WorldWideScience

Sample records for preheated aluminum nitride

  1. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    Science.gov (United States)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2017-02-01

    There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  2. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    Science.gov (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  3. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  4. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    Science.gov (United States)

    2012-01-05

    Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride...3. DATES COVERED (From - To) January 2010–January 2013 4. TITLE AND SUBTITLE Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride 5a

  5. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    Science.gov (United States)

    2013-02-01

    like HEMTs . A nanolayer of AlGaN over GaN provides extra 2DEG charge density because of the piezoelectric effect of the AlGaN layer. The higher...Control of Defects in Aluminum Gallium Nitride ((Al) GaN ) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al) GaN ) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  6. Preparation of Ultra-fine Aluminum Nitride in Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    漆继红; 罗义文; 印永祥; 代晓雁

    2002-01-01

    Ultra-fine aluminum nitride has been synthesized by the evaporation of aluminum powder at atmospheric-pressure nitrogen plasma in a hot-wall reactor. The average size of aluminum nitride particle is 0.11μm measured by scanning electric mirror (SEM), and the purity is at least over 90% evaluated by X-Ray diffraction (XRD). The conversion of Al powder to aluminum nitride is strongly depended on the injection of NH3. Typical experimental parameters such as the feed rate of raw material, the flow rate of ammonia and the position of injecting aluminum powder into the reactor are given.

  7. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  8. Defect reduction in seeded aluminum nitride crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Stack, Glen A.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  9. Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy

    Science.gov (United States)

    Yaduwanshi, D. K.; Bag, S.; Pal, S.

    2014-10-01

    The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.

  10. Aluminum Reduction and Nitridation of Bauxite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhikuan; ZHANG Dianwei; XU Enxia; HOU Xinmei; DONG Yanling

    2007-01-01

    The application of bauxite with low Al2O3 content has been studied in this paper and β-SiAlON has been obtained from two kinds of bauxites (Al203 content 68.08 mass% and 46.30 mass% respectively) by aluminum reduction and nitridation method.The sequence of reactions has been studied using thermal analysis (TG-DTA),X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) with EDS.Compared with carbon thermal reduction and nitridation of aluminosilicates employed presently,the reaction in the system of bauxite-Al-N2 occurs at lower temperature.β-SiAlON appears as one of the main products from 1573K and exists' stably in the range of the present experimental temperature.The microstructure of β-SiAlON obtained at 1773 K is short column with 5-10μm observed by SEM.

  11. Studies of Organometallic Precursors to Aluminum Nitride

    Science.gov (United States)

    1986-05-09

    adduct undergoes thermal decomposition to a series of intermediate R33Al +NH + R3Al :N~H- + -++ AiN + 3R1I (where at CH3, CAH, C09g, etc.) The...which the initially formed Lewis acid/base adduct undergoes thermal decomposition to a series of Intermediate altylaluminum-amide and -imide species...SIOPPLEM.ENTARY NOTATION to be publ ished in Mats. Res. Soc. Syinp. Proc. (19F86) -IL RU SBR _ Aluminum nitride, organomnetallic precutsors,imcl C7Se1

  12. Aluminum nitride for heatspreading in RF IC's

    Science.gov (United States)

    La Spina, L.; Iborra, E.; Schellevis, H.; Clement, M.; Olivares, J.; Nanver, L. K.

    2008-09-01

    To reduce the electrothermal instabilities in silicon-on-glass high-frequency bipolar devices, the integration of thin-film aluminum nitride as a heatspreader is studied. The AlN is deposited by reactive sputtering and this material is shown to fulfill all the requirements for actively draining heat from RF IC's, i.e., it has good process compatibility, sufficiently high thermal conductivity and good electrical isolation also at high frequencies. The residual stress and the piezoelectric character of the material, both of which can be detrimental for the present application, are minimized by a suitable choice of deposition conditions including variable biasing of the substrate in a multistep deposition cycle. Films of AlN as thick as 4 μm are successfully integrated in RF silicon-on-glass bipolar junction transistors that display a reduction of more than 70% in the value of the thermal resistance.

  13. Fluorescent lighting with aluminum nitride phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  14. MEMS Aluminum Nitride Technology for Inertial Sensors

    Science.gov (United States)

    Vigevani, Gabriele

    2011-12-01

    The design and fabrication of MEMS Inertial Sensors (both accelerometers and gyroscopes) made of Aluminum Nitride (AlN) is described in this dissertation. The goal of this work is to design and fabricate inertial sensors based on c-axis oriented AlN polycrystalline thin films. AlN is a post-CMOS compatible piezoelectric material widely used for acoustic resonators, such Bulk Acoustic Wave (BAW) and Lamb Wave Resonators (LWR). In this work we develop the design techniques necessary to obtain inertial sensors with AlN thin film technology. Being able to use AlN as structural material for both acoustic wave resonator and sensing elements is key to achieve the three level integration of RF-MEMS components, sensing elements and CMOS in the same chip. Using AlN as integration platform is particularly suitable for large consumer emerging markets where production costs are the major factor that determine a product success. In order to achieve a platform integration, the first part of this work focuses on the fabrication process: starting from the fabrication technology used for LWR devices, this work shows that by slightly modifying some of the fabrication steps it is possible to obtain MEMS accelerometers and gyroscopes with the same structural layers used for LWR. In the second part of this work, an extensive analysis, performed with analytical and Finite Element Models (FEM), is developed for beam and ring based structures. These models are of great importance as they provide tools to understand the physics of lateral piezoelectric beam actuation and the major limitations of this technology. Based on the models developed for beam based resonators, we propose two designs for Double Ended Tuning Fork (DETF) based accelerometers. In the last part of the dissertation, we show the experimental results and the measurements performed on actual devices. As this work shows analytically and experimentally, there are some fundamental constraints that limit the ultimate sensitivity

  15. Measuring preheat in laser-drive aluminum using velocity interferometer system for any reflector: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Hua; Fu, Sizu; Huang, Xiuguang; Wu, Jiang; Xie, Zhiyong; Zhang, Fan; Ye, Junjian; Jia, Guo; Zhou, Huazhen [Shanghai Institute of Laser Plasma, P.O. BOX 800-229, Shanghai 201800 (China)

    2014-08-15

    In this paper, we systematically study preheating in laser-direct-drive shocks by using a velocity interferometer system for any reflector (VISAR). Using the VISAR, we measured free surface velocity histories of Al samples over time, 10–70 μm thick, driven directly by a laser at different frequencies (2ω, 3ω). Analyzing our experimental results, we concluded that the dominant preheating source was X-ray radiation. We also discussed how preheating affected the material initial density and the measurement of Hugoniot data for high-Z materials (such as Au) using impedance matching. To reduce preheating, we proposed and tested three kinds of targets.

  16. Epitaxial aluminum nitride tunnel barriers grown by nitridation with a plasma source

    NARCIS (Netherlands)

    Zijlstra, T.; Lodewijk, C.F.J.; Vercruyssen, N.; Tichelaar, F.D.; Loudkov, D.N.; Klapwijk, T.M.

    2007-01-01

    High critical current-density (10 to 420 kA/cm2) superconductor-insulator-superconductor tunnel junctions with aluminum nitride barriers have been realized using a remote nitrogen plasma from an inductively coupled plasma source operated in a pressure range of 10−3–10−1 mbar. We find a much better r

  17. Field emission from open ended aluminum nitride nanotubes

    Science.gov (United States)

    Tondare, V. N.; Balasubramanian, C.; Shende, S. V.; Joag, D. S.; Godbole, V. P.; Bhoraskar, S. V.; Bhadbhade, M.

    2002-06-01

    This letter reports the field emission measurements from the nanotubes of aluminum nitride which were synthesized by gas phase condensation using the solid-vapor equilibria. A dc arc plasma reactor was used for producing the vapors of aluminum in a reactive nitrogen atmosphere. Nanoparticles and nanotubes of aluminum nitride were first characterized by transmission electron microscope and tube dimensions were found to be varying from 30 to 200 nm in diameter and 500 to 700 nm in length. These tubes were mixed with nanoparticles of size range between 5 and 200 nm in diameter. Tungsten tips coated with these nanoparticles and tubes were used as a field emitter. The field emission patterns display very interesting features consisting of sharp rings which were often found to change their shapes. The patterns are attributed to the open ended nanotubes of aluminum nitride. A few dot patterns corresponding to the nanoparticles were also seen to occur. The Fowler-Nordheim plots were seen to be nonlinear in nature, which reflects the semi-insulating behavior of the emitter. The field enhancement factor is estimated to be 34 500 indicating that the field enhancement due to the nanometric size of the emitter is an important cause for the observed emission.

  18. Flexible pulse-wave sensors from oriented aluminum nitride nanocolumns

    Science.gov (United States)

    Akiyama, Morito; Ueno, Naohiro; Nonaka, Kazuhiro; Tateyama, Hiroshi

    2003-03-01

    Flexible pulse-wave sensors were fabricated from density-packed oriented aluminum nitride nanocolumns prepared on aluminum foils. The nanocolumns were prepared by the rf magnetron sputtering method and were perpendicularly oriented to the aluminum foil surfaces. The sensor structure is laminated, and the structure contributes to avoiding unexpected leakage of an electric charge. The resulting sensor thickness is 50 μm. The sensor is flexible like aluminum foil and can respond to frequencies from 0.1 to over 100 Hz. The sensitivity of the sensor to pressure is proportional to the surface area. The sensor sensitively causes reversible charge signals that correlate with the pulse wave form, which contains significant information on arteriosclerosis and cardiopathy of a man sitting on it.

  19. Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic

    Science.gov (United States)

    2015-09-01

    configuration simulated in this work duplicates that examined in experiments of Yadav and Ravichandran.1 As shown in Fig. 1a, a WHA (tungsten heavy alloy... WHA ) 157 c aJohnson GR, Holmquist TJ, Beissel SR. Response of aluminum nitride (including a phase change) to large strains, high strain rates, and...results cannot be isolated in the present set of simulations, but possibilities include the following: the WHA material may be weaker than that

  20. Electrical Activation Studies of Silicon Implanted Aluminum Gallium Nitride with High Aluminum Mole Fraction

    Science.gov (United States)

    2007-12-01

    important to minimize imperfections and defects as well as the amount of unwanted impurities. The most common bulk method is the Czochralski Method , in...demonstrates a method for producing highly conductive Si- implanted n-type aluminum gallium nitride (AlxGa1-xN) alloys, and represents a comprehensive...54 IV. Experimental Method ..................................................................................... 57 Sample

  1. Red-emitting manganese-doped aluminum nitride phosphor

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.

    2016-04-01

    We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.

  2. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  3. High-Q aluminum nitride photonic crystal nanobeam cavities

    CERN Document Server

    Pernice, W H P; Schuck, C; Tang, H X

    2012-01-01

    We demonstrate high optical quality factors in aluminum nitride (AlN) photonic crystal nanobeam cavities. Suspended AlN photonic crystal nanobeams are fabricated in sputter-deposited AlN-on-insulator substrates using a self-protecting release process. Employing one-dimensional photonic crystal cavities coupled to integrated optical circuits we measure quality factors up to 146,000. By varying the waveguide-cavity coupling gap, extinction ratios in excess of 15 dB are obtained. Our results open the door for integrated photonic bandgap structures made from a low loss, wide-transparency, nonlinear optical material system.

  4. Thick film fabrication of aluminum nitride microcircuits. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Perdieu, L.H.

    1994-03-01

    A new substrate material, aluminum nitride (AlN), and 11 new thick film inks were analyzed to determine their chemical compatibility, their electrical properties, their mechanical properties, and their overall suitability for use in the manufacturing of high-power microcircuits with efficient thermal properties. Because high-power chips emit a great deal of heat in a small surface area, a new substrate material was needed to dissipate that heat faster than the substrate material currently in use. Overall, the new materials were found to be acceptable for accomplishing this purpose.

  5. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    Science.gov (United States)

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  6. Studies on Tribological Behavior of Aluminum Nitride-Coated Steel

    Science.gov (United States)

    Ionescu, G. C.; Nae, I.; Ripeanu, R. G.; Dinita, A.; Stan, G.

    2017-02-01

    The new opportunities introduced by the large development of the IoT (internet of things) are increasing the demand for sensors to be located as close as possible to the supervised process. The Aluminum Nitride (AIN) is one of the most promising materials for sensors due to its piezoelectric, excellent mechanical properties, chemical inertness and high melting point. Due to these material properties, the AlN sensors are suitable to operate in high temperature and harsh environment conditions and therefore are very promising to be employed in industrial applications. In this article are presented the studies conducted on several Aluminum Nitride-Coated Steel structures with the goal of producing sensors embedded in the ball bearings, bearings and other mobile parts of machine tools. The experiments were conducted on simple coatings structures without lubricating materials and the obtained results are promising, demonstrating that, with some limitations the AIN could be used in such applications. This paper was accepted for publication in Proceedings after double peer reviewing process but was not presented at the Conference ROTRIB’16

  7. Optical frequency comb generation from aluminum nitride micro-ring resonator

    CERN Document Server

    Jung, Hojoong; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-01-01

    Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.

  8. An experimental study on the aluminum nitride flux detector

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon

    2004-06-01

    The result of a study on the 'development of a solid state flux monitor' performed as a part of the I-NERI project 'development of enhanced reactor operation through improved sensing and control at nuclear power pants' is described in this report. Dozens of aluminum nitride based flux sensors have been fabricated with different sizes 3mm x 3mm x 0.635mm and 3mm x 3mm x 0.381mm by ORNL and were packaged with MGO insulation by KAERI for a feasibility study to use them as the in-core flux monitor in the nuclear power plants. In chapter 1, we describe the basic properties of the aluminum nitride and the geometric shape of the fabricated detectors with the signal cables attached. In chapter 2, we describe the calculation results based on the EGS4 and MCNP4B code to determine the neutron sensitivity of the aluminum nitride and the optimal thickness for the gamma rejection for the case of the detectors being used in the pulse mode operation. In chapter 3, we describe the results of measurements for the insulation resistance and of the experiments to determine the optimum operating voltage of the sensors after the packaging with long cables attached. In chapter 4, we describe the results of experiments to measure the high gamma flux from the 187Ci Co60, 77,000Ci Co60, and the 200,000Ci Co60 at the high level irradiation facility at KAERI at various distances and compared the results with the EGS4 based calculation results. In chapter 5, we describe the results of pulse counts at the IR beam port of the Hanaro reactor, the low flux measurements in the current mode at the Pohang accelerator, and the high flux measurements in the current mode inside the cold neutron source hole of the Hanaro reacter. Finally, in chapter 6, we analyze the results of the above experiments and describe the necessary future work.

  9. Growth of aluminum nitride bulk crystals by sublimation

    Science.gov (United States)

    Liu, Bei

    The commercial potential of III-nitride semiconductors is already being realized by the appearance of high efficiency, high reliability, blue and green LEDS around the world. However, the lack of a native nitride substrate has hindered the full-realization of more demanding III-nitride devices. To date, single aluminum nitride (AlN) crystals are not commercially available. New process investigation is required to scale up the crystal size. New crucibles stable up to very high temperatures (˜2500°C) are needed which do not incorporate impurities into the growing crystals. In this thesis, the recent progresses in bulk AlN crystal growth by sublimation-recondensation were reviewed first. The important physical, optical and electrical properties as well as chemical and thermal stabilities of AlN were discussed. The development of different types of growth procedures including self-seeding, substrate employed and a new "sandwich" technique were covered in detail. Next, the surface morphology and composition at the initial stages of AlN grown on 6H-SiC (0001) were investigated. Discontinuous AlN coverage occurred after 15 minutes of growth. The initial discontinuous nucleation of AlN and different lateral growth of nuclei indicated discontinuous AIN direct growth on on-axis 6H-SiC substrates. At the temperature in excess of 2100°C, the durability of the furnace fixture materials (crucibles, retorts, etc.) remains a critical problem. The thermal and chemical properties and performance of several refractory materials, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride (HPBN), in inert gas, as well as under AIN crystal growth conditions were discussed. TaC and NbC are the most stable crucible materials in the crystal growth system. HPBN crucible is more suitable for AlN self-seeding growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density. Finally, clear and colorless thin platelet Al

  10. Broadband directional coupling in aluminum nitride nanophotonic circuits

    CERN Document Server

    Stegmaier, Matthias

    2013-01-01

    Aluminum nitride (AlN)-on-insulator has emerged as a promising platform for the realization of linear and non-linear integrated photonic circuits. In order to efficiently route optical signals on-chip, precise control over the interaction and polarization of evanescently coupled waveguide modes is required. Here we employ nanophotonic AlN waveguides to realize directional couplers with a broad coupling bandwidth and low insertion loss. We achieve uniform splitting of incoming modes, confirmed by high extinction-ratio exceeding 33dB in integrated Mach-Zehnder Interferometers. Optimized three-waveguide couplers furthermore allow for extending the coupling bandwidth over traditional side-coupled devices by almost an order of magnitude, with variable splitting ratio. Our work illustrates the potential of AlN circuits for coupled waveguide optics, DWDM applications and integrated polarization diversity schemes.

  11. Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode

    Science.gov (United States)

    2012-12-14

    82. D. P. Morgan, Surface- Wave Devices for Signal Processing, Holland: Elsevier, 1991. 83. L. E. McNeil, M. Grimsditch, and R. H. French ... Vibrational spectroscopy of aluminum nitride,” J. Am. Ceram. Soc., vol. 76, pp. 1132–1136, May 1993. 84. K. Hashimoto, Surface Acoustic Wave Devices in...Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode Chih-Ming Lin Electrical Engineering and

  12. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    Science.gov (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  13. Effect of urea on synthesis of aluminum nitride powders from aluminum nitrate and glucose

    Institute of Scientific and Technical Information of China (English)

    秦明礼; 曲选辉; 林健凉; 肖平安; 汤春峰; 祝宝军; 雷长明

    2003-01-01

    AlN powders were synthesized by carbothermal reduction method from aluminum nitrate and glucose.The effect of urea on the preparation and nitridation of the precursors was studied. It is found that urea can affectthe morphology and composition of the precursor as well as the nitridation process. During the nitridation process ofthe precursor prepared without urea, α-A12 O3 and A1ON are detected and a high temperature(1600 ℃ ) is needed fora complete conversion. While for the precursor prepared with urea, a complete conversion is got at a relatively lowtemperature(1 400 ℃ ) and AlN is synthesized directly from γ-Al2 O3, with no sign of the formation of α-Al2 O3 andAlON. AlN powders synthesized from the precursor prepared without urea agglomerate badly, while the powderssynthesized from the precursor prepared with urea are soft aggregates of fine particle, which can be easily dispersed.

  14. Spotting 2D atomic layers on aluminum nitride thin films.

    Science.gov (United States)

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  15. A review: aluminum nitride MEMS contour-mode resonator

    Science.gov (United States)

    Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning

    2016-10-01

    Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).

  16. Surface modification of piezoelectric aluminum nitride with functionalizable organosilane adlayers

    Science.gov (United States)

    Chan, Edmund; Jackson, Nathan; Mathewson, Alan; Galvin, Paul; Alamin Dow, Ali B.; Kherani, Nazir P.; Blaszykowski, Christophe; Thompson, Michael

    2013-10-01

    The world of biosensors is expanding at a rapid pace with an ever-increasing demand for more sensitive miniaturized devices. Acoustic wave biosensors are not spared from this trend. In this domain, the search for enhanced sensitivity is increasingly oriented toward the rational design of new piezoelectric materials with superior properties to substitute for prevalent quartz. With respect to surface chemistry, construction of the biorecognition element, more often than not, requires the use of bifunctional molecules that can spontaneously assemble on the substrate and form organic surfaces readily biofunctionalizable in a subsequent, ideally single step. In this context, we present herein the surface modification of aluminum nitride (AlN) with alkyltrichlorosilane cross-linking molecules bearing a functionalizable benzenethiosulfonate moiety. This latter feature is next demonstrated through the straightforward, preactivation-free immobilization of thiolated biotin probes. To date, AlN has only received little attention in the field of piezoelectric biosensors despite its many attractive properties and the perspective to operate devices at ultra-high frequencies (GHz) with unprecedented sensitivity. To our knowledge, this work describes one of the first examples of direct surface derivatization of AlN with bifunctional trichlorosilane molecules. It also constitutes a first step toward the development of electrodeless GHz piezoelectric biosensing platforms based on AlN and trichlorosilane surface chemistry.

  17. Continuous-wave Raman Lasing in Aluminum Nitride Microresonators

    CERN Document Server

    Liu, Xianwen; Xiong, Bing; Wang, Lai; Wang, Jian; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tongbo; Zhang, Yun; Wang, Junxi

    2016-01-01

    We report the first investigation on continuous-wave Raman lasing in high-quality-factor aluminum nitride (AlN) microring resonators. Although wurtzite AlN is known to exhibit six Raman-active phonons, single-mode Raman lasing with low threshold and high slope efficiency is demonstrated. Selective excitation of A$_1^\\mathrm{TO}$ and E$_2^\\mathrm{high}$ phonons with Raman shifts of $\\sim$612 and 660 cm$^{-1}$ is observed by adjusting the polarization of the pump light. A theoretical analysis of Raman scattering efficiency within ${c}$-plane (0001) of AlN is carried out to help account for the observed lasing behavior. Bidirectional lasing is experimentally confirmed as a result of symmetric Raman gain in micro-scale waveguides. Furthermore, second-order Raman lasing with unparalleled output power of $\\sim$11.3 mW is obtained, which offers the capability to yield higher order Raman lasers for mid-infrared applications.

  18. Aluminum nitride bulk crystal growth in a resistively heated reactor

    Science.gov (United States)

    Dalmau, Rafael Federico

    A resistively heated reactor capable of temperatures in excess of 2300°C was used to grow aluminum nitride (AlN) bulk single crystals from an AlN powder source by physical vapor transport (PVT) in nitrogen atmosphere. AlN crystals were grown at elevated temperatures by two different methods. Self-seeded crystals were obtained by spontaneous nucleation on the crucible walls, while seeded growth was performed on singular and vicinal (0001) surfaces of silicon carbide (SiC) seeds. During self-seeded growth experiments a variety of crucible materials, such as boron nitride, tungsten, tantalum, rhenium, tantalum nitride, and tantalum carbide, were evaluated. These studies showed that the morphology of crystals grown by spontaneous nucleation strongly depends on the growth temperature and contamination in the reactor. Crucible selection had a profound effect on contamination in the crystal growth environment, influencing nucleation, coalescence, and crystal morphology. In terms of high-temperature stability and compatibility with the growth process, the best results for AlN crystal growth were obtained in crucibles made of sintered tantalum carbide or tantalum nitride. In addition, contamination from the commercially purchased AlN powder source was reduced by presintering the powder prior to growth, which resulted in a drastic reduction of nearly all impurities. Spontaneously grown single crystals up to 15 mm in size were characterized by x-ray diffraction, x-ray topography, glow discharge mass spectrometry, and secondary ion mass spectrometry. Average dislocation densities were on the order of 103 cm -3, with extended areas virtually free of dislocations. High resolution rocking curves routinely showed peak widths as narrow as 7 arcsec, indicating a high degree of crystalline perfection. Low-temperature partially polarized optical reflectance measurements were used to calculate the crystal-field splitting parameter of AlN, Deltacr = -230 meV, and a low-temperature (1

  19. Low temperature aluminum nitride thin films for sensory applications

    Science.gov (United States)

    Yarar, E.; Hrkac, V.; Zamponi, C.; Piorra, A.; Kienle, L.; Quandt, E.

    2016-07-01

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d33,f) increased from 2.30 ± 0.32 pm/V up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ɛr) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e31,f|) of 1.39 ± 0.01 C/m2 was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.

  20. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    Science.gov (United States)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  1. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  2. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip

    CERN Document Server

    Zou, Chang-Ling; Jiang, Liang; Tang, Hong X

    2016-01-01

    Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.

  3. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harman, J.; Kabulski, A.; Pagán, V. R.; Famouri, P.; Kasarla, K. R.; Rodak, L. E.; Peter Hensel, J.; Korakakis, D.

    2008-01-01

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  4. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harman, J.P.; Kabulski, A. (West Virginia U., Morgantown, WV); Pagan, V.R. (West Virginia U., Morgantown, WV); Famouri, K. (West Virginia U., Morgantown, WV); Kasarla, K.R.; Rodak, L.E. (West Virginia U., Morgantown, WV); Hensel, J.P.; Korakakis, D.

    2008-07-01

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  5. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  6. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by Gas-Liquid Reactions I. Thermodynamic and Kinetic Considerations

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-10-01

    In-situ fabrication of the reinforcing particles directly in the metal matrix is an answer to many of the challenges encountered in manufacturing metal matrix nanocomposite materials. In this method, the nanosized particles are formed directly within the melt by means of a chemical reaction between a specially designed metallic alloy and a reactive gas. The thermodynamic and kinetic characteristics of this chemical reaction dictate the particle size and distribution in the matrix alloy, as well as the nature of the particle/matrix interface, and consequently, they govern many of the material's mechanical and physical properties. This article focuses on aluminum-aluminum-nitride nanocomposite materials that are synthesized by injecting a nitrogen-bearing gas into a molten aluminum alloy. The thermodynamic and kinetic aspects of the process are modeled, and the detrimental role of oxygen is elucidated.

  7. Researching the Aluminum Nitride Etching Process for Application in MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2015-02-01

    Full Text Available We investigated the aluminum nitride etching process for MEMS resonators. The process is based on Cl2/BCl3/Ar gas chemistry in inductively coupled plasma system. The hard mask of SiO2 is used. The etching rate, selectivity, sidewall angle, bottom surface roughness and microtrench are studied as a function of the gas flow rate, bias power and chamber pressure. The relations among those parameters are reported and theoretical analyses are given. By optimizing the etching parameters, the bottom surface roughness of 1.98 nm and the sidewall angle of 83° were achieved. This etching process can meet the manufacturing requirements of aluminum nitride MEMS resonator.

  8. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    Science.gov (United States)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  9. Microwave Study of Field-Effect Devices Based on Graphene/Aluminum Nitride/Graphene Structures

    Science.gov (United States)

    Adabi, Mohammad; Lischner, Johannes; Hanham, Stephen M.; Mihai, Andrei P.; Shaforost, Olena; Wang, Rui; Hao, Ling; Petrov, Peter K.; Klein, Norbert

    2017-03-01

    Metallic gate electrodes are often employed to control the conductivity of graphene based field effect devices. The lack of transparency of such electrodes in many optical applications is a key limiting factor. We demonstrate a working concept of a double layer graphene field effect device that utilizes a thin film of sputtered aluminum nitride as dielectric gate material. For this system, we show that the graphene resistance can be modified by a voltage between the two graphene layers. We study how a second gate voltage applied to the silicon back gate modifies the measured microwave transport data at around 8.7 GHz. As confirmed by numerical simulations based on the Boltzmann equation, this system resembles a parallel circuit of two graphene layers with different intrinsic doping levels. The obtained experimental results indicate that the graphene-aluminum nitride-graphene device concept presents a promising technology platform for terahertz- to- optical devices as well as radio-frequency acoustic devices where piezoelectricity in aluminum nitride can also be exploited.

  10. Microwave Study of Field-Effect Devices Based on Graphene/Aluminum Nitride/Graphene Structures.

    Science.gov (United States)

    Adabi, Mohammad; Lischner, Johannes; Hanham, Stephen M; Mihai, Andrei P; Shaforost, Olena; Wang, Rui; Hao, Ling; Petrov, Peter K; Klein, Norbert

    2017-03-09

    Metallic gate electrodes are often employed to control the conductivity of graphene based field effect devices. The lack of transparency of such electrodes in many optical applications is a key limiting factor. We demonstrate a working concept of a double layer graphene field effect device that utilizes a thin film of sputtered aluminum nitride as dielectric gate material. For this system, we show that the graphene resistance can be modified by a voltage between the two graphene layers. We study how a second gate voltage applied to the silicon back gate modifies the measured microwave transport data at around 8.7 GHz. As confirmed by numerical simulations based on the Boltzmann equation, this system resembles a parallel circuit of two graphene layers with different intrinsic doping levels. The obtained experimental results indicate that the graphene-aluminum nitride-graphene device concept presents a promising technology platform for terahertz- to- optical devices as well as radio-frequency acoustic devices where piezoelectricity in aluminum nitride can also be exploited.

  11. Polarity Control and Doping in Aluminum Gallium Nitride

    Science.gov (United States)

    2013-06-01

    seems to go hand in hand with a decrease in resistivity. In other words, a more activated sample shows a more intense ABX transition as well as a...Al0.8Ga0.2N grown on c- oriented AlN single crystal substrates; Physica Status Solidi (c) 9 (3-4); 584-587 (2012). 5 Y. Taniyasu, M. Kasu and T. Makimoto ...emitting diodes; Nature 406 (6798); 865-868 (2000). 21 U. T. Schwarz and M. Kneissl; Nitride emitters go nonpolar; physica status solidi (RRL

  12. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  13. Low-volume aluminum and aluminum / titanium nitride bilayer lumped-element kinetic inductance detectors for far-infrared astronomy

    Science.gov (United States)

    Glenn, Jason; Fyhrie, Adalyn; Wheeler, Jordan; Day, Peter K.; Eom, Byeong H.; Leduc, Henry G.

    2016-07-01

    We present the design and characterization of low-volume, lumped-element aluminum kinetic inductance de- tectors for sensitive far-infrared astronomy observations. The lumped-element kinetic inductance detectors are comprised of meandered inductors that serve as radiation absorbers in parallel with interdigitated capacitors, forming high quality factor resonators. Low inductor volumes lead to low noise equivalent powers by raising quasiparticles densities, and hence responsivities, with respect to larger volumes. Low volumes are achieved with thin (20 nm), narrow (150 nm) inductors. The interdigitated capacitor architecture is designed to mitigate two-level system noise by lowering electric fields in the silicon substrate. Resonance frequencies are in the range of 190 to 500 MHz, with measured internal quality factors in excess of 1 x 105. In a prior incarnation, a titanium nitride layer on top of the aluminum served as a protective layer, but complicated the superconducting proper- ties. These results were reported previously. In the current incarnation, the aluminum layer is left bare with no titanium nitride over-layer. The results for these bare aluminum devices include a yield of 88%, frequency responsivity of 109 W-1, and noise equivalent power of 1 x 10-17 W Hz-1/2 for a 350μm array. There is no evidence for 1=f noise down to at least 200 mHz. The sensitivity is currently limited by white noise, very likely from stray light in the testbed; for this detector design, sensitivities limited by generation-recombination noise in a lower-background environment should be several orders of magnitude lower.

  14. The Durability of Various Crucible Materials for Aluminum Nitride Crystal growth by Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Liu,B.; Edgar, J.; Gu, Z.; Zhuang, D.; Raghothamachar, B.; Dudley, M.; Sarua, A.; Kuball, M.; Meyer, H.

    2004-01-01

    Producing high purity aluminum nitride crystals by the sublimation-recondensation technique is difficult due to the inherently reactive crystal growth environment, normally at temperature in excess of 2100 C. The durability of the furnace fixture materials (crucibles, retorts, etc.) at such a high temperature remains a critical problem. In the present study, the suitability of several refractory materials for AlN crystal growth is investigated, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride. The thermal and chemical properties and performance of these materials in inert gas, as well as under AlN crystal growth conditions are discussed. TaC and NbC are the most stable crucible materials with very low elemental vapor pressures in the crystal growth system. Compared with refractory material coated graphite crucibles, HPBN crucible is better for AlN self-seeded growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density.

