WorldWideScience

Sample records for preliminary 3d scenario

  1. Oblique Photogrammetry Supporting 3d Urban Reconstruction of Complex Scenarios

    Science.gov (United States)

    Toschi, I.; Ramos, M. M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F.

    2017-05-01

    Accurate 3D city models represent an important source of geospatial information to support various "smart city" applications, such as space management, energy assessment, 3D cartography, noise and pollution mapping as well as disaster management. Even though remarkable progress has been made in recent years, there are still many open issues, especially when it comes to the 3D modelling of complex urban scenarios like historical and densely-built city centres featuring narrow streets and non-conventional building shapes. Most approaches introduce strong building priors/constraints on symmetry and roof typology that penalize urban environments having high variations of roof shapes. Furthermore, although oblique photogrammetry is rapidly maturing, the use of slanted views for façade reconstruction is not completely included in the reconstruction pipeline of state-of-the-art software. This paper aims to investigate state-of-the-art methods for 3D building modelling in complex urban scenarios with the support of oblique airborne images. A reconstruction approach based on roof primitives fitting is tested. Oblique imagery is then exploited to support the manual editing of the generated building models. At the same time, mobile mapping data are collected at cm resolution and then integrated with the aerial ones. All approaches are tested on the historical city centre of Bergamo (Italy).

  2. 3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications

    Science.gov (United States)

    Pesaresi, Cristano; Van Der Schee, Joop; Pavia, Davide

    2017-01-01

    The project "3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications" has been devised with the intention to deal with the demand for research, innovation and applicative methodology on the part of the international programme, requiring concrete results to increase the capacity to know, anticipate…

  3. Numerical 3D modelling of oil dispersion in the sea due to different accident scenarios

    Science.gov (United States)

    Guandalini, Roberto; Agate, Giordano; Moia, Fabio

    2017-04-01

    different environmental conditions, have been collected from RSE proprietary and public databases directly connected to the model. Finally, the possible pollution source has been chosen in correspondence with the offshore drilling wells for the exploitation of the "Ombrina Mare" oil field, located at a distance of 6 km from the coast, and the project includes a FPSO unit. A number of different scenarios have been simulated using the 3D model created by HyperSuite, in different environmental conditions and considering emission events of low intensity and long period or of high intensity and short period, located near the sea surface or near the sea bottom. For each scenario, a preliminary initialization in the fluid dynamic unperturbed conditions at the starting date has been carried out, from which the emission period followed by a properly duration of diffusion period of the pollutant has been simulated. The results allowed to evaluate the relevance of the effects due to the environmental parameters as the wind, sea current and tide, putting in evidence the capability of the methodology to support the safety requirements in the frame of off shore oil exploitation provided that a dynamic characterization of the environment parameters is accounted for a sufficient detail.

  4. Three-Dimensional (3D) Printers in Libraries: Perspective and Preliminary Safety Analysis

    Science.gov (United States)

    Bharti, Neelam; Singh, Shailendra

    2017-01-01

    As an emerging technology, three-dimensional (3D) printing has gained much attention as a rapid prototyping and small-scale manufacturing technology around the world. In the changing scenario of library inclusion, Makerspaces are becoming a part of most public and academic libraries, and 3D printing is one of the technologies included in…

  5. ICRF full wave field solution and absorption for D-T and D-3He heating scenarios

    International Nuclear Information System (INIS)

    Scharer, J.; Sund, R.

    1989-01-01

    We consider a fundamental power conservation relation, full wave solutions for fields and power absorption in moderate and high density tokamaks to third order in the gyroradius expansion. The power absorption, conductivity tensor and kinetic flux associated with the conservation relation as well as the wave differential equation are obtained. Cases examined include D-T and D- 3 He scenarios for TFTR,JET and CIT at the Fundamental and Second harmonic. Optimum single pass absorption cases for D-T operation in JET and CIT are considered as a function of the K ≡ spectrum of the antenna with an without a minority He 3 resonance. It is found that at elevated temperatures >4 keV, minority (10%) fundamental deuterium absorption is very efficient for either fast wave low or high field incidence or high field Bernstein wave incidence. We consider the effects of a 10 keV bulk and 100 keV tail helium distribution on the second harmonic absorption in a deuterium plasma for Jet parameters. In addition, scenarios with ICRF operation without attendant substantial tritium concentrations are found the fundamental (15%) and second harmonic helium (33%) heating in a the deuterium plasma. For High field operation at high density in CIT, we find a higher part of the K parallel spectrum yields good single pass absorption with a 5% minority helium concentration in D-T

  6. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  7. Protective Alternatives of SMR against Extreme Threat Scenario – A Preliminary Risk Analysis

    International Nuclear Information System (INIS)

    Shohet, I.M.; Ornai, D.; Gal, E.; Ronen, Y.; Vidra, M.

    2014-01-01

    The article presents a preliminary risk analysis of the main features in NPP (Nuclear Power Plant) that includes SMR - Small and Modular Reactors, given an extreme threat scenario. A review of the structure and systems of the SMR is followed by systematic definitions and analysis of the threat scenario to which a preliminary risk analysis was carried out. The article outlines the basic events caused by the referred threat scenario, which had led to possible failure mechanisms according to FTA (Fault-Tree-Analysis),critical protective circuits, and todetecting critical topics for the protection and safety of the reactor

  8. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    International Nuclear Information System (INIS)

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin

  9. The 3D Reference Earth Model: Status and Preliminary Results

    Science.gov (United States)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the

  10. Preliminary scenarios for the release of radioactive waste from a hypothetical repository in basalt of the Columbia Plateau

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1983-10-01

    Nine release phenomena - normal flow of water, tectonic disturbance of the fracture network, intersection of a new fault with the repository, glaciation, fluvia erosion, thermomechanical disturbances, subsidence, seal failure, and drilling - give rise to 318 preliminary scenarios for the release of waste from a hypothetical high-level-waste repository in basalt. The scenarios have relative probabilities that range over several orders of magnitude. The relative probabilities provide a means of screening the scenarios for the more limited set to be subjected to consequence analysis. Lack of data and of preliminary modeling, however, lead to great uncertainties in the highly conservative probabilities assigned here. As a result, the recommendations in this report are directed at resolution of the major uncertainties in the relative probabilities of the preliminary scenarios. The resolution of some of the uncertainties should help in the selection of the suite of scenarios for final consequence analysis. 38 references, 22 figures, 18 tables

  11. Demonstration of ITER operational scenarios on DIII-D

    International Nuclear Information System (INIS)

    Doyle, E.J.; DeBoo, J.C.; Ferron, J.R.; Jackson, G.L.; Luce, T.C.; Osborne, T.H.; Politzer, P.A.; Groebner, R.J.; Hyatt, A.W.; La Haye, R.J.; Petrie, T.W.; Petty, C.C.; Murakami, M.; Park, J.-M.; Reimerdes, H.; Budny, R.V.; Casper, T.A.; Holcomb, C.T.; Challis, C.D.; McKee, G.R.

    2010-01-01

    The DIII-D programme has recently initiated an effort to provide suitably scaled experimental evaluations of four primary ITER operational scenarios. New and unique features of this work are that the plasmas incorporate essential features of the ITER scenarios and anticipated operating characteristics; e.g. the plasma cross-section, aspect ratio and value of I/aB of the DIII-D discharges match the ITER design, with size reduced by a factor of 3.7. Key aspects of all four scenarios, such as target values for β N and H 98 , have been replicated successfully on DIII-D, providing an improved and unified physics basis for transport and stability modelling, as well as for performance extrapolation to ITER. In all four scenarios, normalized performance equals or closely approaches that required to realize the physics and technology goals of ITER, and projections of the DIII-D discharges are consistent with ITER achieving its goals of ≥400 MW of fusion power production and Q ≥ 10. These studies also address many of the key physics issues related to the ITER design, including the L-H transition power threshold, the size of edge localized modes, pedestal parameter scaling, the impact of tearing modes on confinement and disruptivity, beta limits and the required capabilities of the plasma control system. An example of direct influence on the ITER design from this work is a modification of the physics requirements for the poloidal field coil set at 15 MA, based on observations that the inductance in the baseline scenario case evolves to a value that lies outside the original ITER specification.

  12. Demonstration of ITER Operational Scenarios on DIII-D

    International Nuclear Information System (INIS)

    Doyle, E.J.; Budny, R.V.; DeBoo, J.C.; Ferron, J.R.; Jackson, G.L.; Luce, T.C.; Murakami, M.; Osborne, T.H.; Park, J.; Politzer, P.A.; Reimerdes, H.; Casper, T.A.; Challis, C.D.; Groebner, R.J.; Holcomb, C.T.; Hyatt, A.W.; La Haye, R.J.; McKee, G.R.; Petrie, T.W.; Petty, C.C.; Rhodes, T.L.; Shafer, M.W.; Snyder, P.B.; Strait, E.J; Wade, M.R.; Wang, G.; West, W.P.; Zeng, L.

    2008-01-01

    The DIII-D program has recently initiated an effort to provide suitably scaled experimental evaluations of four primary ITER operational scenarios. New and unique features of this work are that the plasmas incorporate essential features of the ITER scenarios and anticipated operating characteristics; e.g., the plasma cross-section, aspect ratio and value of I/aB of the DIII-D discharges match the ITER design, with size reduced by a factor of 3.7. Key aspects of all four scenarios, such as target values for β N and H 98 , have been replicated successfully on DIII-D, providing an improved and unified physics basis for transport and stability modeling, as well as for performance extrapolation to ITER. In all four scenarios normalized performance equals or closely approaches that required to realize the physics and technology goals of ITER, and projections of the DIII-D discharges are consistent with ITER achieving its goals of (ge) 400 MW of fusion power production and Q (ge) 10. These studies also address many of the key physics issues related to the ITER design, including the L-H transition power threshold, the size of ELMs, pedestal parameter scaling, the impact of tearing modes on confinement and disruptivity, beta limits and the required capabilities of the plasma control system. An example of direct influence on the ITER design from this work is a modification of the specified operating range in internal inductance at 15 MA for the poloidal field coil set, based on observations that the measured inductance in the baseline scenario case lay outside the original ITER specification

  13. Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery.

    Science.gov (United States)

    Ferrero, Emmanuelle; Mazda, Keyvan; Simon, Anne-Laure; Ilharreborde, Brice

    2018-04-24

    Preoperative planning of scoliosis surgery is essential in the effective treatment of spine pathology. Thus, precontoured rods have been recently developed to avoid iatrogenic sagittal misalignment and rod breakage. Some specific issues exist in adolescent idiopathic scoliosis (AIS), such as a less distal lower instrumented level, a great variability in the location of inflection point (transition from lumbar lordosis to thoracic kyphosis), and sagittal correction is limited by both bone-implant interface. Since 2007, stereoradiographic imaging system is used and allows for 3D reconstructions. Therefore, a software was developed to perform preoperative 3D surgical planning and to provide rod's shape and length. The goal of this preliminary study was to assess the feasibility, reliability, and the clinical relevance of this new software. Retrospective study on 47 AIS patients operated with the same surgical technique: posteromedial translation through posterior approach with lumbar screws and thoracic sublaminar bands. Pre- and postoperatively, 3D reconstructions were performed on stereoradiographic images (EOS system, Paris, France) and compared. Then, the software was used to plan the surgical correction and determine rod's shape and length. Simulated spine and rods were compared to postoperative real 3D reconstructions. 3D reconstructions and planning were performed by an independent observer. 3D simulations were performed on the 47 patients. No difference was found between the simulated model and the postoperative 3D reconstructions in terms of sagittal parameters. Postoperatively, 21% of LL were not within reference values. Postoperative SVA was 20 mm anterior in 2/3 of the cases. Postoperative rods were significantly longer than precontoured rods planned with the software (mean 10 mm). Inflection points were different on the rods used and the planned rods (2.3 levels on average). In this preliminary study, the software based on 3D stereoradiography low

  14. Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.

    Science.gov (United States)

    Paganelli, Chiara; Lee, Danny; Kipritidis, John; Whelan, Brendan; Greer, Peter B; Baroni, Guido; Riboldi, Marco; Keall, Paul

    2018-02-11

    In-room MRI is a promising image guidance strategy in external beam radiotherapy to acquire volumetric information for moving targets. However, limitations in spatio-temporal resolution led several authors to use 2D orthogonal images for guidance. The aim of this work is to present a method to concurrently compensate for non-rigid tumour motion and provide an approach for 3D reconstruction from 2D orthogonal cine-MRI slices for MRI-guided treatments. Free-breathing sagittal/coronal interleaved 2D cine-MRI were acquired in addition to a pre-treatment 3D volume in two patients. We performed deformable image registration (DIR) between cine-MRI slices and corresponding slices in the pre-treatment 3D volume. Based on an extrapolation of the interleaved 2D motion fields, the 3D motion field was estimated and used to warp the pre-treatment volume. Due to the lack of a ground truth for patients, the method was validated on a digital 4D lung phantom. On the phantom, the 3D reconstruction method was able to compensate for tumour motion and compared favourably to the results of previously adopted strategies. The difference in the 3D motion fields between the phantom and the extrapolated motion was 0.4 ± 0.3 mm for tumour and 0.8 ± 1.5 mm for whole anatomy, demonstrating feasibility of performing a 3D volumetric reconstruction directly from 2D orthogonal cine-MRI slices. Application of the method to patient data confirmed the feasibility of utilizing this method in real world scenarios. Preliminary results on phantom and patient cases confirm the feasibility of the proposed approach in an MRI-guided scenario, especially for non-rigid tumour motion compensation. © 2018 The Royal Australian and New Zealand College of Radiologists.

  15. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required

  16. Evaluation of 3D Positioned Sound in Multimodal Scenarios

    DEFF Research Database (Denmark)

    Møller, Anders Kalsgaard

    present but interacts with the other meeting members using different virtual reality technologies. The thesis also dealt with a 3D sound system in trucks. it was investigated if 3D-sound could be used to give the truck driver an audible and lifelike experience of the cyclists’ position, in relation......This Ph.D. study has dealt with different binaural methods for implementing 3D sound in selected multimodal applications, with the purpose of evaluating the feasibility of using 3D sound in these applications. The thesis dealt with a teleconference application in which one person is not physically...

  17. Preliminary examples of 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2013-01-01

    This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental ult...... as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging.......This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental...... ultrasound scanner SARUS on a flow rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic prole with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal...

  18. A QUANTITATIVE METHOD FOR ANALYSING 3-D BRANCHING IN EMBRYONIC KIDNEYS: DEVELOPMENT OF A TECHNIQUE AND PRELIMINARY DATA

    Directory of Open Access Journals (Sweden)

    Gabriel Fricout

    2011-05-01

    Full Text Available The normal human adult kidney contains between 300,000 and 1 million nephrons (the functional units of the kidney. Nephrons develop at the tips of the branching ureteric duct, and therefore ureteric duct branching morphogenesis is critical for normal kidney development. Current methods for analysing ureteric branching are mostly qualitative and those quantitative methods that do exist do not account for the 3- dimensional (3D shape of the ureteric "tree". We have developed a method for measuring the total length of the ureteric tree in 3D. This method is described and preliminary data are presented. The algorithm allows for performing a semi-automatic segmentation of a set of grey level confocal images and an automatic skeletonisation of the resulting binary object. Measurements of length are automatically obtained, and numbers of branch points are manually counted. The final representation can be reconstructed by means of 3D volume rendering software, providing a fully rotating 3D perspective of the skeletonised tree, making it possible to identify and accurately measure branch lengths. Preliminary data shows the total length estimates obtained with the technique to be highly reproducible. Repeat estimates of total tree length vary by just 1-2%. We will now use this technique to further define the growth of the ureteric tree in vitro, under both normal culture conditions, and in the presence of various levels of specific molecules suspected of regulating ureteric growth. The data obtained will provide fundamental information on the development of renal architecture, as well as the regulation of nephron number.

  19. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly

  20. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-04-04

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

  1. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    Science.gov (United States)

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  2. Comments on SKB's SFL 3-5 preliminary performance assessment

    International Nuclear Information System (INIS)

    Wilmot, R.D.; Crawford, M.B.

    2000-01-01

    Recently introduced regulations in Sweden have established an individual risk criterion ( -6 per year) for the long-term performance of repositories for the disposal of radioactive wastes. SKB has not focused its assessment of SFL 3-5 on demonstrating compliance with this regulation. Instead, SKB has calculated individual dose and provided a comparison with an annual individual dose of 14 iSv (derived from the risk criteria using the ICRP's dose-risk conversion factor of 0.073 per Sv). The justification of this approach is that probabilities do not need to be determined if doses are less than the dose equivalent to the risk criterion. However, there is insufficient information regarding uncertainty provided in the documentation of the SFL 3-5 assessment to determine whether this approach is reasonable. SKB's parallel assessment of a repository for spent fuel using the KBS-3 concept (SR 97) accounts for uncertainty by specifying a 'reasonable' and a 'pessimistic' value for uncertain parameters in the assessment calculations. Although there are problems with the way probabilities have been assigned to these values, this approach does indicate where there are significant uncertainties. The SFL 3-5 PA does not include a structured approach to defining uncertainty, although a number of assumptions and parameter values are stated to be conservative. As a preliminary assessment, there is insufficient information to identify key uncertainties or sensitivities, or to determine where further work should be focused. Any assessment requires the use of expert judgement to determine how the assessment is conducted, what modelling approach to use, what features, events and processes (FEPs) could potentially affect the disposal system, which FEPs should be included in the conceptual models, and which scenarios should be assessed. Judgements are also required in determining how to parameterize the models, and this may extend to formal expert elicitation for particular parameter

  3. Pultrusion of a vertical axis wind turbine blade part-II: combining the manufacturing process simulation with a subsequent loading scenario

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem Celal

    2015-01-01

    This paper in particular deals with the integrated modeling of a pultruded NACA0018 blade profile being a part of EU funded DeepWind project. The manufacturing aspects of the pultrusion process are associated with the preliminary subsequent service loading scenario. A 3D thermochemical analysis...

  4. Preliminary identification of scenarios that may affect the escape and transport of radionuclides from the Waste Isolation Pilot Plant, Southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R V [Science Applications International Corporation, Albuquerque, NM (United States)

    1990-04-15

    The Waste Isolation Pilot Plant is being evaluated as a location for the disposal of defense-generated transuranic waste. One of the criteria to be used to determine the suitability of the disposal system is compliance with the Containment Requirements established by the U.S. Environmental Protection Agency. One step in determining compliance is to identify the combinations of events and processes (scenarios) defining possible future states of the disposal system that may affect the escape of radionuclides from the repository and transport to the accessible environment. A list of previously identified events and processes was adapted to a scenario-selection procedure that develops a comprehensive set of mutually exclusive scenarios through the use of a logic diagram. Four events resulted in the development of 16 scenarios. Preliminary analyses indicate that four scenarios result in no releases. Six scenarios consist of combinations of drilling into a room, drilling into a room and a brine reservoir, and emplacement of withdrawal wells downgradient from the repository. Six additional scenarios consist of these same six combinations with the addition of potash mining and the associated surface subsidence. The 12 retained scenarios will be screened based on consequence and/or probability of occurrence. During the course of performance assessment, additional data and information will be used to revise and update these preliminary scenarios where appropriate. (author)

  5. Preliminary identification of scenarios that may affect the escape and transport of radionuclides from the Waste Isolation Pilot Plant, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Guzowski, R.V.

    1990-04-01

    The Waste Isolation Pilot Plant is being evaluated as a location for the disposal of defense-generated transuranic waste. One of the criteria to be used to determine the suitability of the disposal system is compliance with the Containment Requirements established by the U.S. Environmental Protection Agency. One step in determining compliance is to identify the combinations of events and processes (scenarios) defining possible future states of the disposal system that may affect the escape of radionuclides from the repository and transport to the accessible environment. A list of previously identified events and processes was adapted to a scenario-selection procedure that develops a comprehensive set of mutually exclusive scenarios through the use of a logic diagram. Four events resulted in the development of 16 scenarios. Preliminary analyses indicate that four scenarios result in no releases. Six scenarios consist of combinations of drilling into a room, drilling into a room and a brine reservoir, and emplacement of withdrawal wells downgradient from the repository. Six additional scenarios consist of these same six combinations with the addition of potash mining and the associated surface subsidence. The 12 retained scenarios will be screened based on consequence and/or probability of occurrence. During the course of performance assessment, additional data and information will be used to revise and update these preliminary scenarios where appropriate. (author)

  6. Pultrusion of a vertical axis wind turbine blade part-II: combining the manufacturing process simulation with a subsequent loading scenario

    NARCIS (Netherlands)

    Baran, Ismet; Hattel, Jesper H.; Tutum, Cem C.; Akkerman, Remko

    2015-01-01

    This paper in particular deals with the integrated modeling of a pultruded NACA0018 blade profile being a part of EU funded DeepWind project. The manufacturing aspects of the pultrusion process are associated with the preliminary subsequent service loading scenario. A 3D thermo-chemical analysis of

  7. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence

  8. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  9. Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results.

    Science.gov (United States)

    Liu, Jing; Glenn, Orit A; Xu, Duan

    2014-04-01

    Fetal MR imaging is very challenging due to the movement of fetus and the breathing motion of the mother. Current clinical protocols involve quick 2D scouting scans to determine scan plane and often several attempts to reorient the scan plane when the fetus moves. This makes acquisition of fetal MR images clinically challenging and results in long scan times in order to obtain images that are of diagnostic quality. Compared to 2D imaging, 3D imaging of the fetus has many advantages such as higher SNR and ability to reformat images in multiple planes. However, it is more sensitive to motion and challenging for fetal imaging due to irregular fetal motion in addition to maternal breathing and cardiac motion. This aim of this study is to develop a fast 3D fetal imaging technique to resolve the challenge of imaging the moving fetus. This 3D imaging sequence has multi-echo radial sampling in-plane and conventional Cartesian encoding through plane, which provides motion robustness and high data acquisition efficiency. The utilization of a golden-ratio based projection profile allows flexible time-resolved image reconstruction with arbitrary temporal resolution at arbitrary time points as well as high signal-to-noise and contrast-to-noise ratio. The nice features of the developed image technique allow the 3D visualization of the movements occurring throughout the scan. In this study, we applied this technique to three human subjects for fetal MRI and achieved promising preliminary results of fetal brain, heart and lung imaging.

  10. Finding the Optimum Scenario in Risk-benefit Assessment: An Example on Vitamin D

    DEFF Research Database (Denmark)

    Berjia, Firew Lemma; Hoekstra, J.; Verhagen, H.

    2014-01-01

    when changing from the reference to the optimum scenario. Conclusion: The method allowed us to find the optimum serum level in the vitamin D example. Additional case studies are needed to further validate the applicability of the approach to other nutrients or foods, especially with regards...... a method for finding the optimum scenario that provides maximum net health gains. Methods: A multiple scenario simulation. The method is presented using vitamin D intake in Denmark as an example. In addition to the reference scenario, several alternative scenarios are simulated to detect the scenario...... that provides maximum net health gains. As a common health metric, Disability Adjusted Life Years (DALY) has been used to project the net health effect by using the QALIBRA (Quality of Life for Benefit Risk Assessment) software. Results: The method used in the vitamin D example shows that it is feasible to find...

  11. Bioprinting of three dimensional tumor models: a preliminary study using a low cost 3D printer

    Directory of Open Access Journals (Sweden)

    Polley Christian

    2017-09-01

    Full Text Available The deep understanding of cancer and tumor genesis, as well as the development of new therapy strategies still remains one of the emerging challenges in modern medicine. To meet these challenges it seems to be absolutely necessary to overcome the drawbacks of the established 2D in vitro models. Especially the missing microenvironment of the tumor, which means the absence of stroma and immune cells, results in a missing cell-cell and cell-stroma interaction as well as disrupted functional communication pathways. Modern 3D culture systems and 3D printing or rather bioprinting technologies attempt to solve this issue and aim to closely mimic natural tumor microenvironment. In this preliminary work we are going to present the first steps of establishing an artificial 3D tumor model utilising a low cost 3D printer. Therefore the printer had been modified with an open-source syringe pump to become a functional bioprinter using viscosity modulated alginate hydrogel. In the first attempts L929 mouse fibroblasts, which are an integral component of natural stroma, had been incorporated into the hydrogel matrix and printed into scaffolds. Subsequent to the printing process the scaffolds got ionically crosslinked with a 5% w/v aqueous solution of CaCl2 to become mechanically stable. After three days of cultivation viability testing had been performed by utilising FDG staining and PET CT to obtain a volumetric viability measurement. The viability imaging showed vital cells homogeneously distributed in the scaffold and therefore stands as an evidence for a working low cost bioprinting process and a successful first step for the development of an artificial 3D tumor model.

  12. 3D Risk Management for hydrogen installations (Hy3DRM)

    International Nuclear Information System (INIS)

    Skjold, T.; Siccama, D.; Hisken, H.; Brambilla, A.; Middha, P.; Groth, K.M.; LaFleur, A.C.

    2015-01-01

    This paper introduces the 3D Risk Management (3DRM) concept for hydrogen installations (Hy3DRM). The 3DRM framework entails an integrated solution for risk management that combines a detailed site-specific 3D geometry model for a system, a computational fluid dynamics (CFD) tool for simulating accident scenarios involving dispersion, fire and explosions, and a methodology for frequency analysis and quantitative risk assessment (QRA). In order to reduce calculation time, and to cover escalating accident scenarios such as structural collapse and projectiles, the CFD-based consequence analysis can be complemented with reduced order models or finite element analysis (FEA). The paper outlines the background for 3DRM and presents a proof-of-concept risk assessment for a hypothetical hydrogen filling station. This first prototype focuses on dispersion, fire and explosion scenarios resulting from loss of containment of gaseous hydrogen. The approach adopted here combines consequence assessments obtained with the CFD tool FLACS-Hydrogen from Gexcon, and event frequencies estimated with the Hydrogen Risk Assessment Models (HyRAM) tool from Sandia, to generate 3D risk contours for explosion pressure and radiation loads. For a given population density and set of harm criteria it is straightforward to extend the analysis to include personnel risk, as well as risk-based design such as detector optimization. The discussion outlines main challenges and inherent limitations of the 3DRM concept, as well as possibilities and prospects for future development. (author)

  13. 3D AutoSysLab Prototype - A Social, Immersive and Mixed Reality Approach for Collaborative Learning Environments

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pereira

    2012-04-01

    Full Text Available Recent evolutions of social networks, virtual environments, Web technologies and 3D virtual worlds motivate the adoption of new technologies in education, opening successive innovative possibilities. These technologies (or tools can be employed in distance education scenarios, or can also enhance traditional learning-teaching (blended or hybrid learning scenario. It is known and a wide advocated issue that laboratory practice is essential to technical education, foremost in engineering. In order to develop a feasible implementation to this research area, a prototype was developed, called 3DAutoSysLab, in which a metaverse is used as social collaborative interface, experiments (real or simulated are linked to virtual objects, learning objects are displayed as interactive medias, and guiding/feedback are supported via an autonomous tutoring system based on user's interaction data mining. This prototype is under test, but preliminary applied results indicate great acceptance and increase of motivation of students.

  14. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  15. Preliminary 2D design study for A ampersand PCT

    International Nuclear Information System (INIS)

    Keto, E.; Azevedo, S.; Roberson, P.

    1995-03-01

    Lawrence Livermore National Laboratory is currently designing and constructing a tomographic scanner to obtain the most accurate possible assays of radioactivity in barrels of nuclear waste in a limited amount of time. This study demonstrates a method to explore different designs using laboratory experiments and numerical simulations. In particular, we examine the trade-off between spatial resolution and signal-to-noise. The simulations are conducted in two dimensions as a preliminary study for three dimensional imaging. We find that the optimal design is entirely dependent on the expected source sizes and activities. For nuclear waste barrels, preliminary results indicate that collimators with widths of 1 to 3 inch and aspect ratios of 5:1 to 10:1 should perform well. This type of study will be repeated in 3D in more detail to optimize the final design

  16. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender (an open source visualization suite widely used in the entertainment and gaming industries) for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  17. Radiosity diffusion model in 3D

    Science.gov (United States)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  18. Reactive flow simulation in complex 3D geometries using the COM3D code

    International Nuclear Information System (INIS)

    Breitung, W.; Kotchourko, A.; Veser, A.; Scholtyssek, W.

    1999-01-01

    The COM3D code, under development at the Forschungszentrum Karlsruhe (FZK), is a 3-d CFD code to describe turbulent combustion phenomena in complex geometries. It is intended to be part of the advanced integral code system for containment analysis (INCA) which includes in addition GASFLOW for distribution calculations, V3D for slow combustion and DET3D for detonation analysis. COM3D uses a TVD-solver and optional models for turbulence, chemistry and thermodynamics. The hydrodynamic model considers mass, momentum and energy conservation. Advanced procedures were provided to facilitate grid-development for complex 3-d structures. COM3D was validated on experiments performed on different scales with generally good agreement for important physical quantities. The code was applied to combustion analysis of a large PWR. The initial conditions were obtained from a GASFLOW distribution analysis for a LOOP scenario. Results are presented concerning flame propagation and pressure evolution in the containment which clearly demonstrate the effects of internal structures, their influence on turbulence formation and consequences for local loads. (author)

  19. DEMO maintenance scenarios: scheme for time estimations and preliminary estimates for blankets arranged in multi-module-segments

    International Nuclear Information System (INIS)

    Nagy, D.

    2007-01-01

    Previous conceptual studies made clear that the ITER blanket concept and segmentation is not suitable for the environment of a potential fusion power plant (DEMO). One promising concept to be used instead is the so-called Multi-Module-Segment (MMS) concept. Each MMS consists of a number of blankets arranged on a strong back plate thus forming ''banana'' shaped in-board (IB) and out-board (OB) segments. With respect to port size, weight, or other limiting aspects the IB and OB MMS are segmented in toroidal direction. The number of segments to be replaced would be below 100. For this segmentation concept a new maintenance scenario had to be worked out. The aim of this paper is to present a promising MMS maintenance scenario, a flexible scheme for time estimations under varying boundary conditions and preliminary time estimates. According to the proposed scenario two upper, vertical arranged maintenance ports have to be opened for blanket maintenance on opposite sides of the tokamak. Both ports are central to a 180 degree sector and the MMS are removed and inserted through both ports. In-vessel machines are operating to transport the elements in toroidal direction and also to insert and attach the MMS to the shield. Outside the vessel the elements have to be transported between the tokamak and the hot cell to be refurbished. Calculating the maintenance time for such a scenario is rather challenging due to the numerous parallel processes involved. For this reason a flexible, multi-level calculation scheme has been developed in which the operations are organized into three levels: At the lowest level the basic maintenance steps are determined. These are organized into maintenance sequences that take into account parallelisms in the system. Several maintenance sequences constitute the maintenance phases which correspond to a certain logistics scenario. By adding the required times of the maintenance phases the total maintenance time is obtained. The paper presents

  20. The iTREN-2030 reference scenario until 2030. Deliverable D4

    Energy Technology Data Exchange (ETDEWEB)

    Fiorello, Davide; De Stasio, Claudia; Koehler, Jonathan; Kraft, Markus; Netwon, Sean; Purwanto, Joko; Schade, Burkhard; Schade, Wolfgang; Szimba, Eckhard

    2009-07-01

    The basic objective of iTREN-2030 is to extend the forecasting and assessment capabilities of the TRANS-TOOLS transport model to the new policy issues arising from the technology, environment and energy fields. This is achieved by couplin the TRANS-TOOLS model with three other models, ASTRA, POLES and TREMOVE covering these new policy issues. The TRANS-TOOLS transport network model has been developed to constitute the reference tool for supporting transport policy in the EU and currently is being developed in several European projects. The scenario set-up to be developed in iTREN-2030 has been modified, so that the projects develops a reference scenario and an integrated scenario. For the reference scenario, the three other modelling tools are harmonised with TRANS-TOOLS and made consistent with each other. This results in a coherent scenario for Europe until 2030 for technology, transport, energy, environment and economic development. The integrated scenario will consider the changing framework conditions until 2030, inparticular the policy pressure coming from climate policy and the increasing scarcity of fossil fuels as well as the impact of the financial and economic crisis. Within the iTREN-2030 project, the overall objective of Work Package 4 (WP4) producing tis deliverable is to develop the reference scenario for the quantitative projections using the four modelling tools involved in the project. The main aims of WP4 are to (a) define a consistent framework for using the different tools in an integrated way; (b) calibrate models with exchanged input to a coherent joint reference; (c) implement external input from WP3 and running models for projections; (d) produce output procedures and templates to facilitate assessment in WP5.

  1. 3-D calculations for comparison with the experiments

    Energy Technology Data Exchange (ETDEWEB)

    Alrsen, A M; Bosser, R

    1973-09-27

    In order to analyse the axial power profile measurements an attempt has been made to do full 3-D calculations for the Dragon reactor. The calculations are still at a very early stage, but the methods used will be outlined here together with the plans for investigations to be carried out in the near future. Some preliminary-results are reported as no final results have yet been obtained. 3-D calculations are rather expensive because of the computer time consumption. It is therefore essential, before too many big computer jobs are spent, to find approximations which can save calculation time. On the other hand some savings, for instance in the number of mesh points, may cause totally wrong results. The ''proper'' calculations have therefore to be proceeded by a number of preliminary investigations, to ensure optimum accuracy and computer expenses. This report contains some of these preliminary studies.

  2. Development of burning plasma and advanced scenarios in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.

    2005-01-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q ∼ 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque. (author)

  3. Preliminary prediction of inflow into the D-holes at the Stripa Mine

    International Nuclear Information System (INIS)

    Long, J.C.S.; Karasaki, K.; Davey, A.; Peterson, J.; Landsfeld, M.; Kemeny, J.; Martel, S.

    1990-02-01

    Lawrence Berkeley Laboratory (LBL) is contracted by the US Department of Energy to provide an auxiliary modeling effort for the Stripa Project. Within this effort, we are making calculations of inflow to the Simulated Drift Experiment (SDE), i.e. inflow to six parallel, closely spaced D-holes, using a preliminary set of data collected in five other holes, the N- and W-holes during Stages 1 and 2 of the Site Characterization and Validation (SCV) project. Our approach has been to focus on the fracture zones rather than the general set of ubiquitous fractures. Approximately 90% of all the water flowing in the rock is flowing in fracture zones which are neither uniformly conductive nor are they infinitely extensive. Our approach has been to adopt the fracture zone locations as they have been identified with geophysics. We use geologic sense and the original geophysical data to add one zone where significant water inflow has been observed that can not be explained with the other geophysical zones. This report covers LBL's preliminary prediction of flow into the D-holes. Care should be taken in interpreting the results given in this report. As explained below, the approach that LBL has designed for developing a fracture hydrology model requires cross-hole hydrologic data. Cross-hole tests are planned for Stage 3 but were unavailable in Stage 1. As such, we have inferred from available data what a cross-hole test might show and used this synthetic data to make a preliminary calculation of the inflow into the D-holes. Then using all the Stage 3 data we will calculate flow into the Validation Drift itself. The report mainly demonstrates the use of our methodology and the simulated results should be considered preliminary

  4. Description of relevant scenarios in the field of agricultural, environmental and climate policy and energy prices for the preliminary study on a Roadmap for the 'SuikerUnie'

    International Nuclear Information System (INIS)

    Plomp, A.J.

    2011-11-01

    In the Dutch Long Term Agreements on energy efficiency (MJA3 and MEE)the Dutch government and industry agreed to strive for a 30% energy efficiency improvement in 2020 compared to 2005. To reach more than 30%, it is not enough to optimize; instead larger process changes will be needed. An important instrument is the realization of preliminary studies and roadmaps, which are supported by the government. This memo offers an overview of relevant developments and scenarios from Agricultural, climate and environmental policy and energy prices for the Dutch sugar industry. This memo serves as input for the Preliminary study Roadmap SuikerUnie. [nl

  5. Global Energy-Economy-Environment (E3) Scenarios to 2050 and Beyond

    International Nuclear Information System (INIS)

    Schrattenholzer, L.

    2005-01-01

    The Environmentally Compatible Energy Strategies (ECS) Program at the International Institute for Applied Systems Analysis (IIASA) develops policy-relevant global and world-regional energy perspectives. The basic premise of the ECS's research program is a global trend of d ecarbonization . Firstly, decarbonization includes a trend toward ever-greater efficiency, or ever less waste, in society's use of energy resources. Secondly, it includes a trend towards less carbon-intensive fossil fuels (e.g., from coal toward natural gas) and, further, to non-fossil fuels, especially renewable energy carriers. Technological change is generally regarded as one of the key drivers of sustained economic growth. Long-term energy scenarios developed at IIASA and elsewhere show that, depending on key assumptions on drivers such as population, economic growth and technological development, global energy development can be environmentally unsustainable. First, energy development might not lead to stabilizing greenhouse concentrations and might thus have significant negative impacts on the global climate. In addition, some, especially coal-intensive, scenarios might lead to levels of acid deposition at which significant damage to sensitive ecosystems is expected to occur in Europe and, even more so, in Asia. A continuation of the observed historical long-term trends of decarbonization, dematerialization, and energy efficiency improvements might therefore not be sufficient to achieve sustainable growth. Targeted technological development aiming at accelerating decarbonization, dematerialization, and/or efficiency improvement may be one of the most effective means for reconciling economic growth with global environmental objectives. This might require a step-up in investments in R and D and in the demonstration of technologies so as to stimulate both learning-by-searching and learning-by-doing. In this presentation, global E3 scenarios will be summarized in the following three groups: Non

  6. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  7. Risk D and D Rapid Prototype: Scenario Documentation and Analysis Tool

    International Nuclear Information System (INIS)

    Unwin, Stephen D.; Seiple, Timothy E.

    2009-01-01

    Report describes process and methodology associated with a rapid prototype tool for integrating project risk analysis and health and safety risk analysis for decontamination and decommissioning projects. The objective of the Decontamination and Decommissioning (D and D) Risk Management Evaluation and Work Sequencing Standardization Project under DOE EM-23 is to recommend or develop practical risk-management tools for decommissioning of nuclear facilities. PNNL has responsibility under this project for recommending or developing computer-based tools that facilitate the evaluation of risks in order to optimize the sequencing of D and D work. PNNL's approach is to adapt, augment, and integrate existing resources rather than to develop a new suite of tools. Methods for the evaluation of H and S risks associated with work in potentially hazardous environments are well-established. Several approaches exist which, collectively, are referred to as process hazard analysis (PHA). A PHA generally involves the systematic identification of accidents, exposures, and other adverse events associated with a given process or work flow. This identification process is usually achieved in a brainstorming environment or by other means of eliciting informed opinion. The likelihoods of adverse events (scenarios) and their associated consequence severities are estimated against pre-defined scales, based on which risk indices are then calculated. A similar process is encoded in various project risk software products that facilitate the quantification of schedule and cost risks associated with adverse scenarios. However, risk models do not generally capture both project risk and H and S risk. The intent of the project reported here is to produce a tool that facilitates the elicitation, characterization, and documentation of both project risk and H and S risk based on defined sequences of D and D activities. By considering alternative D and D sequences, comparison of the predicted risks can

  8. Conceptual Configuration of Pharmaceutical Plants in 3D

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Larsen, Bent Dalgaard; Gjøl, Mikkel

    2007-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. Configuration and 3D models can help validate the decisions made in the conceptual design process. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  9. Heritability of face shape in twins: a preliminary study using 3D stereophotogrammetry and geometric morphometrics

    Directory of Open Access Journals (Sweden)

    Seth M. Weinberg

    2013-11-01

    Full Text Available Introduction: Previous research suggests that aspects of facial surface morphology are heritable.  Traditionally, heritability studies have used a limited set of linear distances to quantify facial morphology and often employ statistical methods poorly designed to deal with biological shape.  In this preliminary report, we use a combination of 3D photogrammetry and landmark-based morphometrics to explore which aspects of face shape show the strongest evidence of heritability in a sample of twins. Methods: 3D surface images were obtained from 21 twin pairs (10 monozygotic, 11 same-sex dizygotic.  Thirteen 3D landmarks were collected from each facial surface and their coordinates subjected to geometric morphometric analysis.  This involved superimposing the individual landmark configurations and then subjecting the resulting shape coordinates to a principal components analysis.  The resulting PC scores were then used to calculate rough narrow-sense heritability estimates. Results: Three principal components displayed evidence of moderate to high heritability and were associated with variation in the breadth of orbital and nasal structures, upper lip height and projection, and the vertical and forward projection of the root of the nose due to variation in the position of nasion. Conclusions: Aspects of facial shape, primarily related to variation in length and breadth of central midfacial structures, were shown to demonstrate evidence of strong heritability. An improved understanding of which facial features are under strong genetic control is an important step in the identification of specific genes that underlie normal facial variation.

  10. 3-D numerical modelling of groundwater flow for scenario-based ...

    African Journals Online (AJOL)

    The data related to piezometric water levels, canal gauges, well logs, meteorological and lithological information were collected from Punjab Irrigation Department (PID), Water and Power Development Authority (WAPDA). Groundwater flow models for both steady and transient conditions were set-up using FEFLOW-3D.

  11. VITOM 3D: Preliminary Experience in Cranial Surgery.

    Science.gov (United States)

    Rossini, Zefferino; Cardia, Andrea; Milani, Davide; Lasio, Giovanni Battista; Fornari, Maurizio; D'Angelo, Vincenzo

    2017-11-01

    Optimal vision and ergonomics are important factors contributing to achievement of good results during neurosurgical interventions. The operating microscope and the endoscope have partially filled the gap between the need for good surgical vision and maintenance of a comfortable posture during surgery. Recently, a new technology called video-assisted telescope operating monitor or exoscope has been used in cranial surgery. The main drawback with previous prototypes was lack of stereopsis. We present the first case report of cranial surgery performed using the VITOM 3D, an exoscope conjugating 4K resolution view and three-dimensional technology, and discuss advantages and disadvantages compared with the operating microscope. A 50-year-old patient with vertigo and headache linked to a petrous ridge meningioma underwent surgery using the VITOM 3D. Complete removal of the tumor and resolution of symptoms were achieved. The telescope was maintained over the surgical field for the duration of the procedure; a video monitor was placed at 2 m from the surgeons; and a control unit allowed focusing, magnification, and repositioning of the camera. VITOM 3D is a video system that has overcome the lack of stereopsis, a major drawback of previous exoscope models. It has many advantages regarding ergonomics, versatility, and depth of field compared with the operating microscope, but the holder arm and the mechanism of repositioning, refocusing, and magnification need to be ameliorated. Surgeons should continue to use the technology they feel confident with, unless a distinct advantage with newer technologies can be demonstrated. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Transportation energy scenario analysis technical report No. 1: examination of four existing scenarios. [Projections for 1985, 1995, 2010, and 2025

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M. J.; LaBelle, S. J.; Millar, M.; Walbridge, E. W.

    1978-03-01

    This project aims to provide the DOE Division of Transportation Energy Conservation (TEC) with a long-range forecasting framework in which to evaluate potential changes to the U.S. Transportation system. This initial report examines four existing, but diverse, 50-year scenarios of the future. It describes the scenarios and summarizes the changes in the major transportation system variables that would occur through the year 2025 in each scenario. Projections of variables of interest to TEC are explored, including passenger or ton miles and energy consumption. Each is reported for 1985, 1995, 2010, and 2025 under four scenarios: success, moderate economic growth, energy crisis, and transformation. The philosophy of this project is that the transportation system must support future lifestyles; by examining potential future lifestyles the required transportation system changes can be deduced. The project: (a) develops a set of scenarios that span likely futures; (b) describes the lifestyles in each scenario in order; (c) determines the characteristics of the transportation system supporting those lifestyles; (d) indicates transportation technologies and policies necessary in that system; and (e) derives the energy characteristics of that system. The implications of the four existing scenarios are examined with emphasis on current TEC electric-vehicle development. This preliminary investigation will be followed by detailed-scenario building (modifying existing scenarios or developing new ones) and generation of lifestyles and transportation system demands under each of the scenarios. This work will be reported in October 1978.

  13. 3D mmWave Channel Model Proposal

    DEFF Research Database (Denmark)

    Thomas, Timothy; Nguyen, Huan Cong; R. MacCartney Jr., George

    2014-01-01

    the measurements, a ray-tracing study has been conducted using databases for the same environments as the measurements, allowing a simple ray-tracer to predict measured statistics such as path loss and angles of arrival in the same physical environment of the measurements. In this paper a preliminary 3GPP-style 3D...

  14. Finding the Optimum Scenario in Risk-benefit Assessment: An Example on Vitamin D

    DEFF Research Database (Denmark)

    Berjia, Firew Lemma; Hoekstra, J.; Verhagen, H.

    2014-01-01

    an optimum scenario that provides maximum net health gain in health risk-benefit assessment of dietary exposure as expressed by serum vitamin D level. With regard to the vitamin D assessment, a considerable health gain is observed due to the reduction of risk of other cause mortality, fall and hip fractures......Background: In risk-benefit assessment of food and nutrients, several studies so far have focused on comparison of two scenarios to weigh the health effect against each other. One obvious next step is finding the optimum scenario that provides maximum net health gains. Aim: This paper aims to show...... that provides maximum net health gains. As a common health metric, Disability Adjusted Life Years (DALY) has been used to project the net health effect by using the QALIBRA (Quality of Life for Benefit Risk Assessment) software. Results: The method used in the vitamin D example shows that it is feasible to find...

  15. A systematic review on in vitro 3D bone metastases models: A new horizon to recapitulate the native clinical scenario?

