WorldWideScience

Sample records for preheated steam tables

  1. General purpose steam table library :

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, John H.; Belcourt, Kenneth Noel; Nourgaliev, Robert

    2013-08-01

    Completion of the CASL L3 milestone THM.CFD.P7.04 provides a general purpose tabular interpolation library for material properties to support, in particular, standardized models for steam properties. The software consists of three parts, implementations of analytic steam models, a code to generate tables from those models, and an interpolation package to interface the tables to CFD codes such as Hydra-TH. Verification of the standard model is maintained through the entire train of routines. The performance of interpolation package exceeds that of freely available analytic implementation of the steam properties by over an order of magnitude.

  2. A Generalized and Simple Numerical Model to Compute the Feed Water Preheating System for Steam Power Plants

    Directory of Open Access Journals (Sweden)

    Ioana Opriș

    2017-02-01

    Full Text Available A general and simple numerical model is presented to calculate the uncontrolled steam flows extracted from a turbine to preheat the feed-water of a steam generator. For a user-defined technological scheme, a set of clear rules is given to complete the elements of the augmented matrix of the linear system that solves the problem. The model avoids writing of the heat balance equations for each heat exchanger. The steam extractions to the heaters are determined as related to the flow rate at the condenser. A numerical example is given to show the results.

  3. Remediation of NAPL below the water table by steam-induced heat conduction

    Science.gov (United States)

    Gudbjerg, J.; Sonnenborg, T. O.; Jensen, K. H.

    2004-08-01

    Previous experimental studies have shown that NAPL will be removed when it is contacted by steam. However, in full-scale operations, steam may not contact the NAPL directly and this is the situation addressed in this study. A two-dimensional intermediate scale sand box experiment was performed where an organic contaminant was emplaced below the water table at the interface between a coarse and a fine sand layer. Steam was injected above the water table and after an initial heating period the contaminant was recovered at the outlet. The experiment was successfully modeled using the numerical code T2VOC and the dominant removal mechanism was identified to be heat conduction induced boiling of the separate phase contaminant. Subsequent numerical modeling showed that this mechanism was insensitive to the porous medium properties and that it could be evaluated by considering only one-dimensional heat conduction.

  4. Remediation of an Organic Fluid Present Below the Water Table by Steam Injection Above

    Science.gov (United States)

    Gudbjerg, J.; Jensen, K. H.; Sonnenborg, T. O.

    2001-12-01

    Injection of steam in the subsurface has been utilized to remediate contaminated sites where nonaqeuous phase liquid (NAPL) was present both above and below the water table. Steam injection is efficient because the vapor pressure of contaminants increase dramatically with temperature. Futhermore, since two immiscible liquids will boil when the sum of their vapor pressures is equal to the surrounding pressure all NAPLs will start to boil below the boiling point of water. This may be a dominant mechanism for the mass transfer of NAPL into the steam zone. In many cases a steady-state steam zone will be present above a saturated zone containing NAPL, which then will be heated by conduction. At a certain temperature boiling will occur and due to bouyancy gas will be transported from the saturated zone into the steam zone. This mass transfer mechanism is orders of magnitude faster than diffusionevaporation. Two-dimensional experiments in a sand box with the interior dimensions 122 \\times 58 \\times 8.5 cm were carried out to investigate this mechanism. The sand box was packed with a low permeable bottom layer and a high permeable top layer. TCE was injected at the top of the low permeable layer, which prevented it from further downward migration. The water table was located in the high permeable layer above the contaminant. Steam was injected in the left hand side of the sand box and effluent gasses were extracted at the right hand side. A steady-state steam zone formed in the top of the high permeable layer and the saturated zone below was only heated by conduction. When the temperature in the contaminated area reached approximately 74 oC boiling of TCE and water occured and the vapors were transported up in the unsaturated steam zone. This could be registered from the outflow of steam where separate phase TCE appeared in the condenser. The experiment was modeled using the numerical code T2VOC, which simulates multidimensional, non-isothermal, multiphase flow and

  5. SteamTablesGrid: An ActiveX control for thermodynamic properties of pure water

    Science.gov (United States)

    Verma, Mahendra P.

    2011-04-01

    An ActiveX control, steam tables grid ( StmTblGrd) to speed up the calculation of the thermodynamic properties of pure water is developed. First, it creates a grid (matrix) for a specified range of temperature (e.g. 400-600 K with 40 segments) and pressure (e.g. 100,000-20,000,000 Pa with 40 segments). Using the ActiveX component SteamTables, the values of selected properties of water for each element (nodal point) of the 41×41 matrix are calculated. The created grid can be saved in a file for its reuse. A linear interpolation within an individual phase, vapor or liquid is implemented to calculate the properties at a given value of temperature and pressure. A demonstration program to illustrate the functionality of StmTblGrd is written in Visual Basic 6.0. Similarly, a methodology is presented to explain the use of StmTblGrd in MS-Excel 2007. In an Excel worksheet, the enthalpy of 1000 random datasets for temperature and pressure is calculated using StmTblGrd and SteamTables. The uncertainty in the enthalpy calculated with StmTblGrd is within ±0.03%. The calculations were performed on a personal computer that has a "Pentium(R) 4 CPU 3.2 GHz, RAM 1.0 GB" processor and Windows XP. The total execution time for the calculation with StmTblGrd was 0.3 s, while it was 60.0 s for SteamTables. Thus, the ActiveX control approach is reliable, accurate and efficient for the numerical simulation of complex systems that demand the thermodynamic properties of water at several values of temperature and pressure like steam flow in a geothermal pipeline network.

  6. Produced Fluid Treatment at SAGD Steam Circulation Preheating Stage in Fengcheng Oilfield%风城油田SAGD循环预热采出液处理技术

    Institute of Scientific and Technical Information of China (English)

    霍进; 陈贤; 桑林翔; 陈弘毅; 李学军

    2016-01-01

    Conventional oil demulsifier is ineffective for produced fluid at SAGD steam cir-culation preheating stage in Fengcheng oilfield. The produced fluid flowing into oil process plant leads to water- cut increasing in crude oil and sewage treatment difficulty. With the wide application of SAGD technique in super heavy oil exploitation, produced fluid treat-ment becomes a critical problem to be resolved. The stabilization mechanism of produced fluid was investigated by physical properties analysis,micrographic determination and zeta po-tential measurement, and the colloidal dispersion character of produced fluid was recognized. Based on high efficient treatment agents and process optimization, produced fluid oil- water separation, floating oil dehydration and sewage purification were realized. The process tech-nique that vapor- liquid separation, spraying cooling, oil- water separation, and floating oil recovery for produced fluid treatment was formed, which is an important technical guar-antee for SAGD development and a good reference for similar reservoir development.%在风城油田SAGD循环预热采出液处理中使用常规破乳药剂无法实现油水分离,采出液进入稠油处理站后,易造成净化原油含水升高、脱出污水净化困难.随着超稠油SAGD开发规模的不断扩大,亟待解决循环预热采出液的处理难题.通过物性分析、显微照相和Zeta电位测定等手段研究了循环预热采出液的稳定机理以及循环预热采出液的胶体分散特性,并研制出复合净水药剂进行破胶,结合工艺优化实现了循环预热采出液的油水分离、浮油脱水和污水净化,形成了"汽液分离+喷淋降温+油水分离+浮油回收"的循环预热采出液处理工艺技术.该技术为SAGD规模开发提供了技术保障,为同类油藏的开发提供了借鉴.

  7. Steam tables for pure water as an ActiveX component in Visual Basic 6.0

    Science.gov (United States)

    Verma, Mahendra P.

    2003-11-01

    The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.

  8. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B. [and others

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  9. Steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, G.; Gilli, P.V.; Fritz, K.; Lippitsch, J.

    1975-12-02

    A steam generator is disclosed which is particularly adapted to be used in nuclear power plants. A casing is provided with an inlet and outlet to receive and discharge a primary heating fluid from which heat is to be extracted. A pair of tube plates extend across the interior of the casing at the region of the inlet and outlet thereof, and a plurality of tubes extend along the interior of the casing and are connected in parallel between the tube plates with all of the tubes having open ends communicating with the inlet and outlet of the casing so that the primary heating fluid will flow through the interior of the tubes while a fluid in the casing at the exterior of the tubes will extract heat from the primary fluid. The casing has between the tubes at the region of the inlet a superheating chamber and at the region of the outlet a preheating chamber and between the latter chambers an evaporating chamber, the casing receiving water through an inlet at the preheating chamber and discharging superheated steam through an outlet at the superheating chamber. A separator communicates with the evaporating chamber to receive a mixture of steam and water therefrom for separating the steam from the water and for delivering the separated steam to the superheating chamber.

  10. Preheating in New Inflation

    CERN Document Server

    Desroche, M; Kratochvil, J; Linde, Andrei D; Desroche, Mariel; Felder, Gary N.; Kratochvil, Jan M.; Linde, Andrei

    2005-01-01

    During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We do a full analysis of preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long st...

  11. Preheating after modular inflation

    Science.gov (United States)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  12. Preheating with fractional powers

    Science.gov (United States)

    Moghaddam, Hossein Bazrafshan; Brandenberger, Robert

    2016-11-01

    We consider preheating in models in which the potential for the inflaton is given by a fractional power, as is the case in axion monodromy inflation. We assume a standard coupling between the inflaton field and a scalar matter field. We find that in spite of the fact that the oscillation of the inflaton about the field value which minimizes the potential is anharmonic, there is nevertheless a parametric resonance instability, and we determine the Floquet exponent which describes this instability as a function of the parameters of the inflaton potential.

  13. Preheating after N-flation

    CERN Document Server

    Battefeld, Diana

    2008-01-01

    We study preheating in N-flation, assuming the Mar\\v{c}enko-Pastur mass distribution, equal energy initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to be a single, massless bosonic field. By numerical analysis we find that preheating via parametric resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for N-flation are similar to those in single field inflation (at least within an observationally viable parameter region), our results suggest that the physics of preheating can differ significantly from the single field case.

  14. Investigation of optimal fluoroglass preheat

    CERN Document Server

    Baba, S; Toyoda, T; Wakamatsu, O; Machida, T

    2002-01-01

    The regular preheat condition of fluoroglass GD-301 (Chiyoda Technol Co., its size is 1.5 mm phi x 8.5 mm.) is temperature 70 deg C and time 30 minutes. When we measured dose 5.00 Gy at high energy X-ray processed with this condition, we observed build-up phenomenon according to elapsed days. So we investigated the optimal preheat temperature and time by measuring fluoroglass doses daily for several days. Fluoroglasses were irradiated 2.00 Gy of 10 MV X-ray at the reference depth using MEVATRON KD 2/50 PRIMUS (Toshiba Co.). First, we measured doses during 17 days after preheating them for 30 minutes, changing preheat temperatures from 50 deg C to 350 deg C at some intervals. Second, we measured doses during 9 days after preheating them at 70 deg C and at temperatures representing the maximum value and the most frequent value, changing preheat time from 5 minutes to 2 hours at some intervals. Doses increased up to around 115 deg C and decreased after that, and it seemed as if glasses were annealed at 350 deg C...

  15. Gravitational-wave mediated preheating

    Directory of Open Access Journals (Sweden)

    Stephon Alexander

    2015-04-01

    Full Text Available We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  16. Bruce Unit 1 and 2 preheater condition assessment and refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    King, P.; Machowski, C.; McGillivray, R. [Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada); Durance, D. [Bruce Power, Tiverton, ON (Canada)

    2008-07-01

    Bruce Units 1 to 4 were shut down during the 1990s, largely as a consequence of tube degradation resulting from inappropriate steam generator secondary side water chemistries. Following a condition assessment, Bruce Power restarted Units 3 and 4 and is currently refurbishing Units 1 and 2. In order to assess the condition of the Unit 1 and Unit 2 preheaters and determine their suitability for extended operation, inspection, maintenance and assessment activities have been conducted. Eddy current and visual inspection have revealed vessels in generally good condition. Secondary side internals appear largely undergraded. Some tube to support fretting has been observed, and a number of tubes have been removed from service because of debris fretting concerns. To prepare for return to service, the primary side divider plates have been replaced and the tubes have been ID cleaned to restore the preheater to its original condition. This paper summarizes the inspection planning, findings, assessment for extended operation and maintenance activities undertaken. (author)

  17. Nonlinear Inflaton Fragmentation after Preheating

    CERN Document Server

    Felder, G N; Felder, Gary N.; Kofman, Lev

    2007-01-01

    We consider the nonlinear dynamics of inflaton fragmentation during and after preheating in the simplest model of chaotic inflation. While the earlier regime of parametric resonant particle production and the later turbulent regime of interacting fields evolving towards equilibrium are well identified and understood, the short intermediate stage of violent nonlinear dynamics remains less explored. Lattice simulations of fully nonlinear preheating dynamics show specific features of this intermediate stage: occupation numbers of the scalar particles are peaked, scalar fields become significantly non-gaussian and the field dynamics become chaotic and irreversible. Visualization of the field dynamics in configuration space reveals that nonlinear interactions generate non-gaussian inflaton inhomogeneities with very fast growing amplitudes. The peaks of the inflaton inhomogeneities coincide with the peaks of the scalar field(s) produced by parametric resonance. When the inflaton peaks reach their maxima, they stop ...

  18. Preheating with Trilinear Interactions: Tachyonic Resonance

    CERN Document Server

    Dufaux, J F; Kofman, L; Peloso, M; Podolsky, D

    2006-01-01

    We investigate the effects of bosonic trilinear interactions in preheating after chaotic inflation. A trilinear interaction term allows for the complete decay of the massive inflaton particles, which is necessary for the transition to radiation domination. We found that typically the trilinear term is subdominant during early stages of preheating, but it actually amplifies parametric resonance driven by the four-legs interaction. In cases where the trilinear term does dominate during preheating, the process occurs through periodic tachyonic amplifications with resonance effects, which is so effective that preheating completes within a few inflaton oscillations. We develop an analytic theory of this process, which we call tachyonic resonance. We also study numerically the influence of trilinear interactions on the dynamics after preheating. The trilinear term eventually comes to dominate after preheating, leading to faster rescattering and thermalization than could occur without it. Finally, we investigate the...

  19. Clinical applications of preheated hybrid resin composite.

    Science.gov (United States)

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  20. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    steam in a HRSG (heat recovery steam generator). The bottoming steam cycle was modeled with two configurations: (1) a simple single pressure level and (2) a dual pressure level with both a reheat and a pre-heater. The SOFC stacks in the present SOFC-ST hybrid cycles were not pressurized. The dual...

  1. Investigation of Thermal Conductivity and Heat Characteristics of Oil Sands Using Ultrasound Irradiation for Shortening the Preheating Time

    Science.gov (United States)

    Kamagata, Shingo; Kawamura, Youhei; Okawa, Hirokazu; Mizutani, Koichi

    2012-07-01

    Oil sands are attractive as an energy resource. Bitumen, which is found in oil sands, has high viscosity, so that it does not flow. Most oil sands are underground and are developed with a method called steam-assisted gravity drainage (SAGD). Hot steam is injected underground to fluidize bitumen and promote its recovery. However, the preheating time is too long. One way of reducing running costs is by shortening the preheating time. Previous studies have found that bitumen can be extracted from oil sands efficiently by applying ultrasonic irradiation, but SAGD was not applied directly in these cases. Thus, the purpose of this study is to apply ultrasonic irradiation to SAGD, thereby shortening the preheating time of oil sands. As a model experiment for SAGD, heat transfer experiments in a sand layer made with Toyoura sand and silicone oil were conducted and the thermal effect with ultrasound was investigated.

  2. Fuel preheater for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, J.J.; Crossett, M.C.

    1987-10-13

    A unit for preheating fuel for diesel engines is described having an engine coolant system and a lubrication system utilizing a flowable lubricant. The unit comprises a housing providing a fluid-tight enclosure, a heat exchange coil positioned in and spaced above the bottom of the enclosure and having loops providing a continuous path for the flow of the fuel to be heated. The heat exchange coil has at least one foot of length for each 25 cubic inches of volume of the enclosure and a diesel fuel outlet in the housing connected to one end of the heat exchange coil, a diesel fuel outlet in the housing and connected to the other end of the heat exchange coil, an inlet in the housing for connection of the interior of the enclosure surrounding the coil to a source of a hot heat exchange medium in a diesel engine so as to provide a source of heat for heating the heat exchange coil. An outlet near the top of the housing provides for return of the heat exchange medium to a diesel engine, and spray tube means extend horizontally from the inlet for the heat exchange medium and along the bottom of the housing beneath substantially the entire length of the heat exchange coil. The means have upwardly directed openings to provide for discharge of the heat exchange medium toward the coil and agitation of the heat exchange medium in the enclosure around and over the heat exchange coil.

  3. Characterization of preheated and non-preheated HY-80 steel weldments by transmission electron microscopy

    OpenAIRE

    Clark, David Richard

    1983-01-01

    Approved for public release; distribution in unlimited. Preheating HY-80 steel weldments is standard procedure, but it is an expensive and time consuming step in the fabrication of hull structures. The microstructures and hardness profiles of both a preheated (250 F--121 C) and a non-preheated (32 F--0 C) HY-80 steel weldment were studied to provide information and allow comparisons of the microstructural transformations that occur in the heat affected zone during shielded metal arc weldin...

  4. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  5. Preheating after Small-Field Inflation

    CERN Document Server

    Brax, Philippe; Mariadassou, Sophie

    2010-01-01

    Whereas preheating after chaotic and hybrid inflation models has been abundantly studied in the literature, preheating in small field inflation models, where the curvature of the inflaton potential is negative during inflation, remains less explored. In these models, a tachyonic instability at the end of inflation leads to a succession of exponentially large increases and \\emph{decreases} of the inflaton fluctuations as the inflaton condensate oscillates around the minimum of its potential. The net effect is a competition between low-momentum modes which grow and decrease significantly, and modes with higher momenta which grow less but also decrease less. We develop an analytical description of this process, which is analogous to the quantum mechanical problem of tunneling through a volcano-shaped potential. Depending on the parameters, preheating may be so efficient that it completes in less than one oscillation of the inflaton condensate. Preheating after small field inflation may also be followed by a long...

  6. Restoring the sting to metric preheating

    CERN Document Server

    Bassett, B A; Maartens, R; Kaiser, D I; Bassett, Bruce A.; Gordon, Chris; Maartens, Roy; Kaiser, David I.

    2000-01-01

    The relative growth of field and metric perturbations during preheating is sensitive to initial conditions set in the preceding inflationary phase. Recent work suggests this may protect super-Hubble metric perturbations from resonant amplification during preheating. We show that this possibility is fragile and extremely sensitive to the specific form of the interactions between the inflaton and other fields. The suppression is naturally absent in two classes of preheating in which either (1) the critical points (hence the vacua) of the effective potential during inflation are deformed away from the origin, or (2) the effective masses of fields during inflation are small but during preheating are large. Unlike the simple toy model of a g^2 \\phi^2 \\chi^2 coupling, most realistic particle physics models contain these other features. Moreover, they generically lead to both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble scales. Large-scale coherent magnetic fields may also appear naturally...

  7. Pre-heating mitigates composite degradation

    Directory of Open Access Journals (Sweden)

    Jessika Calixto da SILVA

    2015-12-01

    Full Text Available ABSTRACT Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS. Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm and the composites Durafill VS (Heraeus Kulzer, Z-250 (3M/ESPE, and Z-350 (3M/ESPE, cured at 25°C (no pre-heating or 60°C (pre-heating. Specimens were stored sequentially in the following solutions: 1 water for 7 days (60°C, plus 0.1 N sodium hydroxide (NaOH for 14 days (60°C; 2 50% silver nitrate (AgNO3 for 10 days (60°C. Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey’s tests (α=5%. Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (p<0.05. After storage in water/NaOH, pre-heated specimens presented higher radiopacity values than non-pre-heated specimens (p<0.05. There was a lower penetration of silver in pre-heated specimens (p<0.05. Conclusions Pre-heating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  8. SRC-II slurry preheater technical uncertainties. Report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report reviews the performance, and draws conclusions therefrom, the coal slurry preheaters of the Ft. Lewis, Washington, Solvent Refined Coal (SRC) Pilot Plant in the following areas: Coking, Erosion Corrosion, Heat transfer and pressure drop effects. Using prudent engineering judgement it postulates how such conclusions should affect the design and operability of large preheaters in future commercial scale plants. Also a recommendation is made for a small scale research and development effort that should result in a much firmer preheater design for any future facility. This report should be read in conjunction with the Solvent Refined Coal (SRC) Final Report, and volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and also Ft. Lewis Slurry Preheater Data Analysis, 1-1/2 Inch Coil by Gulf Science and Technology Company of Pittsburgh, Pennsylvania. The Pittsburg and Midway Coal Mining Co.'s background is based primarily on a racetrack shaped up-flow coil and these comments pertain specifically to a commercial heater of that type of design. 5 references, 12 figures, 1 table.

  9. Investigation on preheating process in SLS machine

    Institute of Scientific and Technical Information of China (English)

    李湘生; 史玉升; 莫健华; 黄树槐

    2001-01-01

    Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on the surface of powder bed is a one important process which is a guarantee by which parts can be successfully fabricated and influences accuracy of parts fabricated in SLS technology. The uniformity of temperature on powder bed influences accuracy and performance of parts. It is necessary to understand the influences of the parameters of preheating set on uniformity of temperature on surface of powder bed. This paper analyzes general preheating process of irradiator for the preheating of powder on the surface of powder bed during SLS processing,and investigates influences of the flux density on the temperature field on the top surface of powder bed. The models of distribution of flux density and the distribution of surface temperature of powder bed are presented.The result predicted according to the models is reasonably consistent with experimental result. This model plays important role in design of preheating set and control of SLS processing. It is concluded that the uniformity of temperature field on the powder bed is determined mostly by the geometry of heating component and its fix location and the flux density is inverse proportional to the highness.

  10. The Development of Equilibrium After Preheating

    CERN Document Server

    Kofman, L A

    2001-01-01

    We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules that govern the thermalization process in all of these models. Notably, we see that once one of the fields is amplified through parametric resonance or other mechanisms it rapidly excites other coupled fields to exponentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group into subsets with almost identica...

  11. Temperature equilization in the Luetzkendorf preheater

    Energy Technology Data Exchange (ETDEWEB)

    1943-01-30

    Suggestions are offered for improvement to attain more nearly uniform temperature distribution in the preheater inlet and outlet as well as for improvement of a loss of pressure in heating gas for raising the efficiency of the heating gas blower. The evaluation of the operating conditions from the standpoint of the heating gas were made in the hydrogenation works of Poelitz, in 1939 with the preheater constructed on the Ludwigshafen plan, and in Luetzkendorf on the preheater of the Leuna model. Both preheaters had two Schiele heating gas blowers of the type 1160. Operating conditions involving hairpin tubes, temperatures, resistance, volume, piping, pressure, and heat conduction were given for both plants. A sketch for the heating gas movement was mentioned in the report but was not included. Recommendations on the use of a new blower were given. Some of these were reducing the yield to 90,000 cubic meters per hour and using the same motors. The distribution of the amounts and of the temperature drop of the gas and of the material of the hairpins were given.

  12. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    Science.gov (United States)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2017-02-01

    There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  13. Pre-heating mitigates composite degradation.

    Science.gov (United States)

    Silva, Jessika Calixto da; Rogério Vieira, Reges; Rege, Inara Carneiro Costa; Cruz, Carlos Alberto dos Santos; Vaz, Luís Geraldo; Estrela, Carlos; Castro, Fabrício Luscino Alves de

    2015-01-01

    Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey's tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (pheated specimens presented higher radiopacity values than non-pre-heated specimens (pheated specimens (pheating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  14. Spectroscopic Measurements of Target Preheating on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Elton, R.C.; Griem, H.R.; Iglesias, E.J.

    2000-02-28

    The preheating of laser-heated microballoon targets has been measured by time-resolved x-ray and extreme ultraviolet (euv) spectroscopy on the 30 kJ, 351 nm, 60-beam laser-fusion system at the University of Rochester Laboratory for Laser Energetics. Thin coatings of aluminum overcoated with magnesium served as indicators. both the sequence of the x-ray line emission and the intensity of euv radiation were used to determine a preheating peaking at {approx} 10 ns prior to onset of the main laser pulse, with a power density {approx_equal}1% of the main pulse. The measurements are supported by numerical modeling. Further information is provided by absorption spectra from the aluminum coating, backlighted by continuum from the heated surface. The exact source of the preheating energy remains unknown at present, but most likely arrives from early laser leakage through the system. The present target diagnostic is particularly useful when all beams cannot be monitored directly at all laser wavelengths.

  15. Violent Preheating in Inflation with Nonminimal Coupling

    CERN Document Server

    Ema, Yohei; Mukaida, Kyohei; Nakayama, Kazunori

    2016-01-01

    We study particle production at the preheating era in inflation models with nonminimal coupling $\\xi \\phi^2R$ and quartic potential $\\lambda \\phi^4/4$ for several cases: real scalar inflaton, complex scalar inflaton and Abelian Higgs inflaton. We point out that the preheating proceeds much more violently than previously thought. If the inflaton is a complex scalar, the phase degree of freedom is violently produced at the first stage of preheating. If the inflaton is a Higgs field, the longitudinal gauge boson production is similarly violent. This is caused by a spike-like feature in the time dependence of the inflaton field, which may be understood as a consequence of short time scale during which the effective potential or kinetic term changes suddenly. The produced particles typically have very high momenta $k \\lesssim \\sqrt{\\lambda}M_\\text{P}$. The production might be so strong that almost all the energy of the inflaton is carried away within one oscillation for $\\xi^2\\lambda \\gtrsim 1$. This may significa...

  16. Metric-torsion preheating: cosmic dynamo mechanism?

    CERN Document Server

    de Andrade, L C Garcia

    2014-01-01

    Earlier Bassett et al [Phys Rev D 63 (2001) 023506] investigated the amplification of large scale magnetic fields during preheating and inflation in several different models. They argued that in the presence of conductivity resonance effect is weakened. From a dynamo equation in spacetimes endowed with torsion recently derived by Garcia de Andrade [Phys Lett B 711: 143 (2012)] it is shown that a in a universe with pure torsion in Minkowski spacetime the cosmological magnetic field is enhanced by ohmic or non-conductivity effect, which shows that the metric-torsion effects is worth while of being studied. In this paper we investigated the metric-torsion preheating perturbation, which leads to the seed cosmological magnetic field in the universe with torsion is of the order of $B_{seed}\\sim{10^{-37}Gauss}$ which is several orders of magnitude weaker than the decoupling value obtained from pure metric preheating of $10^{-15}Gauss$. Despite of the weakness of the magnetic field this seed field may seed the galact...

  17. Effect of preheating on potato texture.

    Science.gov (United States)

    Andersson, A; Gekas, V; Lind, I; Oliveira, F; Oste, R

    1994-01-01

    Preheating potatoes at 50 to 80 degrees C has a firming effect on the cooked potato tissue. This effect is particularly pronounced at a preheating temperature of 60 to 70 degrees C followed by cooling. Several theories have been presented in the literature to explain this firming effect: retrogradation of starch, leaching of amylose, stabilization of the middle lamellae and cell walls by the activation of the pectin methylesterase (PME) enzyme, and by the release of calcium from gelatinized starch and the formation of calcium bridges between pectin molecules. Most probably, none of these theories alone can explain the phenomenon and more than one mechanism seems to be involved. Some of these mechanisms seem to be interdependent. As an example, calcium could be considered as a link all the way through release after starch gelatinization to cross-linking pectin substances in the cell wall and the middle lamellae, which has been demethylated by the PME enzyme. More research and "clear cut" experiments are needed in order to elucidate the role of each mechanism, especially which of them is the main contributor to the process of firming. Most probably, the calcium-pectin-PME mechanism plays a secondary role, that is, it only retards the collapse of the tissue structure that would otherwise occur during the final heating without preheating, and it is not the main factor of firmness.

  18. Code for the steam tables for pure water in visual basic 6.0.; Un codigo para las tablas de vapor para agua pura en visual basic 6.0

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Mahendra P. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2002-07-01

    The thermodynamic data of the water are of extreme importance in all of the branches of science and technology; the facilitate the understanding of the natural Earth processes. Nevertheless, for the electrical industry the water plays a very important role during the generation of electrical energy process. Different heat sources such as coal, oil, natural gas, nuclear fuel or the geothermal heat boil the water that forms the steam used to move the turbines. Consequently, the steam tables (the thermodynamic water data) are vital to model thermal and mass transference and physical-chemical processes during the generation of electrical energy. [Spanish] Los datos termodinamicos del agua son de suma importancia en todas las ramas de la ciencia y tecnologia, ellos facilitan el entendimiento de los procesos naturales de la Tierra. Sin embargo, para la industria electrica el agua juega un papel muy importante durante el proceso de generacion de energia electrica. Diferentes fuentes de calor tales como carbon, aceite, gas natural, combustible nuclear o el calor geotermico calientan el agua que forma el vapor utilizado para mover las turbinas. Luego entonces, las tablas de vapor (los datos termodinamicos de agua) son vitales para modelar transferencia termica y de masa y procesos fisico-quimico durante la generacion energia electrica.

  19. Aspects of wave turbulence in preheating

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Henrique P. de; Crespo, Jose A. de A. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: In the simplest chaotic inflationary model, the Universe has an exponentially fast expansion phase driven by a single scalar field. After inflation, the preheating phase takes place. This phase is characterized when the inflaton performs coherent oscillations about its minimum value and is followed by a huge production of particles. In other terms, there is an energy transfer to small inhomogeneous fluctuations of the inflaton field. The long term behavior ends up in a thermalized universe. In this paper, we have studied numerically the late stages of preheating in a model with a quartic potential V (ϕ) = ¼λ ϕ{sup 4}. We have considered the universe as a squared box with periodic boundary conditions, and applied the collocation method to integrate the field equations. We have shown that the dynamics of the inflaton together with its initially small fluctuations is extremely rich. In the first stage, the parametric resonance is responsible for the exponential growth of some modes. In the sequence, the back reaction of these resonant modes triggers the transfer of energy to other modes or fluctuations. Subsequently, the transfer of energy from the inflaton to thermalize the universe is typical of a turbulent system. In the last part, we have considered the back reaction of the inflaton field in the expansion of the universe. (author)

  20. Ions Preheated in 3He-Rich Solar Particle Events

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2003-01-01

    A wave-particle resonance absorption model in the two-ion plasma is suggested in explanation to the coronal ions preheating in 3He-rich solar particle events. It is found that 3He and Fe ions are preferably preheated by the ion-ion hybrid waves at their fundamental and second harmonic ion cyclotron frequencies, respectively.

  1. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  2. Bringing coal preheating in drum dryers to a commercial level

    Energy Technology Data Exchange (ETDEWEB)

    Babanin, B.I.; Proushin, Yu.E.; Dinel' t, V.M.; Nikolaeva, V.Z.; Shabarshova, Yu.V.; Patrushev, A.N.; Vodop' yanov, A.G.; Vlasov, V.S.; Sementin, V.P.

    1988-10-01

    Discusses operation of a system for coal charge preheating used in Western Siberia since 1965. It is the first coal preheating system constructed in the USSR. The following aspects of system operation are discussed: composition of combustion gases used for coal drying, drying temperature, consumption rate of combustion gases depending on coal moisture content, flue gas recirculation system, transport and storage of dried coal, methods for dust separation (wet and dry), air pollution from coal dryers, and efficiency of air pollution control. Operation of the coal preheating system shows that one-stage coal drying and preheating is economic but associated with increased investment (construction cost) and with increased coal comminution. Large one-stage dryers also cause irregular coal preheating depending on distribution of coal grain size (with overheating of coal fines). Recommendations for design modifications of one-stage dryers are made. 3 refs.

  3. Fate of Electroweak Vacuum during Preheating

    CERN Document Server

    Ema, Yohei; Nakayama, Kazunori

    2016-01-01

    Our electroweak vacuum may be metastable in light of the current experimental data of the Higgs/top quark mass. If this is really the case, high-scale inflation models require a stabilization mechanism of our vacuum during inflation. A possible candidate is the Higgs-inflaton/-curvature coupling because it induces an additional mass term to the Higgs during the slow roll regime. However, after the inflation, the additional mass term oscillates, and it can potentially destabilize our electroweak vacuum via production of large Higgs fluctuations during the inflaton oscillation era. In this paper, we study whether or not the Higgs-inflaton/-curvature coupling can save our vacuum by properly taking account of Higgs production during the preheating stage. We put upper bounds on the Higgs-inflaton/-curvature coupling, and discuss possible dynamics that might relax them.

  4. QUENCH STUDIES AND PREHEATING ANALYSIS OF SEAMLESS

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari [JLAB; Geng, Rongli [JLAB; Eremeev, Grigory [JLAB

    2013-09-01

    One of the alternative manufacturing technologies for SRF cavities is hydroforming from seamless tubes. Although this technology has produced cavities with gradient and Q-values comparable to standard EBW/EP cavities, a few questions remain. One of these questions is whether the quench mechanism in hydroformed cavities is the same as in standard electron beam welded cavities. Towards this effort Jefferson Lab performed quench studies on 2 9 cell seamless hydroformed cavities. These cavities include DESY's - Z163 and Z164 nine-cell cavities hydroformed at DESY. Initial Rf test results Z163 were published in SRF2011. In this report we will present post JLAB surface re-treatment quench studies for each cavity. The data will include OST and T-mapping quench localization as well as quench location preheating analysis comparing them to the observations in standard electron beam welded cavities.

  5. Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air.

    Science.gov (United States)

    Guangul, Fiseha M; Sulaiman, Shaharin A; Ramli, Anita

    2012-12-01

    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.

  6. Hill crossing during preheating after hilltop inflation

    CERN Document Server

    Antusch, Stefan; Orani, Stefano

    2015-01-01

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather t...

  7. Application of the Separate Universe Approach to Preheating

    CERN Document Server

    Tanaka, T; Tanaka, Takahiro; Bassett, Bruce

    2003-01-01

    The dynamics of preheating after inflation has not been clearly understood yet.In particular, the issue of the generation of metric perturbations during preheating on super-horizon scale is still unsettled. Large scale perturbations may leave an imprint on the cosmic microwave background, or may become seeds for generation of primordial black holes. Hence, in order to make a connection between the particle physics models and cosmological observations, understanding the evolution of super-Hubble scale perturbations during preheating is important. Here, we propose an alternative treatment to handle this issue based on the so-called separate universe approach, which suggests less efficient amplification of super-Hubble modes during preheating than was expected before. We also point out an important issue which may have been overlooked in previous treatments.

  8. Equation of state and Beginning of Thermalization After Preheating

    CERN Document Server

    Podolsky, D I; Kofman, L; Peloso, M; Podolsky, Dmitry I.; Felder, Gary N.; Kofman, Lev; Peloso, Marco

    2006-01-01

    We study the out-of-equilibrium nonlinear dynamics of fields after post-inflationary preheating. During preheating, the energy in the homogeneous inflaton is exponentially rapidly transfered into highly occupied out-of-equilibrium inhomogeneous modes, which subsequently evolve towards equilibrium. The infrared modes excited during preheating evolve towards a saturated distribution long before thermalization completes. We compute the equation of state during and immediately after preheating. It rapidly evolves towards radiation domination long before the actual thermal equilibrium is established. The exact time of this transition is a non-monotonic function of the coupling between the inflaton and the decay products, and it varies only very weakly (around 10^(-35) s) as this coupling changes over several orders of magnitude. This result is applied to refine the relation between the number of efoldings N and the physical wavelength of perturbations generated during inflation. We also discuss the implications fo...

  9. Anisotropies in the gravitational wave background from preheating.

    Science.gov (United States)

    Bethke, Laura; Figueroa, Daniel G; Rajantie, Arttu

    2013-07-05

    We investigate the anisotropies in the gravitational wave (GW) background produced at preheating after inflation. Using lattice field theory simulations of a massless preheating model, we show that the GW amplitude depends sensitively on the value of the decay product field χ coupled to the inflaton φ, with the only requisite that χ is light during inflation. We find a strong anisotropy in the amplitude of the GW background on large angular scales, the details of which strongly depend on the reheating dynamics. We expect similar conclusions for a wide class of inflationary models with light scalar fields. If future direct detection GW experiments are capable of detecting the GW produced by preheating, they should also be able to detect this effect. This could eventually provide a powerful way to distinguish between different inflationary and preheating scenarios.

  10. Gauge Field Preheating at the End of Inflation

    CERN Document Server

    Deskins, J Tate; Caldwell, Robert R

    2013-01-01

    Here we consider the possibility of preheating the Universe via the parametric amplification of a massless, U(1) abelian gauge field. We assume that the gauge field is coupled to the inflaton via a conformal factor with one free parameter. We present the results of high-resolution three-dimensional simulations of this model and show this mechanism efficiently preheats the Universe to a radiation-dominated final state.

  11. 垃圾焚烧发电厂一次风预热方式的比较分析%Comparison of Preheating Ways of Primary Air in Waste Incineration Power Plants

    Institute of Scientific and Technical Information of China (English)

    李军; 严圣军; 陈竹; 王占磊

    2012-01-01

    A comparison of heating medium in phase II of primary air preheater by ways of superheat steam and drum saturated steam for waste incineration power plants were carried out. The results showed that comparing with drum saturated steam, the weight of steam extraction with superheat steam decreased by 20. 8%, the heat quantity decreased by 8. 7%, the steam flow into the turbine increased, the heat exchanging area in phase II of the preheater can be reduced by about 20%, and the cost can be reduced by about 10%. The superheat steam has advantages of small investment cost, small steam consumption, and higher heat effective utilization. According to waste characteristic, incineration scale and control policy, it could give a reference to select preheat way of primary air, with the new ideas of primary air preheated by boiler feed water and the optimized air preheating way.%对垃圾焚烧发电厂一次风加热器Ⅱ段的加热介质采用锅炉出口过热蒸汽和汽包饱和蒸汽进行比较,结果表明:过热蒸汽抽汽较汽包饱和蒸汽抽汽的抽汽量减少20.8%,热量减少8.7%,并增加了进汽机的蒸汽量,同时预热器Ⅱ段换热面积可减少约20%,造价相应降低约10%.过热蒸汽加热有投资成本小、蒸汽耗量小、热量有效利用率高的优点.并通过锅炉给水预热一次风、优化的空气预热方式等新的一次风预热思路,供不同垃圾性质、焚烧规模、控制策略等选择一次风预热形式时参考.

