mutsuo

    2015-12-01

    Diffuse pulmonary ossification (DPO) is a rare pulmonary lesion. DPO is typically detected at autopsy rather than premortem. Recently, however, several cases were diagnosed antemortem using computed tomography, high-resolution computed tomography, or video-assisted thoracic surgery. In the present study, we evaluated DPO at autopsy from two patients with post-myocardial infarction (cases 1 and 3) and one patient with duodenal cancer (case 2). Multiple metaplastic bones (nodular in case 1 and 3 or dendriform in case 2) were detected in these three cases. In an attempt to detect aluminum and iron deposition in these metaplastic bones, histochemical investigations were performed. The two nodular types of one and three cases were positive for aluminum and iron, but the dendriform type of case 2 was positive only for aluminum. The depositions occurred in a linear pattern along the calcifying front. It is of great interest that these deposition patterns were similar to those of bones from three previously reported DPO cases and from the bones of hemodialysis patients. It is suggested that these abnormal metal depositions in the calcifying front might disturb the normal mineralization processes of the metaplastic bones, although no morphological abnormality was detected, except for dense black color of calcifying front lines. Further investigations are needed in more patients with DPO to obtain more information on this topic.

  16. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  17. Controlling the resistivity gradient in aluminum-doped zinc oxide grown by plasma-enhanced chemical vapor deposition

    NARCIS (Netherlands)

    Ponomarev, M.; Verheijen, M.A.; Keuning, W.; Sanden, van de M.C.M.; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO:Al layers by focusing on the control

  18. A preliminary investigation for application of an advanced x-ray diffraction analyzer to in-process texture assessment of aluminum alloy sheet

    International Nuclear Information System (INIS)

    Ruud, C.O.; Snoha, D.J.

    1989-01-01

    The objective of this preliminary investigation was to assess the possibility of the use of rapid x-ray diffraction technology to nondestructively distinguish various texture conditions of aluminum can stock. Twelve samples of aluminum alloy can stock sheet were supplied by two manufacturers. The samples varied in thickness from 0.128 to 0.0124 inch and in texture from 2.8% to 11.0% as measured by a cup drawing earing test. The results for Cu K-alpha and Cr K-alpha radiation on suites of aluminum can stock samples from two manufacturers, in both hot rolled can stock precursor gages of 0.80 and 0.125 inch and in the final gage, show there is a good correlation between the peak intensity area function and the texture. These preliminary results provide an indication that the instrumentation and techniques applied could be optimized and refined for application to rapid, in-process nondestructive inspection of rolled aluminum can stock

  19. An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition

    International Nuclear Information System (INIS)

    Yoshikawa, Naoki; Kishi, Naoki; Sugai, Toshiki; Shinohara, Hisanori; Asari, Takuma; Hayashi, Shigeo

    2008-01-01

    An efficient and versatile growth of thin-layer carbon nanotubes on a flexible aluminum foil (for kitchen use) by catalyst-supported chemical vapor deposition is reported. The aluminum foil used in the present experiment is commercially available for kitchen use. The electron-beam vapor deposition and dip-coating have been used for preparing catalysts on the aluminum foil. Vertically aligned thin-layer CNTs with typical diameters of 2.5-6.0 nm and lengths up to 90 μm are obtained when ethanol is used in combination with Fe and Co catalyst particles at a growth temperature of around 650 deg. C under an Ar/H 2 gas flow. Thermo-gravimetric analyses together with HR-TEM observations indicate that the purity of the CNTs synthesized by the current technique is very high

  20. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    Science.gov (United States)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  1. Local deposition of polypyrrole on aluminum by anodizing, laser irradiation, and electrolytic polymerization and its application to the fabrication of micro-actuators

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Kikuchi, T. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan)]. E-mail: kiku@elechem1-mc.eng.hokudai.ac.jp; Ueda, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Iida, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Sakairi, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan)

    2006-06-15

    Polypyrrole was deposited at selected areas on aluminum by anodizing, laser irradiation, and electrolytic polymerization, and the application of the technique for fabricating micro-actuators was attempted. Aluminum specimens covered with porous type anodic oxide films were irradiated with a pulsed Nd-YAG laser to remove the oxide films locally, and then thin Ni layers were deposited at areas where film had been removed. Polypyrrole could be successfully deposited only on the Ni layer by anodic polarization of the specimens in pyrrole monomer solution, and a polypyrrole/Ni bilayer structure could be obtained by dissolution of the aluminum substrate and anodic oxide film in NaOH solutions. The bilayer structure was found to be inactive to doping and dedoping of ions during anodic and cathodic polarization. A three-layer structure, nitrocellulose/Ni/polypyrrole, fabricated by electrolytic polymerization after nitrocellulose coating on a Ni layer detached from the aluminum substrate, showed ion-doping and -dedoping activity, suggesting the possibility of fabricating micro-actuators in this manner.

  2. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  3. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun

    2013-01-01

    Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al 2 O 3 ) on a graphene channel through nitrogen plasma treatment. The deposited Al 2 O 3 thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al 2 O 3 as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics

  4. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  5. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...

  6. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    Science.gov (United States)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  7. Depth Profiling Analysis of Aluminum Oxidation During Film Deposition in a Conventional High Vacuum System

    Science.gov (United States)

    Kim, Jongmin; Weimer, Jeffrey J.; Zukic, Muamer; Torr, Douglas G.

    1994-01-01

    The oxidation of aluminum thin films deposited in a conventional high vacuum chamber has been investigated using x-ray photoelectron spectroscopy (XPS) and depth profiling. The state of the Al layer was preserved by coating it with a protective MgF2 layer in the deposition chamber. Oxygen concentrations in the film layers were determined as a function of sputter time (depth into the film). The results show that an oxidized layer is formed at the start of Al deposition and that a less extensively oxidized Al layer is deposited if the deposition rate is fast. The top surface of the Al layer oxidizes very quickly. This top oxidized layer may be thicker than has been previously reported by optical methods. Maximum oxygen concentrations measured by XPS at each Al interface are related to pressure to rate ratios determined during the Al layer deposition.

  8. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  9. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  10. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  11. Molecularly ordered aluminum tris-(8-hydroxyquinoline) thin films grown by hot-wall deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tapponnier, A. [Nonlinear Optics Laboratory, Institute of Quantum Electronics, Swiss Federal Institute of Technology Zuerich (ETH), CH-8093 Zurich (Switzerland)]. E-mail: axelle@phys.ethz.ch; Khan, R.U.A. [Nonlinear Optics Laboratory, Institute of Quantum Electronics, Swiss Federal Institute of Technology Zuerich (ETH), CH-8093 Zurich (Switzerland); Marcolli, C. [Institute of Atmospheric and Climate Sciences, Swiss Federal Institute of Technology Zuerich (ETH), CH-8092 Zurich (Switzerland); Guenter, P. [Nonlinear Optics Laboratory, Institute of Quantum Electronics, Swiss Federal Institute of Technology Zuerich (ETH), CH-8093 Zurich (Switzerland)

    2007-01-22

    We report on the growth and microstructural analysis of molecularly ordered thin film layers of aluminum tris-(8-hydroxyquinoline) (Alq{sub 3}) by hot-wall deposition onto amorphous glass substrates. Using transmission electron microscopy (TEM), ordering on a scale of 100 nm was observed. Raman measurements of these films indicated that they corresponded to the {alpha}-polymorph of crystalline Alq{sub 3}, and photoluminescence measurements exhibited a single broad peak centered at 500 nm, which is also consistent with the {alpha}-form. As a comparison, we deposited films of Alq3 using organic molecular beam deposition (OMBD), which exhibited no molecular ordering from the TEM studies. For these films, strong point-to-point variations in the Raman spectrum, and the existence of a double peak in the photoluminescence at 500 and 522 nm were observed. These measurements indicate that the OMBD films possess a mixture of both {alpha} and amorphous phases.

  12. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  13. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    OpenAIRE

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the coating and the substrate, the macro-stresses were found to be compressive and to decrease in magnitude with increasing processing speed. The origin of the macro- and micro-stresses is discussed. T...

  14. Preliminary study on tensile properties and fractography of the recycled aluminum cast product

    International Nuclear Information System (INIS)

    Hishamuddin Hussain; Mohd Harun; Hafizal Yazid; Shaiful Rizam Shamsudin; Zaiton Selamat; Mohd Shariff Sattar

    2004-01-01

    Among many mechanical properties of materials, tensile properties are probably the most frequently considered, evaluated, and referred by the industry. This paper presents the result of preliminary study regarding the tensile properties and fractography of the recycled aluminum cast product. For this purpose, three sets of specimen were prepared for tensile testing by using permanent mold casting technique. The cast products are in durable shaped tensile specimens with the gauge length of 50mm. The tensile testing was conducted in accordance with BS EN 10002-1 and ISO 6892 standards. Fracture surface analysis was also conducted to understand materials behaviour. (Author)

  15. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone.

    Science.gov (United States)

    Chappard, D; Bizot, P; Mabilleau, G; Hubert, L

    2016-06-01

    Several decades ago, aluminum encephalopathy associated with osteomalacia has been recognized as the major complication of chronic renal failure in dialyzed patients. Removal of aluminum from the dialysate has led to a disappearance of the disease. However, aluminum deposit occurs in the hydroxyapatite of the bone matrix in some clinical circumstances that are presented in this review. We have encountered aluminum in bone in patients with an increased intestinal permeability (coeliac disease), or in the case of prolonged administration of aluminum anti-acid drugs. A colocalisation of aluminum with iron was also noted in cases of hemochromatosis and sickle cell anemia. Aluminium was also identified in a series of patients with exostosis, a frequent benign bone tumor. Corrosion of prosthetic implants composed of grade V titanium (TA6V is an alloy containing 6% aluminum and 4% vanadium) was also observed in a series of hip or knee revisions. Aluminum can be identified in undecalcified bone matrix stained by solochrome azurine, a highly specific stain allowing the detection of 0.03 atomic %. Colocalization of aluminum and iron does not seem to be the fruit of chance but the cellular and molecular mechanisms are still poorly understood. Histochemistry is superior to spectroscopic analyses (EDS and WDS in scanning electron microscopy). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Aluminum oxide barrier coating on polyethersulfone substrate by atomic layer deposition for barrier property enhancement

    International Nuclear Information System (INIS)

    Kim, Hyun Gi; Kim, Sung Soo

    2011-01-01

    Aluminum oxide layers were deposited on flexible polyethersulfone (PES) substrates via plasma enhanced atomic layer deposition (PEALD) process using trimethylaluminum (TMA) and oxygen as precursor and reactant materials. Several process parameters in PEALD process were investigated in terms of refractive index and layer thickness. Number of process cycle increased the thickness and refractive index of the layer to enhance the barrier properties. Non-physisorbed TMA and unreacted oxygen were purged before and after the plasma reaction, respectively. Identical purge time was applied to TMA and oxygen and it was optimized for 10 s. Thinner and denser layer was formed as substrate temperature increased. However, the PES substrate could be deformed above 120 o C. Aluminum oxide layer formed on PES at optimized conditions have 11.8 nm of thickness and reduced water vapor transmission rate and oxygen transmission rate to below 4 x 10 -3 g/m 2 day and 4 x 10 -3 cm 3 /m 2 day, respectively. Polycarbonate and polyethylene naphthalate films were also tested at optimized conditions, and they also showed quite appreciable barrier properties to be used as plastic substrates.

  17. Molecular dynamics study of growth and interface structure during aluminum deposition on Ni(1 0 0) substrate

    International Nuclear Information System (INIS)

    er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco); Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco); Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Hassani, A.; Makan, A.; er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Sbiaai, K.; er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco))" >Tabyaoui, A.; er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Hasnaoui, A.

    2015-01-01

    Highlights: • Aluminum thin film growth on Ni(1 0 0) substrate was investigated. • Molecular dynamics simulation based on EAM interaction potential was considered. • Hexagonal and fourfold structures coexisted in the first layer. • Interface mismatch was revealed by wavy effect occurring in both lateral directions. • Film growth followed a layer-by-layer mode only in the first three deposited layers. - Abstract: We investigate aluminum thin film growth on Ni(1 0 0) substrate by means of molecular dynamics simulation. Embedded Atom Method interaction potential is considered. The simulation is performed at 300 K using an incident energy of 1 eV. The substrate-grown film interface shows the coexistence of hexagonal and fourfold structures in the first layer during the initial stage of deposition. As the deposition proceeds, the hexagonal geometry transforms to fourfold one which becomes dominant toward the end of deposition. The coverage of this layer exceeded 100%. Moreover, the deposited Al atoms with fourfold geometry adopt the lattice parameter of Ni as the thickness of deposited film increases. The interface mismatch investigation revealed that the roughness is dictated by how the Al(1 1 1) fits to the Ni(1 0 0) substrate, which may be reflected by a wavy effect occurring in both lateral directions. Furthermore, the film grows by a layer-by-layer mode with a coverage rate greater than 66.7% in the first three layers, while it follows an island mode with a coverage rate lower than the previous value (66.7%) beyond the third layer. Overall, a detailed analysis of each layer growth has established a relationship between the number of deposited atoms and the coverage rate of each layer

  18. Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits

    Science.gov (United States)

    Rokni, M. R.; Nardi, A. T.; Champagne, V. K.; Nutt, S. R.

    2018-05-01

    The effects of powder preprocessing (degassing at 400 °C for 6 h) on microstructure and mechanical properties of 5056 aluminum deposits produced by high-pressure cold spray were investigated. To investigate directionality of the mechanical properties, microtensile coupons were excised from different directions of the deposit, i.e., longitudinal, short transverse, long transverse, and diagonal and then tested. The results were compared to properties of wrought 5056 and the coating deposited with as-received 5056 Al powder and correlated with the observed microstructures. Preprocessing softened the particles and eliminated the pores within them, resulting in more extensive and uniform deformation upon impact with the substrate and with underlying deposited material. Microstructural characterization and finite element simulation indicated that upon particle impact, the peripheral regions experienced more extensive deformation and higher temperatures than the central contact zone. This led to more recrystallization and stronger bonding at peripheral regions relative to the contact zone area and yielded superior properties in the longitudinal direction compared with the short transverse direction. Fractography revealed that crack propagation takes place along the particle-particle interfaces in the transverse directions (caused by insufficient bonding and recrystallization), whereas through the deposited particles, fracture is dominant in the longitudinal direction.

  19. Deposition of waste kaolin in aluminum alloy by electrolytic plasma technique

    International Nuclear Information System (INIS)

    Palinkas, Fabiola Bergamasco da Silva Marcondes; Antunes, Maria Lucia Pereira; Cruz, Nilson Cristino; Rangel, Elidiane Cipriano; Souza, Jose Antonio da Silva

    2016-01-01

    Full text: Kaolin is a widely explored mineral for various industrial purposes and its processing generates up to 90% of waste, corresponding to 500 thousand tons annually. The Deposition of Kaolin residue on aluminum alloys by electrolytic plasma has objective of a valorization of the residue. It was evaluated the mineralogical composition by X-ray diffraction (XRD), using PANalytical diffractometer X'Pert Pro. The scanning electron microscopy (SEM) and the spectrometry of dispersive of energy (EDS) evaluated the morphology and elementary chemical composition by microscope scanning electron JEOL JSM-6010LA. The Infrared Spectroscopy (FTIR) has used a Spectrometer the Perkin-Elmer 1760X FT-IR with spectral range 4000-400 cm -1 . XRD results indicate peaks of kaolinite as the main constituent. The morphology of the particles correspond to pseudo-hexagonal lamellar crystals characteristic of kaolinite, analysis by EDS allows to identify the composition of the particles as Al and Si. The samples were deposited at concentrations of 5, 10 and 15 mg of the residue and each concentration were considered deposition times of 5, 10 and 15 minutes. Tests evaluate the films as the wettability, chemical composition, morphology, mechanical strength and corrosion resistance. Results indicate the presence of kaolinite, alumina and mullite in the obtained coatings. (author)

  20. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    International Nuclear Information System (INIS)

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  1. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts

  2. Low temperature-pyrosol-deposition of aluminum-doped zinc oxide thin films for transparent conducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M.J. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Ramírez, E.B. [Universidad Autónoma de la Ciudad de México, Calle Prolongación San Isidro Núm. 151, Col. San Lorenzo Tezonco, Iztapalapa, 09790 México, D.F. (Mexico); Juárez, B.; González, J.; García-León, J.M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Escobar-Alarcón, L. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México, D.F. 11801 (Mexico); Alonso, J.C., E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico)

    2016-04-30

    Aluminum doped-zinc oxide (ZnO:Al) thin films with thickness ~ 1000 nm have been deposited by the ultrasonic spray pyrolysis technique using low substrate temperatures in the range from 285 to 360 °C. The electrical and optical properties of the ZnO:Al (AZO) films were investigated by Uv–vis spectroscopy and Hall effect measurements. The crystallinity and morphology of the films were analyzed using X-ray diffraction (XRD), atomic force microscopy (AFM), and high resolution scanning electron microcopy (SEM). XRD results reveal that all the films are nanocrystalline with a hexagonal wurtzite structure with a preferential orientation in the (002) plane. The size of the grains calculated from Scherrer's formula was in the range from 28 to 35 nm. AFM and SEM analysis reveals that the grains form round and hexagonal shaped aggregates at high deposition temperatures and larger rice shaped aggregates at low temperatures. All the films have a high optical transparency (~ 82%). According to the Hall measurements the AZO films deposited at 360 and 340 °C had resistivities of 2.2 × 10{sup −3}–4.3 × 10{sup −3} Ω cm, respectively. These films were n-type and had carrier concentrations and mobilities of 3.71–2.54 × 10{sup 20} cm{sup −3} and 7.4–5.7 cm{sup 2}/V s, respectively. The figure of merit of these films as transparent conductors was in the range of 2.6 × 10{sup −2} Ω{sup −1}–4.1 × 10{sup −2} Ω{sup −1}. Films deposited at 300 °C and 285 °C, had much higher resistivities. Based on the thermogravimetric analysis of the individual precursors used for film deposition, we speculate on possible film growing mechanisms that can explain the composition and electrical properties of films deposited under the two different ranges of temperatures. - Highlights: • Aluminum doped zinc oxide thin films were deposited at low temperatures by pyrosol. • Low resistivity was achieved from 340 °C substrate temperature. • All films deposited

  3. Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board

    Directory of Open Access Journals (Sweden)

    Lee Jacqueline Ann L.

    2016-01-01

    Full Text Available A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.

  4. Preparation of tris(8-hydroxyquinolinato)aluminum thin films by sputtering deposition using powder and pressed powder targets

    Science.gov (United States)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Rei; Suda, Yoshiaki

    2017-06-01

    Tris(8-hydroxyquinolinato)aluminum (Alq3) thin films, for use in organic electroluminescence displays, were prepared by a sputtering deposition method using powder and pressed powder targets. Experimental results suggest that Alq3 thin films can be prepared using powder and pressed powder targets, although the films were amorphous. The surface color of the target after deposition became dark brown, and the Fourier transform infrared spectroscopy spectrum changed when using a pressed powder target. The deposition rate of the film using a powder target was higher than that using a pressed powder target. That may be because the electron and ion densities of the plasma generated using the powder target are higher than those when using pressed powder targets under the same deposition conditions. The properties of a thin film prepared using a powder target were almost the same as those of a film prepared using a pressed powder target.

  5. Carrier gas effects on aluminum-catalyzed nanowire growth

    International Nuclear Information System (INIS)

    Ke, Yue; Hainey, Mel Jr; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M; Redwing, Joan M

    2016-01-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor–solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor–solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH_4 adsorption thereby reducing vapor–solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH_4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures. (paper)

  6. Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Bing-Rui; Lo, Shih-Yung; Wuu, Dong-Sing; Ou, Sin-Liang; Mao, Hsin-Yuan; Wang, Jui-Hao; Horng, Ray-Hua

    2012-01-01

    Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 10 18 cm −3 , and Hall mobility of 22 cm 2 /Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications. - Highlights: ►Poly-Si seed layers are formed by aluminum-induced crystallization (AIC) process. ►Poly-Si on AIC seed layers are prepared by hot-wire chemical vapor deposition. ►AIC process parameters affect structural properties of poly-Si films. ►Increasing the annealing duration and temperature increases the film crystallinity.

  7. Preliminary thermal-hydraulic and structural strength analyses for pre-moderator of cold moderator

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-08-01

    A light-water cooled pre-moderator with a thin-walled structure made of aluminum alloy is installed around a liquid hydrogen moderator in order to enhance the neutron performance of a MW-scale spallation target system which is being developed in the Japan Atomic Energy Research Institute (JAERI). Since the pre-moderator is needed to be located close to a target working as a neutron source, it is indispensable to remove nuclear heat deposition in the pre-moderator effectively by means of smooth water flow without flow stagnation. Also, the structural integrity of the thin-walled structure should be kept against the water pressure. Preliminary thermal-hydraulic analytical results showed that the water temperature rise could be suppressed less than 1degC while keeping the smooth water flow, which would assure the expected neutron performance. As for the structural integrity, several measures to meet allowable stress conditions of aluminum alloy were proposed on the basis of the preliminary structural strength analyses. (author)

  8. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  9. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  10. Corrosion control of aluminum surfaces by polypyrrole films: influence of electrolyte

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2007-06-01

    Full Text Available Polypyrrole (PPy films were galvanostatically deposited on 99.9 wt. (% aluminum electrodes from aqueous solutions containing each carboxylic acid: tartaric, oxalic or citric. Scanning Electron Microscopy (SEM was used to analyze the morphology of the aluminum surfaces coated with the polymeric films. It was observed that the films deposited from tartaric acid medium presented higher homogeneity than those deposited from oxalic and citric acid. Furthermore, the corrosion protection of aluminum surfaces by PPy films was also investigated by potentiodynamic polarization experiments.

  11. Preliminary interpretation of pre-2014 landslide deposits in the vicinity of Oso, Washington

    Science.gov (United States)

    Haugerud, Ralph A.

    2014-01-01

    High-resolution topographic surveys allow fairly precise mapping of landslide deposits and their relative ages. Relative ages are determined by cross-cutting relations and the amount of smoothing—more smoothed slide deposits are older—of these deposits. The Tulalip Tribes, in partnership with the Puget Sound Lidar Consortium, acquired a high-resolution lidar (light detection and ranging) survey of the North Fork Stillaguamish River valley in 2013. This report presents a preliminary interpretation of the topography of this area using the lidar data at a scale of 1:24,000.

  12. A preliminary comparison of mineral deposits in faults near Yucca Mountain, Nevada, with possible analogs

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Bish, D.L.; Chipera, S.

    1988-05-01

    Several faults near Yucca Mountain, Nevada, contain abundant calcite and opal-CT, with lesser amounts of opal-A and sepiolite or smectite. These secondary minerals are being studied to determine the directions, amounts, and timing of transport involved in their formation. Such information is important for evaluating the future performances of a potential high-level nuclear waste repository beneath Yucca Mountain. This report is a preliminary assessment of how those minerals were formed. Possible analog deposits from known hydrothermal veins, warm springs, cold springs or seeps, soils, and aeolian sands were studied by petrographic and x-ray diffraction methods for comparison with the minerals deposited in the faults; there are major mineralogic differences in all of these environments except in the aeolian sands and in some cold seeps. Preliminary conclusions are that the deposits in the faults and in the sand ramps are closely related, and that the process of deposition did not require upward transport from depth. 35 refs., 25 figs

  13. Optimal conditions for the deposition of novel anticorrosive coatings by RF magnetron sputtering for aluminum alloy AA6082

    International Nuclear Information System (INIS)

    Brachetti-Sibaja, S.B.; Domínguez-Crespo, M.A.; Rodil, S.E.; Torres-Huerta, A.M.

    2014-01-01

    Highlights: • Non-conventional technique for improving the corrosion resistance of aluminum alloys. • Effect of the deposition parameters: power, substrate temperature and deposition time. • Changes in the crystallinity of the coatings are observed with the temperature. • The structure of these coatings is found to be dependent on the nature of the substrate. • La coatings can provide a better physical barrier to inhibit the corrosion attack. - Abstract: Cerium and lanthanum coatings were deposited on glass, silicon (1 0 0), and aluminum alloy by RF magnetron sputtering in which several experimental conditions such as power, substrate temperature, and deposition time were varied, using pure CeO 2 and La 2 O 3 targets. The effect of deposition parameters on the bonding structure, surface morphology and properties against corrosion of rare earth (RE) coatings formed on metallic substrate was reported. The microstructure and chemistry of the thin film were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and X-ray photoelectron spectroscopy (XPS); whereas their use as corrosion resistant coatings was studied in aqueous NaCl solution (3.0 wt%) by using polarization curves. Variations in these properties were observed by increasing the substrate temperature which modifies the crystallinity of the rare earth coatings. XRD and XPS findings indicate that the cerium coatings are composed by CeO 2 and a significant quantity of Ce 2 O 3 due to oxygen deficiency in the sputtering chamber, whereas La 2 O 3 /La(OH) 3 and some La intermetallic compounds are detected in the lanthanum films. Variations in the E corr and I corr were found as a function of the thickness, texture, and morphology of the as-prepared coatings

  14. Improved design and durability of aluminum die casting horizontal shot sleeves

    Science.gov (United States)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  15. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    Science.gov (United States)

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  16. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering

    CERN Document Server

    Seino, T

    2002-01-01

    The reactive pulsed dc sputtering technique is widely used for the deposition of oxide films. The operating pressure for sputtering is commonly above 0.13 Pa. In this study, however, aluminum oxide (alumina) films were deposited at operating pressures from 0.06 to 0.4 Pa using a sputtering system equipped with a scanning magnetron cathode and a pulsed dc power supply. The pulsed dc power was found to be useful not only to reduce arcing, but also to sustain the discharge at low pressure. The electrical breakdown field, intrinsic stress, O/Al ratio, refractive index, and surface roughness were investigated. Both a low intrinsic stress and an O/Al ratio around the stoichiometry were required to get the film having a high breakdown field. A low operating pressure of 0.1 Pa was found to provide the necessary stress and O/Al ratio targets. A 50-nm-thick alumina film having a maximum breakdown field of 7.4 MV/cm was obtained.

  17. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  18. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition

    International Nuclear Information System (INIS)

    Luka, G.; Witkowski, B.S.; Wachnicki, L.; Jakiela, R.; Virt, I.S.; Andrzejczuk, M.; Lewandowska, M.; Godlewski, M.