  15. Oxidation kinetics of aluminum nitride at different oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinmei [Metallurgical and Ecological Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Chou, K.-C. [Metallurgical and Ecological Engineering School, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: kcc126@126.com; Zhong Xiangchong [High Temperature Ceramics Institute, Zhengzhou University, Henan Province 450052 (China); Seetharaman, Seshadri [Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden)

    2008-10-06

    In the present work, the oxidation kinetics of AlN powder was investigated by using thermogravimetric analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experiments were carried out both in isothermal as well as non-isothermal modes under two different oxidizing atmospheres. The results showed that the oxidation reaction started at around 1100 K and the rate increased significantly beyond 1273 K forming porous aluminum oxide as the reaction product. The oxidation rate was affected by temperature and oxygen partial pressure. A distinct change in the oxidation mechanism was noticed in the temperature range 1533-1543 K which is attributed to the phase transformation in oxidation product, viz. alumina. Diffusion is the controlling step during the oxidation process. Based on the experimental data, a new model for predicting the oxidation process of AlN powder had been developed, which offered an analytic form expressing the oxidation weight increment as a function of time, temperature and oxygen partial pressure. The application of this new model to this system demonstrated that this model could be used to describe the oxidation behavior of AlN powder.

  16. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid

    Institute of Scientific and Technical Information of China (English)

    Wei Yu; Huaqing Xie; Yang Li; Lifei Chen

    2011-01-01

    Aluminum nitride nanoparticles (AINs) have been found to be a good additive for enhancing the thermal conductivity of traditional heat exchange fluids. At a volume fraction of 0.1, the thermal conductivity enhancement ratios are 38.71% and 40.2%, respectively, for ethylene glycol and propylene glycol as the base fluids. Temperature does not have much influence on the enhanced thermal conductivity ratios of the nanofluids, though a volume fraction of 5.0% appears to signify a critical concentration for theology:for 5.0vol% for obvious shear-shinning behavior, for both ethylene glycol and propylene glycol.

  17. Fabrication of aluminum nitride and its stability in liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L. [Argonne National Lab., Chicago, IL (United States)

    1995-04-01

    The objective of this task are to (a) evaluate several fabrication procedures for development of aluminum nitride (AlN) coatings on the candidate first-wall structural material V-5wt.%Cr-5wt.%Ti, (b) evaluate the stability of coatings in contact with the structural alloy and liquid Li at temperatures of 200 to 400{degrees}C, (c) measure the electrical resistivity of the coated films after exposure to liquid Li, (d) evaluate the effects of coating defects on electrical resistivity, and (e) establish in-situ repair procedures to maintain adequate electrical insulating properties for the coatings.

  18. Lithographically defined aluminum nitride cross-sectional Lamé mode resonators

    Science.gov (United States)

    Chen, G.; Cassella, C.; Qian, Z.; Hummel, G. E.; Rinaldi, M.

    2017-03-01

    This paper reports on aluminum nitride (AlN) cross-sectional Lamé mode resonators (CLMRs) showing high electromechanical coupling coefficient (kt{2} ) in excess of 4% in a lithographically defined 307 MHz frequency range around 920 MHz. In addition, we report the performance of a CLMR showing a figure of merit (FoM, defined as the product of quality factor, Q, and kt{2} ) in excess of 85. To the best of the authors’ knowledge, such FoM value is the highest reported for AlN resonators using interdigitated metal electrodes (IDTs).

  19. Variation of the intrinsic stress gradient in thin aluminum nitride films

    Science.gov (United States)

    Mehner, H.; Leopold, S.; Hoffmann, M.

    2013-09-01

    The intrinsic stress gradient variation of thin aluminum nitride (AlN) films is the central objective in this paper. For the first time, significant influence parameters on the stress gradient are identified and varied during the deposition process. The process power induced in the plasma and the gas flow ratio of the sputter gases argon and nitrogen are the two major parameters for controlling the stress gradient of deposited AlN films. The controlled avoidance as well as the controlled generation of positive and negative gradients is shown. The stress gradient was investigated by analysis of released one-side clamped cantilever test structures.

  20. Studies on the reliability of ni-gate aluminum gallium nitride / gallium nitride high electron mobility transistors using chemical deprocessing

    Science.gov (United States)

    Whiting, Patrick Guzek

    Aluminum Gallium Nitride / Gallium Nitride High Electron Mobility Transistors are becoming the technology of choice for applications where hundreds of volts need to be applied in a circuit at frequencies in the hundreds of gigahertz, such as microwave communications. However, because these devices are very new, their reliability in the field is not well understood, partly because of the stochastic nature of the defects which form as a result of their operation. Many analytical techniques are not well suited to the analysis of these defects because they sample regions of the device which are either too small or too large for accurate observation. The use of chemical deprocessing in addition to surface-sensitive analysis techniques such as Scanning Electron Microscopy and Scanning Probe Microscopy can be utilized in the analysis of defect formation in devices formed with nickel gates. Hydrofluoric acid is used to etch the passivation nitride which covers the semiconducting layer of the transistor. A metal etch utilizing FeCN/KI is used to etch the ohmic and gate contacts of the device and a long exposure in various solvent solutions is used to remove organic contaminants, exposing the surface of the semiconducting layer for analysis. Deprocessing was used in conjunction with a variety of metrology techniques to analyze three different defects. One of these defects is a nanoscale crack which emanates from metal inclusions formed during alloying of the ohmic contacts of the device prior to use in the field, could impact the yield of production-level manufacturing of these devices. This defect also appears to grow, in some cases, during electrostatic stressing. Another defect, a native oxide at the surface of the semiconducting layer which appears to react in the presence of an electric field, has not been observed before during post-mortem analysis of degraded devices. It could play a major part in the degredation of the gate contact during high-field, off

  1. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

    Science.gov (United States)

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2) and 0.9±0.1 C m(-2), for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

  2. Effect of variation of silicon nitride passivation layer on electron irradiated aluminum gallium nitride/gallium nitride HEMT structures

    Science.gov (United States)

    Jackson, Helen C.

    Silicon nitride passivation on AlGaNGaN heterojunction devices can improve performance by reducing electron traps at the surface. This research studies the effect of displacement damage caused by 1 MeV electron irradiation as a function of the variation of passivation layer thickness and heterostructure layer variation on AlGaN/GaN HEMTs. The effects of passivation layer thickness are investigated at thicknesses of 0, 20, 50 and 120 nanometers on AlGaNGaN test structures with either an AlN nucleation layer or a GaN cap structures which are then measured before and immediately after 1.0 MeV electron irradiation at fluences of 1016 cm-2. Hall system measurements are used to observe changes in mobility, carrier concentration and conductivity as a function of Si3N4 thickness. Models are developed that relate the device structure and passivation layer under 1 MeV radiation to the observed changes to the measured photoluminescence and deep level transient spectroscopy. A software model is developed to determine the production rate of defects from primary 1 MeV electrons that can be used for other energies and materials. The presence of either a 50 or 120 nm Si 3N4 passivation layer preserves the channel current for both and appears to be optimal for radiation hardness.

  3. Aluminum nitride-silicon carbide whisker composites: Processing, properties, and microstructural stability

    Energy Technology Data Exchange (ETDEWEB)

    Cross, M.T.

    1990-01-01

    Aluminum nitride -- silicon carbide whisker composites with up to 20 vol % whiskers were fabricated by pressureless sintering (1750{degree}--1800{degree}C) and by hot-pressing (1700{degree}--1800{degree}C). Silicon carbide whiskers were found to degrade depending on the type of protective powder bed used during sintering. Whiskers were found to degraded in high oxygen containing samples by reaction with sintering additives. Whisker degradation was also due to the formation of silicon carbide -- aluminum nitride solid solution. No whisker degradation was observed in hot-pressed samples. For these samples Young's modulus and fracture toughness were measured. A 33% increase in the fracture toughness was measured by the indentation technique for a 20 vol % whisker composite. Operative toughening mechanisms were investigated using scanning electron microscopy. Crack deflection and whisker bridging were the dominant mechanisms. It was also shown that load transfer from matrix to whiskers can be a contributing factor to toughening. 88 refs., 34 figs., 11 tabs.

  4. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Amini, S. [School of Materials Science and Engineering. Nanyang Technological University, 50 Nanyang Avenue, Singapore (Singapore); Khosravian, N.; Cheong, J.Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Tay, B.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore)

    2013-06-30

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure.

  5. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  6. Homoepitaxial growth of gallium nitride and aluminum nitride and its effects on device properties

    Science.gov (United States)

    Grandusky, James R.

    Lattice and thermal mismatch between epitaxial layers and substrates have long been the major challenge in obtaining high quality devices in the III-Nitride material system due to the lack of availability of native substrates. Recently methods for obtaining high quality free standing native substrates have been achieved and these products are beginning to enter the commercial market. However the quality of these substrates is significantly lower than those in traditional substrates such as Si and GaAs and the high cost and low availability makes it difficult to study the homoepitaxial growth. In order to use these substrates for epitaxial growth, one first must understand what features are needed for the substrates to be epi ready. In addition, one must understand what features in the substrates impact optoelectronic device performances most significantly. Initial homoepitaxial growth was carried out on both AIN and GaN substrates. On AIN substrates it was found that annealing the sample prior to growth was very important to obtain improved surface morphologies for the homoepitaxial layers. Similar annealing steps were attempted on GaN substrates, however annealing under hydrogen left large Ga droplets on the surface. For homoepitaxy on HVPE GaN substrates, the substrate characteristics, such as bowing, surface morphology, structural properties, and optical properties were found to have a large influence on growth and device performance. Even with a reduced dislocation density, substrates with poor characteristics performed worse than devices on GaN/sapphire. The effect of polishing process on the substrates was found to be very important and substrates with subsurface damage led to poor growth, even though the starting surface was very smooth. Optimization of a thin GaN layer and a multiple quantum well structure revealed very different optimum growth conditions for the HVPE substrates and the GaN/sapphire templates. Theoretical modeling using density functional

  7. Gas-phase synthesis of hexagonal and cubic phases of aluminum nitride: A method and its advantages

    Science.gov (United States)

    Kudyakova, V. S.; Bannikov, V. V.; Elagin, A. A.; Shishkin, R. A.; Baranov, M. V.; Beketov, A. R.

    2016-03-01

    Experimental results obtained in AlN synthesis by the high-temperature gas-phase method and analysis of reaction products phase composition are briefly described. It is demonstrated for the first time that dispersed aluminum nitride can be synthesized by this method from AlF3 in both hexagonal and cubic modifications.

  8. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    Science.gov (United States)

    Choudhary, R. K.; Mishra, P.

    2016-06-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  9. MEMS switching of contour-mode aluminum nitride resonators for switchable and reconfigurable radio frequency filters

    Science.gov (United States)

    Nordquist, Christopher D.; Branch, Darren W.; Pluym, Tammy; Choi, Sukwon; Nguyen, Janet H.; Grine, Alejandro; Dyck, Christopher W.; Scott, Sean M.; Sing, Molly N.; Olsson, Roy H., III

    2016-10-01

    Switching of transducer coupling in aluminum nitride contour-mode resonators provides an enabling technology for future tunable and reconfigurable filters for multi-function RF systems. By using microelectromechanical capacitive switches to realize the transducer electrode fingers, coupling between the metal electrode finger and the piezoelectric material is modulated to change the response of the device. On/off switched width extensional resonators with an area of  24 dB switching ratio at a resonator center frequency of 635 MHz. Other device examples include a 63 MHz resonator with switchable impedance and a 470 MHz resonator with 127 kHz of fine center frequency tuning accomplished by mass loading of the resonator with the MEMS switches.

  10. Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits

    CERN Document Server

    Pernice, W H P; Tang, H X

    2014-01-01

    Tight confinement of light in photonic cavities provides an efficient template for the realization of high optical intensity with strong field gradients. Here we present such a nanoscale resonator device based on a one-dimensional photonic crystal slot cavity. Our design allows for realizing highly localized optical modes with theoretically predicted Q factors in excess of 106. The design is demonstrated experimentally both in a high-contrast refractive index system (silicon), as well as in medium refractive index contrast devices made from aluminum nitride. We achieve extinction ratio of 21dB in critically coupled resonators using an on-chip readout platform with loaded Q factors up to 33,000. Our approach holds promise for realizing ultra-small opto-mechanical resonators for high-frequency operation and sensing applications.

  11. Simulation of Transport Phenomena in Aluminum Nitride Single-Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V F

    2002-04-03

    The goal of this project is to apply advanced computer-aided modeling techniques for simulating coupled radiation transfer present in the bulk growth of aluminum nitride (AlN) single-crystals. Producing and marketing high-quality single-crystals of AlN is currently the focus of Crystal IS, Inc., which is engaged in building a new generation of substrates for electronic and optical-electronic devices. Modeling and simulation of this company's proprietary innovative processing of AlN can substantially improve the understanding of physical phenomena, assist design, and reduce the cost and time of research activities. This collaborative work supported the goals of Crystal IS, Inc. in process scale-up and fundamental analysis with promising computational tools.

  12. Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Belkerk, B. E., E-mail: boubakeur.belkerk@gmail.com [Institut des Matériaux Jean Rouxel (IMN), University of Nantes, 2 rue de la Houssinière BP 32229, 44322 Nantes cedex 3 (France); Universités de Constantine, Laboratoire Microsystèmes et Instrumentation (LMI), Université Constantine 1, Faculté des Sciences de la Technologie, Route de Ain El Bey, Constantine 25017 (Algeria); Bensalem, S.; Soussou, A.; Carette, M.; Djouadi, M. A.; Scudeller, Y. [Institut des Matériaux Jean Rouxel (IMN), University of Nantes, 2 rue de la Houssinière BP 32229, 44322 Nantes cedex 3 (France); Al Brithen, H. [Department of Physics and Astronomy at College of Science, King Saud University at Riyadh (Saudi Arabia)

    2014-12-01

    In this paper, we report on investigation concerning the substrate-dependent thermal conductivity (k) of Aluminum Nitride (AlN) thin-films processed at low temperature by reactive magnetron sputtering. The thermal conductivity of AlN films grown at low temperature (<200 °C) on single-crystal silicon (Si) and amorphous silicon nitride (SiN) with thicknesses ranging from 100 nm to 4000 nm was measured with the transient hot-strip technique. The k values for AlN films on SiN were found significantly lower than those on Silicon consistently with their microstructures revealed by X-ray diffraction, high resolution scanning electron microscopy, and transmission electron microscopy. The change in k was due to the thermal boundary resistance found to be equal to 10 × 10{sup −9} Km{sup 2}W{sup −1} on SiN against 3.5 × 10{sup −9} Km{sup 2}W{sup −1} on Si. However, the intrinsic thermal conductivity was determined with a value as high as 200 Wm{sup −1}K{sup −1} whatever the substrate.

  13. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    Science.gov (United States)

    Gillinger, M.; Schneider, M.; Bittner, A.; Nicolay, P.; Schmid, U.

    2015-02-01

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  14. The effects of substrates on the geometry and optical properties of aluminum nitride nanowires.

    Science.gov (United States)

    Gharavi, Mohammad Amin; Haratizadeh, Hamid; Kitai, Adrian; Moafi, Ali

    2012-12-01

    Based on a Chemical Vapor Deposition (CVD) process, an alumina tube electric furnace was assembled to synthesize different one dimensional aluminum nitride (AIN) nanostructures via aluminum powder and nitrogen gas flow. The products obtained where nanowires, nanorods, a unique chain-linked nanocage structure made from an entanglement of AIN nanowires and an interesting micro-sized spherical architecture. The different growth parameters dictated to the system result the product variety, making structure tuning possible. The incorporation of different substrates (silicon and alumina) not only leads to the formation of different shaped structures, but also results different optical emissions ranging from 450 nm (blue) to 650 nm (red), indicating the high potential of AIN nanostructures in LED fabrication. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selective Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Photoluminescence (PL) and Energy Dispersive X-ray (EDX) analysis results are discussed and a Vapor-Liquid-Solid (VLS)/Vapor-Solid (VS) based growth mechanism is proposed for the mentioned structures.

  15. In-resonator variation of waveguide cross-sections for dispersion control of aluminum nitride micro-rings

    CERN Document Server

    Jung, Hojoong; Tang, Hong X

    2015-01-01

    We propose and demonstrate a dispersion control technique by combination of different waveguide cross sections in an aluminum nitride micro-ring resonator. Narrow and wide waveguides with normal and anomalous dispersion, respectively, are linked with tapering waveguides and enclosed in a ring resonator to produce a total dispersion near zero. The mode-coupling in multimoded waveguides is also effectively suppressed. This technique provides new degrees of freedom and enhanced flexibility in engineering the dispersion of microcomb resonators.

  16. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  17. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M.; Schneider, M.; Bittner, A.; Schmid, U. [Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna 1040 (Austria); Nicolay, P. [CTR Carinthian Tech Research AG, Villach 9524 (Austria)

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  18. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    Science.gov (United States)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  19. High solids loading of aluminum nitride powder in epoxy resin: Dispersion and thermal conductivity

    Science.gov (United States)

    Lee, Eunsung

    Most semiconductor devices are now packaged in an epoxy polymer composite, which includes a silica powder filler for reducing the thermal expansion coefficient. However, increased heat output from near-future semiconductors will require higher thermal conductivity fillers such as aluminum nitride powder, instead of silica. This thesis research is intended to apply improved dispersant chemistry, in order to achieve a high volume percentage of AlN powder in epoxy, increasing the thermal conductivity of the composite without causing excessive viscosity before the epoxy monomer is crosslinked. In initial experiments, the dispersibility of aluminum oxide in epoxy monomer resin was better than that of AlN, because of the weaker basicity of oxide surfaces compared with nitride. To improve the dispersibility of AlN, its surface was modified by pretreatment with silane coupling agents. Silane molecules with different head groups were investigated. In those experiments, methylsilane gave lower viscosities than chloro- or methoxysilane, while pretreatments using organic acids increased the viscosity of the AlN dispersion. The viscosity changes and FTIR peak intensity trends suggested that the silane molecules could be adsorbed on AlN surfaces in the form of a monolayer during optimization experiments, and the best silane monolayer coverage on the AlN powder surfaces was achieved with 2 wt% amounts in a 3 hour treatment. A particular phosphate ester was a good second layer dispersant for the AlN-plus-epoxy system. When that dispersant was added onto the silane-treated filler surfaces, the degree of viscosity reduction was dependent on the types of silane coupling agent functional groups. In the optimized results, silane pretreatment followed by dispersant addition was better than either alone. High solids loading, up to 57 vol.%, was achieved with a wide particle size distribution of powder, and the viscosity of that dispersion was 60,000 to 90,000 cps, which easily flowed by

  20. Effect of pre-heat treatments and cold rolling reduction on recrystallization texture of 6082 aluminum alloy%预处理和变形量对6082铝合金再结晶织构的影响

    Institute of Scientific and Technical Information of China (English)

    江海涛; 孙璐; 蔡正旭; 张成刚

    2013-01-01

    采用取向分布函数法分析并研究了冷轧前预处理和冷轧变形量对6082铝合金再结晶的影响.结果表明,6082铝合金的再结晶织构主要由立方织构和旋转立方织构组成.不经过热处理和经过固溶时效处理的试样,随着冷轧变形量的增加,再结晶织构组分明显增加;只经过固溶处理的试样,随着冷轧变形量的增加,再结晶织构组分变化不明显,说明冷轧前固溶处理可以明显弱化再结晶织构.%Effects of pre-heat treatments and cold rolling reduction on recrystallization texture of 6082 aluminum alloy were investigated by ODF (orientation distribution function).The results show that the recrystallization textures of 6082 aluminum alloy consist of cube texture and rotated cube texture components.For the samples without pre-heat treatment and overaging treatment,the recrystallization textures obviously increase with the increasing cold rolling reduction.However,the recrystallization textures change little with the increasing of cold rolling reduction for the solution-treated samples.The process of solution treatment before cold rolling can weaken the recrystallization texture of 6082 aluminum alloy.

  1. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    Science.gov (United States)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-01

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.

  2. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  3. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  4. MEMS flexible artificial basilar membrane fabricated from piezoelectric aluminum nitride on an SU-8 substrate

    Science.gov (United States)

    Jang, Jongmoon; Jang, Jeong Hun; Choi, Hongsoo

    2017-07-01

    In this paper, we present a flexible artificial basilar membrane (FABM) that mimics the passive mechanical frequency selectivity of the basilar membrane. The FABM is composed of a cantilever array made of piezoelectric aluminum nitride (AlN) on an SU-8 substrate. We analyzed the orientations of the AlN crystals using scanning electron microscopy and x-ray diffraction. The AIN crystals are oriented in the c-axis (0 0 2) plane and effective piezoelectric coefficient was measured as 3.52 pm V-1. To characterize the frequency selectivity of the FABM, mechanical displacements were measured using a scanning laser Doppler vibrometer. When electrical and acoustic stimuli were applied, the measured resonance frequencies were in the ranges of 663.0-2369 Hz and 659.4-2375 Hz, respectively. These results demonstrate that the mechanical frequency selectivity of this piezoelectric FABM is close to the human communication frequency range (300-3000 Hz), which is a vital feature of potential auditory prostheses.

  5. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    Science.gov (United States)

    Ghosh, Siddhartha; Piazza, Gianluca

    2016-06-01

    An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN) thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p) coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  6. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies.

    Science.gov (United States)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.

  7. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Broas, Mikael, E-mail: mikael.broas@aalto.fi; Vuorinen, Vesa [Department of Electrical Engineering and Automation, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sippola, Perttu; Pyymaki Perros, Alexander; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä (Finland); Paulasto-Kröckel, Mervi [Department of Electrical Engineering and Automation, Aalto University. P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland)

    2016-07-15

    Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N{sub 2}:H{sub 2} plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the AlN films. Furthermore, dinitrogen triple bonds were identified with infrared spectroscopy in the films. The triple bonds broke after annealing at 1000 °C for 1 h which likely caused enhanced hydrolysis of the films. The nanostructure of the films was identified to be amorphous in the as-deposited state and to become nanocrystalline after 1 h of annealing at 1000 °C.

  8. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    Directory of Open Access Journals (Sweden)

    Siddhartha Ghosh

    2016-06-01

    Full Text Available An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  9. Improving source efficiency for aluminum nitride grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Foronda, Humberto M.; Laurent, Matthew A.; Yonkee, Benjanim; Keller, Stacia; DenBaars, Steven P.; Speck, James S.

    2016-08-01

    Parasitic pre-reactions are known to play a role in the growth of aluminum nitride (AlN) via metal organic chemical vapor deposition, where they can deplete precursor molecules before reaching the substrate, leading to poor growth efficiency. Studies have shown that reducing the growth pressure and growth temperature results in improved growth efficiency of AlN; however, superior crystal quality and reduced impurity incorporation are generally best obtained when growing at high temperatures. This study shows that, with proper alkyl source dilution, parasitic pre-reactions can be suppressed while maintaining high growth temperatures. The results show an 18× increase in growth rate and efficiency of AlN films: from 0.04 μm h-1 to 0.73 μm h-1, and 26 μm mol-1 to 502 μm mol-1, respectively; under constant TMAl flow and a small change in total gas flow. This results in 6.8% of Al atoms from the injected TMAl being utilized for AlN layer growth for this reactor configuration. This is better than the standard GaN growth, where 6.0% of the Ga atoms injected from TMGa are utilized for GaN growth.

  10. Synthesis of aluminum nitride thin films and their potential applications in solid state thermoluminescence dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, R.K., E-mail: rupeshkr@barc.gov.in [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Soni, A. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, P. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, D.R.; Kulkarni, M.S. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-11-15

    In this work, aluminum nitride thin films were deposited on Si (1 1 1) substrate by magnetron sputtering. The obtained film was studied for thermoluminescence after irradiating it to various doses of γ-rays. Thermoluminescence measurement showed photon emission at an irradiation dose of 100 Gy or higher. Deconvolution of the experimental glow curve indicated that recombination centers in AlN were present below 2 eV trap depth. Irradiated AlN films showed less than 2% fading of TL signals on storage for 1 month in dark conditions and for the same period, light induced fading was also less than 4%. A linear variation of integrated thermoluminescence counts with absorbed dose has been observed up to an irradiation dose of 10 kGy. The deposited film was also characterized by grazing incidence X-ray diffraction, atomic force microscopy and secondary ion mass spectroscopy. Grazing incidence X-ray diffraction measurement of the obtained film has shown formation of polycrystalline wurtzite AlN having preferred orientation along (1 0 0) plane. Secondary ion mass spectroscopy analysis revealed the presence of oxygen in the film. - Highlights: • TL emission in sputter deposited AlN thin films when irradiated to gamma rays. • Linear dose–response up to 10 kGy irradiation dose. • Negligible fading of TL signals on storage. • Nominal light induced TL fading. • AlN thin films found potentially suitable for high dose dosimetry applications.

  11. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube.

    Science.gov (United States)

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Moghimi, Masoumeh

    2012-09-01

    Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0-140 × 10(-4) a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using a locally modified version of the GAMESS electronic structure program. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag AlNNT show increases with increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not significantly change with increasing electric field strength. The energy gap of the nanotube decreases with increases of the electric field strength and its reactivity is increased. Increase of the ionization potential, electron affinity, chemical potential, electrophilicity, and HOMO and LUMO in the nanotube with increase of the applied parallel electric field strengths shows that the parallel field has a much stronger interaction with the nanotube with respect to the transverse electric field strengths. Analysis of the parameters indicates that the properties of AlNNTs can be controlled by the proper external electric field.

  12. High temperature performance of sputter-deposited piezoelectric aluminum nitride thin films

    Science.gov (United States)

    Gillinger, M.; Schneider, M.; Bittner, A.; Nicolay, P.; Schmid, U.

    2015-05-01

    Aluminum nitride (AlN) is a promising material for sensor applications in harsh environments such as turbine exhausts or thermal power plants due to its piezoelectric properties, good thermal match to silicon and high temperature stability. Typically, the usage of piezoelectric materials in high temperature is limited by the Curie-temperature, the increase of the leakage current as well as by enhanced diffusion effects in the materials. In order to exploit the high temperature potential of AlN thin films, post deposition annealing experiments up to 1000°C in both oxygen and nitrogen gas atmospheres for 2 h were performed. X-ray diffraction measurements indicate that the thin films are chemically stable in a pure oxygen atmosphere for 2 h at annealing temperatures of up to 900°C. After a 2 h annealing step at 1000°C in pure oxygen. However, a 100 nm thin AlN film is completely oxidized. In contrast, the layer is stable up to 1000°C in pure nitrogen atmosphere. The surface topology changes significantly at annealing temperatures above 800°C independent of annealing atmosphere. The surface roughness is increased by about one order of magnitude compared to the "as deposited" state. This is predominantly attributed to recrystallization processes occurring during high temperature loading. Up to an annealing temperature of 700°C, a Poole-Frenkel conduction mechanism dominates the leakage current characteristics. Above, a mixture of different leakage current mechanisms is observed.

  13. Scanning proximal microscopy study of the thin layers of silicon carbide-aluminum nitride solid solution manufactured by fast sublimation epitaxy

    Directory of Open Access Journals (Sweden)

    Tománek P.

    2013-05-01

    Full Text Available The objective of the study is a growth of SiC/(SiC1−x(AlNx structures by fast sublimation epitaxy of the polycrystalline source of (SiC1−x(AlNx and their characterisation by proximal scanning electron microscopy and atomic force microscopy. For that purpose optimal conditions of sublimation process have been defined. Manufactured structures could be used as substrates for wide-band-gap semiconductor devices on the basis of nitrides, including gallium nitride, aluminum nitride and their alloys, as well as for the production of transistors with high mobility of electrons and also for creation of blue and ultraviolet light emitters (light-emitted diodes and laser diodes. The result of analysis shows that increasing of the growth temperature up to 2300 K allows carry out sublimation epitaxy of thin layers of aluminum nitride and its solid solution.

  14. The effects of late homogenization conditions on the Mg2Si particle size in a slow pre-heated 6063 aluminum extrusion billet

    Science.gov (United States)

    Kayıkcı, R.; Kocaman, E.; Şirin, S.; ćolak, M.

    2015-03-01

    In order to investigate the effect of late homogenization conditions on the Mg2Si precipitation of 6063 grade extrusion billets are slow pre-heated to intentionally have large Mg2Si particle precipitation. Then the billets are water quenched to preserve this microstructure for late homogenizations. Finally billets are re-heated using two different furnace temperature as 450°C and 500°C at which temperatures the billet are held for 0.5 h, 1 h, 1.5 h, 2 h and 2.5 h periods and water quenched before being taken to metallographic examinations.

  15. The thermal power of aluminum nitride at temperatures between 1350 and 1650 deg C in argon and nitrogen atmospheres. Ph.D. Thesis - Rhine-Westphalia High School at Aachen

    Science.gov (United States)

    Fischer, W. A.; Schuh, B.

    1978-01-01

    The test apparatus for measuring the thermal voltage of aluminum nitride for temperature differences of up to + or - 60 C between 1350 and 1650 C is described. The thermal power and its homogeneous proportion are determined and the heat transfer of the migration ions resulting from the homogeneous thermal power is calculated. The conduction mechanism in aluminum nitride is discussed.

  16. Low temperature sintering and performance of aluminum nitride/borosilicate glass

    Institute of Scientific and Technical Information of China (English)

    Hong-sheng ZHAO; Lei CHEN; Nian-zi GAO; Kai-hong ZHANG; Zi-qiang LI

    2009-01-01

    Aluminum nitride (AlN)/borosilicate glass composites were prepared by the tape casting process and hot-press sin-tered at 950 ℃ with AlN and SiO2-B2O3-ZnO-Al2O3-Li2O glass as starting materials. We characterized and analyzed the variation of the microstructure, bulk density, porosity, dielectric constant, thermal conductivity and thermal expansion coefficient (TEC) of the ceramic samples as a function of AlN content. Results show that AlN and SiO2-B2O3-ZnO-Al2O3-Li2O glass can be sintered at 950 ℃, and ZnAl2O4 and Zn2SiO4 phase precipitated to form glass-ceramic. The performance of the ceramic samples was de-termined by the composition and bulk density of the composites. Lower AlN content was found redounding to liquid phase sin-tering, and higher bulk density of composites can be accordingly obtained. With the increase of porosity, corresponding decreases were located in the dielectric constant, thermal conductivity and TEC of the ceramic samples. When the mass fraction of AlN was 40%, the ceramic samples possessed a low dielectric constant (4.5~5.0), high thermal conductivity (11.6 W/(m·K)) and a proper TEC (3.0×10K-1, which matched that of silicon). The excellent performance makes this kind of low temperature co-fired ce-ramic a promising candidate for application in the micro-electronics packaging industry.