  12. Humid Air Turbine as a Primary Link of a Coal-Fired Steam Power Plant

    Directory of Open Access Journals (Sweden)

    Jan T. Szargut

    2000-06-01

    Full Text Available Outlet gases of the humid air turbine (having a temperature of about 125 oC and great content of steam can be used for the preheating of feed water of the steam power plant fueled with coal. So the efficiency of the plant can be increased and its ecological indices can be improved. The attainable incremental efficiency of the humid air turbine and the increased efficiency of the combined plant has been determined for three variants of the repowering of an existing steam power plant. The variant presented in Figure 4 is recommended for practical application.

  13. Reheating and preheating in the simplest extension of Starobinsky inflation

    CERN Document Server

    van de Bruck, C; Paduraru, L E

    2016-01-01

    The epochs of reheating and preheating are studied in a simple extension of the Starobinsky inflationary model, which consists of an $R^2$--correction to the Einstein--Hilbert action and an additional scalar field. We find that if the $R^2$--correction at the end of inflation is dynamically important, it affects the expansion rate and as a consequence the reheating and preheating processes. While we find that the reheating temperature and duration of reheating are only slightly affected, the effect has to be taken into account when comparing the theory to data. In the case of preheating, the gravitational corrections can significantly affect the decay of the second field. Particle production is strongly affected for certain values of the parameters in the theory.

  14. Gravity Waves from Tachyonic Preheating after Hybrid Inflation

    CERN Document Server

    Dufaux, Jean Francois; Kofman, Lev; Navros, Olga

    2008-01-01

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  15. Formation of sub-horizon black holes from preheating

    CERN Document Server

    Torres-Lomas, E; Malik, Karim A; Ureña-López, L Arturo

    2014-01-01

    We study the production of primordial black holes (PBHs) during the preheating stage that follows a chaotic inflationary phase. The scalar fields present in the process are evolved numerically using a modified version of the HLATTICE code. From the output of the numerical simulation we compute the probability distribution of curvature fluctuations paying particular attention to sub-horizon scales. We find that in some specific models these modes grow to large amplitudes developing highly non-Gaussian probability distributions. We then calculate PBH abundances using the standard Press-Schechter criterion and find that overproduction of PBHs is likely in some regions of the chaotic preheating parameter-space.

  16. Steam Drum Design for Direct Steam Generation

    OpenAIRE

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Juvaraj; Krüger, Dirk; Hennecke, Klaus

    2016-01-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum p...

  17. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  18. A Model Independent Approach to (p)Reheating

    CERN Document Server

    Özsoy, Ogan; Sinha, Kuver; Watson, Scott

    2015-01-01

    In this note we propose a model independent framework for inflationary (p)reheating. Our approach is analogous to the Effective Field Theory of Inflation, however here the inflaton oscillations provide an additional source of (discrete) symmetry breaking. Using the Goldstone field that non-linearly realizes time diffeormorphism invariance we construct a model independent action for both the inflaton and reheating sectors. Utilizing the hierarchy of scales present during the reheating process we are able to recover known results in the literature in a simpler fashion, including the presence of oscillations in the primordial power spectrum. We also construct a class of models where the shift symmetry of the inflaton is preserved during reheating, which helps alleviate past criticisms of (p)reheating in models of Natural Inflation. Extensions of our framework suggest the possibility of analytically investigating non-linear effects (such as rescattering and back-reaction) during thermalization without resorting t...

  19. Theory and Numerics of Gravitational Waves from Preheating after Inflation

    CERN Document Server

    Dufaux, Jean Francois; Felder, Gary N; Kofman, Lev; Uzan, Jean-Philippe

    2007-01-01

    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity wave spectrum builds up with time and find that the amplitude an...

  20. Preheating and Affleck-Dine leptogenesis after thermal inflation

    CERN Document Server

    Felder, G N; Park, W I; Stewart, E D; Felder, Gary N.; Kim, Hyunbyuk; Park, Wan-Il; Stewart, Ewan D.

    2007-01-01

    Previously, we proposed a model of low energy Affleck-Dine leptogenesis in the context of thermal inflation. The lepton asymmetry is generated at the end of thermal inflation, which occurs at a relatively low energy scale with the Hubble parameter somewhere in the range $1 \\keV \\lesssim H \\lesssim 1 \\MeV$. Thus Hubble damping will be ineffective in bringing the Affleck-Dine field into the lepton conserving region near the origin, leaving the possibility that the lepton number could be washed out. Previously, we suggested that preheating could damp the amplitude of the Affleck-Dine field allowing conservation of the lepton number. In this paper, we demonstrate numerically that preheating does efficiently damp the amplitude of the Affleck-Dine field and that the lepton number is conserved as the result. In addition to demonstrating a crucial aspect of our model, it also opens the more general possibility of low energy Affleck-Dine baryogenesis.

  1. Non-equilibrium Goldstone phenomenon in tachyonic preheating

    CERN Document Server

    Borsanyi, S; Sexty, D; Borsanyi, Sz.

    2003-01-01

    The dominance of the direct production of elementary Goldstone waves is demonstrated in tachyonic preheating by determining numerically the evolution of the dispersion relation, the equation of state and the kinetic power spectra for the angular degree of freedom of the complex matter field. The importance of the domain structure in the order parameter distribution for the quantitative understanding of the excitation mechanism is emphasized. Evidence is presented for the very early decoupling of the low-momentum Goldstone modes.

  2. Gauge-preheating and the end of axion inflation

    CERN Document Server

    Adshead, Peter; Scully, Timothy R; Sfakianakis, Evangelos I

    2015-01-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, $U(1)$, gauge field via a Chern-Simons interaction term. We focus primarily on $m^2\\phi^2$ inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton is seen to transfer all its energy to the gauge fields within a few oscillations. We find that the gauge fields on sub-horizon scales end in an unpolarized state, due to the existence of strong rescattering between the inflaton and gauge modes. We also present a preliminary study of an axion monodromy model coupled to $U(1)$ gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  3. Gravitational Waves from Preheating in M-flation

    CERN Document Server

    Ashoorioon, Amjad; Mann, Robert B; Oltean, Marius; Sheikh-Jabbari, M M

    2014-01-01

    Matrix inflation, or M-flation, is a string theory motivated inflationary model with three scalar field matrices and gauge fields in the adjoint representation of the $\\mathbf{U}(N)$ gauge group. One of these $3N^2$ scalars appears as the effective inflaton while the rest of the fields (scalar and gauge fields) can play the role of isocurvature fields during inflation and preheat fields afterwards. There is a region in parameter space and initial field values, "the hilltop region," where predictions of the model are quite compatible with the recent \\textit{Planck} data. We show that in this hilltop region, if the inflaton ends up in the supersymmetric vacuum, the model can have an embedded preheating mechanism. % only if inflation happens around the supersymmetric vacuum. % Couplings of the preheat modes are related to the inflaton self-couplings and therefore are known from the CMB data. Through lattice simulations performed using a symplectic integrator, we numerically compute the power spectra of gravitati...

  4. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  5. Physicochemical characterization of wet microalgal cells disrupted with instant catapult steam explosion for lipid extraction.

    Science.gov (United States)

    Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa

    2015-09-01

    Instant catapult steam explosion (ICSE) was employed to disrupt wet microalgal cells for efficient lipid extraction. Physicochemical properties of exploded cells were investigated through SEM, TEM, FTIR, and TGA. The exploded cells increased in fractal dimension (1.53-1.65) when preheat time was prolonged from 0 min to 5 min and in surface pore area when steam pressure was increased. Meanwhile, the exploded cells decreased in mean size (1.69-1.44 μm) when the filling ratio of wet microalgal biomass in the preheat chamber decreased (75-12.5%). Flash evaporation and volume expansion exploded the cell walls and released the cytoplasm of the microalgal cells. These phenomena decreased the carbohydrate content and increased the lipid content in the exploded biomass. However, ICSE treatment did not change the lipid compositions in the microalgal cells. Using isopropanol as a cosolvent significantly increased the yield of lipids extracted with hexane from the exploded wet microalgal biomass.

  6. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  7. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  8. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  9. Low SO2 Emission Preheaters for Cement Production

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted

    showed that this figure could be between 90 kJ/mole and 140 kJ/mole, with a corresponding change of preexponential factors. The ability to predict emissions is very important in the design of cement plants. In this thesis the zone model concept has been applied to the modelling of the cyclone stages...... in a preheater tower. The idea is to account for the complex flow pattern in a cyclone stage by dividing it into zones, each zone having special features. In this manner the model can account for gas/solid heat exchange, gas/solid separation, different gas and solid residence times, etc. The model was evaluated...

  10. Parametric resonance of entropy perturbations in massless preheating

    Science.gov (United States)

    Moghaddam, Hossein Bazrafshan; Brandenberger, Robert H.; Cai, Yi-Fu; Ferreira, Elisa G. M.

    2015-07-01

    In this paper, we revisit the question of possible preheating of entropy modes in a two-field model with a massless inflaton coupled to a matter scalar field. Using a perturbative approximation to the covariant method we demonstrate that there is indeed a parametric instability of the entropy mode which then at second-order leads to exponential growth of the curvature fluctuation on super-Hubble scale. Back-reaction effects shut off the induced curvature fluctuations, but possibly not early enough to prevent phenomenological problems. This confirms previous results obtained using different methods and resolves a controversy in the literature.

  11. Preheating and entropy perturbations in axion monodromy inflation

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, Evan; Moghaddam, Hossein Bazrafshan [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada); Brandenberger, Robert H. [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada); Institute for Theoretical Studies, ETH Zürich,CH-8092 Zürich (Switzerland)

    2016-05-04

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index n{sub s}=5/2. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  12. Preheating and Entropy Perturbations in Axion Monodromy Inflation

    CERN Document Server

    ,

    2016-01-01

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index $n_s = 5/2$. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  13. Measuring preheat in laser-drive aluminum using velocity interferometer system for any reflector: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Hua; Fu, Sizu; Huang, Xiuguang; Wu, Jiang; Xie, Zhiyong; Zhang, Fan; Ye, Junjian; Jia, Guo; Zhou, Huazhen [Shanghai Institute of Laser Plasma, P.O. BOX 800-229, Shanghai 201800 (China)

    2014-08-15

    In this paper, we systematically study preheating in laser-direct-drive shocks by using a velocity interferometer system for any reflector (VISAR). Using the VISAR, we measured free surface velocity histories of Al samples over time, 10–70 μm thick, driven directly by a laser at different frequencies (2ω, 3ω). Analyzing our experimental results, we concluded that the dominant preheating source was X-ray radiation. We also discussed how preheating affected the material initial density and the measurement of Hugoniot data for high-Z materials (such as Au) using impedance matching. To reduce preheating, we proposed and tested three kinds of targets.

  14. Higgs vacuum metastability in primordial inflation, preheating, and reheating

    Science.gov (United States)

    Kohri, Kazunori; Matsui, Hiroki

    2016-11-01

    Current measurements of the Higgs boson mass and top Yukawa coupling suggest that the effective Higgs potential develops an instability below the Planck scale. If the energy scale of inflation is as high as the grand unified theory (GUT) scale, inflationary quantum fluctuations of the Higgs field can easily destabilize the standard electroweak vacuum and produce a lot of anti-de Sitter (AdS) domains. This destabilization during inflation can be avoided if a relatively large nonminimal Higgs-gravity or inflaton-Higgs coupling is introduced. Such couplings generate a large effective mass term for the Higgs, which can raise the effective Higgs potential and suppress the vacuum fluctuation of the Higgs field. After primordial inflation, however, such effective masses drops rapidly and the nonminimal Higgs-gravity or inflaton-Higgs coupling can cause large fluctuations of the Higgs field to be generated via parametric resonance, thus producing AdS domains in the preheating stage. Furthermore, thermal fluctuations of the Higgs field cannot be neglected in the proceeding reheating epoch. We discuss the Higgs vacuum fluctuations during inflation, preheating, and reheating, and show that the Higgs metastability problem is severe unless the energy scale of the inflaton potential is much lower than the GUT scale.

  15. Microstructures and properties of non-preheated hardfacing welding

    Institute of Scientific and Technical Information of China (English)

    Yang Shanglei; Zou Zengda; Lü Xueqin; Lou Songnian

    2007-01-01

    A new type of non-preheated hardfacing electrode was developed using H08A as the core and the coat contents including ferrotitanium, ferrovanadium, graphite, rutile etc. The microstructures and properties of hardfacing metal were systematically researched. The results show the hardness of hardfacing metal increases with increasing of ferrotitanium, ferrovanadium, graphite in the coat, but the crack resistance and processing weldability become worse. The carbides formed by arc metallurgic reaction are uniformly dispersed in the matrix structure. The phases of hardfacing metal consist of α-Fe, γ-Fe, VC, TiC and Fe3C. The carbides are compression aggregation of TiC and VC, and their appearances present irregular block. The matrix microstructure of hardfacing metal is lath martensite. The hardfacing layers with better crack resistance and wearability are achieved and no visible cracks occur when using non-preheated electrode in continuous welding process. Hardness of hardfacing metal is more than 60HRC, and its relative wearability is five times of wearability of D667 electrode in abrasive wear test.

  16. Corrosion leaking of preheater weldment in alumina factories

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; CHEN Wen-mi; GONG Zhu-qing; LIU Hong-zhao

    2005-01-01

    Stress corrosion cracking (SCC) and anticorrosion measures of TU42C weld-joint were studied by constant load experiments and pickling experiments. The results show that in 40%(mass fraction) NaOH solution at 110 ℃, caustic SCC occurs in TU42C weld-joints at the applied potential of -1 020 mV(vs SCE) for 3 d while at the potential of -950 mV(vs SCE) for 10 d. All the cracks are intergranular. In the 10% sulfuric acid, the cracks have the most negative self-corrosion potential -432.5 mV(vs SCE) and are active to be further corroded by the acid. Because of the same corrosion behaviour as the lab weldment, preheater's cracking in alumina factories is attributed to the combining actions of previous caustic SCC in Bayer solutions and continuous acid corrosion by pickling with the addition of RD. The following measures are effective to prevent the corrosion failure of preheater, such as postweld heat treatment at 620 ℃ to relax the residual weld stress, addition of CC3 and L826 as the corrosion inhibitors to improve the pickling and cleaning by the high pressure water instead of by pickling.

  17. Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Chairattanamanokorn, Prapaipid [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Penthamkeerati, Patthra [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Reungsang, Alissara [Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Department of Biotechnology, Khon Kaen University, Khon Kaen, Bangkok (Thailand); Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-09-15

    Production of biohydrogen from dark fermentation is an interesting alternative to producing renewable fuels because of its low cost and various usable substrates. Cellulosic content in plentiful bagasse residue is an economically feasible feedstock for biohydrogen production. A statistical experimental design was applied to identify the optimal condition for biohydrogen production from enzymatically hydrolyzed bagasse with 60-min preheated seed sludge. The bagasse substrate was first heated at 100 C for 2 h and was then hydrolyzed with cellulase. Culture of the pretreated bagasse at 55 C provided a higher H{sub 2} production performance than that obtained from cultures at 45 C, 65 C, 35 C and 25 C. On the other hand, the culture at pH 5 resulted in higher H{sub 2} production than the cultures at pH 6, pH 4 and pH 7. The optimal culture condition for the hydrogen production rate was around 56.5 C and pH 5.2, which was identified using response surface methodology. Moreover, the pretreatment of bagasse under alkaline conditions gave a thirteen-fold increase in H{sub 2} production yield when compared with that from preheatment under neutral condition. (author)

  18. An Isothermal Steam Expander for an Industrial Steam Supplying System

    OpenAIRE

    Chen-Kuang Lin; Guang-Jer Lai; Yoshiyuki Kobayashi; Masahiro Matsuo; Min-Chie Chiu

    2015-01-01

    Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure) is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator i...

  19. Effect of preheating on the film thickness of contemporary composite restorative materials

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-12-01

    Conclusion: The film thickness of the composites tested is material dependent. The thickness of the preheated conventional composites is significantly lower than those at room temperature. The conventional composites provide film thickness values greater than those of the flowable composites regardless of preheating temperature.

  20. Table Manners

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Good table manners are more than about proper eating,it’s about being kind and considerate of others.Although table manners are different from country to country,they still share some similarities both in good and bad table manners.

  1. Improved design and operation of crude furnace air preheater for cold climates

    Energy Technology Data Exchange (ETDEWEB)

    Gollpudi, B. [Bantrel Co. (Canada); Nichols, D. [Husky Energy (Canada)

    2011-07-01

    In the heavy oil industry, air preheaters are used to heat combustion air with hot flue gas. Flue gas contains significant amounts of sulphur oxides which can result in acid dew point corrosion on the flue gas side. The air preheater metal has therefore to be kept at a temperature higher than this dew point to provide trouble free operation. This paper relates a case of dew point corrosion damage in an air preheater and the design modifications made to solve the problem. The case studied took place at the crude furnace at Husky Energy's Lloydminster Upgrader where a plate exchanger air preheater was installed in 2007 and corrosion was noticed in 2009. It was found that hot air recirculation helps in maintaining a sufficiently high temperature and that the ducting design avoids dead zones. This paper showed that improved design can help to prevent damage occurring in the air preheater.

  2. Safety Picks up "STEAM"

    Science.gov (United States)

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  3. Molten salt parabolic trough system with synthetic oil preheating

    Science.gov (United States)

    Yuasa, Minoru; Hino, Koichi

    2017-06-01

    Molten salt parabolic trough system (MSPT), which can heat the heat transfer fluid (HTF) to 550 °C has a better performance than a synthetic oil parabolic trough system (SOPT), which can heat the HTF to 400 °C or less. The utilization of HTF at higher temperature in the parabolic trough system is able to realize the design of a smaller size of storage tank and higher heat to electricity conversion efficiency. However, with MSPT there is a great amount of heat loss at night so it is necessary to circulate the HTF at a high temperature of about 290 °C in order to prevent solidification. A new MSPT concept with SOPT preheating (MSSOPT) has been developed to reduce the heat loss at night. In this paper, the MSSOPT system, its performance by steady state analysis and annual performance analysis are introduced.

  4. Frustration of resonant preheating by exotic kinetic terms

    Energy Technology Data Exchange (ETDEWEB)

    Rahmati, Shohreh; Seahra, Sanjeev S., E-mail: srahmati@unb.ca, E-mail: sseahra@unb.ca [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada)

    2014-10-01

    We study the effects of exotic kinetic terms on parametric resonance during the preheating epoch of the early universe. Specifically, we consider modifications to the action of ordinary matter fields motivated by generalized uncertainty principles, polymer quantization, as well as Dirac-Born-Infeld and k-essence models. To leading order in an ''exotic physics'' scale, the equations of motion derived from each of these models have the same algebraic form involving a nonlinear self-interaction in the matter sector. Neglecting spatial dependence, we show that the nonlinearity effectively shuts down the parametric resonance after a finite time period. We find numeric evidence that the frustration of parametric resonance persists to spatially inhomogenous matter in (1+1)-dimensions.

  5. 20 YEARS OF EXPERIENCE WITH SCRAP PREHEATING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Je. Apfel

    2015-01-01

    Full Text Available More and more countries worldwide implement new rules and regulations to improve energy efficiency and cut CO2 and hazardous off-gas emissions. Thus electric steelmakers need technology that keeps costs low, increases productivity and helps them adhere to environmental regulations. Decades of knowledge in preheating technology, and several different innovative applications which had been solution for many unique cases have been brought together and announced in 2010. EAF Quantum was designed as a pragmatic solution that meets requirements for high energy and cost efficiency, increased productivity and lowest emissions. Whether scrap, partly hot metal or direct-reduced iron (DRI is charged, EAF Quantum is the solution for highly productive electric steelmaking at extra low conversion costs.

  6. Pre-heating in the framework of massive gravity

    Directory of Open Access Journals (Sweden)

    Debaprasad Maity

    2016-09-01

    Full Text Available In this paper we propose a mechanism of natural pre-heating of our universe by introducing an inflaton field dependent mass term for the gravitational wave for a specific class of massive gravity theory. For any single field inflationary model, the inflaton must go through the oscillatory phase after the end of inflation. As has recently been pointed out, if the gravitational fluctuation has inflaton dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflaton. Because of this large enhancement of the amplitude of the gravitational wave due to parametric resonance, we show that universe can naturally go through the pre-reheated phase with minimally coupled matter field. Therefore, during the reheating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflaton.

  7. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  8. Equations for calculating the properties of dissociated steam

    Science.gov (United States)

    Aminov, R. Z.; Gudym, A. A.

    2017-08-01

    The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.

  9. Modifikasi Alat Steam untuk Pembengkokan Rotan

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    distribution of steam because there are no spaces between rattans besides contact with rust stains from tube steamer. The purpose of this study was to modify steamer that is designed multi-purpose steam, can soften rattan with wet steam in a steamer tube, can also be sprayed with dry steam on the rattan surfaces. The method is carried out field survey and literature, design planning, procurement of materials, manufacturing equipment, testing equipment, finishing equipment, evaluation and reporting. The test tool with rattan variable crosssection of 2,4 cm, 2,8 cm 3,2 cm and a steaming rattan 5 minutes, 10 minutes, and 15 minutes, with boiler and steamer tube temperature 110° C, 2 bar maximum pressure (kg / cm2. Results obtained in the form of 1 unit Steam Tool For Bending Rattan consists of: Heating, Steam boiler stainless steel base material JIS G 3116-2000 standard specifications, 118 liter of volume, steam tube SUS 340 Grade, soaking tub and bending table. The trial results are best with a steaming time of 15 minutes, rattan is not broken, no cracking or not deflated, for all variable diameter. Can bend U shape rattan, Ω, semi-circular and spiral. Dry steam trials with great results at the time of spraying is greater than 20 minutes.Keywords: steamer, furniture, bending, rattan

  10. Solar steam generation: Steam by thermal concentration

    Science.gov (United States)

    Shang, Wen; Deng, Tao

    2016-09-01

    The solar-driven generation of water steam at 100 °C under one sun normally requires the use of optical concentrators to provide the necessary energy flux. Now, thermal concentration is used to raise the vapour temperature to 100 °C without the need for costly optical concentrators.

  11. Ukraine Steam Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Gurvinder Singh

    2000-02-15

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  12. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  13. Primordial black hole production during preheating in a chaotic inflationary model

    CERN Document Server

    Torres-Lomas, E

    2013-01-01

    In this paper we review the production of primordial black holes (PBHs) during preheating after a chaotic inflationary model. All relevant equations of motion are solved numerically in a modified version of HLattice, and we then calculate the mass variance to determine structure formation during preheating. It is found that production of PBHs can be a generic result of the model, even though the results seem to be sensitive to the values of the smoothing scale. We consider a constraint for overproduction of PBHs that could uncover some stress between inflation-preheating models and observations.

  14. Experimental study on preheated combustion of pulverized semi-coke

    Science.gov (United States)

    Yao, Yao; Zhu, Jianguo; Lu, Qinggang; Zhou, Zuxu

    2015-06-01

    In a test rig, pulverized semi-coke was preheated to 850oC in a circulating fluidized bed (CFB) and then combusted at 1100oC in a down-fired combustor (DFC). Experiments were conducted to reveal the effects of three secondary air nozzle cases (co-axial jet, top circular jet and wall circular jet) on the NO emission. The results show that the optimized secondary air nozzle can reduce NO emission. O2 concentration profile is the major factor affecting NO generation and emission, which is led by the secondary air nozzle. The lower O2 concentration led to the generation of lower initial NO. The NO emission at the exit of the DFC was reduced from 189 to 92 mg/m3 (@ 6% O2) with the decrease of initial generation. The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH3 in the syngas, rather than the oxidization of fuel-N in the char. The low and well-distributed O2 concentration contributes to the reduction of initial NO, which helps to reduce the NO emission. The combustion efficiencies of the cases of the co-axial jet, the top circular jet, and the wall circular jet are 97.88%, 98.94% and 98.74%, respectively.

  15. Preheating after multifield inflation with nonminimal couplings, II: Resonance Structure

    CERN Document Server

    DeCross, Matthew P; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I

    2016-01-01

    This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the single-field attractor, which is a generic feature of these models. We construct the Floquet charts to find regions of parameter space in which particle production is efficient for both the adiabatic and isocurvature modes, and analyze the resonance structure using analytic and semi-analytic techniques. Particle production in the adiabatic direction is characterized by the existence of an asymptotic scaling solution at large values of the nonminimal couplings, $\\xi_I \\gg 1$, in which the dominant instability band arises in the long-wavelength limit, for comoving wavenumbers $k \\rightarrow 0$. However, the large-$\\xi_I$ regime is not reached until $\\xi_I \\geq {\\cal O} (100)$. In the intermediate regime, with $\\xi_I \\sim {\\cal O}(10)$, the resonance structure depend...

  16. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  17. Adaptive preheating duration control for low-power ambient air quality sensor networks.

    Science.gov (United States)

    Baek, Yoonchul; Atiq, Mahin K; Kim, Hyung Seok

    2014-03-20

    Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback-large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC) method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption. Furthermore, the APC can allow systems to meet user requirements such as accuracy and periodicity factor when detecting the concentration of a target gas. A performance evaluation of the power consumption of gas sensors is conducted with various user requirements and factors that affect the preheating duration of the gas sensor. This shows that the power consumption of the APC is lower than that of continuous power supply methods and constant power supply/cutoff methods.

  18. Adaptive Preheating Duration Control for Low-Power Ambient Air Quality Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yoonchul Baek

    2014-03-01

    Full Text Available Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback—large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption. Furthermore, the APC can allow systems to meet user requirements such as accuracy and periodicity factor when detecting the concentration of a target gas. A performance evaluation of the power consumption of gas sensors is conducted with various user requirements and factors that affect the preheating duration of the gas sensor. This shows that the power consumption of the APC is lower than that of continuous power supply methods and constant power supply/cutoff methods.

  19. 提高蒸馏醪液预热温度的研究%Improvement of Distilled Mash Preheat Temperature

    Institute of Scientific and Technical Information of China (English)

    郭传广; 何松贵; 卫云路

    2016-01-01

    In order to improve the distillation efficiency, reduce energy consumption through the transformation of existing retort, increasing the heat transfer area of the heat exchanger, so be distilled mash temperature than the original improved 45.3%, 7.5 single retort distillation save time min, to achieve annual savings of 7.26%of steam. Further, the test vegetarian tasting that wine quality, to improve the preheating temperature of the mash vegetarian wine quality has little effect on stability vegetarian wine quality.%为了提高蒸馏效率,降低能耗,通过对现有蒸馏甑进行改造,增大了换热器的换热面积,使得待蒸馏的醪液温度较原来的提升了45.3%,单甑蒸馏节约时间7.5min,全年可实现节约蒸汽7.26%。另外,通过对试验斋酒质量的品评得知,提高醪液预热温度对斋酒质量影响不大,斋酒质量稳定。

  20. Prediction and mitigation of air preheater fouling due to ammonium bisulfate

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, R.; Tavoulareas, S.; Stallings, J. [Energy and Environmental Strategies, MA (United States)

    2001-07-01

    This paper provides a brief review of the fundamentals of ammonium bisulfate (ABS) formation, deposition and fouling in the air preheater. It presents a software-based predictive model for assessing the potential for air preheater fouling as a result of proposed SNCR or SCR retrofits and considering site-specific conditions and introduces a software-based cost-benefit model for assessing the economic trade-offs of various ABS fouling mitigation options. 7 refs., 13 figs.

  1. Stellar and HI Mass Functions Predicted by a Simple Preheating Galaxy Formation Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the new preheating mechanism of galaxy formation suggested by Mo et al., we construct a simple model of formation of disk galaxies within the current paradigm of galaxy formation. It incorporates preheating, gas cooling, bulge formation and star formation. The predicted stellar and HI mass functions of galaxies are discussed and compared with the observations. It is found that our model can roughly match both the observed galaxy luminosity function and the observed HI-mass function.

  2. Combustion and Vibration Analysis of Idi- Diesel Engine Fuelled With Neat Preheated Jatropha Methyl Ester

    Directory of Open Access Journals (Sweden)

    Y.Ashok Kumar Reddy

    2014-03-01

    Full Text Available Experimentation is conducted on an IDI diesel engine and the results of combustion and vibration on IDI -Diesel engine fueled with the preheated Jatropha Methyl Ester (JME are presented. The Present research trend is to replace conventional diesel by renewable alternative fuels in view of fast depletion of petroleum reserves and to reduce the exhaust emissions from the engines without altering the basic design of the engine. Due to moderately higher viscosity effects, the direct use of biodiesel in C.I. engines is limited to 20% and the limitation is based on the NO emission also. In this work, the biodiesel is preheated using on line electronically controlled electrical preheating system before it enters into the injector. Experiments are conducted on a four stroke single cylinder IDI engine to find combustion and vibration characteristics of the engine with the preheated Jatropha Methyl Ester (JME heated to temperatures viz. 60,70,80,90 and 1000C. Normally thin oils due to heating may trigger fast burning leading to either detonation or knocking of the engine. This can be predicted by recording vibration on the cylinder head in different directions. The cylinder vibrations in the form of FFT and time waves have been analyzed to estimate the combustion propensity. Experiments are done using diesel, biodiesel and biodiesel at different preheated temperatures and for different engine loading conditions keeping the speed constant at 1500 rpm. Biodiesel preheated to 600C proved encouraging in all respects.

  3. Low-energy electron irradiation of preheated and gas-exposed single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ecton, P.A. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Beatty, J.; Verbeck, G. [Department of Chemistry, University of North Texas, Denton, TX 76203 (United States); Lakshantha, W.; Rout, B. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Perez, J.M., E-mail: jperez@unt.edu [Department of Physics, University of North Texas, Denton, TX 76203 (United States)

    2016-11-30

    Highlights: • Preheating SWCNTs in situ before irradiation prevents an increase in the D peak. • Preheated SWCNTs exposed to air or gases before irradiation show an increase in D peak. • The increase in D peak is not due to irradiation-induced chemisorption of adsorbates. • The effects are more significant for small diameter SWCNTs. • The increase in D peak is attributed to defects that increase inter-tube interactions. - Abstract: We investigate the conditions under which electron irradiation at 2 keV of single-wall carbon nanotube (SWCNT) bundles produces an increase in the Raman D peak. We find that irradiation of SWCNTs that are preheated in situ at 600 °C for 1 h in ultrahigh vacuum before irradiation does not result in an increase in the D peak. Irradiation of SWCNTs that are preheated in vacuum and then exposed to air or gases results in an increase in the D peak, suggesting that adsorbates play a role in the increase in the D peak. Small diameter SWCNTs that are not preheated or preheated and then exposed to air show a significant increase in the D and G bands after irradiation. X-ray photoelectron spectroscopy shows no chemical shifts in the C 1s peak of SWCNTs that have been irradiated versus SWCNTs that have not been irradiated, suggesting that chemisorption of adsorbates is not responsible for the increase in the D peak.

  4. Cosmological Simulations of the Preheating Scenario for Galaxy Cluster Formation: Comparison to Analytic Models and Observations

    CERN Document Server

    Younger, Joshua D

    2007-01-01

    We perform a set of non--radiative cosmological simulations of a preheated intracluster medium in which the entropy of the gas was uniformly boosted at high redshift. The results of these simulations are used first to test the current analytic techniques of preheating via entropy input in the smooth accretion limit. When the unmodified profile is taken directly from simulations, we find that this model is in excellent agreement with the results of our simulations. This suggests that preheated efficiently smoothes the accreted gas, and therefore a shift in the unmodified profile is a good approximation even with a realistic accretion history. When we examine the simulation results in detail, we do not find strong evidence for entropy amplification, at least for the high-redshift preheating model adopted here. In the second section of the paper, we compare the results of the preheating simulations to recent observations. We show -- in agreement with previous work -- that for a reasonable amount of preheating, a...

  5. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  6. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  7. STEAM GENERATOR GROUP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R. A.; Lewis, M

    1985-09-01

    This report is a summary of progress in the Surry Steam Generator Group Project for 1984. Information is presented on the analysis of two baseline eddy current inspections of the generator. Round robin series of tests using standard in-service inspection techniques are described along with some preliminary results. Observations are reported of degradation found on tubing specimens removed from the generator, and on support plates characterized in-situ. Residual stresses measured on a tubing specimen are reported. Two steam generator repair demonstrations are described; one for antivibration bar replacement, and one on tube repair methods. Chemical analyses are shown for sludge samples removed from above the tube sheet.

  8. Corrosion on air preheaters and economisers; Korrosion hos luftfoervaermare och ekonomisrar

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-05-15

    Combustion plants in Sweden are exposed to considerable stress regarding low temperature corrosion, and failures due to low temperature corrosion occur regularly. Particularly common is corrosion problems connected to air preheaters and economisers. The number of combustion plants having air preheaters and economisers is however large, and the result of a collection of experiences regarding corrosion on air preheaters and economisers therefore has the potential to give a broad knowledge base. The summary of collection of experiences that has been done here, complemented with a literature survey, is expected to give plant owners and plant constructors a valuable tool to prevent corrosion on the flue gas side of air preheaters and economisers. The choice of plants for the inquiry was made using a list from the Swedish Naturvaardsverket (Environmental Protection Agency) indicating the emissions of NO{sub x}gases from Swedish combustion plants. From that list mainly the plants with the largest emissions were chosen, resulting in a number of 30 plants. Depending on that most of the plants have several boilers, and that the connected tubes often have several economisers and air preheaters, the number of economisers and air preheaters in this experience collection is at least 85. The study was however not limited to economisers and air preheaters, but also experiences connected to corrosion of other units were collected when mentioned, and the most interesting information here is also included in the report. Also a number of the plants were visited to improve the basis of the report, e.g. by photographing the most interesting parts. As the insight of the extension of the problem increased, renewed interview rounds were made, and the last one was made in August 2011.

  9. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin

    Directory of Open Access Journals (Sweden)

    Matthias Richard Kramer

    2016-01-01

    Full Text Available To test the impact of preheating (25, 37, 54, or 68 °C of TetricEvoCeram (TEC, FiltekSupremeXT (FSXT, and Venus (V on flexural strength (FS, shear bond strength (SBS and interfacial tension (IFT. FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC. SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05. Preheated TEC (37–68 °C showed higher FS compared to the control-group (25 °C (p < 0.001. FSXT presented higher FS than TEC (p < 0.001. For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015. TEC showed higher values than V and FSXT (p < 0.001. IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001.

  10. Effect of preheating on the viscoelastic properties of dental composite under different deformation conditions.

    Science.gov (United States)

    Ahn, Kyung Hyun; Lim, Sanghyuk; Kum, Kee Yeon; Chang, Seok Woo

    2015-01-01

    Preheating of dental composites improves their flowability, facilitating successful restorations. However, the flowability of dental composites is affected not only by temperature but also by the deformation conditions. In the present work, the effects of various deformation conditions upon the viscoelastic properties of a preheated dental composite were studied. The rheological properties of Z350 dental composites at 25, 45, and 60°C were measured by a strain-controlled rheometer. When a low strain (0.03%) was applied, the preheated composite exhibited greater shear storage modulus (G') and complex viscosity (η*) than a room-temperature composite. Oppositely, when a high strain (50%) was applied, G' and η* of a preheated composite were lower than those of a room-temperature composite. Preheating of dental composites might be helpful in clinical practice both to increase the slumping resistance when minimal manipulation is used (e.g., during the build-up of a missing cusp tip) and to increase flowability when manipulation entailing high shear strain is applied (e.g., when uncured composite resin is spread on a dentin surface).

  11. Effect of pre-heating on the viscosity and microhardness of a resin composite.

    LENUS (Irish Health Repository)

    Lucey, S

    2010-04-01

    The effect of pre-heating resin composite on pre-cured viscosity and post-cured surface hardness was evaluated. Groups of uncured specimens were heated to 60 degrees C and compared with control groups (24 degrees C) with respect to viscosity and surface hardness. Mean (SD) viscosities of the pre-heated specimens (n = 15) were in the range of 285 (13)-377 (11) (Pa) compared with 642 (35)-800 (23) (Pa) at ambient temperature. There was a statistically significant difference between the two groups (P < 0.001). Mean (SD) Vickers microhardness (VHN) of the pre-heated group (n = 15) was 68.6 (2.3) for the top surface and 68.7 (1.8) for the bottom surface measured at 24 h post curing (specimen thickness = 1.5 mm). The corresponding values for the room temperature group were 60.6 (1.4) and 59.0 (3.5). There was a statistically significant difference between corresponding measurements taken at the top and bottom for the pre-heated and room temperature groups (P < 0.001). There was no significant difference between top and bottom measurements within each group. Pre-heating resin composite reduces its pre-cured viscosity and enhances its subsequent surface hardness. These effects may translate as easier placement together with an increased degree of polymerization and depth-of-cure.

  12. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  13. Effect of pre-heating on the mechanical properties of silorane-based and methacrylate-based composites

    Science.gov (United States)

    Mohammadi, Narmin; Jafari-Navimipour, Elmira; Kimyai, Soodabeh; Ajami, Amir-Ahmad; Bahari, Mahmoud; Ansarin, Mohammad

    2016-01-01

    Background The use of composites in dental restoration has been commonly criticized, due to their underwhelming mechanical properties. This problem may be solved partially by preheating. The present research aims to determine the effect of preheating on the mechanical properties of two different classes of composites. Material and Methods A Silorane-based (Silorane) and a Methacrylate-based (Z250) composite were preheated to different temperatures (25, 37, and 68 °C) and afterwards were tested with the appropriate devices for each testing protocol. The material’s flexural strength, elastic modulus, and Vickers microhardness were evaluated. Two-way ANOVA, and Tukey’s post hoc were used to analyze the data. Results Microhardness and elastic modulus increased with preheating, while flexural strength values did not increase significantly with preheating. Furthermore the methacrylate-based composite (Z250) showed higher values compared to the Silorane-based composite (Silorane) in all the tested properties. Conclusions Preheating Silorane enhances the composite’s microhardness and elastic modulus but does not affect its flexural strength. On the other hand, preheating Z250 increases its microhardness but does not change its flexural strength or elastic modulus. In addition, the Z250 composite shows higher microhardness and flexural strength than Silorane, but the elastic modulus values with preheating are similar. Therefore Z250 seems to have better mechanical properties making it the better choice in a clinical situation. Key words:Composite, elastic modulus, flexural strength, microhardness, preheating. PMID:27703604

  14. Combined Refrigeration Cycle for Thermal Power Plant Using Low Grade Waste Steam

    Directory of Open Access Journals (Sweden)

    Satish Maurya*,

    2014-02-01

    Full Text Available Now a days, In most of the thermal power plant, where low-pressure steam is being exhausted to the atmosphere as a waste steam. This waste heat could be use to operate many small preheating or cooling equipments or small scale plants. There are many refrigeration systems present for refrigeration and air condition purpose. Such as air refrigeration, vapour compression, vapour absorption etc. In this paper we have presented the concept of combined vapour absorption and vapour compression refrigeration system. We present about the idea discuss here that how a vapour absorption and vapour compression can be used together as one complete working refrigeration plant. By using such concept of refrigeration we can improve the co-efficient of performance of whole plant by minimizing the input. We can also named the system as waste heat recovery refrigeration system.