    2014-01-01

    Highlights: • Transparent and conductive ZnO:Al films were grown by atomic layer deposition. • The films were grown on flexible substrates at low growth temperatures (110–140 °C). • So-obtained films have low resistivities, of the order of 10 −3 Ω cm. • Bending tests indicated a critical bending radius of ≈1.2 cm. • Possible sources of the film resistivity changes upon bending are proposed. - Abstract: Aluminum-doped zinc oxide (AZO) films were grown on polyethylene terephthalate (PET) substrates by atomic layer deposition (ALD) at low deposition temperatures (110–140 °C). The films have low resistivities, ∼10 −3 Ω cm, and high transparency (∼90%) in the visible range. Bending tests indicated a critical bending radius of ≈1.2 cm, below which the resistivity changes became irreversible. The films deposited on PET with additional buffer layer are more stable upon bending and temperature changes

  19. Nano-TiO_2 coatings on aluminum surfaces by aerosol flame synthesis

    International Nuclear Information System (INIS)

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello; Commodo, Mario; Minutolo, Patrizia; D'Anna, Andrea; Squillace, Antonino

    2016-01-01

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO_2 has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO_2 nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO_2 particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO_2 nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy • Improvement of

  20. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  1. Residual stress and texture in Aluminum doped Zinc Oxide layers deposited by reactive radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Azanza Ricardo, C.L., E-mail: Cristy.Azanza@ing.unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Pastorelli, M.; D' Incau, M. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Aswath, P. [College of Engineering, University of Texas at Arlington, TX (United States); Scardi, P. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy)

    2016-04-30

    Aluminum doped Zinc Oxide thin films were deposited on standard soda-lime substrates by reactive radio frequency magnetron sputtering. Residual stress and texture were studied by X-ray diffraction, while X-ray Absorption Near Edge Spectroscopy provided information on the Al environment in the best performing thin films. The influence of deposition parameters on structural and microstructural properties is discussed. A correlation between microstructure and residual stress state with electrical and optical properties is proposed. - Highlights: • Al doped ZnO thin films were obtained by reactive radio frequency magnetron sputtering. • Correlation of stresses and texture with electrical and optical properties is shown. • Homogeneous and stress-free thin-films are the best performing ones. • XANES confirmed the doping mechanism and excluded some spurious phases.

  2. Yttrium aluminum garnet coating on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2016-02-15

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu{sup 3+} onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min{sup −1} and evaporation led to deposition of different numbers of layers of the YAG:Eu{sup 3+} film onto the glass substrate from a YAG:Eu{sup 3+} powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu{sup 3+}. • The matrix was deposited as transparent films. • The YAG:Eu{sup 3+} was deposited by sol–gel process onto glass substrate.

  3. Yttrium aluminum garnet coating on glass substrate

    International Nuclear Information System (INIS)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J.

    2016-01-01

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu 3+ onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min −1 and evaporation led to deposition of different numbers of layers of the YAG:Eu 3+ film onto the glass substrate from a YAG:Eu 3+ powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu 3+ . • The matrix was deposited as transparent films. • The YAG:Eu 3+ was deposited by sol–gel process onto glass substrate.

  4. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  5. Deposition and Characterization of Thin Films on Metallic Substrates

    Science.gov (United States)

    Gatica, Jorge E.

    2005-01-01

    A CVD method was successfully developed to produce conversion coatings on aluminum alloys surfaces with reproducible results with a variety of precursors. A well defined protocol to prepare the precursor solutions formulated in a previous research was extended to other additives. It was demonstrated that solutions prepared following such a protocol could be used to systematically generate protective coatings onto aluminum surfaces. Experiments with a variety of formulations revealed that a refined deposition protocol yields reproducible conversion coatings of controlled composition. A preliminary correlation between solution formulations and successful precursors was derived. Coatings were tested for adhesion properties enhancement for commercial paints. A standard testing method was followed and clear trends were identified. Only one precursors was tested systematically. Anticipated work on other precursors should allow a better characterization of the effect of intermetallics on the production of conversion/protective coatings on metals and ceramics. The significance of this work was the practical demonstration that chemical vapor deposition (CVD) techniques can be used to systematically generate protective/conversion coating on non-ferrous surfaces. In order to become an effective approach to replace chromate-based pre- treatment processes, namely in the aerospace or automobile industry, the process parameters must be defined more precisely. Moreover, the feasibility of scale-up designs necessitates a more comprehensive characterization of the fluid flow, transport phenomena, and chemical kinetics interacting in the process. Kinetic characterization showed a significantly different effect of magnesium-based precursors when compared to iron-based precursors. Future work will concentrate on refining the process through computer simulations and further experimental studies on the effect of other transition metals to induce deposition of conversion/protective films

  6. Wafer-Scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition

    Science.gov (United States)

    2016-01-04

    Because the plasma frequency of aluminum is at significantly higher energies than that of gold or silver, aluminum holds promise for UV sensing and...plasmonics. Unlike plasmonic devices based on coinage metals, such as gold and silver, which are effectively banned from silicon semiconductor fabrication... hydroxide -based developer. Finally, samples were plasma etched using a 1200 W plasma with a 145 W bias and a 12 mTorr chamber pressure. The flow

  7. Preliminary investigation of aluminum combustion in air and steam.

    OpenAIRE

    Hallenbeck, Amos Edward.

    1983-01-01

    Approved for public release; distribution in unlimited. The goal of the experiment is to understand the role of metal-steam combustion in the explosion of underwater shaped cnarges. An apparatus was constructed to investigate combustion of aluminum in stes.m. For background information, aluminum wires (1 mm diameter, 50 mm length) were ignited in air by high current (480 amperes) . Tests in air and steam were photographed using 35 mm color slides and 16 mm movies (4300 fr...

  8. Study of ion plating parameters, coating structure, and corrosion protection for aluminum coatings on uranium

    International Nuclear Information System (INIS)

    Egert, C.M.; Scott, D.G.

    1987-01-01

    A study of ion-plating parameters (primarily deposition rate and substrate bias voltage), coating structure, and the corrosion protection provided by aluminum coatings on uranium is presented. Ion plating at low temperatures yields a variety of aluminum coating structures on uranium. For example, aluminum coatings produced at high deposition rates and low substrate bias voltages are columnar with voids between columns, as expected for high-rate vapor deposition at low temperatures. On the other hand, low deposition rate and high bias voltage produce a modified coating with a dense, noncolumnar structure. These results are not in agreement with other studies that have found no relationship between deposition rate and coating structure in ion plating. This discrepancy is probably due to the high deposition rates used in these studies. An accelerated, water vapor corrosion test indicates that the columnar aluminum coatings provide some corrosion protection despite their porous nature; however, the dense noncolumnar coatings provide significantly greater protection. These results indicate that ion-plated aluminum coatings produced at low deposition rates and high substrate bias voltages creates dense coating structures that are most effective in protecting uranium from corrosion

  9. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  10. Nano-TiO{sub 2} coatings on aluminum surfaces by aerosol flame synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Commodo, Mario; Minutolo, Patrizia [Istituto di Ricerche sulla Combustione, CNR, Napoli 80125 (Italy); D' Anna, Andrea, E-mail: anddanna@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Squillace, Antonino [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy)

    2016-06-30

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO{sub 2} has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO{sub 2} nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO{sub 2} particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO{sub 2} nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy

  11. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Broas, Mikael, E-mail: mikael.broas@aalto.fi; Vuorinen, Vesa [Department of Electrical Engineering and Automation, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sippola, Perttu; Pyymaki Perros, Alexander; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä (Finland); Paulasto-Kröckel, Mervi [Department of Electrical Engineering and Automation, Aalto University. P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland)

    2016-07-15

    Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N{sub 2}:H{sub 2} plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the AlN films. Furthermore, dinitrogen triple bonds were identified with infrared spectroscopy in the films. The triple bonds broke after annealing at 1000 °C for 1 h which likely caused enhanced hydrolysis of the films. The nanostructure of the films was identified to be amorphous in the as-deposited state and to become nanocrystalline after 1 h of annealing at 1000 °C.

  12. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Johnson, Kyle W.; Guruvenket, Srinivasan; Sailer, Robert A.; Ahrenkiel, S. Phillip; Schulz, Douglas L.

    2013-01-01

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H 2 O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF 2 . • Carbonaceous contamination from the precursor was minimal

  13. Structural, optical and thermal properties of nanoporous aluminum

    International Nuclear Information System (INIS)

    Ghrib, Taher

    2015-01-01

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties

  14. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  15. Improved stability of organic light-emitting diode with aluminum cathodes prepared by ion beam assisted deposition

    Directory of Open Access Journals (Sweden)

    Soon Moon Jeong, Deuk Yeon Lee, Won Hoe Koo, Sang Hun Choi, Hong Koo Baik, Se-Jong Lee and Kie Moon Song

    2005-01-01

    Full Text Available We have fabricated highly stable organic electroluminescent devices based on spin-coated poly-p-phenylene-vynylene (PPV thin films. The electrical properties of aluminum cathode, prepared by ion beam assisted deposition, on PPV have been investigated and compared to those by thermal evaporation. Although energetic particles of Al assisted by Ar+ ion may damage the organic material, I–V–L characteristics are improved by applying thin Al buffer layer. In addition, a dense Al cathode inhibits the permeation of H2O and O2 into PPV film through pinhole defects, and thus retards dark spot growth. It may be deduced from highly packed structure of Al cathode with an increase in the contact area between Al and PPV that reduce the contact resistance. In conclusion, the lifetime of organic light-emitting device (OLED has been extended effectively by dense Al film through ion beam assisted deposition process.

  16. Precipitation and Deposition of Aluminum-Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Wang, Li-Qiong; Dabbs, Daniel M.; Aksay, Ilhan A.

    2002-01-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and thereby minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section of Westinghouse Savannah River Company at SRS now is collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary objectives of this study are (1) to understand the major factors controlling precipitation, heterogeneous nucleation, and growth phenomena of relatively insoluble aluminosilicates; (2) to determine the role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results of this work will provide crucial information for (1) avoiding problematical sludge processing steps and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  17. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  18. Decontamination and reuse of ORGDP aluminum scrap

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF 6 . This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible

  19. Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering

    International Nuclear Information System (INIS)

    Dubois, Marc-Alexandre; Muralt, Paul

    2001-01-01

    Polycrystalline aluminum nitride thin films were deposited onto platinum, aluminum, and titanium electrodes by reactive magnetron sputtering in the pulsed direct current mode. The films exhibited all a columnar microstructure and a c-axis texture. The built-in stress and the piezoelectric properties of these films were studied as a function of both the processing conditions and the electrode material. Stress was found to be very much dependent on the growth conditions, and values ranging from strong compression to high tension were observed. The piezoelectric d 33,f coefficient was shown to rely on substrate quality and ionic bombardment: The nucleation surface must be stable with regard to the nitrogen plasma and present a hexagonal symmetry and, on the other hand, enough energy must be delivered to the growing film through ionic bombardment. [copyright] 2001 American Institute of Physics

  20. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  1. Stoichiometry and characterization of aluminum oxynitride thin films grown by ion-beam-assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zabinski, J.S. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Hu, J.J. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)], E-mail: Jianjun.Hu@WPAFB.AF.MIL; Bultman, J.E. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Pierce, N.A. [Propulsion Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Voevodin, A.A. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2008-07-31

    Oxides are inherently stable in air at elevated temperatures and may serve as wear resistant matrices for solid lubricants. Aluminum oxide is a particularly good candidate for a matrix because it has good diffusion barrier properties and modest hardness. Most thin film deposition techniques that are used to grow alumina require high temperatures to impart crystallinity. Crystalline films are about twice as hard as amorphous ones. Unfortunately, the mechanical properties of most engineering steels are degraded at temperatures above 250-350 deg. C. This work is focused on using energetic reactive ion bombardment during simultaneous pulsed laser deposition to enhance film crystallization at low temperatures. Alumina films were grown at several background gas pressures and temperatures, with and without Ar ion bombardment. The films were nearly stoichiometric except for depositions in vacuum. Using nitrogen ion bombardment, nitrogen was incorporated into the films and formed the Al-O-N matrix. Nitrogen concentration could be controlled through selection of gas pressure and ion energy. Crystalline Al-O-N films were grown at 330 deg. C with a negative bias voltage to the substrate, and showed improved hardness in comparison to amorphous films.

  2. Chapter F: Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

    Science.gov (United States)

    Bolm, Karen S.; Wallace, Alan R.; Moyle, Phillip R.; Bliss, James D.; Orris, Greta J.

    2003-01-01

    Introduction As part of the assessment of lacustrine diatomite resources in the Western United States (fig. 1), U.S. Geological Survey (USGS) project members conducted a review of literature relating to the formation, location, and nature of deposits in the study area. This preliminary bibliography consists of selected publications to identify, locate, and describe the deposits to be studied, to characterize common geologic factors about the deposits, and to better understand the factors that control their formation, preservation, or destruction. The bibliography also serves as a resource for other workers to research the topic. References included in the preliminary bibliography were gathered by searching existing bibliographic data bases and library collections. Project researchers also contributed references that they found during the course of their work. This bibliography should be considered a working document that will grow as research and literature searches continue. Clearly, many significant publications may be missing from this preliminary list; therefore, USGS staff members intend to issue a revised bibliography as project work progresses. To assure completeness, input from other researchers and industry is welcome. Although the focus of this bibliography is lacustrine diatomite deposits of the Western United States, additional references that provide a foundation of knowledge for the study of diatomites, diatoms, and diatom-related processes (ecology, geology, geochemistry) and for the uses and behavior of diatomite have also been included. An index of keywords has been added to this bibliography, designed to help the user locate reports by topic or by geographic location. The letter 'A' following a number indicates that the report referenced is an abstract.

  3. Characterizing Low-Z erosion and deposition in the DIII-D divertor using aluminum

    Directory of Open Access Journals (Sweden)

    C.P. Chrobak

    2017-08-01

    Full Text Available We present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ∼100nm thick were applied to ideal (smooth and realistic (rough surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non-spectroscopic measurements. The gross Al erosion yield was estimated from film thickness change measurements of small area samples, and was found to be ∼40–70% of the expected erosion yield based on theoretical physical sputtering yields after including sputtering by a 1–3% carbon impurity. The multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration patterns, were found to be influenced by the surface roughness and/or porosity. A time-dependent model of material migration accounting for deposit accumulation in hidden areas was developed to reproduce the measurements in these experiments and determine a redeposition probability distribution function for sputtered atoms.

  4. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2005-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations

  5. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  6. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    Science.gov (United States)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  7. The behavior of ZrO2/20%Y2O3 and Al2O3 coatings deposited on aluminum alloys at high temperature regime

    Science.gov (United States)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.

    2015-10-01

    Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  8. The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol-Gel Coatings Deposited on Aluminum

    Directory of Open Access Journals (Sweden)

    Peter Rodič

    2018-04-01

    Full Text Available This study was focused on the synthesis and characterization of Si/Zr-based hybrid sol-gel coatings with and without the addition of cerium(III ions. The coatings were deposited on aluminum aiming to act as an effective and ecologically harmless alternative to toxic chromate coatings. The chemical composition, structure, thermal properties and porosity of the non-doped and Ce-doped coatings containing various Zr contents were examined by Raman spectroscopy and photothermal beam deflection spectroscopy. The corrosion properties of the coated aluminum substrates were studied using AC and DC electrochemical methods in 0.1 M NaCl electrolyte solution. Barrier and protecting properties of the coatings were monitored upon long-term immersion in chloride solution using electrochemical impedance spectroscopy. The effect of cerium ions was two-fold: on the formation of a more condensed Si−O−Zr network structure and on the formation of Ce-based deposits, which diminish the rate of cathodic reaction at the coating/metal interface. These effects acted synergistically and resulted in the creation of the coatings with effective barrier and active corrosion protection.

  9. Growth and Breakdown of Surface Films and Localized Corrosion of Aluminum in Concentrated Chloride Media

    National Research Council Canada - National Science Library

    Lee, Jiajing

    1994-01-01

    ...) and mechanical stress for aluminum and titanium alloys in aggressive corrosion environments. This report presents results of some very preliminary experiments on aluminum alloys and titanium during anodic dissolution in chloride media...

  10. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  11. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the < 110 > direct......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the ... > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets...

  12. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the... Department of Commerce (``the Department'') initiated an antidumping duty investigation on Aluminum... Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty Investigation, 75...

  13. Corrosion of Highly Specular Vapor Deposited Aluminum (VDA) on Earthshade Door Sandwich Structure

    Science.gov (United States)

    Plaskon, Daniel; Hsieh, Cheng

    2003-01-01

    High-resolution infrared (IR) imaging requires spacecraft instrument design that is tightly coupled with overall thermal control design. The JPL Tropospheric Emission Spectrometer (TES) instrument measures the 3-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The TES earthshade must protect the 180-K radiator and the 230-K radiator from the Earth IR and albedo. Requirements for specularity, emissivity, and solar absorptance of inner surfaces could only be met with vapor deposited aluminum (VDA). Circumstances leading to corrosion of the VDA are described. Innovative materials and processing to meet the optical and thermal cycle requirements were developed. Examples of scanning electronmicroscope (SEM), atomic force microscope (AFM), and other surface analysis techniques used in failure analysis, problem solving, and process development are given. Materials and process selection criteria and development test results are presented in a decision matrix. Examples of conditions promoting and preventing galvanic corrosion between VDA and graphite fiber-reinforced laminates are provided.

  14. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  15. Monitoring of scale deposition in petroleum pipelines by means of photon scattering: a preliminary study

    International Nuclear Information System (INIS)

    Meric, Ilker; Johansen, Geir A.

    2013-01-01

    In the petroleum industry precipitation of scale onto the inner walls of hydrocarbon pipelines poses a significant challenge as, unless treated appropriately, deposits such as sulfate and carbonate scales reduce the overall flow area and even lead to blockage of entire sections of the pipework. This may in turn result in costly production suspension and maintenance work. Therefore, monitoring and characterization of scale deposits can be said to be of great importance. In this work, a preliminary feasibility study is carried out in order to investigate the possibility of utilizing photon scattering for scale detection in multiphase oil/water/gas pipelines. (author)

  16. Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon–zirconium sol solutions for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mei; Xue, Bing; Liu, Jianhua, E-mail: yumei@buaa.edu.cn; Li, Songmei; Zhang, You

    2015-09-01

    Electrophoretic deposition (EPD) silicon–zirconium organic–inorganic hybrid coatings were applied on LC4 aluminum alloy for corrosion protection. 3-Glycidoxypropyl-trimethoxysilane (GTMS) and Zirconium (IV) n-propoxide (TPOZ) were used as precursors. 3-Aminopropyl-trimethoxysilane (APS) was added to enhance the corrosion protective performance of the coatings. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology, microstructure and component. The results show that the addition of APS leads to the enhanced migration and deposition of positively charged colloidal particles on the surface of metal substrate, which results in the thickness increasing of coatings. However, loading an excessive amount of APS gives a heterogeneous coating surface. The corrosion protective performance of coatings were measured by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results indicate that the addition of APS improves corrosion protective performance of coatings. The optimal addition content of APS is about 15%. The 15% APS coating is uniform and dense, as well as has good corrosion protective performance. The impedance value (1.58 × 10{sup 5} Ω·cm{sup 2}, at the lowest frequency) of 15% APS coating is half order of magnitude higher than that of coating without APS, and 15% APS coating always keeps the best corrosion protective performance with prolonged immersion time. This kind of coating is identified with “double-structure” properties based on the analysis of EIS and potentiodynamic polarization. Furthermore, the equivalent circuit results indicate that the intermediate oxide layer plays a main role in corrosion protection. - Highlights: • Electrophoretic deposition hybrid coatings are prepared on LC4 aluminum alloy. • 3-Aminopropyl-trimethoxysilane (APS) enhances the corrosion protective performance. • The

  17. Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon–zirconium sol solutions for corrosion protection

    International Nuclear Information System (INIS)

    Yu, Mei; Xue, Bing; Liu, Jianhua; Li, Songmei; Zhang, You

    2015-01-01

    Electrophoretic deposition (EPD) silicon–zirconium organic–inorganic hybrid coatings were applied on LC4 aluminum alloy for corrosion protection. 3-Glycidoxypropyl-trimethoxysilane (GTMS) and Zirconium (IV) n-propoxide (TPOZ) were used as precursors. 3-Aminopropyl-trimethoxysilane (APS) was added to enhance the corrosion protective performance of the coatings. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology, microstructure and component. The results show that the addition of APS leads to the enhanced migration and deposition of positively charged colloidal particles on the surface of metal substrate, which results in the thickness increasing of coatings. However, loading an excessive amount of APS gives a heterogeneous coating surface. The corrosion protective performance of coatings were measured by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results indicate that the addition of APS improves corrosion protective performance of coatings. The optimal addition content of APS is about 15%. The 15% APS coating is uniform and dense, as well as has good corrosion protective performance. The impedance value (1.58 × 10 5 Ω·cm 2 , at the lowest frequency) of 15% APS coating is half order of magnitude higher than that of coating without APS, and 15% APS coating always keeps the best corrosion protective performance with prolonged immersion time. This kind of coating is identified with “double-structure” properties based on the analysis of EIS and potentiodynamic polarization. Furthermore, the equivalent circuit results indicate that the intermediate oxide layer plays a main role in corrosion protection. - Highlights: • Electrophoretic deposition hybrid coatings are prepared on LC4 aluminum alloy. • 3-Aminopropyl-trimethoxysilane (APS) enhances the corrosion protective performance. • The coating

  18. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuseppe, E-mail: g.fiorentino@tudelft.nl; Morana, Bruno [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT Delft (Netherlands); Forte, Salvatore [Department of Electronic, University of Naples Federico II, Piazzale Tecchio, 80125 Napoli (Italy); Sarro, Pasqualina Maria [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT, Delft (Netherlands)

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  19. 75 FR 69403 - Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

    Science.gov (United States)

    2010-11-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions From the... Commerce (``Department'') preliminarily determines that aluminum extrusions from the People's Republic of... of aluminum extrusions from the PRC filed in proper form by the Aluminum Extrusions Fair Trade...

  20. Deposition and Characterization of HVOF Thermal Sprayed Functionally Graded Coatings Deposited onto a Lightweight Material

    Science.gov (United States)

    Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.

    2009-02-01

    There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.

  1. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes. Final Report

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2009-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations. The principal focus of our research was to maintain the fluidity of aluminum- or silicon-containing suspensions and solutions during transport, whether by preventing particle formation, stabilizing colloidal particles in suspension, or by combining partial dissolution with particle stabilization. We have found that all of these can be effected in aluminum-containing solutions using the simple organic, citric acid. Silicon-containing solutions were found to be less tractable, but we have strong indications that chemistries similar to the citric acid/aluminum suspensions can be effective in maintaining silicon suspensions at high alkalinities. In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting 'seed' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Here, the use of polyols was determined to be effective in

  2. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Hu, Naiping; Dong, Xuecheng; He, Xueying; Browning, James F.; Schaefer, Dale W.

    2015-01-01

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  3. Metallic aluminum in combustion; Metalliskt aluminium i foerbraenningen

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Rainer; Berg, Magnus; Bostroem, Dan; Hirota, Catherine; Oehman, Marcus; Oehrstroem, Anna

    2007-06-15

    Although aluminum is easily oxidized and melts at temperatures lower than those common in combustion, it can pass through the combustion chamber almost unscathed. If one performs calculations of thermodynamic equilibriums, conditions under which this could happen are extreme in comparison to those generally found in a furnace. Metallic aluminum may yet be found in rather large concentrations in fly ashes. There are also indications that metallic aluminum is present in deposits inside the furnaces. The objectives for the present investigation are better understanding of the behavior of the metallic aluminum in the fuel when it passes through an incinerator and to suggest counter/measures that deal with the problems associated with it. The target group is primary incineration plants using fuel that contains aluminum foil, for example municipal waste, industrial refuse or plastic reject from cardboard recycling. Combustion experiments were performed in a bench scale reactor using plastic reject obtained from the Fiskeby Board mill. First the gas velocity at which a fraction of the reject hovers was determined for the different fuel fractions, yielding a measure for their propensity to be carried over by the combustion gases. Second fractions rich in aluminum foils were combusted with time, temperature and gas composition as parameters. The partially combusted samples were analyzed using SEM/EDS. The degree of oxidation was determined using TGA/DTA. Reference material from full scale incinerators was obtained by collecting fly ash samples from five plants and analyzing them using XRD and SEM/EDS. The results show that thin aluminum foils may easily be carried over from the furnace. Furthermore, it was very difficult to fully oxidize the metallic flakes. The oxide layer on the surface prevents further diffusion of oxygen to the molten core of the flake. The contribution of these flakes to the build of deposits in a furnace is confirmed by earlier investigations in pilot

  4. Plasmochemical modification of aluminum-zinc alloys using NH{sub 3}-Ar atmosphere with anti-wear coatings deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kyzioł, Karol, E-mail: kyziol@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland); Koper, Katarzyna [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland); Kaczmarek, Łukasz [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90 924 Łódz (Poland); Grzesik, Zbigniew [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland)

    2017-03-01

    This paper constitutes a continuation of studies on modification technologies for 7075 series aluminum alloys (Al-Zn) in plasmochemical conditions using the RF CVD (Radio-Frequency Chemical Vapor Deposition) method. This technique is simultaneously the second stage of alloy ageing. The presented results concern optimization of alloy surface modification using N{sup +} ions (in NH{sub 3} or NH{sub 3}/Ar atmosphere) before obtaining a DLC (Diamond-Like Carbon) layer doped with Si and N. From the results it can be concluded that the most profitable mechanical properties (H, ca. 12 GPa and E, ca. 115 GPa) are obtained when the SiCNH coating process is preceded by Al-Zn alloy surface modification with nitrogen ions. These ions are provided by a flowing NH{sub 3} and Ar gas mixture (1:1 ratio). In these process conditions, the lowest tribological wear of the surface is also observed. Furthermore, the obtained coating exhibits a fine-grained structure. - Highlights: • Surface properties of Al-Zn alloy after plasma processes are investigated. • Modification in a RF reactor was the second stage of ageing. • The N{sup +} ion treatments of aluminum substrates was justified. • SiCNH coatings obtained on Al alloys significantly improve mechanical parameters.

  5. Aluminum low temperature smelting cell metal collection

    Science.gov (United States)

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  6. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  7. The ALU+ concept: n-type silicon solar cells with surface passivated screen-printed aluminum-alloyed rear emitter

    NARCIS (Netherlands)

    Bock, R.; Schmidt, J.; Mau, S.; Hoex, B.; Kessels, W.M.M.; Brendel, R.

    2009-01-01

    Aluminum-doped p-type (Al-p+) silicon emitters fabricated by means of screen-printing and firing are effectively passivated by plasma-enhanced chemicalvapor deposited (PECVD) amorphous silicon (a-Si) and atomic-layer-deposited (ALD) aluminum oxide (Al2O3) as well as Al2O3/SiNx stacks, where the

  8. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    Science.gov (United States)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  9. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  10. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  11. Influences of different oxidants on the characteristics of HfAlOx films deposited by atomic layer deposition

    International Nuclear Information System (INIS)

    Fan Ji-Bin; Liu Hong-Xia; Ma Fei; Zhuo Qing-Qing; Hao Yue

    2013-01-01

    A comparative study of two kinds of oxidants (H 2 O and O 3 ) with the combinations of two metal precursors [trimethylaluminum (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH)] for atomic layer deposition (ALD) hafnium aluminum oxide (HfAlO x ) films is carried out. The effects of different oxidants on the physical properties and electrical characteristics of HfAlO x films are studied. The preliminary testing results indicate that the impurity level of HfAlO x films grown with both H 2 O and O 3 used as oxidants can be well controlled, which has significant effects on the dielectric constant, valence band, electrical properties, and stability of HfAlO x film. Additional thermal annealing effects on the properties of HfAlO x films grown with different oxidants are also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal - oxide - semiconductor field-effect transistors: Effective electron mobility

    International Nuclear Information System (INIS)

    Ragnarsson, L.-A degree.; Guha, S.; Copel, M.; Cartier, E.; Bojarczuk, N. A.; Karasinski, J.