    Science.gov (United States)

    Salamanna, Francesca; Contartese, Deyanira; Maglio, Melania; Fini, Milena

    2016-07-12

    While the skeleton is not the only organ where metastasis can occur, it is one of the preferred sites, with a significant impact in patients' quality of life. With the aim of delineating the cellular and molecular mechanisms of bone metastasis, numerous studies have been employed to identify any contributing factors that trigger cancer progression. One of the major limitations of studying cancer-bone metastasis is the multifaceted nature of the native bone environment and the lack of reliable, simple, and not expensive models that strictly mimic the biological processes occurring in vivo allowing a correct translation of results. Currently, with the growing acceptance of in vitro models as effective tools for studying cancer biology, three-dimensional (3D) models have emerged as a compromise between two-dimensional cultures of isolated cancer cells and the complexity of human cancer xenografts in immunocompromised animal hosts. This descriptive systematic literature review summarizes the current status of advanced and alternative 3D in vitro bone metastases models. We have also reviewed the strategies employed by researchers to set-up these models with special reference to recent promising developments trying to better replicate the complexity and heterogeneity of a human metastasis in situ, with an outlook at their use in medicine. All these aspects will greatly contribute to the existing knowledge on bone metastases, providing a specific link to clinical scenarios and thus making 3D in vitro bone metastasis models an attractive tool for multidisciplinary experts.

  16. Characterization of 3D-stc detectors fabricated at ITC-irst

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Bosisio, Luciano; Bruzzi, Mara; Dalla Betta, Gian-Franco; Piemonte, Claudio; Pozza, Alberto; Ronchin, Sabina; Tosi, Carlo; Zorzi, Nicola

    2007-01-01

    3D silicon radiation detectors offer many advantages over planar detectors, including improved radiation tolerance and faster charge collection time. We proposed a new 3D architecture (referred to as 3D-stc), which features columnar electrodes of one doping type only, thus, allowing a considerable simplification of the manufacturing process. In this paper, we report selected results from the electrical characterization of 3D diodes fabricated with this technology, along with preliminary results on the charge collection efficiency of these devices

  17. Preliminary results on 3D channel modeling: From theory to standardization

    KAUST Repository

    Kammoun, Abla; Khanfir, Hajer; Altman, Zwi; Debbah, Mé roú ane; Kamoun, Mohamed Amine

    2014-01-01

    Three dimensional (3D) beamforming (also elevation beamforming) is now gaining interest among researchers in wireless communication. The reason can be attributed to its potential for enabling a variety of strategies such as sector or user specific elevation beamforming and cell-splitting. Since these techniques cannot be directly supported by current LTE releases, the 3GPP is now working on defining the required technical specifications. In particular, a large effort is currently being made to get accurate 3D channel models that support the elevation dimension. This step is necessary as it will evaluate the potential of 3D and full dimensional (FD) beamforming techniques to benefit from the richness of real channels. This work aims at presenting the on-going 3GPP study item 'study on 3D-channel model for elevation beamforming and FD-MIMO studies for LTE' and positioning it with respect to previous standardization works. © 2014 IEEE.

  18. Preliminary results on 3D channel modeling: From theory to standardization

    KAUST Repository

    Kammoun, Abla

    2014-06-01

    Three dimensional (3D) beamforming (also elevation beamforming) is now gaining interest among researchers in wireless communication. The reason can be attributed to its potential for enabling a variety of strategies such as sector or user specific elevation beamforming and cell-splitting. Since these techniques cannot be directly supported by current LTE releases, the 3GPP is now working on defining the required technical specifications. In particular, a large effort is currently being made to get accurate 3D channel models that support the elevation dimension. This step is necessary as it will evaluate the potential of 3D and full dimensional (FD) beamforming techniques to benefit from the richness of real channels. This work aims at presenting the on-going 3GPP study item \\'study on 3D-channel model for elevation beamforming and FD-MIMO studies for LTE\\' and positioning it with respect to previous standardization works. © 2014 IEEE.

  19. Moderator 3-D Thermalhydraulic Analysis Using MODTURCCLAS Code

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Yoon, Churl; Park, Joo Hwan

    2008-12-01

    For the moderator subcooling analysis of the refurbished Wolsong NPP (Nuclear Power Plant) Unit 1, the 3-D moderator thermalhydraulic calculations were preliminarily conducted from September to October in 2008, using the preliminary thermalhydraulic analysis results and the MODTURC C LAS (MODerator TURbulent Circulation Co-Located Advanced Solutions) Ver.2.9-IST, which was developed and validated by OPG (Ontario Power Generation) in Canada. The present report consists of the steady-state calculation and transient calculation. First the grid structure, main input parameters, and boundary conditions needed for the steady-state calculation are produced and the steady-state results are obtained. These steady-state results are used for the initial conditions for the transient analysis during a LOCA. The moderator analysis results during the steady-state calculation show the quasy-steady state behavior, because the thermalhydraulic behavior are fluctuating although all boundary conditions are constant. In the transient calculations, based on the present thermalhydraulic analysis results, 3-D thermalhydraulic behavior and moderator subcooling are predicted for the accident scenarios of reactor inlet header 35% and 40% breaks, outlet header 100% break, and pump suction 80% break, subsequent with loss of Class IV power. In the previous moderator analysis for Wolsong NPP Unit 2,3,4 a PHOENICS code was used, which is different from the MODTURC C LAS code used for the analysis of Wolsong NPP Unit 1. However, the moderator subcooling analysis results by these two codes are qualitatively similar. The minimum subcooling for RIH 40% break of Wolsong NPP Unit 1 is 17 .deg. C which is larger than 13 .deg. C for RIH 35% break of Wolsong NPP Unit 2,3,4. Therefore, it is concluded that the refurbished Wolsong NPP Unit 1 satisfies the channel integrity criteria based on the higher subcooling margin compared with that of Wolsong NPP Unit 2,3,4

  20. Electromagnetic shielding effectiveness of 3D printed polymer composites

    Science.gov (United States)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  1. Preliminary development of a global 3-D magnetohydrodynamic computational model for solar wind-cometary and planetary interactions

    International Nuclear Information System (INIS)

    Stahara, S.S.

    1986-05-01

    This is the final summary report by Resource Management Associates, Inc., of the first year's work under Contract No. NASW-4011 to the National Aeronautics and Space Administration. The work under this initial phase of the contract relates to the preliminary development of a global, 3-D magnetohydrodynamic computational model to quantitatively describe the detailed continuum field and plasma interaction process of the solar wind with cometary and planetary bodies throughout the solar system. The work extends a highly-successful, observationally-verified computational model previously developed by the author, and is appropriate for the global determination of supersonic, super-Alfvenic solar wind flows past planetary obstacles. This report provides a concise description of the problems studied, a summary of all the important research results, and copies of the publications

  2. 3 Investment Scenarios for Fast Reactors

    International Nuclear Information System (INIS)

    Shoai Tehrani, Bianka; Da Costa, Pascal

    2013-01-01

    Results: • 4 families of scenarios: – In each of them, 3 options for national nuclear policy → 12 scenarios; – 3 favorable to FRs: - “climate constraint” with strong pro-nuclear policy - “climate constraint” with moderate pro-nuclear policy - “totally green” with strong pro-nuclear policy. • Business As Usual is not favorable to Fast Reactors; Fast reactors deployment: - Needs strong climate policy - Is viable in case of important renewable progress as long as climate policy is strong. International perspective: • Results are valid for Europe, other drivers being likely to be more important in other countries : high growth and demand (Asia); • With strong contrasts between European countries. Further research: • Finer modeling of drivers with unclear influence (clustered and excluded variables): Influence of weak signals

  3. Spin dynamics and implications for superconductivity. Some problems with the d-wave scenario

    International Nuclear Information System (INIS)

    Levin, K.; Zha, Y.; Radtke, R.J.; Si, Q.; Norman, M.R.; Schuettler, H.B.

    1994-01-01

    We review the spin dynamics of the normal state of the cuprates with special emphasis on neutron data in both the YBa 2 Cu 3 O 7-δ and La 2-x Sr x CuO 4 systems. When realistic models of the Fermi surface shapes are incorporated, along with a moderate degree of spin fluctuations, we find good semiquantitative agreement with experiment for both cuprates. Building on the success of this Fermi-liquid-based scheme, we explore the implications for d-wave pairing from a number of vantage points. We conclude that our present experimental and theoretical understanding is inadequate to confirm or refute the d-wave scenario. 26 refs., 6 figs

  4. Optimizing Decision Preparedness by Adapting Scenario Complexity and Automating Scenario Generation

    Science.gov (United States)

    Dunne, Rob; Schatz, Sae; Flore, Stephen M.; Nicholson, Denise

    2011-01-01

    Klein's recognition-primed decision (RPD) framework proposes that experts make decisions by recognizing similarities between current decision situations and previous decision experiences. Unfortunately, military personnel arQ often presented with situations that they have not experienced before. Scenario-based training (S8T) can help mitigate this gap. However, SBT remains a challenging and inefficient training approach. To address these limitations, the authors present an innovative formulation of scenario complexity that contributes to the larger research goal of developing an automated scenario generation system. This system will enable trainees to effectively advance through a variety of increasingly complex decision situations and experiences. By adapting scenario complexities and automating generation, trainees will be provided with a greater variety of appropriately calibrated training events, thus broadening their repositories of experience. Preliminary results from empirical testing (N=24) of the proof-of-concept formula are presented, and future avenues of scenario complexity research are also discussed.

  5. TURVA-2012: Formulation of radionuclide release scenarios

    International Nuclear Information System (INIS)

    Marcos, Nuria; Hjerpe, Thomas; Snellman, Margit; Ikonen, Ari; Smith, Paul

    2014-01-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR) and application for a construction licence for a repository for disposal of spent nuclear fuel at the Olkiluoto site in south-western Finland. This paper gives a summary of the scenarios and the methodology followed in formulating them as described in TURVA-2012: Formulation of Radionuclide Release Scenarios (Posiva, 2013). The scenarios are further analysed in TURVA-2012: Assessment of Radionuclide Release Scenarios for the Repository System and TURVA-2012: Biosphere Assessment (Posiva, 2012a, 2012b). The formulation of scenarios takes into account the safety functions of the main barriers of the repository system and the uncertainties in the features, events, and processes (FEP) that may affect the entire disposal system (i.e. repository system plus the surface environment) from the emplacement of the first canister until the far future. In the report TURVA-2012: Performance Assessment (2012d), the performance of the engineered and natural barriers has been assessed against the loads expected during the evolution of the repository system and the site. Uncertainties have been identified and these are taken into account in the formulation of radionuclide release scenarios. The uncertainties in the FEP and evolution of the surface environment are taken into account in formulating the surface environment scenarios used ultimately in estimating radiation exposure. Formulating radionuclide release scenarios for the repository system links the reports Performance Assessment and Assessment of Radionuclide Release Scenarios for the Repository System. The formulation of radionuclide release scenarios for the surface environment brings together biosphere description and the surface environment FEP and is the link to the assessment of the surface environment scenarios summarised in TURVA-2012: Biosphere Assessment. (authors)

  6. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    Science.gov (United States)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  7. Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406

    International Nuclear Information System (INIS)

    Michalski, Jeff M.; Purdy, James A.; Winter, Kathryn; Roach, Mack; Vijayakumar, Srinivasan; Sandler, Howard M.; Markoe, Arnold M.; Ritter, Mark A.; Russell, Kenneth J.; Sailer, Scott; Harms, William B.; Perez, Carlos A.; Wilder, Richard B.; Hanks, Gerald E.; Cox, James D.

    2000-01-01

    Purpose: A prospective Phase I dose escalation study was conducted to determine the maximally-tolerated radiation dose in men treated with three-dimensional conformal radiation therapy (3D CRT) for localized prostate cancer. This is a preliminary report of toxicity encountered on the 3DOG/RTOG 9406 study. Methods and Materials: Each participating institution was required to implement data exchange with the RTOG 3D quality assurance (QA) center at Washington University in St. Louis. 3D CRT capabilities were strictly defined within the study protocol. Patients were registered according to three stratification groups: Group 1 patients had clinically organ-confined disease (T1,2) with a calculated risk of seminal vesicle invasion of < 15%. Group 2 patients had clinical T1,2 disease with risk of SV invasion ≥ 15%. Group 3 (G3) patients had clinical local extension of tumor beyond the prostate capsule (T3). All patients were treated with 3D techniques with minimum doses prescribed to the planning target volume (PTV). The PTV margins were 5-10 mm around the prostate for patients in Group 1 and 5-10 mm around the prostate and SV for Group 2. After 55.8 Gy, the PTV was reduced in Group 2 patients to 5-10 mm around the prostate only. Minimum prescription dose began at 68.4 Gy (level I) and was escalated to 73.8 Gy (level II) and subsequently to 79.2 Gy (level III). This report describes the acute and late toxicity encountered in Group 1 and 2 patients treated to the first two study dose levels. Data from RTOG 7506 and 7706 allowed calculation of the expected probability of observing a ≥ grade 3 late effect more than 120 days after the start of treatment. RTOG toxicity scores were used. Results: Between August 23, 1994 and July 2, 1997, 304 Group 1 and 2 cases were registered; 288 cases were analyzable for toxicity. Acute toxicity was low, with 53-54% of Group 1 patients having either no or grade 1 toxicity at dose levels I and II, respectively. Sixty-two percent of Group

  8. 3D detectors at ITC-irst: first irradiation studies

    International Nuclear Information System (INIS)

    Ronchin, S.; Boscardin, M.; Bosisio, L.; Cindro, V.; Dalla Betta, G.-F.; Piemonte, C.; Pozza, A.; Zoboli, A.; Zorzi, N.

    2007-01-01

    In the past two years, we have developed 3D detector technologies at ITC-irst (Trento, Italy). We have proposed a new 3D architecture, having columnar electrodes of one doping type only, allowing for a simplified fabrication process. In this paper, we report on preliminary results from the electrical characterization of devices irradiated with neutrons, showing that low depletion voltage values can be achieved even after very large fluences

  9. CLOUD BASED WEB 3D GIS TAIWAN PLATFORM

    Directory of Open Access Journals (Sweden)

    W.-F. Tsai

    2012-09-01

    Full Text Available This article presents the status of the web 3D GIS platform, which has been developed in the National Applied Research Laboratories. The purpose is to develop a global earth observation 3D GIS platform for applications to disaster monitoring and assessment in Taiwan. For quick response to preliminary and detailed assessment after a natural disaster occurs, the web 3D GIS platform is useful to access, transfer, integrate, display and analyze the multi-scale huge data following the international OGC standard. The framework of cloud service for data warehousing management and efficiency enhancement using VMWare is illustrated in this article.

  10. Fast-ion transport in qmin>2, high-β steady-state scenarios on DIII-D

    International Nuclear Information System (INIS)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.

    2015-01-01

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q min confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min >2 that target the typical range of q 95 = 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N . In contrast, similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min >3 plasmas to higher β P with q 95 = 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast , and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N , and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95 , high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes

  11. A Hybrid 3D Path Planning Method for UAVs

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2015-01-01

    This paper presents a hybrid method for path planning in 3D spaces. We propose an improvement to a near-optimal 2D off-line algorithm and a flexible normalized on-line fuzzy controller to find shortest paths. Our method, targeted to low altitude domains, is simple and efficient. Our preliminary resu...

  12. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Petrareanu, Georgiana; Balasu, Mihaela C.; Zander, Ulrich; Scheidig, Axel J.; Szedlacsek, Stefan E.

    2010-01-01

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P2 1 . Diffraction data were obtained to a resolution of 2.2 Å

  13. First fabrication of full 3D-detectors at SINTEF

    International Nuclear Information System (INIS)

    Hansen, Thor-Erik; Kok, Angela; Hansen, Trond A; Lietaer, Nicolas; Mielnik, Michal; Storaas, Preben; Via, Cinzia Da'; Hasi, Jasmine; Kenney, Chris; Parker, Sherwood

    2009-01-01

    3D-detectors, with electrodes penetrating through the entire substrates have drawn great interests for high energy physics and medical imaging applications. Since its introduction by C. Kenney et al in 1995, many laboratories have begun research on different 3D-detector structures to simplify and industrialise the fabrication process. SINTEF MiNaLab joined the 3D collaboration in 2006 and started the first 3D fabrication run in 2007. This is the first step in an effort to fabricate affordable 3D-detectors in small to medium size production volumes. The first run was fully completed in February 2008 and preliminary results are promising. Good p-n junction characteristics have been shown on selected devices at the chip level with a leakage current of less than 0.5 nA per pixel. Thus SINTEF is the second laboratory in the world after the Stanford Nanofabrication Facility that has succeeded in demonstrating full 3D-detectors with active edge. A full 3D-stacked detector system were formed by bump-bonding the detectors to the ATLAS readout electronics, and successful particle hit maps using an Am-241 source were recorded. Most modules, however, showed largely increased leakage currents after assembly, which is due to the active edge and p-spray acting as part of the total chip pn-junction and not as a depletion stop. This paper describes the first fabrication and the encountered processing issues. The preliminary measurements on both the individual detector chips and the integrated 3D-stacked modules are discussed. A new lot has now been started on p-type wafers, which offers a more robust configuration with the active edge acting as depletion stop instead of part of the pn-junction.

  14. Simple shape space for 3D face registration

    Science.gov (United States)

    Košir, Andrej; Perkon, Igor; Bracun, Drago; Tasic, Jurij; Mozina, Janez

    2009-09-01

    Three dimensional (3D) face recognition is a topic getting increasing interest in biometric applications. In our research framework we developed a laser scanner that provides 3D cloud information and texture data. In a user scenario with cooperative subjects with indoor light conditions, we address three problems of 3D face biometrics: the face registration, the formulation of a shape space together with a special designed gradient algorithm and the impact of initial approximation to the convergence of a registration algorithm. By defining the face registration as a problem of aligning a 3D data cloud with a predefined reference template, we solve the registration problem with a second order gradient algorithm working on a shape space designed for reducing the computational complexity of the method.

  15. Setting UP a decontamination and dismantling (D and D) scenario - methodology and tools developed leopard

    International Nuclear Information System (INIS)

    Pradoura, F.

    2009-01-01

    At the AREVA NC La Hague site, the former nuclear spent fuel reprocessing plant UP2-400 was shutdown on December 30, 2003. Since then, the cleaning up and dismantling activities have been carried by the DV/PRO project, which is the program management organization settled by AREVA NC, for valorization projects. SGN, part of the AREVA NC Engineering Business Unit, operates as the main contractor of the DV/PRO project and provides project management services related to decommissioning and waste management. Hence, SGN is in charge of building D and D's scenarios for all the facilities of the UP2-400 plant, in compliance with safety, technical and financial requirements. Main outputs are logic diagrams, block flow diagrams, wastes and effluents throughputs. In order to meet with AREVA NC's requirements and expectations, SGN developed specific process and tools methods adapted to the scale and complexity of decommissioning a plant with several facilities, with different kind of processes (chemical, mechanical), some of which are in operation and other being dismantled. Considering the number of technical data and inputs to be managed, this methodology leads to complex outputs such as schedules, throughputs, work packages... The development, the maintenance and the modification of these outputs become more and more difficult with the complexity and the size of the plant considered. To cope with these issues, SGN CDE/DEM UP2-400 project team has developed a dedicated tool to assist and optimize in elaborating D and D scenarios. This tool is named LEOPARD (Logiciel d'Elaboration et d'Optimisation des Programmes d'Assainissement Radiologique et de Demantelement) (Software for the Development and Optimization of Radiological Clean up and Dismantling Programs). The availability of this tool allowed the rapid construction of a test case (demonstrator) that has convinced DV/PRO of its numerous advantages and of the future further development potentials. Presentations of LEOPARD

  16. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Golden, Thea; Gow, Andrew [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-08-15

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  17. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    International Nuclear Information System (INIS)

    Rusu, Mirabela; Wang, Haibo; Madabhushi, Anant; Golden, Thea; Gow, Andrew

    2015-01-01

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  18. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  19. Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu

    2015-08-01

    Full Text Available In this paper, two tetrapyrrolic complexes, Zn(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin and Cu(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.

  20. Preliminary Physics Summary: Measurement of D$^0$, D$^+$, D$^{*+}$ and D$_{\\rm s}$ production in Pb-Pb collisions at ${\\sqrt{s}_{\\rm NN}}=5.02$ TeV

    CERN Document Server

    We report preliminary measurements of the production of prompt D$^0$, D$^+$, D$^{*+}$ and D$_{\\rm s}^+$ mesons in Pb-Pb collisions in the centrality classes 0-10%, 30-50% and 60-80%, at the centre-of-mass energy $\\sqrt{s_{\\rm NN}}=5.02$ TeV per nucleon-nucleon collision. The production yields are measured at mid-rapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\\rm T}$). The $p_{\\rm T}$ intervals covered in central collisions are: $1\\lt p_{\\rm T}<50$ GeV/$c$ for D$^0$, $2\\lt p_{\\rm T}<36$ GeV/$c$ for D$^+$, $3\\lt p_{\\rm T}\\lt 50$ GeV/$c$ for D$^{*+}$, and $4\\lt p_{\\rm T}<16$ GeV/$c$ for D$_{\\rm s}^+$ mesons. The nuclear modification factors $R_{\\rm AA}$ are calculated using a proton-proton reference at $\\sqrt{s}=5.02$ TeV obtained by scaling the D-meson cross sections measured at $\\sqrt{s}=7$ TeV.

  1. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    Science.gov (United States)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  2. Integrating visible light 3D scanning into the everyday world

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  3. Stereolithographic hydrogel printing of 3D microfluidic cell culture chips

    DEFF Research Database (Denmark)

    Zhang, Rujing

    that support the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically...... and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D...... epoxy component as structural supports interfacing the external world as well as compliant PEGDA component as microfluidic channels have been manufactured and perfused. Although still in the preliminary stage, this dual-material printing approach shows the potential for constructing complex 3D...

  4. Using street view imagery for 3-D survey of rock slope failures

    Directory of Open Access Journals (Sweden)

    J. Voumard

    2017-12-01

    Full Text Available We discuss here different challenges and limitations of surveying rock slope failures using 3-D reconstruction from image sets acquired from street view imagery (SVI. We show how rock slope surveying can be performed using two or more image sets using online imagery with photographs from the same site but acquired at different instances. Three sites in the French alps were selected as pilot study areas: (1 a cliff beside a road where a protective wall collapsed, consisting of two image sets (60 and 50 images in each set captured within a 6-year time frame; (2 a large-scale active landslide located on a slope at 250 m from the road, using seven image sets (50 to 80 images per set from five different time periods with three image sets for one period; (3 a cliff over a tunnel which has collapsed, using two image sets captured in a 4-year time frame. The analysis include the use of different structure from motion (SfM programs and a comparison between the extracted photogrammetric point clouds and a lidar-derived mesh that was used as a ground truth. Results show that both landslide deformation and estimation of fallen volumes were clearly identified in the different point clouds. Results are site- and software-dependent, as a function of the image set and number of images, with model accuracies ranging between 0.2 and 3.8 m in the best and worst scenario, respectively. Although some limitations derived from the generation of 3-D models from SVI were observed, this approach allowed us to obtain preliminary 3-D models of an area without on-field images, allowing extraction of the pre-failure topography that would not be available otherwise.

  5. KNOWLEDGE AND VALORIZATION OF HISTORICAL SITES THROUGH 3D DOCUMENTATION AND MODELING

    Directory of Open Access Journals (Sweden)

    E. Farella

    2016-06-01

    Full Text Available The paper presents the first results of an interdisciplinary project related to the 3D documentation, dissemination, valorization and digital access of archeological sites. Beside the mere 3D documentation aim, the project has two goals: (i to easily explore and share via web references and results of the interdisciplinary work, including the interpretative process and the final reconstruction of the remains; (ii to promote and valorize archaeological areas using reality-based 3D data and Virtual Reality devices. This method has been verified on the ruins of the archeological site of Pausilypon, a maritime villa of Roman period (Naples, Italy. Using Unity3D, the virtual tour of the heritage site was integrated and enriched with the surveyed 3D data, text documents, CAAD reconstruction hypotheses, drawings, photos, etc. In this way, starting from the actual appearance of the ruins (panoramic images, passing through the 3D digital surveying models and several other historical information, the user is able to access virtual contents and reconstructed scenarios, all in a single virtual, interactive and immersive environment. These contents and scenarios allow to derive documentation and geometrical information, understand the site, perform analyses, see interpretative processes, communicate historical information and valorize the heritage location.

  6. Novel methods for real-time 3D facial recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan

    2010-01-01

    In this paper we discuss our approach to real-time 3D face recognition. We argue the need for real time operation in a realistic scenario and highlight the required pre- and post-processing operations for effective 3D facial recognition. We focus attention to some operations including face and eye detection, and fast post-processing operations such as hole filling, mesh smoothing and noise removal. We consider strategies for hole filling such as bilinear and polynomial interpolation and Lapla...

  7. Livrable D6.1 of the PERSEE project : Perceptual Assessment : Definition of the scenarios

    OpenAIRE

    Wang , Junle; Gautier , Josselin; Bosc , Emilie; Li , Jing; Ricordel , Vincent

    2011-01-01

    62; Livrable D6,1 du projet ANR PERSEE; Ce rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D6.1 du projet. Son titre : Perceptual Assessment : Definition of the scenarios

  8. Triangular SPECT system for 3-D total organ volume imaging: Design concept and preliminary imaging results

    International Nuclear Information System (INIS)

    Lim, C.B.; Anderson, J.; Covic, J.

    1985-01-01

    SPECT systems based on 2-D detectors for projection data collection and filtered back-projection image reconstruction have the potential for true 3-D imaging, providing contiguous slice images in any orientation. Anger camera-based SPECT systems have the natural advantage supporting planar imaging clinical procedures. However, current systems suffer from two drawbacks; poor utilization of emitted photons, and inadequate system design for SPECT. A SPECT system consisting of three rectangular cameras with radial translation would offer the variable cylindrical FOV of 25 cm to 40 cm diameter allowing close detector access to the object. This system would provide optimized imaging for both brain and body organs in terms of sensitivity and resolution. For brain imaging a tight detector triangle with fan beam collimation, matching detector UFOV to the head, allows full 2 π utilization of emitted photons, resulting in >4 times sensitivity increase over the single detector system. Minification of intrinsic detector resolution in fan beam collimation further improves system resolution. For body organ imaging the three detectors with parallel hole collimators, rotating in non-circular orbit, provide both improved resolution and three-fold sensitivity increase. Practical challenges lie in ensuring perfect image overlap from three detectors without resolution degradation and artifact generation in order to benefit from the above improvements. An experimental system has been developed to test the above imaging concept and we have successfully demonstrated the superior image quality of the overlapped images. Design concept will be presented with preliminary imaging results

  9. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    Science.gov (United States)

    Gonizzi Barsanti, S.; Caruso, G.; Micoli, L. L.; Covarrubias Rodriguez, M.; Guidi, G.

    2015-08-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  10. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    Directory of Open Access Journals (Sweden)

    S. Gonizzi Barsanti

    2015-08-01

    Full Text Available Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the “path of the dead”, an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  11. Crystallization and preliminary X-ray analysis of a d-Ala:d-Ser ligase associated with VanG-type vancomycin resistance

    International Nuclear Information System (INIS)

    Weber, Patrick; Meziane-Cherif, Djalal; Haouz, Ahmed; Saul, Frederick A.; Courvalin, Patrice

    2009-01-01

    The VanG d-alanine:d-serine ligase was crystallized in complex with ADP and diffraction data were collected at 2.35 Å resolution. Acquired VanG-type resistance to vancomycin in Enterococcus faecalis BM4518 arises from inducible synthesis of peptidoglycan precursors ending in d-alanyl-d-serine, to which vancomycin exhibits low binding affinity. VanG, a d-alanine:d-serine ligase, catalyzes the ATP-dependent synthesis of the d-Ala-d-Ser dipeptide, which is incorporated into the peptidoglycan synthesis of VanG-type vancomycin-resistant strains. Here, the purification, crystallization and preliminary crystallographic analysis of VanG in complex with ADP are reported. The crystal belonged to space group P3 1 21, with unit-cell parameters a = b = 116.1, c = 177.2 Å, and contained two molecules in the asymmetric unit. A complete data set has been collected to 2.35 Å resolution from a single crystal under cryogenic conditions using synchrotron radiation

  12. 3D printing of natural organic materials by photochemistry

    Science.gov (United States)

    Da Silva Gonçalves, Joyce Laura; Valandro, Silvano Rodrigo; Wu, Hsiu-Fen; Lee, Yi-Hsiung; Mettra, Bastien; Monnereau, Cyrille; Schmitt Cavalheiro, Carla Cristina; Pawlicka, Agnieszka; Focsan, Monica; Lin, Chih-Lang; Baldeck, Patrice L.

    2016-03-01

    In previous works, we have used two-photon induced photochemistry to fabricate 3D microstructures based on proteins, anti-bodies, and enzymes for different types of bio-applications. Among them, we can cite collagen lines to guide the movement of living cells, peptide modified GFP biosensing pads to detect Gram positive bacteria, anti-body pads to determine the type of red blood cells, and trypsin columns in a microfluidic channel to obtain a real time biochemical micro-reactor. In this paper, we report for the first time on two-photon 3D microfabrication of DNA material. We also present our preliminary results on using a commercial 3D printer based on a video projector to polymerize slicing layers of gelatine-objects.

  13. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  14. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  15. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials.

    Science.gov (United States)

    Montalbano, Giorgia; Fiorilli, Sonia; Caneschi, Andrea; Vitale-Brovarone, Chiara

    2018-04-28

    Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.

  16. Expression, crystallization and preliminary X-ray crystallographic analysis of Xoo0352, d-alanine-d-alanine ligase A, from Xanthomonas oryzae pv. oryzae

    International Nuclear Information System (INIS)

    Doan, Thanh Thi Ngoc; Kim, Jin-Kwang; Kim, Hyesoon; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Lin-Woo

    2008-01-01

    Xoo0352, which encodes d-alanine-d-alanine ligase A (DdlA), from X. oryzae pv. oryzae was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of DdlA crystals was performed. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), which is one of the most devastating diseases of rice in most rice-growing countries. d-Alanine-d-alanine ligase A (DdlA), coded by the Xoo0352 gene, was expressed, purified and crystallized. DdlA is an enzyme that is involved in d-alanine metabolism and the biosynthesis of an essential bacterial peptidoglycan precursor, in which it catalyzes the formation of d-alanyl-d-alanine from two d-alanines, and is thus an attractive antibacterial drug target against Xoo. The DdlA crystals diffracted to 2.3 Å resolution and belonged to the primitive tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 83.0, c = 97.6 Å. There is one molecule in the asymmetric unit, with a corresponding V M of 1.88 Å 3 Da −1 and a solvent content of 34.6%. The initial structure was determined by molecular replacement using d-alanine-d-alanine ligase from Staphylococcus aureus as a template model

  17. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  18. Brain morphology imaging by 3D microscopy and fluorescent Nissl staining.

    Science.gov (United States)

    Lazutkin, A A; Komissarova, N V; Toptunov, D M; Anokhin, K V

    2013-07-01

    Modern optical methods (multiphoton and light-sheet fluorescent microscopy) allow 3D imaging of large specimens of the brain with cell resolution. It is therefore essential to refer the resultant 3D pictures of expression of transgene, protein, and other markers in the brain to the corresponding structures in the atlas. This implies counterstaining of specimens with morphological dyes. However, there are no methods for contrasting large samples of the brain without their preliminary slicing. We have developed a method for fluorescent Nissl staining of whole brain samples. 3D reconstructions of specimens of the hippocampus, olfactory bulbs, and cortex were created. The method can be used for morphological control and evaluation of the effects of various factors on the brain using 3D microscopy technique.

  19. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  20. 2D histomorphometric quantification from 3D computerized tomography

    International Nuclear Information System (INIS)

    Lima, Inaya; Oliveira, Luis Fernando de; Lopes, Ricardo T.; Jesus, Edgar Francisco O. de; Alves, Jose Marcos

    2002-01-01

    In the present article, preliminary results are presented showing the application of the tridimensional computerized microtomographic technique (3D-μCT) to bone tissue characterization, through histomorphometric quantification which are based on stereologic concepts. Two samples of human bone were correctly prepared to be submitted to the tomographic system. The system used to realize that process were a radiographic system with a microfocus X-ray tube. Through these three processes, acquisition, reconstruction and quantification, it was possible to get the good results and coherent to the literature data. From this point, it is intended to compare these results with the information due the conventional method, that is, conventional histomorphometry. (author)

  1. Novel real-time 3D radiological mapping solution for ALARA maximization, D and D assessments and radiological management

    Energy Technology Data Exchange (ETDEWEB)

    Dubart, Philippe; Hautot, Felix [AREVA Group, 1 route de la Noue, Gif sur Yvette (France); Morichi, Massimo; Abou-Khalil, Roger [AREVA Group, Tour AREVA-1, place Jean Millier, Paris (France)

    2015-07-01

    Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approach and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)

  2. Novel real-time 3D radiological mapping solution for ALARA maximization, D and D assessments and radiological management

    International Nuclear Information System (INIS)

    Dubart, Philippe; Hautot, Felix; Morichi, Massimo; Abou-Khalil, Roger

    2015-01-01

    Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approach and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)

  3. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.

    Science.gov (United States)

    De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D

    2013-02-01

    Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the

  4. i3Drive, a 3D interactive driving simulator.

    Science.gov (United States)

    Ambroz, Miha; Prebil, Ivan

    2010-01-01

    i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.

  5. VISIPLAN 3D ALARA planning and communication tool

    International Nuclear Information System (INIS)

    Vermeersch, F.

    2006-01-01

    Human operations are required in nuclear installation, during maintenance, outage, repair and decommissioning. This leads to the exposure of the worker to radiation. It is clear that these operations must be performed according to the ALARA principle (to reduce the dose As Low As Reasonably Achievable). The person responsible for planning the job needs to evaluate different scenarios based on the exposure of the worker. This involves the manipulation of a lot of information specific to the work place such as the geometry, materials, radiological and technical boundary conditions to assess the dose. A lot of communication between the ALARA stakeholders is needed during this pre-job study. A communication that can be cumbersome and tedious when based on written documents and paper plans. The use of 3D calculation and simulation tools provide a solution to this problem. They provide an excellent means to make the above mentioned process more efficient and effective by calculating and visualising the environment and the associated radiological risk. The VISIPLAN 3D ALARA planning tool is developed and designed by SCK-CEN as a dose assessment tool enabling the user to calculate the dose in a 3D environment for work scenarios. This software is very successful in the ALARA field. At present 22 companies in Europe use the VISIPLAN software in the field of dose assessment in maintenance and decommissioning. Recent developments and applications are discussed

  6. Diffusion approximation for modeling of 3-D radiation distributions

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.

    1985-01-01

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  7. Flooding Capability for River-based Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, Emerald [Idaho State Univ., Pocatello, ID (United States); Calhoun, Donna [Boise State Univ., ID (United States); Sampath, Ramprasad [Centroid Labs., Los Angeles, CA (United States); Anderson, S. Danielle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casteneda, Cody [Boise State Univ., ID (United States)

    2015-10-01

    This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.

  8. ADAM adaptation and mitigation strategies: supporting European climate policy. Deliverable D3 of work package M1 (code D-M1.3). ADAM 2-degree scenario for Europe - policies and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Wolfgang; Jochem, Eberhard; Barker, Terry [and others

    2009-07-31

    ADAM research identifies and appraises existing and new policy options that can contribute to different combinations of adaptation and mitigation strategies. These options address the demands a changing climate will place on protecting citizens and valuable ecosystems - i.e., adaptation - as well as addressing the necessity to restrain/control humankind's perturbation to global climate to a desirable level - i.e., mitigation. The work package Mitigation 1 (Ml) has the core objective to simulate mitigation options and their related costs for Europe until 2050 and 2100 respectively. The focus of this deliverable is on the period 2005 to 2050. The long-term period until 2100 is covered in the previous deliverable D2, applying the POLES model for this time horizon. The analysis constitutes basically a techno-economic analysis. Depending on the sector analyzed it is either directly combined with a policy analysis (e.g. in the transport sector, renewables sector) or the policy analysis is performed qualitatively as a subsequent and independent step after the techno-economic analysis is completed (e.g. in the residential and service sectors). The book includes the following chapters: scenarios and macroeconomic assumptions; methodological issues analyzing mitigation options; the integrated global energy model POLES and its projections for the reference and 2 deg C scenarios; forest and basic materials sector; residential sector in Europe; the service (tertiary) and the primary sectors in Europe; basic products and other manufacturing industry sectors; transport sectors in Europe; renewable sector in Europe; conversion sector in Europe; syntheses and sectoral analysis in Europe; macroeconomic impacts of climate policy in the EU; the effects of the financial crisis on baseline simulations with implications for climate policy modeling: an analysis using the global model E3MG 2008-2012; conclusions and policy recommendations.

  9. ADAM adaptation and mitigation strategies: supporting European climate policy. Deliverable D3 of work package M1 (code D-M1.3). ADAM 2-degree scenario for Europe - policies and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Wolfgang; Jochem, Eberhard; Barker, Terry (and others)

    2009-07-31

    ADAM research identifies and appraises existing and new policy options that can contribute to different combinations of adaptation and mitigation strategies. These options address the demands a changing climate will place on protecting citizens and valuable ecosystems - i.e., adaptation - as well as addressing the necessity to restrain/control humankind's perturbation to global climate to a desirable level - i.e., mitigation. The work package Mitigation 1 (Ml) has the core objective to simulate mitigation options and their related costs for Europe until 2050 and 2100 respectively. The focus of this deliverable is on the period 2005 to 2050. The long-term period until 2100 is covered in the previous deliverable D2, applying the POLES model for this time horizon. The analysis constitutes basically a techno-economic analysis. Depending on the sector analyzed it is either directly combined with a policy analysis (e.g. in the transport sector, renewables sector) or the policy analysis is performed qualitatively as a subsequent and independent step after the techno-economic analysis is completed (e.g. in the residential and service sectors). The book includes the following chapters: scenarios and macroeconomic assumptions; methodological issues analyzing mitigation options; the integrated global energy model POLES and its projections for the reference and 2 deg C scenarios; forest and basic materials sector; residential sector in Europe; the service (tertiary) and the primary sectors in Europe; basic products and other manufacturing industry sectors; transport sectors in Europe; renewable sector in Europe; conversion sector in Europe; syntheses and sectoral analysis in Europe; macroeconomic impacts of climate policy in the EU; the effects of the financial crisis on baseline simulations with implications for climate policy modeling: an analysis using the global model E3MG 2008-2012; conclusions and policy recommendations.

  10. Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)

    International Nuclear Information System (INIS)

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Fujii, Yukihiko; Sato, Mitsuya

    2011-01-01

    The purpose of this study was to evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution 'cranial nerve imaging', which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region. (author)

  11. [Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)].

    Science.gov (United States)

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko

    2011-10-01

    To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.

  12. Development of a Quasi-3D Multiscale Modeling Framework: Motivation, basic algorithm and preliminary results

    Directory of Open Access Journals (Sweden)

    Joon-Hee Jung

    2010-11-01

    Full Text Available A new framework for modeling the atmosphere, which we call the quasi-3D (Q3D multi-scale modeling framework (MMF, is developed with the objective of including cloud-scale three-dimensional effects in a GCM without necessarily using a global cloud-resolving model (CRM. It combines a GCM with a Q3D CRM that has the horizontal domain consisting of two perpendicular sets of channels, each of which contains a locally 3D grid-point array. For computing efficiency, the widths of the channels are chosen to be narrow. Thus, it is crucial to select a proper lateral boundary condition to realistically simulate the statistics of cloud and cloud-associated processes. Among the various possibilities, a periodic lateral boundary condition is chosen for the deviations from background fields that are obtained by interpolations from the GCM grid points. Since the deviations tend to vanish as the GCM grid size approaches that of the CRM, the whole system of the Q3D MMF can converge to a fully 3D global CRM. Consequently, the horizontal resolution of the GCM can be freely chosen depending on the objective of application, without changing the formulation of model physics. To evaluate the newly developed Q3D CRM in an efficient way, idealized experiments have been performed using a small horizontal domain. In these tests, the Q3D CRM uses only one pair of perpendicular channels with only two grid points across each channel. Comparing the simulation results with those of a fully 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important statistics of the 3D solutions, including the vertical distributions of cloud water and precipitants, vertical transports of potential temperature and water vapor, and the variances and covariances of dynamical variables. The main improvement from a corresponding 2D simulation appears in the surface fluxes and the vorticity transports that cause the mean wind to change. A comparison with a simulation using a coarse

  13. Preliminary Study for 3D Radon Distribution Modelling in the Room

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ChoongWie; Kim, HeeReyoung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Radon exists in the form of noble gas, which comes from decay of {sup 238}U, becoming stable {sup 206}Pb going through 4 alpha and 4 beta decays. If this process occurred in human body after inhalation, lung could be damaged by interaction with these radiations causing lung cancer. Most radon in indoor air comes from soil (85 - 97%) through crack of the wall but it also came from wall (2 - 5%) itself in home. Due to its hazardous and unpredictable characteristic, radon became one of the concerning nuclides in indoor air. Hence, the number of survey and research about radon has been increased. Although accurate radon measurement is important to evaluate health risk, it is hard to actually achieve because radon is affected by many conditions, where its concentration can vary easily. Moreover, radon concentration can vary according to the height because of density of radon in the spatial aspect. 3D distribution modelling in the room of radon with aerodynamic features and sources variations was carried out to find average and maximum radon concentration. 3D radon distribution in the room would be find through this computational analysis and it is thought to be possible to correct measured radon concentration with spatial variation to fit the height of nose where inhalation occur. The methodological concept for 3D modelling was set up to solve transport equation for radon behavior by using computational fluid dynamics (CFD) software such as FLUENT.

  14. Industrial Decision Support System with Assistance of 3D Game Engine

    OpenAIRE

    Zou, Ming

    2015-01-01

    Context. Industrial Decision Support System(DSS) traditionally relies on 2D approach to visualize the scenarios. For some abstract information, like chronological sequence of tasks or data trend, it provides a good visualization. For concrete information, such as location and spatial relationships, 2D visualizations are too abstract. Techniques from Game design, 3D modeling, virtual reality(VR) and animation provides many inspiration to develop a DSS tools for industrial applications. Objecti...

  15. Preliminary results of the seventh three-dimensional AER dynamic benchmark problem calculation. Solution with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Bencik, M.; Hadek, J.

    2011-01-01

    The paper gives a brief survey of the seventh three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAP5-3D at Nuclear Research Institute Rez. This benchmark was defined at the twentieth AER Symposium in Hanassari (Finland). It is focused on investigation of transient behaviour in a WWER-440 nuclear power plant. Its initiating event is opening of the main isolation valve and re-connection of the loop with its main circulation pump in operation. The WWER-440 plant is at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations were performed with the code DYN3D. Transient calculation was made with the system code RELAP5-3D. The two-group homogenized cross sections library HELGD05 created by HELIOS code was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the seventh AER dynamic benchmark purposes. The RELAP5-3D full core neutronic model was coupled with 49 core thermal-hydraulic channels and 8 reflector channels connected with the three-dimensional model of the reactor vessel. The detailed nodalization of reactor downcomer, lower and upper plenum was used. Mixing in lower and upper plenum was simulated. The first part of paper contains a brief characteristic of RELAP5-3D system code and a short description of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. (Authors)

  16. 3D Virtual Reality for Teaching Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  17. Conceptual design of D-3He FRC reactor 'ARTEMIS'

    International Nuclear Information System (INIS)

    Momota, H.; Ishida, A.; Kohzaki, Y.

    1991-07-01

    A comprehensive design study of the D- 3 He fueled field-reversed configuration (FRC) reactor 'ARTEMIS' is carried out for the purpose of proving its attractive characteristics and clarifying the critical issues for a commercial fusion reactor. The FRC burning plasma is stabilized and sustained in a steady equilibrium by means of a preferential trapping of D- 3 He fusion-produced energetic protons. A novel direct energy converter for 15MeV protons is also presented. On the bases of a consistent scenario of the fusion plasma production and simple engineering, a compact and simple reactor concept is presented. The design of the D- 3 He FRC power plant definitely offers the most attractive prospect for energy development. It is environmentally acceptable in view of radio-activity and fuel resources; and the estimated cost of electricity is low compared to a light water reactor. Critical issues concerning physics or engineering for the development of the D- 3 He FRC reactor are clarified. (author)

  18. Soft chitosan microbeads scaffold for 3D functional neuronal networks.

    Science.gov (United States)

    Tedesco, Maria Teresa; Di Lisa, Donatella; Massobrio, Paolo; Colistra, Nicolò; Pesce, Mattia; Catelani, Tiziano; Dellacasa, Elena; Raiteri, Roberto; Martinoia, Sergio; Pastorino, Laura

    2018-02-01

    The availability of 3D biomimetic in vitro neuronal networks of mammalian neurons represents a pivotal step for the development of brain-on-a-chip experimental models to study neuronal (dys)functions and particularly neuronal connectivity. The use of hydrogel-based scaffolds for 3D cell cultures has been extensively studied in the last years. However, limited work on biomimetic 3D neuronal cultures has been carried out to date. In this respect, here we investigated the use of a widely popular polysaccharide, chitosan (CHI), for the fabrication of a microbead based 3D scaffold to be coupled to primary neuronal cells. CHI microbeads were characterized by optical and atomic force microscopies. The cell/scaffold interaction was deeply characterized by transmission electron microscopy and by immunocytochemistry using confocal microscopy. Finally, a preliminary electrophysiological characterization by micro-electrode arrays was carried out. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of correlation in the 3d/sup n/ core on the resonance transition in Cu II

    International Nuclear Information System (INIS)

    Fischer, C.F.; Glass, R.