  15. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    Science.gov (United States)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  16. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  17. The benefit of solid oxide fuel cells with integrated air pre-heater

    Energy Technology Data Exchange (ETDEWEB)

    Costamagna, P. [Univ. degli Studi di Genova, Fac. di Ingegneria, ISTIC, Inst. di Ingegneria Chimica e di Processo `G.B. Bonino`, Genova (Italy)

    1997-11-01

    A new design has recently been proposed in the field of solid oxide fuel cells, consisting of a traditional electrochemical cell integrated with a pre-heater. In this paper a simulation model for the rectangular planar solid oxide fuel cell with integrated air pre-heater is presented. A two-dimensional stack simulation is presented as well, one axis coincides with the fuel flow direction, the other with the stack height. Local quantities such as current density, gas and solid temperatures are reported and cell characteristics predicted. In a parameter study, effects of oxygen utilisation and heat-transfer conditions in the pre-heater on the local temperature distribution of the solid structure are considered. As a result, the benefit of the new cell design becomes evident when low air flow rates are applied. A further advantage associated with the reduced flow rate is the low air temperature at the inlet. (orig.)

  18. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    Science.gov (United States)

    Harvey-Thompson, A. J.; Sefkow, A. B.; Nagayama, T. N.; Wei, M. S.; Campbell, E. M.; Fiksel, G.; Chang, P.-Y.; Davies, J. R.; Barnak, D. H.; Glebov, V. Y.; Fitzsimmons, P.; Fooks, J.; Blue, B. E.

    2015-12-01

    We present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 ×1020 cm-3=0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.

  19. Effect of Intermediate Agents and Preheated Composites on Repair Bond Strength of Silorane-Based Composites

    Directory of Open Access Journals (Sweden)

    Fereshteh Shafiei

    2016-05-01

    Full Text Available Objectives: Repairing composite restorations is a challenging procedure especially when two different types of composites are used. This study aimed to compare the repair strength of silorane-based composite (SC (Filtek P90 with that of preheated SC, methacrylate composite (MC(Z250, flowable MC (Filtek Supreme Plus and different adhesive/composite combinations.Materials and Methods: Eighty-four SC specimens were fabricated and randomly divided into seven groups (G. In the control group (G7, SC was bonded immediately to SC. The other specimens were water-aged for two months and were then roughened, etched and repaired with the following materials: G1 Silorane Adhesive Bond (SAB/SC;G2 Preheated SC; G3 SAB/MC; G4 Adper Single Bond (SB/MC; G5 Flowable MC/MC; G6 Preheated MC. After water storage and thermocycling, the repaired specimens were subjected to shear bond strength testing. The data were analyzed using ANOVA and Tukey’s test.Results: Preheated SC and MC, flowable MC and SAB/SC resulted in bond strength comparable to that of the control group. Preheated SC showed significantly higher bond strength when compared to SAB/MC (P=0.04 and SB/MC (P<0.001. Bond strength of SB/MC was significantly lower than that of the other groups (P<0.05, except for SAB/SC and SAB/MC.Conclusion: All repairing materials except for SB/MC resulted in bond strength values comparable to that of the control group. Repair with preheated SC yielded the highest bond strength. 

  20. Effects of Preheated Composite on Micro leakage-An in-vitro Study

    Science.gov (United States)

    Raj, James David; Sherlin, Herald

    2016-01-01

    Introduction Resin composites have been the pinnacle of direct esthetic restorations ever since its discovery. However, it comes with its own disadvantages. Post-operative sensitivity and marginal discoloration frequently occur due to polymerization shrinkage and micro leakage, which is the major cause of failure in resin composite restorations. Aim To evaluate the effects of preheated composite at different temperatures on microleakage. Materials and Methods A total of 60 extracted non-carious human premolars were collected and class 1 cavity (1.5x4x 3mm) was prepared in each and were randomly divided into three groups. Group 1 (n=20) was filled with microhybrid resin composite (Heraeus Charisma Smile) at room temperature. Group 2 (n=20) was filled with the same resin composite which was preheated to 50°C and Group 3 (n=20) was filled with resin composite preheated to 60°C. Teeth were subjected to a thermocycling regime (500X, 5 - 55°C), followed by a dye infiltration by immersing in basic fuschin for 24 hours. The tooth was sectioned longitudinally and the extent or absence of micro-leakage was determined by the amount of dye penetration along the resin composite-tooth interface using a confocal microscope. Results There was minor micro-leakage detected at the occlusal margin of the control tooth specimen. The sample with preheated composite restoration at 50°C showed an intact tooth-restoration interface with no micro leakage. However, the preheated composite at 60°C showed large amount of microleakage. Conclusion Under the current limitation of the study, preheated composite at 50°C showed the least micro-leakage. PMID:27504407

  1. Effect of pre-heating on hardness of methacrylate- and silorane-based composites

    OpenAIRE

    Catelan, Anderson; Barreto,Bruno; Lima, Adriano; Oliveira, Marcelo; Marchi, Giselle; Aguiar, Flávio

    2014-01-01

    AIM: To evaluate the effect of composite pre-heating on the microhardness of different monomer resin-based. MATERIALS AND METHOD: Circular specimens of methacrylate- and silorane-based composite resins pre-heated at 23, 39, and 55˚ C were carried out, and cured using a halogen light-curing unit at 650 mW/cm². After 24 h, the specimens were polished and Knoop hardness number (KHN) was measured using a microhardness tester with 50-g load for 15 s. The data were analyzed with ANOVA and Tukey’s t...

  2. Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, F. S.; Meier, G. H.

    1983-08-01

    Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

  3. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  4. Wet steam wetness measurement in a 10 MW steam turbine

    OpenAIRE

    Kolovratník Michal; Bartoš Ondřej

    2014-01-01

    The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  5. Process for purifying geothermal steam

    Science.gov (United States)

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  6. Wet steam treatment with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, W.; Enkler, G. [EnBW Kraftwerke AG, Kernkraftwerk Philippsburg (Germany)

    1999-07-01

    After many years of excellent results using high all volatile treatment (HAVT) for operation of the secondary system of a PWR, flow assisted corrosion in the heating pipes of the intermediate steam reheaters has been experienced. Oxygen addition into the heating steam before the reheater is expected to improve the protective oxide layers formation. The reaction of oxygen with the alkalizing steam ingredients is described. (orig.)

  7. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  8. Low-energy electron irradiation of preheated and gas-exposed single-wall carbon nanotubes

    Science.gov (United States)

    Ecton, P. A.; Beatty, J.; Verbeck, G.; Lakshantha, W.; Rout, B.; Perez, J. M.

    2016-11-01

    We investigate the conditions under which electron irradiation at 2 keV of single-wall carbon nanotube (SWCNT) bundles produces an increase in the Raman D peak. We find that irradiation of SWCNTs that are preheated in situ at 600 °C for 1 h in ultrahigh vacuum before irradiation does not result in an increase in the D peak. Irradiation of SWCNTs that are preheated in vacuum and then exposed to air or gases results in an increase in the D peak, suggesting that adsorbates play a role in the increase in the D peak. Small diameter SWCNTs that are not preheated or preheated and then exposed to air show a significant increase in the D and G bands after irradiation. X-ray photoelectron spectroscopy shows no chemical shifts in the C 1s peak of SWCNTs that have been irradiated versus SWCNTs that have not been irradiated, suggesting that chemisorption of adsorbates is not responsible for the increase in the D peak.

  9. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  10. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite.

    Science.gov (United States)

    Theobaldo, Jéssica Dias; Aguiar, Flávio Henrique Baggio; Pini, Núbia Inocencya Pavesi; Lima, Débora Alves Nunes Leite; Liporoni, Priscila Christiane Suzy; Catelan, Anderson

    2017-01-01

    The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC), microhardness (KHN), plasticization (P), and depth of polymerization (DP) of a bulk fill composite. Forty disc-shaped samples (n = 5) of a bulk fill composite were prepared (5 × 4 mm thick) and randomly divided into 4 groups according to light-curing unit (quartz-tungsten-halogen [QTH] or light-emitting diode [LED]) and preheating temperature (23 or 54 °C). A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey's test (α = 0.05). Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill. Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated.

  11. Abstract of a report on reducing resistance in gas-fired preheaters

    Energy Technology Data Exchange (ETDEWEB)

    1939-04-27

    The demands of Hydro-works Scholven to increase the capacity of one of their preheaters, with consequently greater volume of circulating gases, inspired the idea to study the resistance to the flow of gases in the preheaters. The resistance varied with the square of the velocity, so that pressure differences beyond the capacity of the single-stage Schiele blowers could be easily developed. It was intended, therefore, to determine the exact course of the pressure loss in preheaters in operation at Scholven. Since this met with many practical difficulties, it was supplemented by measurements on sheet steel models built to one-tenth their actual size. The measurements on the preheaters already in service showed that the pressure loss in the heating chamber proper, that is the pressure losses applicable to heat transmission, were small compared to the total pressure loss. The greatest proportion of the heating loss occurred in the inlet and outlet ducts and passages. This indicated that particular attention must be paid to the resistance in the ducts and the distributing points. The gas distribution needed to be arranged such that energy-consuming dampers could be eliminated. Where bends could not be avoided, guide vanes could considerably reduce the pressure loss. It was suggested to use an Escher--Weiss axial blower system instead of the Schiele radial blower. Reduction of pressure losses would increase velocity of the gases in the heating flues and thus increase heat transmission in the hairpin coils.

  12. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater

    Energy Technology Data Exchange (ETDEWEB)

    J. Menasha; D. Dunn-Rankin; L. Muzio; J. Stallings [University of California Irvine, Irvine, CA (United States). Department of Mechanical and Aerospace Engineering

    2011-07-15

    Ammonium bisulfate (ABS) forms in coal-fired power plant exhaust systems when ammonia slip from the NOx control system reacts with the sulfur oxides and water in the flue gas. The critical temperature range for ABS formation occurs in the air preheater, where ABS is known to cause corrosion and pluggage that can require unplanned outages and expensive cleaning. To develop mitigation strategies for the deleterious effects of ABS in air preheaters, it is important to know its formation temperature and deposition process. This paper describes a bench-scale experimental simulation of a single-channel air preheater, with the appropriate temperature gradient, used in conjunction with simulated coal combustion flue gas, including sulfur oxides, ammonia, and water vapor, to investigate the formation of ABS. Formation was observed optically, and the formation temperature, as well as deposition characteristics for a realistic range of reactant concentrations are presented and compared with previous studies on ABS formation. This study presents data at realistic concentrations not earlier tested, and the reported data has smaller experimental uncertainty than previously obtained. We found that the measured ABS formation temperatures under air preheater channel conditions lies between the temperatures reported by others, and is in the range of 500-520 K for typical flue gas concentrations of ammonia and sulfur oxide species. The results also show that, at least for this experimental configuration, ABS forms predominantly as an aerosol in the gas phase rather than as a condensate on the channel walls. 13 refs., 13 figs., 2 tabs.

  13. Enhanced preheating after multi-field inflation: on the importance of being special

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Eggemeier, Alexander [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany); Giblin, John T. Jr., E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: a.eggemeier@stud.uni-goettingen.de, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, Gambier, OH 43022 (United States)

    2012-11-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense.

  14. System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    Technical briefing to report the outcomes of a data monitoring effort to determine the nature of solar vent preheat system performance problems at a U.S. military installation. The analysis reports up-to-date research and findings regarding system design, helping to clarify the issue as a factor of system design, rather than a shortcoming of SVP systems.

  15. Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy

    Science.gov (United States)

    Yaduwanshi, D. K.; Bag, S.; Pal, S.

    2014-10-01

    The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.

  16. Little evidence for non-gravitational energy feedback beyond $r_{500}$ - An end to ICM preheating?

    CERN Document Server

    Iqbal, Asif; Nath, Biman B; Ettori, Stefano; Eckert, Dominique; Malik, Manzoor A

    2016-01-01

    Non-gravitational feedback affects the nature of the intra-cluster medium (ICM). X-ray cooling of the ICM and in situ energy feedback from AGN's and SNe as well as preheating of the gas at epochs preceding the formation of clusters are proposed mechanisms for such feedback. While cooling and AGN feedbacks are dominant in cluster cores, the signatures of a preheated ICM are expected to be present even at large radii. To estimate the degree of preheating, with minimum confusion from AGN feedback/cooling, we study the non-gravitational feedback energy profiles upto $r_{200}$ for a sample of 17 galaxy clusters using joint data sets of Planck SZ pressure profiles and ROSAT/PSPC gas density profiles. We show that the estimated energy feedback profile of the ICM is consistent with zero at 1$\\sigma$ beyond $\\sim r_{500}$. The canonical value of preheating energy of 1 keV/particle, needed in order to match energy entropy floors and cluster scalings, is ruled out at $4.4\\sigma$ beyond $r_{500}$. Our results take both n...

  17. Preheating to around 100°C under endcap blocks before welding at KHI.

    CERN Multimedia

    Loveless, D

    2000-01-01

    The 600mm thick sector blocks of the CMS endcaps are made from three layers of 200mm plates welded together. During the manufacture at KHI, the blocks are preheated to around 100°C to prevent cracks in the welds.

  18. The Accretion and Cooling of Preheated Gas in Dark Matter Halos

    CERN Document Server

    Lu, Y; Lu, Yu

    2006-01-01

    (abridged) We use a one-dimensional hydrodynamical code to investigate the effects of preheating on gas accretion and cooling in cold dark matter halos. In the absence of radiative cooling, preheating reduces the amount of gas that can be accreted into a halo, and the accreted gas fraction is determined by the ratio of the initial specific entropy of the gas to the virial entropy of the halo. In the presence of radiative cooling, preheating affects the gas fraction that can cool in two different ways. For small halos with masses 10^13Msun. We suggest that this may be the reason why the stellar mass function of galaxies breaks sharply at the massive end. Such preheating also helps create the hot diffused halos within which the "radio mode" feedback of AGNs can act effectively. In the second case, we assume the intergalactic medium is warm. Here the total amount of gas that can cool in a halo scales with halo mass as ~M^2, as would be required to match the observed stellar- and HI-mass functions in the current ...

  19. Alternate tube plugging criteria for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cueto-Felgueroso, C.; Aparicio, C.B. [Tecnatom, S.A., Madrid (Spain)

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned the Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.

  20. Steam refining as an alternative to steam explosion.

    Science.gov (United States)

    Schütt, Fokko; Westereng, Bjørge; Horn, Svein J; Puls, Jürgen; Saake, Bodo

    2012-05-01

    In steam pretreatment the defibration is usually achieved by an explosion at the end of the treatment, but can also be carried out in a subsequent refiner step. A steam explosion and a steam refining unit were compared by using the same raw material and pretreatment conditions, i.e. temperature and time. Smaller particle size was needed for the steam explosion unit to obtain homogenous slurries without considerable amounts of solid chips. A higher amount of volatiles could be condensed from the vapour phase after steam refining. The results from enzymatic hydrolysis showed no significant differences. It could be shown that, beside the chemical changes in the cell wall, the decrease of the particle size is the decisive factor to enhance the enzymatic accessibility while the explosion effect is not required.

  1. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  2. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  3. Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fired Heat Treatment Furnace

    Directory of Open Access Journals (Sweden)

    E B Muhammed Shafi,

    2015-09-01

    Full Text Available This paper describes the effect of combustion air pre- heating in Diesel fired heat Treatment Furnace. The main heat treatment processes are Normalizing, Tempering, Hardening, Annealing, Solution Annealing and Stress Relieving. The emission of carbon monoxide is measured with combustion air pre-heating and without preheating. The results are then compared and it is found that the emission of CO is reduced by 29.12%. With the Combustion air pre-heating a considerable reduction in Specific Furnace Fuel Consumption (SFFC is obtained. The test was caaried out at Peekay Steels Casting (P ltd, Nallalam, Calicut.

  4. Influence of the Previous Preheating Temperature on the Static Coefficient of Friction with Lubrication

    Directory of Open Access Journals (Sweden)

    M. Živković

    2016-12-01

    Full Text Available Experimental investigations static coefficient of friction in lubricated conditions and pre-heating of the sample pin at high temperatures is discussed in this paper. The static coefficient of friction was measured in the sliding steel copper pins per cylinder of polyvinylchloride. Pins are previously heated in a special chamber from room temperature to a temperature of 800 oC with a step of 50 °C. Tribological changes in the surface layer of the pins caused by pre-heating the pins at high temperatures and cooling systems have very significantly influenced the increase in the coefficient of static friction. The results indicate the possibility of improving the friction characteristics of metal materials based on their thermal treatment at elevated temperatures.

  5. Simulation on temperature field of TIG welding of copper without preheating

    Institute of Scientific and Technical Information of China (English)

    LEI Yu-cheng; YU Wen-xia; LI Cai-hui; CHENG Xiao-nong

    2006-01-01

    According to the conservation of energy principle and technology characteristics of tungsten inert gas(TIG), a model of non-steady three-dimensional temperature field for red copper's TIG welding with a locomotive arc was established. The temperature field of welding pool was calculated with finite element software ANSYS. Indrafted the heat enthalpy conception and the surface distribution dual-ellipsoid model, the demands of welding numerical simulation was primely satisfied. Aimed at bad weldability of red copper, the TIG welding of thick-wall red copper was studied adopting Ar+N2 without preheating. The results show that the heating effect of arc is evidently enhanced, it is viable to achieve the no preheating TIG welding of red copper. Comparing the experimental values with the calculated ones under different technological parameters, the results indicate that the model and practical course are well matched, which proves that the model is reliable and correct.

  6. Operation of a cyclonic preheater in the Ca-looping for CO2 capture.

    Science.gov (United States)

    Martínez, Ana; Lara, Yolanda; Lisbona, Pilar; Romeo, Luis M

    2013-10-01

    Calcium looping is an emerging technology for CO2 capture that makes use of the calcium oxide as a sorbent. One of its main issues is the significant energy consumption in the calciner, where the regeneration of the sorbent takes place. Nevertheless, as a high temperature looping technology, the surplus heat flows may be used to reduce the energy needs in this reactor. The addition of a cyclonic preheater similar to those used in the cement industry is proposed in this work. A calcium looping system was modeled and simulated to assess the advantages and disadvantages of the inclusion of a cyclonic preheater. Despite the negative effect on the maximum average capture capacity of the sorbent, a reduction on the coal and oxygen consumptions and on the extra CO2 generated in the calciner is obtained.

  7. Experimental investigations of the laser cladding of protective coatings on preheated base material

    Science.gov (United States)

    Jendrzejewski, Rafal; Sliwinski, Gerard; Conde, Ana; Navas, Carmen; de Damborenea, Juan J.

    2004-06-01

    The laser cladding technique was applied to obtain Co-based stellite SF6 coatings on the chromium steel base. The coatings were prepared by means of a direct cladding of metal powder using a 1.2 kW cw CO2 laser stand with a controlled preheating of the substrate material. Results of the metallographic tests revealed a fine-grained, dendritic microstructure and proper metallic bonding between substrate and coating. A nearly constant concentration of mian elements at different areas of the coating cross-section indicated on homogeneous chemical composition of the laser-cladded SF6 alloy samples. A significant decrease of the micro-crack number with increasing temperature of the base preheating was observed. This was accompanied by a drop of the wear and corrosion resistance.

  8. Gravitational Waves from Abelian Gauge Fields and Cosmic Strings at Preheating

    CERN Document Server

    Dufaux, Jean-Francois; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space, and show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearence of new peaks at characteristic frequencies that are related to...

  9. Preheating after multifield inflation with nonminimal couplings, III: Dynamical spacetime results

    CERN Document Server

    DeCross, Matthew P; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I

    2016-01-01

    This paper concludes our semi-analytic study of preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. Using the covariant framework of Ref. [1], we extend the rigid-spacetime results of Ref. [2] by considering both the expansion of the universe during preheating, as well as the effect of the coupled metric perturbations on particle production. The adiabatic and isocurvature perturbations are governed by different effective masses that scale differently with the nonminimal couplings and evolve differently in time. The effective mass for the adiabatic modes is dominated by contributions from the coupled metric perturbations immediately after inflation. The metric perturbations contribute an oscillating tachyonic term that enhances an early period of significant particle production for the adiabatic modes, which ceases on a time-scale governed by the nonminimal couplings $\\xi_I$. The effective mass of the isocurvature perturbations, on the other hand, is dominated...

  10. Heating of Intracluster Gas by Jet Activities of AGN Is the "Preheating" Scenario Realistic?

    CERN Document Server

    Yamada, M; Yamada, Masako; Fujita, Yutaka

    2001-01-01

    We investigate the non-gravitational heating of hot gas in clusters of galaxies (intracluster medium; ICM) on the assumption that the gas is heated well before cluster formation ('preheating'). We examine the jet activities of radio galaxies as the sources of excess energy in ICM, and the deformation of the cosmic microwave background (the Sunyaev-Zel'dovich effect) by hot electrons produced at the jet terminal shocks. We show that the observed excess entropy of ICM and {\\sl COBE/FIRAS} upper limit for the Compton $y$-parameter are compatible with each other only when the heating by the jets occurred at relatively small redshift ($z\\lesssim 3$). Since this result contradicts the assumption of 'preheating', it suggests that the heating occurred simultaneously with or after cluster formation.

  11. Specific Angular Momentum Distribution of Disc Galaxies Formed in Preheated Intergalactic Media

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-Jian; FU Li-Ping; SHU Cheng-Gang

    2004-01-01

    Assuming that baryons within a galactic halo have the same specific angular momentum as the dark matter where they locate initially and a disc forms due to the gas cooling and condensation with the conservation of angular momentum, we investigate the angular momentum distribution in a resulting galactic disc under the new preheated galaxy formation model suggested by Mo and Mao (Mon. Not. R. Astron. Soc. 333 (2002) 768).Compared with the observational results, it can be concluded that the preheated galaxy formation model can match current observations. This model can be a good approach to solve the problems of both the angular momentum catastrophe and the mismatch of angular-momentum profiles in current disc galaxy formation models.

  12. The Cluster Gas Mass - Temperature Relation Evidence for a High Level of Preheating

    CERN Document Server

    McCarthy, I G; Balogh, M L; Carthy, Ian G. Mc; Babul, Arif; Balogh, Michael L.

    2002-01-01

    Recent X-ray observations have been used to demonstrate that the cluster gas mass - temperature relation is steeper than theoretical self-similar predictions drawn from numerical simulations that consider the evolution of the cluster gas through the effects of gravity and shock heating alone. One possible explanation for this is that the gas mass fraction is not constant across clusters of different temperature, as usually assumed. Observationally, however, there is no compelling evidence for gas mass fraction variation, especially in the case of hot clusters. Seeking an alternative physical explanation for the observed trends, we investigate the role of preheating the intracluster medium by some arbitrary source on the cluster gas mass - temperature relation for clusters with emission-weighted mean temperatures of greater than about 3 keV. Making use of the physically-motivated, analytic model developed by Babul et al. (2002), we find that preheating does, indeed, lead to a steeper relation. This is in agree...

  13. Electronically Controlling the System of Preheating Intake Air by Flame for Diesel Engine Cold-Start

    Institute of Scientific and Technical Information of China (English)

    杜巍; 赵福堂

    2003-01-01

    In order to improve the cold-start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self-ignite at the end of compression process at different temperatures of coolant and intake-air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro-controller unit (MCS-8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.

  14. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  15. Effect of preheating on the film thickness of contemporary composite restorative materials

    OpenAIRE

    Dimitrios Dionysopoulos; Kosmas Tolidis; Paris Gerasimou; Eugenia Koliniotou-Koumpia

    2014-01-01

    Background/purpose: Recently, the placement of composite materials at an elevated temperature has been proposed in order to increase their flow for better adaptation in cavity walls. The aim of this in vitro study was to evaluate the effect of preheating on the film thickness of a variety of commercially available conventional composites and to compare them with those obtained from a variety of flowable composites at room temperature. Materials and methods: The composites were three nanohy...

  16. Preheating Cold Gas Thruster Flow Through a Thermal Energy Storage Conversion System

    Science.gov (United States)

    2013-01-01

    Journal Article 3. DATES COVERED (From - To) January 2013- October 2013 4. TITLE AND SUBTITLE Preheating Cold Gas Thruster Flow Through a Thermal Energy... Gas Thruster Flow through a Thermal Energy Storage Conversion System Michael R. Reid1 United States Air Force, Colorado Springs, CO, 80840 David B...specific impulse relative to a cold gas flow. Electric propulsion systems, the primary competitor to solar thermal propulsion systems, rely on the rather

  17. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of G'(pH)/G'(pH=4.

  18. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite

    Directory of Open Access Journals (Sweden)

    Theobaldo JD

    2017-05-01

    Full Text Available Jéssica Dias Theobaldo,1 Flávio Henrique Baggio Aguiar,1 Núbia Inocencya Pavesi Pini,2 Débora Alves Nunes Leite Lima,1 Priscila Christiane Suzy Liporoni,3 Anderson Catelan3 1Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, 2Ingá University Center, Maringá, 3Departament of Dentistry, University of Taubaté, Taubaté, Brazil Objective: The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC, microhardness (KHN, plasticization (P, and depth of polymerization (DP of a bulk fill composite.Methods: Forty disc-shaped samples (n = 5 of a bulk fill composite were prepared (5 × 4 mm thick and randomly divided into 4 groups according to light-curing unit (quartz–tungsten–halogen [QTH] or light-emitting diode [LED] and preheating temperature (23 or 54 °C. A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey’s test (α = 0.05.Results: Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill.Conclusion: Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated. Keywords: composite resins, physicochemical phenomena, polymerization, hardness, heating

  19. Inductive Preheating in Laser Beam Welding of Multimaterial Joints of 22MnB5 and AA6016

    Science.gov (United States)

    Kügler, H.; Vollertsen, F.

    Inductive preheating is well known as possibility to heat ferromagnetic materials. In brazing preheating causes an improvement of wetting quality, e.g. smaller wetting angles and longer wetting lengths. In this paper inductive preheating is used to support a laser beam hybrid joining process. Aluminum AA6016 is molten in order to wet the surface of AlSi- coated steel 22MnB5. Investigations on the influence of preheating on wetting characteristics and intermetallic phase seam formation were carried out. Strength values up to 230 MPa have been measured in tensile shear tests. Fraction zone occurs in the aluminum base material indicating uncritical thickness of the intermetallic phase seam at the interface.

  20. The effect of preheating and opacity on the sorption and solubility of a composite resin.

    Science.gov (United States)

    Castro, Fabrício Luscino Alves de; Pazinatto, Flávia Bittencourt; de Lima, Érick; Cesar, Paulo Francisco; Reges, Rogério Vieira

    2016-01-01

    This study evaluated the influence of material opacity and preheating on the sorption and solubility of a composite resin material. A commercially available composite resin and an 8 × 2-mm circular metallic matrix were used to fabricate a total of 60 specimens in 6 shades, of which 3 had conventional opacity (CA2, CA3, and CA3.5) and 3 were opaque (OA2, OA3, and OA3.5). Specimens were prepared at a room temperature of 25°C or preheated to 60°C (n = 5 per shade at each temperature). The specimens were weighed 3 times: M1, dried for 24 hours at 37°C; M2, stored for 7 days in 75% ethanol at 37°C; and M3, dried for an additional 24 hours at 37°C. The weights were used to calculate the sorption and solubility of the composite resin and were analyzed using 2-way analysis of variance and Tukey tests (α = 5%). Composite resin specimens heated at 60°C yielded lower values of sorption and solubility than did specimens prepared at 25°C (P composite shades were found to be similar (P > 0.05), except for shade CA2, which presented a greater mean solubility value than OA2 (P = 0.004). Therefore, preheating was beneficial, as it lowered both the sorption and solubility of the evaluated composite resin, but opacity had little effect on these properties.

  1. Marginal and internal analysis of preheated dental fissure-sealing materials using optical coherence tomography.

    Science.gov (United States)

    Borges, Boniek Castillo Dutra; de Assunção, Isauremi Vieira; de Aquino, Célia Avani; de Melo Monteiro, Gabriela Queiroz; Gomes, Anderson Stevens Leonidas

    2016-02-01

    This study aimed to evaluate the influence of pre-photoactivation temperature on the marginal and internal integrity (occurrence of voids) of fissure-sealing materials on occlusal fissures using optical coherence tomography (OCT). Occlusal fissures of 40 human third molars were sealed using a resin-based fissure sealant (Fluroshield) and a flowable composite (Permaflo) photoactivated at 68 °C (preheated) or at room temperature (25 °C) (n=10). After sealing, the teeth were subjected to thermocycling (500 cycles, 5-55 °C) and 14 days of pH cycling (demineralisation for 6 hours/day and remineralisation for 18 hours/day). The occlusal surfaces were scanned in a buccolingual direction, and 20 tomographic images parallel to the long axis of each tooth were obtained. Images presenting marginal gaps and internal voids were counted and statistically analysed using analysis of variance and Tukey's test (Pinternal voids than the resin-based sealant. Preheated materials had a lower percentage of gaps and internal voids than the materials at room temperature. Therefore, preheated flowable composite provided the best marginal sealing of fissures, and internal homogeneity of the material. © 2015 FDI World Dental Federation.

  2. Influence of ageing, grinding and preheating on the thermal behaviour of alpha-lactose monohydrate.

    Science.gov (United States)

    Garnier, S; Petit, S; Mallet, F; Petit, M-N; Lemarchand, D; Coste, S; Lefebvre, J; Coquerel, G

    2008-09-01

    It is shown that the onset temperature and the magnitude of thermal events observed during DSC analyses of alpha-lactose monohydrate can be strongly affected by various treatments such as ageing, manual grinding and preheating (cycle of preliminary dehydration and rehydration). In the case of grinding and preheating, the change of dehydration pathways was further investigated by using a suitable combination of characterization techniques, including X-ray powder diffraction (XRPD) performed with a synchrotron source (allowing an accurate Rietveld analysis), scanning electron microscopy (SEM), laser particle size measurements, FTIR spectroscopy and (1)H NMR for the determination of beta-lactose contents in samples. It appeared that the dehydration mechanism is affected not only by a smaller particle size distribution, but also by residual anisotropic lattice distortions and by the formation of surface defects or high energy surfaces. The fusion-recrystallization process occurring between anhydrous forms of alpha-lactose at ca. 170 degrees C is not significantly affected by grinding, whereas a preheating treatment induces an unexpected large increase of the enthalpy associated with this transition. Our observations and interpretations confirm the important role of water molecules in the crystal cohesion of the title compound and illustrate the necessity to consider the history of each sample for a satisfactory understanding of the physical properties and the behaviour of this important pharmaceutical excipient.

  3. 空气预热器的改造%Revamping of air preheater

    Institute of Scientific and Technical Information of China (English)

    廖艳玲

    2011-01-01

    The revamping of air preheater in the waste heat recovery system of a 4.1 MM TPY diesel hy-drotreating unit in SINOPEC Qingdao Refining & Chemical Co. , Ltd. Was introduced. An analysis was performed on how to revamp the air preheater to reduce flue gas emission temperature of waste heat recovery system so as to improve the thermal efficiency of fired heaters. After revamping, the flue gas emission temperature is about 30 ℃ lower than that before the revamping, the thermal energy obtained by the air is much higher than that before replacement of pre-heater tubes and energy saving is significant.%介绍了中国石化青岛炼油化工有限责任公司余热回收系统的空气预热器的改造情况,分析了如何通过对空气预热器的改造来降低余热回收系统排烟温度,从而提高加热炉的热效率.改造后,烟气排烟温度比改造前降低30℃左右,空气所获得的能量比更换热管前有较大提高,节能效果显著.

  4. Laser Pre-Heat Studies for MagLIF with Z-Beamlet

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, T. J.; Gomez, M. R.; Harding, E.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Peterson, K.; Schollmeier, M.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.; Campbell, E. M.; Lewis, S. M.

    2015-11-01

    Magnetized Liner Inertial Confinement Fusion (MagLIF) relies on strong pre-heat of the fuel, typically hundreds of eV. Z-Beamlet delivers up to 4 kJ of laser energy to the target to achieve this goal. Over the last year, several experimental campaigns at the Pecos target area of Sandia's Z-Backlighter Facility and in the center section of the Z-Accelerator have been performed to investigate pre-heat. Primary objectives of these campaigns were the transmission through the laser entrance hole (LEH) in dependence of window thicknesses and focus parameters (including phase plate smoothing), as well as energy coupling to the gaseous fuel. The applied diagnostic suite included a wide range of time integrated and time-resolved X-ray imaging devices, spectrometers, backscatter monitors, a full-beam laser transmission calorimeter, and X-ray diodes.We present the findings of these studies, looking ahead towards a standard pre-heat platform. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Study of laser preheat in magnetic liner inertial fusion using the AMR code FLASH

    Science.gov (United States)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre-Alexandre; University of Rochester; Sandia National Laboratories Collaboration

    2016-10-01

    Magnetic Liner Inertial Fusion (MagLIF) on the Z Pulsed Power Accelerator involves three processes: magnetization, preheat, and compression. An issue with this scheme is the development of instabilities during laser preheat, where the Z-Beamlet laser system may not deposit energy into deuterium fuel uniformly. This study explores potential mixing between liner and fuel, and inner imprinting of seeds on a beryllium liner that may generate late instability growth and shear, using the Eulerian AMR code FLASH. We further investigate potential instability implications of an additional layer of deuterium-tritium ice, as has been proposed and assess the sensitivity of MagLIF implosions to axial variations in fuel preheat; meanwhile testing the expediency of FLASH for these scenarios. FLASH was developed in part by the DOE NNSA ASC and DOE Office of Science ASCR-supported Flash Center at the University of Chicago. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin comapny, for the U.S. Department of Energy's National Nuclear Security Administration under contract No. DE-AC04-94AL85000.

  6. STEAM DALAM PEMBUATAN PAKAN UNTUK KOMODITAS AKUAKULTUR

    OpenAIRE

    Sukarman Sukarman

    2010-01-01

    Kualitas fisik pakan (pelet) untuk hewan akuakultur sangat penting, karena akan dimasukkan ke dalam air dan diharapkan tidak banyak mencemari lingkungan. Salah satu faktor yang berpengaruh dalam menjaga kualitas fisik pakan adalah penambahan dan pengaturan steam pada saat proses pembuatan pelet. Steam adalah aliran gas yang dihasilkan oleh air pada saat mendidih. Steam dibagi menjadi 3 jenis yaitu steam basah, saturated steam, dan superheated steam. Steam yang digunakan dalam proses pembuatan...

  7. Prediction of operational variables involved in the Production Process of Crude Oil by Steam Assisted Gravity Drainage (SAGD

    Directory of Open Access Journals (Sweden)

    David Lowy

    2015-06-01

    Full Text Available (Received: 2015/04/16 - Accepted: 2015/05/29This paper presents the oil deposit and operational variables that influence the implementation of the Steam Assisted Gravity Drainage (SAGD process for the Production of Heavy and Extra-heavy Crude Oil. This process consists of drilling two parallel horizontal wells, one above the other, where the upper well is used for steam injection and the lower well is used for production. The efficiency of the process is greatly affected by the deposit and operating parameters (vertical spacing of wells, injection pressure, preheating period, among others. Furthermore, the prediction of the maximum rate of oil extraction was determined using an example with currently available real data of Block 20 of the Pungarayacu Field.

  8. Les Tables de salon (Coffee Tables)

    Science.gov (United States)

    Rondina, Marisa; Gilbert, Rodrigue

    1977-01-01

    Terms for such things as furniture in English reflect function and are specific, not generic in nature. French equivalents are based on linguistic criteria. "Tables basses" or "tables de salon" are equivalents of "coffee tables"; they illustrate the tendency toward the generic of the French language. (Text is in French.) (AMH)

  9. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  10. An Optimized Energy Management Strategy for Preheating Vehicle-Mounted Li-ion Batteries at Subzero Temperatures

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2017-02-01

    Full Text Available This paper presents an optimized energy management strategy for Li-ion power batteries used on electric vehicles (EVs at low temperatures. In low-temperature environments, EVs suffer a sharp driving range loss resulting from the energy and power capability reduction of the battery. Simultaneously, because of Li plating, battery degradation becomes an increasing concern as the temperature drops. All these factors could greatly increase the total vehicle operation cost. Prior to battery charging and vehicle operating, preheating the battery to a battery-friendly temperature is an approach to promote energy utilization and reduce total cost. Based on the proposed LiFePO4 battery model, the total vehicle operation cost under certain driving cycles is quantified in the present paper. Then, given a certain ambient temperature, a target preheating temperature is optimized under the principle of minimizing total cost. As for the preheating method, a liquid heating system is also implemented on an electric bus. Simulation results show that the preheating process becomes increasingly necessary with decreasing ambient temperature, however, the preheating demand declines as driving range grows. Vehicle tests verify that the preheating management strategy proposed in this paper is able to save on total vehicle operation costs.

  11. Equation of state for steam for systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Muneer, T.

    1985-01-01

    For engineers involved in the analysis of thermal systems, it may be desirable to compute thermodynamic properties using an equation of state rather than tables or charts. In this work, a pressure explicit equation of state for steam is developed by curve fitting of P-V-T data. An efficient optimization method was used for the least-squares minimization. The five-constant, Beattie-Bridgeman equation developed here was found to perform well in computation of a property when the other two were provided. The equation is inherently simple in form, and therefore, computation of other thermodynamic properties such as enthalpy and entropy will be an easy matter. Thus, the equation will be invaluable in design and optimization of steam-based thermal systems.

  12. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...... on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion...... 400 ppm of the carbon in the feed at approx. 600 °C. The different promoters did not influence the product distribution to any significant extent. Selective poisoning with small amounts of K2SO4 on Ni–CeO2/MgAl2O4 at 600 °C decreased carbon deposition from 900 to 200 ppm of the carbon in the feed...