    2001-01-01

    We report on high effective mobilities in yttrium-oxide-based n-channel metal - oxide - semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y 2 O 3 on top of a thin layer of interfacial SiO 2 . The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO 2 -based MOSFETs at higher fields with peak mobilities at approximately 210 cm 2 /Vs. [copyright] 2001 American Institute of Physics

  13. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  14. Application of anodizing as a pre-treatment for nickel plating on aluminum

    International Nuclear Information System (INIS)

    Mehmood, M.; Ahmad, J.; Aslam, M.; Iqbal, M.; Akhtar, J.I.

    2003-01-01

    Effect of anodizing on subsequent electroplating of nickel on aluminum was investigated. Electroplated nickel did not exhibit any adhesion with un-anodized aluminum. Formation of a very thin anodized alumina film prior to nickel plating led to an excellent adhesion between the nickel film and the substrate. If the thickness of the alumina film increased, adhesion of electroplated nickel was significantly deteriorated and became similar to that of un-anodized bare aluminum. The study revealed that deposition proceeded through pores and defects in the insulator alumina film. These pores and defects also acted as nucleation and anchor points for nickel deposit. There was larger number of nucleation/ anchor points on thin alumina films. This provided better adhesion of nickel with the substrate as well as excellent coverage in relatively shorter times. On the other hand, very rough and poorly adherent nickel deposits formed on thick anodized films. Therefore, it may be used as precursor for producing nickel powder with controlled particle size as well as a catalyst with high specific surface area for hydrogenation and dehydrogenation reactions. (author)

  15. Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts

    Science.gov (United States)

    Ishikuro, Tomoaki; Matsuoka, Shin-Ichi

    This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.

  16. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2010-02-15

    Aluminum-doped zinc oxide films were deposited at 100 C on polyethylene terephthalate by radio-frequency magnetron sputtering. The sputtering parameters such as RF power and Argon working pressure were varied from 25 to 125 W and from 1.1 to 0.2 Pa, respectively. The structural properties of as-deposited films were analysed by X-ray diffraction, showing that all the deposited films were polycrystalline, with hexagonal structure and a strong preferred c-axis orientation (0 0 2). Full width at half maximum and grain sizes were around 0.27 and ranged from 24 to 32 nm, respectively. The strain state of the samples was also estimated from X-ray diffraction measurements, obtaining compressive stresses from 0.29 to 0.05 GPa. Resistivity as low as 1.1 x 10{sup -3} {omega} cm was achieved for the film deposited at 75 W and 0.2 Pa, sample that showed a low strain state of -0.06 GPa. High optical transmittance ({proportional_to}80%) was exhibited when films were deposited at RF powers below 100 W. Band gap energies ranged from 3.36 to 3.39 eV and a refractive index of 1.80{+-}0.05, constant in the visible region, was also obtained. (author)

  17. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Science.gov (United States)

    2010-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions from the... in the Federal Register a notice of initiation of the countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum Extrusions From the People's Republic of China...

  18. Preliminary Result of Geophysical Some Studieson the Nariinsukhait Coal Deposit

    Science.gov (United States)

    Norov, B.; Purevjav, N.; Roy, D. K., Sr.

    2017-12-01

    Nariinsukhait coal deposit has a strategic importance on Mongolian national economic development. The deposit is located in Gurvan-tes of the Umnu-gobi province, as 849 km south-west away from Ulaanbaatar. The deposit in geographically, belongs to Gobi Altai region region of the Altai mountain region. The area contains Permian, Cretaceous, Jurassic, Triassic age of sediments. Sediments are red or sedimentary cover on some part of area (Minjin. Ch., Batnyam. D., Rentsendorj. S (Baatarkhuyag. A., Altantsetseg. D., 2015). The coal deposit is located in the center portion of the Nariinsukhait basin. The age of coal hosted sedimentary rock is Jurassic estimated by Paleo-botanic methodology, using examination of a total 59 kind of plants, 288 pollen grains (Baatarkhuyag. A., Altantsetseg. D., 2015). The thickness of coal hosted sedimentary sequence is approximately 1105.5m and named as Orgilohbulag formation. In case of geophysical exploration, preliminary interpretation of the coal basin has been done by 3 geophysical methodologies which commonly applying during exploration stage of coal. The interpretations are given below. Natural Gamma Sonde /NGRS 4140/: use to determine natural gamma activation on rock by radionuclides content (238U; 235U; 232Th; 40K). During measurements well contrasted coal bedding and, value indicate between 0-15cps. And depending on the rock type it has been changed, in case of siltstone, argillite, conglomerate value fluctuated between 15-40cps. However, those rocks natural gamma values are difference little, therefore not showing much contrast between rock types. Formation Density Sonde Version B /FDSB 4036/: The Nariinsukhait coal deposit Open holes and protective pipes of density is 0.5-1.5 g/cm3, 1.2-2.3 g/cm3 respectively. Not well contrasted during measurement due to some of sedimentary rock density range is so low as such sandstone, siltstone, and conglomerate. Therefore, applied resistivity methodology and done interpretation. DLL3

  19. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  20. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  1. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    Science.gov (United States)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  2. Mechanical properties of composite coatings of chromium and nanodiamonds on aluminum

    Directory of Open Access Journals (Sweden)

    Gidikova Nelly

    2018-01-01

    Full Text Available Aluminum offers engineers weight saving advantages in their product design. However, aluminum has poor wear and friction properties. In addition, the surface oxide layer of this chemically active metal, which gives it the corrosion resistance, makes it a very difficult metal to plate [1]. Specific pre-treatment must be applied to remove the oxide layer from the aluminum surface. The nanodiamond particles additionally facilitates the process of chromium deposition. The object of this study is to evaluate the impact of nanodiamonds on the mechanical properties of the chromium coating plated on

  3. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  4. Deposition of intranasal glucocorticoids--preliminary study.

    Science.gov (United States)

    Rapiejko, Piotr; Sosnowski, Tomasz R; Sova, Jarosław; Jurkiewicz, Dariusz

    2015-01-01

    Intranasal glucocorticoids are the treatment of choice in the therapy of rhinitis. The differences in efficiency of particular medications proven by therapeutic index may result from differences in composition of particular formulations as well as from diverse deposition in nasal cavities. Intranasal formulations of glucocorticoids differ in volume of a single dose in addition to variety in density, viscosity and dispenser nozzle structure. The aim of this report was to analyze the deposition of most often used intranasal glucocorticoids in the nasal cavity and assessment of the usefulness of a nose model from a 3D printer reflecting anatomical features of a concrete patient. Three newest and most often used in Poland intranasal glucocorticoids were chosen to analysis; mometasone furoate (MF), fluticasone propionate (FP) and fluticasone furoate (FF). Droplet size distribution obtained from the tested formulations was determined by use of a laser aerosol spectrometer Spraytec (Malvern Instruments, UK). The model of the nasal cavity was obtained using a 3D printer. The printout was based upon a tridimensional reconstruction of nasal cavity created on the basis of digital processing of computed tomography of paranasal sinuses. The deposition of examined medications was established by a method of visualization combined with image analysis using commercial substance which colored itself intensively under the influence of water being the dominant ingredient of all tested preparations. On the basis of obtained results regions of dominating deposition of droplets of intranasal medication on the wall and septum of the nasal cavity were compared. Droplet size of aerosol of tested intranasal medications typically lies within the range of 25-150 µm. All tested medications deposited mainly on the anterior part of inferior turbinate. FP preparation deposited also on the anterior part of the middle nasal turbinate, marginally embracing a fragment of the central part of this

  5. Alloyed Aluminum Contacts for Silicon Solar Cells

    International Nuclear Information System (INIS)

    Tin Tin Aye

    2010-12-01

    Aluminium is usually deposited and alloyed at the back of p-p silicon solar cell for making a good ohmic contact and establishing a back electric field which avoids carrier recombination of the back surface. It was the deposition of aluminum on multicrystalline silicon (mc-Si) substrate at various annealing temperature. Physical and elemental analysis was carried out by using scanning electron microscopy (SEM) and X-rays diffraction (XRD). The electrical (I-V) characteristic of the photovoltaic cell was also measured.

  6. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  7. Development of the process of boron electrophoresis deposition on aluminum substate to be used in the construction of neutron detectors

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.

    1989-11-01

    Process of baron electrophoresis depositon on large areas of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of 10 B on aluminium cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. Prototypers of ionization chambers were designed, built and assembled at the Departinent for Engineering and Industry Application (TE) of the Instituto de Pesquisas Energeticas e Nucleares (IPEN), and submited for characterization tests at IEA-R1 reactor. They fully met the technical specifications of the projects. (author) [pt

  8. Preliminary evaluation of uranium deposits. A geostatistical study of drilling density in Wyoming solution fronts

    International Nuclear Information System (INIS)

    Sandefur, R.L.; Grant, D.C.

    1976-01-01

    Studies of a roll-front uranium deposit in Shirley Basin Wyoming indicate that preliminary evaluation of the reserve potential of an ore body is possible with less drilling than currently practiced in industry. Estimating ore reserves from sparse drilling is difficult because most reserve calculation techniques do not give the accuracy of the estimate. A study of several deposits with a variety of drilling densities shows that geostatistics consistently provides a method of assessing the accuracy of an ore reserve estimate. Geostatistics provides the geologist with an additional descriptive technique - one which is valuable in the economic assessment of a uranium deposit. Closely spaced drilling on past properties provides both geological and geometric insight into the occurrence of uranium in roll-front type deposits. Just as the geological insight assists in locating new ore bodies and siting preferential drill locations, the geometric insight can be applied mathematically to evaluate the accuracy of a new ore reserve estimate. By expressing the geometry in numerical terms, geostatistics extracts important geological characteristics and uses this information to aid in describing the unknown characteristics of a property. (author)

  9. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  10. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  11. Friction reducing behavior of stearic acid film on a textured aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Wan, Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Li, Yang; Yang, Shuyan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Yao, Wenqing [Analysis Center of Tsinghua University, Beijing 100084 (China)

    2013-09-01

    A simple two-step process was developed to render the aluminum hydrophobicity with lower friction. The textured aluminum substrate was firstly fabricated by immersed in a sodium hydroxide solution at 100 °C for 1 h. Stearic acid film was then deposited to acquire high hydrophobicity. Scanning electron microscopy, IR spectroscopy and water contact angle measurements were used to analyze the morphological features, chemical structure and hydrophobicity of prepared samples, respectively. Moreover, the friction reducing behavior of the organic–inorganic composite film on aluminum sliding against steel was evaluated in a ball-on-plate configuration. It was found that the stearic acid film on the textured aluminum led to decreased friction with significantly extended life.

  12. The behavior of ZrO_2/20%Y_2O_3 and Al_2O_3 coatings deposited on aluminum alloys at high temperature regime

    International Nuclear Information System (INIS)

    Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Baciu, E.R.; Istrate, B.; Basescu, N.

    2015-01-01

    Highlights: • In both the ZrO_2/20%Y_2O_3 and Al_2O_3 coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO_2/20%Y_2O_3 suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al_2O_3 coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO_2/20%Y_2O_3 and Al_2O_3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  13. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.

    Science.gov (United States)

    Kesterson, Melissa A; Luck, Joe D; Sama, Michael P

    2015-12-17

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  14. Visualisation of latent fingermarks on polymer banknotes using copper vacuum metal deposition: A preliminary study.

    Science.gov (United States)

    Davis, Lloyd W L; Kelly, Paul F; King, Roberto S P; Bleay, Stephen M

    2016-09-01

    The UK's recent move to polymer banknotes has seen some of the currently used fingermark enhancement techniques for currency potentially become redundant, due to the surface characteristics of the polymer substrates. Possessing a non-porous surface with some semi-porous properties, alternate processes are required for polymer banknotes. This preliminary investigation explored the recovery of fingermarks from polymer notes via vacuum metal deposition using elemental copper. The study successfully demonstrated that fresh latent fingermarks, from an individual donor, could be clearly developed and imaged in the near infrared. By varying the deposition thickness of the copper, the contrast between the fingermark minutiae and the substrate could be readily optimised. Where the deposition thickness was thin enough to be visually indistinguishable, forensic gelatin lifters could be used to lift the fingermarks. These lifts could then be treated with rubeanic acid to produce a visually distinguishable mark. The technique has shown enough promise that it could be effectively utilised on other semi- and non-porous substrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  16. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  17. Deposition and erosion in local shadow regions of TEXTOR-94

    International Nuclear Information System (INIS)

    Wienhold, P.; Mayer, M.; Kirschner, A.; Rubel, M.; Hildebrandt, D.; Schneider, W.

    2001-01-01

    Carbon erosion and deposition were investigated on the surface of a flat target covered with an a-C:H film and exposed for 197 s in the SOL of TEXTOR-94. The target was declined by 20 with respect to the toroidal direction and partly protected by an aluminum (3 mm) plate which created an 8 mm wide local shadow. Thickness changes were measured by colorimetry after each plasma discharge. Carbon is eroded from surface areas near the plasma edge (LCFS +1 cm) and transported into the local shadow regions. Accumulation rates up to ∼7 nm/s were found. The erosion in the local shadow regions (about -0.1 nm/s) is due to charge exchange neutrals. The observations are confirmed by ion beam analyses and by preliminary calculations with the B2-EIRENE and ERO-TEXTOR code. (orig.)

  18. Plasma Decontamination of Uranium From the Interior of Aluminum Objects

    International Nuclear Information System (INIS)

    Veilleux, J.M.; Munson, C.; Fitzpatrick, J.; Chamberlin, E.P.; El-Genk, M.S.

    1997-01-01

    RF plasma glow discharges are being investigated for removing and recovering radioactive elements from contaminated objects, especially those contaminated with transuranic (TRU) materials. These plasmas, using nitrogen trifluoride as the working gas, have been successful at removing uranium and plutonium contaminants from test coupons of stainless steel and aluminum surfaces, including small cracks and crevices, and the interior surfaces of relatively hard to reach aluminum pipes. Contaminant removal exceeded 99.9% from simple surfaces and contaminant recovery using cryogenic traps has exceeded 50%. Work continues with the objective of demonstrating that transuranic contaminated waste can be transformed to low level waste (LLW) and to better understand the physics of the interaction between plasma and surface contaminants. This work summarizes the preliminary results from plasma decontamination from the interior of aluminum objects--the nooks and crannies experiments

  19. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  20. Extraction of lithium from sea water with metallic aluminum

    International Nuclear Information System (INIS)

    Takeuchi, Takeji

    1980-01-01

    Extraction of lithium from sea water was investigated. It was found that a corrosion product of metallic aluminum immersed in sea water extracts lithium from it selectively. Effects of the temperature and the pH of sea water, and of the initial concentration of lithium in it were examined. On the basis of the analysis of the surface deposit on aluminum, which is a corrosion product of aluminum, the selectivity coefficients were calculated. For the extraction of lithium from natural sea water, the values of K sub(Na)sup(Li), K sub(Mg)sup(Li), K sub(Ca)sup(Li) and K sub(K)sup(Li) were 9.9 x 10 2 , 1.1 x 10, 4.5 x 10 and 4.4 x 10 2 , respectively. (author)

  1. Propagation of Channel Plasmons at the Visible Regime in Aluminum V-Groove Waveguides

    DEFF Research Database (Denmark)

    Lotan, Oren; Smith, Cameron; Bar-David, Jonathan

    2016-01-01

    Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V-grooves are ......Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V......-grooves are fabricated by a process involving UV-photolithography, crystallographic silicon etching, and metal deposition. Polarization measurements of coupling demonstrate a preference to the TM-aligned mode, as predicted in simulations....

  2. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-01-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  3. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  4. Economic valuation of acidic deposition damages: Preliminary results from the 1985 NAPAP [National Acid Precipitation Assessment Program] damage assessment

    International Nuclear Information System (INIS)

    Callaway, J.M.; Darwin, R.F.; Nesse, R.J.

    1985-01-01

    This paper identifies methods used to evaluate the economic damages of acid deposition in the 1985 Damage Assessment being coordinated by the National Acid Precipitation Program. It also presents the preliminary estimates of economic damages for the Assessment. Economic damages are estimated for four effect areas: commercial agriculture and forests, recreational fishing and selected types of materials. In all but the last area, methods are used which incorporate the behavioral responses of individuals and firms or simulated physical damages to resources at risk. The preliminary nature of the estimated damages in each area is emphasized. Over all, the damage estimates should be interpreted with caution. 44 refs., 6 figs., 5 tabs

  5. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun [Department of Material Science and Engineering, POSTECH Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O{sub 2} as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl{sub 3} plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  6. Enabling lightweight designs by a new laser based approach for joining aluminum to steel

    Science.gov (United States)

    Brockmann, Rüdiger; Kaufmann, Sebastian; Kirchhoff, Marc; Candel-Ruiz, Antonio; Müllerschön, Oliver; Havrilla, David

    2015-03-01

    As sustainability is an essential requirement, lightweight design becomes more and more important, especially for mobility. Reduced weight ensures more efficient vehicles and enables better environmental impact. Besides the design, new materials and material combinations are one major trend to achieve the required weight savings. The use of Carbon Fiber Reinforced Plastics (abbr. CFRP) is widely discussed, but so far high volume applications are rarely to be found. This is mainly due to the fact that parts made of CFRP are much more expensive than conventional parts. Furthermore, the proper technologies for high volume production are not yet ready. Another material with a large potential for lightweight design is aluminum. In comparison to CFRP, aluminum alloys are generally more affordable. As aluminum is a metallic material, production technologies for high volume standard cutting or joining applications are already developed. In addition, bending and deep-drawing can be applied. In automotive engineering, hybrid structures such as combining high-strength steels with lightweight aluminum alloys retain significant weight reduction but also have an advantage over monolithic aluminum - enhanced behavior in case of crash. Therefore, since the use of steel for applications requiring high mechanical properties is unavoidable, methods for joining aluminum with steel parts have to be further developed. Former studies showed that the use of a laser beam can be a possibility to join aluminum to steel parts. In this sense, the laser welding process represents a major challenge, since both materials have different thermal expansion coefficients and properties related to the behavior in corrosive media. Additionally, brittle intermetallic phases are formed during welding. A promising approach to welding aluminum to steel is based on the use of Laser Metal Deposition (abbr. LMD) with deposit materials in the form of powders. Within the present work, the advantages of this

  7. Metal nitride coatings by physical vapor deposition (PVD) for a wear resistant aluminum extrusion die.

    Science.gov (United States)

    Lee, Su Young; Kim, Sang Ho

    2014-12-01

    The purpose of this study is to investigate the friction and wear behaviors of CrN, TiN, CrAlN, and TiAIN coated onto SKD61 for application to Al 7000 series extrusion dies. On the wear test, the experimental parameters are the load and the counter material's temperature. The results showed that the friction coefficient increased with load but decreased with the counter material's temperature, and the friction coefficients of CrN and CrAIN were lower than the friction coefficients of TiAIN and TIN, especially at a higher temperature. The wear track with different coatings identified different wear behaviors; the wear behavior of CrAIN was found to be abrasive, but the wear behavior of TiN, CrN, and TiAIN was adhesive. Therefore, CrAIN showed the least wear loss with a lower friction coefficient and less adhesion with counter materials at the highest range of wear load and temperature. This resulted in the easy formation of aluminum oxide in the wear track and less Al adhesion; moreover during the hard second phase, AIN dispersed in the film during deposition.

  8. CO2 laser coating of nanodiamond on aluminum using an annular beam

    International Nuclear Information System (INIS)

    Blum, Rodger; Molian, Pal

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO 2 laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  9. Nickel-aluminum diffusion: A study of evolution of microstructure and phase

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; Kjartansdóttir, Cecilía Kristín; Burrows, Andrew

    2017-01-01

    Microstructural and phase evolution of an aluminum deposit on nickel, after heat treatment at 883 K, is studied by means of various microscopy techniques, i.e. energy dispersive X-ray spectroscopy, backscattered electron imaging, electron backscatter diffraction, ion channeling contrast imaging...

  10. Spatial atmospheric atomic layer deposition of alxzn1-xo

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Wu, Y.; Roozeboom, F.; Poodt, P.

    2013-01-01

    The possibility of growing multicomponent oxides by spatial atmospheric atomic layer deposition has been investigated. To this end, Al xZn1-xO films have been deposited using diethyl zinc (DEZ), trimethyl aluminum (TMA), and water as Zn, Al, and O precursors, respectively. When the metal precursors

  11. Zirconium phosphate coating on aluminium foams by electrophoretic deposition for acidic catalysis

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    The electrophoretic deposition method has been applied for the formation of an amorphous zirconium phosphate layer on the surface of open-cell aluminum foam. The aluminum foam was fully and uniformly covered by the zirconium phosphate layer with a good mechanical adherence to the support. The

  12. A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam: A Preliminary Study

    DEFF Research Database (Denmark)

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    Aluminum Syntactic Foam (ASF) is a material with great potential in applications related to lightweight structures and structural damping. However, experimental investigations in literature report that the infiltration process to fabricate ASF often results in incomplete infiltration. Published...... calculates the pressure, velocity and free surface of the aluminum. The results of the numerical model illustrate that this method has great potential of predicting unintended porosities in ASF and thereby optimizing the parameters involved in the infiltration process....

  13. Study and utilization of ion beams created in the Focus experiment

    International Nuclear Information System (INIS)

    Bernard, A.; Garconnet, J.P.; Jolas, A.; Le Breton, J.P.; Mascureau, J. de.

    1982-06-01

    Ion beams created in a plasma focus electrical discharge are evidenced and measured from interaction with CD 2 and DLi targets. Aluminum targets are also used with observation of the radiation temperature and material expansion velocity. Comparison between experimental measurements and numerical computations allows to determine energy deposition in the aluminum foil as well as beams values. With the 200 kJ Actime facility 2 to 3 MJ/g deposition is obtained in aluminum on approximately one square centimeter. A fast valve gas injection has been developed on another facility and preliminary results are given [fr

  14. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    International Nuclear Information System (INIS)

    Joshi, Simon; Fahrenholtz, William G.; O'Keefe, Matthew J.

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be ∼30 nm by Auger electron spectroscopy depth profiling analysis. The outer ∼20 nm was rich in magnesium while the remaining ∼10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer ∼10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na 2 CO 3 (pH > 11.5) produced an oxide that was ∼20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings (∼100 to 250 nm) compared to only alkaline cleaning (∼30 nm), with application of one spray cycle of deposition solution.

  15. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Simon, E-mail: sjwt5@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Fahrenholtz, William G.; O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be {approx}30 nm by Auger electron spectroscopy depth profiling analysis. The outer {approx}20 nm was rich in magnesium while the remaining {approx}10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer {approx}10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na{sub 2}CO{sub 3} (pH > 11.5) produced an oxide that was {approx}20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings ({approx}100 to 250 nm) compared to only alkaline cleaning ({approx}30 nm), with application of one spray cycle of deposition solution.

  16. Preliminary energy use and economic analysis of the aluminum-air battery for automotive propulsion

    Science.gov (United States)

    Hudson, C. L.; Putnam, E. S.

    1980-04-01

    Cost and energy parameters were analyzed based on existing technology and resource pricing structures. The results of these status quo assessments were critiqued in the light of potential changes in technology and resource prices. Estimates of the operating characteristics of the vehicle were made on the basis of laboratory test results, performance simulation model test results, and hypotheses on the refueling infrastructural scenario. If the amount of energy currently used to produce aluminum remains the same, the energy efficiency of the aluminum air battery vehicle in 2000 was estimated to be less than the energy efficiency of future vehicles operating on coal-derived methanol or gasoline.

  17. All-Aluminum Thin Film Transistor Fabrication at Room Temperature

    Directory of Open Access Journals (Sweden)

    Rihui Yao

    2017-02-01

    Full Text Available Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al2O3 insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO conductive layer, as one AZO/Al2O3 heterojunction unit. The measurements of transmittance electronic microscopy (TEM and X-ray reflectivity (XRR revealed the smooth interfaces between ~2.2-nm-thick Al2O3 layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd and pure Al, with Al2O3/AZO multilayered channel and AlOx:Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al2O3/AZO heterojunction units exhibited a mobility of 2.47 cm2/V·s and an Ion/Ioff ratio of 106. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials.

  18. Defining a Closed-Loop U.S. Aluminum Can Supply Chain Through Technical Design and Supply Chain Innovation

    Science.gov (United States)

    Buffington, Jack; Peterson, Ray

    2013-08-01

    The purpose of this study is to conduct a supply chain material flow analysis (MFA) for the U.S. aluminum can market, consistent with studies conducted for the overall worldwide aluminum industry. A technical definition of the use of alloys 5182 and 3104 is conducted by metallurgists for use in the "aluminum can" MFA. Four propositions are created: technical, economic, and supply chain factors are as important to secondary aluminum recycling in an aluminum can as higher recycling rates (P1); the development of a unialloy aluminum can will increase reuse rates, but recycling rates must increase for this to happen (P2); a closed-loop aluminum can supply chain is not able to be fully realized in today's environment but is very useful for understanding improvement through both supply and demand (P3); and UBC supply can improve through a "voluntary deposit-refund system" approach (P4).

  19. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam

    International Nuclear Information System (INIS)

    Perl, D.P.; Gajdusek, D.C.; Garruto, R.M.; Yanagihara, R.T.; Gibbs, C.J.

    1982-01-01

    Scanning electron microscopy with energy-dispersive x-ray spectrometry was used to analyze the elemental content of neurofibrillary tangle (NFT)-bearing and NFT-free neurons within the Sommer's sector (H1 region) of the hippocampus in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism-dementia and in neurologically normal controls. Preliminary data indicate prominent accumulation of aluminum within the nuclear region and perikaryal cytoplasm of NFT-bearing hippocampal neurons, regardless of the underlying neurological diagnosis. These findings further extend the association between intraneuronal aluminum and NFT formation and support the hypothesis that environmental factors are related to the neurodegenerative changes seen in the Chamorro population

  20. Satellite Remote Sensing For Aluminum And Nickel Laterites

    Science.gov (United States)

    Henderson, Frederick B.; Penfield, Glen T.; Grubbs, Donald K.

    1984-08-01

    The new LANDSAT-4,-5/Thematic Mapper (TM) land observational satellite remote sensing systems are providing dramatically new and important short wave infrared (SWIR) data, which combined with Landsat's Multi-Spectral Scanner (MSS) visible (VIS), very near infrared (VNIR), and thermal infrared (TI) data greatly improves regional geological mapping on a global scale. The TM will significantly improve clay, iron oxide, aluminum, and nickel laterite mapping capabilities over large areas of the world. It will also improve the ability to discriminate vegetation stress and species distribution associated with lateritic environments. Nickel laterites on Gag Island, Indonesia are defined by MSS imagery. Satellite imagery of the Cape Bougainville and the Darling Range, Australia bauxite deposits show the potential use of MSS data for exploration and mining applications. Examples of satellite syn-thetic aperture radar (SAR) for Jamaica document the use of this method for bauxite exploration. Thematic Mapper data will be combined with the French SPOT satellite's high spatial resolution and stereoscopic digital data, and U.S., Japanese, European, and Canadian Synthetic Aperture Radar (SAR) data to assist with logistics, mine development, and environ-mental concerns associated with aluminum and nickel lateritic deposits worldwide.