    1979-01-01

    A preliminary report is presented on the effect of correlation in the 3d/sup n/ core on the 3d 10 1 S → 3d 9 4p 1 P f value by use of the multiconfiguration (MC) Hartree-Fock procedure. A common orbital basis was used for correlation in the core, with virtual orbitals determined variationally for the initial state. Three different approximations were used: a single-configuration approximation for both initial and final state, a MC approximation for 3d 10 correlation in the initial state and a single configuration for the final state, and MC approximations for both initial and final states. Some preliminary f values for the 3d 10 1 S → 3d 9 4p 1 P transition are tabulated. Comparison of calculated with experimental values indicates that correlation in the 3d 9 core of the final state is needed to obtain the correct transition energy to bring the length and velocity forms into good agreement with themselves and experiment, and that the multiplet strength for the transition is not greatly affected by correlation. 1 table

  20. Comparison of 3D and 2D FSE T2-weighted MRI in the diagnosis of deep pelvic endometriosis: Preliminary results

    International Nuclear Information System (INIS)

    Bazot, M.; Stivalet, A.; Daraï, E.; Coudray, C.; Thomassin-Naggara, I.; Poncelet, E.

    2013-01-01

    Aim: To evaluate image quality and diagnostic accuracy of two- (2D) and three-dimensional (3D) T2-weighted magnetic resonance imaging (MRI) for the evaluation of deep infiltrating endometriosis (DIE). Materials and methods: One hundred and ten consecutive patients with suspicion of endometriosis were recruited at two institutions over a 5-month period. Twenty-three women underwent surgery, 18 had DIE at histology. Two readers independently evaluated 3D and 2D MRI for image quality and diagnosis of DIE. Descriptive analysis, chi-square test for categorical or nominal variables, McNemar test for comparison between 3D and 2D T2-weighted MRI, and weighted “statistics” for intra- and interobserver agreement were used for statistical analysis. Results: Both readers found that 3D yielded significantly lower image quality than 2D MRI (p < 0.0001). Acquisition time for 3D was significantly shorter than 2D MRI (p < 0.01). 3D offered similar accuracy to diagnose DIE compared to 2D MRI. For all locations of endometriosis, a high or variable intra-observer agreement was observed for reader 1 and 2, respectively. Conclusions: Despite a lower overall image quality, 3D provides significant time saving and similar accuracy than multiplanar 2D MRI in the diagnosis of specific DIE locations.

  1. A systematic study of BNL's 3D-Trench Electrode detectors

    International Nuclear Information System (INIS)

    Montalbano, A.; Bassignana, D.; Li, Z.; Liu, S.; Lynn, D.; Pellegrini, G.; Tsybychev, D.

    2014-01-01

    New types of silicon pixel detectors have been proposed because of the need for more radiation hard semiconductor devices for the high luminosity tracking detector upgrades at the Large Hadron Collider. A novel type of 3D Si pixel detectors is proposed, with each cell of the 3D-Trench Electrode pixel detector featuring a concentric trench electrode surrounding the central collecting column electrode. The pixel sensor is an array of those individual cells. Systematic 3D simulations using Silvacos TCAD programs have been carried out to study the characteristics of this novel 3D pixel design and to compare to the traditional 3D column electrode pixel design. The 3D simulations show a much lower depletion voltage and a more uniform electric field in the new 3D-Trench Electrode pixel detectors as compared to the traditional 3D column Electrode detectors. The first prototype 3D-Trench Electrode pixel detectors have been manufactured at the Centro Nacional De Microelectronica. Preliminary electrical measurements are discussed and charge collection efficiency measurements are presented

  2. Transient simulations in WWER-1000-comparison between DYN3D-ATHLET and DYN3D-RELAP5

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Kozmenkov, Y.; Mittag, S.; Rohde, U.; Weiss, F.P.

    2003-01-01

    Simulations of a real transient of an operating WWER-1000 power plant have been performed using DYN3D-ATHLET (Gru95) and DYN3D-RELAP5 (Koy01) code systems in the frame of activities aimed at a validation of the neutronic / thermal-hydraulic coupled codes. The transient initiated by a main coolant pump switching off, when three of the four main coolant pumps of the plant are in operation (scenario of the VALCO project) is chosen for the simulation. The same models of the plant (except the core nodalization) but two different libraries of macroscopic cross-sections have been used in compared calculations. Additionally, the compared code systems are based on the different / external and internal / coupling techniques. This paper contains a brief description of the coupled codes and the plant model as well as a comparison between the results from simulations (Authors)

  3. Context-Aware AAL Services through a 3D Sensor-Based Platform

    Directory of Open Access Journals (Sweden)

    Alessandro Leone

    2013-01-01

    Full Text Available The main goal of Ambient Assisted Living solutions is to provide assistive technologies and services in smart environments allowing elderly people to have high quality of life. Since 3D sensing technologies are increasingly investigated as monitoring solution able to outperform traditional approaches, in this work a noninvasive monitoring platform based on 3D sensors is presented providing a wide-range solution suitable in several assisted living scenarios. Detector nodes are managed by low-power embedded PCs in order to process 3D streams and extract postural features related to person’s activities. The feature level of details is tuned in accordance with the current context in order to save bandwidth and computational resources. The platform architecture is conceived as a modular system suitable to be integrated into third-party middleware to provide monitoring functionalities in several scenarios. The event detection capabilities were validated by using both synthetic and real datasets collected in controlled and real-home environments. Results show the soundness of the presented solution to adapt to different application requirements, by correctly detecting events related to four relevant AAL services.

  4. IPCC IS92 Emissions Scenarios (A, B, C, D, E, F) Dataset Version 1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change (IPCC) IS92 Emissions Scenarios (A, B, C, D, E, F) Dataset Version 1.1 consists of six global and regional greenhouse...

  5. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  6. Energy Efficiency Road Mapping in Three Future Scenarios for Lao PDR

    Directory of Open Access Journals (Sweden)

    Hajime Sasaki

    2013-09-01

    Full Text Available Climate change, pollution, and energy insecurity are among the greatest problems of our time. These problems are no longer issues in particular countries but international issues. Several framework conventions on these issues are now in place throughout the world, and developing countries are no exception. Energy efficiency is one of the important issues for developing countries. Lao PDR is one such country. This paper proposes a technology roadmap and policy recommendations for Lao PDR with consideration given to a wide range of economic and social impacts of prospective technologies. For the implementation of technology assessment in the formulation of an energy efficiency roadmap, we first elaborate the social and economic conditions of Lao PDR through preliminary research and field research, and then design three scenarios for a future Lao PDR. These three scenarios are as follows: 1. The "Poverty Reduction" scenario is for electrification rate improvement; 2. The "Industrial Creation" scenario is for stable domestic energy supply; and 3. The "GMS Integration" scenario is for the acquisition of foreign exchange by energy export.

  7. POLCA-T simulation of OECD/NRC BWR turbine trip benchmark exercise 3 best estimate scenario TT2 test and four extreme scenarios

    International Nuclear Information System (INIS)

    Panayotov, D.

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and the 3D neutron kinetics core model. Code validation plan includes the calculations of Peach Bottom end of cycle 2 turbine trip transients and low-flow stability tests. The paper describes the objectives, method, and results of analyses performed in the final phase of OECD/NRC Peach Bottom 2 Boiling Water Reactor Turbine Trip Benchmark. Brief overview of the code features, the method of simulation, the developed 3D core model and system input deck for Peach Bottom 2 are given. The paper presents the results of benchmark exercise 3 best estimate scenario: coupled 3D core neutron kinetics with system thermal-hydraulics analyses. Performed sensitivity studies cover the SCRAM initiation, carry-under, and decay power. Obtained results including total power, steam dome, core exit, lower and upper plenum, main steam line and turbine inlet pressures showed good agreement with measured plant data Thus the POLCA-T code capabilities for correct simulation of turbine trip transients were proved The performed calculations and obtained results for extreme cases demonstrate the POLCA-T code wide range capabilities to simulate transients when scram, steam bypass, and safety and relief valves are not activated. The code is able to handle such transients even when the reactor power and pressure reach values higher than 600 % of rated power, and 10.8 MPa. (authors)

  8. a Novel Approach for 3d Neighbourhood Analysis

    Science.gov (United States)

    Emamgholian, S.; Taleai, M.; Shojaei, D.

    2017-09-01

    Population growth and lack of land in urban areas have caused massive developments such as high rises and underground infrastructures. Land authorities in the international context recognizes 3D cadastres as a solution to efficiently manage these developments in complex cities. Although a 2D cadastre does not efficiently register these developments, it is currently being used in many jurisdictions for registering land and property information. Limitations in analysis and presentation are considered as examples of such limitations. 3D neighbourhood analysis by automatically finding 3D spaces has become an issue of major interest in recent years. Whereas the neighbourhood analysis has been in the focus of research, the idea of 3D neighbourhood analysis has rarely been addressed in 3 dimensional information systems (3D GIS) analysis. In this paper, a novel approach for 3D neighbourhood analysis has been proposed by recording spatial and descriptive information of the apartment units and easements. This approach uses the coordinates of the subject apartment unit to find the neighbour spaces. By considering a buffer around the edges of the unit, neighbour spaces are accurately detected. This method was implemented in ESRI ArcScene and three case studies were defined to test the efficiency of this approach. The results show that spaces are accurately detected in various complex scenarios. This approach can also be applied for other applications such as property management and disaster management in order to find the affected apartments around a defined space.

  9. Additive Manufacturing Techniques for the Reconstruction of 3D Fetal Faces

    Directory of Open Access Journals (Sweden)

    Domenico Speranza

    2017-01-01

    Full Text Available This paper deals with additive manufacturing techniques for the creation of 3D fetal face models starting from routine 3D ultrasound data. In particular, two distinct themes are addressed. First, a method for processing and building 3D models based on the use of medical image processing techniques is proposed. Second, the preliminary results of a questionnaire distributed to future parents consider the use of these reconstructions both from an emotional and an affective point of view. In particular, the study focuses on the enhancement of the perception of maternity or paternity and the improvement in the relationship between parents and physicians in case of fetal malformations, in particular facial or cleft lip diseases.

  10. 3D plasmonic nanostructures as building blocks for ultrasensitive Raman spectroscopy

    KAUST Repository

    Toma, Andrea; Chirumamilla, Manohar; Gopalakrishnan, Anisha; Das, Gobind; Proietti Zaccaria, Remo; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco De; Di Fabrizio, Enzo M.

    2014-01-01

    The fabrication of complex 3D plasmonic nanostructures opens new scenarios towards the realization of high electric field confinement and enhancement. We exploit the unique properties of these nanostructures for performing Raman spectroscopy in the single/few molecules detection limit. © 2014 OSA.

  11. Stereoscopic 3D video games and their effects on engagement

    Science.gov (United States)

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  12. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  13. Interchain coupling and 3D modeling of trans-polyacetylene

    International Nuclear Information System (INIS)

    Bronold, F.; Saxena, A.; Bishop, A.R.

    1992-01-01

    In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH) x -chains where the π-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment

  14. 3D virtual character reconstruction from projections: a NURBS-based approach

    Science.gov (United States)

    Triki, Olfa; Zaharia, Titus B.; Preteux, Francoise J.

    2004-05-01

    This work has been carried out within the framework of the industrial project, so-called TOON, supported by the French government. TOON aims at developing tools for automating the traditional 2D cartoon content production. This paper presents preliminary results of the TOON platform. The proposed methodology concerns the issues of 2D/3D reconstruction from a limited number of drawn projections, and 2D/3D manipulation/deformation/refinement of virtual characters. Specifically, we show that the NURBS-based modeling approach developed here offers a well-suited framework for generating deformable 3D virtual characters from incomplete 2D information. Furthermore, crucial functionalities such as animation and non-rigid deformation can be also efficiently handled and solved. Note that user interaction is enabled exclusively in 2D by achieving a multiview constraint specification method. This is fully consistent and compliant with the cartoon creator traditional practice and makes it possible to avoid the use of 3D modeling software packages which are generally complex to manipulate.

  15. A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey

    International Nuclear Information System (INIS)

    Finnema, Sjoerd J.; Seneca, Nicholas; Farde, Lars; Shchukin, Evgeny; Sovago, Judit; Gulyas, Balazs; Wikstroem, Hakan V.; Innis, Robert B.; Neumeyer, John L.; Halldin, Christer

    2005-01-01

    This study describes the preliminary positron emission tomography (PET) evaluation of a dopamine D 2 -like receptor agonist (R)-2- 11 CH 3 O-N-n-propylnorapomorphine ([ 11 C]MNPA), as a potential new radioligand for in vivo imaging of the high-affinity state of the dopamine D 2 receptor (D 2 R). MNPA is a selective D 2 -like receptor agonist with a high affinity (K i =0.17 nM). [ 11 C]MNPA was successfully synthesized by direct O-methylation of (R)-2-hydroxy-NPA using [ 11 C]methyl iodide and was evaluated in cynomolgus monkeys. This study included baseline PET experiments and a pretreatment study using unlabeled raclopride (1 mg/kg). High uptake of radioactivity was seen in regions known to contain high D 2 R, with a maximum striatum-to-cerebellum ratio of 2.23±0.21 at 78 min and a maximum thalamus-to-cerebellum ratio of 1.37±0.06 at 72 min. The pretreatment study demonstrated high specific binding to D 2 R by reducing the striatum-to-cerebellum ratio to 1.26 at 78 min. This preliminary study indicates that the dopamine agonist [ 11 C]MNPA has potential as an agonist radioligand for the D 2 -like receptor and has potential for examination of the high-affinity state of the D 2 R in human subjects and patients with neuropsychiatric disorders

  16. Collaborative Virtual 3D Environment for Internet-Accessible Physics Experiments

    Directory of Open Access Journals (Sweden)

    Bettina Scheucher

    2009-08-01

    Full Text Available Abstract—Immersive 3D worlds have increasingly raised the interest of researchers and practitioners for various learning and training settings over the last decade. These virtual worlds can provide multiple communication channels between users and improve presence and awareness in the learning process. Consequently virtual 3D environments facilitate collaborative learning and training scenarios. In this paper we focus on the integration of internet-accessible physics experiments (iLabs combined with the TEALsim 3D simulation toolkit in Project Wonderland, Sun's toolkit for creating collaborative 3D virtual worlds. Within such a collaborative environment these tools provide the opportunity for teachers and students to work together as avatars as they control actual equipment, visualize physical phenomenon generated by the experiment, and discuss the results. In particular we will outline the steps of integration, future goals, as well as the value of a collaboration space in Wonderland's virtual world.

  17. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies

    Directory of Open Access Journals (Sweden)

    Arumugam S

    2011-01-01

    Full Text Available Introduction: The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury Materials & Methods: Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain and Immunohistochemistry (S-100 staining.Results: The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Conclusion: Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any

  18. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies.

    Science.gov (United States)

    Arumugam, S; Manjunath, S; Senthilkumar, R; Rajendiran, S; Yoshioka, H; Mori, Y; Abraham, S

    2011-01-01

    The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP) is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury. Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain) and Immunohistochemistry (S-100 staining). The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any adverse reactions and upon confirmation of safety following completion of the

  19. Biochemical analysis and the preliminary crystallographic characterization of D-tagatose 3-epimerase from Rhodobacter sphaeroides.

    Science.gov (United States)

    Qi, Zhengliang; Zhu, Zhangliang; Wang, Jian-Wen; Li, Songtao; Guo, Qianqian; Xu, Panpan; Lu, Fuping; Qin, Hui-Min

    2017-11-09

    D-Tagatose 3-epimerase epimerizes D-fructose to yield D-psicose, which is a rare sugar that exists in small quantities in nature and is difficult to synthesize chemically. We aim to explore potential industrial biocatalysts for commercial-scale manufacture of this rare sugar. A D-tagatose 3-epimerase from Rhodobacter sphaeroides (RsDTE) has recently been identified as a D-tagatose 3-epimerase that can epimerize D-fructose to yield D-psicose with a high conversion rate. The purified RsDTE by Ni-affinity chromatography, ionic exchange chromatography and gel filtration forms a tetramer in solution. The maximal activity was in Tris-HCl buffer pH 8.5, and the optimal temperature was at 35 °C. The product, D-psicose, was confirmed using HPLC and NMR. Crystals of RsDTE were obtained using crystal kits and further refined under crystallization conditions such as 10% PEG 8000,0.1 M HEPES pH 7.5, and 8% ethylene glycol at 20 °C using the sitting-drop vapor diffusion method. The RsDTE homology model showed that it possessed the characteristic TIM-barrel fold. Four residues, Glu156, Asp189, Gln215 and Glu250, forms a hydrogen bond network with the active Mn(II) for the hydride transfer reaction. These residues may constitute the catalytic tetrad of RsDTE. The residues around O1, O2 and O3 of the substrates were conserved. However, the binding-site residues are different at O4, O5 and O6. Arg118 formed the unique hydrogen bond with O4 of D-fructose which indicates RsDTE's preference of D-fructose more than any other family enzymes. RsDTE possesses a different metal-binding site. Arg118, forming unique hydrogen bond with O4 of D-fructose, regulates the substrate recognition. The research on D-tagatose 3-epimerase or D-psicose 3-epimerase enzymes attracts enormous commercial interest and would be widely used for rare sugar production in the future.

  20. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios

    Directory of Open Access Journals (Sweden)

    Kovanci Gökhan

    2016-10-01

    Full Text Available The CELLmicrocosmos 4.2 PathwayIntegration (CmPI is a tool which provides hybriddimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies - Three.js, D3.js and PHP - as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  1. Cloning, purification, crystallization and preliminary X-ray studies of flagellar hook scaffolding protein FlgD from Pseudomonas aeruginosa PAO1

    International Nuclear Information System (INIS)

    Luo, Miao; Niu, Siqiang; Yin, Yibing; Huang, Ailong; Wang, Deqiang

    2009-01-01

    In order to better elucidate the functions of FlgD in flagellar hook biosynthesis, the three-dimensional structure of FlgD is being determined by X-ray crystallography. Here, the expression, purification, crystallization and preliminary crystallographic analysis of FlgD from P. aeruginosa are reported. FlgD regulates the assembly of the hook cap structure to prevent leakage of hook monomers into the medium and hook monomer polymerization and also plays a role in determination of the correct hook length, with the help of the FliK protein. In order to better elucidate the functions of FlgD in flagellar hook biosynthesis, the three-dimensional structure of FlgD is being determined by X-ray crystallography. Here, the expression, purification, crystallization and preliminary crystallographic analysis of FlgD from P. aeruginosa are reported. The crystal belonged to space group I222 and diffracted to a resolution of 2.5 Å, with unit-cell parameters a = 116.47, b = 118.71, c = 118.85 Å. The crystals are most likely to contain three molecules in the asymmetric unit, with a V M value of 2.73 Å 3 Da −1

  2. Coupled 3D neutronic and thermohydraulic calculations for a compact fuel element with disperse UMo fuel at FRM II

    International Nuclear Information System (INIS)

    Breitkreutz, H.; Roehrmoser, A.; Petry, W.

    2010-01-01

    The newly developed X 2 program system is intended to be used for high-detail 3D calculations on compact research reactor cores. Using this system, the efforts to calculate scenarios for a new fuel element for FRM II using disperse UMo (8wt% Mo, 50% enrichment) are continued. By now, a radial symmetric core model with averaged built-in components for the D 2 O tank is used. Two different scenarios are compared: The minimum fuel density of 7.5 g U/cm 3 and 8.0 g U/cm 3 with 60 days cycle length. In addition, two 'flux loss compensating' scenarios based on 8.0 g U/cm 3 with 10% higher power/longer reactor cycles are regarded. (author)

  3. 3D-Printed specimens as a valuable tool in anatomy education: A pilot study.

    Science.gov (United States)

    Garas, Monique; Vaccarezza, Mauro; Newland, George; McVay-Doornbusch, Kylie; Hasani, Jamila

    2018-06-06

    Three-dimensional (3D) printing is a modern technique of creating 3D-printed models that allows reproduction of human structures from MRI and CT scans via fusion of multiple layers of resin materials. To assess feasibility of this innovative resource as anatomy educational tool, we conducted a preliminary study on Curtin University undergraduate students to investigate the use of 3D models for anatomy learning as a main goal, to assess the effectiveness of different specimen types during the sessions and personally preferred anatomy learning tools among students as secondary aim. The study consisted of a pre-test, exposure to test (anatomical test) and post-test survey. During pre-test, all participants (both without prior experience and experienced groups) were given a brief introduction on laboratory safety and study procedure thus participants were exposed to 3D, wet and plastinated specimens of the heart, shoulder and thigh to identify the pinned structures (anatomical test). Then, participants were provided a post-test survey containing five questions. In total, 23 participants completed the anatomical test and post-test survey. A larger number of participants (85%) achieved right answers for 3D models compared to wet and plastinated materials, 74% of population selected 3D models as the most usable tool for identification of pinned structures and 45% chose 3D models as their preferred method of anatomy learning. This preliminary small-size study affirms the feasibility of 3D-printed models as a valuable asset in anatomy learning and shows their capability to be used adjacent to cadaveric materials and other widely used tools in anatomy education. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Scenarios for waste management involving innovative systems (ADS)

    International Nuclear Information System (INIS)

    Tommasi, J.; Bottollier-Curtet, H.; Massara, S.; Varaine, F.; Delpech, M.

    2001-01-01

    The global performance of reactor park scenarios based on innovative systems (Accelerator-Driven Systems, ADS) for transmutation is studied, based either on equilibrium recycling states or on high burn-up systems. The results of these first studies are preliminary but allow to assess the main parameters of the fuel cycle (inventories, mass balances, mass flows...), to evaluate the specific contributions of ADS on the main scenario parameters, and to compare subcritical systems to critical ones. (author)

  5. Robust hashing for 3D models

    Science.gov (United States)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  6. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    Science.gov (United States)

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  7. 3D Tensorial Elastodynamics for Isotropic Media on Vertically Deformed Meshes

    Science.gov (United States)

    Shragge, J. C.

    2017-12-01

    Solutions of the 3D elastodynamic wave equation are sometimes required in industrial and academic applications of elastic reverse-time migration (E-RTM) and full waveform inversion (E-FWI) that involve vertically deformed meshes. Examples include incorporating irregular free-surface topography and handling internal boundaries (e.g., water bottom) directly into the computational meshes. In 3D E-RTM and E-FWI applications, the number of forward modeling simulations can number in the tens of thousands (per iteration), which necessitates the development of stable, accurate and efficient 3D elastodynamics solvers. For topographic scenarios, most finite-difference solution approaches use a change-of-variable strategy that has a number of associated computational challenges, including difficulties in handling of the free-surface boundary condition. In this study, I follow a tensorial approach and use a generalized family of analytic transforms to develop a set of analytic equations for 3D elastodynamics that directly incorporates vertical grid deformations. Importantly, this analytic approach allows for the specification of an analytic free-surface boundary condition appropriate for vertically deformed meshes. These equations are both straightforward and efficient to solve using a velocity-stress formulation with finite-difference (MFD) operators implemented on a fully staggered grid. Moreover, I demonstrate that the use of mimetic finite difference (MFD) methods allows stable, accurate, and efficient numerical solutions to be simulated for typical topographic scenarios. Examples demonstrate that high-quality elastic wavefields can be generated for topographic surfaces exhibiting significant topographic relief.

  8. A NOVEL APPROACH FOR 3D NEIGHBOURHOOD ANALYSIS

    Directory of Open Access Journals (Sweden)

    S. Emamgholian

    2017-09-01

    Full Text Available Population growth and lack of land in urban areas have caused massive developments such as high rises and underground infrastructures. Land authorities in the international context recognizes 3D cadastres as a solution to efficiently manage these developments in complex cities. Although a 2D cadastre does not efficiently register these developments, it is currently being used in many jurisdictions for registering land and property information. Limitations in analysis and presentation are considered as examples of such limitations. 3D neighbourhood analysis by automatically finding 3D spaces has become an issue of major interest in recent years. Whereas the neighbourhood analysis has been in the focus of research, the idea of 3D neighbourhood analysis has rarely been addressed in 3 dimensional information systems (3D GIS analysis. In this paper, a novel approach for 3D neighbourhood analysis has been proposed by recording spatial and descriptive information of the apartment units and easements. This approach uses the coordinates of the subject apartment unit to find the neighbour spaces. By considering a buffer around the edges of the unit, neighbour spaces are accurately detected. This method was implemented in ESRI ArcScene and three case studies were defined to test the efficiency of this approach. The results show that spaces are accurately detected in various complex scenarios. This approach can also be applied for other applications such as property management and disaster management in order to find the affected apartments around a defined space.

  9. 3D Visualization Tools to Support Soil Management In Relation to Sustainable Agriculture and Ecosystem Services

    Science.gov (United States)

    Wang, Chen

    2017-04-01

    Visualization tools [1][2][6] have been used increasingly as part of information, consultation, and collaboration in relation to issues of global significance. Visualization techniques can be used in a variety of different settings, depending on their association with specific types of decision. Initially, they can be used to improve awareness of the local community and landscape, either individually or in groups [5]. They can also be used to communicate different aspects of change, such as digital soil mapping, ecosystem services and climate change [7][8]. A prototype 3D model was developed to present Tarland Catchment on the North East Scotland which includes 1:25000 soil map data and 1:50000 land capability for agriculture (LCA) data [4]. The model was used to identify issues arising between the growing interest soil monitoring and management, and the potential effects on existing soil characteristics. The online model was also created which can capture user/stakeholder comments they associate with soil features. In addition, people are located physically within the real-world bounds of the current soil management scenario, they can use Augmented Reality to see the scenario overlaid on their immediate surroundings. Models representing alternative soil use and management were used in the virtual landscape theatre (VLT) [3]with electronic voting designed to elicit public aspirations and concerns regarding future soil uses, and to develop scenarios driven by local input. Preliminary findings suggest positive audience responses to the relevance of the inclusion of soil data within a scene when considering questions regarding the impact of land-use change, such as woodland, agricultural land and open spaces. A future development is the use of the prototype virtual environment in a preference survey of scenarios of changes in land use, and in stakeholder consultations on such changes.END Rua, H. and Alvito, P. (2011) Living the past: 3D models, virtual reality and

  10. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    Science.gov (United States)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  11. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Los Alamos National Laboratory; Uddin, Rizwan [UNIV OF ILLINIOS

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  12. Magnetic Flux Conversion in the DIII-D Steady-State Hybrid Scenario

    Science.gov (United States)

    Taylor, N. Z.; Luce, T. C.; La Haye, R. J.; Petty, C. C.; Nazikian, R.

    2017-10-01

    The hybrid is a promising high confinement scenario for ITER. The broader current profile aids discharge sustainment by raising qmin > 1 thereby avoiding sawtooth-triggered 2/1 tearing modes. In DIII-D hybrid scenario discharges, the rate of poloidal magnetic energy consumption is more than the rate of energy flow from the poloidal field coils. This is evidence that there is a conversion of toroidal flux to poloidal flux, which may be responsible for the anomalous broadening of the current profile known as flux pumping. The rate of poloidal flux being provided and consumed was tracked with coil and kinetic flux states. During long stationary intervals (1.5 seconds) with constant stored magnetic energy, a significant flux state deficit rate >10 mV was observed. The inequality in the evolution of the flux states was observed in hybrids that were 100% non-inductive and with successful RMP ELM suppression. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC05-06OR23100.

  13. Simulation of groundwater flow and pumping scenarios for 1900–2050 near Mount Pleasant, South Carolina

    Science.gov (United States)

    Fine, Jason M.; Petkewich, Matthew D.; Campbell, Bruce G.

    2017-10-31

    Groundwater withdrawals from the Upper Cretaceous-age Middendorf aquifer in South Carolina have created a large, regional cone of depression in the potentiometric surface of the Middendorf aquifer in Charleston and Berkeley Counties, South Carolina. Groundwater-level declines of as much as 249 feet have been observed in wells over the past 125 years and are a result of groundwater use for public water supply, irrigation, and private industry. To address the concerns of users of the Middendorf aquifer, the U.S. Geological Survey, in cooperation with Mount Pleasant Waterworks (MPW), recalibrated an existing groundwater-flow model to incorporate additional groundwater-use and water-level data since 2008. This recalibration process consisted of a technique of parameter estimation that uses regularized inversion and employs “pilot points” for spatial hydraulic property characterization. The groundwater-flow system of the Coastal Plain physiographic province of South Carolina and parts of Georgia and North Carolina was simulated using the U.S. Geological Survey finite-difference computer code MODFLOW-2000.After the model recalibration, the following six predictive water-management scenarios were created to simulate potential changes in groundwater flow and groundwater-level conditions in the Mount Pleasant, South Carolina, area: Scenario 1—maximize MPW reverse-osmosis plant capacity by increasing groundwater withdrawals from the Middendorf aquifer from 3.9 million gallons per day (Mgal/d), which was the amount withdrawn in 2015, to 8.58 Mgal/d; Scenario 2—same as Scenario 1, but with the addition of a 0.5 Mgal/d supply well in the Middendorf aquifer near Moncks Corner, South Carolina; Scenario 3—same as Scenario 1, but with the addition of a 1.5 Mgal/d supply well in the Middendorf aquifer near Moncks Corner, South Carolina; Scenario 4—maximize MPW well capacity by increasing withdrawals from the Middendorf aquifer from 3.9 Mgal/d (in 2015) to 10.16 Mgal/d

  14. Purification, crystallization and preliminary X-ray diffraction studies of d-tagatose 3-epimerase from Pseudomonas cichorii

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hiromi; Yamada, Mitsugu [Molecular Structure Research Group, Information Technology Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Nishitani, Takeyori; Takada, Goro; Izumori, Ken [Department of Biochemistry and Food Science, Faculty of Agriculture and Rare Sugar Research Center, Kagawa University, Miki-cho, Kagawa 761-0795 (Japan); Kamitori, Shigehiro, E-mail: kamitori@med.kagawa-u.ac.jp [Molecular Structure Research Group, Information Technology Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan)

    2007-02-01

    Recombinant d-tagatose 3-epimerase from P. cichorii was purified and crystallized. Diffraction data were collected to 2.5 Å resolution. d-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of d-psicose has not been reported with epimerases other than P. cichorii D-TE and d-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 Å, β = 102.82°. Diffraction data were collected to 2.5 Å resolution. The asymmetric unit is expected to contain four molecules.

  15. Purification, crystallization and preliminary X-ray diffraction studies of d-tagatose 3-epimerase from Pseudomonas cichorii

    International Nuclear Information System (INIS)

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-01-01

    Recombinant d-tagatose 3-epimerase from P. cichorii was purified and crystallized. Diffraction data were collected to 2.5 Å resolution. d-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of d-psicose has not been reported with epimerases other than P. cichorii D-TE and d-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2 1 , with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 Å, β = 102.82°. Diffraction data were collected to 2.5 Å resolution. The asymmetric unit is expected to contain four molecules

  16. "Black Bone" MRI: a novel imaging technique for 3D printing.

    Science.gov (United States)

    Eley, Karen A; Watt-Smith, Stephen R; Golding, Stephen J

    2017-03-01

    Three-dimensionally printed anatomical models are rapidly becoming an integral part of pre-operative planning of complex surgical cases. We have previously reported the "Black Bone" MRI technique as a non-ionizing alternative to CT. Segmentation of bone becomes possible by minimizing soft tissue contrast to enhance the bone-soft tissue boundary. The objectives of this study were to ascertain the potential of utilizing this technique to produce three-dimensional (3D) printed models. "Black Bone" MRI acquired from adult volunteers and infants with craniosynostosis were 3D rendered and 3D printed. A custom phantom provided a surrogate marker of accuracy permitting comparison between direct measurements and 3D printed models created by segmenting both CT and "Black Bone" MRI data sets using two different software packages. "Black Bone" MRI was successfully utilized to produce 3D models of the craniofacial skeleton in both adults and an infant. Measurements of the cube phantom and 3D printed models demonstrated submillimetre discrepancy. In this novel preliminary study exploring the potential of 3D printing from "Black Bone" MRI data, the feasibility of producing anatomical 3D models has been demonstrated, thus offering a potential non-ionizing alterative to CT for the craniofacial skeleton.

  17. Research of the cost-benefit evaluation for reprocessing research and development and high-level radioactive waste disposal research and development. Establishing R and D scenarios and extracting their effects

    International Nuclear Information System (INIS)

    Sugihara, K; Miura, N; Arii, Y

    2004-02-01

    This report is intended to explain the outline of research in the FY 2003 on cost-benefit evaluation for Reprocessing R and D and High-Level Radioactive Waste Disposal R and D. We decided to apply the Method of Cost-Benefit Analysis, based on cost-benefit analysis for Fast Reactor cycle system R and D, to Reprocessing R and D and High-Level Radioactive Waste Disposal R and D, and to compare with the results of cost-benefit analysis for both the JNC R and D scenario and the other optional scenarios. In this year, we first thought out all R and D scenarios in the future for Reprocessing R and D and High-Level Radioactive Waste Disposal R and D, and rejected difficult scenarios technically and impossible scenarios socially. Finally, the reasonable R and D scenarios were established. Besides, we thought out the effects (merits) by carrying out the R and D, and separated out them from economical view, environmental view, view of nuclear non-proliferation and so on. (author)

  18. Spinal Cord Stimulation in Failed Back Surgery Syndrome: Effects on Posture and Gait—A Preliminary 3D Biomechanical Study

    Directory of Open Access Journals (Sweden)

    L. Brugliera

    2017-01-01

    Full Text Available We studied 8 patients with spinal cord stimulation (SCS devices which had been previously implanted to treat neuropathic chronic pain secondary to Failed Back Surgery Syndrome. The aim of our study was to investigate the effects of SCS on posture and gait by means of clinical scales (Short Form Health Survey-36, Visual Analogue Scale for pain, and Hamilton Depression Rating Scale and instrumented evaluation with 3D Gait Analysis using a stereophotogrammetric system. The latter was performed with the SCS device turned both OFF and ON. We recorded gait and posture using the Davis protocol and also trunk movement during flexion-extension on the sagittal plane, lateral bending on the frontal plane, and rotation on the transversal plane. During and 30 minutes after the stimulation, not only the clinical scales but also spatial-temporal gait parameters and trunk movements improved significantly. Improvement was not shown under stimulation-OFF conditions. Our preliminary data suggest that SCS has the potential to improve posture and gait and to provide a window of pain-free opportunity to optimize rehabilitation interventions.

  19. Scenario Development for Trgovska Gora Shallow Land Facility

    International Nuclear Information System (INIS)

    Skanata, D.; Medakovic, S.; Lokner, V.; Levanat, I.

    2002-01-01

    Safety assessments, either preliminary or final, consist of a qualitative and a quantitative part. The qualitative part of the assessment implies a selection of relevant scenarios to be analyzed, while the quantitative part of the assessment consists of their mathematical modeling. This work is dealing with the qualitative part of safety assessment concerning a specific radioactive waste disposal system, i.e., the shallow land facility situated on the macrolocation Trgovska gora. This article has as its purpose a brief presentation of the ISAM methodology application results (Improvement of Safety Assessment Methodologies for Near Surface Radioactive Waste Facilities;), a methodology developed within the framework of a project of the same name, organized by the IAEA. The above mentioned methodology is based on the development of the so-called FEP list (Features, Events, Process), on selection procedure of the FEP list, specifically regarding particular criteria defined in advance, and on application of systematic methods of selecting relevant scenarios (in this case the matrix of interactions method has been applied). The main aim and purpose of a methodology based on the analysis of FEPs (identification, classification, selection, construction of the matrix of interactions) consists of observing and documenting all the features, events and processes due to be taken into consideration while assessing safety of a particular radioactive waste disposal system. In this connection, by radioactive waste disposal system we mean a system consisting of radioactive waste and engineer features (barriers), geological environment within which the disposal site is located, surface-environment (soil, sediments, vegetation, etc.) and human population near the disposal site. The final step of the application of this methodology consists of generating the scenario using the matrix of interactions. So, for shallow land facility situated on the macrolocation Trgovska gora, applying

  20. Purification, crystallization and preliminary X-ray diffraction studies of D-tagatose 3-epimerase from Pseudomonas cichorii.

    Science.gov (United States)

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-02-01

    D-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of D-psicose has not been reported with epimerases other than P. cichorii D-TE and D-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 A, beta = 102.82 degrees . Diffraction data were collected to 2.5 A resolution. The asymmetric unit is expected to contain four molecules.

  1. Spent fuel pool thermal-hydraulic analysis using RELAP5-3D

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M. C.; Fernandes, G.H.N.; Costa, A.L.; Pereira, F.; Pereira, C., E-mail: marc5663@gmail.com, E-mail: ghnfernandes@pq.cnpq.br, E-mail: claubia@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In order to analyze the thermo-hydraulic behavior of spent fuel pools, and taking as reference a hypothetic PWR nuclear plant, a model of RELAP-3D for a spent fuel pool has been built. This model has been used to simulate a loss of coolant in SPF. This study focuses on the loss of coolant flow accident in spent fuel storage pool which is modelled by using RELAP5-3D code to observe the coolant level reduction and fuel uncovery because of decay heat generation of the spent fuel in the pool. The results have been compared with the available data. The developed model demonstrated that the RELAP5-3D is capable of reproduce the thermal behavior of SPF in a transient scenario. (author)

  2. 3D DOCUMENTATION OF 40 KILOMETERS OF HISTORICAL PORTICOES – THE CHALLENGE

    Directory of Open Access Journals (Sweden)

    F. Remondino

    2016-06-01

    Full Text Available In the last years the image-based pipeline for 3D reconstruction purposes has received large interest leading to fully automated methodologies able to process large image datasets and deliver 3D products with a level of detail and precision variable according to the applications. Different open issues still exist, in particular when dealing with the 3D surveying and modeling of large and complex scenarios, like historical porticoes. The paper presents an evaluation of various surveying methods for the geometric documentation of ca 40km of historical porticoes in Bologna (Italy. Finally, terrestrial photogrammetry was chosen as the most flexible and productive technique in order to deliver 3D results in form of colored point clouds or textured 3D meshes accessible on the web. The presented digital products are a complementary material for the final candidature of the porticoes as UNESCO WHS.

  3. Hybrid Detectors for Neutrons Combining Phenyl- Polysiloxanes with 3D Silicon Detectors

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Collazuol, Gianmaria; Carturan, Sara; Cinausero, Marco; Gramegna, Fabiana; Marchi, Tommaso; Dalla Betta, Gian-Franco; Mendicino, Roberto; Povoli, Marco; Boscardin, Maurizio; Giacomini, Gabriele; Ronchin, Sabina; Zorzi, Nicola

    2013-06-01

    We report on the initial results of a research project aimed at the development hybrid detectors for fast neutrons by combining a phenyl-polysiloxane-based converter with a 3D silicon detector. To this purpose, new 3D sensor structures have been designed, fabricated and electrically tested, showing low depletion voltage and good leakage current. Moreover, the radiation detection capability of 3D sensors was tested by measuring the signals recorded from alpha particles, gamma rays, and pulsed lasers. The converter has been poured into the 3D cavities with excellent coupling, as confirmed by cross-section SEM analyses. Preliminary tests with neutrons have been carried out on the first hybrid detector prototypes at the CN accelerator of INFN LNL. The device design and technology are discussed, along with the first results from the electrical and functional characterization. (authors)

  4. Archaeogeophysical tests in water saturated and under water scenarios at the Hydrogeosite Laboratory

    Science.gov (United States)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Perciante, Felice; Rizzo, Enzo

    2016-04-01

    year, now we would like to show the final results of the project where different scenarios were set up for GPR and ERT investigations. Severale phases were performed: buried objects were covered by different thickness of sediments and different soil water contents were defined. Moreover, geophysical measurements were acquired on an underwater scenario. The 2D and 3D acquisitions have allowed to identify the limits and the abilities of the GPR and resistivity measurements.

  5. 3D Segmentations of Neuronal Nuclei from Confocal Microscope Image Stacks

    Directory of Open Access Journals (Sweden)

    Antonio eLaTorre

    2013-12-01

    Full Text Available In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells. We have tested our algorithm in a real scenario --- the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

  6. Preliminary COM3D Analysis for H{sub 2} Combustion in the APR1400 Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung Seok; Kim, Jongtae; Kim, Sang-Baik; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to assure the containment integrity of APR1400, it is necessary to evaluate an overpressure buildup resulting from a propagation of hydrogen flame along the structure and wall in the containment during a severe accident using the COM3D. Korea Atomic Energy Research Institute (KAERI) established a numerical analysis system for evaluating an overpressure buildup owing to a hydrogen combustion in the containment of a nuclear power plant by importing COM3D from KIT in Germany. The COM3D has been currently used in the simulations of the combustions and explosions, together with the system of industrial risk mitigation of hydrogen and burnable gases in nuclear containment and auxiliary buildings. KAERI performed the hydrogen combustion analysis using the COM3D code with the initial hydrogen distribution calculated by the GASFLOW under assumption of 85% metal-water reaction in the reactor vessel. From the COM3D results, we can know that the pressure buildup was about 100 kPa because the flame speed was not increased above 1000 m/s and the pressure wave passed through the open spaces in the large containment.

  7. Insight on the anisotropic nature of the D'' layer through the analysis of SKS-SKKS splitting obtained via 3D spectral element modeling

    Science.gov (United States)

    Tesoniero, A.; Leng, K.; Long, M. D.; Nissen-Meyer, T.

    2017-12-01

    Constraining the nature of the anisotropy in the core-mantle boundary region is a key factor for properly predicting the flow of the lowermost mantle. The lack of seismic waves sampling this region and their uneven azimuthal distribution hamper a correct representation of mantle dynamics. We present preliminary results for a series of SKS-SKKS splitting analysis based on numerical forward synthetic tests in a realistic 3-D Earth model using the software AXISEM3D, a newly developed efficient hybrid spectral element method solver for 3-D structures. The anisotropic property of the computational domain in the bottom 300km of the Earth's mantle is fully described with a fourth-order elastic tensor with 21 independent coefficients. We tested a single crystal mineralogy of postperovskite with different orientations that are consistent with realistic mantle flow models and accounted for a wide coverage of azimuthal seismic raypaths. We take advantage of the computational efficiency of the method to achieve resolutions for seismic periods as low as 8s. Our preliminary results, based on forward full waveform modeling, represent a step forward for validating hypotheses for the anisotropy in the D'' layer derived by direct splitting measurements and ray-theoretical mineral physics based modeling tests. Our study also highlights the capability of AXISEM3D to handle high degrees of model complexity in full anisotropy and its potentials for future endeavours.

  8. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d` Aeronomie; Le Treut, H [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1998-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  9. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d`Aeronomie; Le Treut, H. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1997-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  10. Estimates of future climate based on SRES emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd; Sygna, Linda; Fuglestvedt, Jan S.; Berntsen, Terje

    2000-02-14

    The preliminary emission scenarios in the Special Report on Emission Scenario (SRES) developed by the Intergovernmental Panel on Climate Change (IPCC), will eventually replace the old IS92 scenarios. By running these scenarios in a simple climate model (SCM) we estimate future temperature increase between 1.7 {sup o}C and 2.8 {sup o}C from 1990 to to 2100. The global sea level rise over the same period is between 0.33 m and 0.45 m. Compared to the previous IPCC scenarios (IS92) the SRES scenarios generally results in changes in both development over time and level of emissions, concentrations, radiative forcing, and finally temperature change and sea level rise. The most striking difference between the IS92 scenarios and the SRES scenarios is the lower level of SO{sub 2} emissions. The range in CO{sub 2} emissions is also expected to be narrower in the new scenarios. The SRES scenarios result in a narrower range both for temperature change and sea level rise from 1990 to 2100 compared to the range estimated for the IS92 scenarios. (author)

  11. Development of RF Tools and Scenarios for ITER on JET

    International Nuclear Information System (INIS)

    Noterdaeme, J.M.; Bobkov, V.; Mantsinen, M.; Salmi, A.; Santala, M.; Rantamaki, K.; Ekedahl, A.; Eriksson, L.G.; Lamalle, P.U.; Lyssoivan, A.; Van Eester, A.D.; Mailloux, J.; Monakhov, I.; Sharapov, S.; Mayoral, M.L.; Meo, F.

    2005-01-01

    The improvement of lower hybrid (LH) coupling with local puffing of D 2 gas, which made operation at ITER relevant distances (10 cm) and with ELMs (edge localized modes) a reality, has been extended to ITER- like plasma shapes with higher triangularity. With ICRF(ion cyclotron resonance frequency), we developed 4 tools such as -1) localized direct electron heating using the He 3 mode conversion scenario for electron heat transport studies, -2) the production of He 4 ions with energies in the MeV range by 3 ω c acceleration of beam injected ions at 120 keV to investigate Alfven instabilities and test α diagnostics, -3) the stabilisation and destabilization of sawteeth and -4) ICRF as as a wall conditioning. Several ITER relevant scenarios were tested. The (He 3 )H minority heating scenario, considered for the non-activated start-up phase of ITER, produces at very low concentration energetic He 3 which heat the electrons indirectly. For n(He 3 )/n e > 2%, the scenario is transformed to a mode conversion scenario where the electrons are heated directly. The (D)H minority heating is not accessible as the concentration of C 6+ dominates the wave propagation and always leads to a mode conversion. The minority heating of T in D is very effective heating for ions and producing neutrons. New results were obtained in several areas of ICRF physics. Experimental evidence confirmed the theoretical prediction that, as the Larmor radius increases beyond 0.5 times the perpendicular wavelength of the wave, the second harmonic acceleration of the ions decreases to very small levels. An exotic fusion reaction (pT) must be taken into account when evaluating neutron rates. The contribution of fast particles accelerated by ICRF to the plasma rotation was clearly identified, but it is only part of an underlying, and not yet understood, co-current plasma rotation. Progress was made in the physics of ELMs while their effect on the ICRF coupling could be minimized with the conjugate

  12. Short-term impacts of air pollutants in Switzerland: Preliminary scenario calculations for selected Swiss energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Andreani-Aksoyoglu, S; Keller, J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In the frame of the comprehensive assessment of Swiss energy systems, air quality simulations were performed by using a 3-dimensional photo-chemical dispersion model. The objective is to investigate the impacts of pollutants in Switzerland for future options of Swiss energy systems. Four scenarios were investigated: Base Case: simulations with the projected emissions for the year 2030, Scenario 1) all nuclear power plants were replaced by oil-driven combined cycle plants (CCP), Scenarios 2 to 4) traffic emissions were reduced in whole Switzerland as well as in the cities and on the highways separately. Changes in the pollutant concentrations and depositions, and the possible short-term impacts are discussed on the basis of exceedences of critical levels for plants and limits given to protect the public health. (author) 2 figs., 7 refs.