  17. Deposition and characterization of amorphous aluminum nitride thin films for a gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, H.; Akiyama, R. [Institute of Materials Science, University of Tsukuba,1-1-1 Tennoudai, Tsukuba, 305-8573 (Japan); Tsukuba Nano-Tech Human Resource Development Program, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8571 (Japan); Kanazawa, K. [Institute of Materials Science, University of Tsukuba,1-1-1 Tennoudai, Tsukuba, 305-8573 (Japan); Kuroda, S., E-mail: kuroda@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba,1-1-1 Tennoudai, Tsukuba, 305-8573 (Japan); Tsukuba Nano-Tech Human Resource Development Program, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8571 (Japan); Harayama, I. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8573 (Japan); Tsukuba Nano-Tech Human Resource Development Program, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8571 (Japan); Nagashima, K. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8573 (Japan); Sekiba, D. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8573 (Japan); Tandem Accelerator Complex, Research Facility Center for Science and Technology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8577 (Japan); Ashizawa, Y.; Tsukamoto, A.; Nakagawa, K. [College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, 274-8501 (Japan); Ota, N. [Tsukuba Nano-Tech Human Resource Development Program, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8571 (Japan)

    2015-01-01

    Thin films of aluminum nitride (AlN) fabricated by reactive deposition were characterized in order to examine the electrical insulation properties suitable for a gate insulator. For a series of AlN films deposited with a variation of the amount of Al flux at a fixed N flux, compositional and chemical analyses were performed using X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA). Combined with the result of current-voltage (I-V) measurement, it is found that the insulation properties are correlated with the compositional ratio between Al and N estimated by the ERDA measurement; a good electrical insulation with a minimal leak current of the order of 10{sup -9} A/cm{sup 2} at a high electric field 1 MV/cm is achieved in the film of nearly stoichiometric compositional ratio of Al/N, in which the dominance of the Al-N bonding state is confirmed in the XPS measurement. On the other hand, the incorporation of oxygen, probably caused by the surface oxidization due to the exposure to the air, has little effect on the electrical properties. - Highlights: • AlN thin films deposited by reactive deposition were characterized for gate insulator. • A good electrical insulation was achieved at nearly stoichiometric composition. • The effects of oxygen incorporation and Al-N bonding state were also investigated. • A minimum leak current density as low as 10{sup -9}A/cm{sup 2} at 1MV/cm was achieved.

  18. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, G., E-mail: guillaume.jeanmaire@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex (France); Aubert and Duval, BP1, 63770 Les Ancizes (France); Dehmas, M.; Redjaïmia, A. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex (France); Puech, S. [Aubert and Duval, BP1, 63770 Les Ancizes (France); Fribourg, G. [Snecma Gennevilliers, 171 Boulevard de Valmy-BP 31, 92702 Colombes (France)

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. - Highlights: • Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force • Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation • Size of AlN precipitates can be reduced by quenching prior isothermal holding. • Fine precipitation of AlN related to the α → γ transformation.

  19. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    Science.gov (United States)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  20. Reactive Plasma-Sprayed Aluminum Nitride-Based Coating Thermal Conductivity

    Science.gov (United States)

    Shahien, Mohammed; Yamada, Motohiro; Fukumoto, Masahiro; Egota, Kazumi; Okamoto, Kenji

    2015-12-01

    Recently, thick aluminum nitride/alumina (AlN/Al2O3) composite coatings were successfully fabricated through the reactive plasma spraying of fine Al2O3/AlN mixture in the N2/H2 atmospheric plasma. The coatings consist of AlN, Al5O6N, γ-Al2O3, and α-Al2O3 phases. This study will evaluate the thermal conductivity of these complicated plasma-sprayed coatings and optimize the controlling aspects. Furthermore, the influence of the process parameters on the coatings thermal conductivity will be investigated. The fabricated coatings showed very low thermal conductivity (2.43 W/m K) compared to the AlN sintered compacts. It is attributed to the phase composition of the fabricated coatings, oxide content, and porosity. The presence of Al2O3, Al5O6N and the high coating porosity decreased its thermal conductivity. The presence of oxygen in the AlN lattice creates Al vacancies which lead to phonon scattering and therefore suppressed the thermal conductivity. The formation of γ-Al2O3 phase in the coating leads to further decrease in its conductivity, due to its lower density compared to the α-phase. Moreover, the high porosity of the coating strongly suppressed the conductivity. This is due to the complicated microstructure of plasma spray coatings (splats, porosity, and interfaces, particularly in case of reactive spray process), which obviously lowered the conductivity. Furthermore, the measured coating density was lower than the AlN value and suppressed the coating conductivity. In addition, the spraying parameter showed a varied effect on the coating phase composition, porosity, density, and therefore on its conductivity. Although the N2 gas flow improved the nitride content, it suppressed the thermal conductivity gradually. It is attributed to the further increase in the porosity and further decrease in the density of the coatings with the N2 gas. Furthermore, increasing the arc did not show a significant change on the coating thermal conductivity. On the other hand

  1. Synthesis of aluminum nitride powders from a plasma-assisted ball milled precursor through carbothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhi-jie [Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Dai, Le-yang [Marine Engineering Institute, Jimei University, Xiamen 361021 (China); Yang, De-zheng; Wang, Sen [Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zhang, Bao-jian [Marine Engineering Institute, Jimei University, Xiamen 361021 (China); Wang, Wen-chun, E-mail: wangwenc@dlut.edu.cn [Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Cheng, Tie-han [Pinggao Group Co. Ltd., State Grid Corporation of China, Pingdingshan 467000 (China)

    2015-01-15

    Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.

  2. Modification and characterization of aluminum nitride surfaces for an acoustic wave biosensor

    Science.gov (United States)

    Rosenberger, Leland W.

    Aluminum nitride (AlN) is a piezoelectric material that is being developed for use in a surface acoustic wave sensor for the detection of bacteria in fluid media. An AlN film is deposited on a sapphire or silicon substrate. After conductor deposition, an electronic signal is applied across the device and the signal is modified by changes in the mass immobilized on the sensor surface. Bacteria are immobilized on the surface by antibodies specific to the bacterial species. The problem addressed in this dissertation is how to form a bridge between the inorganic surface and the antibodies. The approach used is to form a new chemical layer on the AlN by using silanes. Functional groups on the silane surface can then be used as anchor points for the antibodies. This approach was carried out in three steps: (1) characterize the AlN surface, (2) explore four surface treatment methods that prepare the AlN surface for silanization and (3) silanize the resulting surface. AlN films were deposited by a Plasma Source Molecular Beam Epitaxy method. The films were characterized by RHEED, X-ray diffraction, air/water contact angle, atomic force microscopy (AFM), ellipsometry and X-ray photoelectron spectroscopy (XPS). The four surface treatment methods explored were: immersion in boiling water, exposure to laser light, immersion in piranha solution and treatment with plasma. Samples were characterized by contact angle, AFM and XPS. Plasma treatment was preferred because it prepared the surface most effectively, without any loss of sub-surface AlN. Samples of AlN were silanized with two types of silane, along with silicon controls. Samples were characterized by contact angle, AFM and XPS. The effectiveness of silanes on AlN was equal to or somewhat less than that observed on silicon. AlN samples were also co-deposited with two different silanes and then the end group on one of the silanes was chemically modified. This demonstrated that the density of functional groups on the

  3. Simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by slurry-sampling graphite furnace AAS.

    Science.gov (United States)

    Minami, Hirotsugu; Yada, Masako; Yoshida, Tomomi; Zhang, Qiangbin; Inoue, Sadanobu; Atsuya, Ikuo

    2004-03-01

    A fast and accurate analytical method was established for the simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by graphite furnace atomic absorption spectrometry using a slurry sampling technique and a Hitachi Model Z-9000 atomic absorption spectrometer. The slurry samples were prepared by the ultrasonication of silicon carbide or silicon nitride powders with 0.1 M nitric acid. Calibration curves were prepared by using a mixed standard solution containing aluminum, calcium, iron and 0.1 M nitric acid. The analytical results of the proposed method for aluminum, calcium and iron in silicon carbide and silicon nitride reference materials were in good agreement with the reference values. The detection limits for aluminum, calcium and iron were 0.6 microg/g, 0.15 microg/g and 2.5 microg/g, respectively, in solid samples, when 200 mg of powdered samples were suspended in 20 ml of 0.1 M nitric acid and a 10 microl portion of the slurry sample was then measured. The relative standard deviation of the determination of aluminum, calcium and iron was 5 - 33%.

  4. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Science.gov (United States)

    Antonova, K.; Duta, L.; Szekeres, A.; Stan, G. E.; Mihailescu, I. N.; Anastasescu, M.; Stroescu, H.; Gartner, M.

    2017-02-01

    Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A1LO mode frequency was analysed and connected to the orientation of the particles' optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers' properties is discussed on this basis.

  5. A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    CERN Document Server

    McCarrick, H; Jones, G; Johnson, B R; Ade, P A R; Bradford, K; Bryan, S; Cantor, R; Che, G; Day, P; Doyle, S; Leduc, H; Limon, M; Mauskopf, P; Miller, A; Mroczkowski, T; Tucker, C; Zmuidzinas, J

    2015-01-01

    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously-characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66\\% on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.

  6. Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhifang; Wan, Yizao [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xiong, Guangyao [School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013 (China); Guo, Ruisong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Luo, Honglin, E-mail: hlluo@tju.edu.cn [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2013-09-01

    Attention toward nanosized aluminum nitride (AlN) was rapidly increasing due to its physical and chemical characteristics. In this work, nanocrystalline AlN particles were prepared via a simple urea glass route. The effect of the urea/metal molar ratio on the crystal structure and morphology of nanocrystalline AlN particles was studied using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results revealed that the morphology and the crystal structure of AlN nanoparticles could be controlled by adjusting the urea/metal ratio. Furthermore, a mixture of Al{sub 2}O{sub 3} and h-AlN was detected at the urea/metal molar ratio of 4 due to the inadequate urea content. With increasing the molar ratio, the pure h-AlN was obtained. In addition, the nucleation and growth mechanisms of AlN nanocrystalline were proposed.

  7. Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces

    Directory of Open Access Journals (Sweden)

    Taro Yoshikawa

    2016-11-01

    Full Text Available Electrostatic self-assembly of diamond nanoparticles (DNPs onto substrate surfaces (so-called nanodiamond seeding is a notable technique, enabling chemical vapor deposition (CVD of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar c-axis oriented sputtered aluminum nitride (AlN film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.

  8. Preheating in New Inflation

    CERN Document Server

    Desroche, M; Kratochvil, J; Linde, Andrei D; Desroche, Mariel; Felder, Gary N.; Kratochvil, Jan M.; Linde, Andrei

    2005-01-01

    During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We do a full analysis of preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long st...

  9. Preheating after modular inflation

    Science.gov (United States)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  10. Spectroscopic Measurements of Target Preheating on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Elton, R.C.; Griem, H.R.; Iglesias, E.J.

    2000-02-28

    The preheating of laser-heated microballoon targets has been measured by time-resolved x-ray and extreme ultraviolet (euv) spectroscopy on the 30 kJ, 351 nm, 60-beam laser-fusion system at the University of Rochester Laboratory for Laser Energetics. Thin coatings of aluminum overcoated with magnesium served as indicators. both the sequence of the x-ray line emission and the intensity of euv radiation were used to determine a preheating peaking at {approx} 10 ns prior to onset of the main laser pulse, with a power density {approx_equal}1% of the main pulse. The measurements are supported by numerical modeling. Further information is provided by absorption spectra from the aluminum coating, backlighted by continuum from the heated surface. The exact source of the preheating energy remains unknown at present, but most likely arrives from early laser leakage through the system. The present target diagnostic is particularly useful when all beams cannot be monitored directly at all laser wavelengths.

  11. Adhesion measurements and chemical and microstructural characterization at interfaces of titanium nitride and titanium aluminum nitride coatings on stainless steel, inconel and titanium alloys

    Science.gov (United States)

    James, Robert Dallas

    To assess the adhesion of nitride coatings on metal alloys, Ti 6Al-4V, 17-4 PH stainless steel and Inconel 718 alloy substrates were coated with titanium nitride (TiN) using both cathodic arc and electron beam evaporation. Titanium aluminum nitride ((Ti,Al)N) was also deposited using cathodic arc evaporation. X-ray photoelectron, Auger electron, and energy dispersive x-ray spectroscopies were used in tandem with cross-sectional transmission electron microscopy to analyze the coatings and the coating-substrate interfaces. The interfaces were found to be abrupt with a thin layer of W contamination located between the substrate and the Ti interlayer, deposited to improve adhesion, on electron beam evaporated samples. Metallic macroparticles up to two microns in diameter were observed in cathodic arc evaporated coatings. Residual stress analysis of the coatings revealed the presence of biaxial compressive residual stresses in all coatings. Residual stresses increased for coating-substrate systems with a larger mismatch between the coefficients of thermal expansion for the coating and the substrate. Scratch tests of the coatings revealed lower critical load values for coatings on Ti 6Al-4V due to the lower hardness of the substrate alloy relative to the stainless steel and Inconel alloys. The scratch test is a common method for evaluating adhesion of a coating to its substrate; however, this technique is not well understood due to complex loading of specimen as coating is removed. Plate impact spallation, is a more uncommon method for evaluating adhesion, but the advantage of this technique is that the interface is subjected to purely tensile loading. During plate impact spallation, the interfaces of the coated samples were loaded in tension using a high speed shock wave which caused spallation either at the interface, in the coating or in the metal. Failure in cathodic arc deposited coatings occurred in the form of isolated spallation craters located within the

  12. Synthesis and characterization of molybdenum/phenolic resin composites binding with aluminum nitride particles for diamond cutters

    Science.gov (United States)

    Lin, Chun-Te; Lee, Hsun-Tsing; Chen, Jem-Kun

    2013-11-01

    Novolac-type bisphenol-F based molybdenum-phenolic resins/silane-modified aluminum nitride (Mo-BPF/m-AlN) composites were successfully prepared. In the preparation process, molybdate reacted with bisphenol-F based phenolic resins (BPF) to form a low cross-linked Mo-BPF with new Mosbnd O bonds which were confirmed by the FTIR and XPS spectra. Simultaneously, a special silane-modified aluminum nitride (m-AlN) was prepared with 3-aminopropyltriethoxysilane (APTES) modifier. Then, this m-AlN was fully mixed with Mo-BPF to form Mo-BPF/m-AlN which can be further cured with hexamethylenetetramine at 200 °C. The structure and characterization of BPF, Mo-BPF and Mo-BPF/m-AlN were determined by using FTIR, DSC, DMA, TGA, SEM, mechanical properties and contact angle measurements. SEM photographs show that m-AlN particles are uniformly distributed in the Mo-BPF/m-AlN composites. Also there are no gaps or void between m-AlN and Mo-BPF phases, which implies a strong physical bonding between the two phases. The glass transition temperature, thermal resistance, flexural strength, and hardness of Mo-BPF are respectively higher than those of BPF. This is due to the presence of Mosbnd O cross-linking bonds in Mo-BPF. When the m-AlN was additionally incorporated into Mo-BPF, the well-dispersed and well-adhered m-AlN can further promote all the above-mentioned properties of the composites. Typically, the glass transition temperature, decomposition temperature at 5% weight loss and flexural strength of Mo-BPF/m-AlN are 245 °C, 428 °C and 82.7 MPa respectively, which are much higher than the corresponding values of 184 °C, 358 °C and 58.2 MPa for BPF. In addition, the hygroscopic nature of BPF can be inhibited by treating with molybdate or incorporating with m-AlN. This is due to that the m-AlN is hydrophobic and Mosbnd O groups in Mo-BPF are more hydrophobic than OH groups in BPF. Furthermore, Mo-BPF/m-AlN was compared with BPF in the performance as a binder for diamond cutting

  13. Synthesis and characterization of molybdenum/phenolic resin composites binding with aluminum nitride particles for diamond cutters

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Te [Department of Polymer Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Rd, Taipei 106, Taiwan (China); Lee, Hsun-Tsing [R and D Center for the Applications of Nanomaterials and Electro-information Technology, Vanung University, Chung-Li, Tao-Yuan, Taiwan (China); Chen, Jem-Kun, E-mail: jkchen@mail.ntust.edu.tw [Department of Polymer Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Rd, Taipei 106, Taiwan (China)

    2013-11-01

    Novolac-type bisphenol-F based molybdenum–phenolic resins/silane-modified aluminum nitride (Mo–BPF/m-AlN) composites were successfully prepared. In the preparation process, molybdate reacted with bisphenol-F based phenolic resins (BPF) to form a low cross-linked Mo–BPF with new Mo-O bonds which were confirmed by the FTIR and XPS spectra. Simultaneously, a special silane-modified aluminum nitride (m-AlN) was prepared with 3-aminopropyltriethoxysilane (APTES) modifier. Then, this m-AlN was fully mixed with Mo–BPF to form Mo–BPF/m-AlN which can be further cured with hexamethylenetetramine at 200 °C. The structure and characterization of BPF, Mo–BPF and Mo–BPF/m-AlN were determined by using FTIR, DSC, DMA, TGA, SEM, mechanical properties and contact angle measurements. SEM photographs show that m-AlN particles are uniformly distributed in the Mo–BPF/m-AlN composites. Also there are no gaps or void between m-AlN and Mo–BPF phases, which implies a strong physical bonding between the two phases. The glass transition temperature, thermal resistance, flexural strength, and hardness of Mo–BPF are respectively higher than those of BPF. This is due to the presence of Mo-O cross-linking bonds in Mo–BPF. When the m-AlN was additionally incorporated into Mo–BPF, the well-dispersed and well-adhered m-AlN can further promote all the above-mentioned properties of the composites. Typically, the glass transition temperature, decomposition temperature at 5% weight loss and flexural strength of Mo–BPF/m-AlN are 245 °C, 428 °C and 82.7 MPa respectively, which are much higher than the corresponding values of 184 °C, 358 °C and 58.2 MPa for BPF. In addition, the hygroscopic nature of BPF can be inhibited by treating with molybdate or incorporating with m-AlN. This is due to that the m-AlN is hydrophobic and Mo-O groups in Mo–BPF are more hydrophobic than OH groups in BPF. Furthermore, Mo–BPF/m-AlN was compared with BPF in the performance as a binder for

  14. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    Energy Technology Data Exchange (ETDEWEB)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I. [Electronic Systems Engineering Department, University of São Paulo, CEP 05508-010 São Paulo, SP (Brazil); Carvalho, D. O. [UNESP - São Paulo State University, CEP 13874-149 São João da Boa Vista, SP (Brazil); Ferlauto, A. S. [Department of Physics, Federal University of Minas Gerais, CEP 31270-901 Belo Horizonte, MG (Brazil)

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  15. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  16. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jonghoon [Department of Electrical and Computer Engineering, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)]. E-mail: jhoon6@hotmail.com; Ma, James [Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Becker, Michael F. [Department of Electrical and Computer Engineering, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Keto, John W. [Department of Physics, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Kovar, Desiderio [Department of Mechanical Engineering, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2007-06-25

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10{sup -2} Pa (4.5 x 10{sup -4} Torr) of 99.9% purity.

  17. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing.

    Science.gov (United States)

    Xiong, Chi; Pernice, Wolfram H P; Tang, Hong X

    2012-07-11

    Photonic miniaturization requires seamless integration of linear and nonlinear optical components to achieve passive and active functions simultaneously. Among the available material systems, silicon photonics holds immense promise for optical signal processing and on-chip optical networks. However, silicon is limited to wavelengths above 1.1 μm and does not provide the desired lowest order optical nonlinearity for active signal processing. Here we report the integration of aluminum nitride (AlN) films on silicon substrates to bring active functionalities to chip-scale photonics. Using CMOS-compatible sputtered thin films we fabricate AlN-on-insulator waveguides that exhibit low propagation loss (0.6 dB/cm). Exploiting AlN's inherent Pockels effect we demonstrate electro-optic modulation up to 4.5 Gb/s with very low energy consumption (down to 10 fJ/bit). The ultrawide transparency window of AlN devices also enables high speed modulation at visible wavelengths. Our low cost, wideband, carrier-free photonic circuits hold promise for ultralow power and high-speed signal processing at the microprocessor chip level.

  18. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing

    CERN Document Server

    Xiong, Chi; Tang, Hong X

    2014-01-01

    Photonic miniaturization requires seamless integration of linear and nonlinear optical components to achieve passive and active functions simultaneously. Among the available material systems, silicon photonics holds immense promise for optical signal processing and on-chip optical networks. However, silicon is limited to wavelengths above 1100 nm and does not provide the desired lowest order optical nonlinearity for active signal processing. Here we report the integration of aluminum nitride (AlN) films on silicon substrates to bring active functionalities to chip-scale photonics. Using CMOS-compatible sputtered thin films we fabricate AlN-on-insulator waveguides that exhibit low propagation loss (0.6 dB/cm). Exploiting AlN's inherent Pockels effect we demonstrate electro-optic modulation up to 4.5 Gb/s with very low energy consumption (down to 10 fJ/bit). The ultra-wide transparency window of AlN devices also enables high speed modulation at visible wavelengths. Our low cost, wideband, carrier-free photonic ...

  19. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    Science.gov (United States)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  20. Preheating with fractional powers

    Science.gov (United States)

    Moghaddam, Hossein Bazrafshan; Brandenberger, Robert

    2016-11-01

    We consider preheating in models in which the potential for the inflaton is given by a fractional power, as is the case in axion monodromy inflation. We assume a standard coupling between the inflaton field and a scalar matter field. We find that in spite of the fact that the oscillation of the inflaton about the field value which minimizes the potential is anharmonic, there is nevertheless a parametric resonance instability, and we determine the Floquet exponent which describes this instability as a function of the parameters of the inflaton potential.

  1. Oxidation and corrosion behavior of titanium aluminum nitride coatings by arc ion plating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-sheng; FENG Chang-jie; ZHANG Zhi-feng; WANG Fu-hui

    2006-01-01

    Composite metastable TiN and Ti1-xAlxN coatings with different Al content were deposited on 1Cr11Ni2W2MoV stainless steel for aero-engine compressor blades by arc ion plating. The results show that all coatings have a B1NaCl structure and the preferred orientation changes from (111) to (220) with increasing Al content; the lattice parameter of Ti1-xAlxN decreases with the increase of Al content. The oxidation-resistance of (Ti,Al)N coatings is significantly improved owing to the formation of Al-riched oxide on the surface of the coatings. The nitride coatings can significantly improve the corrosion-resistance of 1Cr11Ni2W2MoV stainless steel under the synergistic of water vapor and NaCl, and the corrosion-resistance becomes better when the Al content increases, because not only the quick formation of thin alumina layer prevents the further corrosion but also the formation of alumina seals the pinholes or defects in the coatings, which prevents the occurrence of localized nodules-like corrosion.

  2. Effects of rare earth oxide additives on the thermal behaviors of aluminum nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; WANG Ling; LI Chuncheng; JIANG Xiaolong; QIU Tai

    2009-01-01

    The effects of Y_2O_3 and Er_2O_3 on the sintering behaviors, thermal properties and microstructure of AIN ceramics were investigated. The ex-perimental results show that the sintering temperature can be decreased; the relative density and thermal behavior can be improved by adding rare earth oxide in AIN ceramics. For AIN ceramics with 3 wt.% Er_2O_3 additive, the relative density is 98.8%, and the thermal conductivity reaches 106 W·m~(-1)·K~(-1). The microstructure research found that no obvious aluminum erbium oxide was found in AIN ceramics doped with 3 wt.% Er_2O_3, which favored the improvement of the thermal conductivity of AIN ceramics.

  3. Ab-initio computations of electronic and transport properties of wurtzite aluminum nitride (w-AlN)

    Energy Technology Data Exchange (ETDEWEB)

    Nwigboji, Ifeanyi H.; Ejembi, John I.; Malozovsky, Yuriy; Khamala, Bethuel; Franklin, Lashounda; Zhao, Guanglin [Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Ekuma, Chinedu E. [Department of Physics & Astronomy and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States); Bagayoko, Diola, E-mail: bagayoko@aol.com [Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States)

    2015-05-01

    We report findings from several ab-initio, self-consistent calculations of electronic and transport properties of wurtzite aluminum nitride (w-AlN). Our calculations utilized a local density approximation (LDA) potential and the linear combination of Gaussian orbitals (LCGO). Unlike some other density functional theory (DFT) calculations, we employed the Bagayoko, Zhao, and Williams' method, enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method verifiably leads to the minima of the occupied energies; these minima, the low laying unoccupied energies, and related wave functions provide the most variationally and physically valid density functional theory (DFT) description of the ground states of materials under study. With multiple oxidation states of Al (Al{sup 3+} to Al) and the availability of N{sup 3−} to N, the BZW-EF method required several sets of self-consistent calculations with different ionic species as input. The binding energy for (Al{sup 3+}& N{sup 3−)} as input was 1.5 eV larger in magnitude than those for other input choices; the results discussed here are those from the calculation that led to the absolute minima of the occupied energies with this input. Our calculated, direct band gap for w-AlN, at the Γ point, is 6.28 eV, in excellent agreement with the 6.28 eV experimental value at 5K. We discuss the bands, total and partial densities of states, and calculated, effective masses. - Highlights: • LDA BZW-EF calculated band gap of w-AlN agrees well with experiment. • Features (widths & others) of the valence bands of w-AlN agree with experiment. • BZW-EF strictly adheres to the intrinsic requirements of DFT (and of LDA). • This adherence is the reason it outperforms DFT calculations not using it.

  4. Lateral epitaxial overgrowth of aluminum nitride and near ultraviolet LEDs for white lighting applications

    Science.gov (United States)

    Newman, Scott A.

    In recent years, substantial efforts have been made to develop deep ultraviolet AlGaN-based LEDs (200-280 nm) for specialized applications such as bio-detection and non-line-of-sight (NLOS) communications. One of several factors limiting the performance of these devices is the high threading dislocation (TD) density of ˜5x109 cm-2 that results from growing the required AlN base layer on either a SiC or sapphire substrate. Lateral epitaxial overgrowth (LEO) of AlN, the first topic of this dissertation, is a promising technology for growing low TD density AlN templates. Conventional LEO methods relying on selective area growth (SAG) have not been effective for AlxGa1-xN with x > 0.2, because of the high aluminum sticking coefficient for the mask materials and/or contamination of the film by the mask. Therefore, maskless AlN LEO was investigated using metal organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy (HVPE). Cracked AlN films with TD densities of LEDs for white lighting applications. Currently, cool white LEDs consisting of a blue GaN/InGaN LED and the YAG:Ce3+ yellow phosphor are available with 107 lm/W efficacy, but have have high correlated color temperatures (CCTs) of ˜5,500 K and poor color rendering indices (CRIs) of ˜75. The alternative approach of combining a NUV LED with suitable NUV-excitation phosphors (e.g., red, green, and blue phosphors) can theoretically allow for high CRI white lighting with relatively good efficacy and a variety of CCTs. When this project began in late 2007, the lack of suitable blue-excitation phosphors suggested that this was the only viable approach to attaining very high CRI white lighting. NUV LEDs with AlN buffers on 6H-SiC substrates and AlGaN/InGaN active regions were first developed to target white phosphors with excitation peaks near 365 nm. Later, NUV LEDs with GaN buffers on sapphire substrates and GaN/InGaN active regions were developed to diagnose problems with the AlGaN/InGaN LEDs and to

  5. Aluminum nitride thin film based acoustic wave sensors for biosensing applications

    Science.gov (United States)

    Xu, Jianzeng

    monitoring the frequency and phase changes in response to the coating of aluminum thin films onto the device surface. The derived mass sensitivity indicates that both modes could potentially reach an extremely low detection limit at the level of picograms.

  6. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    Science.gov (United States)

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model.

  7. Preheating after N-flation

    CERN Document Server

    Battefeld, Diana

    2008-01-01

    We study preheating in N-flation, assuming the Mar\\v{c}enko-Pastur mass distribution, equal energy initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to be a single, massless bosonic field. By numerical analysis we find that preheating via parametric resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for N-flation are similar to those in single field inflation (at least within an observationally viable parameter region), our results suggest that the physics of preheating can differ significantly from the single field case.

  8. Investigation of optimal fluoroglass preheat

    CERN Document Server

    Baba, S; Toyoda, T; Wakamatsu, O; Machida, T

    2002-01-01

    The regular preheat condition of fluoroglass GD-301 (Chiyoda Technol Co., its size is 1.5 mm phi x 8.5 mm.) is temperature 70 deg C and time 30 minutes. When we measured dose 5.00 Gy at high energy X-ray processed with this condition, we observed build-up phenomenon according to elapsed days. So we investigated the optimal preheat temperature and time by measuring fluoroglass doses daily for several days. Fluoroglasses were irradiated 2.00 Gy of 10 MV X-ray at the reference depth using MEVATRON KD 2/50 PRIMUS (Toshiba Co.). First, we measured doses during 17 days after preheating them for 30 minutes, changing preheat temperatures from 50 deg C to 350 deg C at some intervals. Second, we measured doses during 9 days after preheating them at 70 deg C and at temperatures representing the maximum value and the most frequent value, changing preheat time from 5 minutes to 2 hours at some intervals. Doses increased up to around 115 deg C and decreased after that, and it seemed as if glasses were annealed at 350 deg C...

  9. Gravitational-wave mediated preheating

    Directory of Open Access Journals (Sweden)

    Stephon Alexander

    2015-04-01

    Full Text Available We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  10. Microstructure and mechanical properties of multiphase layer formed during depositing Ti film followed by plasma nitriding on 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.Y., E-mail: zfy19861010@163.com; Yan, M.F., E-mail: yanmufu@hit.edu.cn

    2014-05-01

    Highlights: • A novel duplex surface treatment on 2024 Al alloy was proposed. • A multiphase layer composed of TiN{sub 0.3}, Al{sub 3}Ti and Al{sub 18}Ti{sub 2}Mg{sub 3} was prepared on the surface of 2024 Al alloy. • The microstructures of TiN{sub 0.3}, Al{sub 3}Ti and Al{sub 18}Ti{sub 2}Mg{sub 3} were characterized by SEM and TEM. • The surface hardness of the multiphase layer reached to 590 HV{sub 0.01}, five times harder than 2024 Al alloy. • The wear resistance of 2024 Al alloy was improved significantly. - Abstract: In this study, a novel method was develop to fabricate an in situ multiphase layer on 2024 Al alloy to improve its surface mechanical properties. The method was divided into two steps, namely depositing pure Ti film on 2024 Al substrate by using magnetron sputtering, and plasma nitriding of Ti coated 2024 Al in a gas mixture comprising of 40% N{sub 2}–60% H{sub 2}. The microstructure and mechanical properties of the multiphase layer prepared at different nitriding time were investigated by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), microhardness tester and pin-on-disc tribometer. Results showed that multiphase layer with three sub-layers (i.e. the outmost TiN{sub 0.3} layer, the intermediate Al{sub 3}Ti layer and the inside Al{sub 18}Ti{sub 2}Mg{sub 3} layer) can be obtained. The thickness of the Al{sub 18}Ti{sub 2}Mg{sub 3} layer increased faster than TiN{sub 0.3} and Al{sub 3}Ti layer with increasing nitriding time. The hardness of the layer has reached about 593 HV, which is much higher than that of 2024 Al substrate. The wear rate of the coated samples decreased 53% for 4 h nitriding and 86% for 12 h nitriding, respectively, compared with that of the uncoated one. The analysis of worn surface indicated that the coated 2024 Al exhibited predominant abrasive wear, whereas the uncoated one showed severe adhesive wear.

  11. Nonlinear Inflaton Fragmentation after Preheating

    CERN Document Server

    Felder, G N; Felder, Gary N.; Kofman, Lev

    2007-01-01

    We consider the nonlinear dynamics of inflaton fragmentation during and after preheating in the simplest model of chaotic inflation. While the earlier regime of parametric resonant particle production and the later turbulent regime of interacting fields evolving towards equilibrium are well identified and understood, the short intermediate stage of violent nonlinear dynamics remains less explored. Lattice simulations of fully nonlinear preheating dynamics show specific features of this intermediate stage: occupation numbers of the scalar particles are peaked, scalar fields become significantly non-gaussian and the field dynamics become chaotic and irreversible. Visualization of the field dynamics in configuration space reveals that nonlinear interactions generate non-gaussian inflaton inhomogeneities with very fast growing amplitudes. The peaks of the inflaton inhomogeneities coincide with the peaks of the scalar field(s) produced by parametric resonance. When the inflaton peaks reach their maxima, they stop ...