  1. Characterization and Processing Behavior of Heated Aluminum-Polycarbonate Composite Build Plates for the FDM Additive Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Sherri L. Messimer

    2018-02-01

    Full Text Available One of the most essential components of the fused deposition modeling (FDM additive manufacturing (AM process is the build plate, the surface upon which the part is constructed. These are typically made from aluminum or glass, but there are clear disadvantages to both and restrictions on which materials can be processed on them successfully. This study examined the suitability of heated aluminum-polycarbonate (AL-PC composite print beds for FDM, looking particularly at the mechanical properties, thermal behavior, deformation behavior, bonding strength with deposited material, printing quality, and range of material usability. Theoretical examination and physical experiments were performed for each of these areas; the results were compared to similar experiments done using heated aluminum and aluminum-glass print beds. Ten distinct materials (ABS, PLA, PET, HIPS, PC, TPU, PVA, nylon, metal PLA, and carbon-fiber PLA were tested for printing performance. The use of a heated AL-PC print bed was found to be a practical option for most of the materials, particularly ABS and TPU, which are often challenging to process using traditional print bed types. Generally, the results were found to be equivalent to or superior to tempered glass and superior to standard aluminum build plates in terms of printing capability.

  2. CO{sub 2} laser coating of nanodiamond on aluminum using an annular beam

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Rodger; Molian, Pal, E-mail: molian@iastate.edu

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO{sub 2} laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  3. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  4. Aluminum-Scandium: A Material for Semiconductor Packaging

    Science.gov (United States)

    Geissler, Ute; Thomas, Sven; Schneider-Ramelow, Martin; Mukhopadhyay, Biswajit; Lang, Klaus-Dieter

    2016-10-01

    A well-known aluminum-scandium (Al-Sc) alloy, already used in lightweight sports equipment, is about to be established for use in electronic packaging. One application for Al-Sc alloy is manufacture of bonding wires. The special feature of the alloy is its ability to harden by precipitation. The new bonding wires with electrical conductivity similar to pure Al wires can be processed on common wire bonders for aluminum wedge/wedge (w/w) bonding. The wires exhibit very fine-grained microstructure. Small Al3Sc particles are the main reason for its high strength and prevent recrystallization and grain growth at higher temperatures (>150°C). After the wire-bonding process, the interface is well closed. Reliability investigations by active power cycling demonstrated considerably improved lifetime compared with pure Al heavy wires. Furthermore, the Al-Sc alloy was sputter-deposited onto silicon wafer to test it as chip metallization in copper (Cu) ball/wedge bonding technology. After deposition, the layers exhibited fine-grained columnar structure and small coherent Al3Sc particles with dimensions of a few nanometers. These particles inhibit softening processes such as Al splashing in fine wire bonding processes and increase the thickness of remnant Al under the copper balls to 85% of the initial thickness.

  5. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  6. Passivation and Stabilization of Aluminum Nanoparticles for Energetic Materials

    Directory of Open Access Journals (Sweden)

    Matthew Flannery

    2015-01-01

    Full Text Available In aircraft applications, fuel is used not only as a propellant but also as a coolant and improving both the thermal conductivity and combustion enthalpy of the fuel is beneficial in these applications. These properties can be enhanced by dispersing aluminum nanoparticles into the fuel; however, the nanoparticles require stabilization from agglomeration and passivation from oxidation in order for these benefits to be realized in aircraft applications. To provide this passivation and stabilization, aluminum nanoparticles were encapsulated with a coating by the plasma enhanced chemical vapor deposition (PE-CVD method from toluene precursors. The thermal conductivity, combustion and ignition properties, and stability of the nanoparticles dispersed in RP-2 fuel were subsequently evaluated. In addition, the effect of dispersing aluminum nanoparticles in RP-2 fuel on the erosion rate of fuel nozzles was evaluated. The dispersion of PE-CVD coated aluminum nanoparticles at a concentration of 3.0% by volume exhibited a 17.7% and 0.9% increase in thermal conductivity and volumetric enthalpy of combustion, respectively, compared to the baseline RP-2 fuel. Additionally, particle size analysis (PSA of the PE-CVD coated aluminum nanofuel exhibited retention of particle size over a five-month storage period and erosion testing of a 1 mm stainless steel nozzle exhibited a negligible 1% change in discharge coefficient after 100 hours of testing.

  7. Preliminary Mineral Resource Assessment of Selected Mineral Deposit Types in Afghanistan

    Science.gov (United States)

    Ludington, Steve; Orris, Greta J.; Bolm, Karen S.; Peters, Stephen G.; ,

    2007-01-01

    INTRODUCTION Wise decision-making and management of natural resources depend upon credible and reliable scientific information about the occurrence, distribution, quantity and quality of a country's resource base. Economic development decisions by governments require such information to be part of a Mineral Resource Assessment. Such Mineral Assessments are also useful to private citizens and international investors, consultants, and companies prior to entry and investment in a country. Assessments can also be used to help evaluate the economic risks and impact on the natural environment associated with development of resources. In February 2002, at the request of the Department of State and the then U.S. Ambassador to Afghanistan (Robert P. Finn), the U.S. Geological Survey (USGS) prepared a detailed proposal addressing natural resources issues critical to the reconstruction of Afghanistan. The proposal was refined and updated in December 2003 and was presented as a 5-year work plan to USAID-Kabul in February 2004. USAID-Kabul currently funds this plan and this report presents a part of the preliminary results obligated for fiscal year 2006. A final Preliminary Assessment of the Non Fuel Mineral Resource of Afghanistan will be completed and delivered at the end of fiscal year 2007. Afghanistan has abundant metallic and non-metallic resources, but the potential resources have never been systematically assessed using modern methods. Much of the existing mineral information for Afghanistan was gathered during the 1950s and continued in the late 1980s until the departure of the geologic advisors from the Soviet Union. During this period, there were many mineral-related activities centered on systematic geologic mapping of the country, collection of geochemical and rock samples, implementation of airborne geophysical surveys, and exploration focused on the discovery of large mineral deposits. Many reports, maps, charts, and tables were produced at that time. Some of

  8. Expression of the 68-kilodalton neurofilament gene in aluminum intoxication

    International Nuclear Information System (INIS)

    Muma, N.A.; Troncoso, J.C.; Hoffman, P.N.; Price, D.L.

    1986-01-01

    Intrathecal administration of aluminum salts induces accumulation of neurofilaments (NFs) in cell bodies and proximal axons of rabbit spinal motor neurons. Mechanisms leading to this pathological change are not well understood. Although impairments of NF transport have been demonstrated in this model, the hypothesis that NF accumulations are the result of an increase in NF synthesis needs to be explored. In rabbits, a large percentage of neurons develop accumulations of NFs following injections of aluminum lactate directly into the cisterna magna or into a reservoir placed in the lateral ventricle. To study levels of mRNA encoding cytoskeletal proteins, spinal cord RNA was extracted, separated on a denaturing agarose gel, transferred to nitrocellulose paper, and hybridized to [ 32 P]-labeled cDNA clones encoding the mouse 68-kilodalton (kd) NF subunit and tubulin. Examining a constant amount of RNA, the radioactivity of labeled mRNA bands for the 68-kd NF subunit and for tubulin was decreased in spinal cords of aluminum-treated rabbits. These preliminary results will be followed up by in situ hybridization to determine levels of mRNA for tubulin and 68-kd NF subunit in affected and in normal spinal neurons. In conclusion, administration of aluminum decreased mRNA for the 608-kd NF protein in spinal neurons

  9. Processing of aluminum matrix composites by electroless plating and melt infiltration

    International Nuclear Information System (INIS)

    Leon, C.A.; Bourassa, A.-M.; Drew, R.A.L.

    2000-01-01

    Reduction of the SiC/ Al interaction and enhancement of wetting between reinforcements and molten aluminum was obtained by modifying the ceramic surface with deposition of nickel and copper coatings. The preparation of nickel- and copper-coated ceramic particles as precursors for MMC fabrication was studied. Al 2 O 3 and SiC powders were successfully coated with Ni and Cu using electroless metal plating. Uniform and continuous metal films were deposited on both, alumina and silicon carbide powders XRD showed that the Ni-P deposit was predominantly amorphous, while the copper deposit was essentially polycrystalline. Infiltration results showed that the use of the coated powders enhances the wettability between the matrix and ceramic phase when processing particulate MMCs by a vacuum infiltration technique, giving a porosity-free composite with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterpart samples XRD microstructural analysis of the composites indicates the formation of intermetallic phases such as CuAl 2 , in the case of copper coating, and NiAl and NiAl 3 when nickel-coated powders are infiltrated. Metallization of the ceramics minimizes the interfacial reaction of the SiC/Al composites and promotes wetting of Al 2 O 3 reinforcements with liquid aluminum. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  10. Effective corrosion protection of AA6061 aluminum alloy by sputtered Al-Ce coatings

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Torres-Huerta, A.M.; Rodil, S.E.; Ramirez-Meneses, E.; Suarez-Velazquez, G.G.; Hernandez-Perez, M.A.

    2009-01-01

    Al-Ce coatings were deposited on silicon and AA6061 aluminum alloy substrates by DC magnetron sputtering using aluminum in combination with pure cerium targets. The materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) in order to consider their application as high corrosion resistance coatings. The corrosion behavior of the films was studied using a NaCl aqueous solution (3.5 wt%). As for the characterization results, an apparent amorphous phase of aluminum oxide with small cerium compounds embedded in the matrix was detected by the X-ray diffraction patterns and HRTEM on the deposited films at 200 W and 4 Pa. At these conditions, AFM and SEM images evidenced crack-free coatings with low-roughness nanometric structures and columnar growth. EIS and Tafel results converged to indicate an inhibition of the corrosion reactions. The film displayed good stability in the aggressive medium and after 1 day of exposure underwent very little degradation. The variations in the impedance and Tafel characteristics were found to occur as a function of cerium content, which provokes important changes in the film protective properties.

  11. Effective corrosion protection of AA6061 aluminum alloy by sputtered Al-Ce coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A., E-mail: mdominguezc@ipn.m [Instituto Politecnico Nacional, GIPMAT CICATA-Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Torres-Huerta, A.M. [Instituto Politecnico Nacional, GIPMAT CICATA-Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Rodil, S.E. [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacan, C.P. 04510 Mexico, D.F. (Mexico); Ramirez-Meneses, E. [Instituto Politecnico Nacional, GIPMAT CICATA-Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Suarez-Velazquez, G.G. [Alumna del PTA del CICATA-Altamira IPN, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Hernandez-Perez, M.A. [Instituto Politecnico Nacional, ESIQIE, C.P. 07738 Mexico, D.F. (Mexico)

    2009-12-30

    Al-Ce coatings were deposited on silicon and AA6061 aluminum alloy substrates by DC magnetron sputtering using aluminum in combination with pure cerium targets. The materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) in order to consider their application as high corrosion resistance coatings. The corrosion behavior of the films was studied using a NaCl aqueous solution (3.5 wt%). As for the characterization results, an apparent amorphous phase of aluminum oxide with small cerium compounds embedded in the matrix was detected by the X-ray diffraction patterns and HRTEM on the deposited films at 200 W and 4 Pa. At these conditions, AFM and SEM images evidenced crack-free coatings with low-roughness nanometric structures and columnar growth. EIS and Tafel results converged to indicate an inhibition of the corrosion reactions. The film displayed good stability in the aggressive medium and after 1 day of exposure underwent very little degradation. The variations in the impedance and Tafel characteristics were found to occur as a function of cerium content, which provokes important changes in the film protective properties.

  12. Preliminary Map of Landslide Deposits in the Mesa Verde National Park Area, Colorado

    Science.gov (United States)

    Carrara, Paul E.

    2009-01-01

    This report presents a preliminary map of landslide deposits in the Mesa Verde National Park area (see map sheet) at a compilation scale of 1:50,000. Landslide is a general term for landforms produced by a wide variety of gravity-driven mass movements, including various types of flows, slides, topples and falls, and combinations thereof produced by the slow to rapid downslope transport of surficial materials or bedrock. The map depicts more than 200 landslides ranging in size from small (0.01 square miles) earthflows and rock slumps to large (greater than 0.50 square miles) translational slides and complex landslides (Varnes, 1978). This map has been prepared to provide a regional overview of the distribution of landslide deposits in the Mesa Verde area, and as such constitutes an inventory of landslides in the area. The map is suitable for regional planning to identify broad areas where landslide deposits and processes are concentrated. It should not be used as a substitute for detailed site investigations. Specific areas thought to be subject to landslide hazards should be carefully studied before development. Many of the landslides depicted on this map are probably stable as they date to the Pleistocene (approximately 1.8-0.011 Ma) and hence formed under a different climate regime. However, the recognition of these landslides is important because natural and human-induced factors can alter stability. Reduction of lateral support (by excavations or roadcuts), removal of vegetation (by fire or development), or an increase in pore pressure (by heavy rains) may result in the reactivation of landslides or parts of landslides.

  13. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    microns can obliterate small features. The nanoimprint lithography community extensively uses functional monolayer coatings on silicon/SiO2 lithographic stamps [7–11]. This treatment dramatically reduces stiction, and improves yield and quality of replicated nanostructures. Here we report on a fluorinated...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...

  14. Physico Chemistry of the Chlorination of Aluminum Claddings in the Framework of HALOX Project

    International Nuclear Information System (INIS)

    Alvarez, Fabiola; De Micco, Georgina; Bohe, Ana; Pasquevich, Daniel

    2003-01-01

    The conditioning of spent nuclear fuels from test and research reactors requires a previous physicochemical treatment to stabilize them chemically.A possible way of processing is through what was called in CNEA as Process HALOX (Halogenation and Oxidation).It consists of the selective separation of cladding by halogenation and the subsequent oxidation of the core, previously to insert it into a vitreous matrix.The halogenation aim is to transform the constituents of the 6061aluminum alloy into volatile halides.In this work we present preliminary results of the chlorination of two aluminum alloys: AA 6061 and a type of CuZnAl alloy

  15. Study of aluminum content in a welding metal by thermoelectric measurements

    Science.gov (United States)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  16. Deposition and Characterization of Hermetic, Biocompatible Thin Film Coatings for Implantable, Electrically Active Devices

    Science.gov (United States)

    Sweitzer, Robyn K.

    Retinal prostheses may be used to support patients suffering from Age-related macular degeneration or retinitis pigmentosa. A hermetic encapsulation of the poly(imide )-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation and vacuum arc vapor deposition) were studied for the application in retinal prostheses. The resulting thin films were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Electrical stability was evaluated and found to be good. The as-deposited films prevented incursion of salinated fluids into the implant over two (2) three month trials soaking in normal saline at body temperature, Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, biocompatibility studies showed a superior behavior of diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.

  17. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti S, S. B. [Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo y Sor Juana I. de la Cruz, Col. Los Mangos, 89440 Ciudad Madero, Tanaulipas (Mexico); Dominguez C, M. A.; Torres H, A. M.; Onofre B, E. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Altamira, Carretera Tampico-Puerto Industrial Altamira Km. 14.5, 89600 Altamira, Tamaulipas (Mexico); De la Cruz H, W., E-mail: mdominguezc@ipn.mx [UNAM, Centro de Nanociencias y Nanotecnologia, Apdo. Postal 2681, 22800 Ensenada, Baja California (Mexico)

    2014-07-01

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO{sub 3}){sub 3} and La(NO{sub 3}){sub 3} solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)

  18. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    International Nuclear Information System (INIS)

    Brachetti S, S. B.; Dominguez C, M. A.; Torres H, A. M.; Onofre B, E.; De la Cruz H, W.

    2014-01-01

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO 3 ) 3 and La(NO 3 ) 3 solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)

  19. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  20. Analysis of steam explosions in plate-type, uranium-aluminum fuel test reactors

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1989-01-01

    The concern over steam explosions in nuclear reactors can be traced to prompt critical nuclear excursions in aluminum-clad/fueled test reactors, as well as to explosive events in aluminum, pulp, and paper industries. The Reactor Safety Study prompted an extensive analytical and experimental effort for over a decade. This has led to significant improvements in their understanding of the steam explosion issue for commercial light water reactors. However, little progress has been made toward applying the lessons learned from this effort to the understanding and modeling of steam explosion phenomena in aluminum-clad/fueled research and test reactors. The purposes of this paper are to (a) provide a preliminary analysis of the destructive events in test reactors, based on current understandings of steam explosions; (b) provide a proposed approach for determining the likelihood of a steam explosion event under scenarios in which molten U-Al fuel drops into a water-filled cavity; and (c) present a benchmarking study conducted to estimate peak pressure pulse magnitudes

  1. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  2. Effects of acidic deposition on forest and aquatic ecosystems in New York State

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Mitchell, Myron J.; Raynal, Dudley J

    2003-06-01

    Elevated inputs of acidic deposition have deleterious effects on forest and aquatic ecosystems in New York. - Acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from atmospheric emissions of sulfur dioxide, nitrogen oxides, and ammonia, respectively. Acidic deposition has altered soil through depletion of labile pools of nutrient cations (i.e. calcium, magnesium), accumulation of sulfur and nitrogen, and the mobilization of elevated concentrations of inorganic monomeric aluminum to soil solutions in acid-sensitive areas. Acidic deposition leaches essential calcium from needles of red spruce, making this species more susceptible to freezing injury. Mortality among sugar maples appears to result from deficiencies of nutrient cations, coupled with other stresses such as insect defoliation or drought. Acidic deposition has impaired surface water quality in the Adirondack and Catskill regions of New York by lowering pH levels, decreasing acid-neutralizing capacity, and increasing aluminum concentrations. Acidification has reduced the diversity and abundance of aquatic species in lakes and streams. There are also linkages between acidic deposition and fish mercury contamination and eutrophication of estuaries.

  3. Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV

    Science.gov (United States)

    Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel

    2015-01-01

    NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.

  4. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  5. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  6. Preliminary Groundwater Assessment using Electrical Method at Quaternary Deposits Area

    Science.gov (United States)

    Hazreek, Z. A. M.; Raqib, A. G. A.; Aziman, M.; Azhar, A. T. S.; Khaidir, A. T. M.; Fairus, Y. M.; Rosli, S.; Fakhrurrazi, I. M.; Izzaty, R. A.

    2017-08-01

    Alternative water sources using groundwater has increasingly demand in recent years. In the past, proper and systematic study of groundwater potential was varies due to several constraints. Conventionally, tube well point was drilled based on subjective judgment of several parties which may lead to the uncertainties of the project success. Hence, this study performed an electrical method to investigate the groundwater potential at quaternary deposits area particularly using resistivity and induced polarization technique. Electrical method was performed using ABEM SAS4000 equipment based on pole dipole array and 2.5 m electrode spacing. Resistivity raw data was analyzed using RES2DINV software. It was found that groundwater was able to be detected based on resistivity and chargeability values which varied at 10 - 100 Ωm and 0 - 1 ms respectively. Moreover, suitable location of tube well was able to be proposed which located at 80 m from the first survey electrode in west direction. Verification of both electrical results with established references has shown some good agreement thus able to convince the result reliability. Hence, the establishment of electrical method in preliminary groundwater assessment was able to assist several parties in term groundwater prospective at study area which efficient in term of cost, time, data coverage and sustainability.

  7. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  8. Colorimetric properties of TiN coating implanted by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhouqg99@mails.tsinghua.edu.cn; Bai, X.D. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xue, X.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen, X.W. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, J. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China); Wang, D.R. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China)

    2005-04-05

    TiN coating was prepared by cathodic arc deposition and implanted aluminum using a metal vacuum vapor arc ion source with doses ranging from 5 x 10{sup 16} to 2 x 10{sup 17} ions/cm{sup 2}. The purpose of this work was to determine the dependence of the colorimetric properties of TiN films on the implanting conditions, especially by the aluminum ion implantation. The colorimetry of coatings was evaluated quantitatively in terms of CIE L * a * b *. The color coordinate values L *, a *, and b * provide a numerical representation of the color of the surface. With the dose increasing, the surface color has no obvious change but the surface turns brighter, and a * as well as b * values all decline. The X-ray diffraction patterns showed that the aluminum implantation induced a slight shift of diffraction peaks. X-ray photoemission spectroscopy was employed to analyze the surface valence states. The oxygen in surface top layer does not decrease a * and b * values, it partially combined with nitrogen.

  9. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  10. Magnetoresistive multilayers deposited on the AAO membranes

    International Nuclear Information System (INIS)

    Malkinski, Leszek M.; Chalastaras, Athanasios; Vovk, Andriy; Jung, Jin-Seung; Kim, Eun-Mee; Jun, Jong-Ho; Ventrice, Carl A.

    2005-01-01

    Silicon and GaAs wafers are the most commonly used substrates for deposition of giant magnetoresistive (GMR) multilayers. We explored a new type of a substrate, prepared electrochemically by anodization of aluminum sheets, for deposition of GMR multilayers. The surface of this AAO substrate consists of nanosized hemispheres organized in a regular hexagonal array. The current applied along the substrate surface intersects many magnetic layers in the multilayered structure, which results in enhancement of giant magnetoresistance effect. The GMR effect in uncoupled Co/Cu multilayers was significantly larger than the magnetoresistance of similar structures deposited on Si

  11. Regional deposition of inhaled fog droplets: preliminary observations

    International Nuclear Information System (INIS)

    Bowes, S.M. III; Laube, B.L.; Links, J.M.; Frank, R.

    1989-01-01

    The regional deposition of a monodisperse 10-micron mass median aerodynamic diameter fog was studied in four healthy adult male nonsmokers. The fog was radiolabeled with technetium-99m sulfur colloid to enable detection by an Anger camera of deposited activity in the following regions of the respiratory tract: oropharynx, larynx, trachea, and intrapulmonary airways. Intrapulmonary deposition was further analyzed by computer with inner, intermediate, and outer zones, and within apical, intermediate and basal zones of the right lung. The radiolabeled aerosol was inhaled by mouth through a face-mask with the nasal airway occluded. Respiratory frequency, tidal volume, and jaw position were controlled and were commensurate with the oral component of oronasal breathing during moderate exercise. Deposition in the larynx, trachea, and intrapulmonary airways was a function of the scrubbing efficiency of the oropharynx, which differed substantially among subjects, and ranged from 72 to 99%. The density of the aerosol deposit in the larynx probably exceeded that of any of the subdivisions of the tracheobronchial tree and lung. Within the lung, deposition favored the inner zone (assumed to contain the larger airways) over the outer zone (assumed to be dominated by smaller airways and alveoli). Intrapulmonary aerosol distribution in an elderly subject with borderline evidence of airway obstruction differed from that observed in younger subjects. The possible consequences of altered lung elastic recoil, as may occur with aging, for regional dosimetry is discussed

  12. Deposition and characterization of aluminum magnesium boride thin film coatings

    Science.gov (United States)

    Tian, Yun

    Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14

  13. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  14. Influence of Ag thickness of aluminum-doped ZnO/Ag/aluminum-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan City 710, Taiwan (China); Yang, Ru-Yuan [Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China); Hsiung, Chin-Min; Chu, Chien-Hsun [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China)

    2012-10-01

    Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm, which can be decreased to 3.8 Multiplication-Sign 10{sup -5} {Omega}-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 Multiplication-Sign 10{sup -3} {Omega}{sup -1}. It was shown that the multilayer thin films have potential for applications in optoelectronics. - Highlights: Black-Right-Pointing-Pointer High-quality Al-doped ZnO (AZO)/Ag/AZO Transparent Conducting Oxide films. Black-Right-Pointing-Pointer AZO films (30 nm) made by RF sputtering; E-beam evaporation for Ag film (5-15 nm). Black-Right-Pointing-Pointer Influence of Ag thickness on optical and electrical properties were analyzed. Black-Right-Pointing-Pointer High quality multilayer film with optimal intermediate Ag layer thickness of 10 nm. Black-Right-Pointing-Pointer 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm resistivity, 91.89% transmittance at 470 nm obtained and reproducible.

  15. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  16. 78 FR 66895 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Science.gov (United States)

    2013-11-07

    ... frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the definition of..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  17. 77 FR 39683 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Science.gov (United States)

    2012-07-05

    ... frames, door frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  18. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  19. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  20. Deposition Measurements in NSTX

    Science.gov (United States)

    Skinner, C. H.; Kugel, H. W.; Hogan, J. T.; Wampler, W. R.

    2004-11-01

    Two quartz microbalances have been used to record deposition on the National Spherical Torus Experiment. The experimental configuration mimics a typical diagnostic window or mirror. An RS232 link was used to acquire the quartz crystal frequency and the deposited thickness was recorded continuously with 0.01 nm resolution. Nuclear Reaction Analysis of the deposit was consistent with the measurement of the total deposited mass from the change in crystal frequency. We will present measurements of the variation of deposition with plasma conditions. The transport of carbon impurities in NSTX has been modelled with the BBQ code. Preliminary calculations indicated a negligible fraction of carbon generated at the divertor plates in quiescent discharges directly reaches the outer wall, and that transient events are responsible for the deposition.

  1. Studies of the Use of Electrochemical Impedance Spectroscopy to Characterize and Assess the Performance of Lacquers Used to Protect Aluminum Sheet and Can Ends

    Science.gov (United States)

    Ali, Mohammad

    This study involved investigating the feasibility of using Electrochemical Impedance Spectroscopy to assess the performance of coatings used to protect aluminum in beverage containers, and developing an accelerated testing procedure. In the preliminary investigation, tests were performed to ensure that the EIS systems at hand are capable, functional and consistent. This was followed by EIS testing of kitchen-aluminum foil and high-impedance epoxy polymer as a baseline for chemically-active and chemically-inert systems. The ability of EIS to differentiate between intact and flawed coatings was tested by investigating deliberately damaged coatings. The effects of varying the pH and oxygen content on the performance of the coated aluminum samples were also tested. From this investigation, it has been concluded that EIS can be used to differentiate between intact and flawed coatings and detect corrosion before it is visually observable. Signatures of corrosion have been recorded and a preliminary testing procedure has been drawn.

  2. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-03-01

    Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  3. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  4. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  5. Deposition and characterization of TaAIN thin films by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Oliveira, G.B.; Fernandez, D.R.; Fontes Junior, A.S.; Felix, L.C.; Tentardini, E.K.; Silva Junior, A.H. da

    2016-01-01

    Phase stability, oxidation resistance and great mechanical properties are the main objectives when synthesizing protective coatings. The tantalum nitride (TaN) has aroused interest because of its high temperature stability, chemical inertness and thermal conductivity. However, it has a low hardness value when compared to other coatings. Researches has shown that one way to improvements in the properties of a thin film is by adding other elements in the deposition process. Therefore, the objective of this study was to deposit thin films of TaAlN by magnetron sputtering, changing the aluminum concentration of 2, 5, 7, to 14%. Then the coatings were characterized by EDS, RBS, GIXRD and nanohardness. In this study was found that the aluminum deposited did not change the oxidation resistance of the coating, and the highest value of hardness was 28 GPa for the sample with 14 at.%. (author)

  6. Design studies of an aluminum first wall for INTOR

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Yu, W.S.; Hsieh, S.Y.; Pearlman, H.; Kramer, R.; Franz, E.; Craig, A.; Farrell, K.