  13. Preliminary Physics Summary: Measurement of D$^0$, D$^+$, D$^{*+}$ and D$_{\\rm s}^+$ production in pp collisions at $\\sqrt{s}= 5.02$ TeV with ALICE

    CERN Document Server

    2018-01-01

    The preliminary measurement of the production of prompt D$^0$, D$^+$, D$^{*+}$ and D$_{\\rm s}^+$ mesons in proton-proton collisions at $\\sqrt{s}= 5.02$ TeV with the ALICE detector at the LHC is reported. D mesons were reconstructed at mid-rapidity via their hadronic decay channels ${\\rm D}^0\\rightarrow {\\rm K}^-\\pi^+$, ${\\rm D}^+\\rightarrow {\\rm K}^-\\pi^+\\pi^+$, ${\\rm D}^{*+}\\rightarrow {\\rm D}^0\\pi^+$, ${\\rm D}_s^+\\rightarrow \\phi\\pi^+\\rightarrow {\\rm K}^+{\\rm K}^-\\pi^+$, and their charge conjugates. The production cross sections were measured in the transverse momentum interval $0< p_{\\rm T} <36$ GeV/$c$ for D$^0$, $1< p_{\\rm T} <36$ GeV/$c$ for D$^+$ and D$^{*+}$ and in $2 < p_{\\rm T} < 16$ GeV/$c$ for D$_{\\rm s}^+$ mesons. The measured $p_{\\rm T}$-differential cross sections are compared to the results at $\\sqrt{s} = 7$ TeV and to perturbative QCD calculations.

  14. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    OpenAIRE

    Pinar, A.; Wijnen, B.; Anzalone, G. C.; Havens, T. C.; Sanders, P. G.; Pearce, J. M.

    2015-01-01

    Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW) RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder cu...

  15. Long-term sequential monitoring of controlled graves representing common burial scenarios with ground penetrating radar: Years 2 and 3

    Science.gov (United States)

    Schultz, John J.; Walter, Brittany S.; Healy, Carrie

    2016-09-01

    Geophysical techniques such as ground-penetrating radar (GPR) have been successfully used for forensic searches to locate clandestine graves and physical evidence. However, additional controlled research is needed to fully understand the applicability of this technology when searching for clandestine graves in various environments, soil types, and for longer periods of time post-burial. The purpose of this study was to determine the applicability of GPR for detecting controlled graves in a Spodosol representing multiple burial scenarios for Years 2 and 3 of a three-year monitoring period. Objectives included determining how different burial scenarios are factors in producing a distinctive anomalous response; determining how different GPR imagery options (2D reflection profiles and horizontal time slices) can provide increased visibility of the burials; and comparing GPR imagery between 500 MHz and 250 MHz dominant frequency antennae. The research site contained a grid with eight graves representing common forensic burial scenarios in a Spodosol, a common soil type of Florida, with six graves containing a pig carcass (Sus scrofa). Burial scenarios with grave items (a deep grave with a layer of rocks over the carcass and a carcass wrapped in a tarpaulin) produced a more distinctive response with clearer target reflections over the duration of the monitoring period compared to naked carcasses. Months with increased precipitation were also found to produce clearer target reflections than drier months, particularly during Year 3 when many grave scenarios that were not previously visible became visible after increased seasonal rainfall. Overall, the 250 MHz dominant frequency antenna imagery was more favorable than the 500 MHz. While detection of a simulated grave may be difficult to detect over time, long term detection of a grave in a Spodosol may be possible if the disturbed spodic horizon is detected. Furthermore, while grave visibility increased with the 2D

  16. Striatal dopamine D2/3 receptor availability in treatment resistant depression.

    Directory of Open Access Journals (Sweden)

    Bart P de Kwaasteniet

    Full Text Available Several studies demonstrated improvement of depressive symptoms in treatment resistant depression (TRD after administering dopamine agonists which suggest abnormal dopaminergic neurotransmission in TRD. However, the role of dopaminergic signaling through measurement of striatal dopamine D(2/3 receptor (D2/3R binding has not been investigated in TRD subjects. We used [(123I]IBZM single photon emission computed tomography (SPECT to investigate striatal D2/3R binding in TRD. We included 6 severe TRD patients, 11 severe TRD patients on antipsychotics (TRD AP group and 15 matched healthy controls. Results showed no significant difference (p = 0.75 in striatal D2/3R availability was found between TRD patients and healthy controls. In the TRD AP group D2/3R availability was significantly decreased (reflecting occupancy of D2/3Rs by antipsychotics relative to TRD patients and healthy controls (p<0.001 but there were no differences in clinical symptoms between TRD AP and TRD patients. This preliminary study therefore does not provide evidence for large differences in D2/3 availability in severe TRD patients and suggests this TRD subgroup is not characterized by altered dopaminergic transmission. Atypical antipsychotics appear to have no clinical benefit in severe TRD patients who remain depressed, despite their strong occupancy of D2/3Rs.

  17. Tsunami Generation and Propagation by 3D deformable Landslides and Application to Scenarios

    Science.gov (United States)

    McFall, Brian C.; Fritz, Hermann M.

    2014-05-01

    Tsunamis generated by landslides and volcano flank collapse account for some of the most catastrophic natural disasters recorded and can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1

  18. Open Scenario Study, Phase I. Volume 3. Questionnaire Response

    Science.gov (United States)

    2008-03-01

    from PA&E Others (Please list below) Comment: MDA Scenario Books (a further detail drill-down from the MSFDs to support engineering level modeling) 9...Other 3 X Other 4 X Other 5 X Comments: 1. Polictial, Economic, Cultural, and Sociological Data 2. Geospatial and Enviromental

  19. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  20. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  1. 3D electrostatic actuator fabricated by non-ablative femtosecond laser exposure and chemical etching

    Directory of Open Access Journals (Sweden)

    Yang Tao

    2015-01-01

    Full Text Available We demonstrate the novel design of an electrostatic micro-actuator based on monolithic three-dimensional (3D shapes fabricated by non-ablative femtosecond laser exposure combined with chemical etching. Further, we present a single-scan stacking approach exploited in the fabrication of the 3D actuator to create crack-free, highcontrast, high fidelity and integrated micro-structures. Influential parameters: energy per pulse, polarization, scanning spacing and stacking directionwere systematically studied to predict and control the etching rate of 3D planes.Finally, we report the characterization of the actuator and its potential application in optomechanics to show a complete scenario of femtosecond laser machined integrated 3D micro-systems incorporating multiple functionalities.

  2. The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry

    International Nuclear Information System (INIS)

    Followill, D S; Molineu, H A; Lafratta, R; Ibbott, G S

    2017-01-01

    The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H and N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program. (paper)

  3. Water use implications of biofuel scenarios

    Science.gov (United States)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  4. Full Waveform Analysis for Long-Range 3D Imaging Laser Radar

    Directory of Open Access Journals (Sweden)

    Wallace AndrewM

    2010-01-01

    Full Text Available The new generation of 3D imaging systems based on laser radar (ladar offers significant advantages in defense and security applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent materials (e.g., windows and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon counting technique.

  5. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  6. A recipe for consistent 3D management of velocity data and time-depth conversion using Vel-IO 3D

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-04-01

    3D geological model production and related basin analyses need large and consistent seismic dataset and hopefully well logs to support correlation and calibration; the workflow and tools used to manage and integrate different type of data control the soundness of the final 3D model. Even though seismic interpretation is a basic early step in such workflow, the most critical step to obtain a comprehensive 3D model useful for further analyses is represented by the construction of an effective 3D velocity model and a well constrained time-depth conversion. We present a complex workflow that includes comprehensive management of large seismic dataset and velocity data, the construction of a 3D instantaneous multilayer-cake velocity model, the time-depth conversion of highly heterogeneous geological framework, including both depositional and structural complexities. The core of the workflow is the construction of the 3D velocity model using Vel-IO 3D tool (Maesano and D'Ambrogi, 2017; https://github.com/framae80/Vel-IO3D) that is composed by the following three scripts, written in Python 2.7.11 under ArcGIS ArcPy environment: i) the 3D instantaneous velocity model builder creates a preliminary 3D instantaneous velocity model using key horizons in time domain and velocity data obtained from the analysis of well and pseudo-well logs. The script applies spatial interpolation to the velocity parameters and calculates the value of depth of each point on each horizon bounding the layer-cake velocity model. ii) the velocity model optimizer improves the consistency of the velocity model by adding new velocity data indirectly derived from measured depths, thus reducing the geometrical uncertainties in the areas located far from the original velocity data. iii) the time-depth converter runs the time-depth conversion of any object located inside the 3D velocity model The Vel-IO 3D tool allows one to create 3D geological models consistent with the primary geological constraints (e

  7. JET ({sup 3}He)-D scenarios relying on RF heating: survey of selected recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, D; Lerche, E; Andrew, Y; Biewer, T M; Casati, A; Crombe, K; De la Luna, E; Ericsson, G; Felton, R; Giacomelli, L; Giroud, C; Hawkes, N; Hellesen, C; Hjalmarsson, A; Joffrin, E; Kaellne, J; Kiptily, V; Lomas, P; Mantica, P; Marinoni, A [JET-EFDA Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)] (and others)

    2009-04-15

    Recent JET experiments have been devoted to the study of ({sup 3}He)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[{sup 3}He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfven cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[{sup 3}He] < 10%) favors minority heating while for X[{sup 3}He] >> 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[{sup 3}He] ({approx}18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in ({sup 3}He)-D plasmas are fairly narrow-giving rise to localized heat sources-the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of

  8. A multimodal 3D framework for fire characteristics estimation

    Science.gov (United States)

    Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.

    2018-02-01

    In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.

  9. Determination of vitamin D3, vitamin D2 and their 25-hydroxy metabolites in porcine liver using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Travis, B.D.; Holmes, R.P.

    1986-01-01

    A method has been developed for the determination of vitamin D 3 , vitamin D 2 and their corresponding 25-hydroxy metabolites in porcine liver. The vitamins and metabolites were estimated by extracting the non-saponifiable lipids from the saponifiable lipids from the samples. This was followed by purification and separation of the vitamin D 2 and vitamin D 3 from their 25-hydroxy metabolites using a 3 ml Bond Elut SCX column that was impregnated with silver nitrate. The two fractions were further purified on a Resolve cyanopropyl HPLC column. This column does not separate vitamin D 2 and vitamin D 3 but will separate 25-hydroxyvitamin D 2 from 25-hydroxyvitamin D 2 . Quantitation used Nova Pak C-18 and Resolve C-18 HPLC columns in series, measuring the absorbance at 254 nm. This gave baseline separation of vitamin D 2 and vitamin D 3 . Recoveries were determined by adding 3 H-vitamin D 3 and 3 H-25-hydroxyvitamin D 3 before saponification and assuming similar recoveries for the vitamin D 2 and 25-hydroxyvitamin D 2 . The method was found to be reproducible when a sample was minced and subdivided. The range of vitamin D 3 in liver was 5.2 to 14.0 ng/g. Vitamin D 2 , 25-hydroxyvitamin D 2 were not detectable. Preliminary results indicate the method may also be used with muscle, kidney and adipose, with adipose having a much higher level of vitamin D 3 than liver

  10. Improving automated 3D reconstruction methods via vision metrology

    Science.gov (United States)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  11. Results on semileptonic D0 and D/sub s/ decays and evidence for non-D/bar D/ decays of the /psi/ (3770)

    International Nuclear Information System (INIS)

    Schindler, R.H.

    1988-12-01

    This paper discusses the following topics: Observation of Cabibbo suppressed semileptonic D 0 decays; Search for D/sub s/ semileptonic decays; and Preliminary evidence for non-D/bar D/ decays of the /psi/ (3770). 4 refs., 3 figs., 2 tabs

  12. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  13. Selection of best entrepreneurship practices in relation to the emerging 3D internet

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Flåten, Bjørn-Tore

    This report focuses on entrepreneurship in relation to the 3D internet in general (aka virtual worlds, virtual environments, etc.) and the selection of best practices specifically. In preparing this report, we focused primarily on the Nordic countries and the USA and on empirically-based research...... articles. We faced three major challenges when going through the scientific research literature: 1) the lack of and fragmentation of knowledge due to the relative infancy of the 3D internet field and its interdisciplinary nature across many research fields, 2) the fluid definitions of terms regarding the 3...... of entrepreneurship in relation to the emergence of virtual worlds / 3D internet, 3) the definitions and review of literature on entrepreneurship, 4) selection of best entrepreneurial practices, and 5) discussion and preliminary conclusions....

  14. Multi-modal Virtual Scenario Enhances Neurofeedback Learning

    Directory of Open Access Journals (Sweden)

    Avihay Cohen

    2016-08-01

    Full Text Available In the past decade neurofeedback has become the focus of a growing body of research. With real-time fMRI enabling on-line monitoring of emotion related areas such as the amygdala, many have begun testing its therapeutic benefits. However most existing neurofeedback procedures still use monotonic uni-modal interfaces, thus possibly limiting user engagement and weakening learning efficiency. The current study tested a novel multi-sensory neurofeedback animated scenario aimed at enhancing user experience and improving learning. We examined whether relative to a simple uni-modal 2D interface, learning via an interface of complex multi-modal 3D scenario will result in improved neurofeedback learning. As a neural-probe, we used the recently developed fMRI-inspired EEG model of amygdala activity (amygdala-EEG finger print; amygdala-EFP, enabling low-cost and mobile limbic neurofeedback training. Amygdala-EFP was reflected in the animated scenario by the unrest level of a hospital waiting-room in which virtual characters become impatient, approach the admission-desk and complain loudly. Successful down-regulation was reflected as an ease in the room unrest-level. We tested whether relative to a standard uni-modal 2D graphic thermometer interface, this animated scenario could facilitate more effective learning and improve the training experience. Thirty participants underwent two separated neurofeedback sessions (one-week apart practicing down-regulation of the amygdala-EFP signal. In the first session, half trained via the animated scenario and half via a thermometer interface. Learning efficiency was tested by three parameters: (a effect-size of the change in amygdala-EFP following training, (b sustainability of the learned down-regulation in the absence of online feedback, and (c transferability to an unfamiliar context. Comparing amygdala-EFP signal amplitude between the last and the first neurofeedback trials revealed that the animated scenario

  15. High Temperature Test Facility Preliminary RELAP5-3D Input Model Description

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.

  16. An inexpensive underwater mine countermeasures simulator with real-time 3D after action review

    Directory of Open Access Journals (Sweden)

    Robert Stone

    2016-10-01

    Full Text Available This paper presents the results of a concept capability demonstration pilot study, the aim of which was to investigate how inexpensive gaming software and hardware technologies could be exploited in the development and evaluation of a simulator prototype for training Royal Navy mine clearance divers, specifically focusing on the detection and accurate reporting of the location and condition of underwater ordnance. The simulator was constructed using the Blender open source 3D modelling toolkit and game engine, and featured not only an interactive 3D editor for underwater scenario generation by instructors, but also a real-time, 3D After Action Review (AAR system for formative assessment and feedback. The simulated scenarios and AAR architecture were based on early human factors observations and briefings conducted at the UK's Defence Diving School (DDS, an organisation that provides basic military diving training for all Royal Navy and Army (Royal Engineers divers. An experimental pilot study was undertaken to determine whether or not basic navigational and mine detection components of diver performance could be improved as a result of exposing participants to the AAR system, delivered between simulated diving scenarios. The results suggest that the provision of AAR was accompanied by significant performance improvements in the positive identification of simulated underwater ordnance (in contrast to non-ordnance objects and on participants' description of their location, their immediate in-water or seabed context and their structural condition. Only marginal improvements were found with participants' navigational performance in terms of their deviation accuracies from a pre-programmed expert search path. Overall, this project contributes to the growing corpus of evidence supporting the development of simulators that demonstrate the value of exploiting open source gaming software and the significance of adopting established games design

  17. Probabilistic construction of inflow scenarios at a reservoir; Construction probabiliste de scenarios d'apports a un reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Seidou, O.; Robert, B.; Marche, C.; Rousselle, J. [Ecole Polytechnique de Montreal, Departement des Genies Civil, Geologique et des Mines, Montreal, PQ (Canada); Lefebvre, M. [Ecole Polytechnique de Montreal, Departement de Mathematiques et de Genie Industriel, Montreal, PQ (Canada)

    2004-02-01

    Development of risk indicators to aid in decisions affecting the operation of hydric systems is described. The significant part of the risk affecting hydric systems is the uncertainty surrounding future inflows. A method to construct inflow scenarios starting from an arbitrary date 'y' of the year is developed using a Markovian process which also has been used to model short-term uncertainty in stream flow. The text is divided in five parts: (1) methodology, (2) terminology, (3) theory, (4) application, and (5) results. The scenarios are built to reproduce the statistical behaviour of the river or reservoir and have the shape of an event tree whose structure is defined by the user before application of the method. Application of the method is illustrated by two examples, one involving the Harricana River, the other the Cabonga Reservoir, both situated in the province of Quebec. 11 refs., 4 tabs., 4 figs.

  18. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  19. The PRISM3D paleoenvironmental reconstruction

    Science.gov (United States)

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  20. Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.

    Science.gov (United States)

    Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael

    2017-08-22

    We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.

  1. 3D cinematic rendering of the calvarium, maxillofacial structures, and skull base: preliminary observations.

    Science.gov (United States)

    Rowe, Steven P; Zinreich, S James; Fishman, Elliot K

    2018-06-01

    Three-dimensional (3D) visualizations of volumetric data from CT have gained widespread clinical acceptance and are an important method for evaluating complex anatomy and pathology. Recently, cinematic rendering (CR), a new 3D visualization methodology, has become available. CR utilizes a lighting model that allows for the production of photorealistic images from isotropic voxel data. Given how new this technique is, studies to evaluate its clinical utility and any potential advantages or disadvantages relative to other 3D methods such as volume rendering have yet to be published. In this pictorial review, we provide examples of normal calvarial, maxillofacial, and skull base anatomy and pathological conditions that highlight the potential for CR images to aid in patient evaluation and treatment planning. The highly detailed images and nuanced shadowing that are intrinsic to CR are well suited to the display of the complex anatomy in this region of the body. We look forward to studies with CR that will ascertain the ultimate value of this methodology to evaluate calvarium, maxillofacial, and skull base morphology as well as other complex anatomic structures.

  2. An overview of alternative fossil fuel price and carbon regulation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2

  3. The GEO-3 Scenarios 2002-2032. Quantification and Analysis of Environmental Impacts

    International Nuclear Information System (INIS)

    Bakkes, J.; Potting, J.; Kemp-Benedict, E.; Raskin, P.; Masui, T.; Rana, A.; Nellemann, C.; Rothman, D.

    2004-01-01

    The four contrasting visions of the world's next three decades as presented in the third Global Environment Outlook (GEO-3) have many implications for policy - from hunger to climate change and from freshwater issues to biodiversity. The four scenarios analysed are Markets First, Policy First, Security First, Sustainability First. Presenting a deeper analysis than the original GEO-3 report, this Technical Report quantifies the impacts of the scenarios for all 19 GEO 'sub-regions', such as Eastern Africa and Central Europe. Regional impacts are discussed in the context of sustainable development. The report summary compares the impacts of the four scenarios across regions - and for the world as a whole - in the light of internationally agreed targets including those in the Millennium Declaration where applicable. It provides an account of the analytical methods, key assumptions, models and other tools, along with the approaches used in the analyses. Based on the methods and results, the report looks back on the process of producing the forward-looking analysis for GEO-3. Were all analytical centres on the same track? Did the approach adopted for GEO-3 contribute to the overall GEO objective of strengthening global-regional involvement and linkages?

  4. 3D Integration for Wireless Multimedia

    Science.gov (United States)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  5. Refined 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  6. Registration of 3D FMT and CT Images of Mouse via Affine Transformation using Sequential Monte Carlo

    International Nuclear Information System (INIS)

    Xia Zheng; Zhou Xiaobo; Wong, Stephen T. C.; Sun Youxian

    2007-01-01

    It is difficult to directly co-register the 3D FMT (Fluorescence Molecular Tomography) image of a small tumor in a mouse whose maximal diameter is only a few mm with a larger CT image of the entire animal that spans about ten cm. This paper proposes a new method to register 2D flat and 3D CT image first to facilitate the registration between small 3D FMT images and large CT images. A novel algorithm based on SMC (Sequential Monte Carlo) incorporated with least square operation for the registration between the 2D flat and 3D CT images is introduced and validated with simulated images and real images of mice. The visualization of the preliminary alignment of the 3D FMT and CT image through 2D registration shows promising results

  7. Characteristics of D-3He fueled frc reactor: ARTEMIS-L

    International Nuclear Information System (INIS)

    Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Onozuka, M.; Ohnishi, M.; Uenosono, C.

    1993-11-01

    The paper introduces briefly the scenario and discuss the attractive characteristics of D-3He fueled commercial fusion reactor ARTEMIS-L. By using favorable characteristics of a field-reversed configuration, the fusion plasma of ARTEMIS-L is compact and its beta-value is extremely high. One find consequently a possibility of constructing an economical fusion power power plant on this prospect. The life of the structural materials is sound during the full reactor life (30 years) and the safety of the reactor is intrinsic to D-3He fuels. The amount of disposed materials is rather small and the level of these intruder dose is so low that the plant appears to be acceptable in view of the environment. (author)

  8. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  9. Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Chudzynski, Joy; Mooney, Larissa J; Rawson, Richard A; Dolezal, Brett A; Cooper, Christopher B; Brown, Amira K; Mandelkern, Mark A; London, Edythe D

    2016-05-01

    Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BPND)) in patients with Parkinson's disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1 h supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [(18)F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BPND. At baseline, striatal D2/D3 BPND did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BPND, whereas those in the education group did not. There were no changes in D2/D3 BPND in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence.

  10. [Prosthetic rehabilitation of patients with parodontitis based upon the use of 3D-technologies--clinical case example].

    Science.gov (United States)

    Riakhovskiĭ, A N

    2011-01-01

    Clinical case of prosthetic rehabilitation of patient (female) with generalized parodontitis complicated by defects and deformations of dentitions was offered. Using 3D-technologies position of teeth was corrected with the help of a series of temporary transparent splints-modifiers with subsequent guy splintage and esthetic 3D-planning of front teeth forms. Teeth forms correction was made by composite using preliminary prepared templet.

  11. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  12. Natural and Enhanced Attenuation of Chlorinated Solvents Using RT3D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian D.; Truex, Michael J.; Clement, T P.

    2006-07-25

    RT3D (Reactive Transport in 3-Dimensions) is a reactive transport code that can be applied to model solute fate and transport for many different purposes. This document specifically addresses application of RT3D for modeling related to evaluation and implementation of Monitored Natural Attenuation (MNA). Selection of MNA as a remedy requires an evaluation process to demonstrate that MNA will meet the remediation goals. The U.S. EPA, through the Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4?17P, provides the regulatory context for the evaluation and implementation of MNA. In a complementary fashion, the context for using fate and transport modeling as part of MNA evaluation is described in the EPA?s technical protocol for chlorinated solvent MNA, the Scenarios Evaluation Tool for Chlorinated Solvent MNA, and in this document. The intent of this document is to describe (1) the context for applying RT3D for chlorinated solvent MNA and (2) the attenuation processes represented in RT3D, (3) dechlorination reactions that may occur, and (4) the general approach for using RT3D reaction modules (including a summary of the RT3D reaction modules that are available) to model fate and transport of chlorinated solvents as part of MNA or for combinations of MNA and selected types of active remediation.

  13. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  14. Preliminary evaluation of 3D TOF MRA fly-around advantages in the diagnosis of internal carotid artery aneurysms

    International Nuclear Information System (INIS)

    Zhu Yusen; Zhang Lina; Xu Ke; Li Songbai; Huang Yanling; Sun Wenge; Jin Anyu; Qi Xixun; Li Yanliang

    2004-01-01

    Objective: To assess the advantages and the clinical application value of 3D TOF MR angiography fly-around in diagnosing internal carotid artery aneurysms in comparison with multi-slice helical CT three dimensional angiography (MS 3D-CTA) and digital subtraction angiography (DSA). Methods: Eighteen patients with clinical suspected internal carotid artery aneurysms were involved in the study. There were 4 males and 14 females, and their age ranged from 17 to 76 years. 14 patients were with subarachnoid hemorrhage and 4 patients with oculomotor nerve palsy. All these patients underwent 3D TOF MRA and MS 3D-CTA, and 17 patients underwent DSA. All of them accepted operation treatment. 3D TOF MRA was performed with Toshiba 1.5 T MRI system and the parameters of 3D-TOF sequence were: TR 30 ms, TE 6.8 ms, field of view 17 cm x 19 cm, matrix 160 x 256, slab thickness 50-60 mm, section thickness 1.2 mm, flip angle 20 degree. Row data of MS 3D-CTA was acquired by Multi-slice helical CT-Aquilion (Toshiba). The scanning parameters were: image slice thickness 1.0 mm, scan speed 0.5 s/r, helical pitch 3.5, delay time 15-18 sec. Nonionic contrast agent was injected intravenously (2.0 ml/kg) at the speed of 4.0-5.0 ml/s using a power injector. Source images of 3D TOF MRA and MS 3D-CTA were processed into MIP and fly-around using a workstation SGI-O2, with the post-processing software Alatoview (Ver: 1.42). Conventional four-vessel digital subtraction angiography was performed with Siemens Multi-Start OT. Results: 22 aneurysms were detected by both 3D TOF MRA and MS 3D-CTA (1 ACA aneurysm, 3 ACoMA aneurysms, 1 left MCA aneurysm, 2 ICA-cavernous aneurysms, 3 left ICA-PCoM aneurysms, 8 right ICA-PCoM aneurysms, 1 left ICA-AChA aneurysms, 2 right ICA-AChA aneurysms, and 1 superior pituitary artery aneurysm). Among those aneurysms, one was not detected by DSA, and another aneurysm's neck was not clear on the image of DSA. 1 right ICA-PCoM aneurysm was surgically treated according to 3D

  15. Validation of CATHARE 3D code against UPTF TRAM C3 transients

    International Nuclear Information System (INIS)

    Glantz, Tony; Freitas, Roberto

    2007-01-01

    Within the nuclear reactor safety analysis, one of the events that could potentially lead to a recriticality accident in case of a Small Break LOCA (SBLOCA) in a pressurized water reactor (PWR) is a boron dilution scenario followed by a coolant mixing transient. Some UPTF experiments can be interpreted as generic boron dilution experiments. In fact, the UPTF experiments were originally designed to conduct separate effects studies focused on multi-dimensional thermal hydraulic phenomena. But, in the case of experimental program TRAM, some studies are realized on the boron mixing: tests C3. Some of these tests have been used for the validation and assessment of the 3D module of CATHARE code. Results are very satisfying; CATHARE 3D code is able to reproduce correctly the main features of the UPTF TRAM C3 tests, the temperature mixing in the cold leg, the formation of a strong stratification in the upper downcomer, the perfect mixing temperature in the lower downcomer and the strong stratification in the lower plenum. These results are also compared with the CFX-5 and TRIO-U codes results on these tests. (author)

  16. R and D Requirements, RF Gun Mode Studies, FEL-2 Steady-State Studies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary Layout Option Investigation

    International Nuclear Information System (INIS)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI (at) Elettra Technical Optimization study. It describes proposed RandD activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac

  17. 3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix

    Science.gov (United States)

    Vargas Sanchez, Andrea Fernanda

    Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.

  18. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    International Nuclear Information System (INIS)

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-01-01

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  19. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  20. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  1. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    Science.gov (United States)

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  2. Study of a 3D dosimetry system response: ARCCHECK®

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, Amanda C.; Yoriyaz, Hélio, E-mail: amandamazer18@gmail.com, E-mail: hyoriyaz@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Nakandakari, Marcos V.N., E-mail: marcos.sake@gmail.com [Beneficência Portuguesa de São Paulo, SP (Brazil)

    2017-07-01

    Ionizing radiation therapies have improved over the years, becoming more specific for each patient. Thereby as the treatment planning system (TPS) complexities increases, the quality assurance (QA) methods have to be in a constant evolution. One of the techniques that demand great complexity is the Volumetric Modulated Arc Therapy (VMAT). One possible way to VMAT commissioning is using 3D dosimetry systems and recently a new 3D dosimetry system called ArcCheck had been developed and commercialized mainly for VMAT quality assurance. It is water-equivalent and composed by an array of 1386 diodes arranged in a spiral pattern. Since simulation methods, like Monte Carlo method, ensure highly accurate results, MCNP (A General Monte Carlo N-Particle Transport Code System) is totally reliable for problems that involve radiation transport. This work presents a preliminary study of the 3D dosimetry system ArcCheck by developing two computational models in MCNP6. In addition, experimental measures were acquired using the ArcCheck in a Linear Accelerator and then these values were compared with the results obtained by simulations of both models. The comparisons showed good reproducibility. (author)

  3. Panoramic, large-screen, 3-D flight display system design

    Science.gov (United States)

    Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.

    1995-01-01

    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.

  4. Investigation of B-->D{sup (*)}anti-D{sup (*)}K Decays with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jean-Pierre

    2001-07-30

    Using about 23M B{bar B} events collected in 1999-2000 with the BABAR detector, they report the observation of several hundred B {yields} D{sup (*)} {bar D}(*) K decays with two completely reconstructed D mesons. The preliminary branching fractions of the low background decay modes B{sup 0} {yields} D*{sup -} D{sup (*)}{sup 0} K{sup +} are determined to be {Beta}(B{sup 0} {yields} D*{sup -} D{sup 0}K{sup +}) = (2.8 {+-} 0.7 {+-} 0.05) x 10{sup -3} and {Beta}(B{sup 0} {yields} D*{sup -} D*{sup 0} K{sup +}) = (6.8 {+-} 1.7 {+-} 1.7) x 10{sup -3}. Observation of a significant number of candidates in the color-suppressed decay mode B{sup +} {yields} D*{sup +} D*{sup -} K{sup +} is reported with a preliminary branching fraction {Beta}(B{sup +} {yields} D*{sup +} D*{sup -} K{sup +}) = (3.4 {+-} 1.6 {+-} 0.9) x 10{sup -3}.

  5. 3D effects on transport and plasma control in the TJ-II stellarator

    Science.gov (United States)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  6. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  7. Design and synthesis of new of 3-(benzo[d]isoxazol-3-yl)-1-substituted pyrrolidine-2, 5-dione derivatives as anticonvulsants.

    Science.gov (United States)

    Malik, Sachin; Ahuja, Priya; Sahu, Kapendra; Khan, Suroor Ahmad

    2014-09-12

    A series of 3-(benzo[d]isoxazol-3-yl)-N-substituted pyrrolidine-2, 5-dione (7a-7d, 8a-8d, 9a-9c) have been prepared and evaluated for their anticonvulsant activities. Preliminary anticonvulsant activity was performed using maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests after intraperitoneal (ip) injection into mice, which are the most widely employed models for early identification of anticonvulsant candidate. The acute neurological toxicity (NT) was determined applying rotorod test. The quantitative evaluation after oral administration in rats showed that the most active was 3-(benzo[d]isoxazol-3-yl)-1-(4-fluorophenyl) pyrrolidine-2, 5-dione (8a) with ED50 values of 14.90 mg/kg. Similarly the most potent in scPTZ was 3-(benzo[d]isoxazol-3-yl)-1-cyclohexylpyrrolidine-2, 5-dione (7d) with ED50 values of 42.30 mg/kg. These molecules were more potent and less neurotoxic than phenytoin and ethosuximide which were used as reference antiepileptic drugs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Unraveling the evolutionary scenario of the hobo element in populations of Drosophila melanogaster and D. simulans in South America using the TPE repeats as markers

    Directory of Open Access Journals (Sweden)

    Geovani T. Ragagnin

    2016-03-01

    Full Text Available Abstract Transposable elements (TEs are nucleotide sequences found in most studied genomes. These elements are highly diversified and have a large variation in nucleotide structure and mechanisms of transposition. hobo is a member of class II, belonging to hAT superfamily, described inDrosophila melanogaster, and it presents in its Open Reading Frame, a repetitive region encoding the amino acids threonine-proline-glutamic acid (TPE, which shows variability in the number of repeats in some regions of the world. Due to this variability some evolutionary scenarios of the hobo element are discussed, such as the scenario of the invasion of hobo element in populations ofD. melanogaster. In the present study, we investigated 22 DNA sequences of D. melanogaster and seven sequences ofD. simulans, both from South America, to check the number of repetitions of TPE, in order to clarify the evolutionary scenario of thehobo element in these populations. Our results showed a monomorphism in populations of both species in South America, with only three TPE repeats. Hence, we discuss and propose an evolutionary scenario of the invasion of the hobo element in populations of D. melanogaster and D. simulans.

  9. The GEO-3 Scenarios 2002-2032. Quantification and Analysis of Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Bakkes, J.; Potting, J. (eds.) [National Institute for Public Health and the Environment RIVM, Bilthoven (Netherlands); Henrichs, T. [Center for Environmental Systems Research CESR, University of Kassel, Kassel (Germany); Kemp-Benedict, E.; Raskin, P. [Stockholm Environment Institute SEI, Boston, MA (United States); Masui, T.; Rana, A. [National Institute for Environmental Studies NIES, Ibaraki (Japan); Nellemann, C. [United Nations Environment Programme UNEP, GRID Global and Regional Integrated Data centres Arendal, Lillehammer (Norway); Rothman, D. [International Centre for Integrative Studies ICIS, Maastricht University, Maastricht (Netherlands)

    2004-07-01

    The four contrasting visions of the world's next three decades as presented in the third Global Environment Outlook (GEO-3) have many implications for policy - from hunger to climate change and from freshwater issues to biodiversity. The four scenarios analysed are Markets First, Policy First, Security First, Sustainability First. Presenting a deeper analysis than the original GEO-3 report, this Technical Report quantifies the impacts of the scenarios for all 19 GEO 'sub-regions', such as Eastern Africa and Central Europe. Regional impacts are discussed in the context of sustainable development. The report summary compares the impacts of the four scenarios across regions - and for the world as a whole - in the light of internationally agreed targets including those in the Millennium Declaration where applicable. It provides an account of the analytical methods, key assumptions, models and other tools, along with the approaches used in the analyses. Based on the methods and results, the report looks back on the process of producing the forward-looking analysis for GEO-3. Were all analytical centres on the same track? Did the approach adopted for GEO-3 contribute to the overall GEO objective of strengthening global-regional involvement and linkages?.

  10. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    Science.gov (United States)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  11. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    International Nuclear Information System (INIS)

    Bäck, A

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK ® (Sun Nuclear), MatriXX Evolution (IBA Dosimetry) and OCTAVIOUS ® 1500 (PTW), 3D phantoms such as OCTAVIUS ® 4D (PTW), ArcCHECK ® (Sun Nuclear) and Delta 4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDose TM (Sun Nuclear) and Dosimetry Check TM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific

  12. Automatic generation of medium-detailed 3D models of buildings based on CAD data

    NARCIS (Netherlands)

    Dominguez-Martin, B.; Van Oosterom, P.; Feito-Higueruela, F.R.; Garcia-Fernandez, A.L.; Ogayar-Anguita, C.J.

    2015-01-01

    We present the preliminary results of a work in progress which aims to obtain a software system able to automatically generate a set of diverse 3D building models with a medium level of detail, that is, more detailed that a mere parallelepiped, but not as detailed as a complete geometric

  13. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    Science.gov (United States)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  14. Insights for the third Global Environment Outlook from related global scenario anlayses. Working paper for GEO-3

    OpenAIRE

    Bakkes JA; Goldewijk CGM; Meijer JR; Rothman DS; Vries HJM de; Woerden JW van; United Nations Environment Programme (UNEP); MNV

    2001-01-01

    This report relates to the ongoing development of scenarios for the third Global Environment Outlook (GEO-3) of UNEP. It illustrates the scale and type of environmental impacts that GEO-3 needs to consider. It does so by quantifying impacts using existing, recent studies whose scenarios come closest to the current tentative global storylines for GEO-3. With a view to GEO-3;s envisaged role as input for the Rio+10 Earth Summit in 2002, this report suggests a focus for the GEO-3 scenario analys...

  15. Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium

    Science.gov (United States)

    Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration

    2015-11-01

    The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  16. 3D MR cisternography to identify distal dural rings. Comparison of 3D-CISS and 3D-SPACE sequences

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Makidono, Akari; Nakamura, Miho; Saida, Yukihisa

    2011-01-01

    The distal dural ring (DDR) is an anatomical landmark used to distinguish intra- and extradural aneurysms. We investigated identification of the DDR using 2 three-dimensional (3D) magnetic resonance (MR) cisternography sequences-3D constructive interference in steady state (CISS) and 3D sampling perfection with application optimized contrasts using different flip angle evolutions (SPACE)-at 3.0 tesla. Ten healthy adult volunteers underwent imaging with 3D-CISS, 3D-SPACE, and time-of-flight (TOF) MR angiography (TOF-MRA) sequences at 3.0T. We analyzed DDR identification and internal carotid artery (ICA) signal intensity and classified the shape of the carotid cave. We identified the DDR using both 3D-SPACE and 3D-CISS, with no significant difference between the sequences. Visualization of the outline of the ICA in the cavernous sinus (CS) was significantly clearer with 3D-SPACE than 3D-CISS. In the CS and petrous portions, signal intensity was lower with 3D-SPACE, and the flow void was poor with 3D-CISS in some subjects. We identified the DDR with both 3D-SPACE and 3D-CISS, but the superior contrast of the ICA in the CS using 3D-SPACE suggests the superiority of this sequence for evaluating the DDR. (author)

  17. Global evaluation of nuclear infrastructure utilization scenarios (GENIUS)

    International Nuclear Information System (INIS)

    unzik-Gougar, Mary Lou; Juchau, Christopher A.; Pasamehmetoglu, Kemal; Wilson, Paul P.H.; Oliver, Kyle M.; Turinsky, Paul J.; Abdel-Khalik, Hany S.; Hays, Ross; Stover, Tracy E.

    2007-01-01

    A new and unique fuel cycle systems code has been developed. Need for this analysis tool was established via methodical development of technical functions and requirements followed by an evaluation of existing fuel cycle codes. As demonstrated by analysis of GNEP-type scenarios, the GENIUS code discretely tracks nuclear material from beginning to end of the fuel cycle and among any number of independent regions. Users can define scenarios starting with any/all existing reactors and fuel cycle facilities or with an ideal futuristic arrangement. Development and preliminary application of GENIUS capabilities in uncertainty analysis/propagation and multi-parameter optimization have also been accomplished. (authors)

  18. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  19. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  20. Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, California 90095 (United States); Garofalo, A M [Columbia University, New York, New York 10027 (United States); Greenfield, C M [General Atomics, San Diego, California 92186-5608 (United States); Kaye, S M [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Menard, J E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Murakami, M [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sabbagh, S A [Columbia University, New York, New York 10027 (United States); Austin, M E [University of Texas-Austin, Austin, Texas 78712 (United States); Bell, R E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Burrell, K H [General Atomics, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, San Diego, California 92186-5608 (United States); Gates, D A [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Groebner, R J; Hyatt, A W; Luce, T C; Petty, C C; Wade, M R; Waltz, R E [General Atomics, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Lab., Livermore, California 94550 (United States); Kinsey, J E [Lehigh Univ., Bethlehem, Pennsylvania 18015 (United States); LeBlanc, B P [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); McKee, G R [Univ. of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Okabayashi, M [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Peng, Y-K M [Oak Ridge National Lab., Oak Ridge, Tennessee 37831 (United States); Politzer, P A [General Atomics, San Diego, California 92186-5608 (United States); Rhodes, T L [Dept. of Electrical Engineering and PSTI, Univ. of California, Los Angeles, California 90095 (United States)

    2006-12-15

    Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f{sub BS} {>=} 60%, q{sub 95} {approx} 4-5 and G {identical_to}{beta}{sub N}H{sub scaling}/q{sub 95}{sup 2} {>=}0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E ? B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at {beta}{sub N} {>=} 4 with q{sub min} {>=} 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e.g. {beta}{sub N} = 4, H{sub 89} = 2.5, with f{sub BS} > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q {>=} 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.

  1. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  2. 3D Printing and 3D Bioprinting in Pediatrics

    OpenAIRE

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  3. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    International Nuclear Information System (INIS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  4. The simplified P3 approach on a trigonal geometry in the nodal reactor code DYN3D

    International Nuclear Information System (INIS)

    Duerigen, S.; Fridman, E.

    2011-01-01

    DYN3D is a three-dimensional nodal diffusion code for steady-state and transient analyses of Light-Water Reactors with square and hexagonal fuel assembly geometries. Currently, several versions of the DYN3D code are available including a multi-group diffusion and a simplified P 3 (SP 3 ) neutron transport option. In this work, the multi-group SP 3 method based on trigonal-z geometry was developed. The method is applicable to the analysis of reactor cores with hexagonal fuel assemblies and allows flexible mesh refinement, which is of particular importance for WWER-type Pressurized Water Reactors as well as for innovative reactor concepts including block type High-Temperature Reactors and Sodium Fast Reactors. In this paper, the theoretical background for the trigonal SP 3 methodology is outlined and the results of a preliminary verification analysis are presented by means of a simplified WWER-440 core test example. The accordant cross sections and reference solutions were produced by the Monte Carlo code SERPENT. The DYN3D results are in good agreement with the reference solutions. The average deviation in the nodal power distribution is about 1%. (Authors)

  5. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    Science.gov (United States)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  6. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  7. Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2015-07-01

    Full Text Available Scaled-down flume tests are largely used to support investigations for the assessment of hydrogeological risk. Achieved outcomes can be integrated to numerical analyses for the study of unstable slope collapse, debris transport, and hydrological models in general. In the set-up of such simulation platforms, a relevant role has to be given to the Spatial Sensor Network (SSN which is in charge of collecting geo-referenced, quantitative information during experiments. Photogrammetry (including 3-D imaging sensors can play an important role in SSN because of its capability of collecting information covering wide surfaces without any contact. The aim of this paper is to give an overview and some examples of the potential of photogrammetry in hydrogeological simulation experiments. After a general introduction on a few preliminary issues (sensors, calibration, ground reference, usage of imaging or ranging sensors, potential applications are classified into 2-D and 3-D categories. Examples are focused on a scaled-down landslide simulation platform, which has been developed at Tongji University (Shanghai, P.R. China.

  8. Plasma and milk concentrations of vitamin D3 and 25-hydroxy vitamin D3 following intravenous injection of vitamin D3 or 25-hydroxy vitamin D3.

    OpenAIRE

    Hidiroglou, M; Knipfel, J E

    1984-01-01

    Plasma levels of vitamin D3 or 25-hydroxyvitamin D3 in ewes after administration of a single massive intravenous dose of vitamin D3 (2 X 10(6) IU) or 25-hydroxy vitamin D3 (5 mg) were determined at zero, one, two, three, five, ten and 20 days postinjection. In six ewes injected with vitamin D3 conversion of vitamin D3 to 25-hydroxy vitamin D3 resulted in a six-fold increase in the plasma 25-hydroxy vitamin D3 level within one day. Elevated levels were maintained until day 10 but by day 20 a s...