  12. Study on Macro-morphology of Hard whirling Chips with PCBN Cutting Tools Coated with Chromium Aluminum Nitride%氮化铬铝涂层PCBN刀具旋风硬铣切屑宏观特征研究

    Institute of Scientific and Technical Information of China (English)

    朱红雨; 李迎

    2011-01-01

    氮化铬铝具有比氮化钛铝更高的硬度和抗氧化性,能否作为PCBN刀具的涂层需要进行试验研究验证.通过对氮化铬铝涂层PCBN刀具在硬态旋风铣削淬硬钢GCr15平均硬度为63.5HRC)加工中,选用不同的切削参数、冷却方式和刀具个数的研究,从而得出氮化铬铝涂层PCBN刀具旋风硬铣加工的特点和应用范围,对涂层刀具的研究和切屑预报研究提供了依据.%Chromium Aluminum Nitride has much more hardness and oxidation resistance than Titanium Aluminum Nitride. This article studied on cutting tool wear, surface processing quality of work piece and macro-morphology of chips during the hard whirling machining on hardened steel GCrl5 with average hardness at 63. 5HRC through PCBN cutting tools coated with Chromium Aluminum Nitride. Through testing with different cutting parameters, different cooling mode and different cutting tool numbers, this article illustrated characters and application scope of hard whirling machining with PCBN cutting tools coated with Chromium Aluminum Nitride and provided a basis for research on cutting tool coating or research on machining forecasting through chips.

  13. Preheating with Trilinear Interactions: Tachyonic Resonance

    CERN Document Server

    Dufaux, J F; Kofman, L; Peloso, M; Podolsky, D

    2006-01-01

    We investigate the effects of bosonic trilinear interactions in preheating after chaotic inflation. A trilinear interaction term allows for the complete decay of the massive inflaton particles, which is necessary for the transition to radiation domination. We found that typically the trilinear term is subdominant during early stages of preheating, but it actually amplifies parametric resonance driven by the four-legs interaction. In cases where the trilinear term does dominate during preheating, the process occurs through periodic tachyonic amplifications with resonance effects, which is so effective that preheating completes within a few inflaton oscillations. We develop an analytic theory of this process, which we call tachyonic resonance. We also study numerically the influence of trilinear interactions on the dynamics after preheating. The trilinear term eventually comes to dominate after preheating, leading to faster rescattering and thermalization than could occur without it. Finally, we investigate the...

  14. Inductive Preheating in Laser Beam Welding of Multimaterial Joints of 22MnB5 and AA6016

    Science.gov (United States)

    Kügler, H.; Vollertsen, F.

    Inductive preheating is well known as possibility to heat ferromagnetic materials. In brazing preheating causes an improvement of wetting quality, e.g. smaller wetting angles and longer wetting lengths. In this paper inductive preheating is used to support a laser beam hybrid joining process. Aluminum AA6016 is molten in order to wet the surface of AlSi- coated steel 22MnB5. Investigations on the influence of preheating on wetting characteristics and intermetallic phase seam formation were carried out. Strength values up to 230 MPa have been measured in tensile shear tests. Fraction zone occurs in the aluminum base material indicating uncritical thickness of the intermetallic phase seam at the interface.

  15. Clinical applications of preheated hybrid resin composite.

    Science.gov (United States)

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  16. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    Science.gov (United States)

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  17. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    Science.gov (United States)

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-Ping

    2014-04-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications.

  18. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.; Schmid, U. [Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna (Austria); Shaposhnikov, K.; Kaltenbacher, M. [Institute of Mechanics and Mechatronics, TU Wien, 1040 Vienna (Austria)

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  19. Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF{sub 6} based plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Perros, Alexander; Bosund, Markus; Sajavaara, Timo; Laitinen, Mikko; Sainiemi, Lauri; Huhtio, Teppo; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering, P.O. Box 13500, FI-00076 Aalto (Finland); Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014, Jyvaeskylae,Finland (Finland); Department of Micro and Nanosciences, School of Electrical Engineering, Aalto University, P.O. Box 13500, FI-00076, Aalto (Finland)

    2012-01-15

    The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 deg. C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF{sub 6} and O{sub 2} under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film's removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film removal because the film was inert to the SF{sub x}{sup +} and O{sup +} chemistries. The etch experiments showed the film to be a resilient masking material. This makes it an attractive candidate for use as an etch mask in demanding SF{sub 6} based plasma etch applications, such as through-wafer etching, or when oxide films are not suitable.

  20. Simultaneous Characterization for the Organic Additive Burnout of Aqueous Tape Casting Aluminum Nitride by Thermogravimetry-Differential Scanning Calorimetry-Mass Spectrometry%水基AlN流延膜有机添加剂排胶过程的热重-差示扫描热量-质谱研究

    Institute of Scientific and Technical Information of China (English)

    于惠梅; 雒晓军; 陆昌伟; 奚同庚; 罗澜

    2004-01-01

    In this work, through the comparison analysis with the results of the thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS) coupling techniques for the three organic additive and aqueous tape casting aluminum nitride in air and nitrogen atmosphere, it can be found that the plasticity glycerol was almost burnout before 350℃ in two atmosphere; the binder PVA124 was almost burnout before 600℃ in air, there was little left in nitrogen; The mass losses of the dispersant DP270 in air and nitrogen atmosphere were about 73.32% and 65.51% before 600℃ ; The mass losses of the aqueous tape casting aluminum nitride in air (14.08%) were higher that in nitrogen (10.75%) before 600℃. It can be concluded that the organic additive burnout of the aqueous tape casting aluminum nitride in air atmosohere was better than in nitrogen atmosphere.

  1. Fuel preheater for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, J.J.; Crossett, M.C.

    1987-10-13

    A unit for preheating fuel for diesel engines is described having an engine coolant system and a lubrication system utilizing a flowable lubricant. The unit comprises a housing providing a fluid-tight enclosure, a heat exchange coil positioned in and spaced above the bottom of the enclosure and having loops providing a continuous path for the flow of the fuel to be heated. The heat exchange coil has at least one foot of length for each 25 cubic inches of volume of the enclosure and a diesel fuel outlet in the housing connected to one end of the heat exchange coil, a diesel fuel outlet in the housing and connected to the other end of the heat exchange coil, an inlet in the housing for connection of the interior of the enclosure surrounding the coil to a source of a hot heat exchange medium in a diesel engine so as to provide a source of heat for heating the heat exchange coil. An outlet near the top of the housing provides for return of the heat exchange medium to a diesel engine, and spray tube means extend horizontally from the inlet for the heat exchange medium and along the bottom of the housing beneath substantially the entire length of the heat exchange coil. The means have upwardly directed openings to provide for discharge of the heat exchange medium toward the coil and agitation of the heat exchange medium in the enclosure around and over the heat exchange coil.

  2. Characterization of preheated and non-preheated HY-80 steel weldments by transmission electron microscopy

    OpenAIRE

    Clark, David Richard

    1983-01-01

    Approved for public release; distribution in unlimited. Preheating HY-80 steel weldments is standard procedure, but it is an expensive and time consuming step in the fabrication of hull structures. The microstructures and hardness profiles of both a preheated (250 F--121 C) and a non-preheated (32 F--0 C) HY-80 steel weldment were studied to provide information and allow comparisons of the microstructural transformations that occur in the heat affected zone during shielded metal arc weldin...

  3. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  4. Preheating after Small-Field Inflation

    CERN Document Server

    Brax, Philippe; Mariadassou, Sophie

    2010-01-01

    Whereas preheating after chaotic and hybrid inflation models has been abundantly studied in the literature, preheating in small field inflation models, where the curvature of the inflaton potential is negative during inflation, remains less explored. In these models, a tachyonic instability at the end of inflation leads to a succession of exponentially large increases and \\emph{decreases} of the inflaton fluctuations as the inflaton condensate oscillates around the minimum of its potential. The net effect is a competition between low-momentum modes which grow and decrease significantly, and modes with higher momenta which grow less but also decrease less. We develop an analytical description of this process, which is analogous to the quantum mechanical problem of tunneling through a volcano-shaped potential. Depending on the parameters, preheating may be so efficient that it completes in less than one oscillation of the inflaton condensate. Preheating after small field inflation may also be followed by a long...

  5. Restoring the sting to metric preheating

    CERN Document Server

    Bassett, B A; Maartens, R; Kaiser, D I; Bassett, Bruce A.; Gordon, Chris; Maartens, Roy; Kaiser, David I.

    2000-01-01

    The relative growth of field and metric perturbations during preheating is sensitive to initial conditions set in the preceding inflationary phase. Recent work suggests this may protect super-Hubble metric perturbations from resonant amplification during preheating. We show that this possibility is fragile and extremely sensitive to the specific form of the interactions between the inflaton and other fields. The suppression is naturally absent in two classes of preheating in which either (1) the critical points (hence the vacua) of the effective potential during inflation are deformed away from the origin, or (2) the effective masses of fields during inflation are small but during preheating are large. Unlike the simple toy model of a g^2 \\phi^2 \\chi^2 coupling, most realistic particle physics models contain these other features. Moreover, they generically lead to both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble scales. Large-scale coherent magnetic fields may also appear naturally...

  6. Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte

    KAUST Repository

    Huang, Kuan-Chieh

    2011-08-01

    The effects of incorporation of aluminum nitride (AlN) in the gel polymer electrolyte (GPE) of a quasi-solid-state dye-sensitized solar cell (DSSC) were studied in terms of performance of the cell. The electrolyte, consisting of lithium iodide (LiI), iodine (I2), and 4-tert-butylpyridine (TBP) in 3-methoxypropionitrile (MPN), was solidified with poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP). The 0.05, 0.1, 0.3, and 0.5 wt% of AlN were added to the electrolyte for this study. XRD analysis showed a reduction of crystallinity in the polymer PVDF-HFP for all the additions of AlN. The DSSC fabricated with a GPE containing 0.1 wt% AlN showed a short-circuit current density (JSC) and power-conversion efficiency (η) of 12.92±0.54 mA/cm2 and 5.27±0.23%, respectively, at 100 mW/cm2 illumination, in contrast to the corresponding values of 11.52±0.21 mA/cm2 and 4.75±0.08% for a cell without AlN. The increases both in JSC and in η of the promoted DSSC are attributed to the higher apparent diffusion coefficient of I- in its electrolyte (3.52×10-6 cm2/s), compared to that in the electrolyte without AlN of a DSSC (2.97×10-6 cm 2/s). At-rest stability of the quasi-solid-state DSSC with 0.1 wt% of AlN was found to decrease hardly by 5% and 7% at room temperature and at 40 °C, respectively, after 1000 h duration. The DSSC with a liquid electrolyte showed a decrease of about 40% at room temperature, while it virtually lost its performance in about 150 h at 40 °C. Explanations are further substantiated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and by porosity measurements. © 2010 Elsevier B.V.

  7. Pre-heating mitigates composite degradation

    Directory of Open Access Journals (Sweden)

    Jessika Calixto da SILVA

    2015-12-01

    Full Text Available ABSTRACT Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS. Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm and the composites Durafill VS (Heraeus Kulzer, Z-250 (3M/ESPE, and Z-350 (3M/ESPE, cured at 25°C (no pre-heating or 60°C (pre-heating. Specimens were stored sequentially in the following solutions: 1 water for 7 days (60°C, plus 0.1 N sodium hydroxide (NaOH for 14 days (60°C; 2 50% silver nitrate (AgNO3 for 10 days (60°C. Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey’s tests (α=5%. Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (p<0.05. After storage in water/NaOH, pre-heated specimens presented higher radiopacity values than non-pre-heated specimens (p<0.05. There was a lower penetration of silver in pre-heated specimens (p<0.05. Conclusions Pre-heating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  8. Investigation on preheating process in SLS machine

    Institute of Scientific and Technical Information of China (English)

    李湘生; 史玉升; 莫健华; 黄树槐

    2001-01-01

    Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on the surface of powder bed is a one important process which is a guarantee by which parts can be successfully fabricated and influences accuracy of parts fabricated in SLS technology. The uniformity of temperature on powder bed influences accuracy and performance of parts. It is necessary to understand the influences of the parameters of preheating set on uniformity of temperature on surface of powder bed. This paper analyzes general preheating process of irradiator for the preheating of powder on the surface of powder bed during SLS processing,and investigates influences of the flux density on the temperature field on the top surface of powder bed. The models of distribution of flux density and the distribution of surface temperature of powder bed are presented.The result predicted according to the models is reasonably consistent with experimental result. This model plays important role in design of preheating set and control of SLS processing. It is concluded that the uniformity of temperature field on the powder bed is determined mostly by the geometry of heating component and its fix location and the flux density is inverse proportional to the highness.

  9. The Development of Equilibrium After Preheating

    CERN Document Server

    Kofman, L A

    2001-01-01

    We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules that govern the thermalization process in all of these models. Notably, we see that once one of the fields is amplified through parametric resonance or other mechanisms it rapidly excites other coupled fields to exponentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group into subsets with almost identica...

  10. Electronic structure and magnetic properties of doped Al1- x Ti x N ( x = 0.03, 0.25) compositions based on cubic aluminum nitride from ab initio simulation data

    Science.gov (United States)

    Bannikov, V. V.; Beketov, A. R.; Baranov, M. V.; Elagin, A. A.; Kudyakova, V. S.; Shishkin, R. A.

    2016-05-01

    The phase stability, electronic structure, and magnetic properties of Al1- x Ti x N compositions based on the metastable aluminum nitride modification with the rock-salt structure at low ( x = 0.03) and high ( x = 0.25) concentrations of titanium in the system have been investigated using the results of ab initio band calculations. It has been shown that, at low values of x, the partial substitution is characterized by a positive enthalpy, which, however, changes sign with an increase in the titanium concentration. According to the results of the band structure calculations, the doped compositions have electronic conductivity. For x = 0.03, titanium impurity atoms have local magnetic moments (˜0.6 μB), and the electronic spectrum is characterized by a 100% spin polarization of near-Fermi states. Some of the specific features of the chemical bonding in Al1- x Ti x N cubic phases have been considered.

  11. Temperature equilization in the Luetzkendorf preheater

    Energy Technology Data Exchange (ETDEWEB)

    1943-01-30

    Suggestions are offered for improvement to attain more nearly uniform temperature distribution in the preheater inlet and outlet as well as for improvement of a loss of pressure in heating gas for raising the efficiency of the heating gas blower. The evaluation of the operating conditions from the standpoint of the heating gas were made in the hydrogenation works of Poelitz, in 1939 with the preheater constructed on the Ludwigshafen plan, and in Luetzkendorf on the preheater of the Leuna model. Both preheaters had two Schiele heating gas blowers of the type 1160. Operating conditions involving hairpin tubes, temperatures, resistance, volume, piping, pressure, and heat conduction were given for both plants. A sketch for the heating gas movement was mentioned in the report but was not included. Recommendations on the use of a new blower were given. Some of these were reducing the yield to 90,000 cubic meters per hour and using the same motors. The distribution of the amounts and of the temperature drop of the gas and of the material of the hairpins were given.

  12. NH4Cl对机械活化Al粉燃烧合成AlN的控制%Effects of NH4CI on the synthesis of aluminum nitride by the spontaneous combustion of mechanically activated aluminium powder

    Institute of Scientific and Technical Information of China (English)

    刘建平; 张晖

    2011-01-01

    添加NH4Cl到经由高能球磨制得的机械活化铝粉中后,铝粉在空气中于室温下即可发生自燃反应.本研究通过含有不同量NH4Cl的机械活化铝粉的自燃制得了Al2O3-AlN疏松粉末,并研究了NH4CL添加量对燃烧产物成分和结构的控制.结果表明:NH4Cl不仅控制了产物的形貌,而且改变了铝粉的氮化初理.在NH4Cl添加量为3%~5%(质量分数)时,所得燃烧产物颗粒大小相对较均匀,并含有700%(质量分数)以上的AlN.%With the addition of NH4CI, the mechanically activated aluminum powder made by high energy ball milling could bum spontaneously in air at room temperature with the formation of Al2O3-AIN powder. In this study, AIN powders were prepared by the spontaneous combustion of aluminum powder including different amounts of NH4CI. The effects of NH4Cl content on the composition and structure of the combustion product were studied by characterizing the phase and morphology of combustion products. The results show that NH4CI not only affects the morphology of products, but also changes the nitridation mechanism of aluminum powder. When 3%~5% (mass fraction) NH4CI is added, the sizes of particles included in the combustion product show small variation and the content of AIN in the combustion product is above 70% (mass fraction).

  13. Pre-heating mitigates composite degradation.

    Science.gov (United States)

    Silva, Jessika Calixto da; Rogério Vieira, Reges; Rege, Inara Carneiro Costa; Cruz, Carlos Alberto dos Santos; Vaz, Luís Geraldo; Estrela, Carlos; Castro, Fabrício Luscino Alves de

    2015-01-01

    Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey's tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (pheated specimens presented higher radiopacity values than non-pre-heated specimens (pheated specimens (pheating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  14. Violent Preheating in Inflation with Nonminimal Coupling

    CERN Document Server

    Ema, Yohei; Mukaida, Kyohei; Nakayama, Kazunori

    2016-01-01

    We study particle production at the preheating era in inflation models with nonminimal coupling $\\xi \\phi^2R$ and quartic potential $\\lambda \\phi^4/4$ for several cases: real scalar inflaton, complex scalar inflaton and Abelian Higgs inflaton. We point out that the preheating proceeds much more violently than previously thought. If the inflaton is a complex scalar, the phase degree of freedom is violently produced at the first stage of preheating. If the inflaton is a Higgs field, the longitudinal gauge boson production is similarly violent. This is caused by a spike-like feature in the time dependence of the inflaton field, which may be understood as a consequence of short time scale during which the effective potential or kinetic term changes suddenly. The produced particles typically have very high momenta $k \\lesssim \\sqrt{\\lambda}M_\\text{P}$. The production might be so strong that almost all the energy of the inflaton is carried away within one oscillation for $\\xi^2\\lambda \\gtrsim 1$. This may significa...

  15. Metric-torsion preheating: cosmic dynamo mechanism?

    CERN Document Server

    de Andrade, L C Garcia

    2014-01-01

    Earlier Bassett et al [Phys Rev D 63 (2001) 023506] investigated the amplification of large scale magnetic fields during preheating and inflation in several different models. They argued that in the presence of conductivity resonance effect is weakened. From a dynamo equation in spacetimes endowed with torsion recently derived by Garcia de Andrade [Phys Lett B 711: 143 (2012)] it is shown that a in a universe with pure torsion in Minkowski spacetime the cosmological magnetic field is enhanced by ohmic or non-conductivity effect, which shows that the metric-torsion effects is worth while of being studied. In this paper we investigated the metric-torsion preheating perturbation, which leads to the seed cosmological magnetic field in the universe with torsion is of the order of $B_{seed}\\sim{10^{-37}Gauss}$ which is several orders of magnitude weaker than the decoupling value obtained from pure metric preheating of $10^{-15}Gauss$. Despite of the weakness of the magnetic field this seed field may seed the galact...

  16. Effect of preheating on potato texture.

    Science.gov (United States)

    Andersson, A; Gekas, V; Lind, I; Oliveira, F; Oste, R

    1994-01-01

    Preheating potatoes at 50 to 80 degrees C has a firming effect on the cooked potato tissue. This effect is particularly pronounced at a preheating temperature of 60 to 70 degrees C followed by cooling. Several theories have been presented in the literature to explain this firming effect: retrogradation of starch, leaching of amylose, stabilization of the middle lamellae and cell walls by the activation of the pectin methylesterase (PME) enzyme, and by the release of calcium from gelatinized starch and the formation of calcium bridges between pectin molecules. Most probably, none of these theories alone can explain the phenomenon and more than one mechanism seems to be involved. Some of these mechanisms seem to be interdependent. As an example, calcium could be considered as a link all the way through release after starch gelatinization to cross-linking pectin substances in the cell wall and the middle lamellae, which has been demethylated by the PME enzyme. More research and "clear cut" experiments are needed in order to elucidate the role of each mechanism, especially which of them is the main contributor to the process of firming. Most probably, the calcium-pectin-PME mechanism plays a secondary role, that is, it only retards the collapse of the tissue structure that would otherwise occur during the final heating without preheating, and it is not the main factor of firmness.

  17. Aspects of wave turbulence in preheating

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Henrique P. de; Crespo, Jose A. de A. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: In the simplest chaotic inflationary model, the Universe has an exponentially fast expansion phase driven by a single scalar field. After inflation, the preheating phase takes place. This phase is characterized when the inflaton performs coherent oscillations about its minimum value and is followed by a huge production of particles. In other terms, there is an energy transfer to small inhomogeneous fluctuations of the inflaton field. The long term behavior ends up in a thermalized universe. In this paper, we have studied numerically the late stages of preheating in a model with a quartic potential V (ϕ) = ¼λ ϕ{sup 4}. We have considered the universe as a squared box with periodic boundary conditions, and applied the collocation method to integrate the field equations. We have shown that the dynamics of the inflaton together with its initially small fluctuations is extremely rich. In the first stage, the parametric resonance is responsible for the exponential growth of some modes. In the sequence, the back reaction of these resonant modes triggers the transfer of energy to other modes or fluctuations. Subsequently, the transfer of energy from the inflaton to thermalize the universe is typical of a turbulent system. In the last part, we have considered the back reaction of the inflaton field in the expansion of the universe. (author)

  18. Ions Preheated in 3He-Rich Solar Particle Events

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2003-01-01

    A wave-particle resonance absorption model in the two-ion plasma is suggested in explanation to the coronal ions preheating in 3He-rich solar particle events. It is found that 3He and Fe ions are preferably preheated by the ion-ion hybrid waves at their fundamental and second harmonic ion cyclotron frequencies, respectively.

  19. Bringing coal preheating in drum dryers to a commercial level

    Energy Technology Data Exchange (ETDEWEB)

    Babanin, B.I.; Proushin, Yu.E.; Dinel' t, V.M.; Nikolaeva, V.Z.; Shabarshova, Yu.V.; Patrushev, A.N.; Vodop' yanov, A.G.; Vlasov, V.S.; Sementin, V.P.

    1988-10-01

    Discusses operation of a system for coal charge preheating used in Western Siberia since 1965. It is the first coal preheating system constructed in the USSR. The following aspects of system operation are discussed: composition of combustion gases used for coal drying, drying temperature, consumption rate of combustion gases depending on coal moisture content, flue gas recirculation system, transport and storage of dried coal, methods for dust separation (wet and dry), air pollution from coal dryers, and efficiency of air pollution control. Operation of the coal preheating system shows that one-stage coal drying and preheating is economic but associated with increased investment (construction cost) and with increased coal comminution. Large one-stage dryers also cause irregular coal preheating depending on distribution of coal grain size (with overheating of coal fines). Recommendations for design modifications of one-stage dryers are made. 3 refs.

  20. Fate of Electroweak Vacuum during Preheating

    CERN Document Server

    Ema, Yohei; Nakayama, Kazunori

    2016-01-01

    Our electroweak vacuum may be metastable in light of the current experimental data of the Higgs/top quark mass. If this is really the case, high-scale inflation models require a stabilization mechanism of our vacuum during inflation. A possible candidate is the Higgs-inflaton/-curvature coupling because it induces an additional mass term to the Higgs during the slow roll regime. However, after the inflation, the additional mass term oscillates, and it can potentially destabilize our electroweak vacuum via production of large Higgs fluctuations during the inflaton oscillation era. In this paper, we study whether or not the Higgs-inflaton/-curvature coupling can save our vacuum by properly taking account of Higgs production during the preheating stage. We put upper bounds on the Higgs-inflaton/-curvature coupling, and discuss possible dynamics that might relax them.

  1. QUENCH STUDIES AND PREHEATING ANALYSIS OF SEAMLESS

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari [JLAB; Geng, Rongli [JLAB; Eremeev, Grigory [JLAB

    2013-09-01

    One of the alternative manufacturing technologies for SRF cavities is hydroforming from seamless tubes. Although this technology has produced cavities with gradient and Q-values comparable to standard EBW/EP cavities, a few questions remain. One of these questions is whether the quench mechanism in hydroformed cavities is the same as in standard electron beam welded cavities. Towards this effort Jefferson Lab performed quench studies on 2 9 cell seamless hydroformed cavities. These cavities include DESY's - Z163 and Z164 nine-cell cavities hydroformed at DESY. Initial Rf test results Z163 were published in SRF2011. In this report we will present post JLAB surface re-treatment quench studies for each cavity. The data will include OST and T-mapping quench localization as well as quench location preheating analysis comparing them to the observations in standard electron beam welded cavities.

  2. Modeling of the effects of different substrate materials on the residual thermal stresses in the aluminum nitride crystal grown by sublimation

    Science.gov (United States)

    Lee, R. G.; Idesman, A.; Nyakiti, L.; Chaudhuri, J.

    2009-02-01

    A three-dimensional numerical finite element modeling method is applied to compare interfacial residual thermal stress distribution in AlN single crystals grown by using different substrates such as silicon carbide, boron nitride, tungsten, tantalum carbide, and niobium carbide. A dimensionless coordinate system is used which reduces the numbers of computations and hence simplifies the stress analysis. All components of the stress distribution, both in the film and in the substrate, including the normal stress along the growth direction as well as in-plane normal stresses and shear stresses are fully investigated. This information about the stress distribution provides insight into understanding and controlling the AlN single crystal growth by the sublimation technique. The normal stress in the film at the interface along the growth direction and the shear stresses are zero except at the edges, whereas in-plane stresses are nonzero. The in-plane stresses are compressive when TaC and NbC substrates are used. A small compressive stress might be beneficial in prohibiting crack growth in the film. The compressive stress in the AlN is lower for the TaC substrate than that for the NbC. Tensile in-plane stresses are formed in the AlN for 6H-SiC, BN, and W substrates. This tensile stress in the film is detrimental as it will assist in the crack growth. The stress concentration at the edges of the AlN film at the interface is compressive in nature when TaC and NbC are used as a substrate. This causes the film to bend downward (i.e., convex shape) and assist it to adhere to the substrate. The AlN film curves upward or in a concave shape when SiC, BN, and W substrates are used since the stress concentration at the edges of the AlN film is tensile at the interface and this may cause detachment of the film from the substrate.

  3. Hill crossing during preheating after hilltop inflation

    CERN Document Server

    Antusch, Stefan; Orani, Stefano

    2015-01-01

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather t...

  4. Application of the Separate Universe Approach to Preheating

    CERN Document Server

    Tanaka, T; Tanaka, Takahiro; Bassett, Bruce

    2003-01-01

    The dynamics of preheating after inflation has not been clearly understood yet.In particular, the issue of the generation of metric perturbations during preheating on super-horizon scale is still unsettled. Large scale perturbations may leave an imprint on the cosmic microwave background, or may become seeds for generation of primordial black holes. Hence, in order to make a connection between the particle physics models and cosmological observations, understanding the evolution of super-Hubble scale perturbations during preheating is important. Here, we propose an alternative treatment to handle this issue based on the so-called separate universe approach, which suggests less efficient amplification of super-Hubble modes during preheating than was expected before. We also point out an important issue which may have been overlooked in previous treatments.

  5. Equation of state and Beginning of Thermalization After Preheating

    CERN Document Server

    Podolsky, D I; Kofman, L; Peloso, M; Podolsky, Dmitry I.; Felder, Gary N.; Kofman, Lev; Peloso, Marco

    2006-01-01

    We study the out-of-equilibrium nonlinear dynamics of fields after post-inflationary preheating. During preheating, the energy in the homogeneous inflaton is exponentially rapidly transfered into highly occupied out-of-equilibrium inhomogeneous modes, which subsequently evolve towards equilibrium. The infrared modes excited during preheating evolve towards a saturated distribution long before thermalization completes. We compute the equation of state during and immediately after preheating. It rapidly evolves towards radiation domination long before the actual thermal equilibrium is established. The exact time of this transition is a non-monotonic function of the coupling between the inflaton and the decay products, and it varies only very weakly (around 10^(-35) s) as this coupling changes over several orders of magnitude. This result is applied to refine the relation between the number of efoldings N and the physical wavelength of perturbations generated during inflation. We also discuss the implications fo...

  6. Anisotropies in the gravitational wave background from preheating.

    Science.gov (United States)

    Bethke, Laura; Figueroa, Daniel G; Rajantie, Arttu

    2013-07-05

    We investigate the anisotropies in the gravitational wave (GW) background produced at preheating after inflation. Using lattice field theory simulations of a massless preheating model, we show that the GW amplitude depends sensitively on the value of the decay product field χ coupled to the inflaton φ, with the only requisite that χ is light during inflation. We find a strong anisotropy in the amplitude of the GW background on large angular scales, the details of which strongly depend on the reheating dynamics. We expect similar conclusions for a wide class of inflationary models with light scalar fields. If future direct detection GW experiments are capable of detecting the GW produced by preheating, they should also be able to detect this effect. This could eventually provide a powerful way to distinguish between different inflationary and preheating scenarios.

  7. Gauge Field Preheating at the End of Inflation

    CERN Document Server

    Deskins, J Tate; Caldwell, Robert R

    2013-01-01

    Here we consider the possibility of preheating the Universe via the parametric amplification of a massless, U(1) abelian gauge field. We assume that the gauge field is coupled to the inflaton via a conformal factor with one free parameter. We present the results of high-resolution three-dimensional simulations of this model and show this mechanism efficiently preheats the Universe to a radiation-dominated final state.

  8. IMPROVING THE SURFACE PROPERTY OF TC4 ALLOY BY LASER NITRIDING AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Y.L. Yang; G.J. Zhao; D. Zhang; C.S. Liu

    2006-01-01

    The mixing technology of laser and heated nitrogen was applied to improve the surface hardaccelerate the nitriding process. Some interested samples were tested with XRD method (X-ray diffraction) to analyze the composition of nitrides, and the surface hardness of HV was measured.The results show that TiN and Ti2N were formed on the surface of Ti alloy with proper nitriding parameters, but TiN is the main composition. The surface hardness increased by three times, which sidered mainly of the activation of nitrogen by laser power and the pre-heated process which accelerated the nitriding process. The nitridation process can be considered as six steps given in detail. The result by analyzing the mechanism of improving the surface property of TiAl alloy shows the improvement of surface property due to two factors: the first reason is the result of laser annealing, and the second one is the formation of TiN.