  13. ASCO steam generators operating experience. Safety criteria for defect management and effectiveness of preventive measures

    Energy Technology Data Exchange (ETDEWEB)

    Toribio, E.L. [Associacion Nuclear Asco AIE, Barcelona (Spain)

    1997-02-01

    ASCO NPP is a two W-PWR 930 Mwe Units. Each Unit is provided with three Westinghouse Model D3 steam generators which are of preheater type and Inconel 600 MA as tube material. The Secondary side was designed and erected with copper alloys. Unit I: 81.072 EFPH, and Unit II: 69.720 EFPH. The results of the Eddy Currents Inspections performed during the first refueling outage showed Denting at tube support plates and PWSCC at roll transition zone in Unit I and Denting in Unit II. Later inspections showed other types of damages, such as: (1) ODSCC at tube support plates intersections. (2) Circumferential cracks OD and ID at roll transition zone. (3) Wear at antivibration bars and preheater baffles level. Consequently, in order to limit the plugging rate, A.N. ASCO decided to license new plugging criteria in addition to the 40% depth criterion included in Technical Specification. The new licensing criteria and surveillance requirements, varying with tube zone, are explained in the paper.

  14. Experimental research on bitumen preheating (fluidization) by using solar energy in passive mode

    Energy Technology Data Exchange (ETDEWEB)

    Luminosu, Ioan [Department of Physics, ' Politehnica' University Timisoara, 1, Regina Maria Plaza, RO 300004, Timisoara (Romania); Fara, Laurentiu [Department of Physics, ' ' Politehnica' ' University Bucharest, 313, Splaiul Independentei Blvd, RO 060032, Bucuresti (Romania)

    2009-01-15

    An important aim of worldwide research engineering is to identify new industries to introduce solar energy installations for average thermal level. Due to the mechanical and thermal properties of bitumen, such as the 44-49 C softening point of D80/100 type bitumen, this material can be preheated by using solar thermal installations. The Physics Department of 'Politehnica' University of Timisoara designed and studied a laboratory installation for preheating in environmental conditions an amount of 25.1 kg of bitumen up to 55 C per day. The paper developed a previous original research regarding bitumen preheating by using solar energy. The experimental installation was improved and experimental data were statistically processed. The main improvements were based on:-increasing the amount of incident solar radiation by: (a) reducing the height of the brick walls and replacing them with transparent glass plates; (b) painting the inner faces of the brick walls in white; -cutting down thermal losses by: (a) achievement of the double greenhouse effect in the transparent areas of the installation; (b) change of the brick walls into passive walls. The performances of the installation were improved as follows:-increasing time of the bitumen temperature increased from 7 hours to 8 hours, in the interval 8 am-4 pm; -bitumen maximum temperature increased from 55 to 63.3 C; -average temperature in bitumen increased from 41.4 to 46.4 C; -maximum efficiency increased from 12 to 14.4%; -daily average efficiency increased from 6.3 to 7.3%; -maximum difference between the bitumen temperature and environmental one increased from 24 to 32 C. (author)

  15. Damage to Preheated Tungsten Targets after Multiple Plasma Impacts Simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlay, V.A.; Tereshin, V.I. [Kharkov Inst. of Physics and Technology, Inst. of Plasma Physics of National Science Center, Akademicheskaya street, 1, 61108 Kharkov (Ukraine); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Postfach 3640, D-7602 1 Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: The energy loads onto ITER divertor surfaces associated with the Type I ELMs are expected to be up to 1 MJ/m{sup 2} during 0.1-0.5 ms, with the number of pulses about 103 per discharge. Tungsten is a candidate material for major part of the surface, but its brittleness can result in substantial macroscopic erosion after the repetitive heat loads. To minimize the brittle destruction, tungsten may be preheated above the ductile-to-brittle transition temperature. In this work the behavior of preheated tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 450 pulses of the duration 0.25 ms and the heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is respectively below and above the melting threshold. During the exposures the targets were permanently kept preheated at 650 deg. C by a heater at target backside. In the course of exposures the irradiated surfaces were examined after regular numbers of pulses using the SEM and the optical microscopy. The profilometry, XRD, microhardness and weight loss measurements have been performed, as well as comparisons of surface damages after the heat loads both below and above the melting threshold. It is obtained that macro-cracks do not develop on the preheated surface. After the impacts with surface melting, a fine mesh of intergranular microcracks has appeared. The width of fine intergranular cracks grows with pulse number, achieving 1-1.5 microns after 100 pulses, and after 210 pulses the crack width increases up to 20 microns, which is comparable with grain sizes. Threshold changes in surface morphology resulting in corrugation structures and pits on the surface as well as importance of surface tension in resulted 'micro-brush' structures are discussed. Further evolution of the surface pattern is caused by loss of separated grains on exposed

  16. Experimental data and boundary conditions for a Double - Skin Facade building in preheating mode

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Jensen, Rasmus Lund

    was carried out in a full scale test facility ‘The Cube’, in order to compile three sets of high quality experimental data for validation purposes. The data sets are available for preheating mode, external air curtain mode and transparent insulation mode. The objective of this article is to provide the reader......’. This covers such problem areas as measurements of naturally induced air flow, measurements of air temperature under direct solar radiation exposure, etc. Finally, in order to create a solid foundation for software validation, the uncertainty and limitations in the experimental results are discussed. In part...

  17. Optimal Heater Control with Technology of Fault Tolerance for Compensating Thermoforming Preheating System

    Directory of Open Access Journals (Sweden)

    Zhen-Zhe Li

    2015-01-01

    Full Text Available The adjustment of heater power is very important because the distribution of thickness strongly depends on the distribution of sheet temperature. In this paper, the steady state optimum distribution of heater power is searched by numerical optimization in order to get uniform sheet temperature. In the following step, optimal heater power distribution with a damaged heater was found out using the technology of fault tolerance, which will be used to reduce the repairing time when some heaters are damaged. The merit of this work is that the design variable was the power of each heater which can be directly used in the preheating process of thermoforming.

  18. EFFECT OF STORAGE, PRE-HEATING AND TURNING DURING HOLDING PERIOD ON THE HATCHABILITY OF BROILER BREEDER EGGS

    Directory of Open Access Journals (Sweden)

    A. MAHMUD AND T. N. PASHA1

    2008-07-01

    Full Text Available Two hundred forty fertile eggs of an average weight of 52-55g were taken from 32 weeks old broiler breeder flock. These eggs were divided into four groups i.e. A (Without turning and preheating, B (No turning but preheated, C (Turned but without preheating, and D (given both treatments preheating and turning with 60 eggs in each group. The eggs were stored with broad end upward at 16-20°C and 65-75% humidity. After storage for 5 days, the pre-heating of eggs of groups B and D was performed in an incubator where hot air at 30°C temperature was circulated for 6-7 hours to provide gradual warmth to the eggs before setting in the same incubator. The temperature of the incubator was maintained at 37.6°C with relative humidity of 70%. The eggs of groups C and D were turned on hourly basis at an angle of about 45° till 17 days of incubation. The hatchability values of eggs of groups A, B, C and D were 88.30 ± 0.30, 76.30 ± 0.30, 83.30 ± 0.30 and 79.90 ± 0.10%, respectively. Statistical analysis of the data by Chi-square test showed non-significant differences among treatments.

  19. Waste Heat Recovery by Heat Pipe Air-Preheater to Energy Thrift from the Furnace in a Hot Forging Process

    Directory of Open Access Journals (Sweden)

    Lerchai Yodrak

    2010-01-01

    Full Text Available Problem statement: Currently, the heat pipe air-preheater has become importance equipment for energy recovery from industrial waste heat because of its low investment cost and high thermal conductivity. Approach: This purpose of the study was to design, construct and test the waste heat recovery by heat pipe air-preheater from the furnace in a hot brass forging process. The mathematical model was developed to predict heat transfer rate and applied to compute the heat pipe air-preheater in a hot brass forging process. The heat pipe air-preheater was designed, constructed and tested under medium temperature operating conditions with inlet hot gas ranging between 370-420°C using water as the working fluid with 50% filling by volume of evaporator length. Results: The experiment findings indicated that when the hot gas temperature increased, the heat transfer rate also increased. If the internal diameter increased, the heat transfer rate increased and when the tube arrangement changed from inline to staggered arrangement, the heat transfer rate increased. Conclusion/Recommendations: The heat pipe air-preheater can reduced the quantity of using gas in the furnace and achieve energy thrift effectively.

  20. Little evidence for entropy and energy excess beyond r500 - an end to ICM pre-heating?

    Science.gov (United States)

    Iqbal, Asif; Majumdar, Subhabrata; Nath, Biman B.; Ettori, Stefano; Eckert, Dominique; Malik, Manzoor A.

    2017-02-01

    Non-gravitational feedback affects the nature of the intracluster medium (ICM). X-ray cooling of the ICM and in situ energy feedback from active galactic nuclei (AGNs) and supernovae as well as pre-heating of the gas at epochs preceding the formation of clusters are proposed mechanisms for such feedback. While cooling and AGN feedbacks are dominant in cluster cores, the signatures of a pre-heated ICM are expected to be present even at large radii. To estimate the degree of pre-heating, with minimum confusion from AGN feedback/cooling, we study the excess entropy and non-gravitational energy profiles up to r200 for a sample of 17 galaxy clusters using joint data sets of Planck Sunyaev-Zel'dovich pressure and ROSAT/Position Sensitive Proportional Counter gas density profiles. The canonical value of pre-heating entropy floor of ≳300 keV cm2, needed in order to match cluster scalings, is ruled out at ≈3σ. We also show that the feedback energy of 1 keV particle-1 is ruled out at 5.2σ beyond r500. Our analysis takes both non-thermal pressure and clumping into account which can be important in outer regions. Our results based on the direct probe of the ICM in the outermost regions do not support any significant pre-heating.

  1. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu, E-mail: yqgu@caep.cn; Zhang, Baohan [Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); and others

    2016-06-15

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  2. Steam Digest 2001: Office of Industrial Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  3. Continuous steam hydrolysis of tulip poplar

    Energy Technology Data Exchange (ETDEWEB)

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  4. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  5. Direct Measurements of Hot-Electron Preheat in Inertial Confinement Fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.; Howard, J.; Bose, A.; Forrest, C. J.; Theobald, W.; Campbell, E. M.; Delettrez, J. A.; Stoeckl, C.; Edgell, D. H.; Seka, W.; Davis, A. K.; Michel, D. T.; Glebov, V. Yu.; Wei, M. S.

    2016-10-01

    In laser-driven inertial confinement fusion, a spherical capsule of cryogenic DT with a low- Z (CH, Be) ablator is accelerated inward on low entropy to achieve high hot-spot pressures at stagnation with minimal driver energy. Hot electrons generated from laser-plasma instabilities can compromise this performance by preheating the DT fuel, which results in early decompression of the imploding shell and lower hot-spot pressures. The hot-electron energy deposited into the DT for direct-drive implosions is routinely inferred by subtracting hard x-ray signals between a cryogenic implosion and its mass-equivalent, all-CH implosion. However, this technique does not measure the energy deposited into the unablated DT, which fundamentally determines the final degradation in hot-spot pressure. In this work, we report on experiments conducted with high- Z payloads of varying thicknesses to determine the hot-electron energy deposited into a payload that is mass equivalent to the amount of unablated DT present in typical DT layered implosions on OMEGA. These are the first measurements to directly probe the effect of preheat on performance degradation. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Developing a Pre-Heat Platform for MagLIF with Z-Beamlet

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, T. J.; Bliss, D. E.; Glinsky, M. E.; Campbell, E. M.; Gomez, M. R.; Harding, E.; Hansen, S. B.; Jennings, C. A.; Kimmel, M. W.; Knapp, P. F.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Rochau, G. A.; Slutz, S. A.; Smith, I. C.; Weiss, M. R.; Porter, J. L.

    2016-10-01

    Sandia's Magnetized Liner Inertial Fusion Program has put one of the main objectives towards developing standard platform for a `preconditioned' target, providing a scenario that reproducibly delivers pre-heated fuel. The majority of this effort has been done at the ``Pecos'' Target Area using Sandia's Z-Beamlet laser to provide the pre-heat energy, just like for fully integrated MagLIF experiments. The nature and magnitude of Laser-Plasma-Instabilities during this process are particularly important, since they can lead to less energy in the fuel (backscatter processes) or to energy deposition in less desirable areas (filamentation/scatter). We present results for Stimulated Brillouin Backscatter and forward scatter, and show the effect of the laser pulse shape to laser-entrance-hole transmission and blast wave propagation in the fuel. Sandia is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DOE's Nat'l Nucl. Sec. Admin. under contract DE-AC04-94AL85000.

  7. Combustion Air Pre-heating from Ash Sensible Heat in Municipal Waste Incineration Systems

    Directory of Open Access Journals (Sweden)

    Zakariya Kaneesamkandi

    2014-01-01

    Full Text Available Heat recovery from bottom ash is more important in municipal waste combustion systems than in any other solid fuel combustion since almost 50% of it comprises of non-combustibles. In this study, an ash cooling system using air as the cooling medium has been modeled for pre-heating the combustion air. Air cooling has several advantages over water cooling methods. The study involves modeling using Gambit tool and is solved with the fluent solver. Municipal solid waste incineration systems have the advantage of being located near the waste collection area apart from the high volume reduction ratio. Improvements in the emission control systems and combustion technology can make incineration a highly feasible disposal method. Low furnace temperature due to heat losses through fuel moisture loss and ash sensible heat loss has been a disadvantage with these systems. In this study, a small percentage of the combustion air is pre-heated in a non-contact type heat exchanger and its effect on the available energy of combustion gases at the evaporator outlet is studied. The study is performed for two different waste samples. Results indicate significant increase in available energy at the evaporator outlet and better relative performance for the lower grade fuel. A comparison is made with similar methods reported in the literature along with a brief discussion on the methodologies adopted. The results confirm the importance of installing ash sensible heat recovery mechanism for waste incineration systems as well as the feasibility of the air based method.

  8. Velocity Interferometer blanking due to preheating in a double pulse planar experiment

    Energy Technology Data Exchange (ETDEWEB)

    Laffite, S.; Combis, P.; Clerouin, J.; Recoules, V.; Rousseaux, C.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Baton, S. D.; Koenig, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France)

    2014-08-15

    Optical diagnostics, such as VISAR (Velocity Interferometer System for Any Reflector) or SOP (Streaked Optical Pyrometry), have become essential in shock timing experiments. Their high precision allows for accurate measurements of shock velocities, chronometry, and brightness temperature. However, in some instances, these measurements can be compromised. In planar shock coalescence experiments recently performed at the LULI facility [Baton et al., Phys. Rev. Lett. 108, 195002 (2012)], VISAR signal loss was observed. In these experiments, a strong shock launched by a high-intensity spike catches up with a previously shock launched by an earlier, low-intensity beam. The disappearance of the VISAR signal is attributed to a preheating of the coronal plasma by x-rays generated by the high intensity spike. The signal does not disappear if the high-intensity spike starts after VISAR probe beam begins to reflect off of the first shock. The VISAR diagnostic, modeled using an assessment of the optical index in quartz, compares favorably to experimental results. This provides evidence that x-ray preheating can cause blanking of the VISAR signal in quartz.

  9. STEAM DALAM PEMBUATAN PAKAN UNTUK KOMODITAS AKUAKULTUR

    Directory of Open Access Journals (Sweden)

    Sukarman Sukarman

    2010-12-01

    Full Text Available Kualitas fisik pakan (pelet untuk hewan akuakultur sangat penting, karena akan dimasukkan ke dalam air dan diharapkan tidak banyak mencemari lingkungan. Salah satu faktor yang berpengaruh dalam menjaga kualitas fisik pakan adalah penambahan dan pengaturan steam pada saat proses pembuatan pelet. Steam adalah aliran gas yang dihasilkan oleh air pada saat mendidih. Steam dibagi menjadi 3 jenis yaitu steam basah, saturated steam, dan superheated steam. Steam yang digunakan dalam proses pembuatan pelet adalah saturated steam. Pengaruh penambahan steam pada kualitas pelet bisa mencapai 20%. Penambahan steam dengan jumlah dan kualitas yang tepat akan menghasilkan pelet berkualitas. Sedangkan jika pengaturan dan penambahannya tidak tepat, maka kualitas fisik pelet akan rendah dan kemungkinan bisa merusak kandungan nutrisi seperti vitamin dan protein. Penambahan steam yang benar bisa dilakukan di dalam kondisioner dengan mengatur retention time, sudut kemiringan paddle conditioner, kecepatan putaran bearing dan menjaga kualitas steam dari mesin boiler sampai dengan kondisioner.

  10. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  11. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  12. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    Energy Technology Data Exchange (ETDEWEB)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  13. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations

    Directory of Open Access Journals (Sweden)

    Parnian Alizadeh Oskoee

    2017-03-01

    Full Text Available Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90] and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C. Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P < 0.05. Results. The maximum and minimum gaps were detected in groups 1-A and 2-B, respectively. The effects of composite resin type, preheating and interactive effect of these variables on gap formation were significant (P<0.001. Post-hoc Tukey tests showed greater gap in dimethacrylate compared to silorane composite resins (P< 0.001. In each group, gap values were greater in composite resins at room temperature compared to composite resins after 40 preheating cycles (P<0.001. Conclusion. Gap formation at the gingival margins of Class V cavities decreased due to preheating of both composite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  14. Maintenance of Power Steam Turbine

    OpenAIRE

    Kapelovich, Boris; Khmelnik, Solomon; Kapelovich, David; Benenson, Evgeny

    2008-01-01

    The diagnostics system of the power steam turbine is offered. It can be executed also in the form of telediagnostic system. The system is presented on a site http://turbo.mic34.com/ System engineering can is ordered to authors.

  15. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  16. NNDSS - Table II. Vibriosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Vibriosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and...

  17. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2014.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  18. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2016.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  19. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2015.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  20. Pension Insurance Data Tables

    Data.gov (United States)

    Pension Benefit Guaranty Corporation — Find out about retirement trends in PBGC's data tables. The tables include statistics on the people and pensions that PBGC protects, including how many Americans are...

  1. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  2. Basic tables of the energy consumption 1985. Basistabellen energiegebruik 1985

    Energy Technology Data Exchange (ETDEWEB)

    Tiemersma, D.N.; Rouw, M.

    1991-01-01

    Reliable and useful tables of one basic year are necessary to maintain and to actualize the energy scenarios of the Energy Study Centre of the Netherlands Energy Research Foundation. Spring 1989 such basic tables were composed for the Dutch energy consumption in 1985. A basic structure has been designed to classify energy demand data. Three main sectors are distinguished: the built environment, the production system, and the transportation sector. Within each sector several subsectors can be distinguished. The energy sources considered are: coal, oil, natural gas, electric power, hot water and steam, and different gases. The energy is used for space heating, processes and electric power. In the appendix account is given of the sources of the data. The tables presented are deducted from the Dutch Energy Economy (NEH) tables and supplemented by several other sources. 25 refs., 15 tabs.

  3. Periodic Table of Students.

    Science.gov (United States)

    Johnson, Mike

    1998-01-01

    Presents an exercise in which an eighth-grade science teacher decorated the classroom with a periodic table of students. Student photographs were arranged according to similarities into vertical columns. Students were each assigned an atomic number according to their placement in the table. The table is then used to teach students about…

  4. Periodic Table of Students.

    Science.gov (United States)

    Johnson, Mike

    1998-01-01

    Presents an exercise in which an eighth-grade science teacher decorated the classroom with a periodic table of students. Student photographs were arranged according to similarities into vertical columns. Students were each assigned an atomic number according to their placement in the table. The table is then used to teach students about…

  5. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2013-01-01

    Apparently table tennis plays an important role in physics, not so much because physicists are interested in the theory of table tennis ball scattering, but probably because it provides useful breaks from their deep intellectual occupation. It seems that many of the greatest physicists took table tennis very seriously. For instance, Heisenberg could not even bear to lose a game of table tennis, Otto Frisch played a lot of table tennis, and had a table set up in his library, and Niels Bohr apparently beat everybody at table tennis. Therefore, as the CERN Table Tennis Club advertises on a poster for the next CERN Table Tennis Tournament: “if you want to be a great physicist, perhaps you should play table tennis”. Outdoor table at restaurant n° 1 For this reason, and also as part of the campaign launched by the CERN medical service “Move! & Eat better”, to encourage everyone at CERN to take regular exercise, the CERN Table Tennis Club, with the supp...

  6. Methane production from steam-exploded bamboo.

    Science.gov (United States)

    Kobayashi, Fumihisa; Take, Harumi; Asada, Chikako; Nakamura, Yoshitoshi

    2004-01-01

    To convert unutilized plant biomass into a useful energy source, methane production from bamboo was investigated using a steam explosion pretreatment. Methane could not be produced from raw bamboo but methane production was enhanced by steam explosion. The maximum amount of methane produced, i.e., about 215 ml, was obtained from 1 g of exploded bamboo at a steam pressure of 3.53 MPa and a steaming time of 5 min. A negative correlation between the amount of methane produced and the amount of Klason lignin was observed in the methane fermentation of steam-exploded bamboo.

  7. Evaluation of surfactants as steam diverters/mobility control agents in light oil steamfloods: Effect of oil composition, rates and experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, S.M.; Olsen, D.K.; Ramzel, E.B.

    1991-12-01

    A series of experiments was performed to evaluate the effectiveness of commercially available surfactants for steam-foam EOR applications in light oil reservoirs. The experiments were performed in a 3-ft long, 1-1/2 in.-diameter cylindrical sandpack of about 1 darcy permeability. The sandpack and injected fluids were preheated to 430{degree}F at 155 psi. The main objective of these tests was to investigate the effectiveness of several surfactants in providing mobility control under a variety of conditions expected in light-oil steamfloods. Thus, maximum pressure-rise and foam-bank buildup/decay were noted as operating conditions were changed in a test or in various tests. Tests were performed with various oil types, sacrificial salts, injection rates, injection strategies, vapor-to-liquid fractions (VLF), and steam/N{sub 2} ratios (SNR).

  8. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  9. Mortality table construction

    Science.gov (United States)

    Sutawanir

    2015-12-01

    Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.

  10. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    Science.gov (United States)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  11. Nonlinear ultrasonic phased array imaging of closed cracks using global preheating and local cooling

    Science.gov (United States)

    Ohara, Yoshikazu; Takahashi, Koji; Ino, Yoshihiro; Yamanaka, Kazushi

    2015-10-01

    Closed cracks are the main cause of underestimation in ultrasonic inspection, because the ultrasound transmits through the crack. Specifically, the measurement of closed-crack depth in coarse-grained materials, which are highly attenuative due to linear scatterings at the grains, is the most difficult issue. To solve this problem, we have developed a temporary crack opening method, global preheating and local cooling (GPLC), using tensile thermal stress, and a high-selectivity imaging method, load difference phased array (LDPA), based on the subtraction of phased array images between different stresses. To demonstrate our developed method, we formed a closed fatigue crack in coarse-grained stainless steel (SUS316L) specimen. As a result of applying it to the specimen, the high-selectivity imaging performance was successfully demonstrated. This will be useful in improving the measurement accuracy of closed-crack depths in coarse-grained material.

  12. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-04-30

    The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.

  13. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    Science.gov (United States)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  14. COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE

    OpenAIRE

    C RAJESH BABU

    2013-01-01

    a steam prime mover with rotary motion of the driving element, or rotor, and continuous operation. It converts the thermal energy of steam into mechanical work. The steam flow proceeds through directing devices and impinges on curved blades mounted along the periphery of the rotor. By exerting a force on the blades, the steam flow causes the rotor to rotate. Unlike the reciprocating steam engine, the steam turbine makes use of the kinetic rather than the potential energy of steam. The perform...

  15. Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Tian, Guifang; Lu, Chang; Zhao, Shaojie; Bao, Yuming; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-09-06

    Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.

  16. Effects of extrusion-billet preheating on the microstructure and properties of Zr-2.5Nb pressure tube materials

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Cann, C.D. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada). Whiteshell Labs.; Aldridge, S.A. [Nu-Tech Precision Metals, Inc., Arnprior, Ontario (Canada); Theaker, J.R.; Coleman, C.E. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-31

    The effects of extrusion temperature and pre-heat soak time for billets on the mechanical properties of Zr-2.5Nb pressure tubes for CANDU reactors have been examined. The {beta}-quenched billets from a quadruple-melted ingot containing approximately 1,200 ppm of oxygen were extruded at 780, 815, and 850 C with pre-heat soak times of 15 to 300 min. The extruded hollows were finished by cold drawing (with a 28% reduction in area) and then stress relieving at 400 C. The {alpha}-phase grain structure, tensile strength, and fracture toughness properties were found to vary with the pre-heat temperature and soak time. All the materials were tough because embrittling impurities were absent. The tubes with 780 C preheat had a very fine and uniform {alpha}-grain structure, giving high strength and toughness at all soak times. The opposite was true for the 850 C soaks; the grain structure was coarse and inhomogeneous and the materials tended to be less strong and less touch. The tubes with the 815 C soaks showed intermediate values of strength and toughness. These variations in mechanical properties are discussed in terms of {alpha}-grain refinement and oxygen enrichment.

  17. Effect Of Preheating And Different Moisture Content Of Input Materials On Durability Of Pellets Made From Different Phytomass Content

    Directory of Open Access Journals (Sweden)

    Macák Miroslav

    2015-03-01

    Full Text Available This paper analyses the effects of the storage process on the durability of pellets made of different types of biomass (lucerne hay, maize stover, wheat straw, miscanthus, prickly lettuce for energy purposes. Pellets were produced on a hydraulic press that allowed modifying the size of pellets. The durability of pellets was measured on a special testing instrument according to the ASAE S269.4 (2007 standard method. The pellets used in the test were produced by pressing without preheating and with preheating. Durability rating was expressed as the ratio of the original mass of pellets and the mass of pellets remaining on a 17 mm opening sieve after tumbling. Storage negatively affected the durability of pellets made without preheating for all the types of biomass materials in different moisture contents. On the other hand, there was some positive response to storing of pellets made with preheating. The durability of pellets made of maize stover, wheat straw and miscanthus in the moisture content of 5 % increased with storing.

  18. Effect of Preheating on the Inertia Friction Welding of the Dissimilar Superalloys Mar-M247 and LSHR

    Science.gov (United States)

    Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.

    2016-12-01

    Differences in the elevated temperature mechanical properties of cast Mar-M247 and forged LSHR make it difficult to produce sound joints of these alloys by inertia friction welding (IFW). While extensive plastic upset occurs on the LSHR side, only a small upset is typically developed on the Mar-M247 side. The limited plastic flow of Mar-M247 thus restricts the extent of "self-cleaning" and mechanical mixing of the mating surfaces, so that defects remain at the bond line after welding. In the present work, the effect of local preheating of Mar-M247 immediately prior to IFW on the welding behavior of Mar-M247/LSHR couples was determined. An increase in the preheat temperature enhanced the plastic flow of Mar-M247 during IFW, which resulted in extensive mechanical mixing with LSHR at the weld interface, the formation of extensive flash on both the Mar-M247 and LSHR sides, and a sound bond. Performed in parallel with the experimental work, finite-element-method (FEM) simulations showed that higher temperatures are achieved within the preheated sample during IFW relative to its non-preheated counterpart, and plastic flow is thus facilitated within it. Microstructure and post-weld mechanical properties of the welded samples were also established.

  19. Steam treatment of zebra mussels

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, J. [Electric Power Research Institute, Palo Alto, CA (United States); Rybarik, D.L.; Thiel, J. [Dairyland Power Cooperative, La Crosse, WI (United States); Mussalli, Y.G.; Collins, F. [Stone & Webster Environmental Technology & Services, Boston, MA (United States)

    1996-08-01

    Steam injection into intake bays is a nonchemical method to control zebra mussels. This technique was demonstrated at Dairyland Power Cooperative`s J.P. Madgett Station located in Alma, Wisconsin. The project was funded by the EPRI Zebra Mussel Consortium which includes: Dairyland Power Cooperative, Central Illinois Public Service, Duke Power, Illinois Power Company, PSI Energy, Public Service Electric & Gas, and Tennessee Valley Authority. This technique can be used by other power plants around the nation. The steam treatments were performed at the J.P. Madgen intake in Alma, Wisconsin, on September 14 and 18, 1994. The J.P. Madgen Station has two water intake bays with capacities of approximately 295,000 gallons and 265,000 gallons each. Each intake can be isolated, permitting either full or reduced generation depending on river temperature conditions. In addition to the intake bays, the outside fire protection loop and hydrants were also treated with the hot water from one of the bays. This paper presents the process design, piping and steam educator configurations, portable industrial boiler sizing and description, and the thermocouples to monitor the water temperature in the intake bay. The biological mortality and control test protocol and treatment results are also presented. Treatment effectiveness was 100%, however equipment installation and operation was more problematic than anticipated. 3 refs., 5 figs., 2 tabs.

  20. TABLE TENNIS CLUB

    CERN Multimedia

    TABLE TENNIS CLUB

    2010-01-01

    2010 CERN Table Tennis Tournament The CERN Table Tennis Club organizes its traditional CERN Table Tennis Tournament, at the Meyrin club, 2 rue de livron, in Meyrin, Saturday August 21st, in the afternoon. The tournament is open to all CERN staff, users, visitors and families, including of course summer students. See below for details. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You can also download the registration form from the Club Web page (http://www.cern.ch/tabletennis), and send it via internal mail. Photo taken on August 22, 2009 showing some of the participants in the 2nd CERN Table Tennis tournament. INFORMATION ON CERN TABLE TENNIS CLUB CERN used to have a tradition of table tennis activities at CERN. For some reason, at the beginning of the 1980’s, the CERN Table Tennis club merged with the Meyrin Table Tennis club, a member of the Association Genevoise de Tennis de Table (AGTT). Therefore, if you want to practice table tennis, you...

  1. An installation for steam conversion of gases

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-01-28

    An installation is proposed for steam conversion of a hydrocarbon gas in order to produce an inorganic gas which chiefly consists of H2 and CO in which the line for feeding the hydrocarbon gas has a steam generator which has a microcapillary structure made of sponge metal, inorganic heat resistant fibers of glass, Si02, Al203 or carbon, inorganic heat resistant fibers twisted into a fiber or a cord of multipore ceramic material; the installation is equipped with a heater which regulates the water temperature, in which the steam generator is submerged. The installation is designed for converting natural gas, C3H8, other hydrocarbon gases and vapors of liquid hydrocarbons (Uv) into H2 and CO. The design and disposition of the steam generator simplify the design of the device, eliminating the pump for feeding the steam and the device for premixing of the steam and hydrocarbon gas.

  2. Determination of steam wetness in the steam-generating equipment of nuclear power plants

    Science.gov (United States)

    Gorburov, V. I.; Gorburov, D. V.; Kuz'min, A. V.

    2012-05-01

    Calculation and experimental methods for determining steam wetness in horizontal steam generators for nuclear power stations equipped with VVER reactors, namely, the classic salt technique and calculations based on operating parameters are discussed considered and compared.

  3. Analysis of performance for centrifugal steam compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seung Hwan; Ryu, Chang Kook; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    In this study, mean streamline and Computational fluid dynamics (CFD) analyses were performed to investigate the performance of a small centrifugal steam compressor using a latent heat recovery technology. The results from both analysis methods showed good agreement. The compression ratio and efficiency of steam were found to be related with those of air by comparing the compression performances of both gases. Thus, the compression performance of steam could be predicted by the compression performance of air using the developed dimensionless parameters.

  4. Standard Reference Tables -

    Data.gov (United States)

    Department of Transportation — The Standard Reference Tables (SRT) provide consistent reference data for the various applications that support Flight Standards Service (AFS) business processes and...

  5. 40 CFR Table 42 to Subpart Uuu of... - Additional Information for Initial Notification of Compliance Status

    Science.gov (United States)

    2010-07-01

    ... Notification of Compliance Status 42 Table 42 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU... engineering assessment (if applicable); and if applicable, the flare design (e.g., steam-assisted,...

  6. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  7. Design of Multi Cleaning System Using Steam

    Directory of Open Access Journals (Sweden)

    Abhijeetsinh v Makwana

    2016-11-01

    Full Text Available The multi cleaning system is supposed to be system that uses steam which can clean up things that are used by human in day to day life. The commercial detergent washers are compared with the system and it was found that the washing is very convenient and soapy forms are not produced that made the washing very clumsy. The removal of bacterial populations formed on surface of any material would be totally eradicated. The surface to be cleaned are given bath with steam with high pressure from 3 bar to 7 bar by which removal of dirt and stain particles were washed off very comfortably. High pressure steam would be generated by heat the water in the tank which will mounted on the system itself. The reason behind using the steam for washing purpose is the less wastage of water and also its availability. The development of steam based cleaning system has revolutionized the process of washing. One can choose an appropriate type of high power steam cleaners for challenging cleaning applications in office, commercial and industrial settings. The steam does that thing that commercial washing system cannot do. A steam can remove grease and grime while for normal cleaning requires expensive detergents. The multi cleaning system cannot be only used for industrial use but also for the housework stuff. So our prime focus is to use the steam and make multiple cleaning

  8. Amazing & extraordinary facts the steam age

    CERN Document Server

    Holland, Julian

    2012-01-01

    Respected transport author Julian Holland delves into the intriguing world of steam in his latest book, which is full of absorbing facts and figures on subjects ranging from Cornish beam engines, steam railway locomotives, road vehicles and ships through to traction engines, steam rollers and electricity generating stations and the people who designed and built them. Helped along the way by the inventive minds of James Watt, Richard Trevithick and George Stephenson, steam became the powerhouse that drove the Industrial Revolution in Britain in the late 18th and 19th centuries.

  9. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  10. Steam Flooding after Steam Soak in Heavy Oil Reservoirs through Extended-reach Horizontal Wells

    Institute of Scientific and Technical Information of China (English)

    Ning Zhengfu; Liu Huiqing; Zhang Hongling

    2007-01-01

    This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs.It is possible to set special packers within the long completion horizontal interval to establish an injection zone and a production zone.This method can also be used in steam flooding after steam soak through a horizontal well.Simulation results showed that it was desirable to start steam flooding after six steam soaking cycles and at this time the oil/steam ratio was 0.25 and oil recovery efficiency was 23.48%.Steam flooding performance was affected by separation interval and steam injection rate.Reservoir numerical simulation indicated that maximum oil recovery would be achieved at a separation section of 40-50 m at steam injection rate of 100-180 t/d; and the larger the steam injection rate,the greater the water cut and pressure difference between injection zone and production zone.A steam injection rate of 120 t/d was suitable for steam flooding under practical injection-production conditions.All the results could be useful for the guidance of steam flooding projects.

  11. Steam and fuel oil supply and purge valve with cooling steam feature

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, B.F.; Buchanan, J.R.

    1991-09-17

    This patent describes a steam and fuel oil supply and purge valve. It comprises a valve body defining steam and oil inlet ports, at least one discharge port, a steam purge passageway interconnecting the steam inlet and discharge ports, an oil supply passageway interconnecting the oil inlet and discharge ports, a cooling steam passageway interconnecting the steam inlet and discharge ports, a steam valve and actuator member movable between first, second, third, and fourth positions in the valve body and operable to open and close the steam purge and cooling steam passageways, a small metering passageway in the steam valve and actuator member which is so dimensioned and located as to open prior to full opening movement of the valve member and actuator relative to its seat, an oil valve member movable between first and second positions to open and close the oil supply passageway, biasing means urging the oil valve member toward its second and closed positions, the steam valve and actuator member in its first and second positions respectively closing and opening the steam purge passageway.

  12. Shock experiments on pre-heated alpha- and beta-quartz: 1. Optical and density data

    Science.gov (United States)

    Langenhorst, Falko; Deutsch, Alexander

    1994-07-01

    Discs of single crystal quartz, unheated, and pre-heated to 275 C and 540 C (i.e., alpha-quartz) and 630 C (i.e., beta-quartz) were experimentally shocked to pressures ranging from 20 to 40 GPa, with the shock front propagating parallel to either (10-10) or (0001). Refractive indices, density and the orientation of planar deformation features (PDFs) were determined on the recovered quartz samples. Refractive indices of pre-heated quartz are unaffected up to 25 GPa but density starts to decrease slightly up to this pressure. Above 25 GPa, pre-heating causes drastic variations: Refractive indices and birefringence of quartz shocked at ambient temperature decrease continuously, until complete isotropization is reached at 35 GPa. In quartz shocked at 630 C, refractivity drops discontinuously in the interval from 25 to 26 GPa, and complete transformation to diaplectic glass is reached at 26 GPa. Density follows the trends demonstrated by the optical parameters, with higher pre-shock temperatures yielding lower density at a given shock pressure. These results indicate that the threshold pressure for the onset of transformation to diaplectic quartz glass is largely temperature-invariant, lying at 25 GPa, whereas the pressure limit for complete transformation decreases with increasing pre-shock temperature from approximately equal 35 to approximately equal 26 GPa. Quartz shocked parallel to (0001) always has a higher density and refractivity than that shocked parallel to (10-10), indicating a significant influence of the structural anisotropy. This is also evident from the distribution of PDF orientations. Pressures greater than or equal 25 GPa cause, in quartz shocked parallel to (10-10), PDFs that are predominantly oriented parallel to set of (10-12) planes, while quartz shocked to the same pressures but parallel to (0001) contains almost exclusively PDFs parallel to set of (10-13) planes. PDF orientations in quartz shocked at ambient temperature parallel to (10-10) show

  13. RPV steam generator pressure boundary

    Energy Technology Data Exchange (ETDEWEB)

    Strosnider, J.

    1996-03-01

    As the types of SG tube degradation affecting PWR SGs has changed, and improvements in tube inspection and repair technology have occurred, current SG regulatory requirements and guidance have become increasingly out of date. This regulatory situation has been dealt with on a plant-specific basis, however to resolve this problem in the long term, the NRC has begun development of a performance-based rule. As currently structured, the proposed steam generator rule would require licensees to implement SG programs that monitor the condition of the steam generator tubes against accepted performance criteria to provide reasonable assurance that the steam generator tubes remain capable of performing their intended safety functions. Currently the staff is developing three performance criteria that will ensure the tubes can continue to perform their safety function and therefore satisfy the SG rule requirements. The staff, in developing the criteria, is striving to ensure that the performance criteria have the two key attributes of being (1) measurable (enabling the tube condition to be {open_quotes}measured{close_quotes} against the criteria) and (2) tolerable (ensuring that failures to meet the criteria do not result in unacceptable consequences). A general description of the criteria are: (1) Structural integrity criteria: Ensures that the structural integrity of the SG tubes is maintained for the operating cycle consistent with the margins intended by the ASME Code. (2) Leakage integrity criteria: Ensures that postulated accident leakages and the associated dose releases are limited relative to 10 CFR Part 50 guidelines and 10 CFR Part 50 Appendix A GDC 19. (3) Operational leakage criteria: Ensures that the operating unit will be shut down as a defense-in depth measure when operational SG tube leakage exceeds established leakage limits.