  9. Basis for calculating boron dilution scenarios in PWR by 3D neutron kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Pla, P., E-mail: patricia_pla@hotmail.com [Univ. of Pisa, San Piero a Grado Nuclear Research Group (GRNSPG), Pisa (Italy); Tech. Univ. of Catalonia, Barcelona (Spain); Parisi, C., E-mail: c.parisi@ing.unipi.it [Univ. of Pisa, San Piero a Grado Nuclear Research Group (GRNSPG), Pisa (Italy); Galetti, R., E-mail: regina@cnen.gov.br [National Commission for Nuclear Energy (CNEN), Rio de Janeiro (Brazil); D' Auria, F.; Galassi, G., E-mail: f.dauria@ing.unipi.it, E-mail: g.galassi@ing.unipi.it [Univ. of Pisa, San Piero a Grado Nuclear Research Group (GRNSPG), Pisa (Italy); Reventos, F., E-mail: francesc.reventos@upc.edu [Tech. Univ. of Catalonia, Barcelona (Spain)

    2011-07-01

    The origin of the performed study was the analysis of 20 cm{sup 2} small break LOCA in the lower plenum in a four-loop PWR nuclear reactor by Relap5 code stand-alone (0DNK) in which boron dilution was observed in more than one loop seal. In order to have a more precise result of the boron dilution NK feedback effect, the original nodalization was refined axially in the core area to couple with PARCS v.2.7 code (3DNK). The neutron macroscopic XSec database was generated by the lattice transport code HELIOS. Before using the new model to predict boron dilution transients, a necessary activity is the qualification of the model (the boron feedback calculated by the Neutronic Cross Sections) against boron changes, so a group of sensitivity calculations injecting more or less borated water in the cold leg were performed either with Relap5 code stand-alone (0DNK) and with Relap5 coupled with PARCS v.2.7 (3DNK) code in order to analyze the reactor power response to the boron injection and the differences using a 0DNK or a coupled 3DNK nodalization. To complete the study a benchmark calculation was performed considering a 20 cm{sup 2} break in the lower plenum, in which the reactor trip by control rods has been disabled and boron injection was simulated in the cold leg. This calculation utilized the Relap5 code stand-alone (0DNK) and the Relap5 coupled with PARCS v.2.7 (3DNK) code, in order to see the differences using a 0DNK or a coupled 3DNK model. Non negligible differences have been found in all cases in the comparison of 0DNK and coupled 3DNK results analyzed, in relation to the core power. These results challenge the evaluation of the uncertainties in case of coupled thermalhydraulic-3DNK calculations. A comprehensive evaluation of the relevant uncertainties of the 3D NK TH coupled calculations is needed. (author)

  10. Basis for calculating boron dilution scenarios in PWR by 3D neutron kinetics

    International Nuclear Information System (INIS)

    Pla, P.; Parisi, C.; Galetti, R.; D'Auria, F.; Galassi, G.; Reventos, F.

    2011-01-01

    The origin of the performed study was the analysis of 20 cm 2 small break LOCA in the lower plenum in a four-loop PWR nuclear reactor by Relap5 code stand-alone (0DNK) in which boron dilution was observed in more than one loop seal. In order to have a more precise result of the boron dilution NK feedback effect, the original nodalization was refined axially in the core area to couple with PARCS v.2.7 code (3DNK). The neutron macroscopic XSec database was generated by the lattice transport code HELIOS. Before using the new model to predict boron dilution transients, a necessary activity is the qualification of the model (the boron feedback calculated by the Neutronic Cross Sections) against boron changes, so a group of sensitivity calculations injecting more or less borated water in the cold leg were performed either with Relap5 code stand-alone (0DNK) and with Relap5 coupled with PARCS v.2.7 (3DNK) code in order to analyze the reactor power response to the boron injection and the differences using a 0DNK or a coupled 3DNK nodalization. To complete the study a benchmark calculation was performed considering a 20 cm 2 break in the lower plenum, in which the reactor trip by control rods has been disabled and boron injection was simulated in the cold leg. This calculation utilized the Relap5 code stand-alone (0DNK) and the Relap5 coupled with PARCS v.2.7 (3DNK) code, in order to see the differences using a 0DNK or a coupled 3DNK model. Non negligible differences have been found in all cases in the comparison of 0DNK and coupled 3DNK results analyzed, in relation to the core power. These results challenge the evaluation of the uncertainties in case of coupled thermalhydraulic-3DNK calculations. A comprehensive evaluation of the relevant uncertainties of the 3D NK TH coupled calculations is needed. (author)

  11. ADN-Viewer: a 3D approach for bioinformatic analyses of large DNA sequences.

    Science.gov (United States)

    Hérisson, Joan; Ferey, Nicolas; Gros, Pierre-Emmanuel; Gherbi, Rachid

    2007-01-20

    Most of biologists work on textual DNA sequences that are limited to the linear representation of DNA. In this paper, we address the potential offered by Virtual Reality for 3D modeling and immersive visualization of large genomic sequences. The representation of the 3D structure of naked DNA allows biologists to observe and analyze genomes in an interactive way at different levels. We developed a powerful software platform that provides a new point of view for sequences analysis: ADNViewer. Nevertheless, a classical eukaryotic chromosome of 40 million base pairs requires about 6 Gbytes of 3D data. In order to manage these huge amounts of data in real-time, we designed various scene management algorithms and immersive human-computer interaction for user-friendly data exploration. In addition, one bioinformatics study scenario is proposed.

  12. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  13. Characteristics of D-{sup 3}He fueled frc reactor: ARTEMIS-L

    Energy Technology Data Exchange (ETDEWEB)

    Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Onozuka, M.; Ohnishi, M.; Uenosono, C.

    1993-11-01

    The paper introduces briefly the scenario and discuss the attractive characteristics of D-3He fueled commercial fusion reactor ARTEMIS-L. By using favorable characteristics of a field-reversed configuration, the fusion plasma of ARTEMIS-L is compact and its beta-value is extremely high. One find consequently a possibility of constructing an economical fusion power power plant on this prospect. The life of the structural materials is sound during the full reactor life (30 years) and the safety of the reactor is intrinsic to D-3He fuels. The amount of disposed materials is rather small and the level of these intruder dose is so low that the plant appears to be acceptable in view of the environment. (author).

  14. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    Science.gov (United States)

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  15. Scenarios and innovative systems

    International Nuclear Information System (INIS)

    2001-11-01

    The purpose of this workshop is to present to the GEDEON community the scenarios for the deployment of innovative nuclear solutions. Both steady state situations and possible transitions from the present to new reactors and fuel cycles are considered. Innovative systems that satisfy improved natural resource utilization and waste minimization criteria will be described as well as the R and D orientations of various partners. This document brings together the transparencies of 17 communications given at this workshop: general policy for transmutation and partitioning; Amster: a molten salt reactor (MSR) concept; MSR capabilities; potentials and capabilities of accelerator driven systems (ADS); ADS demonstrator interest as an experimental facility; innovative systems: gas coolant technologies; Pu management in EPR; scenarios with thorium fuel; scenarios at the equilibrium state; scenarios for transition; partitioning and specific conditioning; management of separated radio-toxic elements; European programs; DOE/AAA (Advanced Accelerator Applications) program; OECD scenario studies; CEA research programs and orientations; partitioning and transmutation: an industrial point of view. (J.S.)

  16. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  17. Preparation of 3-7 MeV neutron source and preliminary results of activation cross section measurement

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, T.; Masuda, T.; Tsurita, Y.; Hashimoto, A.; Miyajima, N. [Department of Nuclear Engineering, Nagoya University, Nagoya, Aichi (Japan); Sakane, H.; Shibata, M.; Yamamoto, H.; Kawade, K.

    1999-03-01

    A d-D gas target producing monoenergetic neutrons has been constructed for measurement of activation cross sections in the energy region of 3 to 7 MeV at Van de Graaff accelerator of Nagoya University. Neutron spectra and neutron fluxes were measured as a function of the incident deuteron energy. Preliminary results of activation cross sections were obtained for reactions {sup 27}Al(n, p){sup 27}Mg, {sup 27}Al(n, {alpha}){sup 24}Na, {sup 47}Ti(n, p){sup 47}Sc, {sup 56}Fe(n, p){sup 56}Mn, {sup 58}Ni(n, p){sup 58}Co and {sup 64}Zn(n, p){sup 64}Cu. The results are compared with the evaluated values of JENDL-3.2. A well-type HPGe detector was used for highly efficient detection. (author)

  18. Clinical application of 3D spiral CT of the auditory ossicular chain and labyrinth: Preliminary report

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yisheng

    1998-01-01

    Purpose: To assess the clinical application and limitation of 3D spiral CT of the auditory ossicular chain and labyrinth. Methods: 3D reconstruction of the auditory ossicular chain and labyrinth, including multiplanar reformation (MPR), minimum or maximum intensity projection (MinIP or MaxIP) and shaded surface display (SSD), were performed with 1 mm slice thickness, 5 cm field of view and 0.1 mm reconstruction interval spiral CT in 14 normal subjects, 15 patients with middle ear diseases. Results: With use of 3D reconstruction images in 14 normal subjects, 13 cases of ossicular chain showed that the long process of the incus was parallel to the manubrium and projected inferomedian toward the cochlear promontory, the incus-stapedial joint was like a 'L-shape' structure, and in 8 cases of labyrinth reconstruction, the cochlea and the three semicircular canals were demonstrated. 9 cholesteatomas of 13 chronic otitis media demonstrated destruction of ossicular chain of varying degrees. In 2 cases with congenital abnormality, ossicle dysplasia was seen. Conclusion: 3D CT is a useful technique for evaluating anatomic malformations and diseases of middle and inner ear, but there are still few pitfalls

  19. Pre- and post-processing of TORT data and preliminary experience with TORT version 3

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; John, T.M.; Hersman, A.; Leege, P.F.A. de

    1997-01-01

    As the cross-section input to the TORT 3-D transport code is very rigid, subroutines have been included in the local version of TORT to process other cross-section libraries. A mixing table routine was added in order to prepare macroscopic cross-sections from microscopic cross-section libraries. Post-processing was added through additional output flux files in the CCCC-format together with the GEODST file describing the geometry. Recently the new TORT version 3 was successfully installed. However, many problems had to be solved to properly extract the source code and documentation from the UNIX script delivered with the code package. Preliminary tests did not show big differences in performance with the older version. (R.P.)

  20. From 2D to 3D turbulence through 2D3C configurations

    Science.gov (United States)

    Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz

    2017-11-01

    We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.

  1. Maximum likelihood reconstruction in fully 3D PET via the SAGE algorithm

    International Nuclear Information System (INIS)

    Ollinger, J.M.; Goggin, A.S.

    1996-01-01

    The SAGE and ordered subsets algorithms have been proposed as fast methods to compute penalized maximum likelihood estimates in PET. We have implemented both for use in fully 3D PET and completed a preliminary evaluation. The technique used to compute the transition matrix is fully described. The evaluation suggests that the ordered subsets algorithm converges much faster than SAGE, but that it stops short of the optimal solution

  2. Using optically scanned 3D data in the restoration of Michelangelo's David

    Science.gov (United States)

    Scopigno, Roberto; Cignoni, Paolo; Callieri, Marco; Ganovelli, Fabio; Impoco, G.; Pingi, P.; Ponchio, F.

    2003-10-01

    Modern 3D scanning technologies allow to reconstruct 3D digital representations of Cultural Heritage artifacts in a semi-automatic way, characterized by very high accuracy and wealth of details. The availability of an accurate digital representation opens several possibilities of utilization to experts (restorers, archivists, museum curators), or to ordinary people (students, museum visitors). 3D scanned data are commonly used for the production of animations, interactive visualizations, or virtual reality applications. A much more exciting opportunity is to use these data in the restoration of Cultural Heritage artworks. The integration between 3D graphic and restoration represents an open research field where many new supporting tools are required; the David restoration project has given several starting points and guidelines to the definition and development of innovative solutions. Digital 3D models can be used in two different but not subsidiary modes: as an instrument for the execution of specific investigations and as a supporting media for the archival and integration of all the restoration-related information, gathered with the different studies and analysis performed on the artwork. In this paper we present some recent work done in the framework of the Michelangelo's David restoration project. A 3D model of the David was reconstructed by the Digital Michelangelo Project, using laser-based 3D scanning technology. We have developed some tools to make those data accessible and useful in the restoration. Preliminary results are reported here together with some directions for further research.

  3. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  4. Preliminary 3D In-situ measurements of the texture evolution of strained H2O ice during annealing using neutron Laue diffractometry

    Science.gov (United States)

    Journaux, Baptiste; Montagnat, Maurine; Chauve, Thomas; Ouladdiaf, Bachir; Allibon, John

    2015-04-01

    Dynamic recrystallization (DRX) strongly affects the evolution of microstructure (grain size and shape) and texture (crystal preferred orientation) in materials during deformation at high temperature. Since texturing leads to anisotropic physical properties, predicting the effect of DRX is essential for industrial applications, for interpreting geophysical data and modeling geodynamic flows, and predicting ice sheet flow and climate evolution. A large amount of literature is available related to metallurgy, geology or glaciology, but there remains overall fundamental questions about the relationship between nucleation, grain boundary migration and texture development at the microscopic scale. Previous measurements of DRX in ice were either conducted using 2D ex-situ techniques such as AITA [1,2] or Electron Backscattering Diffraction (EBSD) [3], or using 3D statistical ex-situ [4] or in-situ [5] techniques. Nevertheless, all these techniques failed to observe at the scale of nucleation processes during DRX in full 3D. Here we present a new approach using neutron Laue diffraction, which enable to perform 3D measurements of in-situ texture evolution of strained polycrystalline H2O ice (>2% at 266 K) during annealing at the microscopic scale. Thanks the CYCLOPS instrument [6] (Institut Laue Langevin Grenoble, France) and the intrinsic low background of this setup, preliminary observations enabled us to follow, in H2O ice, the evolution of serrated grain boundaries, and kink-band during annealing. Our observations show a significant evolution of the texture and internal misorientation over the course of few hours at an annealing temperature of 268.5 K. In the contrary, ice kink-band structures seem to be very stable over time at near melting temperatures. The same samples have been analyzed ex-situ using EBSD for comparison. These results represent a first step toward in-situ microscopic measurements of dynamic recrystallization processes in ice during strain. This

  5. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    International Nuclear Information System (INIS)

    Henline, P.A.

    1995-10-01

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DRI-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape control due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described

  6. Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] metabolism in vitamin D-deficient rats infused with 1,25-(OH)2D3

    International Nuclear Information System (INIS)

    Yamato, H.; Matsumoto, T.; Fukumoto, S.; Ikeda, K.; Ishizuka, S.; Ogata, E.

    1989-01-01

    Previous studies revealed that administration of 24,25-dihydroxyvitamin D3 [24,25-(OH)2D3] to calcium (Ca)-deficient rats causes a dose-dependent reduction in markedly elevated serum 1,25-(OH)2D3 level. Although the results suggested that the metabolism of 1,25-(OH)2D3 was accelerated by 24,25-(OH)2D3, those experiments could not define whether the enhanced metabolism of 1,25-(OH)2D3 played a role in the reduction in the serum 1,25-(OH)2D3 level. In the present study, in order to address this issue more specifically, serum 1,25-(OH)2D3 was maintained solely by exogenous administration through miniosmotic pumps of 1,25-(OH)2D3 into vitamin D-deficient rats. Thus, by measuring the serum 1,25-(OH)2D3 concentration, the effect of 24,25-(OH)2D3 on the MCR of 1,25-(OH)2D3 could be examined. Administration of 24,25-(OH)2D3 caused a dose-dependent enhancement in the MCR of 1,25-(OH)2D3, and 1 microgram/100 g rat.day 24,25-(OH)2D3, which elevated serum 24,25-(OH)2D3 to 8.6 +/- 1.3 ng/ml, significantly increased MCR and suppressed serum levels of 1,25-(OH)2D3. The effect of 24,25-(OH)2D3 on 1,25-(OH)2D3 metabolism developed with a rapid time course, and the recovery of iv injected [1 beta-3H]1,25-(OH)2D3 in blood was significantly reduced within 1 h. In addition, there was an increase in radioactivity in the water-soluble fraction of serum as well as in urine, suggesting that 1,25-(OH)2D3 is rapidly degraded to a water-soluble metabolite(s). Furthermore, the reduction in serum 1,25-(OH)2D3 was associated with a reduction in both serum and urinary Ca levels. Because the conversion of [3H]24,25-(OH)2D3 to [3H]1,24,25-(OH)2D3 or other metabolites was minimal in these rats, 24,25-(OH)2D3 appears to act without being converted into other metabolites. These results demonstrate that 24,25-(OH)2D3 rapidly stimulates the metabolism of 1,25-(OH)2D3 and reduces its serum level

  7. 3D BUILDING MODELING IN LOD2 USING THE CITYGML STANDARD

    Directory of Open Access Journals (Sweden)

    D. Preka

    2016-10-01

    Full Text Available Over the last decade, scientific research has been increasingly focused on the third dimension in all fields and especially in sciences related to geographic information, the visualization of natural phenomena and the visualization of the complex urban reality. The field of 3D visualization has achieved rapid development and dynamic progress, especially in urban applications, while the technical restrictions on the use of 3D information tend to subside due to advancements in technology. A variety of 3D modeling techniques and standards has already been developed, as they gain more traction in a wide range of applications. Such a modern standard is the CityGML, which is open and allows for sharing and exchanging of 3D city models. Within the scope of this study, key issues for the 3D modeling of spatial objects and cities are considered and specifically the key elements and abilities of CityGML standard, which is used in order to produce a 3D model of 14 buildings that constitute a block at the municipality of Kaisariani, Athens, in Level of Detail 2 (LoD2, as well as the corresponding relational database. The proposed tool is based upon the 3DCityDB package in tandem with a geospatial database (PostgreSQL w/ PostGIS 2.0 extension. The latter allows for execution of complex queries regarding the spatial distribution of data. The system is implemented in order to facilitate a real-life scenario in a suburb of Athens.

  8. 3D ultrasound characterization of woven composites

    Science.gov (United States)

    Tayong, Rostand B.; Mienczakowski, Martin J.; Smith, Robert A.

    2018-04-01

    Recent studies on the Non-Destructive Testing (NDT) of composites for the aerospace industry have led to an understanding of ultrasonic propagation in these materials [1]. Techniques for enhanced ultrasonic imaging of the internal structure of composite laminates containing unidirectional fibers have been proposed and tested in a laboratory environment. For the automotive industry, textile composites are often preferred and widely used. The reason for this is that these types of composites offer good mechanical performance, with resistance to delamination and reduced manufacturing costs. In this study, two models are developed and shown to be suitable to characterize the woven specimen. The first model is a 1D analytical model that makes simplified assumptions and the second is a 3D time-domain Finite Element (FE) model developed [2] for advanced understanding of the woven composite response to an ultrasonic excitation. For each of the proposed models, three parameters are defined and used to analyze the structure behavior. They are the instantaneous amplitude, instantaneous phase and instantaneous frequency. These parameters are employed to track the in-plane fiber orientation and the ply-interface location and for the sentencing of features. Three different specimens with the following weave type: 3D orthogonal, 2D plain and Multilayer stitching were considered and scanned (using a focused ultrasonic transducer) to validate the proposed models. As a preliminary study, the work only focuses on the Orthogonal weave specimen. The results obtained from experimental, analytical and FE modeling, B-scan and C-scan are compared, discussed and presented in terms of the above defined parameters.

  9. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    Science.gov (United States)

    Di Simone, Alessio

    2016-06-25

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.

  10. Atmospheric nonequilibrium mini-plasma jet created by a 3D printer

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Toshihiro, E-mail: toshihiro@plasma.es.titech.ac.jp [Kobe University Graduate School of Medicine, Department of Gastroenterology, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 (Japan); Tokyo Institute of Technology, Department of Energy Sciences, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502 (Japan); Kawano, Hiroaki; Miyahara, Hidekazu; Okino, Akitoshi [Tokyo Institute of Technology, Department of Energy Sciences, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502 (Japan); Azuma, Takeshi [Kobe University Graduate School of Medicine, Department of Gastroenterology, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 (Japan)

    2015-07-15

    In this study, a small-sized plasma jet source with a 3.7 mm head diameter was created via a 3D printer. The jet’s emission properties and OH radical concentrations (generated by argon, helium, and nitrogen plasmas) were investigated using optical emission spectrometry (OES) and electron spin resonance (ESR). As such, for OES, each individual gas plasma propagates emission lines that derive from gases and ambient air inserted into the measurement system. For the case of ESR, a spin adduct of the OH radical is typically observed for all gas plasma treatment scenarios with a 10 s treatment by helium plasma generating the largest amount of OH radicals at 110 μM. Therefore, it was confirmed that a plasma jet source made by a 3D printer can generate stable plasmas using each of the aforementioned three gases.

  11. Metadata and Tools for Integration and Preservation of Cultural Heritage 3D Information

    Directory of Open Access Journals (Sweden)

    Achille Felicetti

    2011-12-01

    Full Text Available In this paper we investigate many of the various storage, portability and interoperability issues arising among archaeologists and cultural heritage people when dealing with 3D technologies. On the one side, the available digital repositories look often unable to guarantee affordable features in the management of 3D models and their metadata; on the other side the nature of most of the available data format for 3D encoding seem to be not satisfactory for the necessary portability required nowadays by 3D information across different systems. We propose a set of possible solutions to show how integration can be achieved through the use of well known and wide accepted standards for data encoding and data storage. Using a set of 3D models acquired during various archaeological campaigns and a number of open source tools, we have implemented a straightforward encoding process to generate meaningful semantic data and metadata. We will also present the interoperability process carried out to integrate the encoded 3D models and the geographic features produced by the archaeologists. Finally we will report the preliminary (rather encouraging development of a semantic enabled and persistent digital repository, where 3D models (but also any kind of digital data and metadata can easily be stored, retrieved and shared with the content of other digital archives.

  12. RAG-3D: a search tool for RNA 3D substructures

    Science.gov (United States)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  13. Determination of the 3d34d and 3d35s configurations of Fe V

    International Nuclear Information System (INIS)

    Azarov, V.I.

    2001-01-01

    The analysis of the spectrum of four times ionized iron, Fe V, has led to the determination of the 3d 3 4d and 3d 3 5s configurations. From 975 classified lines in the region 645-1190 A we have established 123 of 168 theoretically possible 3d 3 4d levels and 26 of 38 possible 3d 3 5s levels. The estimated accuracy of values of energy levels of these two configurations is about 0.7 cm -1 and 1.0 cm -1 , respectively. The level structure of the system of the 3d 4 , 3d 3 4s, 3d 3 4d and 3d 3 5s configurations has been theoretically interpreted and the energy parameters have been determined by a least squares fit to the observed levels. A comparison of parameters in Cr III and Fe V ions is given. (orig.)

  14. 3D Cosmic Ray Muon Tomography from an Underground Tunnel

    Science.gov (United States)

    Guardincerri, Elena; Rowe, Charlotte; Schultz-Fellenz, Emily; Roy, Mousumi; George, Nicolas; Morris, Christopher; Bacon, Jeffrey; Durham, Matthew; Morley, Deborah; Plaud-Ramos, Kenie; Poulson, Daniel; Baker, Diane; Bonneville, Alain; Kouzes, Richard

    2017-05-01

    We present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock-air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock-air interface matches that obtained from LIDAR within 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.

  15. Axionic D3-D7 Inflation

    CERN Document Server

    Burgess, C P; Postma, M

    2009-01-01

    We study the motion of a D3 brane moving within a Type IIB string vacuum compactified to 4D on K3 x T_2/Z_2 in the presence of D7 and O7 planes. We work within the effective 4D supergravity describing how the mobile D3 interacts with the lightest bulk moduli of the compactification, including the effects of modulus-stabilizing fluxes. We seek inflationary solutions to the resulting equations, performing our search numerically in order to avoid resorting to approximate parameterizations of the low-energy potential. We consider uplifting from D-terms and from the supersymmetry-breaking effects of anti-D3 branes. We find examples of slow-roll inflation (with anti-brane uplifting) with the mobile D3 moving along the toroidal directions, falling towards a D7-O7 stack starting from the antipodal point. The inflaton turns out to be a linear combination of the brane position and the axionic partner of the K3 volume modulus, and the similarity of the potential along the inflaton direction with that of racetrack inflat...

  16. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    Science.gov (United States)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  17. SERENITY in e-Business and Smart Item Scenarios

    Science.gov (United States)

    Benameur, Azzedine; Khoury, Paul El; Seguran, Magali; Sinha, Smriti Kumar

    SERENITY Artefacts, like Class, Patterns, Implementations and Executable Components for Security & Dependability (S&D) in addition to Serenity Runtime Framework (SRF) are discussed in previous chapters. How to integrate these artefacts with applications in Serenity approach is discussed here with two scenarios. The e-Business scenario is a standard loan origination process in a bank. The Smart Item scenario is an Ambient intelligence case study where we take advantage of Smart Items to provide an electronic healthcare infrastructure for remote healthcare assistance. In both cases, we detail how the prototype implementations of the scenarios select proper executable components through Serenity Runtime Framework and then demonstrate how these executable components of the S&D Patterns are deployed.

  18. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Science.gov (United States)

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  20. Simulation of an MSLB scenario using the 3D neutron kinetic core model DYN3D coupled with the CFD software Trio-U

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, Alexander, E-mail: a.grahn@hzdr.de; Gommlich, André; Kliem, Sören; Bilodid, Yurii; Kozmenkov, Yaroslav

    2017-04-15

    Highlights: • Improved thermal-hydraulic description of nuclear reactor cores. • Providing reactor dynamics code with realistic thermal-hydraulic boundary conditions. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal. • Simulation at higher spatial resolution as compared to system codes. - Abstract: In the framework of the European project NURESAFE, the reactor dynamics code DYN3D, developed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), was coupled with the Computational Fluid Dynamics (CFD) solver Trio-U, developed at CEA France, in order to replace DYN3D’s one-dimensional hydraulic part with a full three-dimensional description of the coolant flow in the reactor core at higher spatial resolution. The present document gives an introduction into the coupling method and shows results of its application to the simulation of a Main Steamline Break (MSLB) accident of a Pressurised Water Reactor (PWR).

  1. 'Netherlands in Triplicate' in detail. Comments to the scenario study 'Nederland in Drievoud' (Netherlands in Triplicate) of the Dutch Central Planning Bureau

    International Nuclear Information System (INIS)

    Kamminga, K.J.; Slotegraaf, G.; Van der Knoop, J.

    1995-08-01

    In 1992 the Dutch Central Planning Bureau (CPB) published the scenario studies 'Scanning the Future' and 'Nederland in Drievoud' (Netherlands in Triplicate or NiD). 'Scanning the Future' concerns the development of the world economy in the period 1990-2015, NiD concerns the development of the Dutch economy in the period 1990-2015. In this report comments are made regarding NiD. Chapter 1 focuses on the background and the goals of the NiD scenarios. These scenarios are projective, according to the CPB. The analytical framework or vision is based on the comparative strength analysis of the current state of the world economy and on the expected trends and challenges which might strongly influence the development of the world economy. The first chapter also deals with the assumptions chosen by the CPB. It is concluded that the CPB was searching for a balance between plausibility and provocation. If a scenario becomes too plausible their goal ('shaking up of mental maps') will not be achieved, whereas unreal predictions are irrelevant for policy makers. In chapter 2 the general scenario methodology is discussed and a scenario typology is derived including criteria which a well constructed scenario should meet. A distinction is made between scenarios, that are projective or explorative forecasting, and scenarios that are prospective, or speculative forecasting. Also another distinction is made: autonomous scenarios versus policy scenarios. Chapter 3 contains a closer look at the CPB study, based on the methodological considerations of Chapter 2. It is concluded that in the process of scenario development the goal was to create a coherent picture, fitting the assumptions on economic and human behaviour. The policy measures also had to match these assumptions. However, these assumptions imply certain norms and values. Therefore the NiD scenarios are rather prospective than projective. 3 figs., 1 tab., 26 refs., 2 appendices

  2. Single breath hold 3D cardiac cine MRI using kat-ARC: preliminary results at 1.5T.

    Science.gov (United States)

    Jeong, Daniel; Schiebler, Mark L; Lai, Peng; Wang, Kang; Vigen, Karl K; François, Christopher J

    2015-04-01

    Validation of a new single breath-hold, three-dimensional, cine balanced steady-state free precession (3D cine bSSFP) cardiac magnetic resonance (CMR) sequence for left ventricular function. CMR examinations were performed on fifteen patients and three healthy volunteers on a clinical 1.5T scanner using a two-dimensional (2D) cine balanced SSFP CMR sequence (2D cine bSSFP) followed by an investigational 3D cine bSSFP pulse sequence acquired within a single breath hold. Left ventricular end diastolic volume (LVEDV), end systolic volume (LVESV), ejection fraction (LVEF), and myocardial mass were independently segmented on a workstation by two experienced radiologists. Blood pool to myocardial contrast was evaluated in consensus using a Likert scale. Bland-Altman analysis was used to compare these quantitative and nominal measurements for the two sequences. The average acquisition time was significantly shorter for the 3D cine bSSFP than for 2D cine bSSFP (0.36 ± 0.03 vs. 8.5 ± 2.3 min) p = 0.0002. Bland-Altman analyses [bias and (limits of agreement)] of the data derived from these two methods revealed that the LVEF 0.9% (-4.7, 6.4), LVEDV 4.9 ml (-23.0, 32.8), LVESV -0.2 ml (-22.4, 21.9), and myocardial mass -0.4 g (-23.8, 23.0) were not significantly different. There was excellent intraclass correlation for intra-observer variability (0.981, 0.989, 0.997, 0.985) and inter-observer variability (0.903, 0.954, 0.970, 0.842) for LVEF, LVEDV, LVESV, and myocardial mass respectively. 3D cine bSSFP allows for accurate single breath-hold volumetric cine CMR which enables substantial improvements in scanner time efficiency without sacrificing diagnostic accuracy.

  3. Indoor Navigation from Point Clouds: 3d Modelling and Obstacle Detection

    Science.gov (United States)

    Díaz-Vilariño, L.; Boguslawski, P.; Khoshelham, K.; Lorenzo, H.; Mahdjoubi, L.

    2016-06-01

    In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.

  4. INDOOR NAVIGATION FROM POINT CLOUDS: 3D MODELLING AND OBSTACLE DETECTION

    Directory of Open Access Journals (Sweden)

    L. Díaz-Vilariño

    2016-06-01

    Full Text Available In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.

  5. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  6. 3D IBFV : hardware-accelerated 3D flow visualization

    NARCIS (Netherlands)

    Telea, A.C.; Wijk, van J.J.

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique presented by van Wijk (2001) for 2D flow visualization in two main directions. First, we decompose the 3D

  7. Food scenarios 2025

    DEFF Research Database (Denmark)

    Sundbo, Jon

    2016-01-01

    This article presents the results of a future study of the food sector. Two scenarios have been developed using a combination of: 1) a summary of the relevant scientific knowledge, 2) systematic scenario writing, 3) an expert-based Delphi technique, and 4) an expert seminar assessment. The two...... scenarios present possible futures at global, national (Denmark) and regional (Zealand, Denmark) levels. The main scenario is called ‘Food for ordinary days and celebrations’ (a combination of ‘High-technological food production − The functional society’ and ‘High-gastronomic food − The experience society...

  8. Numeric 3D modelling of a geohydrothermal duplet system in malm karst; Numerische 3D-Modellierung eines geohydrothermalen Dublettenbetriebs im Malmkarst

    Energy Technology Data Exchange (ETDEWEB)

    Wenderoth, F.; Gropius, M. [FlowFM GbR, Berlin (Germany); Fritzer, T. [Bayerisches Geologisches Landesamt, Muenchen (Germany); Huber, B. [HydroConsult GmbH, Augsburg (Germany); Schubert, A. [ERDWERK GmbH, Muenchen (Germany)

    2005-10-01

    The Bavarian Geological State Office charged the HYDRO Consult GmbH, Augsburg, and the FlowFM GbR, Berlin with the task of investigating the possibilibies of numeric 3D modelling using the FEFLOW {sup registered} developed by WASY GmbH incorporating Darcy's porosity equation. Preliminary data acquisition and parallel measurements were carried out by ERDWERK GmbH on behalf of SWM-Versorgungs-GmbH, GB Energie-Erzeugung. The investigations were to provide information on whether this method can provide reliable data for licensing procedures under mining law. In particular, the following questions were to be answered: a) maximum injection and production pressures for a given operating regime; b) regional hydraulic effects of geothermal plant operation at a given volume flow and injection temperature; c) temporal and regional cold water distribution as a result of injection; d) time requirements for heat regeneration after terminaiton of geothermal duplet operation. The research project was funded by the Bavarian state minister of economics, infrastructure, transportation and technology. (orig.)

  9. Data-driven robust control of the plasma rotational transform profile and normalized beta dynamics for advanced tokamak scenarios in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Shi, W.; Wehner, W.P.; Barton, J.E.; Boyer, M.D. [Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Schuster, E., E-mail: schuster@lehigh.edu [Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Moreau, D. [CEA, IRFM, F-13018 St Paul lez Durance (France); Walker, M.L.; Ferron, J.R.; Luce, T.C.; Humphreys, D.A.; Penaflor, B.G.; Johnson, R.D. [General Atomics, San Diego, CA 92121 (United States)

    2017-04-15

    A control-oriented, two-timescale, linear, dynamic, response model of the rotational transform ι profile and the normalized beta β{sub N} is proposed based on experimental data from the DIII-D tokamak. Dedicated system-identification experiments without feedback control have been carried out to generate data for the development of this model. The data-driven dynamic model, which is both device-specific and scenario-specific, represents the response of the ι profile and β{sub N} to the electric field due to induction as well as to the heating and current drive (H&CD) systems during the flat-top phase of an H-mode discharge in DIII-D. The control goal is to use both induction and the H&CD systems to locally regulate the plasma ι profile and β{sub N} around particular target values close to the reference state used for system identification. A singular value decomposition (SVD) of the plasma model at steady state is carried out to decouple the system and identify the most relevant control channels. A mixed-sensitivity robust control design problem is formulated based on the dynamic model to synthesize a stabilizing feedback controller without input constraints that minimizes the reference tracking error and rejects external disturbances with minimal control energy. The feedback controller is then augmented with an anti-windup compensator, which keeps the given controller well-behaved in the presence of magnitude constraints in the actuators and leaves the nominal closed-loop system unmodified when no saturation is present. The proposed controller represents one of the first feedback profile controllers integrating magnetic and kinetic variables ever implemented and experimentally tested in DIII-D. The preliminary experimental results presented in this work, although limited in number and constrained by actuator problems and design limitations, as it will be reported, show good progress towards routine current profile control in DIII-D and leave valuable lessons

  10. Ocean thermal energy conversion power system development-I. Preliminary design report. Volume 3. Appendixes D, E, and F. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume includes the appendices: D) system equipment (hardware breakdown structure; 10-MW hardware listing; list of support and maintenance equipment, tools and spare parts; sacrificial anodes; M.A.N. brush; and Alclad 3004 data); E) heat exchanger supporting data (analyses/configuration, contract tooling, manufacturing plan, specification, and evaporator ammonia liquid distribution system); and F) rotating machinery (performance characteristics, radial inflow turbine; item descriptions; weight calculation-rotor; producibility analysis; long lead-time items; spares; support equipment; non recurring costs; performance characteristics-axial flow turbine; Worthington pump data; and American M.A.N. Corporation data). Also included is attachment 1 to the phase I final report which presents details of the system modeling; design, materials considerations, and systems analysis of the baseline module; system cost analysis; and supporting data. (WHK)

  11. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  12. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  13. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  14. The Clinical Value of Prenatal 3D Ultrasonic Diagnosis on Fetus Hemivertebra Deformity- A Preliminary Study.

    Science.gov (United States)

    Wen, Yanting; Xiang, Guishuang; Liang, Xiaoqiu; Tong, Xiaoqian

    2018-02-01

    The present study is planned to discuss the clinical value of prenatal 3D ultra-sonic diagnosis on fetus hemivertebra deformity through the retrospective analysis of clinical data of fetus hemivertebra deformity. Selected 9 fetus hemivertebra deformity cases, which have been admitted to our hospital during the period from January, 2010 to January, 2016 as study samples, and analyzed their 2D and 3D ultrasonic examination data. 4 cases of the fetus hemivertebra deformity occurred at lumbar vertebra, 3 cases at thoracic vertebra, and 2 cases at thoracolumbar vertebra. There were scoliosis and opened spine bifida (OSB). In 7 cases, there was absence of ribs in fetus. The 2D ultrasonic image showed that: The echo at the center of fetus vertebral arch lesion was blurred or lost. The coronal section showed the deformity of the spine. There was obvious loss of the ossification center. From the cross section, we could see that the vertebral body of the fetus was shrinking and the edges were relatively blurred. The 3D ultrasonic image showed that: the echo at the ossification center of the fetus vertebra was relatively blurred, or even lost. The image also indicated scoliosis deformity of the spine. The vertebral body lesion could be accurately located. 9 cases of fetus hemivertebra deformity have been detected through examination. Labor inductions have been carried out after getting the permission from the family members. The X-ray examination of the fetus after labor induction showed that the diagnosis was correct. Prenatal ultra-sonic examination holds strong potential for the diagnosis of fetus hemivertebra deformity quite early and deserves further clinical evaluation with large sample size.

  15. Efficacy Study of Carrageenan as an Alternative Infused Material (Filler in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Porous 3D Scaffold

    Directory of Open Access Journals (Sweden)

    Nor Syamimi Che Johari

    2017-01-01

    Full Text Available Polymeric porous 3D scaffold plays an important role in culturing mammalian cells as ex vivo model. However, the scaffold used is ineffective due to its structural and cell acceptability weaknesses. Therefore, this research attempts to overcome the weaknesses by using carrageenan from red seaweed Kappaphycus alvarezii as an alternative infused material (filler of poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV porous 3D scaffold. The 3D scaffold was conventionally fabricated using the solvent-casting particulate-leaching (SCPL method. Carrageenan was later infused into 3D porous scaffolds under vacuum pressure and freeze-drying process. Five carrageenan concentrations were prepared and its physicochemical properties such as pH and viscosity were carried out on each concentration to determine the best solutions to produce a new composite 3D structure. The preliminary result shows that carrageenan concentrations of 2, 4, and 6% (w/v were considered the best solutions for the infusion process due to its stable rheology properties. The pH and viscosity profiles of three selected carrageenan solutions were exhibited in the range of 9.00–9.20 and 0.047–1.144 Pa·s, respectively. Moreover, the incorporated carrageenan gel fraction was in the range of 4.30% to 14.95% (w/w which was determined by gravimetric analysis and dye staining method (visual assessment. The well-infused carrageenan 3D scaffold was further characterized based on its internal morphology and degradability study. The vertical cross-sections of the scaffolds revealed homogeneous accumulation of dried gelatinous carrageenan which was covered throughout its pores wall. The degradation rate (K of the carrageenan infused 3D scaffold was between 0.01±1.66 (mg/day and 0.03±3.23 (mg/day. The higher the carrageenan concentration used, the faster the degradation rate occurring (p2 weeks. In conclusion, the usage of carrageenan as a composite material exhibits its great potential to be

  16. Preliminary comparison of the registration effect of 4D-CBCT and 3D-CBCT in image-guided radiotherapy of Stage IA non–small-cell lung cancer

    OpenAIRE

    Tan, Zhibo; Liu, Chuanyao; Zhou, Ying; Shen, Weixi

    2017-01-01

    Abstract In this study, we compared the registration effectiveness of 4D cone-beam computed tomography (CBCT) and 3D-CBCT for image-guided radiotherapy in 20 Stage IA non–small-cell lung cancer (NSCLC) patients. Patients underwent 4D-CBCT and 3D-CBCT immediately before radiotherapy, and the X-ray Volume Imaging software system was used for image registration. We performed automatic bone registration and soft tissue registration between 4D-CBCT or 3D-CBCT and 4D-CT images; the regions of inter...

  17. Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study.

    Science.gov (United States)

    Guo, Hong-Chang; Wang, Yang; Dai, Jiang; Ren, Chang-Wei; Li, Jin-Hua; Lai, Yong-Qiang

    2018-02-01

    The aim of this study was to evaluate the effect of 3-dimensional (3D) printing in treatment of hypertrophic obstructive cardiomyopathy (HOCM) and its roles in doctor-patient communication. 3D-printed models were constructed preoperatively and postoperatively in seven HOCM patients received surgical treatment. Based on multi-slice computed tomography (CT) images, regions of disorder were segmented using the Mimics 19.0 software (Materialise, Leuven, Belgium). After generating an STL-file (StereoLithography file) with patients' data, the 3D printer (Objet350 Connex3, Stratasys Ltd., USA) created a 3D model. The pre- and post-operative 3D-printed models were used to make the surgical plan preoperatively and evaluate the outcome postoperatively. Meanwhile, a questionnaire was designed for patients and their relatives to learn the effectiveness of the 3D-printed prototypes in the preoperative conversations. The heart anatomies were accurately printed with 3D technology. The 3D-printed prototypes were useful for preoperative evaluation, surgical planning, and practice. Preoperative and postoperative echocardiographic evaluation showed left ventricular outflow tract (LVOT) obstruction was adequately relieved (82.71±31.63 to 14.91±6.89 mmHg, P3D model in preoperative conversations and the communication score was 9.11±0.38 points. A 3D-printed model is a useful tool in individualized planning for myectomies and represent a useful tool for physician-patient communication.

  18. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Science.gov (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  19. Multiscale modeling of large deformations in 3-D polycrystals

    International Nuclear Information System (INIS)

    Lu Jing; Maniatty, Antoinette; Misiolek, Wojciech; Bandar, Alexander

    2004-01-01

    An approach for modeling 3-D polycrystals, linking to the macroscale, is presented. A Potts type model is used to generate a statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A macroscale model of a compression test is compared against an experimental compression test for an Al-Mg-Si alloy to determine various deformation paths at different locations in the samples. These deformation paths are then applied to the experimental grain structure using a scale-bridging technique. Preliminary results from this work will be presented and discussed

  20. Characterizing 3D sensors using the 3D modulation transfer function

    Science.gov (United States)

    Kellner, Timo; Breitbarth, Andreas; Zhang, Chen; Notni, Gunther

    2018-03-01

    The fields of optical 3D measurement system applications are continuously expanding and becoming more and more diverse. To evaluate appropriate systems for various measurement tasks, comparable parameters are necessary, whereas the 3D modulation transfer function (3D-MTF) has been established as a further criterion. Its aim is the determination of the system response between the measurement of a straight, sharp-edged cube and its opposite ideal calculated one. Within the scope of this work simulations and practical investigations regarding the 3D-MTF’s influences and its main issues are specifically investigated. Therefore, different determined edge radii representing the high-frequency spectra lead to various decreasing 3D-MTF characteristics. Furthermore, rising sampling frequencies improve its maximum transfer value to a saturation point in dependence of the radius. To approve these results of previous simulations, three fringe projection scanners were selected to determine the diversity. As the best 3D-MTF characteristic, a saturated transfer value of H_3D( f_N, 3D) = 0.79 has been identified at a sufficient sampling frequency, which is reached at four times the Nyquist limit. This high 3D resolution can mainly be achieved due to an improved camera projector interaction. Additionally, too small sampling ratios lead to uncertainties in the edge function determination, while higher ratios do not show major improvements. In conclusion, the 3D-MTF algorithm has thus been practically verified and its repeatability as well as its robustness have been confirmed.

  1. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  2. APT Blanket Detailed Bin Model Based on Initial Plate-Type Design -3D FLOWTRAN-TF Model

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    This report provides background information for a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report for the APT. This report gives a brief description of the FLOWTRAN-TF code which was used for detailed blanket bin modeling

  3. D3-??????????????????????? ? ???? ?????????? ?2 ?????? ?????? ?????

    OpenAIRE

    ?????????, ????; ???????, ???????; ??????, ?????????; ?????????????, ????; ??????, ??????

    2011-01-01

    ????? ?????? ??????? ????? ????? ??????????? ?????? ?????? ????? ? ?????? ? ???????? ????? ?????????. ?????????? ???????????? ?????? ?? ?2 ?????? ?????? ????? ??????? ?? D3 ???????????????? ??????? ??????????? ?????? ????????? ????? ?????????? ??? ??? ??????????. ? ????? ????????????? ??????????? ??? ????????? ????????????? ?????????? ???? ?????????? ?????????? ????? ????????? ?????? ???????? ?? D3-????????????????? ???????.

  4. GEOSPATIAL DATA PROCESSING FOR 3D CITY MODEL GENERATION, MANAGEMENT AND VISUALIZATION

    Directory of Open Access Journals (Sweden)

    I. Toschi

    2017-05-01

    Full Text Available Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA and national mapping agencies (NMA involved in “smart city” applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above – http://seneca.fbk.eu. State-of-the-art processing solutions are investigated in order to (i efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching, (ii derive topologically and geometrically accurate 3D geo-objects (i.e. building models at various levels of detail and (iii link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy and Graz (Austria. Both spatial (i.e. nadir and oblique imagery and non-spatial (i.e. cadastral information and building energy consumptions data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  5. Geospatial Data Processing for 3d City Model Generation, Management and Visualization

    Science.gov (United States)

    Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S.

    2017-05-01

    Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models) in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA) and national mapping agencies (NMA) involved in "smart city" applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above - http://seneca.fbk.eu). State-of-the-art processing solutions are investigated in order to (i) efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching), (ii) derive topologically and geometrically accurate 3D geo-objects (i.e. building models) at various levels of detail and (iii) link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy) and Graz (Austria). Both spatial (i.e. nadir and oblique imagery) and non-spatial (i.e. cadastral information and building energy consumptions) data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  6. Preliminary safety analysis report for the TFTR

    International Nuclear Information System (INIS)

    Lind, K.E.; Levine, J.D.; Howe, H.J.

    A Preliminary Safety Analysis Report has been prepared for the Tokamak Fusion Test Reactor. No accident scenarios have been identified which would result in exposures to on-site personnel or the general public in excess of the guidelines defined for the project by DOE

  7. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    International Nuclear Information System (INIS)

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3

  8. Need for Outcome Scenario Analysis of Clinical Trials in Diabetes.

    Science.gov (United States)

    Garcia-Verdugo, Rosa; Erbach, Michael; Schnell, Oliver

    2017-03-01

    Since the FDA requirement for cardiovascular safety of all new antihyperglycemic drugs to enter the market, the number and extent of phase 3 clinical trials has markedly increased. Unexpected trial results imply an enormous economic, personal and time cost and has deleterious effects over R&D. To prevent unforeseen developments in clinical trials, we recommend performing a comprehensive prospective outcome scenario analysis before launching the trial. In this commentary, we discuss the most important factors to take in consideration for prediction of clinical trial outcome scenarios and propose a theoretical model for decision making.