    1980-01-01

    Besides the high erosion rates (including evaporation) expected for INTOR, there may also be high heat fluxes to the first wall, e.g., approx. 9 (Case I) to 24 (Case II) W/cm 2 , from two sources - radiation and charge exchange neutrals. There will also be internal heat generation by neutron and gamma deposition. An aluminum first wall design is analyzed, which substantially reduces concerns about survivability of the first wall during INTOR's operating life

  7. Investigations on dry sliding of laser cladded aluminum bronze

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2016-01-01

    Full Text Available The aim of this study was to investigate the tribological behaviour of laser cladded aluminum bronze tool surfaces for dry metal forming. In a first part of this work a process window for cladding aluminum bronze on steel substrate was investigated to ensure a low dilution. Therefore, the cladding speed, the powder feed rate, the laser power and the distance between the process head and the substrate were varied. The target of the second part was to investigate the influence of different process parameters on the tribological behaviour of the cladded tracks. The laser claddings were carried out on both aluminum bronze and cold work tool steel as substrate materials. Two different particle sizes of the cladding powder material were used. The cladding speed was varied and a post-processing laser remelting treatment was applied. It is shown that the tribological behaviour of the surface in a dry oscillating ball-on-plate test is highly dependent on the substrate material. In the third part a deep drawing tool was additively manufactured by direct laser deposition. Furthermore, the tool was applied to form circular cups with and without lubrication.

  8. The behavior of ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings deposited on aluminum alloys at high temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Pintilei, G.L., E-mail: laura_rares082008@yahoo.com [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Crismaru, V.I. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Abrudeanu, M. [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Munteanu, C. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Baciu, E.R. [University of Medicine and Pharmacy “Gr.T.Popa”, Department Implantology, Removable Restorations, Technology, Str. Universitatii nr. 16, 700115 Iasi (Romania); Istrate, B.; Basescu, N. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania)

    2015-10-15

    Highlights: • In both the ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO{sub 2}/20%Y{sub 2}O{sub 3} suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al{sub 2}O{sub 3} coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  9. Electrophoretic deposition of boron-10 in neutron detectors electrodes

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Vieira, J.M.

    1990-01-01

    Process of boron-10 electrophoresis on large area of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of boron-10 on aluminum cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. These prototypes were designed and builded at IPEN-CNEN-SP, and submited for characterization tests at IEA-R1 reactor, and they fulfil the technical specifications of the project. (author) [pt

  10. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Science.gov (United States)

    2011-01-04

    ... finished good. The scope also excludes aluminum alloy sheet or plates produced by other than the extrusion... calculation program by coding the decimal point in the wrong place. The Department agrees, and finds that this...

  11. Effect of Aluminum on Characterization of ZnTe/n-Si Heterojunction Photo detector

    Science.gov (United States)

    Maki, Samir A.; Hassun, Hanan K.

    2018-05-01

    Aluminum doped zinc telluride ZnTenSi thin films of (400nm) thickness with (005 01 015 and 02) wt % were deposited on the glass substrate and nSi wafer to fabricate ZnTenSi heterojunction Photodetector by using thermal vacuum evaporation technique Structural optical electrical and photovoltaic properties are investigated for the samples XRD analysis shows that all the deposited ZnTenSi films show polycrystalline structure with cubic phases and highest sharp peak corresponding to (111) planes and from AFM images shows the surface roughness increase with increase Al percentage ratio The optical absorption measurement of the films was find from transmittance ranges in the variety of wavelength (400 1000) nm and the optical energy band gap decrease from 224 eV to 186 eV dependent upon the Aluminum ratio in the films moreover our studies contain the calculation of the electrical properties of hetero junction were obtained via IV (dark and light condition) and C V measurement The photoelectric properties indicated rise illumination current of heterojunctions through increasing both of incident lighting intensity and Aluminum dopant The values of specific detectivity and quantum efficiency are calculated for all samples also the best spectral response occurs when Al doping ratio 02% The high photo sensitivity and comparatively fast response haste are attributable to in height crystal quality of the [ZnTe ] thin films.

  12. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  13. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  14. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  15. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    Science.gov (United States)

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.

  16. Co-Cu-Au deposits in metasedimentary rocks-A preliminary report

    Science.gov (United States)

    Slack, J.F.; Causey, J.D.; Eppinger, R.G.; Gray, J.E.; Johnson, C.A.; Lund, K.I.; Schulz, K.J.

    2010-01-01

    A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of

  17. Acidic precipitation. Volume 3: Sources, deposition, and canopy interactions. Advances in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Page, A.L.; Norton, S.A. (eds.)

    1990-01-01

    As has been the case with many environmental issues of the twentieth century, acidic precipitation has its origin in emissions to the atmosphere of numerous compounds from both natural and man-made sources. This volume emphasizes the atmospheric aspects of acidic precipitation and all that this term has come to include (e.g. toxic gases such as ozone, trace metals, aluminum, and oxides of nitrogen). It progresses from emissions of the precursors of acidic precipitation to their eventual deposition on environmental surfaces. The chapters describe the sources of acidic and basic airborne substances, their interactions in the atmosphere and with rain droplets, and their reactions with other airborne constituents such as aluminum and other metals. Also discussed are the use of metals as tracers of sources of the precursors of acidic precipitation and as tracers of historical deposition rates, the processes controlling the removal of airborne material as dry deposition and deposition interactions with the forest canopy, and past and future trends in atmospheric emissions and options for their abatement.

  18. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of argon ion beam voltages on the microstructure of aluminum nitride films prepared at room temperature by a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Han Sheng; Cheng, C.-H.; Shih, H.C.

    2004-01-01

    Aluminum nitride (AlN) films were successfully deposited at room temperature onto p-type (1 0 0) silicon wafers by manipulating argon ion beam voltages in a dual ion beam sputtering (DIBS). X-ray diffraction spectra showed that aluminum nitride films could be synthesized above 800 V. The (0 0 2) orientation was dominant at 800 V, above which the orientation was random. The atomic force microscope (AFM) images displayed a relatively smooth surface with the root-mean-square roughness of 2-3 nm, where this roughness decreased with argon ion beam voltage. The Al 2p 3/2 and N 1s spectra indicated that both the aluminum-aluminum bond and aluminum-nitrogen bond appeared at 600 V, above which only the aluminum-nitrogen bond was detected. Moreover, the atomic concentration in aluminum nitride films was concentrated in aluminum-rich phases in all cases. Nevertheless, the aluminum concentration markedly increased with argon ion beam voltages below 1000 V, above which the concentration decreased slightly. The correlation between the microstructure of aluminum nitride films and argon ion beam voltages is also discussed

  1. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  2. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  3. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  4. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  5. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    Science.gov (United States)

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  6. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating

    International Nuclear Information System (INIS)

    Kurokawa, S.; Kikuchi, T.; Sakairi, M.; Takahashi, H.

    2008-01-01

    Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens μm diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 μm width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition

  7. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, S.; Kikuchi, T.; Sakairi, M. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: takahasi@elechem1-mc.eng.hokudai.ac.jp

    2008-11-30

    Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens {mu}m diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 {mu}m width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition.

  8. Fabrication of cerium-doped yttrium aluminum garnet thin films by a mist CVD method

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Shunsuke, E-mail: murai@dipole7.kuic.kyoto-u.ac.jp; Sato, Takafumi; Yao, Situ; Kamakura, Ryosuke; Fujita, Koji; Tanaka, Katsuhisa

    2016-02-15

    We synthesized thin films, consisting of yttrium aluminum garnet doped with Ce{sup 3+} (YAG:Ce), using the mist chemical vapor deposition (CVD) method, which allows the fabrication of high-quality thin films under atmospheric conditions without the use of vacuum equipment. Under a deposition rate of approximately 1 μm/h, the obtained thin films had a typical thickness of 2 μm. The XRD analysis indicated that the thin films consisted of single-phase YAG:Ce. The Rutherford backscattering confirmed the stoichiometry; the composition of the film was determined to be (Y, Ce){sub 3}Al{sub 5}O{sub 12}, with a Ce content of Ce/(Y+Ce)=2.5%. The YAG:Ce thin films exhibited fluorescence due to the 5d–4f electronic transitions characteristic of the Ce ions occupying the eight-coordinated dodecahedral sites in the YAG lattice. - Highlights: • We have synthesized thin films of yttrium aluminum garnet doped with Ce{sup 3+} (YAG:Ce) by using a mist chemical vapor deposition (CVD) method for the first time. • The thickness of the single-phase and stoichiometric thin film obtained by 2 h deposition and following heat treatments is 2 μm. • The thin film is porous but optically transparent, and shows yellow fluorescence upon irradiation with a blue light. • Mist-CVD is a green and sustainable technique that allows fabrication of high-quality thin films at atmospheric conditions without vacuum equipment.

  9. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  10. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  11. Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister

    Science.gov (United States)

    Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.

    2005-01-01

    Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.

  12. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, A., E-mail: arjun_venu@hotmail.com [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Srinath, J. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Rama Krishna, L. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 (India); Ramesh Narayanan, P.; Sharma, S.C.; Venkitakrishnan, P.V. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India)

    2016-04-13

    Alumina coating was deposited on AA7020 aluminum alloy by plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviors were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. Potentiodynamic polarization (PP) was used to evaluate the corrosion resistance of the coating and slow strain rate test (SSRT) was used for evaluating the environmental cracking resistance in 3.5% NaCl solution. The mechanical properties (hardness and elastic modulus) were obtained from each indentation as a function of the penetration depth across the coating cross section. The above results were compared with similar PEO coated aluminum and magnesium alloys. Results indicated that PEO coating on AA7020 alloy significantly improved the corrosion resistance. However the environmental cracking resistance was found to be only marginal. The hardness and elastic modulus values were found to be much higher when compared to the base metal and similar PEO coated 7075 aluminum alloys. The fabricated coating also exhibited good adhesive strength with the substrate similar to other PEO coated aluminum alloys reported in the literature.

  13. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  14. Novel Method of Aluminum to Copper Bonding by Cold Spray

    Science.gov (United States)

    Fu, Si-Lin; Li, Cheng-Xin; Wei, Ying-Kang; Luo, Xiao-Tao; Yang, Guan-Jun; Li, Chang-Jiu; Li, Jing-Long

    2018-04-01

    Cold spray bonding (CSB) has been proposed as a new method for joining aluminum and copper. At high speeds, solid Al particles impacted the groove between the two substrates to form a bond between Al and Cu. Compared to traditional welding technologies, CSB does not form distinct intermetallic compounds. Large stainless steel particles were introduced into the spray powders as in situ shot peen particles to create a dense Al deposit and to improve the bond strength of joints. It was discovered that introducing shot peen particles significantly improved the flattening ratio of the deposited Al particles. Increasing the proportion of shot peen particles from 0 to 70 vol.% decreased the porosity of the deposits from 12.4 to 0.2%, while the shear strength of joints significantly increased. The tensile test results of the Al-Cu joints demonstrated that cracks were initiated at the interface between the Al and the deposit. The average tensile strength was 71.4 MPa and could reach 81% of the tensile strength of pure Al.

  15. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  16. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  17. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    International Nuclear Information System (INIS)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-01-01

    Highlights: • Energetic rGO/Al@Fe 2 O 3 nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe 2 O 3 unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe 2 O 3 nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe 2 O 3 ) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe 2 O 3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe 2 O 3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe 2 O 3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe 2 O 3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe 2 O 3 nanoparticles. The enhanced energy release of rGO/Al@Fe 2 O 3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe 2 O 3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  18. Angular dependence of preferential sputtering and composition in aluminum--copper thin films

    International Nuclear Information System (INIS)

    Rudeck, P.J.; Harper, J.M.E.; Fryer, P.M.

    1989-01-01

    The copper concentration in aluminum--copper alloys can be altered by ion bombardment during film deposition. We have measured the sputtering yields of aluminum and copper in Al--Cu alloys as a function of the Cu concentration (5--13 at. %) and the angle of ion incidence (0--40 0 from normal). During deposition, the films were partially resputtered by 500-eV Ar + ion bombardment from a Kaufman ion source. We found that the Cu sputtering yield decreases by up to a factor of 10 in the alloy, relative to elemental Cu. The Al sputtering yield remains close to the elemental value. The net effect is a strong preferential sputtering of Al relative to Cu, which enhances the Cu concentration in an ion bombarded film. The Al/Cu sputtering yield ratio for normal incidence ion bombardment ranges from 3 to 5 as a function of Cu concentration. This ratio decreases with increasing angle of incidence to as low as 2 for 40 0 incident ions. However, since a higher fraction of the film is resputtered from a sloping surface, a higher Cu concentration is found on a sloping surface relative to a flat surface. These results show that in multicomponent film deposition under ion bombardment, the film composition will vary as a function of the surface topography. We will also show how the level of argon left trapped in the films varies inversely with respect to the ion flux

  19. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  20. Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

    Science.gov (United States)

    Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen; Timothy J. Fahey

    2015-01-01

    Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus...

  1. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  2. In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery

    OpenAIRE

    Hong, Qingshui; Lu, Huimin

    2017-01-01

    Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is use...

  3. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  4. Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates

    Science.gov (United States)

    Wang, Li-Min; Wang, Chih-Yi; Jheng, Ciao-Ren; Wu, Syu-Jhan; Sai, Chen-Kai; Lee, Ya-Ju; Chiang, Ching-Yu; Shew, Bor-Yuan

    2016-08-01

    The crystalline structure, morphology, composition, electrical transport, and optical properties of aluminum-doped zinc oxide (AZO) films are studied for applications in transparent electronics and optoelectronic devices. AZO thin films of c-axis-oriented growth and with different thickness were deposited on PET flexible plastic substrates at room temperature by rf magnetron sputtering. A larger grain size with a decreased strain ɛ value is observed in a thicker film, while changes in composition for films with different thicknesses are insignificant. Moreover, the resistivity of film decreases with increasing thickness, and the low-temperature electrical transport properties can be described by the scenario of quantum corrections to conductivity. With the room-temperature growth conditions, the resistivity of 4.5 × 10-4 Ω cm, carrier concentration of 6.4 × 1020 cm-3, and transmittance of 80 % for the 1100-nm-thick film are obtained. In addition, the optical bandgap energy decreases with increasing film thickness, which can be attributed to the bandgap renormalization and crystallite size effects.

  5. Synthesis and Characterization of Hybrid Silica-Zirconia Coatings with Cerium Inhibitor on Aluminum 6061

    Directory of Open Access Journals (Sweden)

    M. Bahrami

    2016-12-01

    Full Text Available Organic–inorganic hybrid coatings were prepared by sol–gel method and deposited on aluminum alloy 6061. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR spectroscopy and Scanning Electron Microscopy (SEM were used for structural study of the hybrid coatings. Adhesive strength of sol–gel coatings to the substrate was evaluated quantitatively and qualitatively. Corrosion behavior of the samples was studied by cyclic potentiodynamic and linear polarization tests. Results showed that adhesion strength of the coatings to the substrates was increased with increasing tetrapropoxide of zirconium (TPOZ and cerium content. Corrosion tests showed that corrosion current density of coated samples were decreased three to seven orders of magnitude in comparison with uncoated aluminum alloy 6061. Decreasing in corrosion current density and increasing in polarization resistance was observed by increasing zirconia and cerium content. Unlike the uncoated aluminum alloy 6061, the crack-free coatings did not show pitting tendency. 

  6. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  7. Preliminary Report: Bases for Containment Analysis for Transportation of Aluminum-Based Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Vinson, D.W.

    1998-01-01

    Aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to SRS under the site FRR/DRR Receipts Program. Shipment of the FRR/DRR assemblies required that the cask with loaded fuel be certified by the US Nuclear Regulatory Commission (for US-owned casks) or the US Department of Transportation (for foreign-owned casks) to comply with the requirements in 10CFR71

  8. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  9. Cold spraying of aluminum bronze on profiled submillimeter cermet structures formed by laser cladding

    Science.gov (United States)

    Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.

    2017-10-01

    The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.

  10. Aluminum-air battery: System design alternatives and status of components

    Science.gov (United States)

    Maimoni, A.

    1988-09-01

    This report summarizes the status of the various components of the aluminum-air battery system developed for the U.S. Department of Energy Technology Base Project for Electrochemical Energy Storage from 1978 to mid-1987, and presents results of system analysis. Preliminary information indicated that the concentration of carbon dioxide in the incoming air will need to be reduced to 5--100 ppM. A detailed calculation was performed to predict the performance of a full-size-vehicle system with 6-m air-cathode surface area; results showed that previous estimates of system performance are reasonable and consistent with currently available components.

  11. Optimizing the fabrication of aluminum-coated fiber probes and their application to optical near-field lithography

    DEFF Research Database (Denmark)

    Madsen, S; Holme, NCR; Ramanujam, PS

    1998-01-01

    in terms of roughness and the presence of leaking holes in the coating. We report on how the quality of the coating depends on parameters such as deposition rate and background pressure during evaporation. We have used aluminum-coated fiber probes in lithographical studies of different materials, like side...

  12. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  13. Pattern formation under residual compressive stress in free sustained aluminum films

    International Nuclear Information System (INIS)

    Yu Senjiang; Ye Quanlin; Zhang Yongju; Cai Pinggen; Xu Xiaojun; Chen Jiangxing; Ye Gaoxiang

    2005-01-01

    A nearly free sustained aluminum (Al) film system has been successfully fabricated by vapor phase deposition of Al atoms on silicone oil surfaces and an unusual type of ordered patterns at the micrometer scale has been systematically studied. The ordered patterns are composed of a large number of parallel key-shaped domains and possess a sandwiched structure. The nucleation and growth of the patterns are very susceptible to the growth period, deposition rate, nominal film thickness and location of the film. The experiment shows that the ordered patterns are induced by the residual compressive stress in the film owing to contraction of the liquid surface after deposition. The appearance of these stress relief patterns generally represents the stress distribution in the nearly free sustained Al films, which mainly results from the characteristic boundary condition and the nearly zero adhesion of the solid-liquid interface

  14. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  15. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  16. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  17. Influence of deposition conditions on the microstructure of Al-based coatings for applications as corrosion and anti-permeation barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Sven-Erik, E-mail: sven-erik.wulf@kit.edu; Holstein, Nils; Krauss, Wolfgang; Konys, Jürgen

    2013-10-15

    Highlights: • Electrochemical Al deposition is industrially relevant for barrier formation. • Al coatings have to be converted into protective layers by heat treatments. • Morphology of Al coatings made by ECX process depends on deposition parameters. • Heat treatment behavior depends on the morphology of the coating produced by ECX. • ECX is proven to produce layer sequences on Eurofer similar to HDA and ECA process. -- Abstract: Previous research revealed that the application of aluminum-based barriers is suitable to minimize corrosion rates of Eurofer steel in Pb–15.7Li and tritium-permeation from the liquid breeder into the cooling system (HCLL) in an envisaged future fusion reactor. Besides the former developed hot-dip-aluminization process (HDA), electrodeposition techniques based on water-free electrolytes, such as toluene-based electrolytes (ECA) and ionic liquids (ECX), showed promising results for the production of suitable aluminum layers. These processes allow electrodeposition of Al-layers on Eurofer steel with adjustable layer thicknesses, but a heat treatment procedure is needed afterwards to form the desired Fe–Al/Alumina scale. To investigate the deposition and treatment process in more detail, a new series of aluminum electroplating was performed by using the ECX process. The variation of deposition parameters (direct and pulsed current) showed clear impact on the morphology of deposited Al-layers. Heat treatments revealed that the formation of Fe–Al barriers is significantly influenced by the morphology of deposits, beyond other parameters like layer thickness. Presented metallographic and SEM/EDX analyses underline the occurred dependencies between deposition conditions and morphology and on the other hand Al-layer morphology and heat treatment behavior.

  18. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  19. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  20. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM SUBSTRATES. PART I: CHARACTERIZATION OF FILMS AND FILM/SUBSTRATE INTERFACES

    Science.gov (United States)

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 Å in thickness) were deposited onto aluminum substrates (6111-T4 alloy) in radio frequency (RF) and microwave (MW) powered reactors to be used as primers for structural adhesive bonding. Processing variables such as sub...

  1. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  2. Protective coatings of hafnium dioxide by atomic layer deposition for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Berdova, Maria, E-mail: maria.berdova@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland); Wiemer, Claudia; Lamperti, Alessio; Tallarida, Grazia; Cianci, Elena [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Lamagna, Luca; Losa, Stefano; Rossini, Silvia; Somaschini, Roberto; Gioveni, Salvatore [STMicroelectronics, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Fanciulli, Marco [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Università degli studi di Milano Bicocca, Dipartimento di Scienza dei Materiali, 20126, Milano (Italy); Franssila, Sami, E-mail: sami.franssila@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland)

    2016-04-15

    Graphical abstract: - Highlights: • Atomic layer deposition of HfO{sub 2} from (CpMe){sub 2}Hf(OMe)Me or Hf(NMeEt){sub 4} and ozone for potential applications in microelectromechanical systems. • ALD HfO{sub 2} protects aluminum substrates from degradation in moist environment and at the same time retains good reflectance properties of the underlying material. • The resistance of hafnium dioxide to moist environment is independent of chosen precursors. - Abstract: This work presents the investigation of HfO{sub 2} deposited by atomic layer deposition (ALD) from either HfD-CO4 or TEMAHf and ozone for microelectromechanical systems (MEMS) applications, in particular, for environmental protection of aluminum micromirrors. This work shows that HfO{sub 2} films successfully protect aluminum in moist environment and at the same time retain good reflectance properties of underlying material. In our experimental work, the chemical composition, crystal structure, electronic density and roughness of HfO{sub 2} films remained the same after one week of humidity treatment (relative humidity of 85%, 85 °C). The reflectance properties underwent only minor changes. The observed shift in reflectance was only from 80–90% to 76–85% in 400–800 nm spectral range when coated with ALD HfO{sub 2} films grown with Hf(NMeEt){sub 4} and no shift (remained in the range of 68–83%) for films grown from (CpMe){sub 2}Hf(OMe)Me.

  3. High deposition rate of low resistive and transparent ZnO:Al on glass with an industrial moving belt APCVD reactor

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Beckers, E.H.A.; Deelen, J. van

    2012-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. ZnOx:Al films can be grown at very high deposition rates of ~ 14 nm/s for a substrate speed from 150 mm/min to 500

  4. Behavior of highly diluted electrolytes in strong electric fields-prevention of alumina deposition on grading electrodes in HVDC transmission modules by CO2-induced pH-control.

    Science.gov (United States)

    Weber, Immo; Mallick, Bert; Schild, Matthias; Kareth, Sabine; Puchta, Ralph; van Eldik, Rudi

    2014-09-15

    Alumina deposition on platinum grading electrodes in high voltage direct current (HVDC) transmission modules is an unsolved problem that has been around for more than three decades. This is due to the unavoidable corrosion of aluminum heat sinks that causes severe damage to electrical power plants and losses in the range of a million Euro range per day in power outage. Simple experiments in a representative HV test setup showed that aluminates at concentrations even below 10(-8) mol L(-1) can deposit on anodes through neutralization by protons produced in de-ionized water (κ≤0.15 μS cm(-1)) at 20-35 kV (8 mA) per electrode. In this otherwise electrolyte-poor aqueous environment, the depositions are formed three orders of magnitude below the critical precipitation concentration at pH 7! In the presence of an inert electrolyte such as TMAT (tetramethylammonium-p-toluenesulfonate), at a concentration level just above that of the total dissolved aluminum, no deposition was observed. Deposition can be also prevented by doping with CO2 gas at a concentration level that is magnitudes lower than that of the dissolved aluminum. From an overview of aqueous aluminum chemistry, the mystery of the alumina deposition process and its inhibition by CO2 is experimentally resolved and fully explained by field accumulation and repulsion models in synergism with acid-base equilibria. The extraordinary size of the alumina depositions is accounted for in terms of proton tunneling through "hydrated" alumina, which is supported by quantum chemical calculations. As a consequence, pulse-purging with pure CO2 gas is presented as a technical solution to prevent the deposition of alumina. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pt–Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    International Nuclear Information System (INIS)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; Wijngaart, Wouter van der; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al 2 O 3 ) on Pt in nanopores to form a metal–insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al 2 O 3 layer on such a Pt film forms a metal–insulator–electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al 2 O 3 using ALD. (paper)

  6. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    Science.gov (United States)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  7. Specification for the delivery of special sections made of aluminum alloy for use as vacuum chambers

    International Nuclear Information System (INIS)

    Possible extension of the research facility by a large storage-ring facility is presently being planned at DESY. For preliminary engineering tests concerning the dimensions of the vacuum system, there is a need for two extruded special sections made of an aluminum alloy, which are to be fabricated as vacuum chambers in deflecting magnets and in focussing magnets. Conditions of the contract and technical requirements of the special sections are given

  8. Differential diagnosis between secondary hyperparathyroidism and aluminum intoxication in uremic patients: Usefulness of 99mTc-pyrophosphate bone scintigraphy

    International Nuclear Information System (INIS)

    Kinnaert, P.; Van Hooff, I.; Schoutens, A.