  14. Steam microturbines in distributed cogeneration

    CERN Document Server

    Kicinski, Jan

    2014-01-01

    This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines a

  15. Steam Turbine Materials and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  16. The Living Periodic Table

    Science.gov (United States)

    Nahlik, Mary Schrodt

    2005-01-01

    To help make the abstract world of chemistry more concrete eighth-grade students, the author has them create a living periodic table that can be displayed in the classroom or hallway. This display includes information about the elements arranged in the traditional periodic table format, but also includes visual real-world representations of the…

  17. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2011-01-01

    CERN Table Tennis Tournament Saturday 20th August 2011 at 13.30 at the CERN/Meyrin TT club (underneath the Piscine de Livron, rue de Livron 2, 1217 Meyrin) Details: http://cern.ch/club-TableTennis Registration: jean-pierre.revol@cern.ch Open to all CERN staff, visitors, summer students, and families

  18. The Living Periodic Table

    Science.gov (United States)

    Nahlik, Mary Schrodt

    2005-01-01

    To help make the abstract world of chemistry more concrete eighth-grade students, the author has them create a living periodic table that can be displayed in the classroom or hallway. This display includes information about the elements arranged in the traditional periodic table format, but also includes visual real-world representations of the…

  19. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2011-01-01

    CERN Table Tennis Tournament Saturday 20th August 2011 at 13.30 at the CERN/Meyrin TT club (underneath the Piscine de Livron, rue de Livron 2, 1217 Meyrin) Details: http://cern.ch/club-TableTennis Registration: jean-pierre.revol@cern.ch Open to all CERN staff, visitors, summer students, and families

  20. 2D-simulation of wet steam flow in a steam turbine with spontaneous condensation

    Institute of Scientific and Technical Information of China (English)

    SUN Lan-xin; ZHENG Qun; LIU Shun-long

    2007-01-01

    Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic steam flow in the 2-D rotor-tip section of a stage turbine is investigated.Calculated results agree with experimental data reasonably well. On the basis of the above work, a 2-D numerical simulation of wet steam flow in adjacent root sections of a complex steam turbine stage was carried out. Computational results were analyzed and provide insights into effective removal of humidity.

  1. Modelling 3D Steam Turbine Flow Using Thermodynamic Properties of Steam Iapws-95

    Directory of Open Access Journals (Sweden)

    Rusanow A.V.

    2016-01-01

    Full Text Available An approach to approximate equations of state for water and steam (IAPWS-95 for the calculation of three-dimensional flows of steam in turbomachinery in a range of operation of the present and future steam turbines is described. Test calculations of three-dimensional viscous flow in an LP steam turbine using various equations of state (perfect gas, Van der Waals equation, equation of state for water and steam IAPWS-95 are made. The comparison of numerical results with experimental data is also presented.

  2. Steam chemistry - interaction of chemical species with water, steam, and materials during evaporation, superheating, and condensation. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Topics of this proceedings are: steam chemistry, supercritical water, effects of chemicals in steam (acetic acid, formic acid, phosphoric acid or other impurities); solubility and deposition, condensation processes and effect of impurities; nucleation; gas-liquid interfaces; steam treatment. (SR)

  3. Optimizing steam flood performance utilizing a new and highly accurate two phase steam measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Huff, B. D.; Warren, P. B. [CalResources LLC (Canada); Whorff, F. [ITT Barton (Canada)

    1995-11-01

    The development of a two phase steam measurement system was documented. The system consists of a `V` cone differential pressure device and a vortex meter velocity device in series through which the steam flows. Temperature and pressure sensors are electronically interfaced with a data logging system. The design was described as being very simple and rugged, consequently, well suited to monitoring in the field.. Steam quality measurements were made in the Kern River Field and the Coalinga Field thermal projects using a surface steam separator. In steam flood operations, steam cost is very high, hence appropriate distribution of the steam can result in significant cost reduction. This technology allows the measurement of steam flow and quality at any point in the steam distribution system. The metering system`s orifice meter was found to have a total average error of 45%, with 25% of that attributable to `cold leg` problem. Installation of the metering system was expected to result in a steam use reduction of 8%, without any impact on production. Steam re-distribution could result in a potential oil production increase of 10%. 12 refs., 8 tabs., 9 figs.

  4. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  5. The Invention of the Steam Engine

    NARCIS (Netherlands)

    Van der Kooij, B.J.G.

    2015-01-01

    This casestudy is a historic analysis of the developments that resulted in the steam engine. The range of inventions that started with Savery's 'Miner's Friend' (a water pump to solve the dramatic water problem in the British eighteenth century mines) over a century culminated in the steam engine us

  6. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    pressure steam produced by an autoclave at a temperature of 107 – 121 °C and pressure of 15 -17 psi for 10 minutes to produce a thin coating of aluminium oxide. The aim of this study is to understand the effect of high pressure steam with and without different chemical additives on surface morphology...

  7. Future trends in steam coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, G.A. [IEA Coal Research, London (United Kingdom)

    2000-07-01

    After reviewing the history of coal production in important regions of the world and the evolution of the international steam coal trade, the paper examines the main drivers behind the future use of steam coal and looks at, from past evidence and current perception, how these may shape the future. The four main drivers are social issues, strategic issues, competitiveness issues, and environmental issues.

  8. The Invention of the Steam Engine

    NARCIS (Netherlands)

    Van der Kooij, B.J.G.

    2015-01-01

    This casestudy is a historic analysis of the developments that resulted in the steam engine. The range of inventions that started with Savery's 'Miner's Friend' (a water pump to solve the dramatic water problem in the British eighteenth century mines) over a century culminated in the steam engine us

  9. Steam generator tubing NDE performance

    Energy Technology Data Exchange (ETDEWEB)

    Henry, G. [Electric Power Research Institute, Charlotte, NC (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  10. Steam reforming of light oxygenates

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Resasco, Daniel E; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of ethanol, acetic acid, acetone, acetol, 1-propanol, and propanal has been investigated over Ni/MgAl2O4 at temperatures between 400 and 700 degrees C and at a steam-to-carbon-ratio (S/C) of 6. The yield of H-2 and conversion increased with temperature, while the yield of by-products...... decreased with temperature in the SR of the investigated compounds. The yield of H2 approached the thermodynamic limit at the highest temperatures investigated. No significant differences in conversion as a function of temperature among the different model compounds were observed. However, the product...... distribution depended on the model compound, and C-3-oxygenates produced a larger fraction of by-products compared to C-2-oxygenates. Temperatures of 600 degrees C or above were generally needed to minimize the fraction of by-products and obtain a syngas containing mainly CO, CO2, H-2, and H2O with only traces...

  11. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.B.; Smetana, F.O.

    1977-03-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using insolation levels present in North Carolina are presented. The effects of monthly variations in insolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  12. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  13. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  14. GMA-laser Hybrid Welding of High-strength Fine-grain Structural Steel with an Inductive Preheating

    Science.gov (United States)

    Lahdo, Rabi; Seffer, Oliver; Springer, André; Kaierle, Stefan; Overmeyer, Ludger

    The industrial useof GMA-laser hybrid welding has increased in the last 10 years, due to the brilliant quality of the laser beam radiation, and higher laser output powers. GMA-laser hybrid welding processes operate in a common molten pool. The combination of the laser beam and the arc results in improved welding speed, penetration depth, heat affected zone and gap bridgeability. Single-layer, GMA-laser hybrid welding processes have been developed for high-strength fine-grain structural steels with a grade of S690QL and a thickness of 15 mm and 20 mm. In addition, the welding process is assisted by an integrated, inductive preheating process to improve the mechanical properties of the welding seam. By using the determined parameters regarding the energy per unit length, and the preheating temperature, welding seams with high quality can be achieved.

  15. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  16. An analysis of metallurgical ladle preheating; Uma analise do processo de pre-aquecimento da panela de aciaria

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Eliana F. [Ouro Preto Univ., MG (Brazil). Escola de Minas; Figueira, Renato M. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica

    1996-12-31

    An analysis of the pre-heating effects of the siderurgical ladle refractory lining on the steel making process is developed. The modeling is based essentially on the transient two-dimensional heat conduction equation, expressed in cylindrical coordinates, and also taking into account radiation and convection boundary conditions. The solution procedure is accomplished by means of an `ANSYS` F.E.M. scheme. The analysis enables the evaluation of the preheating influence on the other phases of the complete continuous casting process . The conditions which have to be used in the control of the whole process can be determined by this simulation, enabling the optimization of energy consumption, refractory lining wear, and holding time. (author) 10 refs., 6 figs.

  17. Application of a Device for Uniform Web Drying and Preheating Using Microwave Energy

    Energy Technology Data Exchange (ETDEWEB)

    Frederick W. Ahrens; C. Habeger; J. Loughran; T. Patterson

    2003-10-02

    The project summarized in this report dealt with an evaluation of new microwave applicator ideas for paper preheating and drying. The technical basis for success in this project is the fact that Industrial Microwave Systems has recently identified certain previously unrecognized wave guide ''design variables'' and hardware implementation concepts that can be employed to greatly improve the uniformity of microwave energy distribution for continuous flow processes. Two applicator concepts were ultimately evaluated, a Cross-Machine Direction (CD) oriented applicator and a Machine Direction (MD) oriented applicator. The economic basis for success is the result of several factors. Since 1985, the capital expenditure required for an industrial microwave applicator system has decreased by a factor of four. The maintenance costs have decreased by a factor of 10 and the life expectancy of the magnetron has increased by more than a factor of four to in excess of 8,000 hours (nearly one year at 24 hours/day operation).

  18. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  19. Effects of Preheating Temperature,Moisture and Sodium Metabisulfite Content on Property of Maize Flour Dough

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Processing temperature,maze flour particle size,and level of water and sodium metabisulfite were varied during the preparation of maize noodles.Preheated to 90-95 ℃ a mixture of maize flour or meal,water(43%-45% moisture) and salt enabled the preparation of noodles using a pasta extruder.Maize flour with smaller particle size yielded better noodles than did maize meal.The addition of sodium metabisulfite enabled the production of noodles at lower processing temperatures; however,cooking losses increased.Processing maize flour with higher water absorption yielded noodles that required longer cooking time but with decreased losses.The functionalities of starch and protein in raw ingredients and in products were determined.Starch gelatinized and retorgraded during processing maize noodles,as indicated by changes in pasting viscosity curves.Maize proteins contributed to the increased viscosity of dough above 40 ℃.The increased integrity of cooked maize noodles,however,corresponded to the increased amounts of gelatinized and retrograded starch.

  20. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    Science.gov (United States)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2016-11-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  1. MINLP model for simultaneous scheduling and retrofit of refinery preheat train

    Directory of Open Access Journals (Sweden)

    Zulkafli N. Izyan, M. Noryani, Abdul H. Dayanasari, M. Shuhaimi

    2014-01-01

    Full Text Available There is greater awareness today on the depleting fossil energy resources and the growing problem of atmospheric pollution. Engineers are developing practical techniques to ensure energy processes are designed and operated efficiently. Inefficient heat exchangers lead to higher fuel demand and higher carbon emission. This paper presents mixed-integer nonlinear programming (MINLP model for simultaneous cleaning and retrofit of crude preheat train (CPT in oil refinery plant. The formulation of the model is generated and coded in General Algebraic Modeling System (GAMS. The model minimizes the cost of energy and the cost of cleaning. The model takes into account the changes in fouling rates throughout time. There are two cases for this study. The cases are online cleaning (Case 1 and simultaneous online cleaning and retrofit (Case 2. The largest energy saving are found in Case 2. The installation of high efficiency heat exchangers improves furnace inlet temperature (FIT from 215oC to 227oC. Furthermore, Case 2 results in the highest percentage of cost saving by about 59%. The payback period for investment in high efficiency heat exchangers is 5 months. Thus, Case 2 is the most cost effective option for reductions of energy consumption in Crude Distillation Unit (CDU.

  2. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    Science.gov (United States)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  3. Preheating of the early universe by radiation from high-mass X-ray binaries

    Science.gov (United States)

    Sazonov, S. Yu.; Khabibullin, I. I.

    2017-04-01

    Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25-2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s-1, could significantly heat ( T > T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.

  4. Strategic maintenance plan for Cernavoda steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Cicerone, T. [CNE-PROD, Cernavoda (Romania); Dhar, D.; VandenBerg, J.P. [Babcock and Wilcox (Canada)

    2002-07-01

    Steam generators are among the most important pieces of equipment in a nuclear power plant. They are required full time during the plant operation and obviously no redundancy exists. Past experience has shown that those utilities which implemented comprehensive steam generator inspection and maintenance programs and strict water chemistry controls, have had good steam generator performance that supports good overall plant performance. The purpose of this paper is to discuss a strategic Life Management and Operational-monitoring program for the Cernavoda steam generators. The program is first of all to develop a base of expertise for the management of the steam generator condition; and that is to be supported by a program of actions to be accomplished over time to assess their condition, to take measures to avoid degradation and to provide for inspections, cleaning and modifications as necessary. (author)

  5. Hard sludge removal in steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Santibanez, M.; Stoss, J.

    2013-07-01

    One of the majors problems during the life of Nuclear power plants is the efficiency lost in steam generator due to, among issues, the plugging and therefore useless, of tubes which presented possibility of cracking in the future. The hard sludge produced in the steam generators secondary side and deposited on the tube sheet or around the tubes as collar shape are one of the main agent causing this problem, so their elimination is considered a major topic in order to keep the steam generators in an optimum condition along the whole plant life. AREVA is aware of this global problem, therefore a process and tools have been continuously developed since 1995 in order to eliminate the hard deposits in a effective way, with no damage to steam generator's components and adaptable for the different steam generators models existing in the market.

  6. Brush Seals for Improved Steam Turbine Performance

    Science.gov (United States)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  7. Research on Mechanisms of Steam Breakthrough and Profile Control Design for Steam Soaking Well

    Institute of Scientific and Technical Information of China (English)

    Liu Huiqing; Zhang Hongling; Wang Shulin; Wang Han; Bao Shucheng

    2006-01-01

    Scaled physical model tests for steam breakthrough were conducted based on the analysis of mechanisms and influence factors of steam breakthrough. Physical simulation results showed that at the initial steam breakthrough, preferential flow channels were formed in narrow sand packs and most residual oil left in these channels was immobile. This shortened the steam breakthrough time of follow-up steam flooding and decreased the increment of oil recovery efficiency. Steam breakthrough occurred easily for a smaller producer-injector spacing, and a bigger difference in physical properties between fluids and rock. Steam breakthrough is more likely to occur at a larger formation permeability (k), greater steam displacement velocity (u) and smaller producer-injector spacing (L). Steam breakthrough time is a function of the parameter group (uk/L), i.e. tb=3.2151 (uk/L) -0.5142. A non piston-like displacement model was built based on steam breakthrough observation for a steam stimulated well in the Jinglou Oilfield, Henan Oilfield Company. The steam volume swept in different directions could be obtained from inter-well permeability capacity and breakthrough angle, and the steam swept pore volume (SSPV) was also determined. Numerical simulation showed that steam sweep efficiency reached its peak value when a slug of profile control agent (slug size 10%-15% SSPV) was set at one half of the inter-well spacing. Field test with 12.5% SSPV of profile control agents in the Jinglou Oilfield achieved success in sealing breakthrough channels and good production performance of adjacent producers.

  8. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey [Department of Automotive, Faculty of Technical Education, Firat University, Elazig 23119 (Turkey); Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey)

    2010-03-15

    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil-50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil-80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO's viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil. (author)

  9. Formation of the preheated zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition

    Science.gov (United States)

    Liberman, M. A.; Kuznetsov, M.; Ivanov, A.; Matsukov, I.

    2009-01-01

    The Letter presents analytical, numerical and experimental studies of the mechanism underlying the deflagration-to-detonation transition (DDT). Insight into how, when, and where DDT occurs is obtained by analyzing analytically and by means of multidimensional numerical simulations dynamics of a flame accelerating in a tube with no-slip walls. It is shown that the deflagration-to-detonation transition exhibits three separate stages of evolution corroborating majority experimental observations. During the first stage flame accelerates and generates shocks far ahead of the flame front. During the second stage the flame slows down, shocks are formed in the immediate proximity of the flame front and the preheated zone ahead of the flame front is created. The third stage is self-restructuring of the steep temperature profile within the flame, formation of a reactivity gradient and the actual formation of the detonation wave itself. The mechanism for the detonation wave formation, given an appropriate formation of the preheated zone, seems to be universal and involves a reactivity gradient formed from the initially steep flame temperature profile in the presence of the preheated zone. The developed theory and numerical simulations are found to be well consistent with extensive experiments of the DDT in hydrogen-oxygen and ethylene-oxygen mixtures in tubes with smooth and rough walls.

  10. Microbial activity in soils following steam treatment.

    Science.gov (United States)

    Richardson, Ruth E; James, C Andrew; Bhupathiraju, Vishvesh K; Alvarez-Cohen, Lisa

    2002-01-01

    Steam enhanced extraction (SEE) is an aquifer remediation technique that can be effective at removing the bulk of non-aqueous phase liquid (NAPL) contamination from the subsurface, particularly highly volatile contaminants. However, low volatility compounds such as polynuclear aromatic hydrocarbons (PAHs) are less efficiently removed by this process. This research evaluated the effects of steam injection on soil microbial activity, community structure, and the potential for biodegradation of contaminants following steam treatment. Three different soils were evaluated: a laboratory-prepared microbially-enriched soil, soil from a creosote contaminated field site, and soil from a chlorinated solvent and waste oil contaminated field site. Results from field-scale steaming are also presented. Microbial activity before and after steam treatment was evaluated using direct epifluorescent microscopy (DEM) using the respiratory activity dye 5-cyano-2,3, ditolyl tetrazolium chloride (CTC) in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) to yield a quantitative assessment of active and total microbial numbers. DEM results indicate that steamed soils that were analyzed while still hot exhibited microbial activity levels that were below detection. However, soil samples that were slowly cooled, more closely reflecting the conditions of applied SEE, exhibited microbial activity levels that were comparable to presteamed soils. Samples from a field-site where steam was applied continuously for 6 weeks also showed high levels of microbial activity following cooling. The metabolic capabilities of the steamed communities were investigated by measuring cell growth in enrichment cultures on various substrates. These studies provided evidence that organisms capable of biodegradation were among the mesophilic populations that survived steam treatment. Fluorescent in situ hybridization (FISH) analysis of the soils with domain-level rRNA probes suggest

  11. Decision table languages and systems

    CERN Document Server

    Metzner, John R

    1977-01-01

    ACM Monograph Series: Decision Table Languages and Systems focuses on linguistic examination of decision tables and survey of the features of existing decision table languages and systems. The book first offers information on semiotics, programming language features, and generalization. Discussions focus on semantic broadening, outer language enrichments, generalization of syntax, limitations, implementation improvements, syntactic and semantic features, decision table syntax, semantics of decision table languages, and decision table programming languages. The text then elaborates on design im

  12. Elementary Statistics Tables

    CERN Document Server

    Neave, Henry R

    2012-01-01

    This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat

  13. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    Science.gov (United States)

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  14. Setting the Periodic Table.

    Science.gov (United States)

    Saturnelli, Annette

    1985-01-01

    Examines problems resulting from different forms of the periodic table, indicating that New York State schools use a form reflecting the International Union of Pure and Applied Chemistry's 1984 recommendations. Other formats used and reasons for standardization are discussed. (DH)

  15. The Periodic Table CD.

    Science.gov (United States)

    Banks, Alton J.; Holmes, Jon L.

    1995-01-01

    Describes the characteristics of the digitized version of The Periodic Table Videodisc. Provides details about the organization of information and access to the data via Macintosh and Windows computers. (DDR)

  16. VMS forms Output Tables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These output tables contain parsed and format validated data from the various VMS forms that are sent from any given vessel, while at sea, from the VMS devices on...

  17. Setting the Periodic Table.

    Science.gov (United States)

    Saturnelli, Annette

    1985-01-01

    Examines problems resulting from different forms of the periodic table, indicating that New York State schools use a form reflecting the International Union of Pure and Applied Chemistry's 1984 recommendations. Other formats used and reasons for standardization are discussed. (DH)

  18. The Periodic Table CD.

    Science.gov (United States)

    Banks, Alton J.; Holmes, Jon L.

    1995-01-01

    Describes the characteristics of the digitized version of The Periodic Table Videodisc. Provides details about the organization of information and access to the data via Macintosh and Windows computers. (DDR)

  19. Permit.LOA table

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table includes the effective dates by vessel and permit number for each issued letter of authorization (LOA) by the Permit Office (APSD)

  20. Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin

    Science.gov (United States)

    El-Deeb, Heba A.; Abd El-Aziz, Sara; Mobarak, Enas H.

    2014-01-01

    The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT) and dentin microtensile bond strength (μTBS) was evaluated. For the IPT, teeth (n = 15) were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth). The discs were divided into three groups (n = 10/group) according to the temperature of the Filtek LS™ silorane-based resin composite during its placement, either at room temperature (23 ± 1 °C) or preheated to 54 °C or 68 °C using a commercial Calset™ device. Discs were subjected to a simulated intrapulpal pressure (IPP) and placed inside a specially constructed incubator adjusted at 37 °C. IPT was measured before, during and after placement and curing of the resin composite using K-type thermocouple. For μTBS testing, flat occlusal middentin surfaces (n = 24) were obtained. P90 System Adhesive was applied according to manufacturer’s instructions then Filtek LS was placed at the tested temperatures (n = 6). Restorative procedures were done while the specimens were connected to IPP simulation. IPP was maintained and the specimens were immersed in artificial saliva at 37 °C for 24 h before testing. Each specimen was sectioned into sticks (0.9 ± 0.01 mm2). The sticks (24/group) were subjected to μTBS test and their modes of failure were determined using scanning electron microscope (SEM). For both preheated groups, IPT increased equally by 1.5–2 °C upon application of the composite. After light curing, IPT increased by 4–5 °C in all tested groups. Nevertheless, the IPT of the preheated groups required a longer time to return to the baseline temperature. One-way ANOVA revealed no significant difference between the μTBS values of all groups. SEM revealed predominately mixed mode of failure. Preheating of silorane-based resin composite increased the IPT but not to the critical level and had no effect on dentin μTBS. PMID:26257945

  1. Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dent

    Directory of Open Access Journals (Sweden)

    Heba A. El-Deeb

    2015-05-01

    Full Text Available The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT and dentin microtensile bond strength (μTBS was evaluated. For the IPT, teeth (n = 15 were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth. The discs were divided into three groups (n = 10/group according to the temperature of the Filtek LS™ silorane-based resin composite during its placement, either at room temperature (23 ± 1 °C or preheated to 54 °C or 68 °C using a commercial Calset™ device. Discs were subjected to a simulated intrapulpal pressure (IPP and placed inside a specially constructed incubator adjusted at 37 °C. IPT was measured before, during and after placement and curing of the resin composite using K-type thermocouple. For μTBS testing, flat occlusal middentin surfaces (n = 24 were obtained. P90 System Adhesive was applied according to manufacturer’s instructions then Filtek LS was placed at the tested temperatures (n = 6. Restorative procedures were done while the specimens were connected to IPP simulation. IPP was maintained and the specimens were immersed in artificial saliva at 37 °C for 24 h before testing. Each specimen was sectioned into sticks (0.9 ± 0.01 mm2. The sticks (24/group were subjected to μTBS test and their modes of failure were determined using scanning electron microscope (SEM. For both preheated groups, IPT increased equally by 1.5–2 °C upon application of the composite. After light curing, IPT increased by 4–5 °C in all tested groups. Nevertheless, the IPT of the preheated groups required a longer time to return to the baseline temperature. One-way ANOVA revealed no significant difference between the μTBS values of all groups. SEM revealed predominately mixed mode of failure. Preheating of silorane-based resin composite increased the IPT but not to the critical level and had no effect on dentin μTBS.

  2. Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin.

    Science.gov (United States)

    El-Deeb, Heba A; Abd El-Aziz, Sara; Mobarak, Enas H

    2015-05-01

    The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT) and dentin microtensile bond strength (μTBS) was evaluated. For the IPT, teeth (n = 15) were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth). The discs were divided into three groups (n = 10/group) according to the temperature of the Filtek LS™ silorane-based resin composite during its placement, either at room temperature (23 ± 1 °C) or preheated to 54 °C or 68 °C using a commercial Calset™ device. Discs were subjected to a simulated intrapulpal pressure (IPP) and placed inside a specially constructed incubator adjusted at 37 °C. IPT was measured before, during and after placement and curing of the resin composite using K-type thermocouple. For μTBS testing, flat occlusal middentin surfaces (n = 24) were obtained. P90 System Adhesive was applied according to manufacturer's instructions then Filtek LS was placed at the tested temperatures (n = 6). Restorative procedures were done while the specimens were connected to IPP simulation. IPP was maintained and the specimens were immersed in artificial saliva at 37 °C for 24 h before testing. Each specimen was sectioned into sticks (0.9 ± 0.01 mm(2)). The sticks (24/group) were subjected to μTBS test and their modes of failure were determined using scanning electron microscope (SEM). For both preheated groups, IPT increased equally by 1.5-2 °C upon application of the composite. After light curing, IPT increased by 4-5 °C in all tested groups. Nevertheless, the IPT of the preheated groups required a longer time to return to the baseline temperature. One-way ANOVA revealed no significant difference between the μTBS values of all groups. SEM revealed predominately mixed mode of failure. Preheating of silorane-based resin composite increased the IPT but not to the critical level and had no effect on dentin μTBS.

  3. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  4. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  5. A comparison of winter pre-heating requirements for natural displacement and natural mixing ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Andrew W. [BP Institute, University of Cambridge, Cambridge, CB3 OEZ (United Kingdom); Fitzgerald, Shaun; Livermore, Stephen [E-Stack Ltd., St Johns Innovation Centre, Cambridge (United Kingdom)

    2009-12-15

    In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings. (author)

  6. Equation of state of Mo from shock compression experiments on preheated samples

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2017-03-01

    We present a reanalysis of reported Hugoniot data for Mo, including both experiments shocked from ambient temperature (T) and those preheated to 1673 K, using the most general methods of least-squares fitting to constrain the Grüneisen model. This updated Mie-Grüneisen equation of state (EOS) is used to construct a family of maximum likelihood Hugoniots of Mo from initial temperatures of 298 to 2350 K and a parameterization valid over this range. We adopted a single linear function at each initial temperature over the entire range of particle velocities considered. Total uncertainties of all the EOS parameters and correlation coefficients for these uncertainties are given. The improved predictive capabilities of our EOS for Mo are confirmed by (1) better agreement between calculated bulk sound speeds and published measurements along the principal Hugoniot, (2) good agreement between our Grüneisen data and three reported high-pressure γ ( V ) functions obtained from shock-compression of porous samples, and (3) very good agreement between our 1 bar Grüneisen values and γ ( T ) at ambient pressure recalculated from reported experimental data on the adiabatic bulk modulus K s ( T ) . Our analysis shows that an EOS constructed from shock compression data allows a much more accurate prediction of γ ( T ) values at 1 bar than those based on static compression measurements or first-principles calculations. Published calibrations of the Mie-Grüneisen EOS for Mo using static compression measurements only do not reproduce even low-pressure asymptotic values of γ ( T ) at 1 bar, where the most accurate experimental data are available.

  7. Destruction of DDT wastes in two preheater/precalciner cement kilns in China.

    Science.gov (United States)

    Yan, Dahai; Peng, Zheng; Karstensen, Kåre Helge; Ding, Qiong; Wang, Kaixiang; Wang, Zuguang

    2014-04-01

    The destruction of DDT formulations and DDT contaminated soil was conducted by feeding wastes into the flue gas chamber at the kiln inlet of two different preheater/precalciner cement kilns in China. The concentration of DDT, PCDD/PCDFs and HCB were measured in the flue gas of the main stack, in the solid material under baseline conditions and when feeding DDT-wastes. The destruction efficiency and the destruction and removal efficiency for DDT were in the range of 99.9335%-99.9998% and 99.9984%-99.9999%, respectively. The emissions of PCDD/PCDFs and HCB in the flue gas varied in the range of 0.0019-0.0171 ng I-TEQ/Nm(3) and 0.0064-0.0404 μg/Nm(3), respectively. The emission factor for PCDD/PCDF and HCB varied from 0.0137 to 0.0281 μg/ton and from 17.32 to 109.34 μg/ton of clinker, respectively. The concentration of PCDD/PCDFs and HCB in solid samples decreased as follows: cement kiln dust, 4.1-5 ng I-TEQ/kg and 0.70-0.71 μg/kg, respectively; >raw meal, 0.82-0.97 ng I-TEQ/kg and 0.18 μg/kg, respectively; >cement clinker, 0.09-0.22 ng I-TEQ/kg and 0.14-0.18 μg/kg, respectively. This study indicates that the feeding of DDT and POPs-wastes to the lower temperature part of a cement kiln system possibly to create a buildup of trace not-destroyed compounds in the system and might cause emissions; the technical feasibility and the environmental acceptability of this practice need to be investigated thoroughly.

  8. Recycling ash into the first stage of cyclone pre-heater of cement kiln.

    Science.gov (United States)

    Zhan, Ming-Xiu; Fu, Jian-Ying; Havukainen, Jouni; Chen, Tong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-10-01

    Fly ash collected from the bag filter could be recycled into the first stage of the cyclone pre-heater of the cement kiln, resulting in the possible enrichment of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, soxhlet fly ash (SFA) and raw meal (RM) were selected as the basis for the PCDD/F formation experiments. The levels of 2,3,7,8-PCDD/Fs formed on the SFA and RM were observed to be 2550pg/g (157pg I-TEQ/g) and 1142pg/g (55pg I-TEQ/g), respectively. While less 2,3,7,8-PCDD/Fs was detected when SFA was mixed with RM, suggesting that recycling cement kiln ash would not largely increase the concentration of PCDD/Fs in flue gas. Furthermore, the possible influencing factors on the PCDD/F formation were also investigated. The formation of 2,3,7,8-PCDD/Fs was up to 10,871pg/g (380pg I-TEQ/g) with the adding of CuCl2, which was much higher than the results of CuO and activated carbon. Most importantly, the homologue, congener and gas/particle distribution of PCDD/Fs indicated that de novo synthesis was the dominant PCDD/F formation pathway for SFA. Lastly, principal component analysis (PCA) was also conducted to identify the relationship between the compositions of reactant and the properties of PCDD/Fs produced.

  9. New type steam turbine for cogeneration

    Institute of Scientific and Technical Information of China (English)

    He Jianren; Yang Qiguo; Xu Damao

    2010-01-01

    A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein.A new type"NCB"cogeneration steam turbine was proposed,which could considerably increase heat supply capacity,thermal efficiency and electric power.Taking 300 MW cogeneration steam turbine as an example,the results show that heat supply capacity reaches the maximum,i.e.increases by 30%,thermal efficiency is improved by12%,and electric power is enhanced by 15 MW during peak heat load.

  10. Selective hydrogenation processes in steam cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Schroeter, M.K.; Hinrichs, M.; Makarczyk, P. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    Hydrogen is the key elixir used to trim the quality of olefinic and aromatic product slates from steam crackers. Being co-produced in excess amounts in the thermal cracking process a small part of the hydrogen is consumed in the ''cold part'' of a steam cracker to selectively hydrogenate unwanted, unsaturated hydrocarbons. The compositions of the various steam cracker product streams are adjusted by these processes to the outlet specifications. This presentation gives an overview over state-of-art selective hydrogenation technologies available from BASF for these processes. (Published in summary form only) (orig.)

  11. 49 CFR 230.21 - Steam locomotive number change.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed, the steam locomotive owner and/or operator must reflect the change in the upper right-hand corner...

  12. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  13. An Improved Steam Injection Model with the Consideration of Steam Override

    Directory of Open Access Journals (Sweden)

    He Congge

    2017-01-01

    Full Text Available The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small.

  14. Study of Scaling Development on Tube Surfaces of Water Steam Loop in Steam Generator of CEFR

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lu; LIU; Fu-chen; LUO; De-kang; WU; Qiang; ZHANG; Huan-qi

    2012-01-01

    <正>The steam generator worked as pressure boundary of Na-H2O loop in China Experimental FastReactor (CEFR), which was quite important for nuclear reactor safety. Once the tubes separating the water from steam leak because of corrosion by scaling, Na-H2O reaction would lead to severe accident. So it’s critically important to study how the scaling develops on the water-steam sides.

  15. US PWR steam generator management: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, and is provided as a supplement to that material.

  16. Pretreatment of Corn Stalk by Steam Explosion

    Institute of Scientific and Technical Information of China (English)

    邵自强; 田永生; 谭惠民

    2003-01-01

    A steam explosion pretreatment, which is one of the best ways of pretreating plant stalk, is applied at various severities to corn stalk. It could effectively modify the super-molecular structure of corn stalk and defibrating corn stalk into individual components. The relationship between yield of reducing sugar and the operating conditions, including temperature, pressure of steam explosion pretreatment and acidity, is also established. Experimental results prove that the steam explosion substantially increases the yield of reducing sugar, and the optimal condition for steam explosion is as follows: the pressure is 2.0 MPa, the pressure-retaining time 300 s, the initial acid concentration 1% and the acid treatment time 24 h.

  17. Biophysical Evaluation of SonoSteam®:

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.;

    and safety evaluations. Our results show that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing e.g. an exponential dose/response...... relationship between SonoSteam treatment time and changes in collagen I, and a depth dependency in bacterial reduction, which points toward CFU counts overestimating total bacterial reduction. In conclusion the biophysical methods provide a less biased, reproducible and highly detailed system description......In this study we employ a biophysical and molecular approach for the investigation of qualitative and quantitative changes in both food surface and bacteria upon surface decontamination by SonoSteam®. SonoSteam® is a recently developed method of food surface decontamination, which employs steam...

  18. Thermodynamics of supersaturated steam: Molecular simulation results

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo

    2016-12-01

    Supersaturated steam modeled by the Gaussian charge polarizable model [P. Paricaud, M. Předota, and A. A. Chialvo, J. Chem. Phys. 122, 244511 (2005)] and BK3 model [P. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)] has been simulated at conditions occurring in steam turbines using the multiple-particle-move Monte Carlo for both the homogeneous phase and also implemented for the Gibbs ensemble Monte Carlo molecular simulation methods. Because of these thermodynamic conditions, a specific simulation algorithm has been developed to bypass common simulation problems resulting from very low densities of steam and cluster formation therein. In addition to pressure-temperature-density and orthobaric data, the distribution of clusters has also been evaluated. The obtained extensive data of high precision should serve as a basis for development of reliable molecular-based equations for properties of metastable steam.

  19. A small pelton turbine for steam turbocharger

    Energy Technology Data Exchange (ETDEWEB)

    Rautenberg, M.; Abdelkader, M.; Malobabic, M.; Mobarak, A.

    1984-08-01

    The use of exhaust gas turbocharger for internal combustion engines is usually accompanied by mechanical loss. This loss is due to the raise of exhaust gas back pressure with the increase of engine speed. This back pressure prevents the discharge of the exhaust gas from the engine and causes mechanical loss. To avoid this undesirable phenomenon, a Clausius-Rankine cycle is used. In this case the thermal energy in the exhaust gas is used to vaporise water in a steam generator. The generated steam expands in a steam turbocharger which supercharges the engine. A small Pelton steam turbine has been designed and fabricated. The expected output for this small turbine is 10 kW. A computer program has been prepared to estimate the values of optimum cycle parameters.

  20. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  1. Future trends in steam coal utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, G.A.

    1999-07-01

    The history of coal production in important regions of the world and the evolution of the international steam coal trade is reviewed. Then the four main drivers for the evolution of steam coal utilisation and how they may impact different regions of the world are discussed. These drivers are: social issues, including population, wealth and employment; strategic issues like energy security and balance of payments; competitiveness; and environment.

  2. Reciprocating wear in a steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.J.; Gee, M.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    Tests to simulate the wear between sliding components in steam power plant have been performed using a low frequency wear apparatus at elevated temperatures under static load, at ambient pressure, in a steam environment. The apparatus was modified to accept a novel method of steam delivery. The materials tested were pre-exposed in a flowing steam furnace at temperature for either 500 or 3000 hours to provide some simulation of long term ageing. The duration of each wear test was 50 hours and tests were also performed on as-received material for comparison purposes. Data has been compared with results of tests performed on non-oxidised material for longer durations and also on tests without steam to examine the effect of different environments. Data collected from each test consists of mass change, stub height measurement and friction coefficient as well as visual inspection of the wear track. Within this paper, it is reported that both pre-ageing and the addition of steam during testing clearly influence the friction between material surfaces. (orig.)

  3. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2012-01-01

    The CERN Table Tennis club and the Meyrin CTT are organizing two Table Tennis workshops from 2 to 6 July and from 20 to 24 August 2012 inclusive in Meyrin. A professional would be with your children from 14.00 pm to 18.00 pm: an instructor J + S category A. Training courses with specific themes, individual courses would be given depending on the level of the child’s game, “discoveries –table tennis games” courses and games with the robot. Other activities (stretching, relaxation). Afternoons (from 18 to 20 children): 40 CHF per workshop and per child. Evenings (from 18 to 20 adults): 60 CHF per workshop and per adult. For further information, please contact Mr. Monteil : Mobile: (+33) 06 61 31 70 47 E-mail: wilfried.monteil@free.fr.

  4. Effect of Pre-heating on Microtensile Bond Strength of Composite Resin to Dentin.

    Directory of Open Access Journals (Sweden)

    Abdolrahim Davari

    2014-10-01

    Full Text Available Direct composite resin restorations are widely used and the impact of different storage temperatures on composites is not well understood. The purpose of this study was to evaluate the microtensile bond strength of composite to dentin after different pre-curing temperatures.Occlusal surfaces of 44 human molars were ground with diamond burs under water coolant and polished with 600 grit silicon carbide papers to obtain flat dentin surfaces. The dentin was etched with 37% phosphoric acid and bonded with Adper Single Bond 2 according to the manufacturer's instructions. The specimens were randomly divided into two groups (n=22 according to the composite resin applied: FiltekP60 and Filtek Z250. Each group included three subgroups of composite resin pre-curing temperatures (4°C, 23°C and 37°C. Composite resins were applied to the dentin surfaces in a plastic mold (8mm in diameter and 4mm in length incrementally and cured. Twenty-two composite-to-dentin hour-glass sticks with one mm(2 cross-sectional area per group were prepared. Microtensile bond strength measurements were made using a universal testing machine at a crosshead speed of one mm/min. For statistical analysis, t-test, one-way and two-way ANOVA were used. The level of significance was set at P<0.05.Filtek P60 pre-heated at 37ºC had significantly higher microtensile bond strength than Filtek Z250 under the same condition. The microtensile bond strengths were not significantly different at 4ºC, 23ºC and 37ºC subgroups of each composite resin group.Filtek P60 and Filtek Z250 did not have significantly different microtensile bond strengths at 4ºC and 23ºC but Filtek P60 had significantly higher microtensile bond strength at 37 ºC. Composite and temperature interactions had significant effects on the bond strength.