  9. 3D for free using the Mac's standard apps : converting raw 3D text files to QuickDraw 3D's 3DMF format using AppleScript

    NARCIS (Netherlands)

    Djajadiningrat, J.P.

    2003-01-01

    This article introduces you to the basics of 3D files in general and the 3D Metafile (3DMF), QuickDraw 3D's native 3D format, in particular. It shows how you can use AppleScript to easily convert a raw 3D text file into a 3DMF readable by the QuickDraw 3D Viewer or any other QuickDraw 3D compatible

  10. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  11. Scenarios for local seismic effects of Tulcea (Romania) crustal earthquakes, preliminary approach for the seismic microzoning of Tulcea city

    Science.gov (United States)

    Florin Bǎlan, Å.žTefan; Apostol, Bogdan; Chitea, F.; Anghelache, Mirela Adriana; Cioflan, Carmen O.; Serban, A.

    2010-05-01

    nonlinear variations of shear modulus and damping function with state of strain during the earthquakes are expected in superficial soil deposits. Also, the epicenter distributions, the isobats map and 3D image of focal distribution surface will be presented together with the focal mechanisms of the most significant earthquakes which had affected the zone. All these give us a very complete image of the crustal seismic hazard of the Tulcea zone. This study proposes itself to take in consideration only the local effects of the crustal seismic hazard from Tulcea zone, like a preliminary step for the seismic microzoning of Tulcea city. The latter is a broader research which implies the interdisciplinary work between specialists from different fields of research. Finally, by comparing the seismic microzoning map with the vulnerability distribution mapping for each building type and damage distribution maps, the general aspect of the real earthquake effects over the city is figured out. Acknowledgements: The research was performed with financial support from the CNMP within 31036/ 2007 scientific project.

  12. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  13. Towards Large Volume Big Divisor D3-D7 "mu-Split Supersymmetry" and Ricci-Flat Swiss-Cheese Metrics, and Dimension-Six Neutrino Mass Operators

    CERN Document Server

    Dhuria, Mansi

    2012-01-01

    We show that it is possible to realize a "mu-split SUSY" scenario [1] in the context of large volume limit of type IIB compactifications on Swiss-Cheese Calabi-Yau's in the presence of a mobile space-time filling D3-brane and a (stack of) D7-brane(s) wrapping the "big" divisor Sigma_B. For this, we investigate the possibility of getting one Higgs to be light while other to be heavy in addition to a heavy Higgsino mass parameter. Further, we examine the existence of long lived gluino that manifests one of the major consequences of mu-split SUSY scenario, by computing its decay width as well as lifetime corresponding to the 3-body decays of the gluino into a quark, a squark and a neutralino or Goldstino, as well as 2-body decays of the gluino into either a neutralino or a Goldstino and a gluon. Guided by the geometric Kaehler potential for Sigma_B obtained in [2] based on GLSM techniques, and the Donaldson's algorithm [3] for obtaining numerically a Ricci-flat metric, we give details of our calculation in [4] p...

  14. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. Keywords: 3D microscopy dataset, 3D microscopy vision, 3D SEM surface reconstruction, Scanning Electron Microscope (SEM

  15. Building a Unique Scenario to Support Cross-Mission Science with SPICE: The Siding-Spring comet encounter with Mars

    Science.gov (United States)

    Costa, M.; Witasse, O.; Sánchez-Cano, B.

    2017-09-01

    On October 2014, Mars experienced a close encounter with Comet Siding Spring. This contribution outlines a SPICE scenario built to assist studies combining MEX, MAVEN, Mars Odyssey, MSL, and Siding-Spring data focused on a Cosmographia 3D scenario.

  16. Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results

    OpenAIRE

    Liu, Jing; Glenn, Orit A.; Xu, Duan

    2014-01-01

    Fetal MR imaging is very challenging due to the movement of fetus and the breathing motion of the mother. Current clinical protocols involve quick 2D scouting scans to determine scan plane and often several attempts to reorient the scan plane when the fetus moves. This makes acquisition of fetal MR images clinically challenging and results in long scan times in order to obtain images that are of diagnostic quality. Compared to 2D imaging, 3D imaging of the fetus has many advantages such as hi...

  17. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    Science.gov (United States)

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Remaining Sites Verification Package for 132-D-3, 1608-D Effluent Pumping Station. Attchment to Waste Site Reclassification Form 2005-033

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2006-01-01

    Decommissioning and demolition of the 132-D-3 site, 1608-D Effluent Pumping Station was performed in 1986. Decommissioning included removal of equipment, water, and sludge for disposal as radioactive waste. The at- and below-grade structure was demolished to at least 1 m below grade and the resulting rubble buried in situ. The area was backfilled to grade with at least 1 m of clean fill and contoured to the surrounding terrain. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling

  19. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  20. Preliminary Safety Analysis of the Gorleben Site: Safety Concept and Application to Scenario Development Based on a Site-Specific Features, Events and Processes (FEP) Database - 13304

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Joerg; Beuth, Thomas; Wolf, Jens [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, D-38122 Braunschweig (Germany); Lommerzheim, Andre [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany); Mrugalla, Sabine [Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover (Germany)

    2013-07-01

    Based upon the German safety criteria, released in 2010 by the Federal Ministry of the Environment (BMU), a safety concept and a safety assessment concept for the disposal of heat-generating high-level waste have both been developed in the framework of the preliminary safety case for the Gorleben site (Project VSG). The main objective of the disposal is to contain the radioactive waste inside a defined rock zone, which is called containment-providing rock zone. The radionuclides shall remain essentially at the emplacement site, and at the most, a small defined quantity of material shall be able to leave this rock zone. This shall be accomplished by the geological barrier and a technical barrier system, which is required to seal the inevitable penetration of the geological barrier by the construction of the mine. The safe containment has to be demonstrated for probable and less probable evolutions of the site, while evolutions with very low probability (less than 1 % over the demonstration period of 1 million years) need not to be considered. Owing to the uncertainty in predicting the real evolution of the site, plausible scenarios have been derived in a systematic manner. Therefore, a comprehensive site-specific features, events and processes (FEP) data base for the Gorleben site has been developed. The safety concept was directly taken into account, e.g. by identification of FEP with direct influence on the barriers that provide the containment. No effort was spared to identify the interactions of the FEP, their probabilities of occurrence, and their characteristics (values). The information stored in the data base provided the basis for the development of scenarios. The scenario development methodology is based on FEP related to an impairment of the functionality of a subset of barriers, called initial barriers. By taking these FEP into account in their probable characteristics the reference scenario is derived. Thus, the reference scenario describes a

  1. The COMET method in 3-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, K. J.; Rahnema, F.

    2012-01-01

    The hybrid stochastic-deterministic coarse mesh radiation transport (COMET) method developed at Georgia Tech now solves reactor core problems in 3-D hexagonal geometry. In this paper, the method is used to solve three preliminary test problems designed to challenge the method with steep flux gradients, high leakage, and strong asymmetry and heterogeneity in the core. The test problems are composed of blocks taken from a high temperature test reactor benchmark problem. As the method is still in development, these problems and their results are strictly preliminary. Results are compared to whole core Monte Carlo reference solutions in order to verify the method. Relative errors are on the order of 50 pcm in core eigenvalue, and mean relative error in pin fission density calculations is less than 1% in these difficult test cores. The method requires the one-time pre-computation of a response expansion coefficient library, which may be compiled in a comparable amount of time to a single whole core Monte Carlo calculation. After the library has been computed, COMET may solve any number of core configurations on the order of an hour, representing a significant gain in efficiency over other methods for whole core transport calculations. (authors)

  2. Preliminary Concept of Operations for a Global Cylinder Identification and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, J. M. [ORNL; White-Horton, J. L. [ORNL; Morgan, J. B. [InSolves Associates

    2013-08-01

    This report describes a preliminary concept of operations for a Global Cylinder Identification and Monitoring System that could improve the efficiency of the International Atomic Energy Agency (IAEA) in conducting its current inspection activities and could provide a capability to substantially increase its ability to detect credible diversion scenarios and undeclared production pathways involving UF6 cylinders. There exist concerns that a proliferant State with access to enrichment technology could obtain a cylinder containing natural or low-enriched uranium hexafluoride (UF6) and produce a significant quantity (SQ)1 of highly enriched uranium in as little as 30 days. The National Nuclear Security Administration (NNSA) through the Next Generation Safeguards Initiative sponsored a multi-laboratory team to develop an integrated system that provides for detecting scenarios involving 1) diverting an entire declared cylinder for enrichment at a clandestine facility, 2) misusing a declared cylinder at a safeguarded facility, and 3) using an undeclared cylinder at a safeguarded facility. An important objective in developing this integrated system was to improve the timeliness for detecting the cylinder diversion and undeclared production scenarios. Developing this preliminary concept required in-depth analyses of current operational and safeguards practices at conversion, enrichment, and fuel fabrication facilities. The analyses evaluated the processing, movement, and storage of cylinders at the facilities; the movement of cylinders between facilities (including cylinder fabrication); and the misuse of safeguarded facilities.

  3. Type IIB orientifolds, D-brane instantons and the large volume scenario

    Energy Technology Data Exchange (ETDEWEB)

    Plauschinn, Erik

    2009-07-28

    This thesis is concerned with a branch of research in String Theory called String Phenomenology which aims for a better understanding of the connection between String Theory and Particle Physics. In particular, in this work we cover three topics which are important in order to establish this connection. The first topic is about String Theory model building in the context of so-called type IIB orientifolds with orientifold three- and seven-planes. After giving a brief overview, we work out in detail an important consistency condition for String Theory constructions, the so-called tadpole cancellation condition, and we verify explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz mechanism. The second topic is concerned with so-called D-brane instantons which are nonperturbative effects in type II String Theory constructions. We recall the instanton calculus for such configurations, we derive the so-called A eck-Dine-Seiberg superpotential in String Theory and we develop an important constraint, a chiral zero-mode constraint, for instanton contributions in the presence of a realistic Particle Physics sector. The third topic is about moduli stabilisation in type IIB string compactifications. More concretely, we review the so-called KKLT as well as Large Volume Scenario, and we construct and study a model for the latter scenario where the constraint mentioned above has been taken into account explicitly. Although the three topics studied in this thesis are slightly different in nature, there is nevertheless a complex interplay between them with many interrelations. In order to uncover these connections, a detailed study of each individual subject has been performed which has led to new results such as the chiral zero-mode constraint. (orig.)

  4. Type IIB orientifolds, D-brane instantons and the large volume scenario

    International Nuclear Information System (INIS)

    Plauschinn, Erik

    2009-01-01

    This thesis is concerned with a branch of research in String Theory called String Phenomenology which aims for a better understanding of the connection between String Theory and Particle Physics. In particular, in this work we cover three topics which are important in order to establish this connection. The first topic is about String Theory model building in the context of so-called type IIB orientifolds with orientifold three- and seven-planes. After giving a brief overview, we work out in detail an important consistency condition for String Theory constructions, the so-called tadpole cancellation condition, and we verify explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz mechanism. The second topic is concerned with so-called D-brane instantons which are nonperturbative effects in type II String Theory constructions. We recall the instanton calculus for such configurations, we derive the so-called A eck-Dine-Seiberg superpotential in String Theory and we develop an important constraint, a chiral zero-mode constraint, for instanton contributions in the presence of a realistic Particle Physics sector. The third topic is about moduli stabilisation in type IIB string compactifications. More concretely, we review the so-called KKLT as well as Large Volume Scenario, and we construct and study a model for the latter scenario where the constraint mentioned above has been taken into account explicitly. Although the three topics studied in this thesis are slightly different in nature, there is nevertheless a complex interplay between them with many interrelations. In order to uncover these connections, a detailed study of each individual subject has been performed which has led to new results such as the chiral zero-mode constraint. (orig.)

  5. Preliminary study of mercury target structure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kumasaka, Katsuyuki; Uchida, Shoji; Nakagawa, Toshi; Mori, Seiji; Nishikawa, Akira

    1997-11-01

    Development of a proton accelerator based neutron source (1.5 GeV, 5.3 mA (for neutron source 3.3 mA), thermal power 8 MW) is currently conducted by the Special Task Force for Neutron Science Initiative, JAERI. Preliminary design studies and related R and D of a solid metal target for the first stage (1.5 GeV, 1 mA) and a liquid metal target for both the first and second stages (1.5 GeV, 3.3 mA) are conducted by the Target Group to develop both solid and liquid metal target systems. A few kinds of target structures have been investigated in FY 1996 and the preliminary results for the target structures are described in this paper. Investigation results of alternative materials for the target container are also described in this paper. (author)

  6. Comparison and Extension of Existing 3D Propagation Models with Real-World Effects Based on Ray-tracing

    DEFF Research Database (Denmark)

    Kifle, Dereje W.; Gimenez, Lucas Chavarria; Wegmann, Bernhard

    2014-01-01

    antenna beam orientation like antenna tilting or when users are distributed in the third dimension (height) in multi-floor scenarios. Ray tracing based generated propagation maps that show the realistic propagation effect are used as 3D real world reference for investigation and model approval....

  7. Vitamin D3 synthesis in the entire skin surface of dairy cows despite hair coverage

    DEFF Research Database (Denmark)

    Hymøller, Lone; Jensen, Søren Krogh

    2010-01-01

    How hair-coated animals such as dairy cows synthesize endogenous vitamin D3 during exposure to summer sunlight has been unclear since vitamin D3 and its relation to sunlight was discovered. The fur of fur-bearing animals is thought to be comparable to clothing in humans, which prevents vitamin D3...... produce the vitamin. To test different scenarios, 16 Danish Holstein dairy cows were subjected to 4 degrees of coverage of their bodies with fabric that prevented vitamin D3 synthesis in the covered skin areas. The treatments were horse blanket (cows fitted with horse blankets), udder cover (cows fitted...... with udder covers, horse blanket + udder cover (cows fitted with both horse blankets and udder covers), and natural (cows without any coverage fitted). The cows were let out to pasture daily between 1000 and 1500 h for 4 wk in July and August 2009. Blood samples were collected 15 times during the study...

  8. Improvement of MSLB transient analysis for VVER by the coupled code system KIKO3D/ATHLET

    International Nuclear Information System (INIS)

    Hegyi, Gy.; Kereszturi, A.; Trosztel, I.

    2001-01-01

    An overview is given on the investigations of the Main Steam Line Break transient in a VVER- 440 NPP by using the KIKO3D/ATHLET 1.2.A coupled code system. Special attention was paid for the influence of modeling the outcore detector signals and the malfunctioning of the emergency control system (scram with stuck rod). The conservatism of the calculations was assured even in the case of application of the 3D best estimate KIKO3D code. The consequence of MSLB accident is investigated at the end of cycle (EOC), at full power (FP) and shut down initial conditions. Even if very strong conservative assumptions were applied, dangerous hot spots were not found in the supposed scenarios.(author)

  9. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  10. Vitamin D3 and 25-hydroxyvitamin D3 in pork and their relationship to vitamin D status in pigs

    DEFF Research Database (Denmark)

    Burild, Anders; Lauridsen, Charlotte; Faqir, Nasrin

    2016-01-01

    The content of vitamin D in pork produced in conventional systems depends on the vitamin D concentration in the pig feed. Both vitamin D3 and 25-hydroxyvitamin D3 (25(OH)D3) are essential sources of dietary vitamin D; however, bioavailability assessed by serum 25(OH)D3 concentration is reported...... of vitamin D3 and 25(OH)D3 in the pig feed for 49 d before slaughter. Concurrently, the 25(OH)D3 level in serum was investigated as a biomarker to assess the content of vitamin D3 and 25(OH)D3 in pig tissues. Adipose tissue, white and red muscle, the liver and serum were sampled from pigs fed feed containing...... either vitamin D3 or 25(OH)D3 at 5, 20, 35 or 50 µg/kg feed for 7 weeks before slaughter. The tissue 25(OH)D3 level was significantly higher in the pigs fed 25(OH)D3 compared with those fed vitamin D3, while the tissue vitamin D3 level was higher in the pigs fed vitamin D3 compared with those fed 25(OH...

  11. Scenario development, qualitative causal analysis and system dynamics

    Directory of Open Access Journals (Sweden)

    Michael H. Ruge

    2009-02-01

    Full Text Available The aim of this article is to demonstrate that technology assessments can be supported by methods such as scenario modeling and qualitative causal analysis. At Siemens, these techniques are used to develop preliminary purely qualitative models. These or parts of these comprehensive models may be extended to system dynamics models. While it is currently not possible to automatically generate a system dynamics models (or vice versa, obtain a qualitative simulation model from a system dynamics model, the two thechniques scenario development and qualitative causal analysis provide valuable indications on how to proceed towards a system dynamics model. For the qualitative analysis phase, the Siemens – proprietary prototype Computer – Aided Technology Assessment Software (CATS supportes complete cycle and submodel analysis. Keywords: Health care, telecommucations, qualitative model, sensitivity analysis, system dynamics.

  12. Cognitive Task Analysis of Business Jet Pilots' Weather Flying Behaviors: Preliminary Results

    Science.gov (United States)

    Latorella, Kara; Pliske, Rebecca; Hutton, Robert; Chrenka, Jason

    2001-01-01

    This report presents preliminary findings from a cognitive task analysis (CTA) of business aviation piloting. Results describe challenging weather-related aviation decisions and the information and cues used to support these decisions. Further, these results demonstrate the role of expertise in business aviation decision-making in weather flying, and how weather information is acquired and assessed for reliability. The challenging weather scenarios and novice errors identified in the results provide the basis for experimental scenarios and dependent measures to be used in future flight simulation evaluations of candidate aviation weather information systems. Finally, we analyzed these preliminary results to recommend design and training interventions to improve business aviation decision-making with weather information. The primary objective of this report is to present these preliminary findings and to document the extended CTA methodology used to elicit and represent expert business aviator decision-making with weather information. These preliminary findings will be augmented with results from additional subjects using this methodology. A summary of the complete results, absent the detailed treatment of methodology provided in this report, will be documented in a separate publication.

  13. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.

    Science.gov (United States)

    Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong

    2015-07-21

    Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.

  14. WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom

    International Nuclear Information System (INIS)

    Ger, R; Craft, DF; Burgett, EA; Price, RR; Kry, SF; Howell, RM

    2015-01-01

    Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by an ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between

  15. WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ger, R; Craft, DF [The University of Texas Graduate School of Biomedical Sciences (United States); Burgett, EA [Idaho State University, Pocatello, idaho (United States); Price, RR [RANDJ Consulting, Frederick, MD (United States); Kry, SF; Howell, RM [The University of Texas Graduate School of Biomedical Sciences (United States); The University of Texas MD Anderson Cancer Ctr., Houston, TX (United States)

    2015-06-15

    Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by an ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between

  16. The world in scenarios

    International Nuclear Information System (INIS)

    De Jong, A.; Roodenburg, H.

    1992-01-01

    As an introduction to this special issue 'Worlds of difference: Scenarios's for the economy, energy and the environment 1990-2015', an outline is given of the future of the world and the Netherlands, based on four scenarios. These scenarios are published in 'Scanning the future' in May 1992 by the CPB, the Dutch Central Planning Bureau. The Global Shift (GS) scenario is characterized by a very dynamic technological development, the free market perspective, strong economic growth in the Asian economies, and a relative economic regression in Western Europe. In the European Renaissance (ER) scenario the technological development is less dynamic and more gradual than in the GS scenario. The Balanced Growth (BG) scenario is dominated by a sustainable economic development and a strong technological dynamic development. The Global Crisis (GC) scenario shows a downward spiral in many areas, stagnating developments and fragile economies as results of the trends in the eighties. The first three scenarios are elaborated for the Netherlands. Also attention is paid to the aims and meaning of long-term scenarios. 2 figs., 2 tabs., 3 refs

  17. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    International Nuclear Information System (INIS)

    Spiegel, M; Hornegger, J; Redel, T; Struffert, T; Doerfler, A

    2011-01-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  18. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    Science.gov (United States)

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  19. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    Science.gov (United States)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  20. Scenario planning.

    Science.gov (United States)

    Enzmann, Dieter R; Beauchamp, Norman J; Norbash, Alexander

    2011-03-01

    In facing future developments in health care, scenario planning offers a complementary approach to traditional strategic planning. Whereas traditional strategic planning typically consists of predicting the future at a single point on a chosen time horizon and mapping the preferred plans to address such a future, scenario planning creates stories about multiple likely potential futures on a given time horizon and maps the preferred plans to address the multiple described potential futures. Each scenario is purposefully different and specifically not a consensus worst-case, average, or best-case forecast; nor is scenario planning a process in probabilistic prediction. Scenario planning focuses on high-impact, uncertain driving forces that in the authors' example affect the field of radiology. Uncertainty is the key concept as these forces are mapped onto axes of uncertainty, the poles of which have opposed effects on radiology. One chosen axis was "market focus," with poles of centralized health care (government control) vs a decentralized private market. Another axis was "radiology's business model," with one pole being a unified, single specialty vs a splintered, disaggregated subspecialty. The third axis was "technology and science," with one pole representing technology enabling to radiology vs technology threatening to radiology. Selected poles of these axes were then combined to create 3 scenarios. One scenario, termed "entrepreneurialism," consisted of a decentralized private market, a disaggregated business model, and threatening technology and science. A second scenario, termed "socialized medicine," had a centralized market focus, a unified specialty business model, and enabling technology and science. A third scenario, termed "freefall," had a centralized market focus, a disaggregated business model, and threatening technology and science. These scenarios provide a range of futures that ultimately allow the identification of defined "signposts" that can

  1. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    Science.gov (United States)

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. 3D gaze tracking system for NVidia 3D Vision®.

    Science.gov (United States)

    Wibirama, Sunu; Hamamoto, Kazuhiko

    2013-01-01

    Inappropriate parallax setting in stereoscopic content generally causes visual fatigue and visual discomfort. To optimize three dimensional (3D) effects in stereoscopic content by taking into account health issue, understanding how user gazes at 3D direction in virtual space is currently an important research topic. In this paper, we report the study of developing a novel 3D gaze tracking system for Nvidia 3D Vision(®) to be used in desktop stereoscopic display. We suggest an optimized geometric method to accurately measure the position of virtual 3D object. Our experimental result shows that the proposed system achieved better accuracy compared to conventional geometric method by average errors 0.83 cm, 0.87 cm, and 1.06 cm in X, Y, and Z dimensions, respectively.

  3. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.

    Science.gov (United States)

    Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

  4. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    Science.gov (United States)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  5. Determination of the optimum design through different funding scenarios for future parabolic trough solar power plant in Algeria

    International Nuclear Information System (INIS)

    Trad, Ameur; Ait Ali, Mohand Ameziane

    2015-01-01

    Highlights: • Seven technical design options have been simulated. • The integration of auxiliary heating and TES stabilize electricity generation. • Impact of TES on the technical and economic performance of PTSPP projects. • Different funding scenarios to assess the profitability of CSP plant. • Sensitivity analysis plays an important role in building energy analysis. - Abstract: The purpose of this study is to determine an optimum design for a projected parabolic trough solar power plant (PTSPP) under Algerian climate through different funding scenarios. In this paper, seven different (d1–d7) designs for PTSPP have been developed for the Naâma site. Plant size, technology type, storage capacity, location of the plant, Operation and Maintenance (O and M) costs, replacement costs, fuel consumption, net CO 2 emission, levelized electricity cost, net power generation, specific investment costs and discount rate are the basis factors to determine the optimum sustainable design for PTSPP. The most attractive designs of each base technology were selected as D1, D2 and D3. The preferable design of three funding scenarios was finally selected on economic, financial and sensitivity analysis. It is finally concluded that, under the most favorable economic conditions allowed in this study, design D3 is the most advantageous in terms of benefit to cost ratio: its power output will be 100 MW el with 8 full load hours thermal energy storage. It was also found that for design D3 under funding scenario S2, the project will require an upfront grant of 396 MEUR. This corresponds to around 56% of the total investment cost and the payback period will be approximately 7 years

  6. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    Science.gov (United States)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  7. 3D technology of Sony Bloggie has no advantage in decision-making of tennis serve direction: A randomized placebo-controlled study.

    Science.gov (United States)

    Liu, Sicong; Ritchie, Jason; Sáenz-Moncaleano, Camilo; Ward, Savanna K; Paulsen, Cody; Klein, Tyler; Gutierrez, Oscar; Tenenbaum, Gershon

    2017-06-01

    This study aimed at exploring whether 3D technology enhances tennis decision-making under the conceptual framework of human performance model. A 3 (skill-level: varsity, club, recreational) × 3 (experimental condition: placebo, weak 3D [W3D], strong 3D [S3D]) between-participant design was used. Allocated to experimental conditions by a skill-level stratified randomization, 105 tennis players judged tennis serve direction from video scenarios and rated their perceptions of enjoyment, flow, and presence during task performance. Results showed that varsity players made more accurate decisions than less skilled ones. Additionally, applying 3D technology to typical video displays reduced tennis players' decision-making accuracy, although wearing the 3D glasses led to a placebo effect that shortened the decision-making reaction time. The unexpected negative effect of 3D technology on decision-making was possibly due to participants being more familiar to W3D than to S3D, and relatedly, a suboptimal task-technology match. Future directions for advancing this area of research are offered. Highlights 3D technology augments binocular depth cues to tradition video displays, and thus results in the attainment of more authentic visual representation. This process enhances task fidelity in researching perceptual-cognitive skills in sports. The paper clarified both conceptual and methodological difficulties in testing 3D technology in sports settings. Namely, the nomenclature of video footage (with/without 3D technology) and the possible placebo effect (arising from wearing glasses of 3D technology) merit researchers' attention. Participants varying in level of domain-specific expertise were randomized into viewing conditions using a placebo-controlled design. Measurement consisted of both participants' subjective experience (i.e., presence, flow, and enjoyment) and objective performance (i.e., accuracy and reaction time) in a decision-making task. Findings revealed that

  8. LandSIM3D: modellazione in real time 3D di dati geografici

    Directory of Open Access Journals (Sweden)

    Lambo Srl Lambo Srl

    2009-03-01

    Full Text Available LandSIM3D: realtime 3D modelling of geographic data LandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model can be manipulated interactively and better shared with colleagues. For that reason, LandSIM3D is different from traditional 3D imagery solutions, normally reserved for computer graphics experts. For more information about LandSIM3D, go to www.landsim3d.com.

  9. Enabling Symmetric Collaboration in Public Spaces through 3D Mobile Interaction

    Directory of Open Access Journals (Sweden)

    Mayra Donaji Barrera Machuca

    2018-03-01

    Full Text Available Collaboration has been common in workplaces in various engineering settings and in our daily activities. However, how to effectively engage collaborators with collaborative tasks has long been an issue due to various situational and technical constraints. The research in this paper addresses the issue in a specific scenario, which is how to enable users to interact with public information from their own perspective. We describe a 3D mobile interaction technique that allows users to collaborate with other people by creating a symmetric and collaborative ambience. This in turn can increase their engagement with public displays. In order to better understand the benefits and limitations of this technique, we conducted a usability study with a total of 40 participants. The results indicate that the 3D mobile interaction technique promotes collaboration between users and also improves their engagement with the public displays.

  10. Development of a real-time simulation tool towards self-consistent scenario of plasma start-up and sustainment on helical fusion reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2017-06-01

    This study closely investigates the plasma operation scenario for the LHD-type helical reactor FFHR-d1 in view of MHD equilibrium/stability, neoclassical transport, alpha energy loss and impurity effect. In 1D calculation code that reproduces the typical pellet discharges in LHD experiments, we identify a self-consistent solution of the plasma operation scenario which achieves steady-state sustainment of the burning plasma with a fusion gain of Q ~ 10 was found within the operation regime that has been already confirmed in LHD experiment. The developed calculation tool enables systematic analysis of the operation regime in real time.

  11. Behavior Analysis of Novel Wearable Indoor Mapping System Based on 3D-SLAM.

    Science.gov (United States)

    Lagüela, Susana; Dorado, Iago; Gesto, Manuel; Arias, Pedro; González-Aguilera, Diego; Lorenzo, Henrique

    2018-03-02

    This paper presents a Wearable Prototype for indoor mapping developed by the University of Vigo. The system is based on a Velodyne LiDAR, acquiring points with 16 rays for a simplistic or low-density 3D representation of reality. With this, a Simultaneous Localization and Mapping (3D-SLAM) method is developed for the mapping and generation of 3D point clouds of scenarios deprived from GNSS signal. The quality of the system presented is validated through the comparison with a commercial indoor mapping system, Zeb-Revo, from the company GeoSLAM and with a terrestrial LiDAR, Faro Focus 3D X330. The first is considered as a relative reference with other mobile systems and is chosen due to its use of the same principle for mapping: SLAM techniques based on Robot Operating System (ROS), while the second is taken as ground-truth for the determination of the final accuracy of the system regarding reality. Results show that the accuracy of the system is mainly determined by the accuracy of the sensor, with little increment in the error introduced by the mapping algorithm.

  12. Behavior Analysis of Novel Wearable Indoor Mapping System Based on 3D-SLAM

    Directory of Open Access Journals (Sweden)

    Susana Lagüela

    2018-03-01

    Full Text Available This paper presents a Wearable Prototype for indoor mapping developed by the University of Vigo. The system is based on a Velodyne LiDAR, acquiring points with 16 rays for a simplistic or low-density 3D representation of reality. With this, a Simultaneous Localization and Mapping (3D-SLAM method is developed for the mapping and generation of 3D point clouds of scenarios deprived from GNSS signal. The quality of the system presented is validated through the comparison with a commercial indoor mapping system, Zeb-Revo, from the company GeoSLAM and with a terrestrial LiDAR, Faro Focus3D X330. The first is considered as a relative reference with other mobile systems and is chosen due to its use of the same principle for mapping: SLAM techniques based on Robot Operating System (ROS, while the second is taken as ground-truth for the determination of the final accuracy of the system regarding reality. Results show that the accuracy of the system is mainly determined by the accuracy of the sensor, with little increment in the error introduced by the mapping algorithm.

  13. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    Science.gov (United States)

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  14. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  15. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992

    International Nuclear Information System (INIS)

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA's Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6

  16. Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI

    International Nuclear Information System (INIS)

    Zeng, X.T.; Jupen, C.; Bengtsson, P.; Engstroem, L.; Westerlind, M.; Martinson, I.

    1991-01-01

    We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d 7 4s-3d 7 4p transitions in Br X, from which 16 levels of the previously unknown 3d 7 4s configuration could be established. We have also added 6 new 3d 7 4p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d 6 4s-3d 6 4p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)

  17. Investigation of the C-3-epi-25(OH)D3 of 25-hydroxyvitamin D3 in urban schoolchildren.

    Science.gov (United States)

    Berger, Samantha E; Van Rompay, Maria I; Gordon, Catherine M; Goodman, Elizabeth; Eliasziw, Misha; Holick, Michael F; Sacheck, Jennifer M

    2018-03-01

    The physiological relevance C-3 epimer of 25-hydroxyvitamin D (3-epi-25(OH)D) is not well understood among youth. The objective of this study was to assess whether demographic/physiologic characteristics were associated with 3-epi-25(OH)D 3 concentrations in youth. Associations between 3-epi-25(OH)D 3 and demographics and between 3-epi-25(OH)D 3 , total 25-hydroxyvitamin (25(OH)D) (25(OH)D 2 + 25(OH)D 3 ), total cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides were examined in racially/ethnically diverse schoolchildren (n = 682; age, 8-15 years) at Boston-area urban schools. Approximately 50% of participants had detectable 3-epi-25(OH)D 3 (range 0.95-3.95 ng/mL). The percentage of 3-epi-25(OH)D 3 of total 25(OH)D ranged from 2.5% to 17.0% (median 5.5%). Males were 38% more likely than females to have detectable 3-epi-25(OH)D 3 concentrations. Both Asian and black race/ethnicity were associated with lower odds of having detectable 3-epi-25(OH)D 3 compared with non-Hispanic white children (Asian vs. white, odds ratio (OR) 0.28, 95% confidence interval (CI) 0.14-0.53; black vs. white, OR 0.38, 95%CI 0.23-0.63, p 30 ng/mL) 25(OH)D concentration was associated with higher odds of having detectable 3-epi-25(OH)D 3 than having an inadequate (<20 ng/mL) concentration (OR 4.78, 95%CI 3.23-6.94 or OR 14.10, 95%CI 7.10-28.0, respectively). There was no association between 3-epi-25(OH)D 3 and blood lipids. However, when considering 3-epi-25(OH)D 3 as a percentage of total 25(OH)D, total cholesterol was lower in children with percent 3-epi-25(OH)D 3 above the median (mean difference -7.1 mg/dL, p = 0.01). In conclusion, among schoolchildren, sex, race/ethnicity, and total serum 25(OH)D concentration is differentially associated with 3-epi-25(OH)D. The physiological relevance of 3-epi-25(OH)D 3 may be related to the 3-epi-25(OH)D 3 as a percentage of total 25(OH)D and should be considered in future investigations.

  18. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    Science.gov (United States)

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  19. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    Science.gov (United States)

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  20. 3D accelerator magnet calculations using MAGNUS-3D

    International Nuclear Information System (INIS)

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  1. 3D Tissue Scaffold Printing On Custom Artificial Bone Applications

    Directory of Open Access Journals (Sweden)

    Betül ALDEMİR

    2015-01-01

    Full Text Available Production of defect-matching scaffolds is the most critical step in custom artificial bone applications. Three dimensional printing (3DP is one of the best techniques particularly for custom designs on artificial bone applications because of the high controllability and design independency. Our long-term aim is to implant an artificial custom bone that is cultured with patient's own mesenchymal stem cells after determining defect architecture on patient's bone by using CT-scan and printing that defect-matching 3D scaffold with appropriate nontoxic materials. In this study, preliminary results of strength and cytotoxicity measurements of 3D printed scaffolds with modified calcium sulfate compositepowder (MCSCP were presented. CAD designs were created and MCSCP were printed by a 3D printer (3DS, Visijet, PXL Core. Some samples were covered with salt solution in order to harden the samples. MCSCP and salt coated MCSCP were the two experimental groups in this study. Cytotoxicity and mechanical experiments were performed after surface examination withscanning electron microscope (SEM and light microscope. Tension tests were performed for MCSCP and salt coated MCSCP samples. The 3D scaffolds were sterilized with ethylene oxide gas sterilizer, ventilated and conditioned with DMEM (10% FBS. L929 mouse fibroblast cells were cultured on scaffolds (3 repetitive and cell viability was determined using MTT analysis. According to the mechanical results, the MCSCP group stands until average 71,305 N, while salt coated MCSCP group stands until 21,328N. Although the strength difference between two groups is statistically significant (p=0.001, Mann-Whitney U, elastic modulus is not (MCSCP=1,186Pa, salt coated MCSCP=1,169Pa, p=0.445. Cell viability (MTT analysis results on day 1, 3, and 5 demonstrated thatscaffolds hadno toxic effect to the L929 mouse fibroblast cells. Consequently, 3D printed samples with MCSCP could potentially be a strong alternative

  2. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  3. Exploiting Higher Order and Multi-modal Features for 3D Object Detection

    DEFF Research Database (Denmark)

    Kiforenko, Lilita

    that describe object visual appearance such as shape, colour, texture etc. This thesis focuses on robust object detection and pose estimation of rigid objects using 3D information. The thesis main contributions are novel feature descriptors together with object detection and pose estimation algorithms....... The initial work introduces a feature descriptor that uses edge categorisation in combination with a local multi-modal histogram descriptor in order to detect objects with little or no texture or surface variation. The comparison is performed with a state-of-the-art method, which is outperformed...... of the methods work well for one type of objects in a specific scenario, in another scenario or with different objects they might fail, therefore more robust solutions are required. The typical problem solution is the design of robust feature descriptors, where feature descriptors contain information...

  4. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Salomonowitz, Erich; Brenneis, Christian; Ungersboeck, Karl; Riet, Wilma van der; Buchfelder, Michael; Ganslandt, Oliver

    2012-01-01

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  5. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2012-01-15

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  6. Study of 3D solder-paste profilometer by dual digital fringe projection

    Science.gov (United States)

    Juan, Yi-Hua; Yih, Jeng-Nan; Cheng, Nai-Jen

    2013-09-01

    In a 3D profilometer by the fringe projection, the shadow will be produced inevitably, thus the fringes cannot be detected in the region of the shadow. In addition, a smooth surface or a metal surface produces the specular reflection, and then, no projection fringe can be recorded in the region of oversaturation on CCD. This paper reveals a proposed system for improved these defects and shows some preliminary improved 3D profiles by the proposed dual fringe projection. To obtain the profile of sample hided in the shadow and the oversaturation, this study used the dual-projection system by two projectors. This system adopted two different directions of fringe projection and illuminates them alternately, therefore, the shadow and the oversaturation produced in their corresponding locations. Two raw 3D profiles obtained from taking the dual-projection by the four-step phase-shift. A set of algorithms used to identify the pixels of the shadow and the oversaturation, and create an error-map. According to the error-map to compensate, two 3D profiles merged into an error-reduced 3D profile. We used the solder paste as a testing sample. After comparatively analyzing the 3D images obtained by our measurement system and by a contact stylus profilometer, the result shows that our measurement system can effectively reduce the error caused by shadows and oversaturation. Fringe projection system by using a projector is a non-contact, full field and quickly measuring system. The proposed dual-projection by dual-projectors can effectively reduce the shadow and the oversaturation errors and enhance the scope of application of the 3D contour detection, especially in the detection of precision structure parts with specular reflection.

  7. Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.

    Science.gov (United States)

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-09-04

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

  8. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R. [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal); Silva, A.P. [CAST-UBI — Centre for Aerospace Science and Technologies, University of Beira Interior, Calçada Fonte do Lameiro, 6201-001 Covilhã (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal)

    2013-10-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine.

  9. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    International Nuclear Information System (INIS)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R.; Silva, A.P.; Correia, I.J.

    2013-01-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine

  10. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application

    Directory of Open Access Journals (Sweden)

    Philipp Honigmann

    2018-01-01

    Full Text Available Additive manufacturing (AM is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI are well-established processes in the surgical fields. Polyetheretherketone (PEEK has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design.

  11. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application.

    Science.gov (United States)

    Honigmann, Philipp; Sharma, Neha; Okolo, Brando; Popp, Uwe; Msallem, Bilal; Thieringer, Florian M

    2018-01-01

    Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a "biomimetic" design.

  12. Preliminary Validation and Verification of TURBO{sub D}ESIGN for S-CO{sub 2} Axial Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoon Han; Kim, Seong Gu [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoon, Ho Joon; Addad, Yacine [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2012-05-15

    To use the advantages of Supercritical CO{sub 2}(S-CO{sub 2}) Brayton cycle for nuclear power plant, KAIST-Khalifa University joint research team has been focusing on S-CO{sub 2} turbomachinery development. TURBO{sub D}ESIGN code is one of the products of our researches to design a turbomachinery. The major feature of TURBO{sub D}ESIGN is that the formulation is based on the real gas and none of the ideal gas assumption was applied to the code. Thus, TURBO{sub D}ESIGN has high flexibility regarding the type of gases. In this paper, preliminary code validation and verification of TURBO{sub D}ESIGN will be discussed for axial type compressor design

  13. Innovative Educational Scenarios in Game Based Teaching and Learning

    Directory of Open Access Journals (Sweden)

    Ion Smeureanu

    2017-08-01

    Full Text Available The didactical game can be considered part of an educational scenario in teaching and learning. This article aims to show how fundamental concepts from the economicmathematical modeling area can be visualized, how to organize knowledge in coherent scenarios, presented in an educational game manner, to gain the attention and influence students' spirit of competition. At the same time, benefitting from the 3D visualizations, the graphical interfaces for navigating in multidimensional spaces or projections are defined and thus imagination used for mental models construction is stimulated and human intuition is capitalized in the process of knowledge discovery, assisted by computer with analytic algorithms type. Exploration becomes a game feature and can be pursued both numerically and visually. 3D environments give realism to visualizations that are found in games, facilitating realimaginary relationship throughout the game and enhancing learning motivation. The innovative character of teaching is given by the method in which the teacher creates his own educational scenario by considering specific learning objectives, age particularities of students, time and space-related resources, the technical requirements of the game and the evaluation method. The paper makes several references to such projects, developed by the authors and implemented in working with students. Game based on demonstration (using simulation, modelling or visualization coordinates users to obtain relevant information; the multiple representations of knowledge are so used and compared through a multitude of examples.

  14. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    Science.gov (United States)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  15. 2D-Driven 3D Object Detection in RGB-D Images

    KAUST Repository

    Lahoud, Jean

    2017-12-25

    In this paper, we present a technique that places 3D bounding boxes around objects in an RGB-D scene. Our approach makes best use of the 2D information to quickly reduce the search space in 3D, benefiting from state-of-the-art 2D object detection techniques. We then use the 3D information to orient, place, and score bounding boxes around objects. We independently estimate the orientation for every object, using previous techniques that utilize normal information. Object locations and sizes in 3D are learned using a multilayer perceptron (MLP). In the final step, we refine our detections based on object class relations within a scene. When compared to state-of-the-art detection methods that operate almost entirely in the sparse 3D domain, extensive experiments on the well-known SUN RGB-D dataset [29] show that our proposed method is much faster (4.1s per image) in detecting 3D objects in RGB-D images and performs better (3 mAP higher) than the state-of-the-art method that is 4.7 times slower and comparably to the method that is two orders of magnitude slower. This work hints at the idea that 2D-driven object detection in 3D should be further explored, especially in cases where the 3D input is sparse.

  16. Surface WAter Scenario Help (SWASH) version 5.3 : technical description

    NARCIS (Netherlands)

    Roller, te J.A.; Berg, van den F.; Adriaanse, P.I.; Jong, de A.; Beltman, W.H.J.

    2015-01-01

    The user-friendly shell SWASH, acronym for Surface WAter Scenarios Help, assists the user in calculating pesticide exposure concentrations in the EU FOCUS surface water scenarios. SWASH encompasses five separate tools and models: (i) FOCUS Drift Calculator, calculating pesticide entries through

  17. Geometric and Colour Data Fusion for Outdoor 3D Models

    Directory of Open Access Journals (Sweden)

    Ricardo Chacón

    2012-05-01

    Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  18. 2D Versus 3D: The Relevance of the Mode of Presentation for the Economic Valuation of an Alpine Landscape

    Directory of Open Access Journals (Sweden)

    Michael Getzner

    2016-06-01

    Full Text Available In order to value the transformation of landscapes from an economic perspective, survey respondents are usually presented with pictures of various landscapes with the aim to visualize differences in their appearance. The current paper presents a classroom experiment ascertaining differences, and potential advantages and disadvantages, of 2D versus 3D (stereoscopic presentations of landscape changes. The landscape to be valued was a traditional Alpine pasture in the Austrian Alps as a prominent example of natural and cultural heritage (traditional economy and specific ecology. Two alternative scenarios included, on the one hand, changes in agricultural uses, leading to natural afforestation (reforestation and decay of existing infrastructure (e.g., hiking trails. On the other hand, significantly extended tourism infrastructure (e.g., new attractions for visitors was presented. Two groups were presented manipulated pictures (2D/non-stereoscopic, and 3D (stereoscopic presentations with 3D glasses, respectively. Both groups were then asked for their perception of landscape changes. It turns out that significant differences between the two groups could be detected in terms of the frequency of vacations at Alpine pastures. For instance, respondents in the 3D stereoscopic group stated a significantly higher frequency of trips. However, on the other hand, they did not state a significantly different willingness-to-pay to prevent landscape changes disadvantageous in terms of sustainability. The study results thus suggest that the mode of presentation may affect the valuation of landscape changes depending on the valuation instrument.

  19. Hydrological Scenario Using Tools and Applications Available in enviroGRIDS Portal

    Science.gov (United States)

    Bacu, V.; Mihon, D.; Stefanut, T.; Rodila, D.; Cau, P.; Manca, S.; Soru, C.; Gorgan, D.

    2012-04-01

    the other hand, the applications can collaborate at the same architectural levels, which represent the horizontal interoperability. Both the horizontal and vertical interoperability is accomplished by services and by exchanging data. The calibration procedure requires huge computational resources, which are provided by the Grid infrastructure. On the other hand the scenario development through BASHYT requires a flexible way of interaction with the SWAT model in order to easily change the input model. The large user community of SWAT from the enviroGRIDS consortium or outside may greatly benefit from tools and applications related with the calibration process, scenario development and execution from the enviroGRIDS portal. [1]. enviroGRIDS project, http://envirogrids.net/ [2]. Gorgan D., Abbaspour K., Cau P., Bacu V., Mihon D., Giuliani G., Ray N., Lehmann A., Grid Based Data Processing Tools and Applications for Black Sea Catchment Basin. IDAACS 2011 - The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 15-17 September 2011, Prague. IEEE Computer Press, pp. 223 - 228 (2011). [3]. Soil and Water Assessment Tool, http://www.brc.tamus.edu/swat/index.html [4]. Bacu V., Mihon D., Rodila D., Stefanut T., Gorgan D., Grid Based Architectural Components for SWAT Model Calibration. HPCS 2011 - International Conference on High Performance Computing and Simulation, 4-8 July, Istanbul, Turkey, ISBN 978-1-61284-381-0, doi: 10.1109/HPCSim.2011.5999824, pp. 193-198 (2011). [5]. Manca S., Soru C., Cau P., Meloni G., Fiori M., A multi model and multiscale, GIS oriented Web framework based on the SWAT model to face issues of water and soil resource vulnerability. Presentation at the 5th International SWAT Conference, August 3-7, 2009, http://www.brc.tamus.edu/swat/4thswatconf/docs/rooma/session5/Cau-Bashyt.pdf [6]. Bacu V., Mihon D., Stefanut T., Rodila D., Gorgan D., Cau P., Manca S., Grid Based Services and

  20. ECRH and ECCD scenarios for W7-X

    Directory of Open Access Journals (Sweden)

    Laqua H.P.