    1989-01-01

    Forty-one patients in chronic end-stage renal failure and 4 patients with a functioning kidney transplant presented with spontaneous hypercalcemia or intolerance to vitamin D3 sterols and/or oral calcium supplements. Bone iliac crest biopsy with aluminum staining and Tc-pyrophosphate bone scintigraphy with determination of Fogelman score were performed in all cases. Two patients had aluminum-induced osteomalacia (AL O). Thirty-eight biopsies showed renal osteodystrophy (secondary hyperparathyroidism or various combinations of osteitis fibrosa and osteomalacia): 19 with positive staining for aluminum (RO + AL) and 19 without aluminum deposits (RO). The series also comprised 2 cases of pure osteomalacia (OM), 2 cases of osteoporosis (OP), and 1 case of osteoporosis with aluminum accumulation (OP + AL). Mean Fogelman score in RO patients (9.1 +/- 0.3) was significantly higher than in all other categories (5.9 +/- 0.5 for RO + AL, and scores ranging from 0 to 8 in the last 7 patients, p less than 0.01). Patients with massive aluminum accumulation in bone (greater than 75% of the total trabecular surface) showed no or very low uptake of the isotope by the skeleton. Fogelman scores of 9 or higher were always associated with histological secondary hyperparathyroidism. 99m Tc-pyrophosphate bone scintigraphy is helpful to distinguish aluminum intoxication from secondary hyperparathyroidism in uremic patients

  9. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  10. Study of Poly (3,4-ethylenedioxythiophene)/MnO2 as Composite Cathode Materials for Aluminum-Air Battery

    International Nuclear Information System (INIS)

    Kuo, Yu-Lin; Wu, Ching-Chen; Chang, Wen-Sheng; Yang, Ching-Ru; Chou, Hung-Lung

    2015-01-01

    Highlights: • Open-tunnel structure of MnO 2 catalysts were prepared by the hydrothermal method. • PEDOT was deposited on MnO 2 /carbon paper by oxidative chemical vapor deposition. • PEDOT/α-MnO 2 /10AA composite cathode shows the highest discharge performance. • The enhancement on discharge performance was due to the clear charge transfer. - Abstract: This study focuses on the development of the composite electrode materials for an aluminum-air battery and improving the oxygen reduction reaction (ORR) of the air electrode by matching alpha- and beta- manganese dioxide (MnO 2 ) with poly-(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer. The catalyst powders of α-MnO 2 and β-MnO 2 are prepared by hydrothermal method with different precursors, while PEDOT conducting polymer is subsequently deposited on the screen-printed electrodes (MnO 2 /carbon paper) by oxidative chemical vapor deposition (oCVD). Material characteristics of prepared MnO 2 powder and PEDOT layer are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering spectroscopy. The half-cell polarization curve test is found to be strongly depended on the crystalline phases of MnO 2 . From experimental observations and a density functional theory (DFT) study, the conductivity of PEDOT/α-MnO 2 is found to be higher than PEDOT/β-MnO 2 contributed to structural effect mediated improvements in charge transfer. As a result, integrating the deposition of PEDOT on α-MnO 2 /carbon paper as composite cathode is suitable for the use in aluminum-air battery

  11. Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices

    International Nuclear Information System (INIS)

    Demirkan, K.; Mathew, A.; Weiland, C.; Opila, R. L.; Reid, M.

    2008-01-01

    The chemistry and the morphology of metal-deposited organic semiconductor interfaces play a significant role in determining the performance and reliability of organic semiconductor devices. We investigated the aluminum metallization of poly(2-methoxy-5,2 ' -ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene, and ozone-treated polystyrene surfaces by chemical (x-ray and ultraviolet photoelectron spectroscopy) and microscopic [atomic force microscopy, scanning electron microscopy (SEM), focused ion beam (FIB)] analyses. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer; for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of aluminum with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Results showed a strong relationship between the surface reactivity and the condensation/sticking of the aluminum atoms on the surface. SEM analysis showed that, during the initial stages of the metallization, a significant clustering of aluminum takes place. FIB analysis showed that such clustering yields a notably porous structure. The chemical and the morphological properties of the vapor-deposited Al on organic semiconductor surfaces makes such electrical contacts more complicated. The possible effects of surface chemistry and interface morphology on the electrical properties and reliability of organic semiconductor devices are discussed in light of the experimental findings

  12. On a Three-Channel Cosmic Ray Detector based on Aluminum Blocks

    Science.gov (United States)

    Arceo, L.; Félix, J.

    2017-10-01

    There are many general purpose cosmic ray detectors based on plastic scintillators and electronic boards from the market. This is a new cosmic ray detector designed on three 2.54 cm × 5.08 cm × 20.32 cm Aluminum blocks in stack arrangement, and three Hamamatsu S12572-100P photodiodes. The photodiode board, the passive electronic board, and the discriminator board are own designed. The electronic signals are stored with a CompactRIO -cRIO- by National Instruments. It is presented the design, the construction, the data acquisition system algorithm, and the preliminary physical results.

  13. Evaluation of mitigation for acid aluminum leachate from a highway fill in Garrett County, Maryland. Research report (Final)

    International Nuclear Information System (INIS)

    Gracie, J.W.

    1992-01-01

    The effectiveness of a man-made sphagnum bog in reducing acidity and removing aluminum from an acidic leachate is evaluated. Although some effectiveness is demonstrated, the bog does not retain its ability to function as a result of physical changes due to uncontrolled sediment deposition in it

  14. Industrial high-rate (~14 nm/s) deposition of low resistive and transparent ZnOx:Al films on glass

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Deelen, J. van; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Janssen, A.C.; Beckers, E.H.A.

    2011-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. Tertiary-butanol has been used as oxidant for diethylzinc and trimethylaluminium as dopant gas. ZnOx:Al films can be

  15. Chemical vapor deposition of refractory ternary nitrides for advanced diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth; Smith, Paul Martin

    1998-09-22

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturing of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.

  16. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  17. Characterization of aluminum/aluminum nitride coatings sputter deposited using the pulsed-gas process

    International Nuclear Information System (INIS)

    Springer, R.W.; Hosford, C.D.

    1981-01-01

    A dc triode magnetron has been used to produce freestanding Al/Al + AlN lamellar foils by sputter deposition. The 5-μm-thick foils produced on both flat substrates as well as curved substrates exhibited good specularity as well as excellent mechanical properties. The pulse spacing was varied from none to 100-nm spacing. The yield strength of the material was found to obey the Hall-Petch relation sigma/sub ys/ = 230 + .07/d/sup 1/2/, where sigma/sub ys/ is in MPa. Auger electron Spectroscopy and Secondary Ion Mass Spectroscopy indicate that the large flow stress of 230 MPa must be due to grain refinement of the extended source and not an impurity effect. The result is that limitations of masking found in uniaxial flux sources for curved surfaces can be removed allowing the high quality coating of more general shapes

  18. Compositional characterization of atomic layer deposited alumina

    International Nuclear Information System (INIS)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev

    2014-01-01

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al 2 O 3 is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra

  19. Compositional characterization of atomic layer deposited alumina

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev [Department of Instrumentation, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2014-01-28

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al{sub 2}O{sub 3} is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra.

  20. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  1. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  2. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  3. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    International Nuclear Information System (INIS)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P.; Wei, Min

    2014-01-01

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  6. Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2009-01-01

    Full Text Available Electrodeposition of polypyrrole films on aluminum from aqueous solutions containing p-toluene sulfonic acid and pyrrole was performed by cyclic voltammetry and galvanostatic technique. The influence of applied current density on the morphology of the films was studied by Scanning Electron Microscopy. The films displayed a cauliflower-like structure consisting of micro-spherical grains. This structure is related to dopand intercalation in the polymeric chain. Films deposited at higher current density were more susceptible to the formation of pores and defects along the polymeric chain than films deposited at lower current density. These pores allow the penetration of aggressive species, thereby favoring the corrosion process.

  7. 76 FR 33194 - Pure Magnesium From the People's Republic of China: Preliminary Results of the 2009-2010...

    Science.gov (United States)

    2011-06-08

    ... assessment rates are above de minimis. We invite interested parties to comment on these preliminary results... Determination of Sales at Less Than Fair Value: Antidumping Duty Investigation of Pure Magnesium From the... the following alloying elements: aluminum, manganese, zinc, silicon, thorium, zirconium and rare...

  8. Preliminary Estimate of Gypsum Deposit Based on Wenner

    African Journals Online (AJOL)

    Dogara M. D. and Aloa J. O.

    estimating the quantity of some possible deposits of gypsum. Just ... exploitation is an everyday activity that is currently going on, but, on a 'wild cat' ... important source of wealth for a nation, but before they are harnessed ..... REFERENCES.

  9. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  10. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  11. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  12. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  13. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  14. Preliminary discussion on the classification of uranium deposits in China

    International Nuclear Information System (INIS)

    Zhou Weixun; Liu Xinzhong; Wang Zubang.

    1991-01-01

    The classification of uranium deposits is a comprehensive and complicated problem which is of great importance for the guide in prospecting and exploration. The authors review the merits and shortcomings of various classifications sumitted by uranium geologists in the world based on origin, geotectonics and host rocks. Considering the reasonable parts in previous classifications and characteristics of uranium metallogenesis in China, the authors suggest a new classification of uranium deposits of China mainly according to host rocks, and also deposits' structure and morphology of ore bodies. This classification is composed of 7 goups divided into 25 subgroups. Finally, an indication and explanation are presented in order to draw attention of the Chinese uranium geologists and make further discussions among them

  15. Effect of Deposition Rate on Structure and Surface Morphology of Thin Evaporated Al Films on Dielectrics and Semiconductors

    DEFF Research Database (Denmark)

    Bordo, K.; Rubahn, H. G.

    2012-01-01

    Aluminum (Al) films with thickness of 100 nm were grown on unheated glass, silicon and mica substrates by electron beam evaporation. The deposition rates were adjusted in the range between 0.1 nm/s and 2 nm/s, the pressure in the vacuum chamber during deposition was lower than 1.10(-3) Pa. The st...

  16. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  17. Preliminary maps of Quaternary deposits and liquefaction susceptibility, nine-county San Francisco Bay region, California: a digital database

    Science.gov (United States)

    Knudsen, Keith L.; Sowers, Janet M.; Witter, Robert C.; Wentworth, Carl M.; Helley, Edward J.; Nicholson, Robert S.; Wright, Heather M.; Brown, Katherine H.

    2000-01-01

    This report presents a preliminary map and database of Quaternary deposits and liquefaction susceptibility for the nine-county San Francisco Bay region, together with a digital compendium of ground effects associated with past earthquakes in the region. The report consists of (1) a spatial database of fivedata layers (Quaternary deposits, quadrangle index, and three ground effects layers) and two text layers (a labels and leaders layer for Quaternary deposits and for ground effects), (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map, liquefaction interpretation, and the ground effects compendium, and (4) the databse description pamphlet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a modern and regionally consistent treatment of Quaternary surficial deposits that builds on the pioneering mapping of Helley and Lajoie (Helley and others, 1979) and such intervening work as Atwater (1982), Helley and others (1994), and Helley and Graymer (1997a and b). Like these earlier studies, the current mapping uses geomorphic expression, pedogenic soils, and inferred depositional environments to define and distinguish the map units. In contrast to the twelve map units of Helley and Lajoie, however, this new map uses a complex stratigraphy of some forty units, which permits a more realistic portrayal of the Quaternary depositional system. The two colored maps provide a regional summary of the new mapping at a scale of 1:275,000, a scale that is sufficient to show the general distribution and relationships of

  18. Suppressing the Photocatalytic Activity of TiO2 Nanoparticles by Extremely Thin Al2O3 Films Grown by Gas-Phase Deposition at Ambient Conditions

    NARCIS (Netherlands)

    Guo, J.; Bui, H.V.; Valdesueiro Gonzalez, D.; Yuan, Shaojun; Liang, Bin; van Ommen, J.R.

    2018-01-01

    This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2) pigment powders by extremely thin aluminum oxide (Al2O3) films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA) and H2O as precursors. The deposition was performed on

  19. Stability of FDTS monolayer coating on aluminum injection molding tools

    International Nuclear Information System (INIS)

    Cech, Jiri; Taboryski, Rafael

    2012-01-01

    Highlights: ► We present novel and highly useful results on FDTS monolayer coating of aluminum. ► The coating is particularly applicable for coating of prototyping injection molding tools, which often are made of Al. ► We have demonstrated that the coating prevails in injection molding conditions and that the coating will prevent wear of the tools. - Abstract: We have characterized perfluorodecyltrichlorosilane (FDTS) molecular coating of aluminum molds for polymer replication via injection molding (IM). X-ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energies and roughness data have been collected. Samples have been characterized immediately after coating, after more than 500 IM cycles to test durability, and after 7 months to test temporal stability. The coating was deposited in an affordable process, involving near room temperature gas phase reactions. XPS shows detectable fluorine presence on both freshly coated samples as well as on post-IM samples with estimated 30 at.% on freshly coated and 28 at.% on post-IM samples with more than 500 IM cycles with polystyrene (PS) and ABS polymer.

  20. A preliminary study of ester oxidation on an aluminum surface using chemiluminescence

    Science.gov (United States)

    Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

    1987-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin-film micro-oxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing 10 to the minus 3rd power M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission (I sub max) was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period or the time to reach one-half of maximum intensity (t sub 1/2) was an inverse function of test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  1. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  2. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    Science.gov (United States)

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  3. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  4. The Mechanical and Tribology Properties of Sputtered Titanium Aluminum Nitride Coating on the Tungsten Carbide Insert Tool in the Dry Turning of Tool Steel

    Directory of Open Access Journals (Sweden)

    Esmar Budi

    2015-02-01

    Full Text Available The effect of the sputtering parameters on the mechanical tribology properties of Titanium Aluminum Nitride coating on the tungsten cabide insert tool in the dry turning of tool steel has been investigated. The coating was deposited using a Direct Current magnetron sputtering system with various substrate biases (-79 to -221 V and nitrogen flow rates (30 to 72 sccm. The dry turning test was carried out on a Computer Numeric Code machine using an optimum cutting parameter setting. The results show that the lowest flank wear (~0.4 mm was achieved using a Titanium Aluminum Nitride-coated tool that was deposited at a high substrate bias (-200 V and a high nitrogen flow rate (70 sccm. The lowest flank wear was attributed to high coating hardness.

  5. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  6. Sulfuric acid dissolution of the Chashma-Sang deposit's green clays

    International Nuclear Information System (INIS)

    Mirzoev, D.Kh.; Boboev, Kh.E.; Pulatov, M.S.; Mirsaidov, U.M.

    2005-01-01

    Present article is presenting the results of the roentgen phase, thermodynamic and physical-chemical investigations of the green clays of the Chashma-Sang deposit of the Republic of Tajikistan. It is presented mineralogical and chemical composition of the mineral raw materials. Kinetic of decomposition of the oxides of aluminum and iron on temperature, time and concentration of the sulfuric acid has been investigated

  7. Gut: An underestimated target organ for Aluminum.

    Science.gov (United States)

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Preliminary topical report on comparison reactor disassembly calculations

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1975-11-01

    Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2-POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherent in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident

  9. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  10. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  11. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  12. Influence of ion/atom arrival ratio on structure and optical properties of AlN films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jian-ping [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Fu, Zhi-qiang, E-mail: fuzq@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Xiao-peng [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Yue, Wen; Wang, Cheng-biao [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-10-30

    Highlights: • AlN films were fabricated by dual ion beam sputtering. • Chemical bond status and phase composition of the films were studied by XPS and XRD. • Optical constants were measured by spectroscopic ellipsometry. • Influence of ion/atom arrival ratio on the films was studied. - Abstract: In order to improve the optical properties of AlN films, the influence of the ion/atom arrival ratio on the structure and optical characteristics of AlN films deposited by dual ion beam sputtering was studied by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and UV–vis spectroscopy. The films prepared at the ion/atom arrival ratio of 1.4 are amorphous while the crystalline quality is improved with the increase of the ion/atom arrival ratio. The films deposited at the ion/atom arrival ratio of no less than 1.8 have an approximately stoichiometric ratio and mainly consist of aluminum nitride with little aluminum oxynitride, while metallic aluminum component appears in the films deposited at the ion/atom arrival ratio of 1.4. When the ion/atom arrival ratio is not less than 1.8, films are smooth, high transmitting and dense. The films prepared with high ion/atom arrival ratio (≥1.8) display the characteristic of a dielectric. The films deposited at the ion/atom arrival ratio of 1.4 are coarse, opaque and show characteristic of cermet.

  13. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Science.gov (United States)

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of aluminum...

  14. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  15. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  16. Quality Designed Twin Wire Arc Spraying of Aluminum Bores

    Science.gov (United States)

    König, Johannes; Lahres, Michael; Methner, Oliver

    2015-01-01

    After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

  17. Aluminum industry options paper

    International Nuclear Information System (INIS)

    1999-10-01

    In 1990, Canada's producers of aluminum (third largest in the world) emitted 10 million tonnes of carbon dioxide and equivalent, corresponding to 6.4 tonnes of greenhouse gas intensity per tonne of aluminum. In 2000, the projection is that on a business-as-usual (BAU) basis Canadian producers now producing 60 per cent more aluminum than in 1990, will emit 10.7 million tonnes of carbon dioxide and equivalent, corresponding to a GHG intensity of 4.2 tonnes per tonne of aluminum. This improvement is due to production being based largely on hydro-electricity, and partly because in general, Canadian plants are modern, with technology that is relatively GHG-friendly. The Aluminum Association of Canada estimates that based on anticipated production, and under a BAU scenario, GHG emissions from aluminum production will rise by 18 per cent by 2010 and by 30 per cent by 2020. GHG emissions could be reduced below the BAU forecast first, by new control and monitoring systems at some operations at a cost of $4.5 to 7.5 million per smelter. These systems could reduce carbon dioxide equivalent emissions by 0.8 million tonnes per year. A second alternative would require installation of breaker feeders which would further reduce perfluorocarbon (PFC) emissions by 0.9 million tonnes of carbon dioxide equivalent. Cost of the breakers feeders would be in the order of $200 million per smelter. The third option calls for the the shutting down of some of the smelters with older technology by 2015. In this scenario GHG emissions would be reduced by 2010 by 0.8 million tonnes per year of carbon dioxide equivalent. However, the cost in this case would be about $1.36 billion. The industry would support measures that would encourage the first two sets of actions, which would produce GHG emissions from aluminum production in Canada of about 10.2 million tonnes per year of carbon dioxide equivalent, or about two per cent above 1990 levels with double the aluminum production of 1990. Credit for

  18. 1/f noise in titanium doped aluminum thin film deposited by electron beam evaporation method and its dependence on structural variation with temperature

    Science.gov (United States)

    Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.

    2018-05-01

    A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.

  19. Deposition of inhaled LMFBR-fuel-sodium aerosols in beagle dogs

    International Nuclear Information System (INIS)

    Hackett, P.L.; Mahlum, D.D.; Briant, J.K.; Catt, D.L.; Peters, L.R.; Clary, A.J.

    1980-01-01

    Initial alveolar deposition of LMFBR-fuel aerosols in beagle dogs amounted to 30% of the inhaled activity, but only 5% of the total inhaled activity was deposited in dogs exposed to sodium-fuel aerosols. Aerosol deposition in the gastrointestinal tract amounted to 4% of the initial body burden of fuel-aerosol exposed dogs and 24% of the burden of animals receiving sodium-fuel aerosols. Preliminary analytical data for the dog exposures appear to agree with rodent data for deposition and distribution patterns of aerosols of similar sodium: fuel ratios

  20. Next Generation Energetic Materials: New Cluster Hydrides and Metastable Alloys of Aluminum in Very Low Oxidation States

    Science.gov (United States)

    2016-10-01

    knowledge of barrier heights . For the reactions of 3O2 with closed- and open-shell Alx − and Gax − clusters, these cal- culations are complicated not only...nanoparticle nucleation on functionalized graphene surfactants from aluminum monochloride solutions. This data shows a strong affinity of AlCl units for... graphene vacancy sites; adsorption of AlCl to the site results in oxidative insertion into the Al–Cl bond and formation of an Al(III) center. Preliminary

  1. Deposition and characterization of NbAIN thin films by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Carvalho, R.G.; Felix, L.C.; Fernandez, D.A.R.; Fontes Junior, A.S.; Oliveira, G.B.; Tentardini, E.K.

    2016-01-01

    The objective of this work was to study NbAlN thin films and the influence of variation in the concentration of aluminum in the crystal structure and oxidation resistance of these coatings. The thin films were deposited by reactive magnetron sputtering and characterized by Grazing Incidence X-ray Diffraction (GIXRD), Energy Dispersive Spectroscopy (EDS) and oxidation tests at high temperatures. NbAlN thin films were deposited and present at concentration of 10, 20 and 42 at% Al. The NbAlN crystalline phase obtained was the δ-NbN, however it was observed a shift of the peaks in the patterns obtained GIXRD of regions for larger angles for these samples, indicating the formation of a solid solution. The higher oxidation resistance temperature was 700° C for the sample with 42 in at% Al. From the SEM analysis it was possible to observe the surface of the film after oxidation, all films showed defects, however the amount of such defects was lower in samples with higher aluminum concentrations. (author)

  2. Pt-Al{sub 2}O{sub 3} dual layer atomic layer deposition coating in high aspect ratio nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Goeran; Wijngaart, Wouter van der; Roxhed, Niclas [KTH Royal Institute of Technology, School of Electrical Engineering, Micro and Nanosystems, Osquldas Vaeg 10, SE-10044 Stockholm (Sweden)

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al{sub 2}O{sub 3}) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al{sub 2}O{sub 3} layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 {mu}m thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al{sub 2}O{sub 3} using ALD. (paper)

  3. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  4. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  5. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    Science.gov (United States)

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  6. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  7. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  8. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  9. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  10. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  12. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  13. An all aluminum alloy UHV components

    International Nuclear Information System (INIS)

    Sugisaki, Kenzaburo

    1985-01-01

    An all aluminum components was developed for use with UHV system. Aluminum alloy whose advantage are little discharge gas, easy to bake out, light weight, little damage against radieactivity radiation is used. Therefore, as it is all aluminum alloy, baking is possible. Baking temperature is 150 deg C in case of not only ion pump, gate valve, angle valve but also aluminum components. Ion pump have to an ultrahigh vacuum of order 10 -9 torr can be obtained without baking, 10 -10 torr order can be obtained after 24 hour of baking. (author)

  14. Different finite element techniques to predict welding residual stresses in aluminum alloy plates

    International Nuclear Information System (INIS)

    Moein, Hadi; Sattari-Far, Iradj

    2014-01-01

    This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.

  15. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  16. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    Science.gov (United States)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  17. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    Science.gov (United States)

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films.

  18. Recent Atmospheric Deposition and its Effects on Sandstone Cliffs in Bohemian Switzerland National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Z.; Navrátil, Tomáš; Dobešová, Irena

    2011-01-01

    Roč. 220, 1/4 (2011), s. 117-130 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z30130516 Keywords : acid deposition * sandstone percolates * chemical weathering * salt efflorescence * Black Triangle * aluminum * sulfates Subject RIV: DD - Geochemistry Impact factor: 1.625, year: 2011

  19. Corrosion mechanisms of aluminum alloys in waters of low conductivity

    International Nuclear Information System (INIS)

    Haddad, Roberto E; Lanazani, Liliana; Rodriguez, Sebastian

    2006-01-01

    After completing their burn cycle, nuclear fuels in experimental reactors made with aluminum alloys have to remain for long periods in distilled water, in interim storage. While aluminum alloys are resistant to corrosion in pure water, severe deterioration occurs in elements that have been immersed for periods of up to 30 years. Pitting-like surface alterations can even occur in nuclear quality waters (conductivity below 5 μS/cm and dissolved ions content below detection thresholds) in time periods of less than one year. An important factor that could become a potential promoter of this phenomena is the presence of dust particles and others, that could settle on the metallic surface, generating a locally aggressive medium. A simple immersion experiment demonstrates that these points can become initiation sites for pitting with very low concentrations of chlorides (under 10 ppm), especially if the electrochemical potential is increased by contact with another metallic material, even staying below the pitting potential in this medium. There are several corrosion mechanisms acting simultaneously, depending on the nature of the deposits. Pitting under glass particles has been detected, which may be related to a simple crevice corrosion process. In the case of iron oxides, however, the results depend on the type of oxide. Pits more than 100 microns deep have been obtained in 7 day immersion tests, so in spent fuel storage sites these mechanisms could easily cause penetration of the 500 micron aluminum plates during the time covering the interim storage under water, which could be decades, with similar chemical conditions (CW)

  20. Arc tracking energy balance for copper and aluminum aeronautic cables

    International Nuclear Information System (INIS)

    André, T; Valensi, F; Teulet, P; Cressault, Y; Zink, T; Caussé, R

    2017-01-01

    Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted. (paper)

  1. Production and characterization of cast aluminum sponges

    International Nuclear Information System (INIS)

    Rivarola, M.E; Marmo Lupano, J.M; Malachevsky, M.T

    2004-01-01

    Cellular materials have unique physical features that make them particularly appropriate for applications that require high mechanical resistance and low weight. They can be produced in different ways: by powder metallurgy, by infiltration over plastic foams, adding a releasing agent of gas to a fused metal or simply injecting gas into it. Cellular structures can also be formed by casting onto a pore forming material. This work proposes a method that is basically similar to the last one mentioned but that allows the resulting material's porosity and topology to be controlled. Thus, the mechanical or thermal features of the material that is being manufactured can be predicted and/or designed. First the three dimensional print of a mold is made in a 3D printer, which is the negative of the piece that will be produced. Then a vacuum assisted aluminum cast is made. A preliminary study is presented for the applicability of this method and the mechanical properties of the resulting sponges (CW)

  2. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  3. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  4. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  5. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  6. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  7. TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Dan

    2017-03-01

    Full Text Available Wire and arc additive manufacturing(WAAM was investigated by tungsten inert gas arc welding method(TIG, in which φ1.2mm filler wire of aluminum alloy 5A06(Al-6Mg-Mn-Si was selected as deposition metal. The prototyping process was conducted by a TIG power source(working in AC mode manipulated by a four-axis linkage CNC machine. Backplate preheating temperature and arc current on deposited morphologies of single layer and multi-layer were researched. The microstructure was observed and the sample tensile strength was tested. For single layer, a criterion that describes the correlation between backplate preheating temperature and arc peak current, of which both contribute to the smoothening of the deposited layer. The results show that the layer height drops sharply from the first layer of 3.4mm and keeps at 1.7mm after the 8th layer. Fine dendrite grain and equiaxed grain are found inside a layer and coarsest columnar dendrite structure at layer boundary zone; whereas the microstructure of top region of the deposited sample changes from fine dendrite grain to equiaxed grain that turns to be the finest structure. Mechanical property of the deposited sample is isotropic, in which the tensile strength is approximately 295MPa with the elongation around 36%.

  8. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  9. [Analysis of tartrazine aluminum lake and sunset yellow aluminum lake in foods by capillary zone electrophoresis].

    Science.gov (United States)

    Zhang, Yiding; Chang, Cuilan; Guo, Qilei; Cao, Hong; Bai, Yu; Liu, Huwei

    2014-04-01

    A novel analytical method for tartrazine aluminum lake and sunset yellow aluminum lake using capillary zone electrophoresis (CZE) was studied. The pigments contained in the color lakes were successfully separated from the aluminum matrix in the pre-treatment process, which included the following steps: dissolve the color lakes in 0.1 mol/L H2SO4, adjust the pH of the solution to 5.0, then mix it with the solution of EDTA x 2Na and heat it in a water bath, then use polyamide powder as the stationary phase of solid phase extraction to separate the pigments from the solution, and finally elute the pigments with 0.1 mol/L NaOH. The CZE conditions systematically optimized for tartrazine aluminum lake were: 48.50 cm of a fused silica capillary with 40.00 cm effective length and 50 microm i. d., the temperature controlled at 20.0 degrees C, 29.0 kV applied, HPO4(2-)-PO4(3-) (0.015 mol/L, pH 11.45) solution as running buffer, detection at 263 nm. The conditions for sunset yellow aluminum lake were: the same capillary and temperature, 25.0 kV applied, HPO4(2-)-PO4(3-) (0.025 mol/L, pH 11.45) solution as running buffer, detection at 240 nm. The limits of detection were 0.26 mg/L and 0.27 mg/L, and the linear ranges were 0.53-1.3 x 10(2) mg/L and 0.54-1.4 x 10(2) mg/L for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. The RSDs were 4.3% and 5.7% (run to run, n = 6), 5.6% and 6.0% (day to day, n = 6) for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. Further developments for this method could make it a routinely used method analyzing color lakes in foods.