  5. Effects of preheating and precooling on the hardness and shrinkage of a composite resin cured with QTH and LED.

    Science.gov (United States)

    Osternack, F H; Caldas, D B M; Almeida, J B; Souza, E M; Mazur, R F

    2013-01-01

    The aim of this study was to evaluate in vitro the hardness and shrinkage of a pre-cooled or preheated hybrid composite resin cured by a quartz-tungsten-halogen light (QTH) and light-emitting diode (LED) curing units. The temperature on the tip of the devices was also investigated. Specimens of Charisma resin composite were produced with a metal mold kept under 37°C. The syringes were submitted to 4°C, 23°C, and 60°C (n=20) before light-curing, which was carried out with the Optilux 501 VCL and Elipar FreeLight 2 units for 20 seconds. The specimens were kept under 37°C in a high humidity condition and darkness for 48 hours. The Knoop hardness test was carried out with a 50 gram-force (gf) load for 10 seconds, and the measurement of the shrinkage gap was carried out using an optical microscope. The data were subjected to analysis of variance and the Games-Howell test (α=0.05). The mean hardness of the groups were similar, irrespective of the temperatures (p>0.05). For 4°C and 60°C, the top surface light-cured by LED presented significantly reduced shrinkage when compared with the bottom and to both surfaces cured by QTH (phardness was not affected by pre-cooling or preheating. However, polymerization shrinkage was slightly affected by different pre-polymerization temperatures. The QTH-curing generated greater shrinkage than LED-curing only when the composite was preheated. Different temperatures did not affect the composite hardness and shrinkage when cured by a LED curing unit.

  6. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  7. Effects of target pre-heating and expansion on terahertz radiation production from intense laser-solid interactions

    Institute of Scientific and Technical Information of China (English)

    X.H.Yuan; Y.Fang; D.C.Carroll; D.A.MacLellan; F.Du; N.Booth; M.Burza; M.Chen; R.J.Gray; Y.F.Jin; Y.T.Li; Y.Liu; D.Neely; H.Powell; G.Scott; C.-G.Wahlstrm; J.Zhang; P.McKenna; Z.M.Sheng

    2014-01-01

    The first experimental measurements of intense(~7 × 1019 W cm-2) laser-driven terahertz(THz) radiation from a solid target which is preheated by an intense pulse of laser-accelerated protons is reported. The total energy of the THz radiation is found to decrease by approximately a factor of 2 compared to a cold target reference. This is attributed to an increase in the scale length of the preformed plasma, driven by proton heating, at the front surface of the target,where the THz radiation is generated. The results show the importance of controlling the preplasma scale length for THz production.

  8. Thermionic combustor application to combined gas and steam turbine power plants

    Science.gov (United States)

    Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.

  9. Instantaneous determination of heat transfer coefficients in a steam generator for an alternative energy upgrade system

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo, S.S.; Romero, R.J. [Univ. Autonoma del Estado de Morelos, Cuernavaca Morelos (Mexico). Centro di Investigacion en Ingeneria y Ciencias Aplicadas; Best, R. [Univ. Autonoma de Mexico, Temixco, Morelos (Mexico). Centro de Investigacion en Energie

    2009-07-01

    A mathematical model was used to characterize the thermal behaviour of a steam generator in an alternative energy upgrade system. A thermodynamic cycle was used to increase the temperatures produced by solar, geothermal, and waste heat from industrial processes. The absorption heat transformer (AHT) process can be used in industrial processes where low temperature heat flows occur. Alternative energy was supplied to the generator where the working fluid was condensed and then transported to the evaporator through an expansion valve. Vapor was then transported to the absorber in order to deliver heat at a higher temperature. The solution was then returned to the generator in order to start the cycle again. A heat exchanger was placed between the absorber and the generator in order to preheat incoming solutions from the generator. The mathematical model was used to simulate heat transfer in the generator in order to determine optimal operating conditions. Heat transfer coefficients were calculated using equations reported for single phase flow. It was concluded that the highest heat transfer coefficients were obtained for a Reynolds number of 2300 with an alternative energy source of 90 degrees C at mass flows of 4 L/m. 33 refs., 14 figs.

  10. STEAM Enacted: A Case Study of a Middle School Teacher Implementing STEAM Instructional Practices

    Science.gov (United States)

    Herro, Danielle; Quigley, Cassie

    2016-01-01

    This paper examines the implementation practices of a 6th grade middle school teacher enacting STEAM (science, technology, engineering, art and math) teaching in his classroom after participating in a 45-hour STEAM professional development. Case study is used to detail the process, successes, and challenges. Project-based learning, technology…

  11. Synthesis and optimization of steam system networks. 2. Multiple steam levels

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available The use of steam in heat exchanger networks (HENs) can be reduced by the application of heat integration with the intention of debottlenecking the steam boiler and indirectly reducing the water requirement [Coetzee and Majozi. Ind. Eng. Chem. Res...

  12. Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

  13. One Table Restaurant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    There are times when you want to celebrate, hold a formal business meeting or simply gather together with a few friends to eat and have a good time. One Table Restaurant offers you and your guests the perfect setting for every occasion,

  14. The Aerodynamic Plane Table

    Science.gov (United States)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  15. A Modern Periodic Table.

    Science.gov (United States)

    Herrenden-Harker, B. D.

    1997-01-01

    Presents a modern Periodic Table based on the electron distribution in the outermost shell and the order of filling of the sublevels within the shells. Enables a student to read off directly the electronic configuration of the element and the order in which filling occurs. (JRH)

  16. The MSSA consequence tables

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, I.J.

    1988-01-01

    The Master Safeguards and Security Agreement (MSSA) is the mechanism through which the U.S. Department of Energy is implementing a policy of graded safeguards. Under this concept, the level of protection provided to a target is proportional to the ''cost'' of the loss of the target. Cost is measured by use of the conditional risk equation in which the protection system ineffectiveness is multiplied by the consequence to society of a successful adversary attempt. The consequences which are used in the MSSA process were developed in the summer of the 1986 by a consensus of DOE personnel and contractors. There are separate consequence tables for theft of SNM, radiological sabotage. The consequence values in the tables were deliberately not cross-normalized. The consequence values in each table correspond to a societal or DOE cost, for example, the consequence values for SNM theft compared to a normalized estimate of the expected number of fatalities from a successful use of the stolen material times an estimate of the likelihood of successfully using the material. Consequence values for radiological sabotage correspond very roughly to a similar expected fatality level. Values for industrial sabotage are an estimate of the impact on DOE weapons production or impact on the nuclear weapons stockpile. Problems have arisen in the use of these tables and are discussed in the paper.

  17. A Modern Periodic Table.

    Science.gov (United States)

    Herrenden-Harker, B. D.

    1997-01-01

    Presents a modern Periodic Table based on the electron distribution in the outermost shell and the order of filling of the sublevels within the shells. Enables a student to read off directly the electronic configuration of the element and the order in which filling occurs. (JRH)

  18. LOCKE Detailed Specification Tables

    CERN Document Server

    Menezo, Lucia G; Gregorio, Jose-Angel

    2012-01-01

    This document shows the detailed specification of LOCKE coherence protocol for each cache controller, using a table-based technique. This representation provides clear, concise visual information yet includes sufficient detail (e.g., transient states) arguably lacking in the traditional, graphical form of state diagrams.

  19. Computer modeling of a convective steam superheater

    Science.gov (United States)

    Trojan, Marcin

    2015-03-01

    Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.

  20. Computer modeling of a convective steam superheater

    Directory of Open Access Journals (Sweden)

    Trojan Marcin

    2015-03-01

    Full Text Available Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.

  1. Experimental investigation of the steam wetness in a 1000 MW steam turbine

    Science.gov (United States)

    Kolovratník, Michal; Bartoš, Ondřej

    2016-03-01

    The aim of this paper is to introduce the experimental data of the wetness distribution obtained in the year 2015 in front of and behind the last stage of the 1000MW steam turbine in the power plant Temelín. Two different optical probes developed at Czech Technical University were used. For the first time in the Czech Republic pneumatic and optical measurement of the wet steam flow field in front of the last stage of a nuclear power-station steam turbine was provided. This unique measurement opportunity provided lots of new information for the manufacturer and operator of the steam turbine and valuable experimental data for the phase transition modelling in the wet steam flow. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  2. Experimental investigation of the steam wetness in a 1000 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2016-01-01

    Full Text Available The aim of this paper is to introduce the experimental data of the wetness distribution obtained in the year 2015 in front of and behind the last stage of the 1000MW steam turbine in the power plant Temelín. Two different optical probes developed at Czech Technical University were used. For the first time in the Czech Republic pneumatic and optical measurement of the wet steam flow field in front of the last stage of a nuclear power-station steam turbine was provided. This unique measurement opportunity provided lots of new information for the manufacturer and operator of the steam turbine and valuable experimental data for the phase transition modelling in the wet steam flow. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  3. Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis

    Directory of Open Access Journals (Sweden)

    Tatiana Morosuk

    2012-02-01

    Full Text Available Steam methane reforming (SMR is one of the most promising processes for the production of hydrogen. Therefore, the overall thermodynamic efficiency of this process is of particular importance. The thermodynamic inefficiencies in a thermal system are related to exergy destruction and exergy loss. However, a conventional exergetic analysis cannot evaluate the mutual interdependencies among the system components nor the real potential for improving the energy conversion system being considered. One of the tools under development for the improvement of energy conversion systems from the thermodynamic viewpoint is the advanced exergetic analysis. In this paper, the avoidable part of the exergy destruction is estimated and the interactions among components of the overall system are evaluated in terms of endogenous and exogenous exergy destruction. The assumptions required for these calculations are discussed in detail, especially for those components that are typically used in chemical processes. Results of this paper suggest options for increasing the thermodynamic efficiency of hydrogen production by steam-methane reforming.

  4. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  5. Effect of preheating on the damage to tungsten targets after repetitive ITER ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Makhlay, V A [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Tereshin, V I [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany)

    2007-03-15

    The behaviour of a preheated tungsten target under repetitive pulsed plasma impacts of the energy density 0.75 MJ m{sup -2} with the pulse duration of 0.25 ms was studied with the quasi-stationary plasma accelerator (QSPA) Kh-50. Two identical samples of pure sintered tungsten have been exposed to numbers of pulses exceeding 100. One sample was maintained at room temperature and the other sample preheated at 650 deg. C. The experiments demonstrated that on the cold surface some macro-cracks dominate, but on the hot surface they do not develop. However, in both cases some fine meshes of micro-cracks are observed. With increasing the number of exposures, the width of the micro-cracks gradually increases, achieving 0.8-1.5 {mu}m after 100 pulses. In addition, the SEM shows some cellular structure with the cell sizes about 0.3 {mu}m, and after large numbers of exposures some blisters of sizes up to 100-150 {mu}m appear.

  6. Influence of pre-heat treatment and different light-curing units on Vickers hardness of a microhybrid composite resin

    Science.gov (United States)

    Saade, E. G.; Bandeca, M. C.; Rastelli, A. N. S.; Bagnato, V. S.; Porto-Neto, S. T.

    2009-06-01

    The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60°C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.

  7. Solar steam supply: Initial operation of a plant

    OpenAIRE

    Krüger, Dirk; Lichtenthäler, Niels; Dersch, Jürgen; Schenk, Heiko; Hennecke, Klaus; Anthrakidis, Anette; Rusack, Markus; Lokurlu, Ahmet; Saidi, Karim; Walder, Marcus; Fischer, Stephan; Wirth, Hans Peter

    2011-01-01

    This paper describes experiences in operating a parabolic trough collector field for process heat supply by direct steam generation. The solar steam generator has been running automatically since its start in 2010 except for a winter pause up to now, August 2011, without any malfunction. It has supplied steam at 4 bar absolute and 143°C to the main production steam line on sunny days. Direct steam generation has proven to be a viable technology to supply saturated steam to an industrial st...

  8. Steam vaporizers: A danger for paediatric burns.

    Science.gov (United States)

    Lonie, Sarah; Baker, Paul; Teixeira, Rodrigo

    2016-12-01

    Steam vaporizers are used to humidify air in dry environments. They are marketed to moisten children's airway secretions and thus to help relieve symptoms associated with upper respiratory tract infections. Unfortunately the steam emitted from the unit can also pose a significant risk of burns to children. Our study aimed to ascertain patterns of injury and treatment outcomes from steam burns resulting from these devices. Potential preventative measures are discussed. Children who had sustained vaporizer scald burns were identified at the outpatient burns clinic over a 10-month period (November 2014-August 2015). Medical records were reviewed retrospectively and data collected on pattern of injury, management and outcomes. Ten children were treated for vaporizer steam burns over the study period. The mean age was 1.6 years and 8 (80%) patients were male. Operative intervention was undergone in 5 (50%) cases; four acutely and one as a secondary reconstructive procedure. Hand burns accounted for 8 (80%) of cases. Steam vaporizers can cause significant burns in the paediatric population. Toddlers were most at risk, frequently sustaining hand burns that underwent skin grafting. Greater public awareness of the danger is indicated and measures to prevent such injuries should be addressed by appropriate authorities. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. HVOF coatings for steam oxidation protection

    Energy Technology Data Exchange (ETDEWEB)

    Agueero, A.; Muelas, R.; Gonzalez, V. [Instituto Nacional de Tecnica Aeroespacial (INTA), Area de Materiales Metalicos, Madrid (Spain)

    2008-05-15

    In the context of the European project 'Coatings for Supercritical Steam Cycles' (SUPERCOAT), the use of steam oxidation resistant coatings on currently available ferritic materials with high creep strength but poor oxidation resistance was investigated in order to allow increase in the operating temperature of steam power plants from 550 to 650 C. Among the explored coating techniques for this application, chosen on the basis of being potentially appropriate for coating steam turbine components, High Velocity Oxy Fuel (HVOF) thermal spray has resulted in one of the most successful techniques. Different alloyed materials such as FeCrAl, NiCrSiFeB, FeAl, NiCr and FeCr have been deposited, optimized and tested under flowing steam at 650 C. Characterization of as deposited and tested samples by metallography, SEM-EDS and XRD was carried out. Some of these coatings form protective pure chromium or aluminium oxides exhibiting excellent behaviour for at least 15 000 h of exposure, whereas others form less stable complex mixed oxides which nevertheless grow at considerably slower rates than the oxides formed on uncoated P92 (9 wt%Cr ferritic steel). (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Dehumidification System with Steam Permeability Films

    Science.gov (United States)

    Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo

    In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.

  11. Global Reference Tables Services Architecture

    Data.gov (United States)

    Social Security Administration — This database stores the reference and transactional data used to provide a data-driven service access method to certain Global Reference Table (GRT) service tables.

  12. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  13. 预热工艺对钢化玻璃性能的影响%Influence of Preheating Process on Tempered Glass Properties

    Institute of Scientific and Technical Information of China (English)

    赵旭东; 张晓娟

    2015-01-01

    Preheat under different conditions (other things being equal), double chamber strong convection horizontal tempering furnace was carried out on 6mm clear glass tempered processing, analyzed the effects of preheating parameters on the performance of the tempered glass, and the results are discussed.%在不同的预热条件(其它条件相同)下,利用双室强对流水平钢化炉对6 mm白玻进行钢化处理,分析了预热参数对钢化玻璃性能的影响,并对结果进行了讨论.

  14. Integrated vacuum absorption steam cycle gas separation

    Science.gov (United States)

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  15. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  16. Heat Recovery Steam Generator by Using Cogeneration

    Directory of Open Access Journals (Sweden)

    P.Vivek, P. Vijaya kumar

    2014-01-01

    Full Text Available A heat recovery steam generator or HRSG is an energy recovery heat exchanger that recovers heat from a hot gas stream. It produces steam that can be used in a process (cogeneration or used to drive a steam turbine (combined cycle. It has been working with open and closed cycle. Both of cycles are used to increase the performance and also power on the cogeneration plant. If we are using closed cycle technology, we can recycle the waste heat from the turbine. in cogeneration plant, mostly they are using open cycle technology. additional, by using closed cycle technology, we can use the waste heat that converts into useful amount of work. In this paper, the exhaust gas will be sent by using proper outlet from cogen unit, we are using only waste heat that produce from turbine.

  17. Market structure scenarios in international steam coal

    Energy Technology Data Exchange (ETDEWEB)

    Trueby, Johannes; Paulus, Moritz

    2011-04-15

    The seaborne steam coal market changed in recent years. Trade volumes grew dynamically, important players emerged and since 2007 prices increased significantly and remained relatively high since then. In this paper we analyse market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios in this market: perfect competition and an oligopoly setup with major exporters competing in quantities. We conclude from our results that international steam coal trade is not perfectly competitive as there is a large spread between marginal costs and prices and a low capacity utilisation in 2008. Further, trade flows are generally more diversified in reality than in the competitive scenario. However, also the Cournot scenarios fail to accurately explain real market outcomes. We conclude that only more sophisticated models of strategic behaviour can predict market equilibria in international steam coal trade. (orig.)

  18. Steam injection in Colombia under challenging environment

    Energy Technology Data Exchange (ETDEWEB)

    Waghray, J.P. [Mansovar Energy Colombia Ltd (Colombia)

    2011-07-01

    Mansarovar Energy Columbia Ltd. is a company extracting heavy oil from its Colombian fields. In order to enhance the production and at the same time to contribute to the economic recovery, they are using the cyclic steam injection method. The aim of this presentation is to show what are the challenges facing heavy oil extraction in Colombia, what is the state of the art, and what needs to be improved. Heavy oil extraction in Colombia presents two sorts of challenges: operational ones related to sanding problems and diluents and gas availability; and commercial ones, related to low return rates. The use of steam injection in conventional wells can, however, increase both productivity and the rate of return while at the same time enhancing the recovery factor by 10 to 15%. For the future, improvement in drilling and completion, production, and steam efficiency will be necessary as well as the implementation of the appropriate enhanced oil recovery processes.

  19. Combined gas/steam turbine power plants with coal fired steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, H.J.; Weirich, P.H. [ABB Kraftwerke AG, Mannheim (Germany)

    1994-12-31

    The combination of coal fired steam power plants with natural gas fired gas turbines results in an essential efficiency increase, up to 50%, requiring a portion of around one third of the fuel heat input in form of natural gas. There are two basic types of circuit arrangements in this category: in a topping process the gas turbine is connected to the steam generator on the gas side, and in a compound cycle power plant gas turbine and steam circuit are connected to each other on the water/steam side via a heat recovery steam generator. If comparable design parameters are applied slightly higher plant efficiencies can be obtained with the topping process. With respect to a higher power plant availability it is possible to operate both types of circuit arrangement without gas turbine. The specific investment cost of such combined cycle power plants is lower than that of corresponding steam power plants. Hence, they can represent economical solutions as far as the price ratio between natural gas and coal is not extremely high. In ecological respects, the advantage of this combination is a reduction of the specific CO{sub 2} emission by around 20-25%, compared with pure steam power plants. 1 ref., 9 figs., 2 tabs.

  20. League tables for orthodontists

    Science.gov (United States)

    Richmond, Stephen; Phillips, Ceri; Durning, Peter

    2008-01-01

    The aim of this study was to explore the complexities in constructing league tables purporting to measure orthodontic clinical outcomes. Eighteen orthodontists were invited to participate in a cost-effectiveness study. Each orthodontist was asked to provide information on 100 consecutively treated patients. The Index of Complexity, Outcome, and Need (ICON) was used to assess treatment need, complexity, and outcome prior to, and on completion of, orthodontic treatment. The 18 orthodontists were ranked based on achieving a successful orthodontic outcome (ICON score less than or equal to 30) and the uncertainty in both the success rates and rankings was also quantified using confidence intervals. Successful outcomes were achieved in 62 per cent of the sample (range 19–94 per cent); four of the 18 orthodontists failed to achieve more than a 50 per cent success rate. In developing league tables, it is imperative that factors such as case mix are identified and accounted for in producing rankings. Bayesian hierarchical modelling was used to achieve this and to quantify uncertainty in the rankings produced. When case mix was taken into account, the four with low success rates were clearly not as good as the top four performing orthodontists. League tables can be valuable for the individual orthodontist, groups of orthodontists, payment/insurance agencies, and the public to enable informed choice for orthodontic provision but must be correctly constructed so that users can have confidence in them. PMID:18687990

  1. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2012-01-01

    2012 CERN Table Tennis Tournament As the campaign launched by the CERN medical service “Move! & Eat better” is designed in particular to encourage people at CERN to take more regular exercise, the CERN Table Tennis Club, with its traditional CERN Table Tennis Tournament is providing an excellent opportunity to practice moving. The tournament will take place at the Meyrin CTT, 2 rue de Livron, Saturday August 25, 2012, in the afternoon (starting at 13:30). It is open to all CERN staff, users, visitors and families, including of course summer students, who are strongly encouraged to participate. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You may also find useful information on the Club Web page http://www.cern.ch/tabletennis CERN 2011 champion Savitha Flaecher, between the finalist Bertrand Mouches on her left, the winner of the consolation draw on her right (Sudarshan Paramesvaran), and far left, Denis Moriaud (semi-finalist a...

  2. Comparative evaluation of surface and downhole steam-generation techniques

    Science.gov (United States)

    Hart, C.

    The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.

  3. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  4. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne;

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  5. Steam generator tubesheet waterlancing at Bruce B

    Energy Technology Data Exchange (ETDEWEB)

    Persad, R. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Eybergen, D. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    High pressure water cleaning of steam generator secondary side tubesheet surfaces is an important and effective strategy for reducing or eliminating under-deposit chemical attack of the tubing. At the Bruce B station, reaching the interior of the tube bundle with a high-pressure water lance is particularly challenging due to the requirement to setup on-boiler equipment within the containment bellows. This paper presents how these and other design constraints were solved with new equipment. Also discussed is the application of new high-resolution inter-tube video probe capability to the Bruce B steam generator tubesheets. (author)

  6. Experimental investigation of the steam wetness in a 1000 MW steam turbine

    OpenAIRE

    Kolovratník Michal; Bartoš Ondřej

    2016-01-01

    The aim of this paper is to introduce the experimental data of the wetness distribution obtained in the year 2015 in front of and behind the last stage of the 1000MW steam turbine in the power plant Temelín. Two different optical probes developed at Czech Technical University were used. For the first time in the Czech Republic pneumatic and optical measurement of the wet steam flow field in front of the last stage of a nuclear power-station steam turbine was provided. This unique measurement ...

  7. Optimum sizing of steam turbines for concentrated solar power plants

    OpenAIRE

    Andreas Poullikkas, Constantinos Rouvas, Ioannis Hadjipaschalis, George Kourtis

    2012-01-01

    In this work, a selection of the optimum steam turbine type and size for integration in concentrated solar power (CSP) plants is carried out. In particular, the optimum steam turbine input and output interfaces for a range of CSP plant capacity sizes are identified. Also, efficiency and electricity unit cost curves for various steam turbine capacities are estimated by using a combination of the Steam Pro software module of the Thermoflow Suite 18 package and the IPP v2.1 optimization software...

  8. Research progress of the Superheated Steam Drying Technology

    OpenAIRE

    Shi, Yongchun; Li, Jie; Li, Xuanyou; Zhao, Gaiju; Wu, Maogang

    2012-01-01

    The superheated steam drying technology has lots of advantages such as safe, energy-saving, pollution-free and so on, so it causes more and more extensive concern. The superheated steam drying technology is introduced and its merits and faults are analyzed. The theoretical research progress of the superheated steam drying is summarized and the recent application of the materials including the food, wood, paper, sludge and lignite is stated. In brief, the superheated steam drying technol...

  9. Fixation of compressive deformation in wood by pre-steaming

    Science.gov (United States)

    M. Inoue; N. Sekino; T. Morooka; R.M. Rowell; M. Norimoto

    2008-01-01

    Wood block specimens pre-steamed at 120-220 °C for 5-20 min were compressed in the radial direction. The recovery of set decreased with increasing pre-steaming temperature and time. The reduction of set recovery correlated with the amount of weight loss in steaming irrespective of pre-steaming temperature and time. The weight loss for the highest level of...

  10. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a.... If the covering of the piping is not removed, the test pressure shall be maintained on the piping...

  11. Recent trends in repair and refurbishing of steam turbine components

    Indian Academy of Sciences (India)

    A K Bhaduri; S K Albert; S K Ray; P Rodriguez

    2003-06-01

    The repair and refurbishing of steam generator components is discussed from the perspective of repair welding philosophy including applicable codes and regulations. Some case histories of repair welding of steam generator components are discussed with special emphasis on details of repair welding of cracked steam turbine blades and shrouds in some of the commercial nuclear power plants using procedures developed.

  12. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  13. 46 CFR 50.05-20 - Steam-propelled motorboats.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-propelled motorboats. 50.05-20 Section 50.05-20... Application § 50.05-20 Steam-propelled motorboats. (a) The requirements covering design of the propelling... than 40 feet in length and which are propelled by machinery driven by steam shall be in accordance...

  14. Corrosion of several metals in supercritical steam at 538/sup 0/C. [85 alloys

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, H. E.; McNabb, B.

    1977-05-01

    The corrosion of several iron- and nickel-base alloys in supercritical steam at 24.1 MPa (3500 psi) and 538/sup 0/C was measured to 7.92 x 10/sup 7/ s (22,000 h). The experiments were carried out in TVA's Bull Run Steam Plant. Corrosion was measured almost entirely by weight change and visual appearance; a few samples were evaluated by more descriptive analytical techniques. The corrosion rates of low-alloy ferritic steels containing from 1.1 to 8.7 percent Cr and 0.5 to 1.0 percent Mo differed by less than a factor of 2 in steam. Several modified compositions of Hastelloy N were evaluated and found to corrode at about equivalent rates. Of the alloys studied, the lowest weight gain in 3.6 x 10/sup 7/ sec (10,000 hr) was 0.01 mg/cm/sup 2/ for Inconel 718 and the highest 10 mg/cm/sup 2/ for the low-alloy ferritic steels. 25 figures, 3 tables.

  15. Active acoustic leak detection for LMFBR steam generators. Pt. 6. Applicability to practical steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    It is necessary to develop a reliable water leak detection system for steam generators of liquid metal reactors in order to prevent the expansion of damage and to maintain the structural integrity of the steam generators. The concept of the active acoustic method is to detect the change of the ultrasonic field due to the hydrogen gas bubbles generated by a sodium-water reaction. This method has the potential for improved detection performance compared with conventional passive methods, from the viewpoint of sensitivity, response time and tolerance against the background noise. A feasibility study of the active acoustic leak detection system is being carried out. This report predicts the performance of the active acoustic method in the practical steam generators from the results of the large scale in-water experiments. The results shows that the active acoustic system can detect a 10 g/s leak within a few seconds in large-scale steam generators. (author)

  16. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.

    Science.gov (United States)

    Kumagai, Shogo; Hosaka, Tomoyuki; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-11-17

    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g(-1) of a H2 and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents.

  17. Study of sensitivity change of OSL signals from quartz and feldspars as a function of preheat temperature

    DEFF Research Database (Denmark)

    Jungner, H.; Bøtter-Jensen, L.

    1994-01-01

    Optically stimulated luminescence (OSL) signals from feldspar and quartz samples were studied using infrared (860 nm) and green light (420-575 nm) stimulation. A serious problem connected with the regeneration technique used for dating is associated with a change of OSL sensitivity to radiation...... in the couse of the measurement process. A typical effect seen is a large increase of the apparent strength of our beta source when calibrated against a gamma source. If the regeneration procedure is used, it is shown that the sensitivity increases up to similar to 50% during the measurement process...... and as a result, the equivalent dose (ED) would be underestimated. A study of sensitivity changes in feldspars and quartz was carried out with emphasis on the effect of preheat and annealing on the OSL signal. Measurement results obtained are presented, and possible elimination of errors in dating caused...

  18. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  19. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bari, S.; Lim, T.H.; Yu, C.W. [Universiti Sains Malaysia, School of Mechanical Engineering, Penang (Malaysia)

    2002-11-01

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  20. A study of steam injection in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

    1996-02-01

    Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

  1. Study on mathematical model of steam coal blending

    Institute of Scientific and Technical Information of China (English)

    高洪阁; 李白英; 刘泽常; 尹增德

    2002-01-01

    It is necessary to set up a new mathematical model of steam coal blending instead of the old model. Indexes such as moisture content, ash content, volatile matter, sulfur content and heating value in the new mathematical model have linear relation. The new mathematical model can also predict ash-fusion temperature precisely by considering coal ash ratio in steam coal blending, therefore it is possible to obtain linear relation of ash-fusion temperature between single coal and steam coal blending. The new mathematical model can improve precision of steam coal blending and perfect the old mathematical model of steam coal blending.

  2. A Tiled-Table Convention for Compressing FITS Binary Tables

    CERN Document Server

    Pence, William; White, Richard L

    2012-01-01

    This document describes a convention for compressing FITS binary tables that is modeled after the FITS tiled-image compression method (White et al. 2009) that has been in use for about a decade. The input table is first optionally subdivided into tiles, each containing an equal number of rows, then every column of data within each tile is compressed and stored as a variable-length array of bytes in the output FITS binary table. All the header keywords from the input table are copied to the header of the output table and remain uncompressed for efficient access. The output compressed table contains the same number and order of columns as in the input uncompressed binary table. There is one row in the output table corresponding to each tile of rows in the input table. In principle, each column of data can be compressed using a different algorithm that is optimized for the type of data within that column, however in the prototype implementation described here, the gzip algorithm is used to compress every column.

  3. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  4. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  5. Deriving Extensional Spatial Composition Tables

    Science.gov (United States)

    El-Geresy, Baher; Abdelmoty, Alia I.; Ware, Andrew J.

    Spatial composition tables are fundamental tools for the realisation of qualitative spatial reasoning techniques. Studying the properties of these tables in relation to the spatial calculi they are based on is essential for understanding the applicability of these calculi and how they can be extended and generalised. An extensional interpretation of a spatial composition table is an important property that has been studied in the literature and is used to determine the validity of the table for the models it is proposed for. It provides means for consistency checking of ground sets of relations and for addressing spatial constraint satisfaction problems. Furthermore, two general conditions that can be used to test for extensionality of spatial composition tables are proposed and applied to the RCC8 composition table to verify the allowable models in this calculus.

  6. XPS and IGC characterization of steam treated triticale straw

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Liyan, E-mail: Liyan.zhao@albertainnovates.ca [Cellulose and Hemicellulose Program, Forest Products, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, AB T6N 1E4 (Canada); Boluk, Yaman [Cellulose and Hemicellulose Program, Forest Products, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, AB T6N 1E4 (Canada)

    2010-10-15

    The surface chemical composition and surface energy of native and steam treated triticale straws have been investigated by X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography (IGC) to reveal the effect of steam treatment temperature and time. The XPS results show that the contents of C elements and C-C group on the exterior surface of native triticale straw are much higher than those on the interior surface, indicating that there was a high quantity of wax on the exterior surface of the native triticale straw. Upon steam treatment, both carbon levels and C-C groups reduce with increasing steam temperature and treatment time of the exterior surfaces. However, the effect of steam treatment on the interior surface is very limited. In terms of the surface acid and base properties, the steam treated samples exhibited higher acid and base properties than the native sample, indicating a more polar surface of the steam treated sample.

  7. XPS and IGC characterization of steam treated triticale straw

    Science.gov (United States)

    Zhao, Liyan; Boluk, Yaman

    2010-10-01

    The surface chemical composition and surface energy of native and steam treated triticale straws have been investigated by X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography (IGC) to reveal the effect of steam treatment temperature and time. The XPS results show that the contents of C elements and C-C group on the exterior surface of native triticale straw are much higher than those on the interior surface, indicating that there was a high quantity of wax on the exterior surface of the native triticale straw. Upon steam treatment, both carbon levels and C-C groups reduce with increasing steam temperature and treatment time of the exterior surfaces. However, the effect of steam treatment on the interior surface is very limited. In terms of the surface acid and base properties, the steam treated samples exhibited higher acid and base properties than the native sample, indicating a more polar surface of the steam treated sample.

  8. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  9. System for Steam Leak Detection by using CCTV Camera

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Lee, Min Soo; Choi, Hui Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Son, Ki Sung; Jeon, Hyeong Seop [SAEAN.Co., Seoul (Korea, Republic of)

    2012-05-15

    There are many pipes in the secondary cooling systems of nuclear power plants and coal-fired power plants. In these pipes, high pressure fluids are moving with at high velocity, which can cause steam leakage due to pipe thinning. Steam leakage is one of the major issues for the structural fracture of pipes. Therefore, a method to inspect a large area of piping systems quickly and accurately is needed. Steam leakage is almost invisible, because the flow has very high velocity and pressure. Therefore, it is very difficult to detect a steam leakage. In this paper, we proposed the method for detecting steam leakage using image signal processing. Our basic idea comes from a heat shimmer, which shines with a soft light that looks as if it is being shaken slightly. To test the performance of this technique, experiments have been performed for a steam generator. Results show that the proposed technique is quite powerful for steam leak detection

  10. Computerized operating cost model for industrial steam generation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  11. Experiences with industrial solar process steam generation in Jordan

    Science.gov (United States)

    Krüger, Dirk; Berger, Michael; Mokhtar, Marwan; Willwerth, Lisa; Zahler, Christian; Al-Najami, Mahmoud; Hennecke, Klaus

    2017-06-01

    At the Jordanian pharmaceuticals manufacturing company RAM Pharma a solar process heat supply has been constructed by Industrial Solar GmbH in March 2015 and operated since then (Figure 1). The collector field consists of 394 m² of linear Fresnel collectors supplying saturated steam to the steam network at RAM Pharma at about 6 bar gauge. In the frame of the SolSteam project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) the installation has been modified introducing an alternative way to separate water and steam by a cyclone. This paper describes the results of experiments with the cyclone and compares the operation with a steam drum. The steam production of the solar plant as well as the fuel demand of the steam boiler are continuously monitored and results are presented in this paper.

  12. Investigation of the steam-cooled blade in a steam turbine cascade

    Institute of Scientific and Technical Information of China (English)

    Dieter Bohn; Jing Ren; Karsten Kusterer

    2007-01-01

    With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the coal-fired plants are expected in order to reach the goals set in the Kyoto protocol.It can be achieved by a rise of the process parameters.Currently,live steam pressures and temperatures up to 300 bars and 923 K are planned as the next step.Closed circuit steam cooling of blades and vanes in modern steam turbines is a promising technology in order to establish elevated live steam temperatures in future steam turbine cycles.In this paper,a steam-cooled test vane in a cascade with external hot steam flow is analyzed numerically with the in-house code CHTflow.A parametric analysis aiming to improve the cooling effectiveness is carried out by varying the cooling mass flow ratio.The results from two investigated cases show that the steam cooling technique has a good application potential in the steam turbine.The internal part of the vane is cooled homogeneously in both cases.With the increased cooling mass flow rate,there is a significant improvement of cooling efficiency at the leading edge.The results show that the increased cooling mass flow ratio can enhance the cooling effectiveness at the leading edge.With respect to trailing edge,there is no observable improvement of cooling effectiveness with the increased cooling mass flow.This implies that due to the limited dimension at the trailing edge,the thermal stress cannot be decreased by increasing the cooling mass flow rate.Therefore,impingement-cooling configuration at the trailing edge might be a solution to overcome the critical thermal stress there.It is also observed that the performance of the cooling effective differs on pressure side and suction side.It implicates that the equilibrium of the cooling effectiveness on two sides are influenced by a coupled relationship between cooling mass flow ratio and hole geometry.In future work,optimizing the hole geometry and cooling steam supply conditions might

  13. A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  14. Steam-frothing of milk for coffee

    DEFF Research Database (Denmark)

    Münchow, Morten; Jørgensen, Leif; Amigo Rubio, Jose Manuel

    2015-01-01

    A method for evaluation of the foaming properties of steam-frothed milk, based on image analysis (feature extraction) carried out on a video taken immediately after foam formation, was developed. The method was shown to be able to analyse steam-frothed milk made using a conventional espresso...... machine, such as commonly used by baristas. Samples of milk, processed in a commercial dairy plant, were made with varying fat (0.5%, 0.9%, 1.5%, 2.6%, 3.5%) or protein (3.0%, 3.4%. 3.8%) content and analysed using the developed method. Increased protein content was shown to cause a delay in the formation...

  15. Modelling the horizontal steam generator with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Ylijoki, J. [VTT Energy, Espoo (Finland); Palsinajaervi, C.; Porkholm, K. [IVO International Ltd, Vantaa (Finland)

    1995-12-31

    In this paper the capability of the five- and six-equation models of the simulation code APROS to simulate the behaviour of the horizontal steam generator is discussed. Different nodalizations are used in the modelling and the results of the stationary state runs are compared. Exactly the same nodalizations have been created for the five- and six-equation models. The main simulation results studied in this paper are void fraction and mass flow distributions in the secondary side of the steam generator. It was found that quite a large number of simulation volumes is required to simulate the distributions with a reasonable accuracy. The simulation results of the different models are presented and their validity is discussed. (orig.). 4 refs.

  16. Thermodynamic properties of superheated and supercritical steam

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, A. [Indian Inst. of Technology, New Delhi (India). Dept. of Mechanical Engineering; Panda, D.M.R. [Dadri Gas Power Station, NTPC, Gautam Buddha Nagar (India)

    2001-07-01

    An existing formulation for steam properties is due to Irvine and Liley. Their equations are convenient to program and do not require excessive computational time to produce results. The properties computed from these equations compare favourably with standard data. An additional advantage of these equations is that they follow prescribed theoretical trends by reducing to perfect-gas behaviour away from the saturation dome. However, a difficulty with these equations is that, at pressures above 10 MPa and close to the saturation dome, unacceptably large errors (above 10%) are produced. These equations are examined in the present work with a view towards enhancing their range of application through the use of additional functions. It is shown that the errors may be reduced to within 1% over the entire range of pressures (both sub-critical and super-critical pressures) required in steam-plant calculations. (author)

  17. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    -friendly alternative processes. In the present work high temperature steam-based process has been investigated as a possible chromate free conversion coating. Investigations in the thesis includes the effect of alloy type, substrate microstructure, surface finish, and various chemistries on the coating formation......, and interface structure of the coatings were analysed using SEM, FIB-SEM,TEM, GI-XRD, FTIR, XPS, AFM, contact angle, and boiling test. Chapter 1 of this thesis provides a background to the work and available literature information. Materials and experimental methods are outlined in chapter 2. The chapters 3...... using autoclave or using spray system, and with or without various chemistries as accelerators. In general, results show the formation of 650 nm – 3000 nm thick conversion coating, where the thickness depend on the treatment parameters and steam chemistry. Further, the formed coating provide good...