  9. Thermal atomic layer etching of crystalline aluminum nitride using sequential, self-limiting hydrogen fluoride and Sn(acac){sub 2} reactions and enhancement by H{sub 2} and Ar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholas R.; Sun, Huaxing; Sharma, Kashish [Department of Chemistry and Biochemistry, University of Colorado at Boulder, Colorado 80309 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado at Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado at Boulder, Colorado 80309 (United States)

    2016-09-15

    Thermal atomic layer etching (ALE) of crystalline aluminum nitride (AlN) films was demonstrated using sequential, self-limiting reactions with hydrogen fluoride (HF) and tin(II) acetylacetonate [Sn(acac){sub 2}] as the reactants. Film thicknesses were monitored versus number of ALE reaction cycles at 275 °C using in situ spectroscopic ellipsometry (SE). A low etch rate of ∼0.07 Å/cycle was measured during etching of the first 40 Å of the film. This small etch rate corresponded with the AlO{sub x}N{sub y} layer on the AlN film. The etch rate then increased to ∼0.36 Å/cycle for the pure AlN films. In situ SE experiments established the HF and Sn(acac){sub 2} exposures that were necessary for self-limiting surface reactions. In the proposed reaction mechanism for thermal AlN ALE, HF fluorinates the AlN film and produces an AlF{sub 3} layer on the surface. The metal precursor, Sn(acac){sub 2}, then accepts fluorine from the AlF{sub 3} layer and transfers an acac ligand to the AlF{sub 3} layer in a ligand-exchange reaction. The possible volatile etch products are SnF(acac) and either Al(acac){sub 3} or AlF(acac){sub 2}. Adding a H{sub 2} plasma exposure after each Sn(acac){sub 2} exposure dramatically increased the AlN etch rate from 0.36 to 1.96 Å/cycle. This enhanced etch rate is believed to result from the ability of the H{sub 2} plasma to remove acac surface species that may limit the AlN etch rate. The active agent from the H{sub 2} plasma is either hydrogen radicals or radiation. Adding an Ar plasma exposure after each Sn(acac){sub 2} exposure increased the AlN etch rate from 0.36 to 0.66 Å/cycle. This enhanced etch rate is attributed to either ions or radiation from the Ar plasma that may also lead to the desorption of acac surface species.

  10. Crystalline boron nitride aerogels

    Science.gov (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  11. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  12. Reheating and preheating in the simplest extension of Starobinsky inflation

    CERN Document Server

    van de Bruck, C; Paduraru, L E

    2016-01-01

    The epochs of reheating and preheating are studied in a simple extension of the Starobinsky inflationary model, which consists of an $R^2$--correction to the Einstein--Hilbert action and an additional scalar field. We find that if the $R^2$--correction at the end of inflation is dynamically important, it affects the expansion rate and as a consequence the reheating and preheating processes. While we find that the reheating temperature and duration of reheating are only slightly affected, the effect has to be taken into account when comparing the theory to data. In the case of preheating, the gravitational corrections can significantly affect the decay of the second field. Particle production is strongly affected for certain values of the parameters in the theory.

  13. Gravity Waves from Tachyonic Preheating after Hybrid Inflation

    CERN Document Server

    Dufaux, Jean Francois; Kofman, Lev; Navros, Olga

    2008-01-01

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  14. Formation of sub-horizon black holes from preheating

    CERN Document Server

    Torres-Lomas, E; Malik, Karim A; Ureña-López, L Arturo

    2014-01-01

    We study the production of primordial black holes (PBHs) during the preheating stage that follows a chaotic inflationary phase. The scalar fields present in the process are evolved numerically using a modified version of the HLATTICE code. From the output of the numerical simulation we compute the probability distribution of curvature fluctuations paying particular attention to sub-horizon scales. We find that in some specific models these modes grow to large amplitudes developing highly non-Gaussian probability distributions. We then calculate PBH abundances using the standard Press-Schechter criterion and find that overproduction of PBHs is likely in some regions of the chaotic preheating parameter-space.

  15. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  16. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  17. Titanium aluminum nitride sputtered by HIPIMS

    Science.gov (United States)

    Weichart, Juergen; Lechthaler, Markus

    2012-09-01

    TiAlN was sputtered reactively by HIPIMS in the target compositions Ti/Al 33/67 and 50/50 using a modified OC Oerlikon Balzers INNOVA coating equipment. The resulting film properties like deposition rate, surface roughness, hardness, Young's modulus, wear, and film stress were analyzed as function of the nitrogen gas flow, pressure, target-substrate distance, and substrate bias. Furthermore, the films were characterized by X-ray diffraction and secondary electron microscopy of the cross section and the surface appearance. The process characteristics and film properties were compared with pulsed DC sputtering under the same conditions.

  18. Radiation damage in heavy irradiated aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru [Naruto Univ. of education, Tokushima (Japan); Okada, Moritami; Nakagawa, Masuo

    1996-04-01

    AlN, one of candidate for ceramic materials used in nuclear fusion reactor, was irradiated by fast and thermal neutrons. The high concentration of irradiated defects and the nuclear transformation elements were detected by electron spin resonance (ESR) and x-ray photoelectron spectroscopy (XPS) method. The exposure of fast neutron and thermal neutron were 1.2x10{sup 20}n/cm{sup 2} and 1.2x10{sup 21}n/cm{sup 2}, respectively. The spreads of ESR spectra of ultra hyperfine structure depending on interaction between {sup 27}Al nuclear spin and electron trapped in tetrahedron consisted of Al atoms was found in the spectra of heavy irradiated AlN. F type defects was estimated 10{sup 19}n/cm{sup 3}. Photoelectrons from 2s and 2p in {sup 28}Si which produced in process of {beta}-decay of {sup 27}Al(n,{gamma}){sup 28}Al were observed in XPS spectra of irradiated samples. (S.Y.)

  19. 基底温度对反应磁控溅射氮化铝薄膜的影响%Effects of Substrate Temperature on Aluminum Nitride Films by Reactively Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    黄美东; 张琳琳; 王丽格; 佟莉娜; 李晓娜; 董闯

    2011-01-01

    采用反应磁控溅射法结合加热控温电源,在光学玻璃基底上制备氮化铝(AlN)薄膜,通过X射线衍射(XRD)技术对薄膜样品物相结构进行分析,利用纳米压痕仪测试薄膜样品的硬度及弹性模量,用椭圆偏振仪及光栅光谱仪测试了薄膜样品的光学性能,分析和研究了基底温度对AlN薄膜的结构及性能的影响.结果表明,用此方法获得的AlN薄膜呈晶态,属于六方晶系,温度对AlN(100)面衍射峰强度影响不大,但对(110)面衍射峰的影响较大,因而温度对AlN的择优取向有一定影响.AlN(100)峰半高宽随温度升高而减小,表明晶粒尺寸随温度升高有变大趋势.随沉积温度升高,薄膜硬度从150℃的8 GPa增加到350℃的10 GPa左右,随基底温度升高,薄膜的硬度增加.弹性模量随温度的变化趋势与硬度的基本一致.在可见光区域AlN薄膜透过率超过90%,基本属于透明膜.基底温度对薄膜折射率也有较明显影响,折射率大致随温度升高而增大,但由椭偏测试及透射谱线分析得到的厚度结果表明,随温度升高,AlN薄膜的沉积速率下降.%Aluminum nitride ( A1N) thin films were reactively deposited onto glass substrates using reactive magnetron sputtering with a temperature-controllable heater. Hie phase and structure of the films were analyzed using X-ray diffraction (XRD). Nano-indenter and ellipsometer as well as grating spectrograph were employed to characterize hardness, elastic module, and optical properties of the films. The effects of substrate temperature on the structure and properties of the A1N films were intensely analyzed and studied. Hie results showed that the A1N films fabricated by this method were crystalline with a hexagonal structure. Hie deposition temperature influenced the preferred orientation of the films. It seemed that the plane (110) of A1N was more sensitive to temperature than the plane (100). The full width of half maximum (FWHM) of peak (100

  20. Bruce Unit 1 and 2 preheater condition assessment and refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    King, P.; Machowski, C.; McGillivray, R. [Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada); Durance, D. [Bruce Power, Tiverton, ON (Canada)

    2008-07-01

    Bruce Units 1 to 4 were shut down during the 1990s, largely as a consequence of tube degradation resulting from inappropriate steam generator secondary side water chemistries. Following a condition assessment, Bruce Power restarted Units 3 and 4 and is currently refurbishing Units 1 and 2. In order to assess the condition of the Unit 1 and Unit 2 preheaters and determine their suitability for extended operation, inspection, maintenance and assessment activities have been conducted. Eddy current and visual inspection have revealed vessels in generally good condition. Secondary side internals appear largely undergraded. Some tube to support fretting has been observed, and a number of tubes have been removed from service because of debris fretting concerns. To prepare for return to service, the primary side divider plates have been replaced and the tubes have been ID cleaned to restore the preheater to its original condition. This paper summarizes the inspection planning, findings, assessment for extended operation and maintenance activities undertaken. (author)

  1. A Model Independent Approach to (p)Reheating

    CERN Document Server

    Özsoy, Ogan; Sinha, Kuver; Watson, Scott

    2015-01-01

    In this note we propose a model independent framework for inflationary (p)reheating. Our approach is analogous to the Effective Field Theory of Inflation, however here the inflaton oscillations provide an additional source of (discrete) symmetry breaking. Using the Goldstone field that non-linearly realizes time diffeormorphism invariance we construct a model independent action for both the inflaton and reheating sectors. Utilizing the hierarchy of scales present during the reheating process we are able to recover known results in the literature in a simpler fashion, including the presence of oscillations in the primordial power spectrum. We also construct a class of models where the shift symmetry of the inflaton is preserved during reheating, which helps alleviate past criticisms of (p)reheating in models of Natural Inflation. Extensions of our framework suggest the possibility of analytically investigating non-linear effects (such as rescattering and back-reaction) during thermalization without resorting t...

  2. Theory and Numerics of Gravitational Waves from Preheating after Inflation

    CERN Document Server

    Dufaux, Jean Francois; Felder, Gary N; Kofman, Lev; Uzan, Jean-Philippe

    2007-01-01

    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity wave spectrum builds up with time and find that the amplitude an...

  3. Preheating and Affleck-Dine leptogenesis after thermal inflation

    CERN Document Server

    Felder, G N; Park, W I; Stewart, E D; Felder, Gary N.; Kim, Hyunbyuk; Park, Wan-Il; Stewart, Ewan D.

    2007-01-01

    Previously, we proposed a model of low energy Affleck-Dine leptogenesis in the context of thermal inflation. The lepton asymmetry is generated at the end of thermal inflation, which occurs at a relatively low energy scale with the Hubble parameter somewhere in the range $1 \\keV \\lesssim H \\lesssim 1 \\MeV$. Thus Hubble damping will be ineffective in bringing the Affleck-Dine field into the lepton conserving region near the origin, leaving the possibility that the lepton number could be washed out. Previously, we suggested that preheating could damp the amplitude of the Affleck-Dine field allowing conservation of the lepton number. In this paper, we demonstrate numerically that preheating does efficiently damp the amplitude of the Affleck-Dine field and that the lepton number is conserved as the result. In addition to demonstrating a crucial aspect of our model, it also opens the more general possibility of low energy Affleck-Dine baryogenesis.

  4. Non-equilibrium Goldstone phenomenon in tachyonic preheating

    CERN Document Server

    Borsanyi, S; Sexty, D; Borsanyi, Sz.

    2003-01-01

    The dominance of the direct production of elementary Goldstone waves is demonstrated in tachyonic preheating by determining numerically the evolution of the dispersion relation, the equation of state and the kinetic power spectra for the angular degree of freedom of the complex matter field. The importance of the domain structure in the order parameter distribution for the quantitative understanding of the excitation mechanism is emphasized. Evidence is presented for the very early decoupling of the low-momentum Goldstone modes.

  5. Gauge-preheating and the end of axion inflation

    CERN Document Server

    Adshead, Peter; Scully, Timothy R; Sfakianakis, Evangelos I

    2015-01-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, $U(1)$, gauge field via a Chern-Simons interaction term. We focus primarily on $m^2\\phi^2$ inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton is seen to transfer all its energy to the gauge fields within a few oscillations. We find that the gauge fields on sub-horizon scales end in an unpolarized state, due to the existence of strong rescattering between the inflaton and gauge modes. We also present a preliminary study of an axion monodromy model coupled to $U(1)$ gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  6. Gravitational Waves from Preheating in M-flation

    CERN Document Server

    Ashoorioon, Amjad; Mann, Robert B; Oltean, Marius; Sheikh-Jabbari, M M

    2014-01-01

    Matrix inflation, or M-flation, is a string theory motivated inflationary model with three scalar field matrices and gauge fields in the adjoint representation of the $\\mathbf{U}(N)$ gauge group. One of these $3N^2$ scalars appears as the effective inflaton while the rest of the fields (scalar and gauge fields) can play the role of isocurvature fields during inflation and preheat fields afterwards. There is a region in parameter space and initial field values, "the hilltop region," where predictions of the model are quite compatible with the recent \\textit{Planck} data. We show that in this hilltop region, if the inflaton ends up in the supersymmetric vacuum, the model can have an embedded preheating mechanism. % only if inflation happens around the supersymmetric vacuum. % Couplings of the preheat modes are related to the inflaton self-couplings and therefore are known from the CMB data. Through lattice simulations performed using a symplectic integrator, we numerically compute the power spectra of gravitati...

  7. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    Energy Technology Data Exchange (ETDEWEB)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  8. Multipactor suppressing titanium nitride thin films analyzed through XPS and AES

    Energy Technology Data Exchange (ETDEWEB)

    Castro C, M.; Durrer, W.; Lopez, J. A.; Pinales, L. A. [Physics Department, University of Texas, El Paso TX 79968 (United States); Encinas B, C.; Moller, D. [Centro de Investigacion en Materiales Avanzados S. C., Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31109 Chihuahua (Mexico)

    2008-02-15

    Cathodic-magnetron-deposited titanium nitride films were grown on anodized aluminum substrates and studied via AES and XPS spectroscopies to determine their depth-dependence composition. As it is well known, the native oxide grown on aluminum does not make the substrate impervious to radio frequency damage, and typically a thin film coating is needed to suppress substrate damage. In this article we present the profile composition of titanium nitride films, used as a protective coating for aluminum, that underwent prior conditioning through anodization, observed after successive sputtering stages. (Author)

  9. Transparent polycrystalline cubic silicon nitride

    Science.gov (United States)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  10. Nanocharacterization of Titanium Nitride Thin Films Obtained by Reactive Magnetron Sputtering

    Science.gov (United States)

    Merie, Violeta Valentina; Pustan, Marius Sorin; Bîrleanu, Corina; Negrea, Gavril

    2015-05-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants, etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-micro-electromechanical systems, and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by the reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, when the substrates were at room temperature, and second, when the substrates were previously heated at 250°C. The temperature of 250°C was kept constant during the deposition of the films. The samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, Young's modulus, roughness, and friction force were some of the determined characteristics. The results demonstrated that the substrate which was previously heated at 250°C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature. The preheating of both substrates determined the decrease of thin films roughness. The friction force, nanohardness and Young's modulus of the tested samples increased when the substrates were preheated at 250°C.

  11. Low SO2 Emission Preheaters for Cement Production

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted

    showed that this figure could be between 90 kJ/mole and 140 kJ/mole, with a corresponding change of preexponential factors. The ability to predict emissions is very important in the design of cement plants. In this thesis the zone model concept has been applied to the modelling of the cyclone stages...... in a preheater tower. The idea is to account for the complex flow pattern in a cyclone stage by dividing it into zones, each zone having special features. In this manner the model can account for gas/solid heat exchange, gas/solid separation, different gas and solid residence times, etc. The model was evaluated...

  12. Parametric resonance of entropy perturbations in massless preheating

    Science.gov (United States)

    Moghaddam, Hossein Bazrafshan; Brandenberger, Robert H.; Cai, Yi-Fu; Ferreira, Elisa G. M.

    2015-07-01

    In this paper, we revisit the question of possible preheating of entropy modes in a two-field model with a massless inflaton coupled to a matter scalar field. Using a perturbative approximation to the covariant method we demonstrate that there is indeed a parametric instability of the entropy mode which then at second-order leads to exponential growth of the curvature fluctuation on super-Hubble scale. Back-reaction effects shut off the induced curvature fluctuations, but possibly not early enough to prevent phenomenological problems. This confirms previous results obtained using different methods and resolves a controversy in the literature.

  13. Preheating and entropy perturbations in axion monodromy inflation

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, Evan; Moghaddam, Hossein Bazrafshan [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada); Brandenberger, Robert H. [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada); Institute for Theoretical Studies, ETH Zürich,CH-8092 Zürich (Switzerland)

    2016-05-04

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index n{sub s}=5/2. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  14. Preheating and Entropy Perturbations in Axion Monodromy Inflation

    CERN Document Server

    ,

    2016-01-01

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index $n_s = 5/2$. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  15. Higgs vacuum metastability in primordial inflation, preheating, and reheating

    Science.gov (United States)

    Kohri, Kazunori; Matsui, Hiroki

    2016-11-01

    Current measurements of the Higgs boson mass and top Yukawa coupling suggest that the effective Higgs potential develops an instability below the Planck scale. If the energy scale of inflation is as high as the grand unified theory (GUT) scale, inflationary quantum fluctuations of the Higgs field can easily destabilize the standard electroweak vacuum and produce a lot of anti-de Sitter (AdS) domains. This destabilization during inflation can be avoided if a relatively large nonminimal Higgs-gravity or inflaton-Higgs coupling is introduced. Such couplings generate a large effective mass term for the Higgs, which can raise the effective Higgs potential and suppress the vacuum fluctuation of the Higgs field. After primordial inflation, however, such effective masses drops rapidly and the nonminimal Higgs-gravity or inflaton-Higgs coupling can cause large fluctuations of the Higgs field to be generated via parametric resonance, thus producing AdS domains in the preheating stage. Furthermore, thermal fluctuations of the Higgs field cannot be neglected in the proceeding reheating epoch. We discuss the Higgs vacuum fluctuations during inflation, preheating, and reheating, and show that the Higgs metastability problem is severe unless the energy scale of the inflaton potential is much lower than the GUT scale.

  16. Microstructures and properties of non-preheated hardfacing welding

    Institute of Scientific and Technical Information of China (English)

    Yang Shanglei; Zou Zengda; Lü Xueqin; Lou Songnian

    2007-01-01

    A new type of non-preheated hardfacing electrode was developed using H08A as the core and the coat contents including ferrotitanium, ferrovanadium, graphite, rutile etc. The microstructures and properties of hardfacing metal were systematically researched. The results show the hardness of hardfacing metal increases with increasing of ferrotitanium, ferrovanadium, graphite in the coat, but the crack resistance and processing weldability become worse. The carbides formed by arc metallurgic reaction are uniformly dispersed in the matrix structure. The phases of hardfacing metal consist of α-Fe, γ-Fe, VC, TiC and Fe3C. The carbides are compression aggregation of TiC and VC, and their appearances present irregular block. The matrix microstructure of hardfacing metal is lath martensite. The hardfacing layers with better crack resistance and wearability are achieved and no visible cracks occur when using non-preheated electrode in continuous welding process. Hardness of hardfacing metal is more than 60HRC, and its relative wearability is five times of wearability of D667 electrode in abrasive wear test.

  17. Corrosion leaking of preheater weldment in alumina factories

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; CHEN Wen-mi; GONG Zhu-qing; LIU Hong-zhao

    2005-01-01

    Stress corrosion cracking (SCC) and anticorrosion measures of TU42C weld-joint were studied by constant load experiments and pickling experiments. The results show that in 40%(mass fraction) NaOH solution at 110 ℃, caustic SCC occurs in TU42C weld-joints at the applied potential of -1 020 mV(vs SCE) for 3 d while at the potential of -950 mV(vs SCE) for 10 d. All the cracks are intergranular. In the 10% sulfuric acid, the cracks have the most negative self-corrosion potential -432.5 mV(vs SCE) and are active to be further corroded by the acid. Because of the same corrosion behaviour as the lab weldment, preheater's cracking in alumina factories is attributed to the combining actions of previous caustic SCC in Bayer solutions and continuous acid corrosion by pickling with the addition of RD. The following measures are effective to prevent the corrosion failure of preheater, such as postweld heat treatment at 620 ℃ to relax the residual weld stress, addition of CC3 and L826 as the corrosion inhibitors to improve the pickling and cleaning by the high pressure water instead of by pickling.

  18. Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Chairattanamanokorn, Prapaipid [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Penthamkeerati, Patthra [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Reungsang, Alissara [Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Department of Biotechnology, Khon Kaen University, Khon Kaen, Bangkok (Thailand); Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-09-15

    Production of biohydrogen from dark fermentation is an interesting alternative to producing renewable fuels because of its low cost and various usable substrates. Cellulosic content in plentiful bagasse residue is an economically feasible feedstock for biohydrogen production. A statistical experimental design was applied to identify the optimal condition for biohydrogen production from enzymatically hydrolyzed bagasse with 60-min preheated seed sludge. The bagasse substrate was first heated at 100 C for 2 h and was then hydrolyzed with cellulase. Culture of the pretreated bagasse at 55 C provided a higher H{sub 2} production performance than that obtained from cultures at 45 C, 65 C, 35 C and 25 C. On the other hand, the culture at pH 5 resulted in higher H{sub 2} production than the cultures at pH 6, pH 4 and pH 7. The optimal culture condition for the hydrogen production rate was around 56.5 C and pH 5.2, which was identified using response surface methodology. Moreover, the pretreatment of bagasse under alkaline conditions gave a thirteen-fold increase in H{sub 2} production yield when compared with that from preheatment under neutral condition. (author)

  19. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  20. Methods of forming boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  1. Methods for improved growth of group III nitride buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  2. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  3. Wear monitoring of protective nitride coatings using image processing

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    2010-01-01

    A double-layer model system, consisting of a thin layer of tribological titanium aluminum nitride (TiAlN) on 17 top of titanium nitride (TiN), was deposited on polished 100Cr6 steel substrates. The TiAlN top-coatings 18 were exposed to abrasive wear by a reciprocating wear process in a linear tribo...... processing by color detection is a potential technique for early 25 warning or determination of residual thickness of tribological tool coatings prior to complete wear....

  4. Effect of preheating on the film thickness of contemporary composite restorative materials

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-12-01

    Conclusion: The film thickness of the composites tested is material dependent. The thickness of the preheated conventional composites is significantly lower than those at room temperature. The conventional composites provide film thickness values greater than those of the flowable composites regardless of preheating temperature.

  5. Improved design and operation of crude furnace air preheater for cold climates

    Energy Technology Data Exchange (ETDEWEB)

    Gollpudi, B. [Bantrel Co. (Canada); Nichols, D. [Husky Energy (Canada)

    2011-07-01

    In the heavy oil industry, air preheaters are used to heat combustion air with hot flue gas. Flue gas contains significant amounts of sulphur oxides which can result in acid dew point corrosion on the flue gas side. The air preheater metal has therefore to be kept at a temperature higher than this dew point to provide trouble free operation. This paper relates a case of dew point corrosion damage in an air preheater and the design modifications made to solve the problem. The case studied took place at the crude furnace at Husky Energy's Lloydminster Upgrader where a plate exchanger air preheater was installed in 2007 and corrosion was noticed in 2009. It was found that hot air recirculation helps in maintaining a sufficiently high temperature and that the ducting design avoids dead zones. This paper showed that improved design can help to prevent damage occurring in the air preheater.

  6. Molten salt parabolic trough system with synthetic oil preheating

    Science.gov (United States)

    Yuasa, Minoru; Hino, Koichi

    2017-06-01

    Molten salt parabolic trough system (MSPT), which can heat the heat transfer fluid (HTF) to 550 °C has a better performance than a synthetic oil parabolic trough system (SOPT), which can heat the HTF to 400 °C or less. The utilization of HTF at higher temperature in the parabolic trough system is able to realize the design of a smaller size of storage tank and higher heat to electricity conversion efficiency. However, with MSPT there is a great amount of heat loss at night so it is necessary to circulate the HTF at a high temperature of about 290 °C in order to prevent solidification. A new MSPT concept with SOPT preheating (MSSOPT) has been developed to reduce the heat loss at night. In this paper, the MSSOPT system, its performance by steady state analysis and annual performance analysis are introduced.

  7. Frustration of resonant preheating by exotic kinetic terms

    Energy Technology Data Exchange (ETDEWEB)

    Rahmati, Shohreh; Seahra, Sanjeev S., E-mail: srahmati@unb.ca, E-mail: sseahra@unb.ca [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada)

    2014-10-01

    We study the effects of exotic kinetic terms on parametric resonance during the preheating epoch of the early universe. Specifically, we consider modifications to the action of ordinary matter fields motivated by generalized uncertainty principles, polymer quantization, as well as Dirac-Born-Infeld and k-essence models. To leading order in an ''exotic physics'' scale, the equations of motion derived from each of these models have the same algebraic form involving a nonlinear self-interaction in the matter sector. Neglecting spatial dependence, we show that the nonlinearity effectively shuts down the parametric resonance after a finite time period. We find numeric evidence that the frustration of parametric resonance persists to spatially inhomogenous matter in (1+1)-dimensions.

  8. 20 YEARS OF EXPERIENCE WITH SCRAP PREHEATING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Je. Apfel

    2015-01-01

    Full Text Available More and more countries worldwide implement new rules and regulations to improve energy efficiency and cut CO2 and hazardous off-gas emissions. Thus electric steelmakers need technology that keeps costs low, increases productivity and helps them adhere to environmental regulations. Decades of knowledge in preheating technology, and several different innovative applications which had been solution for many unique cases have been brought together and announced in 2010. EAF Quantum was designed as a pragmatic solution that meets requirements for high energy and cost efficiency, increased productivity and lowest emissions. Whether scrap, partly hot metal or direct-reduced iron (DRI is charged, EAF Quantum is the solution for highly productive electric steelmaking at extra low conversion costs.

  9. Pre-heating in the framework of massive gravity

    Directory of Open Access Journals (Sweden)

    Debaprasad Maity

    2016-09-01

    Full Text Available In this paper we propose a mechanism of natural pre-heating of our universe by introducing an inflaton field dependent mass term for the gravitational wave for a specific class of massive gravity theory. For any single field inflationary model, the inflaton must go through the oscillatory phase after the end of inflation. As has recently been pointed out, if the gravitational fluctuation has inflaton dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflaton. Because of this large enhancement of the amplitude of the gravitational wave due to parametric resonance, we show that universe can naturally go through the pre-reheated phase with minimally coupled matter field. Therefore, during the reheating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflaton.

  10. The Growth of Gallium Nitride Films via the Innovative Technique of Atomic Layer Epitaxy

    Science.gov (United States)

    1989-06-01

    6 3.2 Aluminum Nitride and AIN/GaN Layered Structures ............ 8 3.3 Boron Nitride and BGaN Graded...of tearing in lower left region, indirectly indicating the presence of multiple layers of BGaN ............................... 14 12. Auger electron...electron spectroscopy sputtered depth profile of a BN/ BGaN /GaN/P-SiC film. Note peak in nitrogen trace as interface of BN is passed

  11. Growth of crystalline ZnO films on the nitridated (0001) sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Butashin, A. V.; Kanevsky, V. M.; Muslimov, A. E., E-mail: amuslimov@mail.ru; Prosekov, P. A.; Kondratev, O. A.; Blagov, A. E.; Vasil’ev, A. L.; Rakova, E. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Babaev, V. A.; Ismailov, A. M. [Dagestan State University (Russian Federation); Vovk, E. A.; Nizhankovsky, S. V. [National Academy of Sciences of Ukraine, Institute for Single Crystals (Ukraine)

    2015-07-15

    The surface morphology and structure of (0001) sapphire substrates subjected to thermochemical nitridation in a mixture of N{sub 2}, CO, and H{sub 2} gases are investigated by electron and probe microscopy and X-ray and electron diffraction. It is shown that an aluminum nitride layer is formed on the substrate surface and heteroepitaxial ZnO films deposited onto such substrates by magnetron sputtering have a higher quality when compared with films grown on sapphire.

  12. Suspended HfO{sub 2} photonic crystal slab on III-nitride/Si platform

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo [Nanjing University of Posts and Telecommunications, Grueenberg Research Centre, Nanjing, Jiang-Su (China)

    2014-06-15

    We present here the fabrication of suspended hafnium oxide (HfO{sub 2}) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO{sub 2} photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO{sub 2} film, and suspended HfO{sub 2} photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO{sub 2} nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  13. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    Energy Technology Data Exchange (ETDEWEB)

    Haftlang, Farahnaz, E-mail: f.haftlang@students.semnan.ac.ir [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Habibolahzadeh, Ali [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Sohi, Mahmoud Heydarzadeh [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-02-28

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Plasma nitriding and post-aluminizing result in AlN single phase layer on the steel. • PN–Al coated steel had better corrosion resistance than Al–PN one. • Formation of oxide layer provided protection of PN–Al coated steel against corrosion. • Pitting and surface defects was the dominant corrosion mechanism in Al–PN coated steel. - Abstract: Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN–Al), while the others were pack aluminized followed by plasma nitriding (Al–PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (R{sub p}) resistances were obtained in PN–Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al–PN specimens.

  14. Gallium nitride optoelectronic devices

    Science.gov (United States)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  15. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  16. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  17. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  18. Hardening Roll Surface by Plasma Nitriding with Subsequent Hardfacing

    Science.gov (United States)

    Pesin, A.; Pustovoytov, D.; Vafin, R.; Yagafarov, I.; Vardanyan, E.

    2017-05-01

    The wear of the surface layer of rolls after ion nitriding in glow discharge, followed by a coating of TiN -TiAlN plasma arc are studied and simulated. stress-strain state of the material rolls under asymmetric rolling with ultra-high shear deformations is simulated. The effect of thermal fields, formed upon contact of the tool and a deformable sheet, the structure of aluminum alloys, are considered.

  19. Primordial black hole production during preheating in a chaotic inflationary model

    CERN Document Server

    Torres-Lomas, E

    2013-01-01

    In this paper we review the production of primordial black holes (PBHs) during preheating after a chaotic inflationary model. All relevant equations of motion are solved numerically in a modified version of HLattice, and we then calculate the mass variance to determine structure formation during preheating. It is found that production of PBHs can be a generic result of the model, even though the results seem to be sensitive to the values of the smoothing scale. We consider a constraint for overproduction of PBHs that could uncover some stress between inflation-preheating models and observations.

  20. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Michalski J.

    2015-06-01

    Full Text Available Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dissociated ammonia. The nitriding processes were accomplished in four series. The parameters selected in the particular processes were: process temperature (T, time (t, value of nitriding potential (KN, corresponding to known dissociation rate of the ammonia which dissociates during the nitriding process (α. Variable parameters were: nitrogen availability (mN2, composition of the ingoing atmosphere and flow rate of the ingoing atmosphere (FIn.

  1. Experimental study on preheated combustion of pulverized semi-coke

    Science.gov (United States)

    Yao, Yao; Zhu, Jianguo; Lu, Qinggang; Zhou, Zuxu

    2015-06-01

    In a test rig, pulverized semi-coke was preheated to 850oC in a circulating fluidized bed (CFB) and then combusted at 1100oC in a down-fired combustor (DFC). Experiments were conducted to reveal the effects of three secondary air nozzle cases (co-axial jet, top circular jet and wall circular jet) on the NO emission. The results show that the optimized secondary air nozzle can reduce NO emission. O2 concentration profile is the major factor affecting NO generation and emission, which is led by the secondary air nozzle. The lower O2 concentration led to the generation of lower initial NO. The NO emission at the exit of the DFC was reduced from 189 to 92 mg/m3 (@ 6% O2) with the decrease of initial generation. The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH3 in the syngas, rather than the oxidization of fuel-N in the char. The low and well-distributed O2 concentration contributes to the reduction of initial NO, which helps to reduce the NO emission. The combustion efficiencies of the cases of the co-axial jet, the top circular jet, and the wall circular jet are 97.88%, 98.94% and 98.74%, respectively.