    2012-09-01

    Full Text Available The main ECRH scenarios for the W7-X Stellarator are described. Both X2 (low and moderate densities and O2 scenarios (high density have been studied. Since O2 scenario cannot be realized without pre-heating, transition from X2 to O2 scenarios has been discussed. Due to a lack of Ohmic transformer, only ECCD is available for compensating the bootstrap current and for controlling the edge rotational transform value. The efficiency of ECCD for all main scenarios has been estimated. All simulations have been performed by a 1D transport code coupled self-consistently with ray-tracing code.

  1. Highly defined 3D printed chitosan scaffolds featuring improved cell growth.

    Science.gov (United States)

    Elviri, Lisa; Foresti, Ruben; Bergonzi, Carlo; Zimetti, Francesca; Marchi, Cinzia; Bianchera, Annalisa; Bernini, Franco; Silvestri, Marco; Bettini, Ruggero

    2017-07-12

    The augmented demand for medical devices devoted to tissue regeneration and possessing a controlled micro-architecture means there is a need for industrial scale-up in the production of hydrogels. A new 3D printing technique was applied to the automation of a freeze-gelation method for the preparation of chitosan scaffolds with controlled porosity. For this aim, a dedicated 3D printer was built in-house: a preliminary effort has been necessary to explore the printing parameter space to optimize the printing results in terms of geometry, tolerances and mechanical properties of the product. Analysed parameters included viscosity of the starting chitosan solution, which was measured with a Brookfield viscometer, and temperature of deposition, which was determined by filming the process with a cryocooled sensor thermal camera. Optimized parameters were applied to the production of scaffolds from solutions of chitosan alone or with the addition of raffinose as a viscosity modifier. Resulting hydrogels were characterized in terms of morphology and porosity. In vitro cell culture studies comparing 3D printed scaffolds with their homologous produced by solution casting evidenced an improvement in biocompatibility deriving from the production technique as well as from the solid state modification of chitosan stemming from the addition of the viscosity modifier.

  2. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  3. COMT Val(158) met genotype and striatal D(2/3) receptor binding in adults with 22q11 deletion syndrome.

    LENUS (Irish Health Repository)

    Boot, Erik

    2011-09-01

    Although catechol-O-methyltransferase (COMT) activity evidently affects dopamine function in prefrontal cortex, the contribution is assumed less significant in striatum. We studied whether a functional polymorphism in the COMT gene (Val(158) Met) influences striatal D(2\\/3) R binding ratios (D(2\\/3) R BP(ND) ) in 15 adults with 22q11 deletion syndrome and hemizygous for this gene, using single photon emission computed tomography and the selective D(2\\/3) radioligand [(123) I]IBZM. Met hemizygotes had significantly lower mean D(2\\/3) R BPND than Val hemizygotes. These preliminary data suggest that low COMT activity may affect dopamine levels in striatum in humans and this may have implications for understanding the contribution of COMT activity to psychiatric disorders.

  4. Delft3D turbine turbulence module v. 1.0.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-25

    and waves act as driving forces and a wide variety of transport formulae have been incorporated. For the suspended load this module connects to the 2D or 3D advection-diffusion solver of the FLOW module; density effects may be taken into account. An essential feature of the MOR module is the dynamic feedback with the FLOW and WAVE modules, which allow the flows and waves to adjust themselves to the local bathymetry and allows for simulations on any time scale from days (storm impact) to centuries (system dynamics). It can keep track of the bed composition to build up a stratigraphic record. The MOR module may be extended to include extensive features to simulate dredging and dumping scenarios. For over 30 years Deltares has been in the forefront of these types of combined morphological simulation techniques.”

  5. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  6. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  7. Simulation of current generation in a 3-D plasma model

    International Nuclear Information System (INIS)

    Tsung, F.S.; Dawson, J.M.

    1996-01-01

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A parallel circ v parallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting

  8. The future of nuclear power in China: Long-term scenarios - 5129

    International Nuclear Information System (INIS)

    Paltsev, S.; Zhang, D.

    2015-01-01

    Nuclear power will play an important role in reaching China government's 2020 goal of raising the proportion of energy produced by non-fossil fuel to 15 percent and stabilizing carbon emissions by 2030. It will also contribute to lower air pollution emissions. In the medium scenario, nuclear power development is constrained by the available sites verified in preliminary explorations. The installed nuclear power capacity reaches 160 GW by 2050. Nuclear generation grows ten times relative to the current capacity, but a share of nuclear power is still only 10% of total electricity generation in China by 2050. In the high scenario, the installed nuclear power capacity reaches 400 GW by 2050, which provides about 30% of electricity by 2050. In the low scenario of no licensing for new sites, the installed nuclear power capacity reaches 95 GW by 2050. For environmental impacts, in 2050 high scenario leads to about 20% reduction in total China's CO 2 emissions and about 25% reduction in a major air pollutant SO 2 relative to medium scenario. Availability of relatively cheap natural gas for electricity mostly replaces coal-based generation while keeping similar profiles for nuclear generation as in the high cost natural gas scenarios. (authors)

  9. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.; Politzer, P. A. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Diem, S. J.; Kaufman, M. C.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Doyle, E. J.; Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A.; Hosea, J. C.; Nagy, A.; Perkins, R.; Solomon, W. M.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maggiora, R.; Milanesio, D. [Politecnico di Torino, Dipartimento di Elettronica, Torino (Italy); Porkolab, M. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Turco, F. [Columbia University, New York, New York 10027 (United States)

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedly strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.

  10. Quantification of tumor morphology via 3D histology: application to oral cavity cancers

    Science.gov (United States)

    Doyle, Scott; Brandwein-Gensler, Margaret; Tomaszewski, John

    2016-03-01

    Traditional histopathology quantifies disease through the study of glass slides, i.e. two-dimensional samples that are representative of the overall process. We hypothesize that 3D reconstruction can enhance our understanding of histopathologic interpretations. To test this hypothesis, we perform a pilot study of the risk model for oral cavity cancer (OCC), which stratifies patients into low-, intermediate-, and high-risk for locoregional disease-free survival. Classification is based on study of hematoxylin and eosin (H and E) stained tissues sampled from the resection specimens. In this model, the Worst Pattern of Invasion (WPOI) is assessed, representing specific architectural features at the interface between cancer and non-cancer tissue. Currently, assessment of WPOI is based on 2D sections of tissue, representing complex 3D structures of tumor growth. We believe that by reconstructing a 3D model of tumor growth and quantifying the tumor-host interface, we can obtain important diagnostic information that is difficult to assess in 2D. Therefore, we introduce a pilot study framework for visualizing tissue architecture and morphology in 3D from serial sections of histopathology. This framework can be used to enhance predictive models for diseases where severity is determined by 3D biological structure. In this work we utilize serial H and E-stained OCC resections obtained from 7 patients exhibiting WPOI-3 (low risk of recurrence) through WPOI-5 (high risk of recurrence). A supervised classifier automatically generates a map of tumor regions on each slide, which are then co-registered using an elastic deformation algorithm. A smooth 3D model of the tumor region is generated from the registered maps, which is suitable for quantitative tumor interface morphology feature extraction. We report our preliminary models created with this system and suggest further enhancements to traditional histology scoring mechanisms that take spatial architecture into consideration.

  11. ITER vacuum vessel design (D201 subtask 1.3 and subtask 3). Final report

    International Nuclear Information System (INIS)

    1996-01-01

    ITER Task No. D201, Vacuum Vessel Design (Subtask 1.3 and Subtask 3), was initiated to propose and evaluate local vacuum vessel reinforcement alternatives in proximity to the Neutral Beam, Radial Mid-Plane, Top, and Divertor Ports. These areas were reported to be highly stressed regions based on the results of preliminary stress analyses performed by the USHT (US Home Team) and the ITER Joint Central Team (JCT) at the Garching JWS (Joint Work Site). Initial design activities focused on the divertor port region which was reported to experience the highest stress intensities. Existing stress analysis models and results were reviewed with the USHT stress analysts to obtain an overall understanding of the vessel response to the various applied loads. These reviews indicated that the reported stress intensities in the divertor port region were significantly affected by the loads applied to the vessel in adjacent regions

  12. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    Science.gov (United States)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  13. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  14. Integration of DYN3D inside the NURESIM platform

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Sanchez E, V. H.; Kliem, S.; Gommlich, A.; Rohde, U.

    2010-10-01

    The NURISP project (Nuclear Reactor Integrated Simulation Project) is focused on the further development of the European Nuclear Reactor Simulation (NURESIM) platform for advanced numerical reactor design and safety analysis tools. NURESIM is based on an open source platform - called SALOME - that offers flexible and powerful capabilities for pre- and post processing as well as for coupling of multi-physics and multi-scale solutions. The developments within the NURISP project are concentrated in the areas of reactors, physics, thermal hydraulics, multi-physics, and sensitivity and uncertainty methodologies. The aim is to develop experimentally validated advanced simulation tools including capabilities for uncertainty and sensitivity quantification. A unique feature of NURESIM is the flexibility in selecting the solvers for the area of interest and the interpolation and mapping schemes according to the problem under consideration. The Sub Project 3 (S P3) of NURISP is focused on the development of multi-physics methodologies at different scales and covering different physical fields (neutronics, thermal hydraulics and pin mechanics). One of the objectives of S P3 is the development of multi-physics methodologies beyond the state-of-the-art for improved prediction of local safety margins and design at pin-by-pin scale. The Karlsruhe Institute of Technology and the Research Center Dresden-Rossendorf are involved in the integration of the reactor dynamics code DYN3D into the SALOME platform for coupling with a thermal hydraulic sub-channel code (FLICA4) at fuel assembly and pin level. In this paper, the main capabilities of the SALOME platform, the steps for the integration process of DYN3D as well as selected preliminary results obtained for the DYN3D/FLICA4 coupling are presented and discussed. Finally the next steps for the validation of the coupling scheme at fuel assembly and pin basis are given. (Author)

  15. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    Science.gov (United States)

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display technology. Despite such advancements, traditional 2D modes of content presentation such as textbooks and slides are still the standard didactic equipment used to teach young students anatomy. More sophisticated methods of display can help to elucidate the complex 3D relationships between structures that are so often missed when viewing only 2D media, and can instill in students an appreciation for the interconnection between medicine and technology. Here we describe the design, implementation, and preliminary evaluation of a 3D virtual anatomy puzzle dedicated to helping users learn the anatomy of various organs and systems by manipulating 3D virtual data. The puzzle currently comprises several components of the human anatomy and can be easily extended to include additional organs and systems. The 3D virtual anatomy puzzle game was implemented and piloted using three display paradigms - a traditional 2D monitor, a 3D TV with active shutter glass, and the DK2 version Oculus Rift, as well as two different user interaction devices - a space mouse and traditional keyboard controls.

  16. Waste to biodiesel: A preliminary assessment for Saudi Arabia.

    Science.gov (United States)

    Rehan, M; Gardy, J; Demirbas, A; Rashid, U; Budzianowski, W M; Pant, Deepak; Nizami, A S

    2018-02-01

    This study presents a preliminary assessment of biodiesel production from waste sources available in the Kingdom of Saudi Arabia (KSA) for energy generation and solution for waste disposal issues. A case study was developed under three different scenarios: (S1) KSA population only in 2017, (S2) KSA population and pilgrims in 2017, and (S3) KSA population and pilgrims by 2030 using the fat fraction of the municipal solid waste. It was estimated that S1, S2, and S3 scenarios could produce around 1.08, 1.10 and 1.41 million tons of biodiesel with the energy potential of 43423, 43949 and 56493 TJ respectively. Furthermore, annual savings of US $55.89, 56.56 and 72.71 million can be generated from landfill diversion of food waste and added to the country's economy. However, there are challenges in commercialization of waste to biodiesel facilities in KSA, including waste collection and separation, impurities, reactor design and biodiesel quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs

  18. Merits of a Scenario Approach in Dredge Plume Modelling

    DEFF Research Database (Denmark)

    Pedersen, Claus; Chu, Amy Ling Chu; Hjelmager Jensen, Jacob

    2011-01-01

    Dredge plume modelling is a key tool for quantification of potential impacts to inform the EIA process. There are, however, significant uncertainties associated with the modelling at the EIA stage when both dredging methodology and schedule are likely to be a guess at best as the dredging...... contractor would rarely have been appointed. Simulation of a few variations of an assumed full dredge period programme will generally not provide a good representation of the overall environmental risks associated with the programme. An alternative dredge plume modelling strategy that attempts to encapsulate...... uncertainties associated with preliminary dredging programmes by using a scenario-based modelling approach is presented. The approach establishes a set of representative and conservative scenarios for key factors controlling the spill and plume dispersion and simulates all combinations of e.g. dredge, climatic...

  19. The prosa methodology for scenario development

    International Nuclear Information System (INIS)

    Grupa, J.B.

    2001-01-01

    In this paper a methodology for scenario development is proposed. The method is developed in an effort to convince ourselves (and others) that all conceivable future developments of a waste repository have been covered. To be able to assess all conceivable future developments, the method needs to be comprehensive. To convince us and others the method should be structured in such a way that the treatment of each conceivable future development is traceable. The methodology is currently being applied to two Dutch disposal designs. Preliminary results show that the elaborated method functions better than the original method. However, some elements in the method will need further refinement. (author)

  20. Procedure for preparation of 3-fluor-D-alanine, 2-deutero-3-fluor-D-alanine and 2,3,3-trideutero-3-fluor-D-alanine and their salts

    International Nuclear Information System (INIS)

    Kollonitsch, J.; Kahan, F.M.

    1971-01-01

    Procedures for the preparation of 3-fluor-D-alanine, 2-deutero-3-fluor-D-alanine and 2,3,3-trideutero-3-fluor-D-alanine, and salts of these compounds, are described. These new compounds are useful antibacterial substances not only applicable in the disinfection of pharmaceutical, dental and medical equipment, but also in the treatment of diseases caused by bacteria, and may be administered orally. While 3-fluor-L-alanine metabolises rapidly with toxic results, 3-fluor-D-alanine is much more slowly broken down in vivo and is not harmful in normal doses. Further it has been found that deuteration gives new deutero-analogues which are less subject to metabolic breaking down and still retain the antibacterial strength of the original compound. The in vivo activity is thereby increased and maintained. (JIW)

  1. The role of a preliminary PGY-3 in general surgery training.

    Science.gov (United States)

    Tarpley, Margaret J; Van Way, Charles; Friedell, Mark; Deveney, Karen; Farley, David; Mellinger, John; Scott, Bradford; Tarpley, John

    2014-01-01

    Even before the preliminary postgraduate year (PGY)-3 was eliminated from surgical residency, it had become increasingly difficult to fill general surgery PGY-4 vacancies. This ongoing need prompted the Association of Program Directors in Surgery (APDS) leadership to form a task force to study the possibility of requesting the restoration of the preliminary PGY-3 to Accreditation Council for Graduate Medical Education-approved general surgery residency programs. The task force conducted a 10-year review of the APDS list serve to ascertain the number of advertised PGY-4 open positions. Following the review of the list serve, the task force sent IRB-approved electronic REDCap surveys to 249 program directors (PDs) in general surgery. The list serve review revealed more than 230 requests for fourth-year residents, a number that most likely underestimates the need, as such, vacancies are not always advertised through the APDS. A total of 119 PDs (~48%) responded. In the last 10 years, these 119 programs needed an average of 2 PGY-4 residents (range: 0-8), filled 1.3 positions (range: 0-7), and left a position unfilled 1.3 times (range: 0-7). Methods for finding PGY-4 residents included making personal contacts with other PDs (52), posting on the APDS Topica List Serve (47), and using the APDS Web site for interested candidates on residency and fellowship job listings (52). Reasons for needing a PGY-4 resident included residents leaving the program (82), extra laboratory years (39), remediation (31), and approved program expansion (21), as well as other issues. Satisfaction scores for the added PGY-4 residents were more negative (43) than positive (30). Problems ranged from lack of preparation to professionalism. When queried as to an optimal number of preliminary residents needed nationally at the PGY-3 level, responses varied from 0 to 50 (34 suggested 10). The survey of PDs supports the need for the reintroduction of a limited number of Accreditation Council for

  2. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA.

    Science.gov (United States)

    Toutouzas, Konstantinos; Chatzizisis, Yiannis S; Riga, Maria; Giannopoulos, Andreas; Antoniadis, Antonios P; Tu, Shengxian; Fujino, Yusuke; Mitsouras, Dimitrios; Doulaverakis, Charalampos; Tsampoulatidis, Ioannis; Koutkias, Vassilis G; Bouki, Konstantina; Li, Yingguang; Chouvarda, Ioanna; Cheimariotis, Grigorios; Maglaveras, Nicos; Kompatsiaris, Ioannis; Nakamura, Sunao; Reiber, Johan H C; Rybicki, Frank; Karvounis, Haralambos; Stefanadis, Christodoulos; Tousoulis, Dimitris; Giannoglou, George D

    2015-06-01

    Geometrically-correct 3D OCT is a new imaging modality with the potential to investigate the association of local hemodynamic microenvironment with OCT-derived high-risk features. We aimed to describe the methodology of 3D OCT and investigate the accuracy, inter- and intra-observer agreement of 3D OCT in reconstructing coronary arteries and calculating ESS, using 3D IVUS and 3D QCA as references. 35 coronary artery segments derived from 30 patients were reconstructed in 3D space using 3D OCT. 3D OCT was validated against 3D IVUS and 3D QCA. The agreement in artery reconstruction among 3D OCT, 3D IVUS and 3D QCA was assessed in 3-mm-long subsegments using lumen morphometry and ESS parameters. The inter- and intra-observer agreement of 3D OCT, 3D IVUS and 3D QCA were assessed in a representative sample of 61 subsegments (n = 5 arteries). The data processing times for each reconstruction methodology were also calculated. There was a very high agreement between 3D OCT vs. 3D IVUS and 3D OCT vs. 3D QCA in terms of total reconstructed artery length and volume, as well as in terms of segmental morphometric and ESS metrics with mean differences close to zero and narrow limits of agreement (Bland-Altman analysis). 3D OCT exhibited excellent inter- and intra-observer agreement. The analysis time with 3D OCT was significantly lower compared to 3D IVUS. Geometrically-correct 3D OCT is a feasible, accurate and reproducible 3D reconstruction technique that can perform reliable ESS calculations in coronary arteries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Three-dimensional neutron kinetics-thermal-hydraulics VVER 1000 main steam line break analysis by RELAP5-3D code

    International Nuclear Information System (INIS)

    Frisani, A.; Parisi, C.; D'Auria, F.

    2007-01-01

    After the development and the assessment of Three-Dimensional (3D) Neutron Kinetics (NK) - 1D Thermal-Hydraulics (TH) coupled codes analyses methods, deterministic nuclear safety technology is nowadays producing noticeable efforts for the validation of 3D NK - 3D TH coupled codes analyses methods too. Thus, the purpose of this work was to address the capability of the RELAP5-3D 3D NK-3D TH code to reproduce VVER 1000 Nuclear Power Plant (NPP) core dynamic in simulating the mixing effects that could happen in the vessel downcomer and lower plenum during some scenarios. The work was developed in three steps. The first step dealt with the 3D TH modeling of the Kozloduy-6 VVER 1000 reactor pressure vessel. Then this model was validated following a Steam Generator Isolation transient. The second step has been the development of a 3D NK nodalization for the reactor core region. Then the 3D NK model was directly coupled with the previously developed 3D TH model. The third step was the calculation of a Main Steam Line Break (MSLB) transient. The 3D NK global nuclear parameters were then compared with the 0-D results showing a good agreement; nevertheless only the 3D NK- 3D TH model allowed the calculation of each single assembly power trend for this strong NK-TH asymmetric transient. (author)

  4. The 3d8-(3d74p + 3p53d9) transitions in Br X: A striking case of configuration interaction

    International Nuclear Information System (INIS)

    Kleef, T.A.M. van; Uylings, P.H.M.; Ryabtsev, A.N.; Podobedova, L.I.; Joshi, Y.N.

    1988-01-01

    The spectrum of nine times ionized bromine (Br X) was photographed in the 90-120 A wavelength region on a variety of grazing incidence spectrographs using an open spark and a triggered spark as light sources. The analysis of the 3d 8 -(3d 7 4p + 3p 5 3d 9 ) transitions has resulted in establishing all 9 levels of the 3d 8 configuration, all 12 levels of the 3p 5 3d 9 configuration and 99 out of 110 levels of the 3d 7 4p configuration. The excitation probability of the 3p inner-shell electron increases with nuclear charge and in Br X is comparable with the excitation probability of the optical electrons resulting in a very strong configuration interaction between the 3p 5 3d 9 and 3d 7 4p configurations. Parametric calculations treating these configurations as one super configuration support the analysis. Two hundred and thirty two lines have been classified in this spectrum. (orig.)

  5. Engineering and environmental remediation scenarios due to leakage from the Gulf War oil spill using 3-D numerical contaminant modellings

    Science.gov (United States)

    Yihdego, Yohannes; Al-Weshah, Radwan A.

    2017-11-01

    The transport groundwater modelling has been undertaken to assess potential remediation scenarios and provide an optimal remediation options for consideration. The purpose of the study was to allow 50 years of predictive remediation simulation time. The results depict the likely total petroleum hydrocarbon migration pattern in the area under the worst-case scenario. The remediation scenario simulations indicate that do nothing approach will likely not achieve the target water quality within 50 years. Similarly, complete source removal approach will also likely not achieve the target water quality within 50 years. Partial source removal could be expected to remove a significant portion of the contaminant mass, but would increase the rate of contaminant recharge in the short to medium term. The pump-treat-reinject simulation indicates that the option appears feasible and could achieve a reduction in the area of the 0.01 mg/L TPH contour area for both Raudhatain and Umm Al-Aish by 35 and 30%, respectively, within 50 years. The rate of improvement and the completion date would depend on a range of factors such as bore field arrangements, pumping rates, reinjection water quality and additional volumes being introduced and require further optimisation and field pilot trials.

  6. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.

    Science.gov (United States)

    Abudayyeh, Islam; Gordon, Brent; Ansari, Mohammad M; Jutzy, Kenneth; Stoletniy, Liset; Hilliard, Anthony

    2018-06-01

    The advent of more advanced 3D image processing, reconstruction, and a variety of three-dimensional (3D) printing technologies using different materials has made rapid and fairly affordable anatomically accurate models much more achievable. These models show great promise in facilitating procedural and surgical planning for complex congenital and structural heart disease. Refinements in 3D printing technology lend itself to advanced applications in the fields of bio-printing, hemodynamic modeling, and implantable devices. As a novel technology with a large variability in software, processing tools and printing techniques, there is not a standardized method by which a clinician can go from an imaging data-set to a complete model. Furthermore, anatomy of interest and how the model is used can determine the most appropriate technology. In this over-view we discuss, from the standpoint of a clinical professional, image acquisition, processing, and segmentation by which a printable file is created. We then review the various printing technologies, advantages and disadvantages when printing the completed model file, and describe clinical scenarios where 3D printing can be utilized to address therapeutic challenges. © 2017, Wiley Periodicals, Inc.

  7. ROOFN3D: DEEP LEARNING TRAINING DATA FOR 3D BUILDING RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Wichmann

    2018-05-01

    Full Text Available Machine learning methods have gained in importance through the latest development of artificial intelligence and computer hardware. Particularly approaches based on deep learning have shown that they are able to provide state-of-the-art results for various tasks. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a new 3D point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building reconstruction. It can be used, among others, to train semantic segmentation networks or to learn the structure of buildings and the geometric model construction. Further details about RoofN3D and the developed data preparation framework, which enables the automatic derivation of training data, are described in this paper. Furthermore, we provide an overview of other available 3D point cloud training data and approaches from current literature in which solutions for the application of deep learning to unstructured and not gridded 3D point cloud data are presented.

  8. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  9. Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation.

    Science.gov (United States)

    Samateh, Malick; Pottackal, Neethu; Manafirasi, Setareh; Vidyasagar, Adiyala; Maldarelli, Charles; John, George

    2018-05-09

    Chia (Salvia hispanica) and basil (Ocimum basilicum) seeds have the intrinsic ability to form a hydrogel concomitant with moisture-retention, slow releasing capability and proposed health benefits such as curbing diabetes and obesity by delaying digestion process. However, the underlying mode of gelation at nanoscopic level is not clearly explained or explored. The present study elucidates and corroborates the hypothesis that the gelling behavior of such seeds is due to their nanoscale 3D-network formation. The preliminary study revealed the influence of several conditions like polarity, pH and hydrophilicity/hydrophobicity on fiber extrusion from the seeds which leads to gelation. Optical microscopic analysis clearly demonstrated bundles of fibers emanating from the seed coat while in contact with water, and live growth of fibers to form 3D network. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies confirmed 3D network formation with fiber diameters ranging from 20 to 50 nm.

  10. Comparative evaluation of HD 2D/3D laparoscopic monitors and benchmarking to a theoretically ideal 3D pseudodisplay: even well-experienced laparoscopists perform better with 3D.

    Science.gov (United States)

    Wilhelm, D; Reiser, S; Kohn, N; Witte, M; Leiner, U; Mühlbach, L; Ruschin, D; Reiner, W; Feussner, H

    2014-08-01

    Though theoretically superior to standard 2D visualization, 3D video systems have not yet achieved a breakthrough in laparoscopy. The latest 3D monitors, including autostereoscopic displays and high-definition (HD) resolution, are designed to overcome the existing limitations. We performed a randomized study on 48 individuals with different experience levels in laparoscopy. Three different 3D displays (glasses-based 3D monitor, autostereoscopic display, and a mirror-based theoretically ideal 3D display) were compared to a 2D HD display by assessing multiple performance and mental workload parameters and rating the subjects during a laparoscopic suturing task. Electromagnetic tracking provided information on the instruments' pathlength, movement velocity, and economy. The usability, the perception of visual discomfort, and the quality of image transmission of each monitor were subjectively rated. Almost all performance parameters were superior with the conventional glasses-based 3D display compared to the 2D display and the autostereoscopic display, but were often significantly exceeded by the mirror-based 3D display. Subjects performed a task faster and with greater precision when visualization was achieved with the 3D and the mirror-based display. Instrument pathlength was shortened by improved depth perception. Workload parameters (NASA TLX) did not show significant differences. Test persons complained of impaired vision while using the autostereoscopic monitor. The 3D and 2D displays were rated user-friendly and applicable in daily work. Experienced and inexperienced laparoscopists profited equally from using a 3D display, with an improvement in task performance about 20%. Novel 3D displays improve laparoscopic interventions as a result of faster performance and higher precision without causing a higher mental workload. Therefore, they have the potential to significantly impact the further development of minimally invasive surgery. However, as shown by the

  11. A LOW-COST AND LIGHTWEIGHT 3D INTERACTIVE REAL ESTATE-PURPOSED INDOOR VIRTUAL REALITY APPLICATION

    Directory of Open Access Journals (Sweden)

    K. Ozacar

    2017-11-01

    Full Text Available Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  12. a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application

    Science.gov (United States)

    Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.

    2017-11-01

    Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  13. Minimally invasive vascular imaging using 3D-CTA and 3D-MRA. Update

    International Nuclear Information System (INIS)

    Hayashi, Hiromitsu; Kawamata, Hiroshi; Takagi, Ryo; Amano, Yasuo; Wakabayashi, Hiroyuki; Ichikawa, Kazuo; Kumazaki, Tatsuo

    1998-01-01

    Conventional angiography is considered the standard of reference for diagnostic imaging of vascular diseases with respect to its temporal and spatial resolution. This procedure, however is invasive and repeated studies are difficult, and arterial complications are occasionally associated in catheter-based conventional angiography. Recent advances in diagnostic imaging have facilitated three-dimensional CT angiography (3D-CTA) using the volumetric acquisition capabilities inherent in spiral CT and three-dimensional MR angiography (3D-MRA) using the 3D gradient-echo sequence with a bolus injection of Gd-DTPA. These techniques can provide vascular images exceedingly similar to conventional angiograms within a short acquisition time. 3D-CTA and 3D-MRA are considered to be promising, minimally invasive methods for obtaining images of the vasculature, and alternatives to catheter angiography. This study reviews the current status of 3D-CTA and 3D-MRA, with emphasis on the clinical usefulness of three-dimensional diagnostic imaging for the evaluation of diverse vascular pathologies. (author)

  14. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    Science.gov (United States)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Data Infrastructure (CGDI) metadata which is an implementation of North American Profile of ISO-19115. The comparison analyzes the two metadata against three simulated scenarios about discovering needed 3D geo-spatial datasets. Considering specific metadata about 3D geospatial models, the proposed metadata-set has six additional classes on geometric dimension, level of detail, geometric modeling, topology, and appearance information. In addition classes on data acquisition, preparation, and modeling, and physical availability have been specialized for 3D geospatial models.

  15. Effect of preliminary heat treatment on phase transformations and properties of the Kh15N5D2T (VNS-2) steel

    International Nuclear Information System (INIS)

    Madyanov, S.A.; Voronenko, B.I.; Makhnev, E.S.

    1978-01-01

    It is shown that preliminary heat treatment has a significant effect on the α→γ transformation kinetics, the quantity of residual austenite, the grain size and mechanical properties of the Kh15N5D2T steel after final heat treatment. The preliminary heat treatment regimes leading to the increase of the quantity of residual austenite and to grain refining increase the work of crack propagation in the finally strengthened state. The optimum properties were obtained after threefold preliminary tempering for 1h at 650 deg C. An approximately constant relation of α- and γ-phases (approximately 50%) is observed at 625 deg C irrespective of the investigated regimes of preliminary heat treatment

  16. 3dRPC: a web server for 3D RNA-protein structure prediction.

    Science.gov (United States)

    Huang, Yangyu; Li, Haotian; Xiao, Yi

    2018-04-01

    RNA-protein interactions occur in many biological processes. To understand the mechanism of these interactions one needs to know three-dimensional (3D) structures of RNA-protein complexes. 3dRPC is an algorithm for prediction of 3D RNA-protein complex structures and consists of a docking algorithm RPDOCK and a scoring function 3dRPC-Score. RPDOCK is used to sample possible complex conformations of an RNA and a protein by calculating the geometric and electrostatic complementarities and stacking interactions at the RNA-protein interface according to the features of atom packing of the interface. 3dRPC-Score is a knowledge-based potential that uses the conformations of nucleotide-amino-acid pairs as statistical variables and that is used to choose the near-native complex-conformations obtained from the docking method above. Recently, we built a web server for 3dRPC. The users can easily use 3dRPC without installing it locally. RNA and protein structures in PDB (Protein Data Bank) format are the only needed input files. It can also incorporate the information of interface residues or residue-pairs obtained from experiments or theoretical predictions to improve the prediction. The address of 3dRPC web server is http://biophy.hust.edu.cn/3dRPC. yxiao@hust.edu.cn.

  17. Fabrication of 3D detectors with columnar electrodes of the same doping type

    International Nuclear Information System (INIS)

    Ronchin, Sabina; Boscardin, Maurizio; Piemonte, Claudio; Pozza, Alberto; Zorzi, Nicola; Dalla Betta, Gian-Franco; Bosisio, Luciano; Pellegrini, Giulio

    2007-01-01

    Recently, we presented a new 3D detector architecture aimed at simplifying the manufacturing process, making it more suitable for high-volume production. In particular, the proposed device features electrodes of one doping type only, e.g., n + columns in a p-type substrate. In this paper we report on the fabrication at ITC-irst of the first batch of prototypes. The main issues related to the fabrication process along with preliminary results from the electrical characterization of different detectors and test structures are discussed

  18. Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3

    DEFF Research Database (Denmark)

    Didriksen, Allan; Burild, Anders; Jakobsen, Jette

    2015-01-01

    stored in all adipose tissue in the body, the median body store was 6.6 mg vitamin D-3 and 0.12 mg 25(OH)D-3 in those given vitamin D-3. Conclusions: Subcutaneous adipose tissue may store large amounts of vitamin D-3. The clinical importance of this storage needs to be determined.......Objective: The objective was to assess the amount of vitamin D-3 stored in adipose tissue after long-term supplementation with high dose vitamin D-3. Design: A cross-sectional study on 29 subjects with impaired glucose tolerance who had participated in a randomized controlled trial with vitamin D-3...... 20 000 IU (500 mu g) per week vs placebo for 3-5 years. Methods: Abdominal subcutaneous fat tissue was obtained by needle biopsy for the measurements of vitamin D-3 and 25-hydroxyvitamin D-3 (25(OH)D-3). Body fat was measured with dual-energy X-ray absorptiometry, and serum 25(OH)D-3 level...

  19. 3D analysis of semiconductor devices: A combination of 3D imaging and 3D elemental analysis

    Science.gov (United States)

    Fu, Bianzhu; Gribelyuk, Michael A.

    2018-04-01

    3D analysis of semiconductor devices using a combination of scanning transmission electron microscopy (STEM) Z-contrast tomography and energy dispersive spectroscopy (EDS) elemental tomography is presented. 3D STEM Z-contrast tomography is useful in revealing the depth information of the sample. However, it suffers from contrast problems between materials with similar atomic numbers. Examples of EDS elemental tomography are presented using an automated EDS tomography system with batch data processing, which greatly reduces the data collection and processing time. 3D EDS elemental tomography reveals more in-depth information about the defect origin in semiconductor failure analysis. The influence of detector shadowing and X-rays absorption on the EDS tomography's result is also discussed.

  20. Atmospheric composition calculations for evaluation of climate scenarios

    International Nuclear Information System (INIS)

    Krol, M.S.; Woerd, H.J. van der

    1994-01-01

    The future radiative forcing by non-CO 2 greenhouse gases depends strongly on the behavior of the OH radical, which represents the primary sink for CH 4 , CO and H(C)FCs in the atmosphere. The authors present a simple model to describe the changes in the concentration of the main greenhouse gases. The focus is on the description of the atmospheric chemistry of OH and the important tropospheric oxidant and greenhouse gas O 3 . Changes in the equilibrium concentrations of these oxidants will change the trends in the concentrations of greenhouse gases, especially CH 4 . The model is applied to the 1992 IPCC emissions scenarios, as well as to an IMAGE 2.0 scenario, based on 'Conventional Wisdom' assumptions. The following major results are found: for the central estimate of emissions assuming no additional policies (IS92a), the concentration of CH 4 keeps rising at rates similar to those observed over the last decades; results for the other IS92 scenarios range from stabilization early in the next century (IS92d) to an ever increasing rate of accumulation of CH 4 in the atmosphere (IS92f), even though these scenarios assume no policy interventions. The IMAGE 2.0 Conventional Wisdom scenario is similar to IS92a before the year 2025; afterwards the expansion of agricultural area significantly decreases the emissions of hydrocarbons and NO x from savanna burning, not represented in the IS92 scenarios. This leads to stable levels of atmospheric CH 4 after 2025

  1. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  2. Complete Tem-Tomography: 3D Structure of Gems Cluster

    Science.gov (United States)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  3. Vitamin D-3 and 25-hydroxyvitamin D-3 in raw and cooked pork cuts

    DEFF Research Database (Denmark)

    Clausen, Ina; Jakobsen, Jette; Leth, Torben

    2003-01-01

    The contents of vitamin D-3 and its metabolically active metabolite 25-hydroxyvitamin D-3 (25OHD(3)) were examined by HPLC in different parts of four common raw pork cuts (loin boneless, leg inside, thin belly, neck) and in cooked meat (loin boneless). In whole raw pork cuts, varying in fat content......, and that rind, despite its limited fat content, has a high concentration of vitamin D-3 and 25OHD(3). Cooking increased vitamin D-3 and 25OHD(3) calculated per 100 g of tissue in all parts and in the whole cut (in whole cuts in raw and cooked meat, respectively: vitamin D-3: 0.15 (0.08-0.24) mug/100 g and 0...... 25OHD(3) contributes significantly to vitamin D activity. Food databases should include concentrations of both vitamin D and 25OHD(3). (C) 2003 Elsevier Ltd. All rights reserved....

  4. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  5. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C. (Cornell); (Scripps); (NIDA); (Columbia); (UCSD); (Receptos)

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  6. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  7. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Taska, Abraham

    2014-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  8. Anti-3D Weapon Model Detection for Safe 3D Printing Based on Convolutional Neural Networks and D2 Shape Distribution

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-03-01

    Full Text Available With the development of 3D printing, weapons are easily printed without any restriction from the production managers. Therefore, anti-3D weapon model detection is necessary issue in safe 3D printing to prevent the printing of 3D weapon models. In this paper, we would like to propose an anti-3D weapon model detection algorithm to prevent the printing of anti-3D weapon models for safe 3D printing based on the D2 shape distribution and an improved convolutional neural networks (CNNs. The purpose of the proposed algorithm is to detect anti-3D weapon models when they are used in 3D printing. The D2 shape distribution is computed from random points on the surface of a 3D weapon model and their geometric features in order to construct a D2 vector. The D2 vector is then trained by improved CNNs. The CNNs are used to detect anti-3D weapon models for safe 3D printing by training D2 vectors which have been constructed from the D2 shape distribution of 3D weapon models. Experiments with 3D weapon models proved that the D2 shape distribution of 3D weapon models in the same class is the same. Training and testing results also verified that the accuracy of the proposed algorithm is higher than the conventional works. The proposed algorithm is applied in a small application, and it could detect anti-3D weapon models for safe 3D printing.

  9. Comparative Geometrical Accuracy Investigations of Hand-Held 3d Scanning Systems - AN Update

    Science.gov (United States)

    Kersten, T. P.; Lindstaedt, M.; Starosta, D.

    2018-05-01

    Hand-held 3D scanning systems are increasingly available on the market from several system manufacturers. These systems are deployed for 3D recording of objects with different size in diverse applications, such as industrial reverse engineering, and documentation of museum exhibits etc. Typical measurement distances range from 0.5 m to 4.5 m. Although they are often easy-to-use, the geometric performance of these systems, especially the precision and accuracy, are not well known to many users. First geometrical investigations of a variety of diverse hand-held 3D scanning systems were already carried out by the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg (HCU Hamburg) in cooperation with two other universities in 2016. To obtain more information about the accuracy behaviour of the latest generation of hand-held 3D scanning systems, HCU Hamburg conducted further comparative geometrical investigations using structured light systems with speckle pattern (Artec Spider, Mantis Vision PocketScan 3D, Mantis Vision F5-SR, Mantis Vision F5-B, and Mantis Vision F6), and photogrammetric systems (Creaform HandySCAN 700 and Shining FreeScan X7). In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data was acquired by measurements with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  10. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.

    Science.gov (United States)

    Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou

    2017-11-01

    In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.

  11. Influence of preliminary loading on fracture toughness of ceramics ZrO2-(3,4) mol.% Y2O3

    International Nuclear Information System (INIS)

    Akimov, G.Ya.; Timchenko, V.M.

    2001-01-01

    The effect of preliminary mechanical loading on the fracture toughness of ceramics of the ZrO 2 -3-4 mol.% Y 2 O 3 composition is studied. It is shown that the fracture toughness monotonously increases and the increment constitutes ∼ 50% from the initial value. It is supposed that by the preliminary loading there takes place slow isothermal stage of the martensitic phase transformation of the part of the material grains. This leads to increase in the transformation degree by mechanical testing which is expressed in the increase in the fracture toughness [ru

  12. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  13. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  14. The future of scenarios: issues in developing new climate change scenarios

    International Nuclear Information System (INIS)

    Pitcher, Hugh M

    2009-01-01

    In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.

  15. The future of scenarios: issues in developing new climate change scenarios

    Science.gov (United States)

    Pitcher, Hugh M.

    2009-04-01

    In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.

  16. 3D motion graphics for 2D artists conquering the 3rd dimension

    CERN Document Server

    Byrne, Bill

    2011-01-01

    Add 3D to your mograph skillset! For the experienced 2D artist, this lavishly illustrated, 4 color book presents the essentials to building and compositing 3D elements into your 2D world of film and broadcast. Concepts and techniques are presented in concise, step-by-step tutorials, hundreds of which are featured throughout. Featured applications include Photoshop, Illustrator, After Effects, and Cinema 4D. Lessons include exploring the expanded 3D functionality of the Adobe Creative Suite applications (After Effects, Photoshop, and Illustrator) through a series of practical tutorials. More

  17. Morphological MRI and 3D proton spectroscopy using endorectal coil in the diagnostics of prostate cancer - preliminary experience

    International Nuclear Information System (INIS)

    Chrzan, R.; Urbanik, A.; Dobrowolski, Z.; Lipczynski, M.

    2006-01-01

    Morphological MR imaging using endorectal coil has high sensitivity but insufficient specificity in the detection of prostatic cancer. Higher specificity may be obtained by combining morphological MR with data on local metabolic disturbances in MR spectroscopy. The aim of our study was to assess the diagnostic accuracy of combined morphological MR and 3D proton spectroscopy using endorectal coil in prostate cancer detection. Morphological MR and 3D proton MR spectroscopy were performed in 20 patients with suspicion of prostate cancer on the basis of DRE, TRUS and/or PSA levels, finally verified in biopsy after MR. The examinations were performed with a 1.5 T GE Signa Excite scanner using an endorectal coil. We used axial, coronal and sagittal T2 FSE, axial T1 SE and 3D PROSE (PROstate Spectroscopy and imaging Examination) sequences. The diagnostic accuracy of combined morphological and spectroscopy assessment was compared to the accuracy of morphological MR alone. The specificity, PPV, and NPV of MR imaging using endorectal coil in the detection of prostatic cancer were higher in combined morphological and spectroscopic assessment compared to morphological assessment alone. 3D MR spectroscopy, in comparison to morphological MR imaging, provides additional data concerning metabolic disturbances in prostate cancer foci. The use of combined morphological MR and MR spectroscopy can improve the specificity of prostate cancer detection. (author)

  18. 3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study

    International Nuclear Information System (INIS)

    Hodel, Jerome; Besson, Pierre; Pruvo, Jean-Pierre; Leclerc, Xavier; Rahmouni, Alain; Grandjacques, Benedicte; Luciani, Alain; Petit, Eric; Lebret, Alain; Outteryck, Olivier; Benadjaoud, Mohamed Amine; Maraval, Anne; Decq, Philippe

    2014-01-01

    To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery. Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared. Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients. 3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus. (orig.)

  19. 3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome [Hopital Roger Salengro, Department of Neuroradiology, Lille (France); Hopital Roger Salengro, Service de Neuroradiologie, Lille (France); Besson, Pierre; Pruvo, Jean-Pierre; Leclerc, Xavier [Hopital Roger Salengro, Department of Neuroradiology, Lille (France); Rahmouni, Alain; Grandjacques, Benedicte; Luciani, Alain [Hopital Henri Mondor, Department of Radiology, Creteil (France); Petit, Eric; Lebret, Alain [Signals Images and Intelligent Systems Laboratory, Creteil (France); Outteryck, Olivier [Hopital Roger Salengro, Department of Neurology, Lille (France); Benadjaoud, Mohamed Amine [Radiation Epidemiology Team, CESP, Centre for Research in Epidemiology and Population Health U1018, Villejuif (France); Maraval, Anne [Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Decq, Philippe [Hopital Henri Mondor, Department of Neurosurgery, Creteil (France)

    2014-01-15

    To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery. Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared. Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients. 3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus. (orig.)

  20. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  1. FUN3D Manual: 13.3

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2018-01-01

    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. 3D deblending of simultaneous source data based on 3D multi-scale shaping operator

    Science.gov (United States)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin

    2018-04-01

    We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.

  3. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  4. Synthesis of high specific activity [1-3H]-D-glucose

    International Nuclear Information System (INIS)

    Saljoughian, M.; Morimoto, Hiromi; Williams, P.G.; Lee, Hakno

    1991-01-01

    Specifically labeled [1- 3 H]-D-glucose has been used for metabolic and mechanistic studies in erythrocytes. In vitro metabolism of the a and b anomers of the tritiated glucose was readily traced by 3 H NMR spectroscopy. Initial studies used labeled glucose obtained by catalytic exchange labeling (at 4.5-9 Ci/mmole, or 15-30% tritiated at the C-1 position), and this necessitated sample glucose concentrations of 2-4 times physiological. The availability of glucose at maximum specific activity (28.7 Ci/mmole, 100% at the C-1 position) would allow the authors to observe metabolic behavior using 1 mM levels of glucose. Accordingly, they have devised a new route for the synthesis of C-1 tritiated glucose, involving the synthesis of 4,6-O-benzylidene-D-gluconolactone followed by reduction with supertritide. Preliminary work with commercial superdeuteride is complete, and chromatographic and NMR analyses are promising. The analogous tritium reactions are currently underway, and experimental results are presented for all stages of investigation. This strategy should be generally applicable to the labeling of many reducing sugars, with the substrates 2-deoxyglucose and maltotriose being of particular interest to their research

  5. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  6. 3D histomorphometric quantification from 3D computed tomography

    International Nuclear Information System (INIS)

    Oliveira, L.F. de; Lopes, R.T.