  18. Integration of torrefaction with steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zakri, B.; Saari, J.; Sermyagina, E.; Vakkilainen, E.

    2013-09-01

    Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared. (orig.)

  19. Continuous steam hydrolysis of tulip poplar

    Energy Technology Data Exchange (ETDEWEB)

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  20. Solar steam generation by heat localization.

    Science.gov (United States)

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-01-01

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

  1. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C.

  2. A Numerical Study on the Supersonic Steam Ejector Use in Steam Turbine System

    Directory of Open Access Journals (Sweden)

    Lin Cai

    2013-01-01

    Full Text Available Supersonic steam ejector is widely used in steam energy systems such as refrigeration, wood drying equipment, papermaking machine, and steam turbine. In this paper the Computational Fluids Dynamics (CFD method was employed to simulate a supersonic steam ejector, SST k-w turbulence model was adopted, and both real gas model and ideal gas model for fluid property were considered and compared. The mixing chamber angle, throat length, and nozzle exit position (NXP primary pressure and temperature effects on entrainment ratio were investigated. The results show that performance of the ejector is underestimated using ideal gas model, and the entrainment ratio is 20%–40% lower than that when using real gas model. There is an optimum mixing chamber angel and NXP makes the entrainment ratio achieve its maximum; as throat length is decreased within a range, the entrainment ratio remains unchanged. Primary fluid pressure has a critical value, and the entrainment ratio reaches its peak at working critical pressure; when working steam superheat degree increases, the entrainment ratio is increased.

  3. TRIO specification of a steam boiler controller

    Energy Technology Data Exchange (ETDEWEB)

    Gargantini, A. [Politecnico di Milano (Italy). Dipt. di Electronica e Informazione; Morzenti, A. [Politecnico di Milano (Italy). Dipt. di Electronica e Informazione

    1996-12-31

    We specify a controller for a steam boiler starting from an informal descriptions of its requirements. The specification is formalized in the temporal logic TRIO and its object-oriented extension TRIO+. To obtain a maximum of abstraction and reuse we make the specification parametric with respect to all equipment and hardware features, and we avoid to impose any particular strategy in the management of the available resources and in the control of the critical physical quantities. (orig.)

  4. Materials Performance in USC Steam Portland

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  5. Heat treatment of scallop adductor muscle using superheated steam.

    Science.gov (United States)

    Abe, T; Miyashita, K

    2007-08-01

    Scallop (Patinopecten yessoensis) adductor muscles were heated using superheated steam (150 and 200 degrees C), boiling (98 degrees C), and normal steaming (95 degrees C). The amounts of amino acids, water-soluble peptides, and nucleotides, expressed as extractive nitrogen in scallop products, are very important elements of quality and taste. After 15-min heating of scallop muscles with normal steaming and boiling, respective losses of 50% and 64% of the extractive nitrogen were observed. However, most extractive nitrogen (> 86%) remained in the scallop muscles treated with superheated steam at 150 and 200 degrees C. Protective effects of superheated steam against elution loss of nitrogen compounds were also observed in amino acid analyses of the heated products. The scallop-muscle surface temperature during treatment with superheated steam increased more quickly than that with normal steaming and boiling. The rapid water loss and the surface protein denaturation engendered formation of a 30-mum-thick film covering the surface, which prevented extractive nitrogen loss from internal tissues. Superheated steam treatment at 200 degrees C caused browning, surface shrinkage, and 47% weight loss. In marked contrast, the appearance and the weight loss of sample treated at 150 degrees C were almost the same as those of normal steaming and boiling-treated samples. These results suggested that superheated steaming at 150 degrees C is an optimal heat treatment of scallop adductor muscles.

  6. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  7. Reliability design method for steam turbine blades

    Institute of Scientific and Technical Information of China (English)

    Jinyuan SHI

    2008-01-01

    Based on theories of probability and statistics, and taking static stresses, dynamic stresses, endurance strength, safety ratios, vibration frequencies and exciting force frequencies of blades as random variables, a reliabil-ity design method for steam turbine blades is presented. The purport and calculation method for blade reliability are expounded. The distribution parameters of random variables are determined after analysis and numerical cal-culation of test data. The fatigue strength and the vibra-tion design reliability of turbine blades are determined with the aid of a probabilistic design method and by inter-ference models for stress distribution and strength distri-bution. Some blade reliability design calculation formulas for a dynamic stress design method, a safety ratio design method for fatigue strength, and a vibration reliability design method for the first and second types of tuned blades and a packet of blades on a disk connected closely, are given together with some practical examples. With these methods, the design reliability of steam turbine blades can be guaranteed in the design stage. This research may provide some scientific basis for reliability design of steam turbine blades.

  8. Data analysis for steam generator tubing samples

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C.V.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generators program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC`s mobile NDE laboratory and staff. This report provides a description of the application of advanced eddy-current neural network analysis methods for the detection and evaluation of common steam generator tubing flaws including axial and circumferential outer-diameter stress-corrosion cracking and intergranular attack. The report describes the training of the neural networks on tubing samples with known defects and the subsequent evaluation results for unknown samples. Evaluations were done in the presence of artifacts. Computer programs are given in the appendix.

  9. Rotor thermal stress monitoring in steam turbines

    Science.gov (United States)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  10. Catalytic glycerol steam reforming for hydrogen production

    Science.gov (United States)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  11. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  12. 预热工艺对钢化玻璃性能的影响%Influence of Preheating Process on the Properties of Tempered Glass

    Institute of Scientific and Technical Information of China (English)

    赵旭东

    2015-01-01

    6mm clear glass produced by TAMGLASS Company was processed to be tempered glass by the double chamber hori-zontal tempering furnace production line. The conditions of different preheating ( such as preheat temperature, the up/down convec-tion) on the properties of tempered glass were studied. By adjusting the different parameters of preheating and measurement of tem-pered glass bending, tempered parameters, the paper analyzes the effects of preheating parameters on the performance of the tem-pered glass, and the results are discussed. Results show that the parameters such as preheat temperature, preheat convection en-hance the substrate temperature of glass in the heating period of heat to be faster, better heat evenly;it enhances the smoothness of tempered glass and the apparent quality of the final product has obviously improved. Through the optimal parameter combination, glass products with a group of excellent properties are toughened.%利用TAMGLASS公司生产的双室强对流水平钢化炉生产线对南玻公司生产的6 mm白玻璃进行了钢化处理,研究了不同预热条件(预热温度、上下对流设置等)对钢化玻璃性能的影响。通过调整不同的预热参数以及测量钢化后的玻璃弯曲度、钢化应力、表观质量等参数,分析了预热参数对钢化玻璃性能的影响,并对实验结果进行了讨论。结果表明:设置合适的预热温度、预热对流等参数可提高玻璃的基体温度,使得玻璃在加热段的加热更快、受热更加均匀,提高了钢化玻璃的平整度,对最终产品的表观质量有明显改善。

  13. Cast iron air preheater and commercial application%铸铁式空气预热器及工业应用

    Institute of Scientific and Technical Information of China (English)

    王德瑞

    2012-01-01

    As cast iron has a high corrosion resistance performance, the air preheater fabricated from cast iron material is resistant to corrosion and extended in service life. It is especially applicable for the low-temperature section of waste heat recovery system for industry furnace flue gas. The past and present applications of cast iron air preheaters in boiler, iron & steel production and petrochemical industries are described in detail , and the new development of large cast iron plate air preheater developed by SINOPEC in recent years is presented. Up to now, the large cast iron plate air preheaters have been selected in the design of a large number of fired heaters and its design, fabrication and installation technologies are becoming commercially proven. In April, 2010, China' s first new type cast iron plate air preheater came on stream in No. 2 atmospheric-vacuum distillation unit in No. 2 atmospheric-vacuum distillation unit in SINOPEC Wuhan Petrochemical Company. In 19 months' operation, the heat efficiency of the furnace has been maintained at over 92% and the temperature of flue gas emission was lower than 130 t. The preheater has been operating smoothly ever since.%铸铁具有很强的耐硫酸腐蚀能力,因此,采用铸铁材料制作的空气预热器具有耐腐蚀、长寿命的特点,特别适合在工业炉烟气余热回收系统中的低温段采用.介绍了铸铁式空气预热器在国内锅炉、钢铁和石化行业过去和现在的工业应用情况,以及中国石化近年开发的大型铸铁板式空气预热器的最新进展.目前,国产大型铸铁板式空气预热器已在多台火焰加热炉的设计中采用,设计、制造、安装技术日臻成熟.2010年4月,武汉石化2号常减压蒸馏装置投用了国产第一台新型铸铁板式空气预热器,运行19个月,加热炉热效率一直稳定在92%以上,排烟温度一直稳定在130℃以下,运行良好.

  14. Steam-electric plant air and water quality control data. Summary report for the year ended December 31, 1975, based on FPC Form No. 67

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Data relating to nationwide impacts of steam-electric power plants on the environment are discussed with regard to growth of the industry; fuel quality; air pollution control; water pollution control; and cost of cooling facilities. Tables are presented to show the following: air quality data aggregated by state and geographic region and by air quality control region; water quality data aggregated by state and geographic region and by water resource region; and individual plant data. (HLW)

  15. On isomorphisms of integral table algebras

    Institute of Scientific and Technical Information of China (English)

    FAN; Yun(樊恽); SUN; Daying(孙大英)

    2002-01-01

    For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.

  16. MCNPX Model/Table Comparison

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Hendricks

    2003-03-03

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO{sub 2}, making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data tables are used for oxygen and models are used for uranium. The mix-and-match capability became available with MCNPX2.5.b (November 2002). For the first time, we present here comparisons that calculate radiation transport in materials with various combinations of data charts and model physics. The physics models are poor at low energies (<150 MeV); thus, data tables should be used when available. Our comparisons demonstrate the importance of the mix-and-match capability and indicate how well physics models work in the absence of data tables.

  17. Thermodynamic wetness loss calculation in a steam turbine rotor tip section: nucleating steam flow

    Science.gov (United States)

    Joseph, Joby; Sathyanarayanan, S.; K, Vigney; Prasad, B. V. S. SS; Biswas, D.; Jimbo, T.

    2016-09-01

    Rapid expansion of steam in the last stages of a steam turbine causes condensation. The formation of liquid droplets due to condensation results in wetness losses, which include aerodynamic losses (due to friction between liquid droplets and the vapour), thermodynamic losses (due to irreversible heat addition), and braking losses (due to the impact of liquid droplets on the blade). The thermodynamic loss contributes up to 80% to the wetness losses when the diameter of the droplets formed is less than 1 μm. In this study, the thermodynamic loss in a two-dimensional steam turbine rotor tip section is numerically investigated for various operating and off-design conditions. A pressure based, Eulerian-Eulerian approach is used to model the non-equilibrium condensation process. The entropy change due to condensation is used to compute the thermodynamic losses.

  18. Steam oxidation resistant coatings for steam turbine components: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Agueero, A.; Garcia de Blas, J.; Muelas, R.; Sanchez, A.; Tsipas, S. [Instituto de Tecnica Aeroespacial, Madrid (Spain). Area de Materiales

    2001-07-01

    The principal objective of the COST Action 522 is to raise the operating temperatures of both gas and steam turbines in order to increase their efficiency to reduce fuel consumption and emissions. Concerning steam turbines, the operating temperature is expected to rise from 550 C to 650 C, and the use of oxidation resistant coatings is being considered for the first time in Europe. In this preliminary work, two deposition techniques have so far been explored: slurry paints and atmospheric plasma spray (APS). Commercially available materials, known to have good oxidation resistance, were selected for both deposition techniques: one aluminium slurry and three alloyed materials for thermal spray: AlFe, FeCrAl and NiAl. The coatings were characterised by SEM-EDS and steam oxidation testing was carried out at 650 C. The preliminary findings show that some of the studied coatings may offer adequate protection. (orig.)

  19. Thermal hydraulic studies in steam generator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G. [Engineering Development Group Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2005-07-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m{sup 3}/hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  20. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  1. Numerical investigation of mass transfer in the flow path of the experimental model of the PGV-1500 steam generator's steam receiving section with two steam nozzles

    Science.gov (United States)

    Golibrodo, L. A.; Krutikov, A. A.; Nadinskii, Yu. N.; Nikolaeva, A. V.; Skibin, A. P.; Sotskov, V. V.

    2014-10-01

    The hydrodynamics of working medium in the steam volume model implemented in the experimental setup constructed at the Leipunskii Institute for Physics and Power Engineering was simulated for verifying the procedure of calculating the velocity field in the steam space of steam generators used as part of the reactor plants constructed on the basis of water-cooled water-moderated power-generating reactors (VVER). The numerical calculation was implemented in the environment of the STAR-CCM+ software system with its cross verification in the STAR-CD and ANSYS CFX software systems. The performed numerical investigation served as a basis for substantiating the selection of the computation code and parameters for constructing the computer model of the steam receiving device of the PGV-1500 steam generator experimental model, such as the quantization scheme, turbulence model, and mesh model.

  2. Steam turbines and operation of steam turbines 2010. Proceedings; Dampfturbinen und Dampfturbinenbetrieb 2010. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the VGB conference an 30th June to 1st July, 2010 in Luebeck (Federal Republic of Germany) the following lectures were held: (1) Application of rifled tubes in power plant heat exchangers (Andreas Grahl); (2) Improved efficiency and potential savings at the 'cool end' through tube cleaning and cooling water filtration (Wolfgang Czolkoss); (3) Material and process improvements in condenser tubing (Pascal Gerard); (4) Automatic eddy current testing of longitudinally welded austentic and titanium tubes for condensers and other heat exchanger (Werner Hannig); (5) Major steam turbine losses: causes, repair measures, recommissioning (Stefan Thumm); (6) Damage on industrial steam turbines (Hans-Guenter Busch); (7) Proper design of turbine draining systems (Ralph Semme); (8) VDMA - Contribution to functional safety of turbomachinery - Required risk reduction by safety functions for steam turbines (Bernhard Wuest); (9) Functional safety by MAN turbo on the example of SIL3 safety loop overspeed detection (Holger Buschmann); (10) Boiler feed pump monitoring, diagnostic and controlling loop (Sohail Ahmed); (11) Experimental investigation to the radial adjustment of brush seals for steam turbines (Heiko Schwarz); (12) The revised VGB guidelines for condenser tubes from copper alloys, stainless steels and titanium (Frank-Udo Leidich); (13) Modernization of HP and LP turbines in coal-fired power plant Bergkamen (Roland Sommer); (14) Mega-components made of cast steel for power plant technology (Reinhold Hanus); (15) Quality monitoring of steam turbine sets for new construction projects of the Vattenfall Europe Generation AG (Marco Rediess); (16) Weld repair of a cracked LP rotor (Andreas Nowi); (17) Steam turbines and CO{sub 2} sequestration (Juergen Klebes); (18) Advanced filter element construction for alleviating electrostatic discharge effects in turbine lubricating systems (John K. Duchowski).

  3. Condensation-Induced Steam Bubble Collapse in a Pipeline

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Steam bubbles often occur in pipelines due to the pipeline structure or operational errors. The water hammer force induced by the steam bubble collapse is a hidden safety concern. This paper experimentally and numerically investigates the conditions for steam bubble formation and collapse. A series of video pictures taken in the laboratory show that steam bubbles form and collapse over several cycles. The pressure history of the steam bubbles is measured in conjunction with the pictures. In the experiment, the liquid column cavitated at the low pressures and then the cavities collapsed due to condensation causing high pressure pulses. The process was also simulated numerically. The results suggest that coolant pipeline design and operation must include procedures to avoid steam bubble formation.

  4. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant......A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  5. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  6. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... 49 Transportation 4 2010-10-01 2010-10-01 false Smoke box, steam pipes and pressure parts....

  7. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... steam locomotive boiler, the steam locomotive owner and/or operator shall file with the FRA Regional... the boiler. Whenever welded or riveted repairs are performed on stayed portions of a steam...

  8. 49 CFR 230.65 - Steam blocking view of engine crew.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65...

  9. A Novel Method for Measuring the Coarse Water Droplets in Wet Steam Flow in Steam Turbines

    Institute of Scientific and Technical Information of China (English)

    Xiaoshu Cai; Lili Wang; Yongzhi Pan; Xin Ouyan; Jianqi Shen

    2001-01-01

    Some optical probes based on light extinction have been developed to measure wemess dominated with fine droplets in steam turbine. However, coarse water droplets (hereafter referred to as CWD) that are the main cause of erosion of blade and of wetness loss of steam turbine can't be detected by the extinction probes because of its large size. In this paper, a new method - the light fluctuation method is presented that is capable of measuring the size of CWD. A new probe based on this method was developed for measuring the size of CWD as well as its velocity and concentration.

  10. Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam

    Science.gov (United States)

    Kalitko, V. A.

    2010-03-01

    On the basis of experience in the commercial operation of tire-shred steam thermolysis in EnresTec Inc. (Taiwan) producing high-grade commercial carbon, liquid pyrolysis fuel, and accompanying fuel gas by this method, we have proposed a number of engineering solutions and calculated-analytical substantiations for modernization and intensification of the process by afterburning the accompanying gas with waste steam condensable in the scrubber of water gas cleaning of afterburning products. The condensate is completely freed of the organic pyrolysis impurities and the necessity of separating it from the liquid fuel, as is the case with the active process, is excluded.

  11. INFLUENCE OF STEAM EXPLOSION ON THECRYSTALLINITY OF CELLULOSE FIBER

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Danthine, Sabine; Blecker, Christophe; Richel, Aurore

    2014-01-01

    The aim of the present study is to compare the effect of different steam explosion treatments on crystallinity properties of a pure bleached cellulose. Steam explosion process is composed of two distinct stages: vapocracking and explosive decompression. The treatment intensities is determined by a severity factor, established by a correlation between temperature process and retention time. The results show that steam explosion treatment has an impact on the crystallinity properties of pure ce...

  12. Steam-Electric Power-Plant-Cooling Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  13. Steam and air plasma gasification of bituminous coal and petrocoke

    OpenAIRE

    Vladimir Messerle; Alexander Ustimenko

    2012-01-01

    This paper presents a numerical analysis and experimental investigation of two very different solid fuels, low-rank bituminous coal of 40 % ash content and petrocoke of 3 % ash content, gasification under steam and air plasma conditions with an aim of producing synthesis gas. Numerical analysis was fulfilled using the software package TERRA for equilibrium computation. Using the results of the numerical simulation, experiments on plasma steam gasification of the petrocoke and air and steam ga...

  14. Condensation pool experiments with steam using DN200 blowdown pipe

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. [Lappeenranta Univ. of Technology (Finland)

    2005-08-01

    This report summarizes the results of the condensation pool experiments with steam using a DN200 blowdown pipe. Altogether five experiment series, each consisting of several steam blows, were carried out in December 2004 with a scaled-down test facility designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to increase the understanding of different phenomena in the condensation pool during steam discharge. (au)

  15. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  16. Implications of Halo Inside-out Growth on the X-Ray Properties of Nearby Galaxy Systems within the Preheating Scenario

    CERN Document Server

    Solanes, J M; Gonzalez-Casado, G; Salvador-Solé, E; Solanes, Jose M.; Manrique, Alberto; Gonzalez-Casado, Guillermo; Salvador-Sole, Eduard

    2005-01-01

    We present an entirely analytic model for a preheated, polytropic intergalactic medium in hydrostatic equilibrium within a NFW dark halo potential in which the evolution of the halo structure between major merger events proceeds inside-out by accretion. This model is used to explain, within a standard $\\Lambda$CDM cosmogony, the observed X-ray properties of nearby relaxed, non-cooling flow groups and clusters of galaxies. We find that our preferred solution to the equilibrium equations produces scaling relations in excellent agreement with observations, while simultaneously accounting for the typical structural characteristics of the distribution of the diffuse baryons. In the class of preheating models, ours stands out because it offers a unified description of the intrahalo medium for galaxy systems with total masses above $\\sm 2\\times 10^{13}$\\msun, does not produce baryonic configurations with large isentropic cores, and reproduces faithfully the observed behavior of the gas entropy at large radii. All th...

  17. Investigation of Preheat Temprature Effect on the Sturcture of Functionally Graded Ni3Al/NiAl/NiTi Intermetallic Compound

    Directory of Open Access Journals (Sweden)

    Musa Kılıç

    2015-12-01

    Full Text Available In this study, a functional graded material (FGM consisted of NiTi NiAl and Ni3Al were manufactured by self-propagating high-temperature synthesis (SHS technique. These three different compound powders were mixed in a rotating container after accurately weighed and cold compacted under 200 MPa pressure. These pressed samples were produced for 200, 300 and 400 ° C preheating temperature by igniting with high voltage under argon gas atmosphere. The microstructures of these functional graded materials were examined by microscopy, Scanning Electron Microscopy (SEM and X-Ray Diffraction (XRD. Consequently, functional graded material successful generated by SHS in every three preheating temperature and the metallic desired compounds were obtained but, it was seen that apart from the main phases in the intersection there are other phases with more melting and gaps.

  18. Exploiting the use of compact heat exchangers on preheating trains; Avaliacao de desempenho de trocadores compactos em bateria de pre-aquecimento - REDUC

    Energy Technology Data Exchange (ETDEWEB)

    Villas Boas, Alan Trugilho; Bolsoni, Adair [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Refinaria de Duque de Caxias (REDUC); Kuboski, Claudio; Cesario, Diomedes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The U-1210 distillation unit of Holding has being expected to suffer a metallurgical adaptation in order to process petroleum with higher naphthenic acids concentration. A heat integration study (pinch analysis) was realized, with the restriction of limited plot area and shut-down time. A full compabloc preheat train was preliminary concept. During conceptual design, REDUC found it to be a good idea to have a performance test. A compabloc CP30 unit has been installed, in order to evaluate the performance of this equipment under unit conditions. The operation service chosen was vacuum residue preheating crude before the dessalter, low crude temperature (100 deg C to 115 deg C). The objective was operational and maintenance experience. (author)

  19. The effect of pre-heating silorane and methacrylate-based composites on microleakage of Class V restorations

    Directory of Open Access Journals (Sweden)

    Soley Arslan

    2012-01-01

    Full Text Available Objective: This study compared the effects of 4 different temperatures (4°C, 25°C, 37°C, 60°C on the microleakage of silorane and methacrylate-based composites in Class V cavities. Materials and Methods: Standard Class V cavities were prepared at the buccal and lingual surfaces of human molars. The specimens were randomly divided into 2 groups according to the composite resin used (Group I: Filtek Silorane Adhesive System and Filtek Silorane composite; Group II: Clearfil SE Bond and Aelite LS Posterior composite and into 4 subgroups according to temperature treatment (Group A: Refrigeration at 4°C; Group B (control: Storage at room temperature (25°C; Group C: Heated to 37°C and Group D: Heated to 60°C using Calset. Specimens were dyed with 0.5% basic fuchsin, sectioned, and evaluated at 25x magnification. Statistical analysis was performed using Mann-Whitney U and Kruskal-Wallis tests at P0.05. Differences in temperature did not significantly affect microleakage values for Filtek Silorane (P>0.05; however, microleakage values of Aelite LS Posterior composite varied according to temperature treatment, with heating resulted in significantly less microleakage than cooling (between Groups IID and IIA and Groups IIC and IIA (P<0.05. Conclusion: Pre-heating was shown to reduce microleakage values of Aelite LS Posterior composite, but did not significantly alter the microleakage values of Filtek Silorane composite.

  20. Assessing the 2{omega}{sub pe} instability and other preheat considerations in ignition-scale hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W L [University of California, Davis, Davis, CA 95616 (United States); Meezan, Nathan; Town, Richard; Strozzi, David; Wilks, Scott; Williams, Edward; Meeker, Donald; Suter, L S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Regan, S P, E-mail: wlkruer@ucdavis.ed [Laboratory for Laser Energetics, Rochester, NY 14623 (United States)

    2010-08-01

    In recent experiments[1] Sean Regan, et. al. for the first time observed the 2{omega}{sub pe} instability from window plasma in hohlraum targets. This instability can also operate[2] at peak power near the edge of the inner beams in the ablator plasma and near the edge of the outer beams in the liner plasma. Fortunately only a small fraction of the laser energy was estimated to be at risk. A more quantitative assessment of the energy at risk at peak power will here be given. We show that the instability threshold can be significantly reduced for laser beams with an angle of incidence of about 60 degrees due to the swelling of the laser field near its turning point. A simple model is given. It is also shown that for frequently cited plasma conditions, the Raman-scattered light wave can itself drive the 2{omega}{sub pe}instability. This effect is relevant for the nonlinear saturation of stimulated Raman scattering (SRS) and the resulting heated electron generation. Some estimates are given. Finally we conclude with a few remarks about hot electron preheat.

  1. MCNPX Model/Table Comparison

    CERN Document Server

    Hendricks, J S

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO sub 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data t...

  2. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  3. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  4. Improvement of steam temperature control in supercritical once thru boilers

    OpenAIRE

    黒石, 卓司; 藤川, 卓爾

    2009-01-01

     New steam temperature control logic for supercritical once thru boilers was developed from the view point of simplicity similar to that of the conventional sub-critical drum type boilers. Water wall outlet steam temperature can be controlled more easily due to larger specific heat capacity of steam than super heater outlet steam temperature. By dividing temperature control into two parts, one at water wall outlet by fuel flow and the other at SH(super heater) outlet by SH spray flow, boiler ...

  5. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    A Solid Oxide Fuel Cell (SOFC) is integrated with a Steam Turbine (ST) cycle. Different hybrid configurations are studied. The fuel for the plants is assumed to be natural gas (NG). Since the NG cannot be sent to the anode side of the SOFC directly, a desulfurization reactor is used to remove....... The off-gases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Different systems layouts are considered. Cyclic efficiencies up to 67% are achieved which is considerably higher than...

  6. Parametric Optimization of Biomass Steam-and-Gas Plant

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2013-01-01

    Full Text Available The paper contains a parametric analysis of the simplest scheme of a steam-and gas plant for the conditions required for biomass burning. It has been shown that application of gas-turbine and steam-and-gas plants can significantly exceed an efficiency of steam-power supply units which are used at the present moment. Optimum thermo-dynamical conditions for application of steam-and gas plants with the purpose to burn biomass require new technological solutions in the field of heat-exchange equipment designs.

  7. Experimental research of heterogeneous nuclei in superheated steam

    Directory of Open Access Journals (Sweden)

    Bartoš Ondřej

    2016-01-01

    Full Text Available A mobile steam expansion chamber has been developed to investigate experimentally homogeneous and heterogeneous nucleation processes in steam, both in the laboratory and at power plants using the steam withdrawn from the steam turbine. The purpose of the device is to provide new insight into the physics of nonequilibrium wet steam formation, which is one of the factors limiting the efficiency and reliability of steam turbines. The expanded steam or a mixture of steam with a non-condensable gas rapidly expands in the expansion chamber. Due to adiabatic cooling, the temperature drops below the dew point of the steam at a given pressure. When reaching a sufficiently high supersaturation, droplets are nucleated. By tuning the supersaturation in the so-called nucleation pulse, particles of various size ranges can be activated. This fact is used in the present study to measure the aerosol particles present in the air. Homogeneous nucleation was negligible in this case. The experiment demonstrates the functionality of the device, data acquisition system and data evaluation methods.

  8. Experimental research of heterogeneous nuclei in superheated steam

    Science.gov (United States)

    Bartoš, Ondřej; Kolovratník, Michal; Šmíd, Bohuslav; Hrubý, Jan

    2016-03-01

    A mobile steam expansion chamber has been developed to investigate experimentally homogeneous and heterogeneous nucleation processes in steam, both in the laboratory and at power plants using the steam withdrawn from the steam turbine. The purpose of the device is to provide new insight into the physics of nonequilibrium wet steam formation, which is one of the factors limiting the efficiency and reliability of steam turbines. The expanded steam or a mixture of steam with a non-condensable gas rapidly expands in the expansion chamber. Due to adiabatic cooling, the temperature drops below the dew point of the steam at a given pressure. When reaching a sufficiently high supersaturation, droplets are nucleated. By tuning the supersaturation in the so-called nucleation pulse, particles of various size ranges can be activated. This fact is used in the present study to measure the aerosol particles present in the air. Homogeneous nucleation was negligible in this case. The experiment demonstrates the functionality of the device, data acquisition system and data evaluation methods.

  9. Numerical simulation in steam injection process by a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, J.C.Jr.; Campos, W.; Lopes, D.; Moura, L.S.S. [Petrobras, Rio de Janeiro (Brazil)

    2008-10-15

    Steam injection is a common thermal recovery method used in very viscous oil reservoirs. The method involves the injection of heat to reduce viscosity and mobilize oil. A steam generation and injection system consists primarily of a steam source, distribution lines, injection wells and a discarding tank. In order to optimize injection and improve the oil recovery factor, one must determine the parameters of steam flow such as pressure, temperature and steam quality. This study focused on developing a unified mathematical model by means of a mechanistic approach for two-phase steam flow in pipelines and wells. The hydrodynamic and heat transfer mechanistic model was implemented in a computer simulator to model the parameters of steam injection while trying to avoid the use of empirical correlations. A marching algorithm was used to determine the distribution of pressure and temperature along the pipelines and wellbores. The mathematical model for steam flow in injection systems, developed by a mechanistic approach (VapMec) performed well when the simulated values of pressures and temperatures were compared with the values measured during field tests. The newly developed VapMec model was incorporated in the LinVap-3 simulator that constitutes an engineering supporting tool for steam injection wells operated by Petrobras. 23 refs., 7 tabs., 6 figs.

  10. Optimal operations and resilient investments in steam networks

    Directory of Open Access Journals (Sweden)

    Stephane Laurent Bungener

    2016-01-01

    Full Text Available Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power, as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors should be sized to supply the consumers at nominal operating conditions as well as peak demand.This paper firstly proposes an Mixed Integer Linear Programming formulation to optimise the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero, through the introduction of load shedding. Optimisation of investments based on operational and investment costs are included in the formulation.Though rare, boiler failures can have a heavy impact of steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network's resilience.The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  11. Solar process steam for a pharmaceutical company in Jordan

    Science.gov (United States)

    Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.

    2016-05-01

    This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.

  12. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    Energy Technology Data Exchange (ETDEWEB)

    Cepcek, S. [Nuclear Regulatory Authority of the Slovak Republic, Trnava (Slovakia)

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  13. The Periodic Table in Croatia

    Directory of Open Access Journals (Sweden)

    Raos, N.

    2011-12-01

    Full Text Available The Croatian (Yugoslav Academy of Sciences and Arts was the first academy to elect D. I. Mendeleev as its honorary member (1882, whereas the periodic table of the elements has been taught regularly at the Zagreb University since 1888. The early interest of Croatian chemists in the periodic table should be attributed primarily to their pan-Slavic attitude, particularly as proof that Slavic people were able to produce "their own Newtons" (M. V. Lomonosov and D. I. Mendeleev. Such enthusiastic views, however, did not help in analyzing the contribution of Mendeleev and other scientists to the discovery and development of the periodic table of the elements.

  14. Table Tennis Mother”

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    GUAN Yan sat on the blue stand at Tianjin Stadium. Beside her were the members of China’ s National Table Tennis Team in purple sportswear. Looking at her, no one would associate this small, amiable, grey-haired old mother with the brave sportswomen and sportsmen, yet she is physician to China’s National Table Tennis Team. She has worked with them for 34 years, ever since the 26th World Table Tennis Championships. At that time she was 24 years old and a new graduate of Zhejiang

  15. Bronze Dragons and Phoenix Table

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The table is one of the oldest kinds of furniture in China.Most, however, haven’t survived as they were made ofbamboo or wood, The discovery of this bronze table gives usa chance to see a real object from the Warring States Periodfor the first time. This bronze table was unearthed from the tomb of a kingof the Zhongshan Kingdom during the Warring States Periodat today’s Pingshan County, Hebei Province. The stand isformed from four two-winged dragons and four phoenixes

  16. Condensation heat transfer of pure steam and steam from gas-steam mixture in tubes of AES-2006 PHRS SG heat exchanger

    Science.gov (United States)

    Balunov, B. F.; Il'in, V. A.; Shcheglov, A. A.; Lychakov, V. D.; Alekseev, S. B.; Kuhtevich, V. O.; Svetlov, S. V.; Sidorov, V. G.

    2017-01-01

    Results of experimental determination of the average heat transfer coefficient upon condensation of pure steam αc and steam from air-steam mixture αas.m in tubes of a large-scale model of the emergency cooling heat exchanger in the system of passive heat removal through steam generators of AES-2006 project at Leningrad II NPP are presented. The model contained 16 parallel tubes with a diameter of 16 × 2 mm and a length of 2.9 m connected to the upper steam distributing and lower condensate gathering horizontal collectors; the distance between their axes was 2.28 m. The tube segments were vertical, horizontal, or inclined. The internal diameter of the collectors was 40 or 60 mm. The model was placed in the lower part of a tank with a height of 6.5 m and a volume of 5.85 m3 filled with boiling water at atmospheric pressure. The experimental parameters were as follows: pressure range 0.43-7.77 MPa, condensate Reynolds number Ref = (0.87-9.3) × 103, and average air volume fraction at the segment with air-steam mixture 0.18-0.85. The studies showed that nonuniformity of static pressure distribution along the steam-distributing collector strongly influences the reduction of αc value (ejecting effect). The agreement between experimental and calculated according to statutory guidelines values of αc for vertical tubes is achieved if the dynamic head of the steam flow at the input of the steam-distributing collector does not exceed 1 kPa. Equations for calculation of the diffusion heat transfer coefficient at steam condensation from the air-steam mixture αas.m on the internal tube surface are proposed. In the considered conditions, air is completely displaced by steam flow from the upper to the lower part of the tubes. The boundary between these regions is characterized by an average reduced steam velocity through this cross section of 1.6 ± 0.4 m/s. Above the boundary cross section, it is recommended to calculate αc. according to [1].

  17. Analysis of sodium experimental circuits pre-heating for the development of nuclear reactors; Analise do pre-aquecimento de circuitos experimentais a sodio para desenvolvimento de reatores nuclares

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, Ione Walmir

    1995-09-01

    To satisfy the experimental requirements of sodium loops for nuclear reactors development, a preheating system, consisting of tubular haters, is analyzed. The tubular heaters are usually comprised of a nickel-chromium wire centered in a metal sheath and insulated by magnesium oxide. Practical and simplified methods for the preheating parameters calculations and for the heaters elements determination and section are presented. A thermal method to evaluate the sodium mass in a tank is presented, using the preheating system, when the tank geometry or the sodium level are unknown. The materials employed and the installation procedures of the preheating system are indicated. It is described a procedure, step, to make the connection between the electrical resistance and the conductor wire, to assure the heat dissipation and the air-tight of the heater element. Several suggestions are presented to clarify some doubts, to define correction factors, to develop technology, and to give continuity to the present work. (author). 37 refs., 22 figs.

  18. Table of tables: A database design tool for SYBASE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.C.; Coulter, K.; Glass, H.D.; Glosson, R.; Hanft, R.W.; Harding, D.J.; Trombly-Freytag, K.; Walbridge, D.G.C.; Wallis, D.B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Allen, M.E. (Superconducting Super Collider Lab., Dallas, TX (USA))

    1991-01-04

    The Table of Tables' application system captures in a set of SYBASE tables the basic design specification for a database schema. Specification of tables, columns (including the related defaults and rules for the stored values) and keys is provided. The feature which makes this application specifically useful for SYBASE is the ability to automatically generate SYBASE triggers. A description field is provided for each database object. Based on the data stored, SQL scripts for creating complete schema including the tables, their defaults and rules, their indexes, and their SYBASE triggers, are written by TOT. Insert, update and delete triggers are generated from TOT to guarantee integrity of data relations when tables are connected by single column foreign keys. The application is written in SYBASE's APT-SQL and includes a forms based data entry system. Using the features of TOT we can create a complete database schema for which the data integrity specified by our design is guaranteed by the SYBASE triggers generated by TOT. 3 refs.

  19. Removal of NAPLs from the unsaturated zone using steam: prevention of downward migration by injecting mixtures of steam and air

    DEFF Research Database (Denmark)

    Schmidt, R.; Gudbjerg, Jacob; Sonnenborg, Torben Obel

    2002-01-01

    Steam injection for remediation of porous media contaminated by nonaqueous phase liquids has been shown to be a potentially efficient technology. There is, however, concern that the technique may lead to downward migration of separate phase contaminant. In this work, a modification of the steam i......, three mechanisms were identified and it was demonstrated how the effectiveness of these mechanisms depended on the air-to-steam mixing ratio. D 2002 Elsevier Science B.V. All rights reserved....

  20. Steam feed and effect of steam-thermal seal in thermolysis of tire shreds in a screw-type reactor

    Science.gov (United States)

    Kalitko, V. A.

    2010-05-01

    On the basis of experience in commercial operation, the effect of steam seal in tire-shred pyrolysis in a screw-type reactor with superheated steam has been considered and analytically substantiated; there, local steam feed produces the above effect at the total reduced pressure and keeps air from entering the reactor without sluices or valves used for hermetization of its loading and unloading. It has been shown that the increase in the production rate of pyrolysis due to the heating by steam amounts to 10-15% and is limited by the diffusion transfer in the reactor’s charge bed.

  1. Steam jacket dynamics in underground coal gasification

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas

    2017-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.

  2. The condensation of steam from steam-water mixture on water jets at high pressure

    Science.gov (United States)

    Somova, E. V.; Kisina, V. I.; Shvarts, A. L.; Kolbasnikov, A. V.; Kanishchev, V. P.

    2009-01-01

    A physical model for condensation of steam in water flow at high pressure is developed, and analytical dependences for calculating heat transfer are obtained, in particular as applied to the operation of a direct-contact feedwater heater for a new-generation reactor plant with lead coolant.