  2. Preheating after multifield inflation with nonminimal couplings, II: Resonance Structure

    CERN Document Server

    DeCross, Matthew P; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I

    2016-01-01

    This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the single-field attractor, which is a generic feature of these models. We construct the Floquet charts to find regions of parameter space in which particle production is efficient for both the adiabatic and isocurvature modes, and analyze the resonance structure using analytic and semi-analytic techniques. Particle production in the adiabatic direction is characterized by the existence of an asymptotic scaling solution at large values of the nonminimal couplings, $\\xi_I \\gg 1$, in which the dominant instability band arises in the long-wavelength limit, for comoving wavenumbers $k \\rightarrow 0$. However, the large-$\\xi_I$ regime is not reached until $\\xi_I \\geq {\\cal O} (100)$. In the intermediate regime, with $\\xi_I \\sim {\\cal O}(10)$, the resonance structure depend...

  3. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  4. Adaptive preheating duration control for low-power ambient air quality sensor networks.

    Science.gov (United States)

    Baek, Yoonchul; Atiq, Mahin K; Kim, Hyung Seok

    2014-03-20

    Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback-large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC) method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption. Furthermore, the APC can allow systems to meet user requirements such as accuracy and periodicity factor when detecting the concentration of a target gas. A performance evaluation of the power consumption of gas sensors is conducted with various user requirements and factors that affect the preheating duration of the gas sensor. This shows that the power consumption of the APC is lower than that of continuous power supply methods and constant power supply/cutoff methods.

  5. Adaptive Preheating Duration Control for Low-Power Ambient Air Quality Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yoonchul Baek

    2014-03-01

    Full Text Available Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback—large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption. Furthermore, the APC can allow systems to meet user requirements such as accuracy and periodicity factor when detecting the concentration of a target gas. A performance evaluation of the power consumption of gas sensors is conducted with various user requirements and factors that affect the preheating duration of the gas sensor. This shows that the power consumption of the APC is lower than that of continuous power supply methods and constant power supply/cutoff methods.

  6. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan;

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  7. Prediction and mitigation of air preheater fouling due to ammonium bisulfate

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, R.; Tavoulareas, S.; Stallings, J. [Energy and Environmental Strategies, MA (United States)

    2001-07-01

    This paper provides a brief review of the fundamentals of ammonium bisulfate (ABS) formation, deposition and fouling in the air preheater. It presents a software-based predictive model for assessing the potential for air preheater fouling as a result of proposed SNCR or SCR retrofits and considering site-specific conditions and introduces a software-based cost-benefit model for assessing the economic trade-offs of various ABS fouling mitigation options. 7 refs., 13 figs.

  8. Stellar and HI Mass Functions Predicted by a Simple Preheating Galaxy Formation Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the new preheating mechanism of galaxy formation suggested by Mo et al., we construct a simple model of formation of disk galaxies within the current paradigm of galaxy formation. It incorporates preheating, gas cooling, bulge formation and star formation. The predicted stellar and HI mass functions of galaxies are discussed and compared with the observations. It is found that our model can roughly match both the observed galaxy luminosity function and the observed HI-mass function.

  9. Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides

    Directory of Open Access Journals (Sweden)

    Ichiro Yonenaga

    2015-07-01

    Full Text Available The hardness of wurtzite indium nitride (α-InN films of 0.5 to 4 μm in thickness was measured by the nano-indentation method at room temperature. After investigation of crystalline quality by x-ray diffraction, the hardness and Young’s modulus were determined to be 8.8 ± 0.4 and 184 ± 5 GPa, respectively, for the In (0001- and N ( 000 1 ̄ -growth faces of InN films. The bulk and shear moduli were then derived to be 99 ± 3 and 77 ± 2 GPa, respectively. The Poisson’s ratio was evaluated to be 0.17 ± 0.03. The results were examined comprehensively in comparison with previously reported data of InN as well as those of other nitrides of aluminum nitride and gallium nitride. The underlying physical process determining the moduli and hardness was examined in terms of atomic bonding and dislocation energy of the nitrides and wurtzite zinc oxide.

  10. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  11. Combustion and Vibration Analysis of Idi- Diesel Engine Fuelled With Neat Preheated Jatropha Methyl Ester

    Directory of Open Access Journals (Sweden)

    Y.Ashok Kumar Reddy

    2014-03-01

    Full Text Available Experimentation is conducted on an IDI diesel engine and the results of combustion and vibration on IDI -Diesel engine fueled with the preheated Jatropha Methyl Ester (JME are presented. The Present research trend is to replace conventional diesel by renewable alternative fuels in view of fast depletion of petroleum reserves and to reduce the exhaust emissions from the engines without altering the basic design of the engine. Due to moderately higher viscosity effects, the direct use of biodiesel in C.I. engines is limited to 20% and the limitation is based on the NO emission also. In this work, the biodiesel is preheated using on line electronically controlled electrical preheating system before it enters into the injector. Experiments are conducted on a four stroke single cylinder IDI engine to find combustion and vibration characteristics of the engine with the preheated Jatropha Methyl Ester (JME heated to temperatures viz. 60,70,80,90 and 1000C. Normally thin oils due to heating may trigger fast burning leading to either detonation or knocking of the engine. This can be predicted by recording vibration on the cylinder head in different directions. The cylinder vibrations in the form of FFT and time waves have been analyzed to estimate the combustion propensity. Experiments are done using diesel, biodiesel and biodiesel at different preheated temperatures and for different engine loading conditions keeping the speed constant at 1500 rpm. Biodiesel preheated to 600C proved encouraging in all respects.

  12. Low-energy electron irradiation of preheated and gas-exposed single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ecton, P.A. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Beatty, J.; Verbeck, G. [Department of Chemistry, University of North Texas, Denton, TX 76203 (United States); Lakshantha, W.; Rout, B. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Perez, J.M., E-mail: jperez@unt.edu [Department of Physics, University of North Texas, Denton, TX 76203 (United States)

    2016-11-30

    Highlights: • Preheating SWCNTs in situ before irradiation prevents an increase in the D peak. • Preheated SWCNTs exposed to air or gases before irradiation show an increase in D peak. • The increase in D peak is not due to irradiation-induced chemisorption of adsorbates. • The effects are more significant for small diameter SWCNTs. • The increase in D peak is attributed to defects that increase inter-tube interactions. - Abstract: We investigate the conditions under which electron irradiation at 2 keV of single-wall carbon nanotube (SWCNT) bundles produces an increase in the Raman D peak. We find that irradiation of SWCNTs that are preheated in situ at 600 °C for 1 h in ultrahigh vacuum before irradiation does not result in an increase in the D peak. Irradiation of SWCNTs that are preheated in vacuum and then exposed to air or gases results in an increase in the D peak, suggesting that adsorbates play a role in the increase in the D peak. Small diameter SWCNTs that are not preheated or preheated and then exposed to air show a significant increase in the D and G bands after irradiation. X-ray photoelectron spectroscopy shows no chemical shifts in the C 1s peak of SWCNTs that have been irradiated versus SWCNTs that have not been irradiated, suggesting that chemisorption of adsorbates is not responsible for the increase in the D peak.

  13. Cosmological Simulations of the Preheating Scenario for Galaxy Cluster Formation: Comparison to Analytic Models and Observations

    CERN Document Server

    Younger, Joshua D

    2007-01-01

    We perform a set of non--radiative cosmological simulations of a preheated intracluster medium in which the entropy of the gas was uniformly boosted at high redshift. The results of these simulations are used first to test the current analytic techniques of preheating via entropy input in the smooth accretion limit. When the unmodified profile is taken directly from simulations, we find that this model is in excellent agreement with the results of our simulations. This suggests that preheated efficiently smoothes the accreted gas, and therefore a shift in the unmodified profile is a good approximation even with a realistic accretion history. When we examine the simulation results in detail, we do not find strong evidence for entropy amplification, at least for the high-redshift preheating model adopted here. In the second section of the paper, we compare the results of the preheating simulations to recent observations. We show -- in agreement with previous work -- that for a reasonable amount of preheating, a...

  14. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  15. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  16. Nitride quantum light sources

    Science.gov (United States)

    Zhu, T.; Oliver, R. A.

    2016-02-01

    Prototype nitride quantum light sources, particularly single-photon emitters, have been successfully demonstrated, despite the challenges inherent in this complex materials system. The large band offsets available between different nitride alloys have allowed device operation at easily accessible temperatures. A wide range of approaches has been explored: not only self-assembled quantum dot growth but also lithographic methods for site-controlled nanostructure formation. All these approaches face common challenges, particularly strong background signals which contaminate the single-photon stream and excessive spectral diffusion of the quantum dot emission wavelength. If these challenges can be successfully overcome, then ongoing rapid progress in the conventional III-V semiconductors provides a roadmap for future progress in the nitrides.

  17. Estimations of the spontaneous polarization of binary and ternary compounds of group III nitrides

    Science.gov (United States)

    Davydov, S. Yu.; Posrednik, O. V.

    2016-04-01

    The dependences of spontaneous polarizations P sp of solid solutions of aluminum, gallium, and indium nitrides on the compositions were estimated using the Harrison bond-orbital method. A simple formula was proposed to estimate P sp using only lengths of the interatomic bonds between the nearest neighbor atoms and the angles between these bonds.

  18. Preparation of big size open-cell aluminum foam board using infiltration casting

    Institute of Scientific and Technical Information of China (English)

    Wang Lucai; Chen Yuyong; Wang Fang; Wu Jianguo; You Xiaohong

    2008-01-01

    This paper presents an infiltration casting technique for manufacturing big size open-cell aluminum foam boards. The principle and key technologies of infiltration casting are also analyzed. Based on the previous practice of the small size aluminum foam production, the die for preparing big size aluminum foam boards is designed and manufactured. The experiments on aluminum boards of 300 mm×300 mm×(20-75) mm, with the pore size ranging from 1.0 to 3.2 mm and average porosity of 60%, have been performed. The experimental results show that a reliable infiltration process depends critically on the pouring temperature of the molten AI-alloy, the preheated temperature of the mould and salt particles and vacuum. Current research explores the possibility of large-scale manufacturing and application of the aluminum foams.

  19. Corrosion on air preheaters and economisers; Korrosion hos luftfoervaermare och ekonomisrar

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-05-15

    Combustion plants in Sweden are exposed to considerable stress regarding low temperature corrosion, and failures due to low temperature corrosion occur regularly. Particularly common is corrosion problems connected to air preheaters and economisers. The number of combustion plants having air preheaters and economisers is however large, and the result of a collection of experiences regarding corrosion on air preheaters and economisers therefore has the potential to give a broad knowledge base. The summary of collection of experiences that has been done here, complemented with a literature survey, is expected to give plant owners and plant constructors a valuable tool to prevent corrosion on the flue gas side of air preheaters and economisers. The choice of plants for the inquiry was made using a list from the Swedish Naturvaardsverket (Environmental Protection Agency) indicating the emissions of NO{sub x}gases from Swedish combustion plants. From that list mainly the plants with the largest emissions were chosen, resulting in a number of 30 plants. Depending on that most of the plants have several boilers, and that the connected tubes often have several economisers and air preheaters, the number of economisers and air preheaters in this experience collection is at least 85. The study was however not limited to economisers and air preheaters, but also experiences connected to corrosion of other units were collected when mentioned, and the most interesting information here is also included in the report. Also a number of the plants were visited to improve the basis of the report, e.g. by photographing the most interesting parts. As the insight of the extension of the problem increased, renewed interview rounds were made, and the last one was made in August 2011.

  20. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin

    Directory of Open Access Journals (Sweden)

    Matthias Richard Kramer

    2016-01-01

    Full Text Available To test the impact of preheating (25, 37, 54, or 68 °C of TetricEvoCeram (TEC, FiltekSupremeXT (FSXT, and Venus (V on flexural strength (FS, shear bond strength (SBS and interfacial tension (IFT. FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC. SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05. Preheated TEC (37–68 °C showed higher FS compared to the control-group (25 °C (p < 0.001. FSXT presented higher FS than TEC (p < 0.001. For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015. TEC showed higher values than V and FSXT (p < 0.001. IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001.

  1. Effect of preheating on the viscoelastic properties of dental composite under different deformation conditions.

    Science.gov (United States)

    Ahn, Kyung Hyun; Lim, Sanghyuk; Kum, Kee Yeon; Chang, Seok Woo

    2015-01-01

    Preheating of dental composites improves their flowability, facilitating successful restorations. However, the flowability of dental composites is affected not only by temperature but also by the deformation conditions. In the present work, the effects of various deformation conditions upon the viscoelastic properties of a preheated dental composite were studied. The rheological properties of Z350 dental composites at 25, 45, and 60°C were measured by a strain-controlled rheometer. When a low strain (0.03%) was applied, the preheated composite exhibited greater shear storage modulus (G') and complex viscosity (η*) than a room-temperature composite. Oppositely, when a high strain (50%) was applied, G' and η* of a preheated composite were lower than those of a room-temperature composite. Preheating of dental composites might be helpful in clinical practice both to increase the slumping resistance when minimal manipulation is used (e.g., during the build-up of a missing cusp tip) and to increase flowability when manipulation entailing high shear strain is applied (e.g., when uncured composite resin is spread on a dentin surface).

  2. Effect of pre-heating on the viscosity and microhardness of a resin composite.

    LENUS (Irish Health Repository)

    Lucey, S

    2010-04-01

    The effect of pre-heating resin composite on pre-cured viscosity and post-cured surface hardness was evaluated. Groups of uncured specimens were heated to 60 degrees C and compared with control groups (24 degrees C) with respect to viscosity and surface hardness. Mean (SD) viscosities of the pre-heated specimens (n = 15) were in the range of 285 (13)-377 (11) (Pa) compared with 642 (35)-800 (23) (Pa) at ambient temperature. There was a statistically significant difference between the two groups (P < 0.001). Mean (SD) Vickers microhardness (VHN) of the pre-heated group (n = 15) was 68.6 (2.3) for the top surface and 68.7 (1.8) for the bottom surface measured at 24 h post curing (specimen thickness = 1.5 mm). The corresponding values for the room temperature group were 60.6 (1.4) and 59.0 (3.5). There was a statistically significant difference between corresponding measurements taken at the top and bottom for the pre-heated and room temperature groups (P < 0.001). There was no significant difference between top and bottom measurements within each group. Pre-heating resin composite reduces its pre-cured viscosity and enhances its subsequent surface hardness. These effects may translate as easier placement together with an increased degree of polymerization and depth-of-cure.

  3. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  4. SRC-II slurry preheater technical uncertainties. Report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report reviews the performance, and draws conclusions therefrom, the coal slurry preheaters of the Ft. Lewis, Washington, Solvent Refined Coal (SRC) Pilot Plant in the following areas: Coking, Erosion Corrosion, Heat transfer and pressure drop effects. Using prudent engineering judgement it postulates how such conclusions should affect the design and operability of large preheaters in future commercial scale plants. Also a recommendation is made for a small scale research and development effort that should result in a much firmer preheater design for any future facility. This report should be read in conjunction with the Solvent Refined Coal (SRC) Final Report, and volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and also Ft. Lewis Slurry Preheater Data Analysis, 1-1/2 Inch Coil by Gulf Science and Technology Company of Pittsburgh, Pennsylvania. The Pittsburg and Midway Coal Mining Co.'s background is based primarily on a racetrack shaped up-flow coil and these comments pertain specifically to a commercial heater of that type of design. 5 references, 12 figures, 1 table.

  5. Effect of pre-heating on the mechanical properties of silorane-based and methacrylate-based composites

    Science.gov (United States)

    Mohammadi, Narmin; Jafari-Navimipour, Elmira; Kimyai, Soodabeh; Ajami, Amir-Ahmad; Bahari, Mahmoud; Ansarin, Mohammad

    2016-01-01

    Background The use of composites in dental restoration has been commonly criticized, due to their underwhelming mechanical properties. This problem may be solved partially by preheating. The present research aims to determine the effect of preheating on the mechanical properties of two different classes of composites. Material and Methods A Silorane-based (Silorane) and a Methacrylate-based (Z250) composite were preheated to different temperatures (25, 37, and 68 °C) and afterwards were tested with the appropriate devices for each testing protocol. The material’s flexural strength, elastic modulus, and Vickers microhardness were evaluated. Two-way ANOVA, and Tukey’s post hoc were used to analyze the data. Results Microhardness and elastic modulus increased with preheating, while flexural strength values did not increase significantly with preheating. Furthermore the methacrylate-based composite (Z250) showed higher values compared to the Silorane-based composite (Silorane) in all the tested properties. Conclusions Preheating Silorane enhances the composite’s microhardness and elastic modulus but does not affect its flexural strength. On the other hand, preheating Z250 increases its microhardness but does not change its flexural strength or elastic modulus. In addition, the Z250 composite shows higher microhardness and flexural strength than Silorane, but the elastic modulus values with preheating are similar. Therefore Z250 seems to have better mechanical properties making it the better choice in a clinical situation. Key words:Composite, elastic modulus, flexural strength, microhardness, preheating. PMID:27703604

  6. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    Science.gov (United States)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  7. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  8. The benefit of solid oxide fuel cells with integrated air pre-heater

    Energy Technology Data Exchange (ETDEWEB)

    Costamagna, P. [Univ. degli Studi di Genova, Fac. di Ingegneria, ISTIC, Inst. di Ingegneria Chimica e di Processo `G.B. Bonino`, Genova (Italy)

    1997-11-01

    A new design has recently been proposed in the field of solid oxide fuel cells, consisting of a traditional electrochemical cell integrated with a pre-heater. In this paper a simulation model for the rectangular planar solid oxide fuel cell with integrated air pre-heater is presented. A two-dimensional stack simulation is presented as well, one axis coincides with the fuel flow direction, the other with the stack height. Local quantities such as current density, gas and solid temperatures are reported and cell characteristics predicted. In a parameter study, effects of oxygen utilisation and heat-transfer conditions in the pre-heater on the local temperature distribution of the solid structure are considered. As a result, the benefit of the new cell design becomes evident when low air flow rates are applied. A further advantage associated with the reduced flow rate is the low air temperature at the inlet. (orig.)

  9. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    Science.gov (United States)

    Harvey-Thompson, A. J.; Sefkow, A. B.; Nagayama, T. N.; Wei, M. S.; Campbell, E. M.; Fiksel, G.; Chang, P.-Y.; Davies, J. R.; Barnak, D. H.; Glebov, V. Y.; Fitzsimmons, P.; Fooks, J.; Blue, B. E.

    2015-12-01

    We present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 ×1020 cm-3=0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.

  10. Analysis of plasma nitrided steels

    Science.gov (United States)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1987-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  11. Effect of Intermediate Agents and Preheated Composites on Repair Bond Strength of Silorane-Based Composites

    Directory of Open Access Journals (Sweden)

    Fereshteh Shafiei

    2016-05-01

    Full Text Available Objectives: Repairing composite restorations is a challenging procedure especially when two different types of composites are used. This study aimed to compare the repair strength of silorane-based composite (SC (Filtek P90 with that of preheated SC, methacrylate composite (MC(Z250, flowable MC (Filtek Supreme Plus and different adhesive/composite combinations.Materials and Methods: Eighty-four SC specimens were fabricated and randomly divided into seven groups (G. In the control group (G7, SC was bonded immediately to SC. The other specimens were water-aged for two months and were then roughened, etched and repaired with the following materials: G1 Silorane Adhesive Bond (SAB/SC;G2 Preheated SC; G3 SAB/MC; G4 Adper Single Bond (SB/MC; G5 Flowable MC/MC; G6 Preheated MC. After water storage and thermocycling, the repaired specimens were subjected to shear bond strength testing. The data were analyzed using ANOVA and Tukey’s test.Results: Preheated SC and MC, flowable MC and SAB/SC resulted in bond strength comparable to that of the control group. Preheated SC showed significantly higher bond strength when compared to SAB/MC (P=0.04 and SB/MC (P<0.001. Bond strength of SB/MC was significantly lower than that of the other groups (P<0.05, except for SAB/SC and SAB/MC.Conclusion: All repairing materials except for SB/MC resulted in bond strength values comparable to that of the control group. Repair with preheated SC yielded the highest bond strength. 

  12. Effects of Preheated Composite on Micro leakage-An in-vitro Study

    Science.gov (United States)

    Raj, James David; Sherlin, Herald

    2016-01-01

    Introduction Resin composites have been the pinnacle of direct esthetic restorations ever since its discovery. However, it comes with its own disadvantages. Post-operative sensitivity and marginal discoloration frequently occur due to polymerization shrinkage and micro leakage, which is the major cause of failure in resin composite restorations. Aim To evaluate the effects of preheated composite at different temperatures on microleakage. Materials and Methods A total of 60 extracted non-carious human premolars were collected and class 1 cavity (1.5x4x 3mm) was prepared in each and were randomly divided into three groups. Group 1 (n=20) was filled with microhybrid resin composite (Heraeus Charisma Smile) at room temperature. Group 2 (n=20) was filled with the same resin composite which was preheated to 50°C and Group 3 (n=20) was filled with resin composite preheated to 60°C. Teeth were subjected to a thermocycling regime (500X, 5 - 55°C), followed by a dye infiltration by immersing in basic fuschin for 24 hours. The tooth was sectioned longitudinally and the extent or absence of micro-leakage was determined by the amount of dye penetration along the resin composite-tooth interface using a confocal microscope. Results There was minor micro-leakage detected at the occlusal margin of the control tooth specimen. The sample with preheated composite restoration at 50°C showed an intact tooth-restoration interface with no micro leakage. However, the preheated composite at 60°C showed large amount of microleakage. Conclusion Under the current limitation of the study, preheated composite at 50°C showed the least micro-leakage. PMID:27504407

  13. Fatigue modelling for gas nitriding

    Directory of Open Access Journals (Sweden)

    H. Weil

    2016-10-01

    Full Text Available The present study aims to develop an algorithm able to predict the fatigue lifetime of nitrided steels. Linear multi-axial fatigue criteria are used to take into account the gradients of mechanical properties provided by the nitriding process. Simulations on rotating bending fatigue specimens are made in order to test the nitrided surfaces. The fatigue model is applied to the cyclic loading of a gear from a simulation using the finite element software Ansys. Results show the positive contributions of nitriding on the fatigue strength

  14. Effect of pre-heating on hardness of methacrylate- and silorane-based composites

    OpenAIRE

    Catelan, Anderson; Barreto,Bruno; Lima, Adriano; Oliveira, Marcelo; Marchi, Giselle; Aguiar, Flávio

    2014-01-01

    AIM: To evaluate the effect of composite pre-heating on the microhardness of different monomer resin-based. MATERIALS AND METHOD: Circular specimens of methacrylate- and silorane-based composite resins pre-heated at 23, 39, and 55˚ C were carried out, and cured using a halogen light-curing unit at 650 mW/cm². After 24 h, the specimens were polished and Knoop hardness number (KHN) was measured using a microhardness tester with 50-g load for 15 s. The data were analyzed with ANOVA and Tukey’s t...

  15. The precipitation and effect of nano nitrides in HSLC steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The existing forms of N and Al in HSLC (high strength low carbon) steel produced by TSCR (thin slab casting and rolling process), the precipitation thermodynamics and kinetics of AlN, and its effects on structure and mechanical property are studied. The experimental results show that only a small quantity of nitrogen is com- bined into AlN in HSLC steel produced by TSCR and most of the nitrogen in steel is still free nitrogen. Aluminum-nitride is mainly precipitated during the period of slow air cooling after coiling, but not during rolling and water cooling. The acid-soluble aluminum has no obvious effect on the grain size and mechanical property of HSLC steel produced by TSCR whose acid-soluble aluminum content is 0.005%―0.043%. The precipitation of AlN is not the main cause of grain refinement of HSLC steel produced by TSCR, nor is AlN the dominating precipitate that has precipitation strengthening effect. The nano nitrides are not pure AlN, but have complex compositions.

  16. Titanium Nitride Cermets

    Science.gov (United States)

    1952-07-01

    C ermets 7 Effect of Amount of Metal on Strength of TiN-Ni-Cr....26 Cerme ts S Effect of Amount of Metal on Strength of TiN-Co-Cr....27 Cermets 9...Figures 7 and 8. Titanium Nitride-Nickel-Chromium Cerme ts From Figure 7, it can be seen that 2900OF was the better firing temperature. The 20% metal

  17. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energ...

  18. Aluminizing and subsequent nitriding of plain carbon low alloy steels for piston ring applications

    Energy Technology Data Exchange (ETDEWEB)

    Bindumadhavan, P.N.; Keng Wah, H.; Prabhakar, O. [Nanyang Technol. Univ., Singapore (Singapore). Div. of Mater. Eng.; Makesh, S. [Chemical and Nuclear Engineering Building, University of Maryland, 20783, College Park, MD (United States); Gowrishankar, N. [I P Rings Ltd., D 11/12, Industrial Estate, 603209, Maraimalainagar (India)

    2000-05-22

    Nitriding is a case hardening process that is commonly used for increasing the wear life of automotive piston rings. However, special alloy steels are required to achieve high surface hardness and nitrided case depth values required by the automotive industry. The cost of such alloy steels is one of the major components of the total cost of the nitrided piston ring. To address this issue, efforts have been directed towards development of cheaper raw materials as substitutes for nitridable steels. In this study, an attempt has been made to increase the surface hardness of two plain carbon low alloy steels by aluminizing and subsequent diffusion treatment and nitriding. The process parameters for the aluminizing operation are discussed. Results indicate that a near twofold increase in surface hardness is achievable by aluminizing followed by diffusion treatment and nitriding (580-1208 HV for EN32B steel and 650-1454 HV for 15CR3 steel). It has also been found that the nitrided case depth obtained (0.11-0.13 mm for EN32B steel and 0.10-0.14 mm for 15CR3 steel) matches well with the general requirements of the piston ring industry. The diffusion of aluminum into the alloy layer has also been discussed and the theoretical predictions were compared with actual values of Al concentration, as obtained by SEM-EDS system. It is found that Fick's law gives a fairly good prediction of the actual Al concentration profile, in spite of the complexity of the diffusion path. X-Ray diffraction studies have confirmed the presence of AlN in the alloy layer, which could be instrumental in the significant increase in surface hardness. It is proposed that aluminizing followed by diffusion treatment and nitriding of plain carbon low alloy steels could provide an alternative to the use of expensive nitridable steels for piston ring applications. (orig.)

  19. Gallium nitride electronics

    Science.gov (United States)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  20. The Influence of Pyrolythic Reactions on the Aluminum Dross Formation during the Twin Chamber Remelting Process

    Science.gov (United States)

    Jaroni, B.; Flerus, B.; Friedrich, B.; Rombach, G.

    After a coated aluminum product has reached the end of life cycle it needs to be recycled in an economical way. State of the art is the thermal removal of the organic fractions by pyrolysis. In modern multi chamber furnaces this step is realized in a separate pre-heating and melting compartment of the furnace. The incidence of aluminum losses can be traced back to the contained organic components, which lead to an aluminum burn off and thus increase dross production. The influence of typical scrap package structures on the de-coating step and the impact of released organic components on the dross quantity are investigated in this work. Lab-scale experiments have shown that the average residence time is too short to complete the pyrolysis. It has to be considered that the pyrolysis continuous while the scrap bale is submerged in the aluminum melt.

  1. Low-energy electron irradiation of preheated and gas-exposed single-wall carbon nanotubes

    Science.gov (United States)

    Ecton, P. A.; Beatty, J.; Verbeck, G.; Lakshantha, W.; Rout, B.; Perez, J. M.

    2016-11-01

    We investigate the conditions under which electron irradiation at 2 keV of single-wall carbon nanotube (SWCNT) bundles produces an increase in the Raman D peak. We find that irradiation of SWCNTs that are preheated in situ at 600 °C for 1 h in ultrahigh vacuum before irradiation does not result in an increase in the D peak. Irradiation of SWCNTs that are preheated in vacuum and then exposed to air or gases results in an increase in the D peak, suggesting that adsorbates play a role in the increase in the D peak. Small diameter SWCNTs that are not preheated or preheated and then exposed to air show a significant increase in the D and G bands after irradiation. X-ray photoelectron spectroscopy shows no chemical shifts in the C 1s peak of SWCNTs that have been irradiated versus SWCNTs that have not been irradiated, suggesting that chemisorption of adsorbates is not responsible for the increase in the D peak.

  2. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  3. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite.

    Science.gov (United States)

    Theobaldo, Jéssica Dias; Aguiar, Flávio Henrique Baggio; Pini, Núbia Inocencya Pavesi; Lima, Débora Alves Nunes Leite; Liporoni, Priscila Christiane Suzy; Catelan, Anderson

    2017-01-01

    The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC), microhardness (KHN), plasticization (P), and depth of polymerization (DP) of a bulk fill composite. Forty disc-shaped samples (n = 5) of a bulk fill composite were prepared (5 × 4 mm thick) and randomly divided into 4 groups according to light-curing unit (quartz-tungsten-halogen [QTH] or light-emitting diode [LED]) and preheating temperature (23 or 54 °C). A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey's test (α = 0.05). Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill. Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated.

  4. Abstract of a report on reducing resistance in gas-fired preheaters

    Energy Technology Data Exchange (ETDEWEB)

    1939-04-27

    The demands of Hydro-works Scholven to increase the capacity of one of their preheaters, with consequently greater volume of circulating gases, inspired the idea to study the resistance to the flow of gases in the preheaters. The resistance varied with the square of the velocity, so that pressure differences beyond the capacity of the single-stage Schiele blowers could be easily developed. It was intended, therefore, to determine the exact course of the pressure loss in preheaters in operation at Scholven. Since this met with many practical difficulties, it was supplemented by measurements on sheet steel models built to one-tenth their actual size. The measurements on the preheaters already in service showed that the pressure loss in the heating chamber proper, that is the pressure losses applicable to heat transmission, were small compared to the total pressure loss. The greatest proportion of the heating loss occurred in the inlet and outlet ducts and passages. This indicated that particular attention must be paid to the resistance in the ducts and the distributing points. The gas distribution needed to be arranged such that energy-consuming dampers could be eliminated. Where bends could not be avoided, guide vanes could considerably reduce the pressure loss. It was suggested to use an Escher--Weiss axial blower system instead of the Schiele radial blower. Reduction of pressure losses would increase velocity of the gases in the heating flues and thus increase heat transmission in the hairpin coils.

  5. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater

    Energy Technology Data Exchange (ETDEWEB)

    J. Menasha; D. Dunn-Rankin; L. Muzio; J. Stallings [University of California Irvine, Irvine, CA (United States). Department of Mechanical and Aerospace Engineering

    2011-07-15

    Ammonium bisulfate (ABS) forms in coal-fired power plant exhaust systems when ammonia slip from the NOx control system reacts with the sulfur oxides and water in the flue gas. The critical temperature range for ABS formation occurs in the air preheater, where ABS is known to cause corrosion and pluggage that can require unplanned outages and expensive cleaning. To develop mitigation strategies for the deleterious effects of ABS in air preheaters, it is important to know its formation temperature and deposition process. This paper describes a bench-scale experimental simulation of a single-channel air preheater, with the appropriate temperature gradient, used in conjunction with simulated coal combustion flue gas, including sulfur oxides, ammonia, and water vapor, to investigate the formation of ABS. Formation was observed optically, and the formation temperature, as well as deposition characteristics for a realistic range of reactant concentrations are presented and compared with previous studies on ABS formation. This study presents data at realistic concentrations not earlier tested, and the reported data has smaller experimental uncertainty than previously obtained. We found that the measured ABS formation temperatures under air preheater channel conditions lies between the temperatures reported by others, and is in the range of 500-520 K for typical flue gas concentrations of ammonia and sulfur oxide species. The results also show that, at least for this experimental configuration, ABS forms predominantly as an aerosol in the gas phase rather than as a condensate on the channel walls. 13 refs., 13 figs., 2 tabs.