  10. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  11. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  12. Maintenance and testing of anodized aluminum mirrors on the Whipple 10 m Whipple Telescope

    Science.gov (United States)

    Badran, H. M.; Weekes, T. C.

    2001-08-01

    Threshold energy sensitivity depends not only on the high reflectivity of the mirrors used in atmospheric Cherenkov telescopes but also on the maintenance of this reflectivity over months/years. The successful application of a mirror maintenance technique depends on the type of mirror coating and the contamination that must be removed. The uncovered mirrors in use on the 10-m Whipple gamma-ray telescope are anodized aluminum mirrors. A standard cleaning technique for such mirrors is not available. With the aim of extending the life of the aluminum coating exposed to the Mt ˙Hopkins environment, several cleaning procedures were tested on mirrors that had been exposed for three years. Evaluation of the most effective cleaners is presented. Preliminary results are also presented from a long-term experiment using newly coated mirrors at the proposed VERITAS site and at the current 10 m site. This experiment is designed to reveal the rates at which the reflectance degrades as a function of time, depth of anodization, storage direction, degree of covering, and maintenance procedures.

  13. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.

    2008-01-01

    It is well known that sediment deposition in the North Sea and on the Norwegian Shelf varied significantly during the Cenozoic as a consequence of varying erosion rate mainly in Western Scandinavia, in Scotland and in the Alps. Recent results have demonstrated that a causal relationship exists...... of variations in erosion rates. Here we present the rationale behind the project, the data available and some preliminary results. The dense seismic and well coverage in the area makes it possible to estimate the rate of deposition of matrix mass. Assuming that sediment storage is not important, this provides...... models. The matrix mass deposition history will be compared with the paleoclimate record (e.g. oxygen isotope curves) to see if the previously observed correlation in the eastern North Sea can be extended to other ages and locations.  ...

  14. Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Chu, Paul K.

    2007-01-01

    Due to the good biocompatibility and tensile yield strength, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to investigate the corrosion behavior of surgical AZ91 magnesium alloy treated by aluminum, zirconium, and titanium plasma immersion ion implantation and deposition (PIII and D) at 10 kV in artificial physiological fluids. The surface layers show a characteristic intermixed layer and the outer surface are mainly composed of aluminum, zirconium or titanium oxide with a lesser amount of magnesium oxide. Comparing the three sets of samples, aluminum PIII and D significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP

  15. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  16. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  17. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    Science.gov (United States)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  18. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    Science.gov (United States)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  19. Single-crystalline AlN growth on sapphire using physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Valencia, Andres M., E-mail: andres.cardenas@sri.co [SRI International (United States); Onishi, Shinzo; Rossie, Benjamin [SRI International (United States)

    2011-02-07

    A novel technique for growing single crystalline aluminum nitride (AlN) films is presented. The novelty of the technique, specifically, comes from the use of an innovative physical vapor deposition magnetron sputtering tool, which embeds magnets into the target material. A relatively high deposition rates is achieved ({approx}0.2 {mu}m/min), at temperatures between 860 and 940 {sup o}C. The AlN, grown onto sapphire, is single-crystalline as evidenced by observation using transmission electron microscopy. Tool configuration and growth conditions are discussed, as well as a first set of other analytical results, namely, x-ray diffraction and ultraviolet-visible transmission spectrophotometry.

  20. Effect of the aluminum flow pattern on the bonding of aluminum to oxidized Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.; Lambert, J.P.

    1965-04-01

    The bonds produced when hot aluminum is allowed to flow smoothly from an extrusion die to the oxidized surface of a heated tube of Zircaloy-2 are consistently inferior to those produced with back-extruded flow. The difference is believed to be due to the reduction in, or elimination of, the oxide layer on the aluminum that comes in contact with the surface of the Zircaloy-2. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 1965. (author)

  1. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  2. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Golden, J.L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  3. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  4. Impact of purity aluminum filters in the value of the half-value layer and the estimation of effective dose in patients

    International Nuclear Information System (INIS)

    Lima, Nathan Willig; Hoff, Gabriela

    2014-01-01

    The half-value layer test (HVL) is important in the context of conventional radiology, it is the only test that allow us to obtain information about the quality of the radiation beam. This work promotes a preliminary analysis of the influence of the composition of the aluminum filters used in determining the value of HVL considering a realistic geometry. Deterministic Calculations were compared and results calculated with the Monte Carlo method to do the analysis proposed. Six different aluminum alloys (with one percent of each impurity) marketed worldwide and pure aluminum are used as the basis for the realization of deterministic calculations and Monte Carlo simulation. Experimental arrangement in conventional radiology, a combination of tungsten track and aluminum filtration was used for three different peak voltages: (66 kVp, 81 kVp, 125 kVp). For determining HVL on mammography, were used three track combinations and filter (Molybdenum-Molybdenum, Molybdenum-Rhodium, Tungsten-Rhodium) for three different peak voltages (25 kVp, 30 kVp, 35 kVp). The spectrum used for deterministic calculations were taken from the Report No 78 of the Engineering Institute of Physics in Medicine, 1997. The results show that the composition of aluminum filters may impact significantly in the outcome of the HVL test and therefore the dose calculations that use it as a correction factor. In mammography, one percent impurities can result in variations showed about 20% of the HVL value

  5. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  6. Chamber for Aerosol Deposition of Bioparticles

    Science.gov (United States)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  7. Electron beam deposition system causing little damage to organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Minoru [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan); Matsumura, Michio, E-mail: matsu@chem.es.osaka-u.ac.jp [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Maeda, Yasuhiro [Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan)

    2011-07-29

    Conditions for deposition of an aluminum (Al) layer on an organic light-emitting layer with an electron beam (EB) deposition system were optimized with respect to deposition rate and damage to organic layers. The damage to the organic layers was found to be mostly caused by X-rays emitted from a target bombarded with accelerated electrons. In order to decrease the X-ray intensity while maintaining a high deposition rate, we used an EB source which emits high-density EB at low acceleration voltage. In addition, we inserted a heat reflector and a sintered-carbon liner between the Al target and copper crucible to improve heat insulation. As a result, the voltage needed for the deposition of Al electrodes at a rate of about 8 nm/s was lowered from normal voltages of 2.0 kV or higher to as low as 1.5 kV. To reduce the number of electrons hitting the substrate, we set pole pieces near the target and an electron trap in the chamber. The devices on which Al electrodes were deposited with the EB system showed almost the same properties as those of devices on which the Al electrodes were deposited by a resistive-heating method.

  8. Auger electron spectroscopy study on interaction between aluminum thin layers and uranium substrate

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Kezhao; Yang Jiangrong; Xiao Hong; Jiang Chunli; Lu Lei

    2005-01-01

    Aluminum thin layers on uranium were prepared by sputter deposition at room temperature in ultra high vacuum analysis chamber. Interaction between U and Al, and growth mode were investigated by Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS). It is shown that Al thin film growth follows the volmer-weber (VW) mode. At room temperature, Al and U interact with each other, resulting in interdiffusion action and formation of U-Al alloys at U/Al interface. Annealing promotes interaction and interdiffusion between U and Al, and UAl x maybe formed at interface. (authors)

  9. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  10. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  11. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  12. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  13. Deposition of single-layer and graded aluminum nitride coatings on vanadium substrates using ion-beam assisted reactive evaporation (ITER task no. ETA-EC-BLR26)

    International Nuclear Information System (INIS)

    Jamarani, F.; Lang, R.; Owles, R.

    1994-06-01

    The objective of the project has been to develop a reactive evaporation process for the fabrication of aluminum nitride coatings on pure vanadium substrates. The aluminum nitride coatings are to be used as electrical insulators on the surfaces of structural materials in contact with liquid metal coolants. (author). 9 refs., 2 tabs., 5 figs

  14. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Science.gov (United States)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  15. Low-temperature processed ZnO and CdS photodetectors deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Moreno, S; Mejia, I; Quevedo-Lopez, M A

    2014-01-01

    UV-VIS photodetectors using an interdigital configuration, with zinc oxide (ZnO) and cadmium sulfide (CdS) semiconductors deposited by pulsed laser deposition, were fabricated with a maximum processing temperature of 100 °C. Without any further post-growth annealing, the photodetectors are compatible with flexible and transparent substrates. Aluminum (Al) and indium tin oxide (ITO) were investigated as contacts. Focusing on underwater communications, the impact of metal contact (ITO versus Al) was investigated to determine the maximum responsivity using a laser with a 405 nm wavelength. As expected, the responsivity increases for reduced metal finger separation. This is a consequence of reduced carrier transit time for shorter finger separation. For ITO, the highest responsivities for both films (ZnO and CdS) were ∼3 A W −1 at 5 V. On the other hand, for Al contacts, the maximum responsivities at 5 V were ∼0.1 A W −1 and 0.7 A W −1 for CdS and ZnO, respectively. (paper)

  16. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    Science.gov (United States)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  17. Dependence of silicon carbide coating properties on deposition parameters: preliminary report

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1980-05-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide, which acts as a pressure vessel and provides containment of metallic fission products. The silicon carbide (SiC) is deposited by the thermal decomposition of methyltrichlorosilane (CH 3 SiCl 3 or MTS) in an excess of hydrogen. The purpose of the current study is to determine how the deposition variables affect the structure and properties of the SiC layer

  18. 49 CFR 178.505 - Standards for aluminum drums.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum...

  19. Proposal of the Tubular Daylight System Using Acrylonitrile Butadiene Styrene (ABS Metalized with Aluminum for Reflective Tube Structure

    Directory of Open Access Journals (Sweden)

    Anderson Diogo Spacek

    2018-01-01

    Full Text Available In the search for alternatives to reduce the consumption of electric energy, the possibility of using natural light for lighting through TDD (tubular daylight devices or TDGS (tubular daylight guidance systems appears. These natural luminaires are used in rooms where you want to save electricity and enjoy the benefits of natural light. The present work proposes the construction of a tubular system for the conduction of natural light that replaces aluminum with silver (currently marketed by several companies by polymer metallized with aluminum, offering a low cost. The polymer acrylonitrile butadiene styrene (ABS, coated with aluminum by physical vapor deposition (ionization, was evaluated for some tests to verify characteristics of the structure and the metallized surface. After the tests, the construction of the reflective tube was performed and validated in a real scale of application. The results proved the technical viability of the proposed tube construction for the realization of direct sunlight for illumination using polymeric material. Although it has produced 35% less than the reference tube, it can be marketed at an estimated cost of 50% less.

  20. Changes in structure of red pepper (Capsicum annuum L. seedlings shoots under aluminum stress conditions

    Directory of Open Access Journals (Sweden)

    Agata Konarska

    2012-12-01

    Full Text Available The seedlings of the red pepper (Capsicum annuum L. cv. Trapez grown in water culture for a period of 14 days with Al (0, 10, 20 and 40 mg·dm-3 AlCl3·6 H2O. Some morphological and anatomical features of red pepper shoots were analyzed. Reduction in height and diameter of stems as well as decrease in fresh mass of shoots were observed after Al-treatment. In the hypocotyl the thickness of cortex parenchyma layer and the size of their cells were reduced. The aluminum treatment resulted in the increased in thickness of the epidermis outer cell wall. Under Al stress in the cotrex and the central cylinder parenchyma cells were present numerous enlarge plastids which contained large grains of starch and dark little bodies which were possible aluminum deposits. They weren`t observed in control seedlings.

  1. High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Chang-Woo; Kim, Hyun-Mi; Kim, Ki-Bum [WCUHybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of); Son, Ji-Won; Lee, Jong-Ho; Lee, Hae-Weon [High Temperature Energy Materials Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of)

    2011-03-22

    Micro-solid oxide fuel cells ({mu}-SOFCs) are fabricated on nanoporous anodic aluminum oxide (AAO) templates with a cell structure composed of a 600-nm-thick AAO free-standing membrane embedded on a Si substrate, sputter-deposited Pt electrodes (cathode and anode) and an yttria-stabilized zirconia (YSZ) electrolyte deposited by pulsed laser deposition (PLD). Initially, the open circuit voltages (OCVs) of the AAO-supported {mu}-SOFCs are in the range of 0.05 V to 0.78 V, which is much lower than the ideal value, depending on the average pore size of the AAO template and the thickness of the YSZ electrolyte. Transmission electron microscopy (TEM) analysis reveals the formation of pinholes in the electrolyte layer that originate from the porous nature of the underlying AAO membrane. In order to clog these pinholes, a 20-nm thick Al{sub 2}O{sub 3} layer is deposited by atomic layer deposition (ALD) on top of the 300-nm thick YSZ layer and another 600-nm thick YSZ layer is deposited after removing the top intermittent Al{sub 2}O{sub 3} layer. Fuel cell devices fabricated in this way manifest OCVs of 1.02 V, and a maximum power density of 350 mW cm{sup -2} at 500 C. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  3. Chemical vapor deposition of aluminide coatings on iron, nickel and superalloys

    International Nuclear Information System (INIS)

    John, John T.; De, P.K.; Dubey, Vivekanand; Srinivasa, Raman

    2009-08-01

    Aluminide coatings are a class of intermetallic coatings applied on nickel and cobalt base superalloys and steels to protect them from different forms of environmental degradation at high temperatures. In this report a CVD system that can produce the aluminide coatings on iron, nickel and nickel base alloys has been described and the result of chemical vapor deposition of aluminide coatings on iron specimens, their characterization, and property evaluation have been presented. The CVD system consists of an AlCl 3 bath, a stainless steel retort as a hot-wall reacto, cold traps and vacuum system. Aluminium chloride vapor was carried in a stream of hydrogen gas at a flow rate of 150 SCCM (standard cubic centimeter per minute) into the CVD reactor maintained in the temperature range of 1173 - 1373 K and at a pressure of 1.33 kPa (10 Torr). Aluminum deposition takes place from aluminium subchlorides produced by reaction between AlCl 3 and pure aluminum kept in the CVD reactor. The aluminum diffuses into the iron samples and iron aluminide phases are formed at the surface. The coatings were shining bright and showed good adherence to the substrate. The coatings consisted of FeAl phase over a wide range of experimental conditions. The growth kinetics of the coating followed a parabolic rate law and the mean activation energy was 212 ±16 kJ/mol. Optical microscopic studies on the transverse section of the coating showed that the aluminide coating on iron consisted of two layers. The top layer had a thickness in the range of 20-50 μm, and the under layer had thickness ranging from 35 to 250 μm depending on coating temperature in two hours. The thickness of the aluminide layer increased with coating duration and temperature. Electron microprobe studies (EPMA) showed that the aluminum concentration decreased steadily as distance from the surface increased. TEM studies showed that the outer most layer had a B2 order (of the FeAl phase), which extended even into the under

  4. Electrometallurgical treatment of aluminum-based fuels

    International Nuclear Information System (INIS)

    Willit, J. L.

    1998-01-01

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining

  5. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  6. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  7. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  8. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  9. Femtosecond fluorescence upconversion spectroscopy of vapor-deposited tris(8-hydroxyquinoline) aluminum films.

    NARCIS (Netherlands)

    Humbs, W.; Zhang, H.; Glasbeek, M.

    2000-01-01

    Abstract Vapor-deposited Alq3 is used as the green emitting layer in a class of organic light-emitting diodes. In this paper, the time dependence of the fluorescence from thin Alq3 films has been studied by means of the femtosecond fluorescence upconversion technique. From the temporally resolved

  10. Plasma-deposited aluminum-doped zinc oxide : controlling nucleation, growth and electrical properties

    NARCIS (Netherlands)

    Ponomarev, M.

    2012-01-01

    In this work, the Expanding Thermal Plasma (ETP) deposition technique was employed to study the growth development of ZnO:Al thin film as a transparent conductive oxide layer for sustainable applications. Characteristic for ETP-grown ZnO:Al is a gradually reducing resistivity of the growing layer

  11. Aluminum hydroxide issue closure package

    International Nuclear Information System (INIS)

    Bergman, T.B.

    1998-01-01

    Aluminum hydroxide coatings on fuel elements stored in aluminum canisters in K West Basin were measured in July and August 1998. Good quality data was produced that enabled statistical analysis to determine a bounding value for aluminum hydroxide at a 99% confidence level. The updated bounding value is 10.6 kg per Multi-Canister Overpack (MCO), compared to the previously estimated bounding value of 8 kg/MCO. Thermal analysis using the updated bounding value, shows that the MCO generates oxygen concentrate that are below the lower flammability limits during the 40-year interim storage period and are, therefore, acceptable

  12. Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2015-12-01

    Full Text Available Encouraged by recent studies and considering the well-documented problems occurring during AlN synthesis, we have chosen two diagnostic methods which would enable us to fully control the process of synthesis and characterize the synthesized aluminum nitride films. In our experiment we have compared the results coming from OES measurements of plasma and circulating power characteristics of the power supply with basic features of the deposited layers. The dual magnetron system operating in AC mode was used in our studies. Processes of aluminum target sputtering were carried out in an atmosphere of a mixture of argon and nitrogen. The plasma emission spectra were measured with the use of a monochromator device. Analyses were made by comparing the positions and intensities of spectral lines of the plasma components. The results obtained allowed us to characterize the sputtering process under various conditions of gas mixture compositions as well as power distribution more precisely, which is reported in this work. The measured spectra were related to the deposition rate, the structure morphology of the films and chemical composition. Our work proved that the use of plasma OES and circulating power measurements make possible to control the process of sputtering and synthesis of deposited films in situ.

  13. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  15. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  16. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of...

  17. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b...

  18. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  19. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  20. Trends in the global aluminum fabrication industry

    Science.gov (United States)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  1. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    International Nuclear Information System (INIS)

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Gordon, Roy G.; Mankad, Ravin; Haight, Richard; Gunawan, Oki; Mitzi, David B.

    2014-01-01

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 10 19 to 10 20 cm −3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 10 19 to 10 14 cm −3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications

  2. Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result)

    Energy Technology Data Exchange (ETDEWEB)

    Maemunah, Imun, E-mail: imun-m2001@yahoo.com [Geological Agency, Ministry of Energy and Mineral Resources (Indonesia); Institute Technology of Bandung (Indonesia); Suparka, Emmy, E-mail: emmy@gc.itb.ac.id; Puspito, Nanang T, E-mail: nanang@staff.itb.ac.id [Institute Technology of Bandung (Indonesia); Hidayati, Sri, E-mail: shidayati@gmail.com [Geological Agency, Ministry of Energy and Mineral Resources (Indonesia)

    2015-04-24

    The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomes finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography. Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits.

  3. Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result)

    International Nuclear Information System (INIS)

    Maemunah, Imun; Suparka, Emmy; Puspito, Nanang T; Hidayati, Sri

    2015-01-01

    The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomes finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography. Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits

  4. Deposition characteristics of copper particles on roughened substrates through kinetic spraying

    International Nuclear Information System (INIS)

    Kumar, S.; Bae, Gyuyeol; Lee, Changhee

    2009-01-01

    In this paper, a systematic study of copper particle deposition behavior on polished and roughened surfaces (aluminum and copper) in kinetic spray process has been performed. The particle deformation behavior was simulated through finite element analysis (FEA) software ABAQUS explicit 6.7-2. The particle-substrate contact time, contact temperature and contact area upon impact have been estimated for smooth and three different roughened substrate cases. Copper powders were deposited on smooth and grit-blasted copper and aluminium substrates and characterized through scanning electron microscopy and Romulus bond strength analyzer. The results indicate that the deformation and the resultant bonding were higher for the roughened substrates than that of smooth. The characteristic factors for bonding are reported and discussed. Thus the substrate roughness appears to be beneficial for the initial deposition efficiency of the kinetic spray process.

  5. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  6. A melt refining method for uranium-contaminated aluminum

    International Nuclear Information System (INIS)

    Uda, T.; Iba, H.; Hanawa, K.

    1986-01-01

    Melt refining of uranium-contaminated aluminum which has been difficult to decontaminate because of the high reactivity of aluminum, was experimentally studied. Samples of contaminated aluminum and its alloys were melted after adding various halide fluxes at various melting temperatures and various melting times. Uranium concentration in the resulting ingots was determined. Effective flux compositions were mixtures of chlorides and fluorides, such as LiF, KCl, and BaCl 2 , at a fluoride/chloride mole ratio of 1 to 1.5. The removal of uranium from aluminum (the ''decontamination effect'') increased with decreasing melting temperature, but the time allowed for reaction had little influence. Pure aluminum was difficult to decontaminate from uranium; however, uranium could be removed from alloys containing magnesium. This was because the activity of the aluminum was decreased by formation of the intermetallic compound Al-Mg. With a flux of LiF-KCl-BaCl 2 and a temperature of 800 0 C, uranium added to give an initial concentration of 500 ppm was removed from a commercial alloy of aluminum, A5056, which contains 5% magnesium, to a final concentration of 0.6 ppm, which is near that in the initial aluminum alloy

  7. Conductivity and touch-sensor application for atomic layer deposition ZnO and Al:ZnO on nylon nonwoven fiber mats

    International Nuclear Information System (INIS)

    Sweet, William J.; Oldham, Christopher J.; Parsons, Gregory N.

    2015-01-01

    Flexible electronics and wearable technology represent a novel and growing market for next generation devices. In this work, the authors deposit conductive zinc oxide films by atomic layer deposition onto nylon-6 nonwoven fiber mats and spun-cast films, and quantify the impact that deposition temperature, coating thickness, and aluminum doping have on the conductivity of the coated substrates. The authors produce aluminum doped zinc oxide (AZO) coated fibers with conductivity of 230 S/cm, which is ∼6× more conductive than ZnO coated fibers. Furthermore, the authors demonstrate AZO coated fibers maintain 62% of their conductivity after being bent around a 3 mm radius cylinder. As an example application, the authors fabricate an “all-fiber” pressure sensor using AZO coated nylon-6 electrodes. The sensor signal scales exponentially under small applied force (<50 g/cm 2 ), yielding a ∼10 6 × current change under 200 g/cm 2 . This lightweight, flexible, and breathable touch/force sensor could function, for example, as an electronically active nonwoven for personal or engineered system analysis and diagnostics

  8. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers.

    Science.gov (United States)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-27

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al 2 O 3 ) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al 2 O 3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al 2 O 3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al 2 O 3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  9. Influence of the technology of melting and inoculation preliminary alloy AlBe5 on change of concentration of Al and micro-structure of the bronze CuAl10Ni5Fe4

    Directory of Open Access Journals (Sweden)

    B. Pisarek

    2010-04-01

    Full Text Available Examining was the aim of the work: influence of the permanent temperature 1300°C ± 15°C and changing time of isothermal holding in the range 0÷50 minutes on the melting loss of aluminum in the bronze CuAl10Ni5Fe4; the quantity the slag rafining - covering Unitop BA-1 (0÷1,5% on the effectiveness of the protection of liquid bronze before the oxygenation, the quantity of the preliminary alloy - in-oculant AlBe5 (0÷1,0% on the effective compensation melting loss of aluminum and time of isothermal holding on the effect of the in-oculation of the bronze and the comparison of the effectiveness of the inoculation of the bronze in furnace and in the form. Introduced investigations resulted from the study of the new grades of the Cu-Al-Fe-Ni bronze with additions singly or simultaneously Si, Cr, Mo and/or W, to melting which necessary it is for high temperature and comparatively long time isothermal holding indispensable to the occur of the process of diffusive dissolving the high-melting of the bronze components. High temperature and lengthening the time of isothermal holding the liquid bronze in casting furnace the melting loss of Al influences the growth. Addition the slag of covering-refining Unitop BA-1 in the quantity 1,5% the bronze protects before the melting loss of aluminum by the time of isothermal holding in the temperature 1300°C about 15 minutes. Addition of the preliminary alloy AlBe5 in the quantity 0,6% it assures the effective compensation of the aluminum which melting loss undergoes for the studied parameters of the melting. The effect of the inoculation of the bronze together with diminishes the preliminary alloy AlBe5 with lengthening the time of isothermal hold-ing. Because of this, use of the method of introducing the preliminary alloy it is seems good solution on the inoculation of aluminum bronzes directly to form, unsensitive on the time of isothermal holding the bronze.

  10. A Prediction Study on Oxidation of Aluminum Alloy Cladding of U{sub 3}Si{sub 2}-Al Fuel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y.W.; Lee, B.H.; Oh, J.Y.; Park, J.H.; Yim, J.S. [Research Reactor Design and Engineering Div., Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    U{sub 3}Si{sub 2}-Al dispersion fuel with aluminum alloy cladding will be used for the Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding undergoes corrosion at slow rates under operational status. This causes thinning of the cladding walls and impairs heat transfer to the coolant. Predictions of the aluminum oxide thickness of the fuel cladding and the maximum temperature difference across the oxide film are needed for reliability evaluation based on the design criteria and limits which prohibit spallation of oxide film. In this work, several oxide thickness prediction models were compared with the measured data of in-pile test results from RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model were performed for JRTR fuel. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, fresh fuel is discharged after 900 effective full power days (EFPD), which is too long a span to predict oxidation properly without an elaborate model. The latest model developed by Kim et al. is in good agreement with the recent in-pile test data as well as with the out-of-pile test data available in the literature, and is one of the best predictors for the oxidation of aluminum alloy cladding in various operating condition. Accordingly, this model was chosen for estimating the oxide film thickness. Through the preliminarily evaluation, water pH level is to be controlled lower than 6.2 for the conservativeness in the case of including the effect of anticipated operational occurrences and the spent fuel residence time in the storage rack after discharging. (author)

  11. A Preliminary Appraisal Of The Composition And Industrial ...

    African Journals Online (AJOL)

    A preliminary appraisal of the composition and geotechnical properties of clay deposits at Tumfure, Rukwu and Tashar Garba in Udubo area, northeastern Nigeria has been undertaken and results related to their industrial suitability. Mineralogical studies indicate that the clay is mainly kaolinitic while quartz and feldspar are ...

  12. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Science.gov (United States)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  13. Experimental energetic balance associated to the deformation of an aluminum multicrystal and monocrystal sheet

    Energy Technology Data Exchange (ETDEWEB)

    Louche, H.; Tabourot, L. [LMecA ESIA, Domaine Univ., Annecy (France)

    2004-07-01

    This paper presents a method to estimate the stored energy during the tensile deformation of an aluminum multicrystal and polycrystal sheet sample. The method is based on thermo mechanical macroscopic fields analysis, like strains and temperature, obtained by a visible and an infrared cameras. Preliminary experimental results are presented. On an Al multicrystal sheet, heterogeneous thermo mechanical fields associated to the localized movement of dislocations at a microscopic scale are presented. Furthermore, the energetic balance established during the tensile deformation of an Al polycristal show a decreasing ratio of stored energy on anelastic energy and a non constant fraction of total work converted into heat. (orig.)

  14. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  15. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    Science.gov (United States)

    Czapski, M.; Stora, T.; Tardivat, C.; Deville, S.; Santos Augusto, R.; Leloup, J.; Bouville, F.; Fernandes Luis, R.

    2013-12-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.