  3. Decay rate of critical fluctuations in steam and in dilute steam - NaCl mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tufeu, R.; Desmarest, P.; Le Neindre, B. (Universite Paris-Nord, Villetaneuse (France))

    1989-03-01

    The decay rate of critical fluctuations in steam and in a steam - NaCl mixture has been investigated experimentally with the aid of photon correlation spectroscopy. For pure steam, the measurements have been performed along seven isochores (({absolute value of {rho} {minus} {rho}{sub c}})/{rho}{sub c} < 0.09) as a function of the temperature T for (T {minus} T{sub t}) < 1 K. The results have been compared with the values predicted by the renormalization-group theory written as a modification of the classical mode coupling theory. The agreement between experiment and theory is satisfactory along the critical isochore, but larger deviations are noted for {rho} {ne} {rho}{sub c} when approaching the transition temperature T{sub t}. The decay rate of a 0.1% (molar) dilute mixture of NaCl in H{sub 2}O has been measured along some near-critical isochores as a function of temperature. Its behavior, which is very different from that observed for pure steam, is discussed.

  4. Round Table on Chicano Literature

    Science.gov (United States)

    Bruce-Novoa, Juan

    1975-01-01

    Themes covered by this round table include the genres in Chicano literature, publication problems for Chicanos; the social role of the Chicano author; the Chicano-Mexican relationship, and the theater festival in Mexico City in 1974. (Author/AM)

  5. The redoubtable ecological periodic table

    Science.gov (United States)

    Ecological periodic tables are repositories of reliable information on quantitative, predictably recurring (periodic) habitat–community patterns and their uncertainty, scaling and transferability. Their reliability derives from their grounding in sound ecological principle...

  6. The Table Mountain Field Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Table Mountain Field Site, located north of Boulder, Colorado, is designated as an area where the magnitude of strong, external signals is restricted (by State...

  7. The redoubtable ecological periodic table

    Science.gov (United States)

    Ecological periodic tables are repositories of reliable information on quantitative, predictably recurring (periodic) habitat–community patterns and their uncertainty, scaling and transferability. Their reliability derives from their grounding in sound ecological principle...

  8. On synthesis and optimization of steam system networks. 1. Sustained boiler efficiency

    CSIR Research Space (South Africa)

    Majozi, T

    2010-08-01

    Full Text Available The traditional steam system comprises a steam boiler and the associated heat exchanger network (HEN). Most research published in literature tends to address both the elements of the steam system as separate entities instead of analyzing...

  9. Wankel engines as steam expanders: design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Badr, O.; Naik, S.; O' Callaghan, P.W.; Probert, S.D. (Cranfield Inst. of Tech., Bedford (GB). Dept. of Applied Energy)

    1991-01-01

    Rotary Wankel engines offer several advantages compared with turbines and other positive-displacement machines as the expansion devices in low-power-output Rankine-cycle systems. So a Wankel expander was selected as the most appropriate device for a steam Rankine-engine, operating principally as a mini combined heat-and-power unit, providing a mechanical output of 5-20 kW. A computer-aided-design technique for selecting the optimal geometry and location of the ports of the expander is described: the computer programs are available from the authors. Lubrication and possible material combinations are also discussed. (author).

  10. Lifetime Assessment of a Steam Pipeline

    Directory of Open Access Journals (Sweden)

    Jiří Janovec

    2012-01-01

    Full Text Available The aim of this paper is to design a method for assessing the life of steam pipes for Czech power plants. The most widely-used material in Czech power plants is steel 15 128. Our findings may also be applied for international equivalents of this steel. The paper shows the classification of cavitation damage and microstructure classification status, based on the German VGB Act, with references to EPRI law in the USA. Calculations of remaining life on the basis of Russian experience are also shown. The possibility of applying this method to increase the operating parameters for power plants is discussed.

  11. Lifetime Assessment of a Steam Pipeline

    OpenAIRE

    Jiří Janovec; Daniela Poláchová; Michal Junek

    2012-01-01

    The aim of this paper is to design a method for assessing the life of steam pipes for Czech power plants. The most widely-used material in Czech power plants is steel 15 128. Our findings may also be applied for international equivalents of this steel. The paper shows the classification of cavitation damage and microstructure classification status, based on the German VGB Act, with references to EPRI law in the USA. Calculations of remaining life on the basis of Russian experience are also sh...

  12. Lifetime Assessment of a Steam Pipeline

    OpenAIRE

    Jiří Janovec; Daniela Poláchová; Michal Junek

    2012-01-01

    The aim of this paper is to design a method for assessing the life of steam pipes for Czech power plants. The most widely-used material in Czech power plants is steel 15 128. Our findings may also be applied for international equivalents of this steel. The paper shows the classification of cavitation damage and microstructure classification status, based on the German VGB Act, with references to EPRI law in the USA. Calculations of remaining life on the basis of Russian experience are also sh...

  13. Thermoeconomic optimization of the steam power plant

    Directory of Open Access Journals (Sweden)

    Reşat Selbaş, Hilmi Yazıcı, Arzu Şencan

    2010-05-01

    Full Text Available In this study, thermoeconomic optimization of the steam power plant with Levelized-cost method was carried out. Aim of thermoeconomy is to minimize exergy cost. With this aim, the first law and the second law of thermodynamics to each component of system were performed. Irreversibility and exergy values were obtained. Economic analysis by using exergy values was carried out. Unit electric cost for each component of system was calculated. Optimum design and operating conditions for minimum exergy cost were obtained.

  14. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  15. Duplex tube steam reformer development program

    Energy Technology Data Exchange (ETDEWEB)

    Lewe, C K; Nieto, J M; Papadopoulos, A

    1978-09-01

    Work done in partial fulfillment of Task 7 of the Duplex Steam Reformer Development Program is described. The DSR concept acts as a double barrier between a process heat high temperature reactor plant (PNP) and a closed loop chemical heat pipe (CHP) for the long distance transport of chemical energy to a remote industrial user. The current state of the DSR design is described as well as related systems and equipment. The PNP concept presented is based upon work currently underway in the Federal Republic of Germany.

  16. Development of Steam Turbine Inlet Control Valve for Supercritical Pressure at Siemens Industrial Turbomachinery AB

    OpenAIRE

    Sors, Felix; Holm, Patrik

    2010-01-01

    The development in the steam turbine business is heading for applications with much higher steam parameters since this enables a raised efficiency. Steam parameters refer to the pressure and the temperature of the steam. The aim of this study was to generate concepts for steam turbine inlet control valves designed for higher pressure and temperature in comparison with the present design. Future steam power plants using solar energy, based on tower technology, request this kind of performance ...

  17. Numerical Simulation of Subcooled Boiling in Secondary Circuit of Steam Generator%蒸汽发生器二回路过冷沸腾的数值模拟

    Institute of Scientific and Technical Information of China (English)

    张小英; 丁斐; 陈佳跃

    2013-01-01

    为深入研究核电蒸汽发生器二回路侧汽液两相的沸腾传热和流动特性,采用RPI模型对过冷沸腾区域壁面的热流分配进行划分,以此修正CFD程序中的两流体模型,并利用文献中的实验结果验证了修正后模型的适定性.最后以大亚湾压水堆核电站为例,采用该模型对蒸汽发生器内二回路预热段单元通道内的过冷沸腾进行计算,获得了通道内流体空泡份额、速度、温度、热流量分配等的分布情况.%In order to deeply investigate the vapor-liquid two-phase boiling heat transfer and flow characteristics in the secondary circuit of steam generator,the wall heat flux partition in the subcooled boiling region was divided by using the RPI model for revising the two-fluid model of the CFD (Computational Fluid Dynamics) program,and some published experimental results were used to validate the reliability of the revised mode.Moreover,a case study on the steam generator of Daya Bay PWR (Pressurized Water Reactor) nuclear power plant was carried out,in which the subcooled boiling in the preheating part of the secondary circuit was computed with the revised model,and the distributions of fluid void fraction,speed,temperature and heat flux partition in the preheating part were all obtained.

  18. Numerical modeling of secondary side thermohydraulics of horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, V.I.; Melikhov, O.I.; Nigmatulin, B.I. [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)

    1995-12-31

    A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.

  19. 49 CFR 230.106 - Steam locomotive frame.

    Science.gov (United States)

    2010-10-01

    ... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section...

  20. Modelling of a Coil Steam Generator for CSP applications

    DEFF Research Database (Denmark)

    Pelagotti, Leonardo; Sørensen, Kim; Condra, Thomas Joseph;

    2014-01-01

    The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator (CSG). This system allows faster start-ups and therefore higher daily energy production from the Sun. An analytical thermodynamic simulation model of the evaporator and a mechanical analysis...

  1. Study on Technology Solutions of CEFR Steam Generator

    Institute of Scientific and Technical Information of China (English)

    WU; Zhi-guang; YU; Hua-jin; LIAO; Zi-yu; ZHANG; Zhen-xing

    2012-01-01

    <正>The technology solutions of CFR1000 steam generator were researched which were compared and analyze with foreign fast reactor steam generator technology solutions. The comparative analysis included the integral/modular structure, the number of modules per loop, structure types, the

  2. Maximal oil recovery by simultaneous condensation of alkane and steam

    NARCIS (Netherlands)

    Bruining, J.; Marchesin, D.

    2007-01-01

    This paper deals with the application of steam to enhance the recovery from petroleum reservoirs. We formulate a mathematical and numerical model that simulates coinjection of volatile oil with steam into a porous rock in a one-dimensional setting. We utilize the mathematical theory of conservation

  3. Optimalisation of the process for manually operated jacket steam sterilisers

    NARCIS (Netherlands)

    Muis B; Bruijn ACP de; Drongelen AW van; Huys JFFM; LGM

    2001-01-01

    The aim of the research was to find an optimal process for a manually operated jacketed steam steriliser, which is mainly used in developing countries. The experiments were focussed on the steam penetration into a textile test pack and the drying procedure. The performance of the various test cycles

  4. Teachers' Perceptions and Practices of STEAM Education in South Korea

    Science.gov (United States)

    Park, HyunJu; Byun, Soo-yong; Sim, Jaeho; Han, Hyesook; Baek, Yoon Su

    2016-01-01

    This study examined teachers' perceptions and practices of science, technology, engineering, arts, and mathematics (STEAM) education in South Korea, drawing on a survey of teachers in STEAM model schools. Results showed that the majority of Korean teachers, especially experienced teachers and male teachers, had a positive view on the role of STEAM…

  5. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  6. Temperature Fluctuation Characteristics Analysis for Steam Generator of Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHU; Li-na; WU; Zhi-guang

    2015-01-01

    In the case of boiling heat transfer deterioration,temperature fluctuating may accelerate the corrosion of heat transfer tubes and can also lead to thermal stress on the tubes.In this paper,dryout-induced temperature fluctuation for the fast reactor steam generator is investigated.The impacts of water flow rate,sodium inlet temperature and the outlet steam

  7. Steam vacuum cleaning. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. The baseline technology currently used for washing debris is a high-pressure water cleaning (HPWC) system. The system used at the FEMP is the Hotsy{reg_sign} Model 550B HPWC. Although the HPWC technology has functioned satisfactorily, improvements are being sought in areas related to reduced liquid waste volume, increased productivity, increased washing effectiveness, and decreased airborne contamination. An innovative technology that offers potential improvements in these areas is a steam vacuum cleaning (SVC) system that integrates high-pressure steam cleaning with a vacuum recovery sub-system that simultaneously collects dislodged contaminants thereby reducing airborne contamination. The SVC system selected for demonstration at the FEMP was the Kelly{trademark} Decontamination System shown. This report provides comparative performance and cost analyses between the Hotsy HPWC system and the Kelly Decontamination System. Both technologies were demonstrated at the FEMP site located at Fernald, Ohio from July 29, 1996 through August 15, 1996. The demonstrations were conducted at the FEMP Plant 1 as part of the LSTD project sponsored by the Deactivation and Decommissioning Focus Area (DDFA) of the US DOE`s Office of Science and Technology.

  8. Full STEAM Ahead: From Earth to Ploonoids

    Science.gov (United States)

    Runyon, C. R.; Hall, C.; Blackman, C. L.; Royle, M.; Williams, M. N.

    2015-12-01

    What the heck is a plunoid, you ask? The NASA Solar System Exploration Research Virtual Institute's Education/Public Engagement (EPE) program,from two SSERVI teams (SEEED at Brown/MIT and CLASS at University of Central Florida), is moving full STEAM ahead, engaging the public in the exciting discoveries being made around small bodies, including PLanetary mOONs and asterOIDS (i.e ploonoids). The team has incorporated the arts, from visual representations, storytelling, and music into every facet of the program, to stimulate an affective and personal connection to the content. This past year, the SSERVI STEAM team has participated in numerous public science events, including International Observe the Moon Night, two Astronomy Nights at a local baseball venue, Dark Skies at the US and Canadian National Parks, and Space Day at Camp Happy Days, a camp for children with cancer. Through these events, the team reached over 10000 members of the general public, showcasing current NASA SSERVI research, dispelling myths about our landing and exploring the moon, demonstrating the excitement of STEM through hands-on interactive displays, and providing an outlet for creativity by having multiple ways of representing and explaining scientific information through the arts. Join us on our "ed"venture through the solar system ploonoids.

  9. Studies of catalytic coal gasification with steam

    Directory of Open Access Journals (Sweden)

    Porada Stanisław

    2016-09-01

    Full Text Available One of the promising processes, belonging to the so-called clean coal technologies, is catalytic coal gasification. The addition of a catalyst results in an increased process rate, in which synthesis gas is obtained. Therefore, the subject of this research was catalytic gasification of low-ranking coal which, due to a high reactivity, meets the requirements for fuels used in the gasification process. Potassium and calcium cations in an amount of 0.85, 1.7 and 3.4% by weight were used as catalytically active substances. Isothermal measurements were performed at 900°C under a pressure of 2 MPa using steam as a gasifying agent. On the basis of kinetic curves, the performance of main gasification products as well as carbon conversion degree were determined. The performed measurements allowed the determination of the type and amount of catalyst that ensure the most efficient gasification process of the coal ‘Piast’ in an atmosphere of steam.

  10. Kinetics of zeolite dealumination in steam

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, C.D.; Labouriau, A.; Crawford, S.N.; Romero, R.; Quirin, J.; Earl, W.L.

    1998-08-01

    Zeolite dealumination is a well known phenomenon that contributes to the deactivation or activation of catalysts in several different applications. The most obvious effect is in acid catalysis where dealumination under reaction conditions removes the Broensted sites, thus deactivating the catalyst. The authors are interested in the use of cation exchanged zeolites as selective reduction catalysts for removal of NO{sub x} from exhaust streams, particularly from automotive exhaust. In this case, copper exchanged ZSM-5 has been shown to be an effective catalyst for the generic reaction of NO{sub x} with hydrocarbons. However, high temperature and steam in combustion exhaust causes dealumination and consequent migration of copper out of the zeolite structure resulting in rapid deactivation of the catalyst. Dealumination of zeolites has been reported by many authors in uncountable papers and cannot be reviewed here. However, to the authors` knowledge there are no reports on the kinetics of dealumination under varying conditions of temperature and steam. By measuring the kinetics of dealumination with different zeolites and exchange cations they expect to develop working models of the dealumination process that will allow control of zeolite deactivation. This manuscript is a description of the basic techniques used and a progress report on the very beginning of this study.

  11. Advanced Eddy current NDE steam generator tubing.

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, S.

    1999-03-29

    As part of a multifaceted project on steam generator integrity funded by the U.S. Nuclear Regulatory Commission, Argonne National Laboratory is carrying out research on the reliability of nondestructive evaluation (NDE). A particular area of interest is the impact of advanced eddy current (EC) NDE technology. This paper presents an overview of work that supports this effort in the areas of numerical electromagnetic (EM) modeling, data analysis, signal processing, and visualization of EC inspection results. Finite-element modeling has been utilized to study conventional and emerging EC probe designs. This research is aimed at determining probe responses to flaw morphologies of current interest. Application of signal processing and automated data analysis algorithms has also been addressed. Efforts have focused on assessment of frequency and spatial domain filters and implementation of more effective data analysis and display methods. Data analysis studies have dealt with implementation of linear and nonlinear multivariate models to relate EC inspection parameters to steam generator tubing defect size and structural integrity. Various signal enhancement and visualization schemes are also being evaluated and will serve as integral parts of computer-aided data analysis algorithms. Results from this research will ultimately be substantiated through testing on laboratory-grown and in-service-degraded tubes.

  12. Repair technology for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating.

  13. Effect of pre-heated dual-cured resin cements on the bond strength of indirect restorations to dentin

    Directory of Open Access Journals (Sweden)

    Alexandre Morais

    2012-04-01

    Full Text Available This study evaluated the effects of resin luting agents (LA polymerized using increased temperature on the in vitro microtensile bond strength (mTBS of indirect restorations to dentin. The occlusal dentin surfaces of 40 human third molars were exposed and flattened. The teeth were assigned to 8 groups (n = 5 according to the LA temperature (25°C o r 50°C, curing mode (dual- or self-curing mode, and product (Excite DSC/Variolink II [VII] and XP Bond/Calibra [Cal]. The bonding agents were applied to the dentin surfaces according to manufacturers' instructions. For preheated groups, the LAs were heated to 50°C, subsequently mixed on a heated stirrer surface, and applied to the previously heated pre-polymerized resin discs (2 mm thickness, TPH-Spectrum. The discs were bonded to the dentin surfaces, and the LAs were either exposed to a curing light according to manufacturers' instructions or allowed to self-cure. Specimens were stored in relative humidity at 37°C for 7 days. Specimens were mesio-distally and bucco-lingually sectioned to obtain multiple bonded beams with a 1-mm² cross-sectional area for mTBS testing. Data (MPa were analyzed by 2-way ANOVA and Tukey's post hoc test (a = 5% for each product. Specimen failure patterns were analyzed using a scanning electron microscope. VII groups showed higher mTBS at 50°C than at 25°C regardless of curing mode (p = 0.05. Cal groups showed similar mTBS at 25°C and 50°C in all activation modes. The use of some dual-polymerizing LAs at 50°C may improve the mTBS of indirect restorations to dentin.

  14. First Results from Laser-Driven MagLIF Experiments on OMEGA: Backscatter and Transmission Measurements of Laser Preheating

    Science.gov (United States)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Chang, P.-Y.

    2015-11-01

    A laser-driven version of MagLIF (magnetized liner inertial fusion) is being developed on the OMEGA laser. In the first experiment, laser preheating with a single OMEGA beam was studied. Laser energies of 60 to 200 J in 2.5-ns-long pulses were used, with a distributed phase plate giving a Gaussian intensity profile with a 96 μm full width at half maximum. We report on backscatter measurements from gas-filled cylinders and both backscatter and transmission measurements from the 1.84- μm-thick polyimide foils used for the laser entrance windows. Backscatter spectra and energies from both cylinders and foils alone were very similar. Approximately 0.5% of the total incident laser energy was backscattered. Backscattering lasted for little more than 0.5 ns. The fraction of laser energy transmitted through foils within the original beam path increased from 50% to 64% as the laser energy was increased from 60 to 200 J. Up to 10% of the laser energy was sidescattered as the foil started to transmit. Sidescattering of transmitted light lasted ~0.5 ns. The sidescattering might be avoided by using a short prepulse at least 0.5 ns prior to the main pulse. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  15. Classroom Projects--Full Steam Ahead

    Science.gov (United States)

    du Feu, Chris

    2012-01-01

    Practical project work based on eBay selling prices is described. It is suitable for secondary school students of a wide range of statistical expertise and it may be used to introduce a statistical package. (Contains 4 figures and 5 tables.)

  16. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek;

    2008-01-01

    Essentially all work on ethanol steam reforming so far has been carried out using simulated bioethanol feedstocks, which means pure ethanol mixed with water. However, technical bioethanol consists of a lot of different components including sugars, which cannot be easily vaporized and steam reformed....... For ethanol steam reforming to be of practical interest, it is important to avoid the energy-intensive purification steps to fuel grade ethanol. Therefore, it is imperative to analyze how technical bioethanol, with the relevant impurities, reacts during the steam reforming process. We show how three different...... distillation fractions of technical 2nd generation bioethanol, produced in a pilot plant, influence the performance of nickel- and ruthenium-based catalysts during steam reforming, and we discuss what is required to obtain high activity and long catalyst lifetime. We conclude that the use of technical...

  17. LMFBR steam generator systems development program progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    The intent of this program is to investigate methods of producing 2-1/4 Cr-1Mo duplex tubing to meet the structural, thermal/hydraulic and leak detection design requirements of the duplex tube leak detection concept for application on the Demonstration Plant and/or prototype steam generator. The leak detection concept as envisioned for LMFBR steam generator application will be analyzed regarding response to credible leak situations. The results of testing will be used for this analysis. The third fluid system will be conceptually designed including the two plena design adaptations being considered and the advantages and disadvantages of each will be assessed. The test program for the single-tube steam generator model will be developed in accordance with the technical and schedular objectives of the LMFBR duplex tube steam generator development program. A conceptual steam generator configuration will be established for use as a reference in the on-going feasibility studies and Demo Plant system development.

  18. Modelling of Steam Generating Paraboloidal dish Solar Thermal Power System

    Energy Technology Data Exchange (ETDEWEB)

    Siangsukone, P.; Lovegrove, K.

    2006-07-01

    The Australian National University (ANU) has a 400m2 Paraboloidal dish solar concentrator system, informally named the Big Dish that produces superheated steam via a receiver mounted monotube boiler connected to 50kWe steam engine for electricity generation. This paper describes an investigation of the system and its components modelled using the TRNYSYS transient system simulation package. The system was modelled in the context of performance assessment for multiple dishes, central generation Rankine cycle power plants. Five new custom components; paraboloidal dish collector, steam cavity receiver, steam line or feedwater line, steam engine, and pressure drop calculator, were developed for the TRNSYS deck file constructed for this study. Validation tests were performed by comparing with the latest experimental results measured with a 1-minute time step and good agreement, with errors less than 10%, has been found. (Author)

  19. Steam generator corrosion 2007; Dampferzeugerkorrosion 2007

    Energy Technology Data Exchange (ETDEWEB)

    Born, M. (ed.)

    2007-07-01

    Between 8th and 9th November, 2007, SAXONIA Standortentwicklungs- und -verwertungsgesellschaft GmbH (Freiberg, Federal Republic of Germany) performed the 3rd Freiberger discussion conference ''Fireside boiler corrosion''. The topics of the lectures are: (a) Steam generator corrosion - an infinite history (Franz W. Alvert); (b) CFD computations for thermal waste treatment plants - a contribution for the damage recognition and remedy (Klaus Goerner, Thomas Klasen); (c) Experiences with the use of corrosion probes (Siegfried R. Horn, Ferdinand Haider, Barbara Waldmann, Ragnar Warnecke); (d) Use of additives for the limitation of the high temperature chlorine corrosion as an option apart from other measures to the corrosion protection (Wolfgang Spiegel); (e) Current research results and aims of research with respect to chlorine corrosion (Ragnar Warnecke); (f) Systematics of the corrosion phenomena - notes for the enterprise and corrosion protection (Thomas Herzog, Wolfgang Spiegel, Werner Schmidl); (g) Corrosion protection by cladding in steam generators of waste incinerators (Joerg Metschke); (h) Corrosion protection and wear protection by means of thermal spraying in steam generators (Dietmar Bendix); (i) Review of thick film nickelized components as an effective protection against high-temperature corrosion (Johann-Wilhelm Ansey); (j) Fireproof materials for waste incinerators - characteristics and profile of requirement (Johannes Imle); (k) Service life-relevant aspects of fireproof linings in the thermal recycling of waste (Till Osthoevener and Wolfgang Kollenberg); (l) Alternatives to the fireproof material in the heating space (Heino Sinn); (m) Cladding: Inconal 625 contra 686 - Fundamentals / applications in boiler construction and plant construction (Wolfgang Hoffmeister); (n) Thin films as efficient corrosion barriers - thermal spray coating in waste incinerators and biomass firing (Ruediger W. Schuelein, Steffen Hoehne, Friedrich

  20. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gordon H. Holcomb

    2009-01-01

    U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  1. Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation.

    Science.gov (United States)

    Sahraoui, Naima; Vian, Maryline Abert; Bornard, Isabelle; Boutekedjiret, Chahrazed; Chemat, Farid

    2008-11-14

    Steam distillation (SD) is routinely used by analysts for the isolation of essential oils from herbs, flowers and spices prior to gas chromatographic analysis. In this work, a new process design and operation for an improved microwave steam distillation (MSD) of essential oils from aromatic natural products was developed. To demonstrate its feasibility, MSD was compared with the conventional technique, SD, for the analysis of volatile compounds from dry lavender flowers (Lavandula angustifolia Mill., Lamiaceae). Essential oils isolated by MSD were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by SD, but MSD was better than SD in terms of rapidity (6 min versus 30 min for lavender flowers), thereby allowing substantial savings of costs in terms of time and energy. Lavender flowers treated by MSD and SD were observed by scanning electron microscopy. Micrographs provide evidence of more rapid opening of essential oil glands treated by MSD, in contrast to conventional SD.

  2. Improvements in the simulation of a main steam line break with steam generator tube rupture

    Science.gov (United States)

    Gallardo, Sergio; Querol, Andrea; Verdú, Gumersindo

    2014-06-01

    The result of simultaneous Main Steam Line Break (MSLB) and a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR) is a depressurization in the secondary and primary system because both systems are connected through the SGTR. The OECD/NEA ROSA-2 Test 5 performed in the Large Scale Test Facility (LSTF) reproduces these simultaneous breaks in a Pressurized Water Reactor (PWR). A simulation of this Test 5 was made with the thermal-hydraulic code TRACE5. Some discrepancies found, such as an underestimation of SG-A secondary pressure during the depressurization and overestimation of the primary pressure drop after the first Power Operated Relief Valve (PORV) opening can be improved increasing the nodalization of the Upper Head in the pressure vessel and meeting the actual fluid conditions of Upper Head during the transient.

  3. Linear Tabling Strategies and Optimizations

    CERN Document Server

    Zhou, Neng-Fa; Shen, Yi-Dong

    2007-01-01

    Recently, the iterative approach named linear tabling has received considerable attention because of its simplicity, ease of implementation, and good space efficiency. Linear tabling is a framework from which different methods can be derived based on the strategies used in handling looping subgoals. One decision concerns when answers are consumed and returned. This paper describes two strategies, namely, {\\it lazy} and {\\it eager} strategies, and compares them both qualitatively and quantitatively. The results indicate that, while the lazy strategy has good locality and is well suited for finding all solutions, the eager strategy is comparable in speed with the lazy strategy and is well suited for programs with cuts. Linear tabling relies on depth-first iterative deepening rather than suspension to compute fixpoints. Each cluster of inter-dependent subgoals as represented by a top-most looping subgoal is iteratively evaluated until no subgoal in it can produce any new answers. Naive re-evaluation of all loopi...

  4. The Alfonsine tables of Toledo

    CERN Document Server

    Chabás, José

    2003-01-01

    The Alfonsine Tables of Toledo is for historians working in the fields of astronomy, science, the Middle Ages, Spanish and other Romance languages. It is also of interest to scholars interested in the history of Castile, in Castilian-French relations in the Middle Ages and in the history of patronage. It explores the Castilian canons of the Alfonsine Tables and offers a study of their context, language, astronomical content, and diffusion. The Alfonsine Tables of Toledo is unique in that it: includes an edition of a crucial text in history of science; provides an explanation of astronomy as it was practiced in the Middle Ages; presents abundant material on early scientific language in Castilian; presents new material on the diffusion of Alfonsine astronomy in Europe; describes the role of royal patronage of science in a medieval context.

  5. Steam generator issues in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Strosnider, J.R. [NRC, Washington, DC (United States)

    1997-02-01

    Alloy 600 steam generator tubes in the US have exhibited degradation mechanisms similar to those observed in other countries. Effective programs have been implemented to address several degradation mechanisms including: wastage; mechanical wear; pitting; and fatigue. These degradation mechanisms are fairly well understood as indicated by the ability to effectively mitigate/manage them. Stress corrosion cracking (SCC) is the dominant degradation mechanism in the US. SCC poses significant inspection and management challenges to the industry and the regulators. The paper also addresses issues of research into SCC, inspection programs, plugging, repair strategies, water chemistry, and regulatory control. Emerging issues in the US include: parent tube cracking at sleeve joints; detection and repair of circumferential cracks; free span cracking; inspection and cracking of dented regions; and severe accident analysis.

  6. Flow studies in a wet steam turbine

    Science.gov (United States)

    Evans, D. H.; Pouchot, W. D.

    1974-01-01

    The design and test results of a four stage wet vapor turbine operating with slightly superheated inlet steam and expanding to 10% exit moisture are presented. High speed movies at 3000 frames per second of liquid movement on the pressure side and along the trailing edge of the last stator blade are discussed along with back lighted photographs of moisture drops as they were torn from the stator blade trailing edge. Movies at lower framing rates were also taken of the exit of the last rotating blade and the casing moisture removal slot located in line with the rotor blade shroud. Also moisture removal data are presented of casing slot removal at the exit of the third and fourth rotor blades and for slots located in the trailing edge of the last stator blade. Finally, the degradation of turbine thermodynamic performance due to condensation formation and movement is discussed.

  7. Water treatment processes for oilfield steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, A.; Pauley, J.C. [Chevron Canada Ltd., Vancouver, BC (Canada)

    2009-07-01

    Various water treatment processes are used within the oilfield industry. Processes tend to be common within one region of the world, but different between regions due to untreated water characteristics and treated water quality requirements. This paper summarized Chevron's view of water treatment requirements and processes for oilfield steam injection. It identified water treatment systems that have been used at thermal projects, where they are most commonly utilized, their purpose, and the limits of each process. The advantages and disadvantages of different water treatment systems were also reviewed. The paper focused on the treatment of fresh waters, low-TDS produced waters, high-hardness waters, and high-silica produced waters. Challenges and opportunities were also identified. It was concluded that the challenges created by high-silica, or by high-hardness produced waters lead to more costly processes. 25 refs., 5 tabs., 4 figs.

  8. Lower head integrity under steam explosion loads

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Freeman, K.; Chen, X.; Salmassi, T. [Center for Risk Studies and Safety, Univ. of California, Santa Barbara, CA (United States); Sienicki, J.J.

    1998-01-01

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is `physically unreasonable`. (author)

  9. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    Science.gov (United States)

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  10. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    Science.gov (United States)

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  11. Simulation of a main steam line break with steam generator tube rupture using trace

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)

    2012-07-01

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

  12. Steam generator tube inspection in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Shigetaka [Japan Power Engineering and Inspection Corp., Tokyo (Japan)

    1997-02-01

    Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbin coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.

  13. [Severe burns related to steam inhalation therapy].

    Science.gov (United States)

    Belmonte, J A; Domínguez-Sampedro, P; Pérez, E; Suelves, J M; Collado, J M

    2015-02-01

    Despite lack of proven effectiveness and its potential to cause severe burns, steam inhalation therapy (SIT) is still used as a treatment for benign respiratory conditions. To characterize cases of burns related to steam inhalation therapy (BRSIT) in order to formulate appropriate preventive criteria. A review was conducted on cases of BRSIT admitted to a Burns Unit between 2006 and 2012, analysing epidemiological data, clinical aspects, severity and course. A total of 530 patients were admitted; 375 (70%) with scalds, and 15 with BRSIT (2.8% of burns; 4% of scalds). SIT was indicated in most cases for mild upper airway infections. The median age of patients was 7 years (2.5m-14 y). The burned area (BA) was ≥10% in 60% of cases (max. BA 22%). Injuries involved trunk, genital area, and extremities; only in one case was the face affected. The mean hospital length-of-stay was 14 days (3-30 d). Five patients (33%) were admitted to the PICU, most of them (60%) younger than 3 years. Eight patients (53%) underwent surgical treatment (skin grafting). In a 12-year-old patient whooping cough was diagnosed in the Burns Unit, and a 2.5-year-old patient developed staphylococcal toxic shock syndrome. No patient died. The final course was satisfactory in all patients. BRSIT can be severe and cause significant use of health resources. Professionals caring for children, particularly paediatricians, should seriously consider their prevention, avoiding treatments with SIT, and educating parents in order not to use it on their own. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  14. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  15. Optimum sizing of steam turbines for concentrated solar power plants

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas, Constantinos Rouvas, Ioannis Hadjipaschalis, George Kourtis

    2012-01-01

    Full Text Available In this work, a selection of the optimum steam turbine type and size for integration in concentrated solar power (CSP plants is carried out. In particular, the optimum steam turbine input and output interfaces for a range of CSP plant capacity sizes are identified. Also, efficiency and electricity unit cost curves for various steam turbine capacities are estimated by using a combination of the Steam Pro software module of the Thermoflow Suite 18 package and the IPP v2.1 optimization software tool. The results indicate that the estimated efficiency and the expected specific capital cost of the power block are very important criteria in choosing the best steam turbine size of a CSP plant. For capacity sizes of 10kWe up to 50MWe, the steam turbine efficiency increases and the steam turbine expected specific capital cost of the power block decreases at a high rate, whereas for larger sizes they remain almost constant. Thus, there is significant efficiency gains to be realized and large cost savings in increasing the turbine size up to 50MWe. Finally, although the cost of electricity of a CSP plant with capacities greater than 1MWe is significantly reduced to less than 1US$/kWh, currently such technology can only become economically viable through supporting schemes.

  16. Optimum sizing of steam turbines for concentrated solar power plants

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Rouvas, Constantinos; Hadjipaschalis, Ioannis; Kourtis, Gorge [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2012-07-01

    In this work, a selection of the optimum steam turbine type and size for integration in concentrated solar power (CSP) plants is carried out. In particular, the optimum steam turbine input and output interfaces for a range of CSP plant capacity sizes are identified. Also, efficiency and electricity unit cost curves for various steam turbine capacities are estimated by using a combination of the Steam Pro software module of the Thermoflow Suite 18 package and the IPP v2.1 optimization software tool. The results indicate that the estimated efficiency and the expected specific capital cost of the power block are very important criteria in choosing the best steam turbine size of a CSP plant. For capacity sizes of 10kWe up to 50MWe, the steam turbine efficiency increases and the steam turbine expected specific capital cost of the power block decreases at a high rate, whereas for larger sizes they remain almost constant. Thus, there is significant efficiency gains to be realized and large cost savings in increasing the turbine size up to 50MWe. Finally, although the cost of electricity of a CSP plant with capacities greater than 1MWe is significantly reduced to less than 1US$/kWh, currently such technology can only become economically viable through supporting schemes.

  17. EFFECT OF STEAMING ON THE COLOUR CHANGE OF SOFTWOODS

    Directory of Open Access Journals (Sweden)

    Laszlo Tolvaj,

    2012-05-01

    Full Text Available The heat treatment of softwood (i.e. spruce, pine, fir, and larch may result in significant colour changes. During this study Scots pine and spruce samples were steamed and analysed for their altered hue and lightness. Treatments included: 0 to 22 days of steaming time at a temperature range of 70 to 100°C. The outcome included a variety of colours between the initial hues and brownish tint. These new colours are similar to that of aged furniture and indoor wooden structures. Consequently, properly steamed softwood may be used to repair historical artefacts and relic furniture. Besides restoration, steamed stocks are excellent sources for manufacture of periodical furniture, where the aged appearance has aesthetical value. Results however, indicated that steaming at a temperature above 90 ˚C has a bleaching effect, i.e. the coloured chemical components formed by moderate steaming may be removed. Furthermore, we observed a linear correlation between lightness and colour hue at all steaming times and temperatures.

  18. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  19. Effect of Preheating and Precooling on the Flexural Strength and Modulus of Elasticity of Nanohybrid and Silorane-based Composite

    Directory of Open Access Journals (Sweden)

    Farahnaz Sharafeddin

    2015-09-01

    Full Text Available Statement of the Problem: Composite resin may be used in different temperatures; it is crucial to determine the effect of temperature on mechanical properties of nanohybrid and silorane-based composite. Purpose: This in vitro study compared the flexural strength and modulus of elasticity of nanohybrid and silorane-based resin composite, at 4˚C, room temperature (25˚C, and 45˚C. Materials and Method: In this experimental study, 60 specimens were prepared in a metal split mold (2×2×25mm. Two different resin composites, Filtek Z250 XT (3M/ ESPE and Filtek P90 (3M/ESPE, were evaluated. The material were inserted into split molds at room temperature, 4˚C or 45˚C and cured with LED (1200 mW/cm2 for 20 seconds in four points (n=10. Then, a three-point bending test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min for measuring the flexural strength and flexural modulus of samples. The data were analyzed by the two-way ANOVA and Tukey test (p< 0.05. Results: The mean highest flexural strength was observed at 45˚C, showing statistically significant difference with flexural strength at 4˚C (p= 0.0001 and 25˚C (p= 0.003 regardless of the type of resin composite. The flexural modulus at 45˚C was highest, showing the statistically significant difference with flexural modulus at 4˚C (p= 0.0001 and 25˚C (p= 0.002. The flexural modulus was statistically different between nanohybrid and silorane-based resin composite (p= 0.01 in 25˚C and 45˚C, but there were no statistically significant differences between flexural strength of Filtek Z250 XT and Filtek P90 regardless of the temperatures (p= 0.062. Conclusion: Preheating the resin composite at 45˚C improves flexural strength and modulus of nanohybrid and silorane-based resin composite. However, flexural strength and modulus of the tested materials were not affected by precooling. The flexural modulus of nanohybrid resin composite was significantly higher than

  20. Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Taebin; Kim, Sukhoon; Kim, Juyoul; Kim, Juyub; Lee, Seunghee [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The steam generators in Hanbit Unit 3 and 4 are scheduled to be replaced in 2018 and 2019, respectively. Nevertheless, the wastes from the dismantled steam generators are currently just on-site stored in the NPP because there are no disposal measures for the waste and lack of the decontamination techniques for large-sized metallic equipment. In contrast, in the oversea NPPs, there are many practical cases of chemical decontamination not only for oversized components in the NPPs such as reactor pressure vessel and steam generator, but also for major pipes. Chemical decontamination technique is more effective in decontaminating the components with complicated shape compared with mechanical one. Moreover, a high decontamination factor can be obtained by using strong solvent, and thereby most of radionuclides can be removed. Due to these advantages, the chemical decontamination has been used most frequently for operation of decontaminating the large-sized equipment. In this study, an analysis on the current status of chemical decontamination technique used for the steam generators of the foreign commercial NPPs was performed. In this study, the three major chemical decontamination processes were reviewed, which are applied to the decommissioning process of the steam generators in the commercial NPPs of the United States, Germany, and Belgium. The three processes have the different features in aspect of solvent, while those are based in common on the oxidation and reduction between the target metal surface and solvents. In addition, they have the same goals for improving the decontamination efficiency and decreasing the amount of the secondary waste generation. Based on the analysis results on component sub-processes and major advantages and disadvantages of each process, Table 2 shows the key fundamental technologies for decontamination of the steam generator in Korea and the major considerations in the development process of each technology. It is necessary to prepare