  6. Enhanced preheating after multi-field inflation: on the importance of being special

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Eggemeier, Alexander [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany); Giblin, John T. Jr., E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: a.eggemeier@stud.uni-goettingen.de, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, Gambier, OH 43022 (United States)

    2012-11-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense.

  7. System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    Technical briefing to report the outcomes of a data monitoring effort to determine the nature of solar vent preheat system performance problems at a U.S. military installation. The analysis reports up-to-date research and findings regarding system design, helping to clarify the issue as a factor of system design, rather than a shortcoming of SVP systems.

  8. Little evidence for non-gravitational energy feedback beyond $r_{500}$ - An end to ICM preheating?

    CERN Document Server

    Iqbal, Asif; Nath, Biman B; Ettori, Stefano; Eckert, Dominique; Malik, Manzoor A

    2016-01-01

    Non-gravitational feedback affects the nature of the intra-cluster medium (ICM). X-ray cooling of the ICM and in situ energy feedback from AGN's and SNe as well as preheating of the gas at epochs preceding the formation of clusters are proposed mechanisms for such feedback. While cooling and AGN feedbacks are dominant in cluster cores, the signatures of a preheated ICM are expected to be present even at large radii. To estimate the degree of preheating, with minimum confusion from AGN feedback/cooling, we study the non-gravitational feedback energy profiles upto $r_{200}$ for a sample of 17 galaxy clusters using joint data sets of Planck SZ pressure profiles and ROSAT/PSPC gas density profiles. We show that the estimated energy feedback profile of the ICM is consistent with zero at 1$\\sigma$ beyond $\\sim r_{500}$. The canonical value of preheating energy of 1 keV/particle, needed in order to match energy entropy floors and cluster scalings, is ruled out at $4.4\\sigma$ beyond $r_{500}$. Our results take both n...

  9. Preheating to around 100°C under endcap blocks before welding at KHI.

    CERN Multimedia

    Loveless, D

    2000-01-01

    The 600mm thick sector blocks of the CMS endcaps are made from three layers of 200mm plates welded together. During the manufacture at KHI, the blocks are preheated to around 100°C to prevent cracks in the welds.

  10. The Accretion and Cooling of Preheated Gas in Dark Matter Halos

    CERN Document Server

    Lu, Y; Lu, Yu

    2006-01-01

    (abridged) We use a one-dimensional hydrodynamical code to investigate the effects of preheating on gas accretion and cooling in cold dark matter halos. In the absence of radiative cooling, preheating reduces the amount of gas that can be accreted into a halo, and the accreted gas fraction is determined by the ratio of the initial specific entropy of the gas to the virial entropy of the halo. In the presence of radiative cooling, preheating affects the gas fraction that can cool in two different ways. For small halos with masses 10^13Msun. We suggest that this may be the reason why the stellar mass function of galaxies breaks sharply at the massive end. Such preheating also helps create the hot diffused halos within which the "radio mode" feedback of AGNs can act effectively. In the second case, we assume the intergalactic medium is warm. Here the total amount of gas that can cool in a halo scales with halo mass as ~M^2, as would be required to match the observed stellar- and HI-mass functions in the current ...

  11. Platinum nitride with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  12. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  13. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  14. Infrared SPR sensing with III-nitride dielectric layers

    OpenAIRE

    Núñez-Cascarejo, A.; Estéban, O.; Méndez, J.A,; M. González-Herráez; Naranjo, F. B.

    2016-01-01

    In this work, Aluminum Indium Nitride (AlxIn1-xN) has been used as the dielectric overlay for a surface plasmon resonance sensor. The use of a ternary compound such as AlxIn1-xN for the dielectric allows a fine tuning of its refractive index by varying its composition, thus improving the sensor performance. Narrower transmittance resonances and higher sensitivities are obtained for transducers where the substrate rotates while depositing the ternary compound, which is attributed to the deposi...

  15. An aluminum nitride photoconductor for X-ray detection

    Institute of Scientific and Technical Information of China (English)

    Wang Xinjian; Song Hang; Li Zhiming; Jiang Hong; Li Dabing; Miao Guoqing; Chen Yiren; Sun Xiaojuan

    2012-01-01

    An AlN photoconductor for X-ray detection has been fabricated,and its response to X-ray irradiation intensity is studied.The photoconductor has a very low leakage current,less than 0.1 nA at an applied voltage of 100 V in the absence of X-ray irradiation.The photocurrent measurement results clearly reveal that the photocurrent is proportional to the square root of the X-ray irradiation intensity,and under relatively high irradiation the photocurrent can reach values one order of magnitude larger than the dark current when a voltage of 100 V is applied across the AlN photoconductor.By using the ABC model the dependence of the photocurrent on the X-ray irradiation intensity is analyzed,and a reasonable interpretation of the physical mechanism is obtained.

  16. Temperature-compensated aluminum nitride lamb wave resonators.

    Science.gov (United States)

    Lin, Chih-Ming; Yen, Ting-Ta; Lai, Yun-Ju; Felmetsger, Valery V; Hopcroft, Matthew A; Kuypers, Jan H; Pisano, Albert P

    2010-03-01

    In this paper, the temperature compensation of AlN Lamb wave resonators using edge-type reflectors is theoretically studied and experimentally demonstrated. By adding a compensating layer of SiO2 with an appropriate thickness, a Lamb wave resonator based on a stack of AlN and SiO2 layers can achieve a zero first-order temperature coefficient of frequency (TCF). Using a composite membrane consisting of 1 microm AlN and 0.83 microm SiO2, a Lamb wave resonator operating at 711 MHz exhibits a first-order TCF of -0.31 ppm/degrees C and a second-order TCF of -22.3 ppb/degrees C(2) at room temperature. The temperature-dependent fractional frequency variation is less than 250 ppm over a wide temperature range from -55 degrees C to 125 degrees C. This temperature-compensated AlN Lamb wave resonator is promising for future applications including thermally stable oscillators, filters, and sensors.

  17. Role of nitrogen vacancies in cerium doped aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com [Department of Physics, University of Gujrat, Gujrat (Pakistan); Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Asghar, Farzana [Department of Physics, University of Gujrat, Gujrat (Pakistan); Rana, Usman Ali; Ud-Din Khan, Salah [Sustainable Energy Technologies Center, College of Engineering, King Saud University, PO-Box 800, Riyadh 11421 (Saudi Arabia); Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Hussain, Fayyaz [Physics Department, Bahauddin Zakarya University, Multan (Pakistan); Ahmad, Iftikhar [Department of Mathematics, University of Gujrat, Gujrat (Pakistan)

    2016-08-15

    In this report, a systematic density functional theory based investigation to explain the character of nitrogen vacancies in structural, electronic and magnetic properties of Ce doped wurtzite AlN is presented. The work demonstrates the modification in the properties of the material upon doping thereby addressing dopant concentration and inter-dopant distance. The presence of anionic vacancy reveals spin polarization and introduction of magnetic character in the structure. The doping produced the magnetic character in the material which was of ferromagnetic nature in most cases except the situation when dopants separated by largest distance of 5.873 Å. The calculated values of total energy and exchange energy suggested the configuration including Ce{sub Al}–V{sub N} complex is more favorable and exhibits ferromagnetic ordering. - Highlights: • Ce doped AlN with and without nitrogen vacancy. • Dopant at nearest neighbor site introduce ferromagnetism. • Ce{sub Al}–V{sub N} complex is favorable in Ce:AlN.

  18. Mechanisms of Dynamic Deformation and Dynamic Failure in Aluminum Nitride

    Science.gov (United States)

    2012-06-01

    D DEBUSSCHER MZ436 20 29 J ERIDON MZ436 21 24 W HERMAN MZ435 01 24 S PENTESCU MZ436 21 24 38500 MOUND RD STERLING HTS MI 48310...3200 1 JET PROPULSION LAB IMPACT PHYSICS GROUP M ADAMS 4800 OAK GROVE DR PASADENA CA 91109-8099 3 OGARA HESS & EISENHARDT

  19. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  20. Evaluation of Vitreous and Devitrifying Enamels as Hot Forming Lubricants for Aluminum AA5083 Alloy

    Science.gov (United States)

    Riahi, A. R.; Morales, A. T.; Alpas, A. T.

    2008-06-01

    The adhesion of aluminum to tool surfaces during the hot forming of sheet aluminum alloys presents challenging tribological problems. Graphite and boron nitride are commonly used as aluminum adhesion mitigating solid lubricants for hot forming processes, but lubricant breakdown in high-stress areas, such as corners and bends, remains an issue compromising the quality of the formed parts as well as the tool life. Low-melting temperature enamels may provide an affordable and easy to apply alternative. In this study, vitreous (amorphous glass) and devitrifying (two phase crystalline glass) layers were deposited on the surface of sheet aluminum samples with a sedimentation technique. Enamel lubrication was effective in preventing aluminum transfer to the steel counterface. Hence, the prospect exists for the use of these enamels as aluminum workpiece lubricants in hot forming operations.

  1. Effects of Aqueous Vapour Consistence in Nitriding Furnace on the Quality of the Sintered Nitride

    Institute of Scientific and Technical Information of China (English)

    WANGZijiang

    1998-01-01

    If the aqueous vapour consistence is too high(>0.7%),it is very disadvantageous to the sintered products in the nitriding furnace,when silcon nitride bonded silicon carbide products are synthesized by nitridation of silicon.

  2. Methods for improved growth of group III nitride semiconductor compounds

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro

    2015-03-17

    Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.

  3. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    Science.gov (United States)

    2015-02-01

    times for cleanliness . The tank was then refilled, allowing the temperature to stabilize at the operating temperature (–196 °C), after which the...Ortalan V, Li WF, Zhang Z, Vogt R, Browning ND, Lavernia EJ, Schoenung JM. HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C

  4. Characterization of salt cake from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; Badawy, Amro El; Arambewela, Mahendranath; Ford, Robert; Barlaz, Morton; Tolaymat, Thabet

    2014-05-30

    Salt cake is a major waste component generated from the recycling of secondary aluminum processing (SAP) waste. Worldwide, the aluminum industry produces nearly 5 million tons of waste annually and the end-of-life management of these wastes is becoming a challenge in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 39 SAP waste salt cake samples collected from 10 different facilities across the U.S. were determined. The results showed that aluminum (Al), aluminum oxide, aluminum nitride and its oxides, spinel and elpasolite are the dominant aluminum mineral phases in salt cake. The average total Al content was 14% (w/w). The overall percentage of the total leachable Al in salt cake was 0.6% with approximately 80% of the samples leaching at a level less than 1% of the total aluminum content. The extracted trace metal concentrations in deionized water were relatively low (μgL(-1) level). The toxicity characteristic leaching procedure (TCLP) was employed to further evaluate leachability and the results indicated that the leached concentrations of toxic metals from salt cake were much lower than the EPA toxicity limit set by USEPA.

  5. Magnetic properties of the ammonolysis product of α-Fe powder containing a small amount of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Tsugawa, Yuta; Maubuchi, Yuji; Motohashi, Teruki; Kikkawa, Shinichi, E-mail: kikkawa@eng.hokudai.ac.jp

    2015-02-15

    Magnetite was prepared containing a small amount of aluminum and its nitride was generated through low temperature ammonolysis following reduction under hydrogen. The nitrided product was determined by XRD to be a mixture of “α″-Fe{sub 16}N{sub 2}” having a slightly deformed crystal structure from α″-Fe{sub 16}N{sub 2} and the residual α-Fe. Magnetic coercivity of the mixture was decreased from the value of 150 mT obtained for the nitride product made without aluminum, due to the precipitation of nonmagnetic amorphous alumina in the low temperature nitrided bcc (Fe{sub 1−x}Al{sub x}) with x≤0.03. The aluminum-doped nitride product in which the “α″-Fe{sub 16}N{sub 2}” fraction was 30 at% exhibited magnetization at 1.5 T of approximately 200 Am{sup 2}kg{sup −1} at room temperature and its magnetic coercivity was 20 mT. - Graphical abstract: Magnetic iron nitride particles were separated by nonmagnetic amorphous γ-alumina. Magnetic coercivity was decreased by reducing the magnetic interaction between the particles. - Highlights: • Magnetic coercivity decreased in α”-Fe{sub 16}N{sub 2} like compound as a soft magnet. • Small amount of Al addition was effective in its preparation. • Magnetic interaction decreased between the “α”-Fe{sub 16}N{sub 2}” particles.

  6. Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fired Heat Treatment Furnace

    Directory of Open Access Journals (Sweden)

    E B Muhammed Shafi,

    2015-09-01

    Full Text Available This paper describes the effect of combustion air pre- heating in Diesel fired heat Treatment Furnace. The main heat treatment processes are Normalizing, Tempering, Hardening, Annealing, Solution Annealing and Stress Relieving. The emission of carbon monoxide is measured with combustion air pre-heating and without preheating. The results are then compared and it is found that the emission of CO is reduced by 29.12%. With the Combustion air pre-heating a considerable reduction in Specific Furnace Fuel Consumption (SFFC is obtained. The test was caaried out at Peekay Steels Casting (P ltd, Nallalam, Calicut.

  7. Thickness of compound layer in steel-aluminum solid to liquid bonding

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang; Yunhui Du; Hanwu Liu; Shuming Xing; Daben Zeng; Jianzhong Cui; Limin Ba

    2003-01-01

    The bonding of solid steel plate to liquid aluminum was studied using rapid solidification. The surface of solid steel plate was defatted, descaled, immersed (in K2ZrF6 flux aqueous solution) and stoved. In order to determine the thickness of Fe-A1 compound layer at the interface of steel-aluminum solid to liquid bonding under rapid solidification, the interface of bonding plate was investigated by SEM (Scanning Electron Microscope) experiment. The relationship between bonding parameters (such as preheat temperature of steel plate, temperature of aluminum liquid and bonding time) and thickness of Fe-Al compound layer at the interface was established by artificial neural networks (ANN) perfectly. The maximum of relative error between the output and the desired output of the ANN is only 5.4%. From the bonding parameters for the largest interfacial shear strength of bonding plate (226℃ for preheat temperature of steel plate, 723 ℃ for temperature of aluminum liquid and 15.8 s for bonding time), the reasonable thickness of Fe-A1 compound layer 10.8 μm was got.

  8. A first principle study of band structure of III-nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)]. E-mail: rasofi@hotmail.com; Akbarzadeh, H. [Department of Physics, Isfahan University of Technology, 841546 Isfahan (Iran, Islamic Republic of); Fazal-e-Aleem [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)

    2005-12-15

    The band structure of both phases, zinc-blende and wurtzite, of aluminum nitride, indium nitride and gallium nitride has been studied using computational methods. The study has been done using first principle full-potential linearized augmented plane wave (FP-LAPW) method, within the framework of density functional theory (DFT). For the exchange correlation potential, generalized gradient approximation (GGA) and an alternative form of GGA proposed by Engel and Vosko (GGA-EV) have been used. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show a significant improvement over other theoretical work and are closer to the experimental data.

  9. Study of the Active Screen Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; C. X. Li; H. Dong; T. Bell

    2004-01-01

    Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carder in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.

  10. Characterization and reliability of aluminum gallium nitride/gallium nitride high electron mobility transistors

    Science.gov (United States)

    Douglas, Erica Ann

    Compound semiconductor devices, particularly those based on GaN, have found significant use in military and civilian systems for both microwave and optoelectronic applications. Future uses in ultra-high power radar systems will require the use of GaN transistors operated at very high voltages, currents and temperatures. GaN-based high electron mobility transistors (HEMTs) have proven power handling capability that overshadows all other wide band gap semiconductor devices for high frequency and high-power applications. Little conclusive research has been reported in order to determine the dominating degradation mechanisms of the devices that result in failure under standard operating conditions in the field. Therefore, it is imperative that further reliability testing be carried out to determine the failure mechanisms present in GaN HEMTs in order to improve device performance, and thus further the ability for future technologies to be developed. In order to obtain a better understanding of the true reliability of AlGaN/GaN HEMTs and determine the MTTF under standard operating conditions, it is crucial to investigate the interaction effects between thermal and electrical degradation. This research spans device characterization, device reliability, and device simulation in order to obtain an all-encompassing picture of the device physics. Initially, finite element thermal simulations were performed to investigate the effect of device design on self-heating under high power operation. This was then followed by a study of reliability of HEMTs and other tests structures during high power dc operation. Test structures without Schottky contacts showed high stability as compared to HEMTs, indicating that degradation of the gate is the reason for permanent device degradation. High reverse bias of the gate has been shown to induce the inverse piezoelectric effect, resulting in a sharp increase in gate leakage current due to crack formation. The introduction of elevated temperatures during high reverse gate bias indicated that device failure is due to the breakdown of an unintentional gate oxide. RF stress of AlGaN/GaN HEMTs showed comparable critical voltage breakdown regime as that of similar devices stressed under dc conditions. Though RF device characteristics showed stability up to a drain bias of 20 V, Schottky diode characteristics degraded substantially at all voltages investigated. Results from both dc and RF stress conditions, under several bias regimes, confirm that the primary root for stress induced degradation was due to the Schottky contact. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  11. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    Science.gov (United States)

    2002-06-01

    Binari, Dr. Mario Ancona, Dr. Weber, Dr. Specht, and Dr. Feick for beginning this valuable work. My parents, Ossie and Jewell Henry , for their love...33, No.14, pp. 1230-1231. 20. Petrosky , K.J., “High-Power High-Frequency SiC and GaN Devices for Microwave Amplifier Applications,” 12 March 2002

  12. Influence of the Previous Preheating Temperature on the Static Coefficient of Friction with Lubrication

    Directory of Open Access Journals (Sweden)

    M. Živković

    2016-12-01

    Full Text Available Experimental investigations static coefficient of friction in lubricated conditions and pre-heating of the sample pin at high temperatures is discussed in this paper. The static coefficient of friction was measured in the sliding steel copper pins per cylinder of polyvinylchloride. Pins are previously heated in a special chamber from room temperature to a temperature of 800 oC with a step of 50 °C. Tribological changes in the surface layer of the pins caused by pre-heating the pins at high temperatures and cooling systems have very significantly influenced the increase in the coefficient of static friction. The results indicate the possibility of improving the friction characteristics of metal materials based on their thermal treatment at elevated temperatures.

  13. Simulation on temperature field of TIG welding of copper without preheating

    Institute of Scientific and Technical Information of China (English)

    LEI Yu-cheng; YU Wen-xia; LI Cai-hui; CHENG Xiao-nong

    2006-01-01

    According to the conservation of energy principle and technology characteristics of tungsten inert gas(TIG), a model of non-steady three-dimensional temperature field for red copper's TIG welding with a locomotive arc was established. The temperature field of welding pool was calculated with finite element software ANSYS. Indrafted the heat enthalpy conception and the surface distribution dual-ellipsoid model, the demands of welding numerical simulation was primely satisfied. Aimed at bad weldability of red copper, the TIG welding of thick-wall red copper was studied adopting Ar+N2 without preheating. The results show that the heating effect of arc is evidently enhanced, it is viable to achieve the no preheating TIG welding of red copper. Comparing the experimental values with the calculated ones under different technological parameters, the results indicate that the model and practical course are well matched, which proves that the model is reliable and correct.

  14. Operation of a cyclonic preheater in the Ca-looping for CO2 capture.

    Science.gov (United States)

    Martínez, Ana; Lara, Yolanda; Lisbona, Pilar; Romeo, Luis M

    2013-10-01

    Calcium looping is an emerging technology for CO2 capture that makes use of the calcium oxide as a sorbent. One of its main issues is the significant energy consumption in the calciner, where the regeneration of the sorbent takes place. Nevertheless, as a high temperature looping technology, the surplus heat flows may be used to reduce the energy needs in this reactor. The addition of a cyclonic preheater similar to those used in the cement industry is proposed in this work. A calcium looping system was modeled and simulated to assess the advantages and disadvantages of the inclusion of a cyclonic preheater. Despite the negative effect on the maximum average capture capacity of the sorbent, a reduction on the coal and oxygen consumptions and on the extra CO2 generated in the calciner is obtained.

  15. Experimental investigations of the laser cladding of protective coatings on preheated base material

    Science.gov (United States)

    Jendrzejewski, Rafal; Sliwinski, Gerard; Conde, Ana; Navas, Carmen; de Damborenea, Juan J.

    2004-06-01

    The laser cladding technique was applied to obtain Co-based stellite SF6 coatings on the chromium steel base. The coatings were prepared by means of a direct cladding of metal powder using a 1.2 kW cw CO2 laser stand with a controlled preheating of the substrate material. Results of the metallographic tests revealed a fine-grained, dendritic microstructure and proper metallic bonding between substrate and coating. A nearly constant concentration of mian elements at different areas of the coating cross-section indicated on homogeneous chemical composition of the laser-cladded SF6 alloy samples. A significant decrease of the micro-crack number with increasing temperature of the base preheating was observed. This was accompanied by a drop of the wear and corrosion resistance.

  16. Gravitational Waves from Abelian Gauge Fields and Cosmic Strings at Preheating

    CERN Document Server

    Dufaux, Jean-Francois; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space, and show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearence of new peaks at characteristic frequencies that are related to...

  17. Preheating after multifield inflation with nonminimal couplings, III: Dynamical spacetime results

    CERN Document Server

    DeCross, Matthew P; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I

    2016-01-01

    This paper concludes our semi-analytic study of preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. Using the covariant framework of Ref. [1], we extend the rigid-spacetime results of Ref. [2] by considering both the expansion of the universe during preheating, as well as the effect of the coupled metric perturbations on particle production. The adiabatic and isocurvature perturbations are governed by different effective masses that scale differently with the nonminimal couplings and evolve differently in time. The effective mass for the adiabatic modes is dominated by contributions from the coupled metric perturbations immediately after inflation. The metric perturbations contribute an oscillating tachyonic term that enhances an early period of significant particle production for the adiabatic modes, which ceases on a time-scale governed by the nonminimal couplings $\\xi_I$. The effective mass of the isocurvature perturbations, on the other hand, is dominated...

  18. Heating of Intracluster Gas by Jet Activities of AGN Is the "Preheating" Scenario Realistic?

    CERN Document Server

    Yamada, M; Yamada, Masako; Fujita, Yutaka

    2001-01-01

    We investigate the non-gravitational heating of hot gas in clusters of galaxies (intracluster medium; ICM) on the assumption that the gas is heated well before cluster formation ('preheating'). We examine the jet activities of radio galaxies as the sources of excess energy in ICM, and the deformation of the cosmic microwave background (the Sunyaev-Zel'dovich effect) by hot electrons produced at the jet terminal shocks. We show that the observed excess entropy of ICM and {\\sl COBE/FIRAS} upper limit for the Compton $y$-parameter are compatible with each other only when the heating by the jets occurred at relatively small redshift ($z\\lesssim 3$). Since this result contradicts the assumption of 'preheating', it suggests that the heating occurred simultaneously with or after cluster formation.

  19. Specific Angular Momentum Distribution of Disc Galaxies Formed in Preheated Intergalactic Media

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-Jian; FU Li-Ping; SHU Cheng-Gang

    2004-01-01

    Assuming that baryons within a galactic halo have the same specific angular momentum as the dark matter where they locate initially and a disc forms due to the gas cooling and condensation with the conservation of angular momentum, we investigate the angular momentum distribution in a resulting galactic disc under the new preheated galaxy formation model suggested by Mo and Mao (Mon. Not. R. Astron. Soc. 333 (2002) 768).Compared with the observational results, it can be concluded that the preheated galaxy formation model can match current observations. This model can be a good approach to solve the problems of both the angular momentum catastrophe and the mismatch of angular-momentum profiles in current disc galaxy formation models.

  20. The Cluster Gas Mass - Temperature Relation Evidence for a High Level of Preheating

    CERN Document Server

    McCarthy, I G; Balogh, M L; Carthy, Ian G. Mc; Babul, Arif; Balogh, Michael L.

    2002-01-01

    Recent X-ray observations have been used to demonstrate that the cluster gas mass - temperature relation is steeper than theoretical self-similar predictions drawn from numerical simulations that consider the evolution of the cluster gas through the effects of gravity and shock heating alone. One possible explanation for this is that the gas mass fraction is not constant across clusters of different temperature, as usually assumed. Observationally, however, there is no compelling evidence for gas mass fraction variation, especially in the case of hot clusters. Seeking an alternative physical explanation for the observed trends, we investigate the role of preheating the intracluster medium by some arbitrary source on the cluster gas mass - temperature relation for clusters with emission-weighted mean temperatures of greater than about 3 keV. Making use of the physically-motivated, analytic model developed by Babul et al. (2002), we find that preheating does, indeed, lead to a steeper relation. This is in agree...

  1. Electronically Controlling the System of Preheating Intake Air by Flame for Diesel Engine Cold-Start

    Institute of Scientific and Technical Information of China (English)

    杜巍; 赵福堂

    2003-01-01

    In order to improve the cold-start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self-ignite at the end of compression process at different temperatures of coolant and intake-air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro-controller unit (MCS-8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.

  2. The precipitation and effect of nano nitrides in HSLC steel

    Institute of Scientific and Technical Information of China (English)

    FU Jiei; LIU YangChun; WU HuaJie

    2008-01-01

    The existing forms of N and AI in HSLC (high strength low carbon) steel produced by TSCR (thin slab casting and rolling process),the precipitation thermodynamics and kinetics of AIN,and its effects on structure and mechanical property are stud-ied.The experimental results show that only a small quantity of nitrogen is com-bined into AIN in HSLC steel produced by TSCR and most of the nitrogen in steel is still free nitrogen.AIuminum-nitride is mainly precipitated during the period of slow air cooling after coiling,but not during rolling and water cooling.The acid-soluble aluminum has no obvious effect on the grain size and mechanical property of HSLC steel produced by TSCR whose acid-soluble aluminum content is 0.005%-0.043%.The precipitation of AIN is not the main cause of grain refinement of HSLC steel produced by TSCR,nor is AIN the dominating precipitate that has precipitation strengthening effect.The nano nitrides are not pure AIN,but have complex compositions.

  3. Effect of Variation of Silicon Nitride Passivation Layer on Electron Irradiated Aluminum Gallium Nitride/Gallium Nitride HEMT Structures

    Science.gov (United States)

    2014-06-19

    dioxide for passivation. As early as the 1980s, use of a Si3N4 layer on silicon operational amplifiers to achieve 4 radiation resistant...resistance of a precision operational amplifier .” IEEE Transactions on Nuclear Science, 28, no. 6 (1981): 4325-27. Fagerlind, M., Allerstain, F...172 6.3. Transconductance and Diode Measurements .......................................... 181 6.4. Deep Level Transient

  4. Effect of preheating on the film thickness of contemporary composite restorative materials

    OpenAIRE

    Dimitrios Dionysopoulos; Kosmas Tolidis; Paris Gerasimou; Eugenia Koliniotou-Koumpia

    2014-01-01

    Background/purpose: Recently, the placement of composite materials at an elevated temperature has been proposed in order to increase their flow for better adaptation in cavity walls. The aim of this in vitro study was to evaluate the effect of preheating on the film thickness of a variety of commercially available conventional composites and to compare them with those obtained from a variety of flowable composites at room temperature. Materials and methods: The composites were three nanohy...

  5. Preheating Cold Gas Thruster Flow Through a Thermal Energy Storage Conversion System

    Science.gov (United States)

    2013-01-01

    Journal Article 3. DATES COVERED (From - To) January 2013- October 2013 4. TITLE AND SUBTITLE Preheating Cold Gas Thruster Flow Through a Thermal Energy... Gas Thruster Flow through a Thermal Energy Storage Conversion System Michael R. Reid1 United States Air Force, Colorado Springs, CO, 80840 David B...specific impulse relative to a cold gas flow. Electric propulsion systems, the primary competitor to solar thermal propulsion systems, rely on the rather

  6. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of G'(pH)/G'(pH=4.

  7. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite

    Directory of Open Access Journals (Sweden)

    Theobaldo JD

    2017-05-01

    Full Text Available Jéssica Dias Theobaldo,1 Flávio Henrique Baggio Aguiar,1 Núbia Inocencya Pavesi Pini,2 Débora Alves Nunes Leite Lima,1 Priscila Christiane Suzy Liporoni,3 Anderson Catelan3 1Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, 2Ingá University Center, Maringá, 3Departament of Dentistry, University of Taubaté, Taubaté, Brazil Objective: The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC, microhardness (KHN, plasticization (P, and depth of polymerization (DP of a bulk fill composite.Methods: Forty disc-shaped samples (n = 5 of a bulk fill composite were prepared (5 × 4 mm thick and randomly divided into 4 groups according to light-curing unit (quartz–tungsten–halogen [QTH] or light-emitting diode [LED] and preheating temperature (23 or 54 °C. A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey’s test (α = 0.05.Results: Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill.Conclusion: Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated. Keywords: composite resins, physicochemical phenomena, polymerization, hardness, heating

  8. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  9. Hemocompatibility of titanium nitride.

    Science.gov (United States)

    Dion, I; Baquey, C; Candelon, B; Monties, J R

    1992-10-01

    The left ventricular assist device is based on the principle of the Maillard-Wenkel rotative pump. The materials which make up the pump must present particular mechanical, tribological, thermal and chemical properties. Titanium nitride (TiN) because of its surface properties and graphite because of its bulk characteristics have been chosen. The present study evaluated the in vitro hemocompatibility of TiN coating deposited by the chemical vapor deposition process. Protein adsorption, platelet retention and hemolysis tests have been carried out. In spite of some disparities, the TiN behavior towards albumin and fibrinogen is interesting, compared with the one of a reference medical grade elastomer. The platelet retention test gives similar results as those achieved with the same elastomer. The hemolysis percentage is near to zero. TiN shows interesting characteristics, as far as mechanical and tribological problems are concerned, and presents very encouraging blood tolerability properties.

  10. The effect of preheating and opacity on the sorption and solubility of a composite resin.

    Science.gov (United States)

    Castro, Fabrício Luscino Alves de; Pazinatto, Flávia Bittencourt; de Lima, Érick; Cesar, Paulo Francisco; Reges, Rogério Vieira

    2016-01-01

    This study evaluated the influence of material opacity and preheating on the sorption and solubility of a composite resin material. A commercially available composite resin and an 8 × 2-mm circular metallic matrix were used to fabricate a total of 60 specimens in 6 shades, of which 3 had conventional opacity (CA2, CA3, and CA3.5) and 3 were opaque (OA2, OA3, and OA3.5). Specimens were prepared at a room temperature of 25°C or preheated to 60°C (n = 5 per shade at each temperature). The specimens were weighed 3 times: M1, dried for 24 hours at 37°C; M2, stored for 7 days in 75% ethanol at 37°C; and M3, dried for an additional 24 hours at 37°C. The weights were used to calculate the sorption and solubility of the composite resin and were analyzed using 2-way analysis of variance and Tukey tests (α = 5%). Composite resin specimens heated at 60°C yielded lower values of sorption and solubility than did specimens prepared at 25°C (P composite shades were found to be similar (P > 0.05), except for shade CA2, which presented a greater mean solubility value than OA2 (P = 0.004). Therefore, preheating was beneficial, as it lowered both the sorption and solubility of the evaluated composite resin, but opacity had little effect on these properties.