  16. Deposition and characterization of TaAIN thin films by reactive magnetron sputtering; Deposicao e caracterizacao de filmes finos de TaAIN depositados por magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.B.; Fernandez, D.R.; Fontes Junior, A.S.; Felix, L.C.; Tentardini, E.K. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Ciencia e Engenharia de Materiais; Hubler, R. [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), RS (Brazil); Silva Junior, A.H. da, E-mail: brito-g@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil)

    2016-07-01

    Phase stability, oxidation resistance and great mechanical properties are the main objectives when synthesizing protective coatings. The tantalum nitride (TaN) has aroused interest because of its high temperature stability, chemical inertness and thermal conductivity. However, it has a low hardness value when compared to other coatings. Researches has shown that one way to improvements in the properties of a thin film is by adding other elements in the deposition process. Therefore, the objective of this study was to deposit thin films of TaAlN by magnetron sputtering, changing the aluminum concentration of 2, 5, 7, to 14%. Then the coatings were characterized by EDS, RBS, GIXRD and nanohardness. In this study was found that the aluminum deposited did not change the oxidation resistance of the coating, and the highest value of hardness was 28 GPa for the sample with 14 at.%. (author)

  17. Evaluation of aluminum migration into foodstuffs from aluminium cookware

    Directory of Open Access Journals (Sweden)

    M Radi

    2014-05-01

    Full Text Available Nowadays, the existence of aluminum in human diet as a food contaminant has attracted the concerns of many researchers. It seems that the cooking pans are common sources of aluminum exposure through foodstuffs in Iran. The aim of this study was to evaluate the migration of aluminum from cooking containers into foodstuffs. For this purpose, solutions with different concentrations of citric acid, sodium chloride, fat, protein and sugar were prepared and migration of aluminum into these solutions was measured using atomic absorption spectrometry. Results showed that salt and citric acid concentrations could enhance aluminum migration; whereas, acid concentration was more effective than salt due to its corrosive effect. The intensity of heat processing and the duration of heat treatment had direct relation with aluminum migration. The aluminum content of cooked foods in aluminum cooking pans was also significantly more than control samples.

  18. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances.

  19. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    International Nuclear Information System (INIS)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang

    2013-01-01

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances

  20. Environment modelling in near Earth space: Preliminary LDEF results

    Science.gov (United States)

    Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.

    1992-01-01

    Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).

  1. Chemical effects in the Corrosion of Aluminum and Aluminum Alloys. A Bibliography

    Science.gov (United States)

    1976-10-01

    tances.II. Effect Of Pomegranate Juice And The Aqueous Extract Of Pomegranate Fruits And Tea leaves On The Corrosion Of Aluminum" The effect of the juices...T7651 tempers to exfoliation and stress- corrosion cracking . 1968-8 D.P. Doyle and H.P. Godard ,a) Tr. Mezhdunar. Kongr. Korroz. Metal, 4, 439-48, (1968...Tapper Brit. Corros. J., 3, 285-87, (1968) "Corrosion Of Aluminum" Summary of the literature of Al corrosion which includes stress- corrosion cracking

  2. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  3. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, GITAM Institute of Technology, GITAM University, Visakhapatnam - 530 045, A.P. (India); Rao, T. Subba, E-mail: thotasubbarao6@gmail.com [Department of Physics, Sri Krishnadevaraya University, Anantapuramu - 515 003, A.P. (India)

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup −4} Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  4. Photothermally activated motion and ignition using aluminum nanoparticles

    International Nuclear Information System (INIS)

    Abboud, Jacques E.; Chong Xinyuan; Zhang Mingjun; Zhang Zhili; Jiang Naibo; Roy, Sukesh; Gord, James R.

    2013-01-01

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be ∼6 mm. Ignition delay can be ∼0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  5. Growth and electrical properties of AlOx grown by mist chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kawaharamura

    2013-03-01

    Full Text Available Aluminum oxide (AlOx thin films were grown using aluminum acetylacetonate (Al(acac3 as a source solute by mist chemical vapor deposition (mist CVD. The AlOx thin films grown at temperatures above 400°C exhibited a breakdown field (EBD over 6 MV/cm and a dielectric constant (κ over 6. It is suggested that residual OH bonding in the AlOx thin films grown at temperatures below 375°C caused degradation of the breakdown field (EBD. With FC type mist CVD, the reaction proceeded efficiently (Ea = 22–24 kJ/mol because the solvent, especially H2O, worked as a stronger oxygen source. The AlOx film could be grown at 450°C with a high deposition rate (23 nm/min and smooth surface (RMS = 1.5 nm. Moreover, the AlOx thin films grown by mist CVD had excellent practicality as insulators because the gate leakage current (IG of the oxide thin film transistor (TFT with an IGZO/AlOx stack was suppressed below 1 pA at a gate voltage (VG of 20 V.

  6. Achieving Carbon Neutrality in the Global Aluminum Industry

    Science.gov (United States)

    Das, Subodh

    2012-02-01

    In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.

  7. Strain hardening and damage in 6xxx series aluminum alloy friction stir welds

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno

    2010-01-01

    A friction stir weld in 6005A-T6 aluminum alloy has been prepared and analyzed by micro-hardness measurements, tensile testing and scanning electron microscopy (SEM). The locations of the various weld zones were determined by micro-hardness indentation measurements. The flow behavior of the various...... zones of the weld was extracted using micro-tensile specimens cut out parallel to the welding direction. The measured material properties and weld topology were then introduced in a fully coupled micro-mechanical finite element model, accounting for nucleation and growth of voids as well as void shape...... evolution. The model shows satisfactory preliminary results in predicting the tensile behaviour of the weld and the true strain at fracture....

  8. Regional aerosol deposition in human upper airways

    International Nuclear Information System (INIS)

    Swift, D.L.

    1991-01-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po 218 particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po 218 particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po 218 particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig

  9. Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride.

    Science.gov (United States)

    Sharma, Shweta; Sharma, K P; Sharma, Subhasini

    2016-12-01

    Aluminum is ingested through foods, water, air, and even drugs. Its intake is potentiated further through foods and tea prepared in aluminum utensils and Al salt added in the drinking water for removal of suspended impurities and also fluoride in the affected areas. The ameliorating role of a blue green alga Spirulina is well documented to various pollutants in the animal models. We, therefore, examined its protective role (230 mg/kg body weight) on the hematology of male Swiss albino mice treated with aluminum (sub-acute = 78.4 mg/kg body weight for 7 days, sub-chronic = 7.8 mg/kg body weight for 90 days) and aluminum fluoride (sub-acute = 103 mg/kg body weight, sub-chronic = 21 mg/kg body weight), along with their recovery after 90 days of sub-chronic exposure. This study revealed significant reduction in the values of RBC (5-18 %), Hb (15-17 %), PCV (8-14 %), and platelets (26-36 %), and increase in WBC (54-124 %) in the treated mice, particularly after sub-acute exposure. Aluminum fluoride was comparatively more toxic than aluminum. Further, Spirulina supplement not only alleviated toxicity of test chemicals in Swiss albino mice but also led to their better recovery after withdrawal.

  10. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  11. Characterization of ultrafine aluminum nanoparticles

    International Nuclear Information System (INIS)

    Sandstrom, Mary M.; Jorgensen, Betty S.; Mang, Joseph T.; Smith, Bettina L.; Son, Steven F.

    2004-01-01

    Aluminum nanopowders with particle sizes ranging from ∼25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  12. Mechanism of deposit formation on fuel-wetted metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A. [Southwest Research Institute, San Antonio, TX (United States)

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronounced differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.

  13. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  14. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  15. Development of a new process for deposition of metallic vapours and ions

    International Nuclear Information System (INIS)

    Gabrielli, O. de.

    1989-01-01

    Surface treatment processes by deposition, enabling surface properties to be altered without altering the volume, are making rapid progress in industry. The description of these processes has led us to consider the role and the importance of methods using plasmas. The new plasma source we have developed is the subject of this experimental research: it is the basis of the deposition process (metallic ion and vapour deposition). The specifications and preliminary results enable us to compare this process with others in use. Fast deposition rates and excellent adhesion are the two main characteristics of this process [fr

  16. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  17. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its... the aluminum cargo tank must meet the steel structural standards of the American Bureau of Shipping...

  18. Precision forging technology for aluminum alloy

    Science.gov (United States)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  19. Energy analysis of hydrogen and electricity production from aluminum-based processes

    International Nuclear Information System (INIS)

    Wang, Huizhi; Leung, Dennis Y.C.; Leung, Michael K.H.

    2012-01-01

    The aluminum energy conversion processes have been characterized to be carbon-free and sustainable. However, their applications are restrained by aluminum production capacity as aluminum is never found as a free metal on the earth. This study gives an assessment of typical aluminum-based energy processes in terms of overall energy efficiency and cost. Moreover, characteristics associated with different processes are identified. Results in this study indicate the route from which aluminum is produced can be a key factor in determining the efficiency and costs. Besides, the aluminum–air battery provides a more energy-efficient manner for the conversion of energy stored in primary aluminum and recovered aluminum from products compared to aluminum-based hydrogen production, whereas the aluminum-based hydrogen production gives a more energy-efficient way of utilizing energy stored in secondary aluminum or even scrap aluminum.

  20. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Gordon, Roy G., E-mail: gordon@chemistry.harvard.edu [Harvard University, Cambridge, Massachusetts 02138 (United States); Mankad, Ravin; Haight, Richard; Gunawan, Oki [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Mitzi, David B. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Duke University, Durham, North Carolina 27708 (United States)

    2014-11-17

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 10{sup 19} to 10{sup 20} cm{sup −3} with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 10{sup 19} to 10{sup 14} cm{sup −3} for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.

  1. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A.; Kuepouo, Gilbert; Corbin, Rebecca W.; Gottesfeld, Perry

    2014-01-01

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  2. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  3. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes

    International Nuclear Information System (INIS)

    Kamohara, Toshihiro; Akiyama, Morito; Ueno, Naohiro; Nonaka, Kazuhiro; Kuwano, Noriyuki

    2007-01-01

    Highly c-axis-oriented aluminum nitride (AlN) thin films have been prepared on titanium (Ti) bottom electrodes by using AlN interlayers. The AlN interlayers were deposited between Ti electrodes and silicon (Si) substrates, such as AlN/Ti/AlN/Si. The crystallinity and crystal orientation of the AlN films and Ti electrodes strongly depended on the thickness of the AlN interlayers. Although the sputtering conditions were the same, the X-ray diffraction intensity of AlN (0002) and Ti (0002) planes drastically increased, and the full-width at half-maximum (FWHM) of the X-ray rocking curves decreased from 5.1 o to 2.6 o and from 3.3 o to 2.0 o , respectively. Furthermore, the piezoelectric constant d 33 of the AlN films was significantly improved from - 0.2 to - 4.5 pC/N

  4. Thermal Effect on the Structural, Electrical, and Optical Properties of In-Line Sputtered Aluminum Doped Zinc Oxide Films Explored with Thermal Desorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available This work investigates the thermal effect on the structural, electrical, and optical properties of aluminum doped zinc oxide (AZO films. The AZO films deposited at different temperatures were measured using a thermal desorption system to obtain their corresponding thermal desorption spectroscopy (TDS. In addition to obtaining information of thermal desorption, the measurement of TDS also has the effect of vacuum annealing on the AZO films. The results of measuring TDS imply part of the doped aluminum atoms do not stay at substituted zinc sites in AZO films. The (002 preferential direction of the AZO films in X-ray diffraction spectra shifts to a lower angle after measurement of TDS. The grain size grows and surface becomes denser for all AZO films after measurement of TDS. The carrier concentration, mobility, and average optical transmittance increase while the electrical resistivity decreases for AZO films after measurement of TDS. These results indicate that the AZO films deposited at 200°C are appropriate selections if the AZO films are applied in device fabrication of heat-produced process.

  5. Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition

    Science.gov (United States)

    2010-01-01

    12 ] to dictate fi lm morphology. Such templated deposition is typically con- ducted by either electrodeposition or elec- troless deposition, with...non-enzymatic glucose sensing. [ 34–36 ] In particular, the syn- thesis of such nanostructured fi lms is delineated with a focus on the precise...deposited using alternating exposures to trimethylaluminum and H 2 O to provide a uniform nucleation layer for Pt and Ir fi lms. Nanostructured Pt fi

  6. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    Porous silicon carbide (B–N co-doped SiC) produced by anodic oxidation showed strong photoluminescence (PL) at around 520 nm excited by a 375 nm laser. The porous SiC samples were passivated by atomic layer deposited (ALD) aluminum oxide (Al2O3) films, resulting in a significant enhancement...

  7. 49 CFR 178.512 - Standards for steel or aluminum boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel or aluminum boxes. 178.512... aluminum boxes. (a) The following are identification codes for steel or aluminum boxes: (1) 4A for a steel box; and (2) 4B for an aluminum box. (b) Construction requirements for steel or aluminum boxes are as...

  8. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  9. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  10. Painting rusted steel: The role of aluminum phosphosilicate

    International Nuclear Information System (INIS)

    Roselli, S.N.; Amo, B. del; Carbonari, R.O.; Di Sarli, A.R.; Romagnoli, R.

    2013-01-01

    Highlights: •Aluminum phosphosilicate is an acid pigment which could act as mild phosphating agent. •Aluminum phosphosilicate can phosphatize iron oxides on rusted surfaces. •Aluminum phosphosilicate is compatible with acid binders. •Aluminum phosphosilicate could replace chromate in complete painting schemes. •Aluminum phosphosilicate primers improve paints adhesion on rusted surfaces. -- Abstract: Surface preparation is a key factor for the adequate performance of a paint system. The aim of this investigation is to employ a wash-primer to accomplish the chemical conversion of rusted surface when current cleaning operations are difficult to carry out. The active component of the wash-primer was aluminum phosphosilicate whose electrochemical behavior and the composition of the generated protective layer, both, were studied by electrochemical techniques and scanning electron microscopy (SEM), respectively. Primed rusted steel panels were coated with an alkyd system to perform accelerated tests in the salt spray chamber and electrochemical impedance measurements (EIS). These tests were conducted in parallel with a chromate wash primer and the same alkyd system. Results showed that the wash-primer containing aluminum phosphosilicate could be used satisfactorily to paint rusted steel exhibiting a similar performance to the chromate primer

  11. Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

    Science.gov (United States)

    McRae, C. R. H.; Béjanin, J. H.; Earnest, C. T.; McConkey, T. G.; Rinehart, J. R.; Deimert, C.; Thomas, J. P.; Wasilewski, Z. R.; Mariantoni, M.

    2018-05-01

    Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ˜ 5 × 10 - 5 . The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.

  12. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  13. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  14. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  15. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  16. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  17. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    International Nuclear Information System (INIS)

    Rashvand avei, M.; Jafarian, M.; Moghanni Bavil Olyaei, H.; Gobal, F.; Hosseini, S.M.; Mahjani, M.G.

    2013-01-01

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm −2 . • High inhibitor efficiency about 97% for AA6060

  18. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rashvand avei, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Jafarian, M., E-mail: mjafarian@kntu.ac.ir [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Moghanni Bavil Olyaei, H. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-8516, Tehran (Iran, Islamic Republic of); Hosseini, S.M. [Jahad Organization – Science and Technology Center, Tehran (Iran, Islamic Republic of); Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2013-12-16

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm{sup −2}. • High inhibitor efficiency about 97% for AA6060.

  19. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  20. Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation

    International Nuclear Information System (INIS)

    Shen, Lan; Ali, Mubarak; Gu, Zhengbin; Min, Bonggi; Kim, Dongwook; Park, Chinho

    2013-01-01

    Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process

  1. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  2. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  3. Recycling of aluminum to produce green energy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Lopez Benites, Wendy; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico)

    2005-07-15

    High-purity hydrogen gas was generated from the chemical reaction of aluminum with sodium hydroxide. Several molar relations of sodium hydroxide/aluminum were investigated in this study. The experimental results showed that hydrogen yields are acceptable and its purity was good enough to be used in a proton exchange membrane (PEM) fuel cell to produce electricity. An estimation of the amount of energy produced from the reaction of 100 aluminum cans with caustic soda showed that the hydrogen production is feasible to be scaled up to reach up to 5kWh in a few hours. This study is environmentally friendly and also shows that green energy can be produced from aluminum waste at a low cost.

  4. Study of the fluidized bed chemical vapor deposition process on very dense powder for nuclear applications

    International Nuclear Information System (INIS)

    Vanni, Florence

    2015-01-01

    This thesis is part of the development of low-enriched nuclear fuel, for the Materials Test Reactors (MTRs), constituted of uranium-molybdenum particles mixed with an aluminum matrix. Under certain conditions under irradiations, the U(Mo) particles interact with the aluminum matrix, causing unacceptable swelling of the fuel plate. To inhibit this phenomenon, one solution consists in depositing on the surface of the U(Mo) particles, a thin silicon layer to create a barrier effect. This thesis has concerned the study of the fluidized bed chemical vapor deposition (CVD) process to deposit silicon from silane, on the U(Mo) powder, which has an exceptional density of 17,500 kg/m 3 . To achieve this goal, two axes were treated during the thesis: the study and the optimization of the fluidization of a so dense powder, and then those of the silicon deposition process. For the first axis, a series of tests was performed on a surrogate tungsten powder in different columns made of glass and made of steel with internal diameters ranging from 2 to 5 cm, at room temperature and at high temperature (650 C) close to that of the deposits. These experiments helped to identify wall effects phenomena within the fluidized bed, which can lead to heterogeneous deposits or particles agglomeration. Some dimensions of the fluidization columns and operating conditions allowing a satisfactory fluidization of the powder were identified, paving the way for the study of silicon deposition. Several campaigns of deposition experiments on the surrogate powder and then on the U(Mo) powder were carried out in the second axis of the study. The influence of the bed temperature, the inlet molar fraction of silane diluted in argon, and the total gas flow of fluidization, was examined for different diameters of reactor and for various masses of powder. Morphological and structural characterization analyses (SEM, XRD..) revealed a uniform silicon deposition on all the powder and around each particle

  5. Chemical characterization of biomass burning deposits from cooking stoves in Bangladesh

    International Nuclear Information System (INIS)

    Salam, Abdus; Hasan, Mahmodul; Begum, Bilkis A.; Begum, Monira; Biswas, Swapan K.

    2013-01-01

    Biomass burning smoke deposits were characterized from cooking stoves in Brahmondi, Narsingdi, Bangladesh. Arjun, bamboo, coconut, madhabilata, mahogany, mango, rice husk coil, plum and mixed dried leaves were used as biomasses. Smoke deposits were collected from the ceiling (above the stove) of the kitchen on aluminum foil. Deposits samples were analyzed with X-ray fluorescence (XRF) spectroscopy for trace elements determination. UV–visible spectrophotometer was used for ions analysis. The surface morphology of the smoke deposits was studied with scanning electron microscope (SEM). Elevated concentrations of the trace elements were observed, especially for toxic metals (Pb, Co, Cu). The highest concentration of lead was observed in rice husk coil among the determined biomasses followed by mahogany and arjun, whereas the lowest concentration was observed in bamboo. Potassium has the highest concentration among the determined trace elements followed by calcium, iron and titanium. Trace elements such as potassium, calcium, iron showed significant variation among different biomass burning smoke deposits. The average concentrations of sulfate, nitrate, and phosphate were 38.0, 0.60, 0.73 mg kg −1 , respectively. The surface morphology was almost similar for these biomass burning deposit samples. The Southeast Asian biomass burning smoke deposits had distinct behavior from European and USA wood fuels combustion. -- Highlights: •Elevated concentrations of trace elements were observed in biomass burning deposits. •Very high concentration of lead was observed in biomasses burring deposits •Elevated toxic trace elements concentrations in kitchens need further surveillance

  6. A preliminary checklist of the ants (Hymenoptera: Formicidae) of ...

    African Journals Online (AJOL)

    A preliminary species checklist of the ants (Hymenoptera: Formicidae) of. Kakamega Forest, Western Kenya, is presented. The species list is based on specimens sampled from 1999 until 2009, which are deposited in the ant collection of the Zoological Research Museum Koenig, Bonn, Germany, and the Natural History ...

  7. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  8. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  9. The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium

    Science.gov (United States)

    Dill, Harald G.

    2010-06-01

    Economic geology is a mixtum compositum of all geoscientific disciplines focused on one goal, finding new mineral depsosits and enhancing their exploitation. The keystones of this mixtum compositum are geology and mineralogy whose studies are centered around the emplacement of the ore body and the development of its minerals and rocks. In the present study, mineralogy and geology act as x- and y-coordinates of a classification chart of mineral resources called the "chessboard" (or "spreadsheet") classification scheme. Magmatic and sedimentary lithologies together with tectonic structures (1 -D/pipes, 2 -D/veins) are plotted along the x-axis in the header of the spreadsheet diagram representing the columns in this chart diagram. 63 commodity groups, encompassing minerals and elements are plotted along the y-axis, forming the lines of the spreadsheet. These commodities are subjected to a tripartite subdivision into ore minerals, industrial minerals/rocks and gemstones/ornamental stones. Further information on the various types of mineral deposits, as to the major ore and gangue minerals, the current models and the mode of formation or when and in which geodynamic setting these deposits mainly formed throughout the geological past may be obtained from the text by simply using the code of each deposit in the chart. This code can be created by combining the commodity (lines) shown by numbers plus lower caps with the host rocks or structure (columns) given by capital letters. Each commodity has a small preface on the mineralogy and chemistry and ends up with an outlook into its final use and the supply situation of the raw material on a global basis, which may be updated by the user through a direct link to databases available on the internet. In this case the study has been linked to the commodity database of the US Geological Survey. The internal subdivision of each commodity section corresponds to the common host rock lithologies (magmatic, sedimentary, and

  10. Venusian extended ejecta deposits as time-stratigraphic markers

    Science.gov (United States)

    Izenberg, Noam R.

    1992-01-01

    Use of impact crater ejects at time-stratigraphic markers was established during lunar geologic mapping efforts. The basic premise is that the deposition of impact ejecta, either by itself or mixed with impact-excavated material, is superimposed on a surface. The deposit becomes an observable, mappable unit produced in a single instant in geologic time. Up to two-thirds of Venus craters exhibit extended ejecta deposits. A reconnaissance survey of 336 craters (about 40 percent of the total population) was conducted. About half the craters examined were located in and around the Beta-Atla-Themis region, and half were spread over the western hemisphere of the planet. The survey was conducted using primarily C1-MIDR images. The preliminary survey shows: (1) of the 336 craters, 223 were found to have extended ejecta deposits. This proportion is higher than that found in other Venus crater databases by up to a factor of 2. (2) 53 percent of all extended ejecta craters were unambiguously superimposed on all volcanic and tectonic units. Crater Annia Faustina's associated parabolic ejecta deposit is clearly superimposed on volcanic flows coming from Gula Mons to the west. Parabola material from Faustina has covered the lava flows, smoothing the surface and reducing its specific backscatter cross section. The stratigraphy implies that the parabola material is the youngest observable unit in the region. (3) 12 percent of extended ejecta deposits are superimposed by volcanic materials. Crater Hwangcini has extended ejecta that has been covered by volcanic flows from a dome field to the northwest, implying that the volcanic units were emplaced subsequent to the ejecta deposit and are the youngest units in the locality. (4) It is difficult to determine the stratigraphic relationships of the remaining extended ejecta deposits in SAR at C1-MIDR resolution. Examination of higher resolution images and application of the other Magellan datasets in systematic manner should resolve

  11. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    Science.gov (United States)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  12. Soils developed from marine and moraine deposits on the Billefjord coast, West Spitsbergen

    Science.gov (United States)

    Pereverzev, V. N.

    2012-11-01

    Morphogenetic features of soils developed from noncalcareous and calcareous deposits of the marine and glacial origins on the coasts of Billefjord and Petunia Bay in West Spitsbergen are studied. Grayhumus (soddy) soils develop from noncalcareous deposits; they consist of the AO-AY-C horizons and differ from analogous soils in other locations in a higher bulk content of calcium, a close to neutral reaction, and a relatively high degree of base saturation. Gray-humus residually calcareous soils (AO-AYca-Cca) developed from calcareous deposits have a neutral or slightly alkaline reaction; their exchange complex is almost completely saturated with bases. The soils that developed from both marine and moraine deposits are generally similar in their major genetic features. The profiles of all the soils are not differentiated with respect to the contents of major elements, including oxalate-soluble forms of aluminum and iron. Gley features are also absent in the profiles of these soils.

  13. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  14. Corrosion resistance enhancement of Ni-P-nano SiO{sub 2} composite coatings on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Sadreddini, Sina, E-mail: sina.sadreddini1986@gmail.com [Department of Materials Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Afshar, Abdollah [Department of Materials Science and Engineering, Sharif university of Technology, Tehran (Iran, Islamic Republic of)

    2014-06-01

    In this study, the influences of different concentrations of SiO{sub 2} nano sized particles in the bath on deposition rate, surface morphology and corrosion behavior of Ni-P-SiO{sub 2} Composite coatings were investigated. The deposition rate of coating was influenced by incorporation of SiO{sub 2} particles. The microstructure was investigated with field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} was examined by Energy Dispersive Analysis of X-Ray (EDX) and amount of SiO{sub 2} nanoparticles co-deposited reached a maximum value at 4.5 %wt. Corrosion behavior of coated aluminum was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results illustrated that the corrosion rate decreases (6.5–0.6 μA/cm{sup 2}) and the corrosion potential increases (−0.64 to −0.3) with increasing the quantity of the SiO{sub 2} nanoparticles in the bath. Moreover, Ni-p-SiO{sub 2} nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  15. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Xu Denghui; Deng Zhenbo; Xu Ying; Xiao Jing; Liang Chunjun; Pei Zhiliang; Sun Chao

    2005-01-01

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar o C in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10 -4 Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm 2

  16. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  17. Complete long-term corrosion protection with chemical vapor deposited graphene

    DEFF Research Database (Denmark)

    Yu, Feng; Camilli, Luca; Wang, Ting

    2018-01-01

    Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer-graphene......Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer......-graphene hybrid coating, comprising two single layers of CVD graphene sandwiched by three layers of polyvinyl butyral, which provides complete corrosion protection of commercial aluminum alloys even after 120 days of exposure to simulated seawater. The essential role played by graphene in the hybrid coating...

  18. Atomic layer deposition of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  19. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Development of a soft-soldering system for aluminum

    Science.gov (United States)

    Falke, W. L.; Lee, A. Y.; Neumeier, L. A.

    1983-03-01

    The method employs application of a thin nickel copper alloy coating to the substrate, which enables the tin lead solders to wet readily and spread over the areas to be joined. The aluminum substrate is mechanically or chemically cleaned to facilitate bonding to a minute layer of zinc that is subsequently applied, with an electroless zincate solution. The nickel copper alloy (30 to 70 pct Ni) coating is then applied electrolytically over the zinc, using immersion cell or brush coating techniques. Development of acetate electrolytes has permitted deposition of the proper alloys coatings. The coated areas can then be readily joined with conventional tin lead solders and fluxs. The joints so formed are ductile, strong, and relatively corrosion resistant, and exhibit strengths equivalent to those formed on copper and brass when the same solders and fluxes are used. The method has also been employed to soft solder magnesium alloys.