    2004-01-01

    The histomorphometric analysis is based on stereologic concepts and was originally applied to biologic samples. This technique has been used to evaluate different complex structures such as ceramic filters, net structures and cancellous objects that are objects with inner connected structures. The measured histomorphometric parameters of structure are: sample volume to total reconstructed volume (BV/TV), sample surface to sample volume (BS/BV), connection thickness (Tb Th ), connection number (Tb N ) and connection separation (Tb Sp ). The anisotropy was evaluated as well. These parameters constitute the base of histomorphometric analysis. The quantification is realized over cross-sections recovered by cone beam reconstruction, where a real-time microfocus radiographic system is used as tomographic system. The three-dimensional (3D) histomorphometry, obtained from tomography, corresponds to an evolution of conventional method that is based on 2D analysis. It is more coherent with morphologic and topologic context of the sample. This work shows result from 3D histomorphometric quantification to characterize objects examined by 3D computer tomography. The results, which characterizes the internal structures of ceramic foams with different porous density, are compared to results from conventional methods

  7. a Smartphone-Based 3d Pipeline for the Creative Industry - the Replicate EU Project

    Science.gov (United States)

    Nocerino, E.; Lago, F.; Morabito, D.; Remondino, F.; Porzi, L.; Poiesi, F.; Rota Bulo, S.; Chippendale, P.; Locher, A.; Havlena, M.; Van Gool, L.; Eder, M.; Fötschl, A.; Hilsmann, A.; Kausch, L.; Eisert, P.

    2017-02-01

    During the last two decades we have witnessed great improvements in ICT hardware and software technologies. Three-dimensional content is starting to become commonplace now in many applications. Although for many years 3D technologies have been used in the generation of assets by researchers and experts, nowadays these tools are starting to become commercially available to every citizen. This is especially the case for smartphones, that are powerful enough and sufficiently widespread to perform a huge variety of activities (e.g. paying, calling, communication, photography, navigation, localization, etc.), including just very recently the possibility of running 3D reconstruction pipelines. The REPLICATE project is tackling this particular issue, and it has an ambitious vision to enable ubiquitous 3D creativity via the development of tools for mobile 3D-assets generation on smartphones/tablets. This article presents the REPLICATE project's concept and some of the ongoing activities, with particular attention being paid to advances made in the first year of work. Thus the article focuses on the system architecture definition, selection of optimal frames for 3D cloud reconstruction, automated generation of sparse and dense point clouds, mesh modelling techniques and post-processing actions. Experiments so far were concentrated on indoor objects and some simple heritage artefacts, however, in the long term we will be targeting a larger variety of scenarios and communities.

  8. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Science.gov (United States)

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  9. Simulations of KSTAR high performance steady state operation scenarios

    International Nuclear Information System (INIS)

    Na, Yong-Su; Kessel, C.E.; Park, J.M.; Yi, Sumin; Kim, J.Y.; Becoulet, A.; Sips, A.C.C.

    2009-01-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; β N above 3, H 98 (y, 2) up to 2.0, f BS up to 0.76 and f NI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q min is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work

  10. 3D sound in the telepresence project BEAMING

    DEFF Research Database (Denmark)

    Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben

    2012-01-01

    three applications: A general purpose theatrical scene, a teaching situation and a medical patient-visiting-doctor scenario. The March 2012 project review deals with the teaching situation. This involves a single microphone recording followed by signal processing that reconstructs the spatial content......The involvement of Aalborg University in the EU project BEAMING will be presented. BEAMING deals with telepresence including multiple modalities; vision, haptics and audio, of which the latter is of main interest here. The setup consists of two types of locations: The Destination, where the Locals...... for the Visitor, 3D audio is provided through headphones. It is rendered based on the Locals' coordinates via a common Internet database including local positional tracking to ensure that information on the Visitor's head rotation has a minimum delay through the network. The BEAMING project currently addresses...

  11. MAP3D: a media processor approach for high-end 3D graphics

    Science.gov (United States)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  12. The 3d84s and 3d84d configurations of the fourth spectrum of zinc: Zn IV

    International Nuclear Information System (INIS)

    Joshi, Y.N.; Van Kleef, T.A.M.

    1987-01-01

    The spectrum of zinc was photographed in the region 2000 A - 820 A on a 6.65 m and a 10.7 m normal incidence spectrograph using a sliding spark and a triggered spark source. The new measurements have helped us to confirm the earlier analysis of the 3d 8 4s-3d 8 4p transitions and locate the missing level 3d 8 4s 2 S 1/2 , and study the 3d 8 4p-3d 8 4d transitions. 59 out of 67 levels of the 3d 8 4d configuration have been established. Parametric least-squares-fitted calculations support the analysis. Two hundred and eight (208) additional lines have been classified in the Zn IV analysis. (orig.)

  13. Inertial Pocket Navigation System: Unaided 3D Positioning

    Directory of Open Access Journals (Sweden)

    Estefania Munoz Diaz

    2015-04-01

    Full Text Available Inertial navigation systems use dead-reckoning to estimate the pedestrian’s position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care.

  14. Inertial Pocket Navigation System: Unaided 3D Positioning

    Science.gov (United States)

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  15. Acquiring 3D scene information from 2D images

    NARCIS (Netherlands)

    Li, Ping

    2011-01-01

    In recent years, people are becoming increasingly acquainted with 3D technologies such as 3DTV, 3D movies and 3D virtual navigation of city environments in their daily life. Commercial 3D movies are now commonly available for consumers. Virtual navigation of our living environment as used on a

  16. Time within time: 3D printed sculptures within holographic art practice

    Science.gov (United States)

    Chang, Yin-Ren; Richardson, Martin

    2015-03-01

    Holography is a time-based medium, which uses its own aesthetics and techniques to interpret colour and light. This exclusive descriptive language does not simply represent a particular scenario in the moment of recording, but also documents the performance light during the shooting process. Nowadays 3D graphic software and Internet offer practitioners greater mobility in both the development and the delivery of their artwork. Furthermore, the diverse web-based social media presents unlimited and various spaces to facilitate artists in the exchange of creative knowledge, it enables them to collaborate on their projects with external connections - audience, specialists, etc. Within the analogue holography art practice, there is a primary lack of interface, or, in other words, it cannot utilise any digital creative tools. 3D printing makes it possible to bridge the gap between cyber space and the holographic world; even more so, as this emerging technique also becomes a platform, which can connect computational data and light information. The application of 3D printing in contemporary art will reshape the process of creation, as well as the form of visual narrative itself. New technologies continually and increasingly involve the projection of another artistic dimension, and the term "visual" embarks on challenging the generally accepted notion of understanding art and interacting with it. As new pathways of practice are established, it will take years to build a complete understanding of this medium in order to be able to take a full advantage of the benefits its use offers. This paper is aimed at looking for the potential new ways of artistic expression, deriving from the interrelation between analogue holography and 3D printing. It will also attempt an articulate assessment of 3D printing within the dynamic holographic aesthetics.

  17. 2D-Driven 3D Object Detection in RGB-D Images

    KAUST Repository

    Lahoud, Jean; Ghanem, Bernard

    2017-01-01

    In this paper, we present a technique that places 3D bounding boxes around objects in an RGB-D scene. Our approach makes best use of the 2D information to quickly reduce the search space in 3D, benefiting from state-of-the-art 2D object detection

  18. Epidemiological and Economic Evaluation of Alternative On-Farm Management Scenarios for Ovine Footrot in Switzerland

    Directory of Open Access Journals (Sweden)

    Dana Zingg

    2017-05-01

    Full Text Available Footrot is a multifactorial infectious disease mostly affecting sheep, caused by the bacteria Dichelobacter nodosus. It causes painful feet lesions resulting in animal welfare issues, weight loss, and reduced wool production, which leads to a considerable economic burden in animal production. In Switzerland, the disease is endemic and mandatory coordinated control programs exist only in some parts of the country. This study aimed to compare two nationwide control strategies and a no intervention scenario with the current situation, and to quantify their net economic effect. This was done by sequential application of a maximum entropy model (MEM, epidemiological simulation, and calculation of net economic effect using the net present value method. Building upon data from a questionnaire, the MEM revealed a nationwide footrot prevalence of 40.2%. Regional prevalence values were used as inputs for the epidemiological model. Under the application of the nationwide coordinated control program without (scenario B and with (scenario C improved diagnostics [polymerase chain reaction (PCR test], the Swiss-wide prevalence decreased within 10 years to 14 and 5%, respectively. Contrary, an increase to 48% prevalence was observed when terminating the current control strategies (scenario D. Management costs included labor and material costs. Management benefits included reduction of fattening time and improved animal welfare, which is valued by Swiss consumers and therefore reduces societal costs. The net economic effect of the alternative scenarios B and C was positive, the one of scenario D was negative and over a period of 17 years quantified at CHF 422.3, 538.3, and −172.3 million (1 CHF = 1.040 US$, respectively. This implies that a systematic Swiss-wide management program under the application of the PCR diagnostic test is the most recommendable strategy for a cost-effective control of footrot in Switzerland.

  19. Preliminary results of hydrologic testing: The composite Umtanum basalt flow top at borehole RRL-2 (3,568 - 3,781 feet)

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1982-11-01

    This report presents preliminary results and description of hydrologic test activities for the composite Umtanum basalt flow top (3,568--3,781 feet) at Borehole RRL-2. Hydrologic tests conducted include two constant discharge air-lift and four slug tests. Preliminary results indicate an observed hydraulic head for the test interval of 405.7 feet above mean sea level. Transmissivity values determined from hydrologic tests performed, range between 244 to 481 ft 2 /day, with an assigned best estimate of 480 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 157 feet, is 3.1 ft/day. 7 refs., 9 figs., 3 tabs

  20. Possible climate change over Eurasia under different emission scenarios

    Science.gov (United States)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  1. 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production

    Energy Technology Data Exchange (ETDEWEB)

    Da Vià, Cinzia; Boscardil, Maurizio; Dalla Betta, GianFranco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Giacomini, Gabriele; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; La Rosa, Alessandro; Micelli, Andrea; Parker, Sherwood; Pellegrini, Giulio; Pohl, David-Leon; Povoli, Marco; Vianello, Elisa; Zorzi, Nicola; Watts, S. J.

    2013-01-01

    3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBL sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date.

  2. 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production

    Energy Technology Data Exchange (ETDEWEB)

    Da Vià, Cinzia, E-mail: cinzia.da.via@cern.ch [School of Physics and Astronomy, The University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom); Boscardil, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, GianFranco [DISI, Università degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Giacomini, Gabriele [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB) E-08193, Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Christopher [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); La Rosa, Alessandro [CERN CH 1211, Geneva 23 (Switzerland); Micelli, Andrea [Tne University of Udine and INFN, via del Cotonificio 108, 33100 Udine (Italy); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Pohl, David-Leon [Physikalisches Institut der Universität Bonn, Nußallee 12 D-53115, Bonn, Federal Republic of Germany (Germany); Povoli, Marco [DISI, Università degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); and others

    2013-01-21

    3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBL sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date.

  3. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes.

    Science.gov (United States)

    Yebes, J Javier; Bergasa, Luis M; García-Garrido, Miguel Ángel

    2015-04-20

    Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban scenarios is the detection of road participants (e.g., cyclists, pedestrians and vehicles). In this regard, this paper tackles the detection and orientation estimation of cars, pedestrians and cyclists, employing the challenging and naturalistic KITTI images. This work proposes 3D-aware features computed from stereo color images in order to capture the appearance and depth peculiarities of the objects in road scenes. The successful part-based object detector, known as DPM, is extended to learn richer models from the 2.5D data (color and disparity), while also carrying out a detailed analysis of the training pipeline. A large set of experiments evaluate the proposals, and the best performing approach is ranked on the KITTI website. Indeed, this is the first work that reports results with stereo data for the KITTI object challenge, achieving increased detection ratios for the classes car and cyclist compared to a baseline DPM.

  4. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes

    Directory of Open Access Journals (Sweden)

    J. Javier Yebes

    2015-04-01

    Full Text Available Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban scenarios is the detection of road participants (e.g., cyclists, pedestrians and vehicles. In this regard, this paper tackles the detection and orientation estimation of cars, pedestrians and cyclists, employing the challenging and naturalistic KITTI images. This work proposes 3D-aware features computed from stereo color images in order to capture the appearance and depth peculiarities of the objects in road scenes. The successful part-based object detector, known as DPM, is extended to learn richer models from the 2.5D data (color and disparity, while also carrying out a detailed analysis of the training pipeline. A large set of experiments evaluate the proposals, and the best performing approach is ranked on the KITTI website. Indeed, this is the first work that reports results with stereo data for the KITTI object challenge, achieving increased detection ratios for the classes car and cyclist compared to a baseline DPM.

  5. TOUCH INTERACTION WITH 3D GEOGRAPHICAL VISUALIZATION ON WEB: SELECTED TECHNOLOGICAL AND USER ISSUES

    Directory of Open Access Journals (Sweden)

    L. Herman

    2016-10-01

    Full Text Available The use of both 3D visualization and devices with touch displays is increasing. In this paper, we focused on the Web technologies for 3D visualization of spatial data and its interaction via touch screen gestures. At the first stage, we compared the support of touch interaction in selected JavaScript libraries on different hardware (desktop PCs with touch screens, tablets, and smartphones and software platforms. Afterward, we realized simple empiric test (within-subject design, 6 participants, 2 simple tasks, LCD touch monitor Acer and digital terrain models as stimuli focusing on the ability of users to solve simple spatial tasks via touch screens. An in-house testing web tool was developed and used based on JavaScript, PHP, and X3DOM languages and Hammer.js libraries. The correctness of answers, speed of users’ performances, used gestures, and a simple gesture metric was recorded and analysed. Preliminary results revealed that the pan gesture is most frequently used by test participants and it is also supported by the majority of 3D libraries. Possible gesture metrics and future developments including the interpersonal differences are discussed in the conclusion.

  6. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    Science.gov (United States)

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  7. 3D-modeling and 3D-printing explorations on Japanese tea ceremony utensils

    NARCIS (Netherlands)

    Levy, P.D.; Yamada, Shigeru

    2017-01-01

    In this paper, we inquire aesthetical aspects of the Japanese tea ceremony, described as the aesthetics in the imperfection, based on novel fabrication technologies: 3D-modeling and 3D-printing. To do so, 3D-printed utensils (chashaku and chasen) were iteratively designed for the ceremony and were

  8. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  9. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  10. The dimension added by 3D scanning and 3D printing of meteorites

    Science.gov (United States)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  11. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  12. A preliminary comprehensive dynamic analysis of the typical FaCT scenarios with JSFR and related fuel cycle facilities

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Ono, Kiyoshi; Ogawa, Takashi; Koma, Yoshikazu; Kawaguchi, Koichi

    2009-01-01

    A preliminary comprehensive dynamic analysis of the typical Fast Reactor (FR) deployment scenarios with JSFR and related fuel cycle facilities developed in 'FaCT: Fast Reactor Cycle Technology Development Project' was conducted. The scenarios were evaluated from some of the development targets and design goals in the FaCT project. The isotopic compositions of the nuclear fuels and wastes and the quantities of radioactive wastes (HLWs, LLWs) from Japanese nuclear fuel cycle facilities were calculated to grasp the sustainability characteristics. Regarding the long-term economics, the total cash out-flows and the average electricity generation costs to 22nd century were calculated. Cash out-flow peaks and waste generation peaks were found from 2030s to 2050s, 2090s to 2110s, and 2150s to 2170s because of the cost and wastes from decommissioning of the nuclear power plants and reprocessing plants for LWR spent fuel and the construction costs of them. Firstly, the major results of the reference case are explained combined with introduction of the function of the dynamic analysis tool (Supply Chain Management Code). The analysis is related to sustainability and economics in FaCT project development targets since they are important in the sustainability and economics evaluation. Secondly, the comparisons between the reference case and the three other option cases with their own issues of choice are explained. Those options are different breeding ratios, dual-purpose reprocessing plant, and Am-Cm recycling. As the tentative conclusions of the analyses are: the exploration of the optimal breeding ratio between B.R. =1.1 and 1.2 at the start up stage of FR is regarded as reasonable; the cost reduction of the dual purpose reprocessing plant resulted from the facility integration was confirmed though the cost estimation of the facility should be modified, it is a little bit too hasty to decide the manner of MA recycling because many issues to be considered are left at present

  13. A Unified Building Model for 3D Urban GIS

    Directory of Open Access Journals (Sweden)

    Ihab Hijazi

    2012-07-01

    Full Text Available Several tasks in urban and architectural design are today undertaken in a geospatial context. Building Information Models (BIM and geospatial technologies offer 3D data models that provide information about buildings and the surrounding environment. The Industry Foundation Classes (IFC and CityGML are today the two most prominent semantic models for representation of BIM and geospatial models respectively. CityGML has emerged as a standard for modeling city models while IFC has been developed as a reference model for building objects and sites. Current CAD and geospatial software provide tools that allow the conversion of information from one format to the other. These tools are however fairly limited in their capabilities, often resulting in data and information losses in the transformations. This paper describes a new approach for data integration based on a unified building model (UBM which encapsulates both the CityGML and IFC models, thus avoiding translations between the models and loss of information. To build the UBM, all classes and related concepts were initially collected from both models, overlapping concepts were merged, new objects were created to ensure the capturing of both indoor and outdoor objects, and finally, spatial relationships between the objects were redefined. Unified Modeling Language (UML notations were used for representing its objects and relationships between them. There are two use-case scenarios, both set in a hospital: “evacuation” and “allocating spaces for patient wards” were developed to validate and test the proposed UBM data model. Based on these two scenarios, four validation queries were defined in order to validate the appropriateness of the proposed unified building model. It has been validated, through the case scenarios and four queries, that the UBM being developed is able to integrate CityGML data as well as IFC data in an apparently seamless way. Constraints and enrichment functions are

  14. 3D PORFLO simulations of Loviisa steam generator

    International Nuclear Information System (INIS)

    Hovi, V.; Ilvonen, M.

    2010-01-01

    PORFLO is a 3-dimensional two-phase flow solver for porous media, developed at VTT originally by Jaakko Miettinen and now mainly by the author Ville Hovi. It is targeted at applications where 3D phenomena may be significant, but geometrical complexity does not allow for a CFD-style structure-fitted grid, such as steam generators and other heat exchangers, reactor cores or core debris beds. Basic features of PORFLO include staggered Cartesian grid and iterative solution of pressure and phase velocities (phase-coupled SIMPLE) based on 3D momentum equations, together with mass and energy equations, all for both liquid and vapour. A PORFLO model of the secondary side of a WWER-440 horizontal steam generator was developed and some preliminary simulations of its steady state operation were performed. To generate the necessary boundary condition on the primary tubes, an APROS system code model was used, from which a simple unidirectional transfer brings the tube surface temperatures to PORFLO. Feedwater is modelled by mass sources at the injection tube, with no consideration of its momentum. In the interphasial mass transfer, evaporation and condensation are considered in the bulk sense and due to the primary tubes. In momentum transfer, the interphasial drag and the drag caused by the tube bundles are modelled according to. Results of the PORFLO simulations presented here, typically in a 109 x 30 x 30 grid, include liquid and vapour velocities, void fractions and evaporation / condensation rates. Furthermore, some comparisons of PORFLO and Fluent results were made. (Authors)

  15. Signal alteration of the cochlear perilymph on 3 different sequences after intratympanic Gd-DTPA administration at 3 tesla. Comparison of 3D-FLAIR, 3D-T1-weighted imaging, and 3D-CISS

    International Nuclear Information System (INIS)

    Yamazaki, Masahiro; Naganawa, Shinji; Kawai, Hisashi; Nihashi, Takashi; Nakashima, Tsutomu

    2010-01-01

    Three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) imaging after intratympanic gadolinium injection is useful for pathophysiologic and morphologic analysis of the inner ear. However, statistical analysis of differences in inner ear signal intensity among 3D-FLAIR and other sequences has not been reported. We evaluated the signal intensity of cochlear fluid on each of 3D-FLAIR, 3D-T 1 -weighted imaging (T 1 WI), and 3D-constructive interference in the steady state (CISS) to clarify the differences in contrast effect among these 3 sequences using intratympanic gadolinium injection. Twenty-one patients underwent 3D-FLAIR, 3D-T 1 WI, and 3D-CISS imaging at 3 tesla 24 hours after intratympanic injection of gadolinium. We determined regions of interest of the cochleae (C) and medulla oblongata (M) on each image, evaluated the signal intensity ratio between C and M (CM ratio), and determined the ratio of cochlear signal intensity of the injected side to that of the non-injected side (contrast value). The CM ratio of the injected side (3.00±1.31, range, 0.53 to 4.88, on 3D-FLAIR; 0.83±0.30, range, 0.36 to 1.58 on 3D-T 1 WI) was significantly higher than that of the non-injected side (0.52±0.14, range, 0.30 to 0.76 on 3D-FLAIR; 0.49±0.11, range, 0.30 to 0.71 on 3D-T 1 WI) on 3D-FLAIR and 3D-T 1 WI (P 1 WI (1.73±0.60 range, 0.98 to 3.09) (P<0.001). The 3D-FLAIR sequence is the most sensitive for observing alteration in inner ear fluid signal after intratympanic gadolinium injection. Our results warrant use of 3D-FLAIR as a sensitive imaging technique to clarify the pathological and morphological mechanisms of disorders of the inner ear. (author)

  16. Sculpting 3D worlds with music: advanced texturing techniques

    Science.gov (United States)

    Greuel, Christian; Bolas, Mark T.; Bolas, Niko; McDowall, Ian E.

    1996-04-01

    Sound within the virtual environment is often considered to be secondary to the graphics. In a typical scenario, either audio cues are locally associated with specific 3D objects or a general aural ambiance is supplied in order to alleviate the sterility of an artificial experience. This paper discusses a completely different approach, in which cues are extracted from live or recorded music in order to create geometry and control object behaviors within a computer- generated environment. Advanced texturing techniques used to generate complex stereoscopic images are also discussed. By analyzing music for standard audio characteristics such as rhythm and frequency, information is extracted and repackaged for processing. With the Soundsculpt Toolkit, this data is mapped onto individual objects within the virtual environment, along with one or more predetermined behaviors. Mapping decisions are implemented with a user definable schedule and are based on the aesthetic requirements of directors and designers. This provides for visually active, immersive environments in which virtual objects behave in real-time correlation with the music. The resulting music-driven virtual reality opens up several possibilities for new types of artistic and entertainment experiences, such as fully immersive 3D `music videos' and interactive landscapes for live performance.

  17. 25-Hydroxyvitamin D-3 affects vitamin D status similar to vitamin D-3 in pigs - but the meat produced has a lower content of vitamin D

    DEFF Research Database (Denmark)

    Jakobsen, Jette; Maribo, H.; Bysted, Anette

    2007-01-01

    In food databases, the specific contents of vitamin D-3 and 25-hydroxyvitamin D-3 in food have been implemented in the last 10 years. No consensus has yet been established on the relative activity between the components. Therefore, the objective of the present study was to assess the relative...... activity of 25-hydroxyvitamin D-3 compared to vitamin D-3. The design was a parallel study in pigs (n 24), which from an age of 12 weeks until slaughter 11 weeks later were fed approximately 55 mu g vitamin D/d, as vitamin D-3, in a mixture of vitamin D-3 and 25-hydroxyvitamin D-3, or 25-hydroxyvitamin D-3....... The end-points measured were plasma 25-hydroxyvitamin D-3, and in the liver and loin the content of vitamin D-3 and 25-hydroxyvitamin D-3 Vitamin D-3 and 25-hydroxyvitamin D3 in the feed did not affect 25-hydroxyvitamin D-3 in the plasma, liver or loin differently, while a significant effect was shown...

  18. Analysis of the TREAT loss-of-flow tests L6 and L7 using SAS3D

    International Nuclear Information System (INIS)

    Morris, E.E.; Simms, R.; Gruber, E.E.

    1985-01-01

    The TREAT loss-of-flow tests L6 and L7 have been analyzed using the SAS3D accident analysis code. The impetus for the analysis was the need for experimentally supported fuel motion modeling in whole core accident studies performed in support of licensing of the Clinch River Breeder Reactor Project. The input prescription chosen for the SAS3D/SLUMPY fuel motion model gave reasonable agreement with the test results. Tests L6 and L7, each conducted with a cluster of three fuel pins, were planned to simulate key events in the loss-of-flow accident scenario for the Clinch River homogeneous reactor

  19. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  20. Assessment of riverine load of contaminants to European seas under policy implementation scenarios: an example with 3 pilot substances.

    Science.gov (United States)

    Marinov, Dimitar; Pistocchi, Alberto; Trombetti, Marco; Bidoglio, Giovanni

    2014-01-01

    An evaluation of conventional emission scenarios is carried out targeting a possible impact of European Union (EU) policies on riverine loads to the European seas for 3 pilot pollutants: lindane, trifluralin, and perfluorooctane sulfonate (PFOS). The policy scenarios are investigated to the time horizon of year 2020 starting from chemical-specific reference conditions and considering different types of regulatory measures including business as usual (BAU), current trend (CT), partial implementation (PI), or complete ban (PI ban) of emissions. The scenario analyses show that the model-estimated lindane load of 745 t to European seas in 1995, based on the official emission data, would be reduced by 98.3% to approximately 12.5 t in 2005 (BAU scenario), 10 years after the start of the EU regulation of this chemical. The CT and PI ban scenarios indicate a reduction of sea loads of lindane in 2020 by 74% and 95%, respectively, when compared to the BAU estimate. For trifluralin, an annual load of approximately 61.7 t is estimated for the baseline year 2003 (BAU scenario), although the applied conservative assumptions related to pesticide use data availability in Europe. Under the PI (ban) scenario, assuming only small residual emissions of trifluralin, we estimate a sea loading of approximately 0.07 t/y. For PFOS, the total sea load from all European countries is estimated at approximately 5.8 t/y referred to 2007 (BAU scenario). Reducing the total load of PFOS below 1 t/y requires emissions to be reduced by 84%. The analysis of conventional scenarios or scenario typologies for emissions of contaminants using simple spatially explicit GIS-based models is suggested as a viable, affordable exercise that may support the assessment of implementation of policies and the identification or negotiation of emission reduction targets. © 2013 SETAC.

  1. The 3d4-3d34p transitions of triply ionized manganese (Mn IV)

    International Nuclear Information System (INIS)

    Tchang-Brillet, W.Ue.L.; Artru, M.C.; Wyart, J.F.

    1986-01-01

    The analysis of Mn IV is extended in the wavelength range 473-847 A. A total of 600 classified lines are given, of which 372 are newly observed. All of them are due to 3d 4 -3d 3 4p transitions. Their classification and the identification of 59 new levels are supported by the parametric studies of the 3d 4 and 3d 3 4p configurations. The ground configuration 3d 4 is calculated by taking into account the effective magnetic interactions which improve by an order of magnitude the theoretical fine structure of the quintet and triplet terms. The analysis was guided by the prediction of relative line strengths in intermediate coupling. Calculated energies and LS composition are given for all levels of the configuration, 3d 4 and 3d 3 4p. (orig).

  2. 3D-MR vs. 3D-CT of the shoulder in patients with glenohumeral instability

    Energy Technology Data Exchange (ETDEWEB)

    Stillwater, Laurence; Koenig, James; Maycher, Bruce; Davidson, Michael [University of Manitoba, Winnipeg (Canada)

    2017-03-15

    To determine whether 3D-MR osseous reformats of the shoulder are equivalent to 3D-CT osseous reformats in patients with glenohumeral instability. Patients with glenohumeral instability, who were to be imaged with both CT and MRI, were prospectively selected. CT and MR were performed within 24 h of one another on 12 shoulders. Each MR study included an axial 3D isotropic VIBE sequence. The image data from the isotropic VIBE sequence were post-processed using subtraction and 3D software. CT data were post-processed using 3D software. The following measurements were obtained for both 3D-CT and 3D-MR post-processed images: height and width of the humeral head and glenoid, Hill-Sachs size and percent humeral head loss (if present), size of glenoid bone loss and percent glenoid bone loss (if present). Paired t-tests and two one-sided tests for equivalence were used to assess the differences between imaging modalities and equivalence. The measurement differences from the 3D-CT and 3D-MR post-processed images were not statistically significant. The measurement differences for humeral height, glenoid height and glenoid width were borderline statistically significant; however, using any adjustment for multiple comparisons, this failed to be significant. Using an equivalence margin of 1 mm for measurements and 1.5% for percent bone loss, the 3D-MR and 3D-CT post-processed images were equivalent. Three-dimensional-MR osseous models of the shoulder using a 3D isotropic VIBE sequence were equivalent to 3D-CT osseous models, and the differences between modalities were not statistically significant. (orig.)

  3. 3D geometric phase analysis and its application in 3D microscopic morphology measurement

    Science.gov (United States)

    Zhu, Ronghua; Shi, Wenxiong; Cao, Quankun; Liu, Zhanwei; Guo, Baoqiao; Xie, Huimin

    2018-04-01

    Although three-dimensional (3D) morphology measurement has been widely applied on the macro-scale, there is still a lack of 3D measurement technology on the microscopic scale. In this paper, a microscopic 3D measurement technique based on the 3D-geometric phase analysis (GPA) method is proposed. In this method, with machine vision and phase matching, the traditional GPA method is extended to three dimensions. Using this method, 3D deformation measurement on the micro-scale can be realized using a light microscope. Simulation experiments were conducted in this study, and the results demonstrate that the proposed method has a good anti-noise ability. In addition, the 3D morphology of the necking zone in a tensile specimen was measured, and the results demonstrate that this method is feasible.

  4. Designing a Methodology for Future Air Travel Scenarios

    Science.gov (United States)

    Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.

    1992-01-01

    The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all

  5. Application of Plenoptic PIV for 3D Velocity Measurements Over Roughness Elements in a Refractive Index Matched Facility

    Science.gov (United States)

    Thurow, Brian; Johnson, Kyle; Kim, Taehoon; Blois, Gianluca; Best, Jim; Christensen, Ken

    2014-11-01

    The application of Plenoptic PIV in a Refractive Index Matched (RIM) facility housed at Illinois is presented. Plenoptic PIV is an emerging 3D diagnostic that exploits the light-field imaging capabilities of a plenoptic camera. Plenoptic cameras utilize a microlens array to measure the position and angle of light rays captured by the camera. 3D/3C velocity fields are determined through application of the MART algorithm for volume reconstruction and a conventional 3D cross-correlation PIV algorithm. The RIM facility is a recirculating tunnel with a 62.5% aqueous solution of sodium iodide used as the working fluid. Its resulting index of 1.49 is equal to that of acrylic. Plenoptic PIV was used to measure the 3D velocity field of a turbulent boundary layer flow over a smooth wall, a single wall-mounted hemisphere and a full array of hemispheres (i.e. a rough wall) with a k/ δ ~ 4.6. Preliminary time averaged and instantaneous 3D velocity fields will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1235726.

  6. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    Ultrasound in infertility diagnostics: Ultrasound is used for examination of uterus, tubes, ovaries and peritoneal cause of infertility. It can be used in different menstrual phases: proliferative, periovulatory and secretory phase. Examination of uterus: A 2D scan can measure the size of the uterus (length, width and depth and a 2D flow (colour and power doppler. With 3D technology we can measure the whole volume with VOCAL (virtual organ computer-aided analysis and 3D circulation with the index (VI – vascular index, FI – flow index and VFI – vascular flow index in the uterus. A 2D scan can help us define uterine malformations, fibroids and adenomyosis to a certain extent. However, a 3D scan offers more accurate diagnosis of these malformations. Endometrium is examined separately. With 2D the width is measured and morphology and focal lesions (polyp, fibroids, adhesions are examined. With 3D the real sagital plane for the width measurement can be defined . We can measure the volume of endometrium and subendometrium and 3D circulation in endometrium and subendometrium. The FIS (f luid instlation sonography is very useful when examining the endometrium; saline or gel can be used for uterine instalation. We can measure and define the position of the structures in the endometrium more accurately when they are surrouned by saline or gel. We can view these structures with a surface view, similar to the one used for hysteroscopy. With this information we can explain the pathology to the patient and easily plan the surgical procedures. Examination of the tubes: With 2D US we can see the tubes in the pelvis only if there are dilatations, but sometimes it is difficult to distinguish them from the neighbouring forma- tions. With a 3D ultrasound we can define the shape and continuity of the tube and we can view the tube from different angles (inversion mode. Different contrast media are used for determining tubal patency. Tubal patency can be diagnosed with 2D Hy

  7. 3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT.

    Science.gov (United States)

    Montoya, J C; Li, Y; Strother, C; Chen, G-H

    2018-05-01

    Deep learning is a branch of artificial intelligence that has demonstrated unprecedented performance in many medical imaging applications. Our purpose was to develop a deep learning angiography method to generate 3D cerebral angiograms from a single contrast-enhanced C-arm conebeam CT acquisition in order to reduce image artifacts and radiation dose. A set of 105 3D rotational angiography examinations were randomly selected from an internal data base. All were acquired using a clinical system in conjunction with a standard injection protocol. More than 150 million labeled voxels from 35 subjects were used for training. A deep convolutional neural network was trained to classify each image voxel into 3 tissue types (vasculature, bone, and soft tissue). The trained deep learning angiography model was then applied for tissue classification into a validation cohort of 8 subjects and a final testing cohort of the remaining 62 subjects. The final vasculature tissue class was used to generate the 3D deep learning angiography images. To quantify the generalization error of the trained model, we calculated the accuracy, sensitivity, precision, and Dice similarity coefficients for vasculature classification in relevant anatomy. The 3D deep learning angiography and clinical 3D rotational angiography images were subjected to a qualitative assessment for the presence of intersweep motion artifacts. Vasculature classification accuracy and 95% CI in the testing dataset were 98.7% (98.3%-99.1%). No residual signal from osseous structures was observed for any 3D deep learning angiography testing cases except for small regions in the otic capsule and nasal cavity compared with 37% (23/62) of the 3D rotational angiographies. Deep learning angiography accurately recreated the vascular anatomy of the 3D rotational angiography reconstructions without a mask. Deep learning angiography reduced misregistration artifacts induced by intersweep motion, and it reduced radiation exposure

  8. Neo-deterministic definition of earthquake hazard scenarios: a multiscale application to India

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Parvez, Imtiyaz A.; Rastogi, Bal K.; Vaccari, Franco; Cozzini, Stefano; Bisignano, Davide; Romanelli, Fabio; Panza, Giuliano F.; Ashish, Mr; Mir, Ramees R.

    2014-05-01

    The development of effective mitigation strategies requires scientifically consistent estimates of seismic ground motion; recent analysis, however, showed that the performances of the classical probabilistic approach to seismic hazard assessment (PSHA) are very unsatisfactory in anticipating ground shaking from future large earthquakes. Moreover, due to their basic heuristic limitations, the standard PSHA estimates are by far unsuitable when dealing with the protection of critical structures (e.g. nuclear power plants) and cultural heritage, where it is necessary to consider extremely long time intervals. Nonetheless, the persistence in resorting to PSHA is often explained by the need to deal with uncertainties related with ground shaking and earthquakes recurrence. We show that current computational resources and physical knowledge of the seismic waves generation and propagation processes, along with the improving quantity and quality of geophysical data, allow nowadays for viable numerical and analytical alternatives to the use of PSHA. The advanced approach considered in this study, namely the NDSHA (neo-deterministic seismic hazard assessment), is based on the physically sound definition of a wide set of credible scenario events and accounts for uncertainties and earthquakes recurrence in a substantially different way. The expected ground shaking due to a wide set of potential earthquakes is defined by means of full waveforms modelling, based on the possibility to efficiently compute synthetic seismograms in complex laterally heterogeneous anelastic media. In this way a set of scenarios of ground motion can be defined, either at national and local scale, the latter considering the 2D and 3D heterogeneities of the medium travelled by the seismic waves. The efficiency of the NDSHA computational codes allows for the fast generation of hazard maps at the regional scale even on a modern laptop computer. At the scenario scale, quick parametric studies can be easily

  9. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    Science.gov (United States)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  10. Preliminary cost analysis of a universal package concept in the spent fuel management system

    International Nuclear Information System (INIS)

    1984-09-01

    The purpose of this study is to provide a preliminary cost assessment of a universal spent fuel package concept as it applies to the backend of the once through nuclear fuel cycle; i.e., a package that would be qualified for spent fuel storage, transportation, and disposal. To provide this preliminary cost assessment, costs for each element of the spent fuel management system have been compiled for system scenarios employing the universal package, and these costs are compared against system costs for scenarios employing the universal package, and these costs are compared against system costs for scenarios employing other types of storage, transportation, and disposal packages. The system elements considered in this study are storage at the nuclear power plant, spent fuel transportation, a Monitored Retrievable Storage (MRS) facility, and a geologic repository. In accordance with the Nuclear Waste Policy Act, most of these system elements and associated functions will be the responsibility of the Department of Energy. 10 refs., 25 figs., 22 tabs

  11. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    Science.gov (United States)

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Preparation of 3D Printed Divertor Mock-up Design and Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Park, Sung Dae; Kim, Dong Jun; Kim, Suk Kwon; Lee, Eo Hwak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The divertor for fusion reactor is known to be able to remove the extreme heat flux up to 10 MW/m2 and the various type of divertors have been developed for enhancing the heat transfer such as hypervapotron, twisted tape insertion, screwed tube, and so on. In order to overcome this limitation, 3D printing method is considered to be used in the fusion reactor divertor design in present study. With the advantages of the 3D printing, the various shapes of the inner divertor cooling tube are investigated to enhance the turbulence of coolant and to reduce the pressure drop. The metallic powder of the fusion reactor candidate material is produced as the preliminary step for using in 3D printer. The material is a reduced activation ferritic-matensitic steel named as ARAA (Advanced Reduced Activation Alloy) which have been independently developed in Korea. Gas atomization method was used to make the spherical particles with average diameter of 100 μm. Several candidates were presented to achieve the excellent heat removal capacity and the low pressure drop. Thermal-hydraulic analysis was performed to confirm the effects of the inner cooling tube geometry with a conventional CFD code, ANSYS-CFX v14.5. The modified screw type called as a rail type twisted tube was presented through the optimization process. This complicated tube could be made by 3D printing technology. (metallic powder). Thermal-hydraulic analysis was conducted to compare the 3 type geometric divertor. A rail type twisted tube has good heat transfer performance in comparison with a conventional twisted tube. The pressure drop of a rail type twisted tube was reduced about 36% compared with a conventional twisted tube.

  13. Preparation of 3D Printed Divertor Mock-up Design and Fabrication

    International Nuclear Information System (INIS)

    Lee, Dong Won; Park, Sung Dae; Kim, Dong Jun; Kim, Suk Kwon; Lee, Eo Hwak

    2016-01-01

    The divertor for fusion reactor is known to be able to remove the extreme heat flux up to 10 MW/m2 and the various type of divertors have been developed for enhancing the heat transfer such as hypervapotron, twisted tape insertion, screwed tube, and so on. In order to overcome this limitation, 3D printing method is considered to be used in the fusion reactor divertor design in present study. With the advantages of the 3D printing, the various shapes of the inner divertor cooling tube are investigated to enhance the turbulence of coolant and to reduce the pressure drop. The metallic powder of the fusion reactor candidate material is produced as the preliminary step for using in 3D printer. The material is a reduced activation ferritic-matensitic steel named as ARAA (Advanced Reduced Activation Alloy) which have been independently developed in Korea. Gas atomization method was used to make the spherical particles with average diameter of 100 μm. Several candidates were presented to achieve the excellent heat removal capacity and the low pressure drop. Thermal-hydraulic analysis was performed to confirm the effects of the inner cooling tube geometry with a conventional CFD code, ANSYS-CFX v14.5. The modified screw type called as a rail type twisted tube was presented through the optimization process. This complicated tube could be made by 3D printing technology. (metallic powder). Thermal-hydraulic analysis was conducted to compare the 3 type geometric divertor. A rail type twisted tube has good heat transfer performance in comparison with a conventional twisted tube. The pressure drop of a rail type twisted tube was reduced about 36% compared with a conventional twisted tube

  14. A Serious Game for Massive Training and Assessment of French Soldiers Involved in Forward Combat Casualty Care (3D-SC1): Development and Deployment.

    Science.gov (United States)

    Pasquier, Pierre; Mérat, Stéphane; Malgras, Brice; Petit, Ludovic; Queran, Xavier; Bay, Christian; Boutonnet, Mathieu; Jault, Patrick; Ausset, Sylvain; Auroy, Yves; Perez, Jean Paul; Tesnière, Antoine; Pons, François; Mignon, Alexandre

    2016-05-18

    The French Military Health Service has standardized its military prehospital care policy in a ''Sauvetage au Combat'' (SC) program (Forward Combat Casualty Care). A major part of the SC training program relies on simulations, which are challenging and costly when dealing with more than 80,000 soldiers. In 2014, the French Military Health Service decided to develop and deploy 3D-SC1, a serious game (SG) intended to train and assess soldiers managing the early steps of SC. The purpose of this paper is to describe the creation and production of 3D-SC1 and to present its deployment. A group of 10 experts and the Paris Descartes University Medical Simulation Department spin-off, Medusims, coproduced 3D-SC1. Medusims are virtual medical experiences using 3D real-time videogame technology (creation of an environment and avatars in different scenarios) designed for educational purposes (training and assessment) to simulate medical situations. These virtual situations have been created based on real cases and tested on mannequins by experts. Trainees are asked to manage specific situations according to best practices recommended by SC, and receive a score and a personalized feedback regarding their performance. The scenario simulated in the SG is an attack on a patrol of 3 soldiers with an improvised explosive device explosion as a result of which one soldier dies, one soldier is slightly stunned, and the third soldier experiences a leg amputation and other injuries. This scenario was first tested with mannequins in military simulation centers, before being transformed into a virtual 3D real-time scenario using a multi-support, multi-operating system platform, Unity. Processes of gamification and scoring were applied, with 2 levels of difficulty. A personalized debriefing was integrated at the end of the simulations. The design and production of the SG took 9 months. The deployment, performed in 3 months, has reached 84 of 96 (88%) French Army units, with a total of 818

  15. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  16. Scenarios for the future

    International Nuclear Information System (INIS)

    Haegermark, H.; Bergmark, M.

    1995-06-01

    This project aims primarily to give a basis for the joint R and D program for the Swedish electric utility industry, in the form of pictures of the future up to 2020. The work was performed during four seminars in a group of managers and R and D planners. The four scenarios differ mainly in the assumptions of high or low economic growth and on market or political rule. Assumptions on essential uncertainties about the future have been combined in a consistent manner, e.g. on the structure of the utility industry, the role of nuclear power, the importance of the greenhouse gas issue, the influence of new technology developments and on changes of values in society. Certain other development appear in all scenarios, e.g. the impact of information technology throughout society, the internationalization of business in general and industrial production in particular, considerations for the environment and care for natural resources. The four scenarios are: 'Technology on the throne' (market rule/high growth); 'Intense competition' (market rule/low growth); 'Monopoly takes over' (political rule/high growth); and 'Green local society' (political rule/low growth). Some of the important factors pointed out by the study are: Increased customer mobility between regions and countries; The impact of information technology; Societal value changes; Sustainable development as an important driving force; Structure of the utility industry. Diversifying into new services. New players; Access to knowledge and competence; Ways for handling the greenhouse gas problem; Preparedness for nuclear power phase-out. 12 figs, 6 tabs

  17. Synthesis and Preliminary Antimicrobial Activities of New Arylideneamino-1,3,4-thiadiazole-(thio/dithio-acetamido Cephalosporanic Acids

    Directory of Open Access Journals (Sweden)

    Shakir Mahmood Alwan

    2012-01-01

    Full Text Available New derivatives of 7-aminocephalosporanic acid 1–8 were synthesized by acylation of the 7-amino group of the cephem nucleus with various arylidinimino-1,3,4-thiadiazole-thio(or dithio-acetic acid intermediates 3a–d and 5a–d, respectively, so the acyl side chains of these new cephalosporins contained a sulfide or disulfide bond. This unique combination of a Schiff base with the sulfide or disulfide bonds in the acyl side chain afforded new cephalosporins of reasonable potencies, some of which were found to possess moderate activities against the tested microorganisms. Their chemical structures were characterized by ¹H-NMR, IR spectroscopy and elemental microanalysis. Preliminary in vitro antimicrobial activities of the prepared cephalosporins were investigated using a panel of selected microorganisms. Results indicated that the newly synthesized cephalosporins containing disulfide bonds (compounds 5–8 exhibited better activities against Staphylococcus aureus and Escherichia coli. The cephalosporins cross-linked by a sulfide bond (compounds 1–4 showed a slight change in antimicrobial activities when compared with that of the reference cephalosporin (cephalexin.

  18. Finite-fault source inversion using adjoint methods in 3D heterogeneous media

    Science.gov (United States)

    Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia

    2018-04-01

    Accounting for lateral heterogeneities in the 3D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3D heterogeneity in source inversion involves pre-computing 3D Green's functions, which requires a number of 3D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense datasets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3D heterogeneous velocity model. The velocity model comprises a uniform background and a 3D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3D velocity model are performed for two different station configurations, a dense and a sparse network with 1 km and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect

  19. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah

    2014-01-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA...

  20. Energy scenarios for New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Harris, G. S.; Ellis, M. J.; Scott, G. C.; Wood, J. R.

    1977-10-15

    Three energy scenarios have been formulated for New Zealand. They concentrate on those aspects of society which have a direct bearing on energy, emphasizing three important issues: major shifts in society's values in relation to material wealth, pollution, and resources. The scenarios make assumptions that certain overall social conditions would prevail so that all decisions of government, the private sector, and individuals would be governed by the requirement to conform to the scenario theme in a way not possible under existing social and political conditions. The 3 scenarios are known as Continuation, Low New Zealand Pollution, and Limited Growth.