  11. Marginal and internal analysis of preheated dental fissure-sealing materials using optical coherence tomography.

    Science.gov (United States)

    Borges, Boniek Castillo Dutra; de Assunção, Isauremi Vieira; de Aquino, Célia Avani; de Melo Monteiro, Gabriela Queiroz; Gomes, Anderson Stevens Leonidas

    2016-02-01

    This study aimed to evaluate the influence of pre-photoactivation temperature on the marginal and internal integrity (occurrence of voids) of fissure-sealing materials on occlusal fissures using optical coherence tomography (OCT). Occlusal fissures of 40 human third molars were sealed using a resin-based fissure sealant (Fluroshield) and a flowable composite (Permaflo) photoactivated at 68 °C (preheated) or at room temperature (25 °C) (n=10). After sealing, the teeth were subjected to thermocycling (500 cycles, 5-55 °C) and 14 days of pH cycling (demineralisation for 6 hours/day and remineralisation for 18 hours/day). The occlusal surfaces were scanned in a buccolingual direction, and 20 tomographic images parallel to the long axis of each tooth were obtained. Images presenting marginal gaps and internal voids were counted and statistically analysed using analysis of variance and Tukey's test (Pinternal voids than the resin-based sealant. Preheated materials had a lower percentage of gaps and internal voids than the materials at room temperature. Therefore, preheated flowable composite provided the best marginal sealing of fissures, and internal homogeneity of the material. © 2015 FDI World Dental Federation.

  12. Influence of ageing, grinding and preheating on the thermal behaviour of alpha-lactose monohydrate.

    Science.gov (United States)

    Garnier, S; Petit, S; Mallet, F; Petit, M-N; Lemarchand, D; Coste, S; Lefebvre, J; Coquerel, G

    2008-09-01

    It is shown that the onset temperature and the magnitude of thermal events observed during DSC analyses of alpha-lactose monohydrate can be strongly affected by various treatments such as ageing, manual grinding and preheating (cycle of preliminary dehydration and rehydration). In the case of grinding and preheating, the change of dehydration pathways was further investigated by using a suitable combination of characterization techniques, including X-ray powder diffraction (XRPD) performed with a synchrotron source (allowing an accurate Rietveld analysis), scanning electron microscopy (SEM), laser particle size measurements, FTIR spectroscopy and (1)H NMR for the determination of beta-lactose contents in samples. It appeared that the dehydration mechanism is affected not only by a smaller particle size distribution, but also by residual anisotropic lattice distortions and by the formation of surface defects or high energy surfaces. The fusion-recrystallization process occurring between anhydrous forms of alpha-lactose at ca. 170 degrees C is not significantly affected by grinding, whereas a preheating treatment induces an unexpected large increase of the enthalpy associated with this transition. Our observations and interpretations confirm the important role of water molecules in the crystal cohesion of the title compound and illustrate the necessity to consider the history of each sample for a satisfactory understanding of the physical properties and the behaviour of this important pharmaceutical excipient.

  13. 空气预热器的改造%Revamping of air preheater

    Institute of Scientific and Technical Information of China (English)

    廖艳玲

    2011-01-01

    The revamping of air preheater in the waste heat recovery system of a 4.1 MM TPY diesel hy-drotreating unit in SINOPEC Qingdao Refining & Chemical Co. , Ltd. Was introduced. An analysis was performed on how to revamp the air preheater to reduce flue gas emission temperature of waste heat recovery system so as to improve the thermal efficiency of fired heaters. After revamping, the flue gas emission temperature is about 30 ℃ lower than that before the revamping, the thermal energy obtained by the air is much higher than that before replacement of pre-heater tubes and energy saving is significant.%介绍了中国石化青岛炼油化工有限责任公司余热回收系统的空气预热器的改造情况,分析了如何通过对空气预热器的改造来降低余热回收系统排烟温度,从而提高加热炉的热效率.改造后,烟气排烟温度比改造前降低30℃左右,空气所获得的能量比更换热管前有较大提高,节能效果显著.

  14. Laser Pre-Heat Studies for MagLIF with Z-Beamlet

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, T. J.; Gomez, M. R.; Harding, E.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Peterson, K.; Schollmeier, M.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.; Campbell, E. M.; Lewis, S. M.

    2015-11-01

    Magnetized Liner Inertial Confinement Fusion (MagLIF) relies on strong pre-heat of the fuel, typically hundreds of eV. Z-Beamlet delivers up to 4 kJ of laser energy to the target to achieve this goal. Over the last year, several experimental campaigns at the Pecos target area of Sandia's Z-Backlighter Facility and in the center section of the Z-Accelerator have been performed to investigate pre-heat. Primary objectives of these campaigns were the transmission through the laser entrance hole (LEH) in dependence of window thicknesses and focus parameters (including phase plate smoothing), as well as energy coupling to the gaseous fuel. The applied diagnostic suite included a wide range of time integrated and time-resolved X-ray imaging devices, spectrometers, backscatter monitors, a full-beam laser transmission calorimeter, and X-ray diodes.We present the findings of these studies, looking ahead towards a standard pre-heat platform. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Study of laser preheat in magnetic liner inertial fusion using the AMR code FLASH

    Science.gov (United States)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre-Alexandre; University of Rochester; Sandia National Laboratories Collaboration

    2016-10-01

    Magnetic Liner Inertial Fusion (MagLIF) on the Z Pulsed Power Accelerator involves three processes: magnetization, preheat, and compression. An issue with this scheme is the development of instabilities during laser preheat, where the Z-Beamlet laser system may not deposit energy into deuterium fuel uniformly. This study explores potential mixing between liner and fuel, and inner imprinting of seeds on a beryllium liner that may generate late instability growth and shear, using the Eulerian AMR code FLASH. We further investigate potential instability implications of an additional layer of deuterium-tritium ice, as has been proposed and assess the sensitivity of MagLIF implosions to axial variations in fuel preheat; meanwhile testing the expediency of FLASH for these scenarios. FLASH was developed in part by the DOE NNSA ASC and DOE Office of Science ASCR-supported Flash Center at the University of Chicago. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin comapny, for the U.S. Department of Energy's National Nuclear Security Administration under contract No. DE-AC04-94AL85000.

  16. Experimental and theoretical evaluation of the laser-assisted machining of silicon nitride

    Science.gov (United States)

    Rozzi, Jay Christopher

    This study focused on the experimental and theoretical evaluation of the laser assisted machining (LAM) of silicon nitride ceramics. A laser assisted machining facility was constructed whose main components consist of a COsb2 laser and a CNC lathe. Surface temperature histories were first measured and compared to a transient, three-dimensional numerical simulation for a rotating silicon nitride workpiece heated by a translating laser for ranges of the workpiece rotational and laser-translation speeds, as well as the laser beam diameter and power. Excellent agreement was obtained between the experimental and predicted temperature histories. Laser assisted machining experiments on silicon nitride ceramic workpieces were completed for a wide range of operating conditions. Data for cutting forces and surface temperature histories illustrated that the lower bound for the avoidance of cutting tool and/or workpiece fracture for LAM is defined by the YSiAlON glass transition temperature (920-970sp°C). As temperatures near the cutting tool increase to values above the glass transition temperature range, the glassy phase softened, facilitating plastic deformation and, correspondingly, the production of semi-continuous or continuous chips. The silicon nitride machined workpiece surface roughness (Rsb{a}=0.39\\ mum) for LAM at the nominal operating condition was nearly equivalent to a value associated with the grinding of silicon nitride using a diamond wheel (Rsb{a}=0.2\\ mum). By examining the machined surfaces and chips, it was shown that LAM does not produce detectable sub-surface cracking or significant silicon nitride microstructure alteration, respectively. A transient, three-dimensional numerical heat transfer model of laser assisted machining was constructed, which includes a preheat phase and material removal, with the associated changes in the workplace geometry. Excellent agreement was obtained between the measured and predicted temperature histories. The strong

  17. Aluminum extraction from aluminum industrial wastes

    Science.gov (United States)

    Amer, A. M.

    2010-05-01

    Aluminum dross tailings, an industrial waste from the Egyptian Aluminum Company (Egyptalum), was used to produce two types of alums: aluminum sulfate alum (Al2(SO4)3·12H2O) and ammonium aluminum alum {(NH4)2SO4AL2 (SO4)3·24H2O}. This was carried out in two processes. The first involves leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of aluminum sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purified aluminum dross tailings thus produced. This was carried out in an autoclave. The effects of temperature, time of reaction, and acid concentration on pressure leaching and extraction processes were studied in order to specify the optimum conditions to be applied in the bench scale production as well as the kinetics of leaching process.

  18. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  19. An Optimized Energy Management Strategy for Preheating Vehicle-Mounted Li-ion Batteries at Subzero Temperatures

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2017-02-01

    Full Text Available This paper presents an optimized energy management strategy for Li-ion power batteries used on electric vehicles (EVs at low temperatures. In low-temperature environments, EVs suffer a sharp driving range loss resulting from the energy and power capability reduction of the battery. Simultaneously, because of Li plating, battery degradation becomes an increasing concern as the temperature drops. All these factors could greatly increase the total vehicle operation cost. Prior to battery charging and vehicle operating, preheating the battery to a battery-friendly temperature is an approach to promote energy utilization and reduce total cost. Based on the proposed LiFePO4 battery model, the total vehicle operation cost under certain driving cycles is quantified in the present paper. Then, given a certain ambient temperature, a target preheating temperature is optimized under the principle of minimizing total cost. As for the preheating method, a liquid heating system is also implemented on an electric bus. Simulation results show that the preheating process becomes increasingly necessary with decreasing ambient temperature, however, the preheating demand declines as driving range grows. Vehicle tests verify that the preheating management strategy proposed in this paper is able to save on total vehicle operation costs.

  20. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  1. FORMATION OF Fe-N COMPOUNDS BY LASER NITRIDATION IN AN ATMOSPHERIC AMBIENT

    Institute of Scientific and Technical Information of China (English)

    Y.L. Yang; F.J. Sun; D. Zhang

    2003-01-01

    The formation of Fe-N compounds by laser nitriding in an atmospheric ambient wasreported. By CW-CO2 laser irradiation on pure ferrite iron in the atmospheric am-bient, Fe-N compounds (including Fe2N, Fe3N and Fe4N) are formed as a result of alaser-enhanced and temperature-enhanced reactions. The samples were analyzed withX-ray diffraction. It is found that the laser power density, scanning speed and nitro-gen temperature are the main factors influencing the formation of Fe-N compounds.Nitrogen can be activated by pre-heating at some temperature. Nitrogen activationand sample surface melting by CW-CO2 laser greatly enhance the reaction betweenthe sample surface and nitrogen beam. After annealing at 500℃ for 3h, some Fe2Nand Fe3N converted into more stable Fe4N.

  2. Structure of the local environment of titanium atoms in multicomponent nitride coatings produced by plasma-ion techniques

    Science.gov (United States)

    Krysina, O. V.; Timchenko, N. A.; Koval, N. N.; Zubavichus, Ya V.

    2016-01-01

    An experiment was performed to examine the X-ray Absorption Near-Edge Structure (XANES) and the Extended X-ray Absorption Fine Structure (EXAFS) near the K-edge of titanium in nanocrystalline titanium nitride coatings containing additives of copper, silicon, and aluminum. Using the observation data, the structure parameters of the local environment of titanium atoms have been estimated for the coatings. According to crystallographic data, the Ti-N distance in the bulk phase of titanium nitride is 2.12 Å and the Ti-Ti distance is 3.0 Å. Nearly these values have been obtained for the respective parameters of the coatings. The presence of copper as an additive in a TiN coating increases the Ti-N distance inappreciably compared to that estimated for titanium nitride, whereas addition of silicon decreases the bond distance. It has been revealed that the copper and silicon atoms in Ti-Cu-N and Ti-Si-N coatings do not enter into the crystallographic phase of titanium nitride and do not form bonds with titanium and nitrogen, whereas the aluminum atoms in Ti-Al-N coatings form intermetallic phases with titanium and nitride phases.

  3. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  4. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  5. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Ahmed A. [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Nuclear and Radiation Engineering, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Fadlallah, Mohamed M. [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University, Benha (Egypt); Badawi, Ashraf [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Maarouf, Ahmed A., E-mail: ahmed.maarouf@egnc.gov.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Egypt Nanotechnology Center & Department of Physics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2016-07-30

    Highlights: • Doping boron nitride sheets with aluminum or gallium atoms significantly enhances their molecular adsorption properties. • Adsorption of glucose or glucosamine on Al- and Ga-doped boron nitride sheets changes the band gap. • Doping concentration changes the bad gap, but has a minor effect on the adsorption energy. - Abstract: Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  6. Experimental study of trimethyl aluminum decomposition

    Science.gov (United States)

    Zhang, Zhi; Pan, Yang; Yang, Jiuzhong; Jiang, Zhiming; Fang, Haisheng

    2017-09-01

    Trimethyl aluminum (TMA) is an important precursor used for metal-organic chemical vapor deposition (MOCVD) of most Al-containing structures, in particular of nitride structures. The reaction mechanism of TMA with ammonia is neither clear nor certain due to its complexity. Pyrolysis of trimethyl metal is the start of series of reactions, thus significantly affecting the growth. Experimental study of TMA pyrolysis, however, has not yet been conducted in detail. In this paper, a reflectron time-of-flight mass spectrometer is adopted to measure the TMA decomposition from room temperature to 800 °C in a special pyrolysis furnace, activated by soft X-ray from the synchrotron radiation. The results show that generation of methyl, ethane and monomethyl aluminum (MMA) indicates the start of the pyrolysis process. In the low temperature range from 25 °C to 700 °C, the main product is dimethyl aluminum (DMA) from decomposition of TMA. For temperatures larger than 700 °C, the main products are MMA, DMA, methyl and ethane.

  7. Cathodic Cage Plasma Nitriding: An Innovative Technique

    OpenAIRE

    Sousa,R.R.M.; de Araújo, F. O.; J. A. P. da Costa; Brandim,A.S.; R. A. de Brito; C. Alves

    2012-01-01

    Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN), in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and...

  8. Alumimun nitride piezoelectric NEMS resonators and switches

    Science.gov (United States)

    Piazza, G.

    2010-04-01

    A major challenge associated with the demonstration of high frequency and fast NanoElectroMechanical Systems (NEMS) components is the ability to efficiently transduce the nanomechanical device. This work presents noteworthy opportunities associated with the scaling of piezoelectric aluminum nitride (AlN) films from the micro to the nano realm and their application to the making of efficient NEMS resonators and switches that can be directly interfaced with conventional electronics. Experimental data showing NEMS AlN resonators (250 nm thick with lateral features as small as 300 nm) vibrating at record-high frequencies approaching 10 GHz with Qs close to 500 are presented. These NEMS resonators could be employed as sensors to tag analyte concentrations that reach the part per trillion levels or for frequency synthesis and filtering in ultra-compact microwave transceivers. 100 nm thick AlN films have been used to fabricate NEMS actuators for mechanical computing applications. Experimental data confirming that bimorph nanopiezo- actuators have the same piezoelectric properties of microscale counterparts and can be adopted for the implementation of mechanical logic elements are presented.

  9. Theoretical Compton profile of diamond, boron nitride and carbon nitride

    Science.gov (United States)

    Aguiar, Julio C.; Quevedo, Carlos R.; Gomez, José M.; Di Rocco, Héctor O.

    2017-09-01

    In the present study, we used the generalized gradient approximation method to determine the electron wave functions and theoretical Compton profiles of the following super-hard materials: diamond, boron nitride (h-BN), and carbon nitride in its two known phases: βC3N4 and gC3N4 . In the case of diamond and h-BN, we compared our theoretical results with available experimental data. In addition, we used the Compton profile results to determine cohesive energies and found acceptable agreement with previous experiments.

  10. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Directory of Open Access Journals (Sweden)

    Triwiyanto A.

    2014-07-01

    Full Text Available This paper present mathematical model which developed to predict the nitrided layer thickness (case depth of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with varying nitriding temperature and nitriding duration to see whether the model managed to successfully predict the nitrided layer thickness. This model predicted the coexistence of ε-Fe2-3N and γ΄-Fe4N under the present nitriding process parameters. After the validation process, it is proven that the mathematical model managed to predict the nitrided layer growth of the gas nitrided and plasma nitrided of AISI 316L SS up to high degree of accuracy.

  11. III-Nitride nanowire optoelectronics

    Science.gov (United States)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  12. Experimental research on bitumen preheating (fluidization) by using solar energy in passive mode

    Energy Technology Data Exchange (ETDEWEB)

    Luminosu, Ioan [Department of Physics, ' Politehnica' University Timisoara, 1, Regina Maria Plaza, RO 300004, Timisoara (Romania); Fara, Laurentiu [Department of Physics, ' ' Politehnica' ' University Bucharest, 313, Splaiul Independentei Blvd, RO 060032, Bucuresti (Romania)

    2009-01-15

    An important aim of worldwide research engineering is to identify new industries to introduce solar energy installations for average thermal level. Due to the mechanical and thermal properties of bitumen, such as the 44-49 C softening point of D80/100 type bitumen, this material can be preheated by using solar thermal installations. The Physics Department of 'Politehnica' University of Timisoara designed and studied a laboratory installation for preheating in environmental conditions an amount of 25.1 kg of bitumen up to 55 C per day. The paper developed a previous original research regarding bitumen preheating by using solar energy. The experimental installation was improved and experimental data were statistically processed. The main improvements were based on:-increasing the amount of incident solar radiation by: (a) reducing the height of the brick walls and replacing them with transparent glass plates; (b) painting the inner faces of the brick walls in white; -cutting down thermal losses by: (a) achievement of the double greenhouse effect in the transparent areas of the installation; (b) change of the brick walls into passive walls. The performances of the installation were improved as follows:-increasing time of the bitumen temperature increased from 7 hours to 8 hours, in the interval 8 am-4 pm; -bitumen maximum temperature increased from 55 to 63.3 C; -average temperature in bitumen increased from 41.4 to 46.4 C; -maximum efficiency increased from 12 to 14.4%; -daily average efficiency increased from 6.3 to 7.3%; -maximum difference between the bitumen temperature and environmental one increased from 24 to 32 C. (author)

  13. Damage to Preheated Tungsten Targets after Multiple Plasma Impacts Simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlay, V.A.; Tereshin, V.I. [Kharkov Inst. of Physics and Technology, Inst. of Plasma Physics of National Science Center, Akademicheskaya street, 1, 61108 Kharkov (Ukraine); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Postfach 3640, D-7602 1 Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: The energy loads onto ITER divertor surfaces associated with the Type I ELMs are expected to be up to 1 MJ/m{sup 2} during 0.1-0.5 ms, with the number of pulses about 103 per discharge. Tungsten is a candidate material for major part of the surface, but its brittleness can result in substantial macroscopic erosion after the repetitive heat loads. To minimize the brittle destruction, tungsten may be preheated above the ductile-to-brittle transition temperature. In this work the behavior of preheated tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 450 pulses of the duration 0.25 ms and the heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is respectively below and above the melting threshold. During the exposures the targets were permanently kept preheated at 650 deg. C by a heater at target backside. In the course of exposures the irradiated surfaces were examined after regular numbers of pulses using the SEM and the optical microscopy. The profilometry, XRD, microhardness and weight loss measurements have been performed, as well as comparisons of surface damages after the heat loads both below and above the melting threshold. It is obtained that macro-cracks do not develop on the preheated surface. After the impacts with surface melting, a fine mesh of intergranular microcracks has appeared. The width of fine intergranular cracks grows with pulse number, achieving 1-1.5 microns after 100 pulses, and after 210 pulses the crack width increases up to 20 microns, which is comparable with grain sizes. Threshold changes in surface morphology resulting in corrugation structures and pits on the surface as well as importance of surface tension in resulted 'micro-brush' structures are discussed. Further evolution of the surface pattern is caused by loss of separated grains on exposed

  14. Experimental data and boundary conditions for a Double - Skin Facade building in preheating mode

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Jensen, Rasmus Lund

    was carried out in a full scale test facility ‘The Cube’, in order to compile three sets of high quality experimental data for validation purposes. The data sets are available for preheating mode, external air curtain mode and transparent insulation mode. The objective of this article is to provide the reader......’. This covers such problem areas as measurements of naturally induced air flow, measurements of air temperature under direct solar radiation exposure, etc. Finally, in order to create a solid foundation for software validation, the uncertainty and limitations in the experimental results are discussed. In part...

  15. Optimal Heater Control with Technology of Fault Tolerance for Compensating Thermoforming Preheating System

    Directory of Open Access Journals (Sweden)

    Zhen-Zhe Li

    2015-01-01

    Full Text Available The adjustment of heater power is very important because the distribution of thickness strongly depends on the distribution of sheet temperature. In this paper, the steady state optimum distribution of heater power is searched by numerical optimization in order to get uniform sheet temperature. In the following step, optimal heater power distribution with a damaged heater was found out using the technology of fault tolerance, which will be used to reduce the repairing time when some heaters are damaged. The merit of this work is that the design variable was the power of each heater which can be directly used in the preheating process of thermoforming.

  16. EFFECT OF STORAGE, PRE-HEATING AND TURNING DURING HOLDING PERIOD ON THE HATCHABILITY OF BROILER BREEDER EGGS

    Directory of Open Access Journals (Sweden)

    A. MAHMUD AND T. N. PASHA1

    2008-07-01

    Full Text Available Two hundred forty fertile eggs of an average weight of 52-55g were taken from 32 weeks old broiler breeder flock. These eggs were divided into four groups i.e. A (Without turning and preheating, B (No turning but preheated, C (Turned but without preheating, and D (given both treatments preheating and turning with 60 eggs in each group. The eggs were stored with broad end upward at 16-20°C and 65-75% humidity. After storage for 5 days, the pre-heating of eggs of groups B and D was performed in an incubator where hot air at 30°C temperature was circulated for 6-7 hours to provide gradual warmth to the eggs before setting in the same incubator. The temperature of the incubator was maintained at 37.6°C with relative humidity of 70%. The eggs of groups C and D were turned on hourly basis at an angle of about 45° till 17 days of incubation. The hatchability values of eggs of groups A, B, C and D were 88.30 ± 0.30, 76.30 ± 0.30, 83.30 ± 0.30 and 79.90 ± 0.10%, respectively. Statistical analysis of the data by Chi-square test showed non-significant differences among treatments.

  17. Waste Heat Recovery by Heat Pipe Air-Preheater to Energy Thrift from the Furnace in a Hot Forging Process

    Directory of Open Access Journals (Sweden)

    Lerchai Yodrak

    2010-01-01

    Full Text Available Problem statement: Currently, the heat pipe air-preheater has become importance equipment for energy recovery from industrial waste heat because of its low investment cost and high thermal conductivity. Approach: This purpose of the study was to design, construct and test the waste heat recovery by heat pipe air-preheater from the furnace in a hot brass forging process. The mathematical model was developed to predict heat transfer rate and applied to compute the heat pipe air-preheater in a hot brass forging process. The heat pipe air-preheater was designed, constructed and tested under medium temperature operating conditions with inlet hot gas ranging between 370-420°C using water as the working fluid with 50% filling by volume of evaporator length. Results: The experiment findings indicated that when the hot gas temperature increased, the heat transfer rate also increased. If the internal diameter increased, the heat transfer rate increased and when the tube arrangement changed from inline to staggered arrangement, the heat transfer rate increased. Conclusion/Recommendations: The heat pipe air-preheater can reduced the quantity of using gas in the furnace and achieve energy thrift effectively.

  18. Little evidence for entropy and energy excess beyond r500 - an end to ICM pre-heating?

    Science.gov (United States)

    Iqbal, Asif; Majumdar, Subhabrata; Nath, Biman B.; Ettori, Stefano; Eckert, Dominique; Malik, Manzoor A.

    2017-02-01

    Non-gravitational feedback affects the nature of the intracluster medium (ICM). X-ray cooling of the ICM and in situ energy feedback from active galactic nuclei (AGNs) and supernovae as well as pre-heating of the gas at epochs preceding the formation of clusters are proposed mechanisms for such feedback. While cooling and AGN feedbacks are dominant in cluster cores, the signatures of a pre-heated ICM are expected to be present even at large radii. To estimate the degree of pre-heating, with minimum confusion from AGN feedback/cooling, we study the excess entropy and non-gravitational energy profiles up to r200 for a sample of 17 galaxy clusters using joint data sets of Planck Sunyaev-Zel'dovich pressure and ROSAT/Position Sensitive Proportional Counter gas density profiles. The canonical value of pre-heating entropy floor of ≳300 keV cm2, needed in order to match cluster scalings, is ruled out at ≈3σ. We also show that the feedback energy of 1 keV particle-1 is ruled out at 5.2σ beyond r500. Our analysis takes both non-thermal pressure and clumping into account which can be important in outer regions. Our results based on the direct probe of the ICM in the outermost regions do not support any significant pre-heating.

  19. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu, E-mail: yqgu@caep.cn; Zhang, Baohan [Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); and others

    2016-06-15

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  20. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    Science.gov (United States)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  1. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  2. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Science.gov (United States)

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  3. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  4. Direct Measurements of Hot-Electron Preheat in Inertial Confinement Fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.; Howard, J.; Bose, A.; Forrest, C. J.; Theobald, W.; Campbell, E. M.; Delettrez, J. A.; Stoeckl, C.; Edgell, D. H.; Seka, W.; Davis, A. K.; Michel, D. T.; Glebov, V. Yu.; Wei, M. S.

    2016-10-01

    In laser-driven inertial confinement fusion, a spherical capsule of cryogenic DT with a low- Z (CH, Be) ablator is accelerated inward on low entropy to achieve high hot-spot pressures at stagnation with minimal driver energy. Hot electrons generated from laser-plasma instabilities can compromise this performance by preheating the DT fuel, which results in early decompression of the imploding shell and lower hot-spot pressures. The hot-electron energy deposited into the DT for direct-drive implosions is routinely inferred by subtracting hard x-ray signals between a cryogenic implosion and its mass-equivalent, all-CH implosion. However, this technique does not measure the energy deposited into the unablated DT, which fundamentally determines the final degradation in hot-spot pressure. In this work, we report on experiments conducted with high- Z payloads of varying thicknesses to determine the hot-electron energy deposited into a payload that is mass equivalent to the amount of unablated DT present in typical DT layered implosions on OMEGA. These are the first measurements to directly probe the effect of preheat on performance degradation. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air.

    Science.gov (United States)

    Guangul, Fiseha M; Sulaiman, Shaharin A; Ramli, Anita

    2012-12-01

    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.

  6. Developing a Pre-Heat Platform for MagLIF with Z-Beamlet

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, T. J.; Bliss, D. E.; Glinsky, M. E.; Campbell, E. M.; Gomez, M. R.; Harding, E.; Hansen, S. B.; Jennings, C. A.; Kimmel, M. W.; Knapp, P. F.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Rochau, G. A.; Slutz, S. A.; Smith, I. C.; Weiss, M. R.; Porter, J. L.

    2016-10-01

    Sandia's Magnetized Liner Inertial Fusion Program has put one of the main objectives towards developing standard platform for a `preconditioned' target, providing a scenario that reproducibly delivers pre-heated fuel. The majority of this effort has been done at the ``Pecos'' Target Area using Sandia's Z-Beamlet laser to provide the pre-heat energy, just like for fully integrated MagLIF experiments. The nature and magnitude of Laser-Plasma-Instabilities during this process are particularly important, since they can lead to less energy in the fuel (backscatter processes) or to energy deposition in less desirable areas (filamentation/scatter). We present results for Stimulated Brillouin Backscatter and forward scatter, and show the effect of the laser pulse shape to laser-entrance-hole transmission and blast wave propagation in the fuel. Sandia is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DOE's Nat'l Nucl. Sec. Admin. under contract DE-AC04-94AL85000.

  7. Combustion Air Pre-heating from Ash Sensible Heat in Municipal Waste Incineration Systems

    Directory of Open Access Journals (Sweden)

    Zakariya Kaneesamkandi

    2014-01-01

    Full Text Available Heat recovery from bottom ash is more important in municipal waste combustion systems than in any other solid fuel combustion since almost 50% of it comprises of non-combustibles. In this study, an ash cooling system using air as the cooling medium has been modeled for pre-heating the combustion air. Air cooling has several advantages over water cooling methods. The study involves modeling using Gambit tool and is solved with the fluent solver. Municipal solid waste incineration systems have the advantage of being located near the waste collection area apart from the high volume reduction ratio. Improvements in the emission control systems and combustion technology can make incineration a highly feasible disposal method. Low furnace temperature due to heat losses through fuel moisture loss and ash sensible heat loss has been a disadvantage with these systems. In this study, a small percentage of the combustion air is pre-heated in a non-contact type heat exchanger and its effect on the available energy of combustion gases at the evaporator outlet is studied. The study is performed for two different waste samples. Results indicate significant increase in available energy at the evaporator outlet and better relative performance for the lower grade fuel. A comparison is made with similar methods reported in the literature along with a brief discussion on the methodologies adopted. The results confirm the importance of installing ash sensible heat recovery mechanism for waste incineration systems as well as the feasibility of the air based method.

  8. Velocity Interferometer blanking due to preheating in a double pulse planar experiment

    Energy Technology Data Exchange (ETDEWEB)

    Laffite, S.; Combis, P.; Clerouin, J.; Recoules, V.; Rousseaux, C.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Baton, S. D.; Koenig, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France)

    2014-08-15

    Optical diagnostics, such as VISAR (Velocity Interferometer System for Any Reflector) or SOP (Streaked Optical Pyrometry), have become essential in shock timing experiments. Their high precision allows for accurate measurements of shock velocities, chronometry, and brightness temperature. However, in some instances, these measurements can be compromised. In planar shock coalescence experiments recently performed at the LULI facility [Baton et al., Phys. Rev. Lett. 108, 195002 (2012)], VISAR signal loss was observed. In these experiments, a strong shock launched by a high-intensity spike catches up with a previously shock launched by an earlier, low-intensity beam. The disappearance of the VISAR signal is attributed to a preheating of the coronal plasma by x-rays generated by the high intensity spike. The signal does not disappear if the high-intensity spike starts after VISAR probe beam begins to reflect off of the first shock. The VISAR diagnostic, modeled using an assessment of the optical index in quartz, compares favorably to experimental results. This provides evidence that x-ray preheating can cause blanking of the VISAR signal in quartz.

  9. Investigation into nitrided spur gears

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Abdul Aleem, B.J. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6Al-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  10. Investigation into nitrided spur gears

    Science.gov (United States)

    Yilbas, B. S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Aleem, B. J. Abdul

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6A1-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  11. Investigation of Thermal Conductivity and Heat Characteristics of Oil Sands Using Ultrasound Irradiation for Shortening the Preheating Time

    Science.gov (United States)

    Kamagata, Shingo; Kawamura, Youhei; Okawa, Hirokazu; Mizutani, Koichi

    2012-07-01

    Oil sands are attractive as an energy resource. Bitumen, which is found in oil sands, has high viscosity, so that it does not flow. Most oil sands are underground and are developed with a method called steam-assisted gravity drainage (SAGD). Hot steam is injected underground to fluidize bitumen and promote its recovery. However, the preheating time is too long. One way of reducing running costs is by shortening the preheating time. Previous studies have found that bitumen can be extracted from oil sands efficiently by applying ultrasonic irradiation, but SAGD was not applied directly in these cases. Thus, the purpose of this study is to apply ultrasonic irradiation to SAGD, thereby shortening the preheating time of oil sands. As a model experiment for SAGD, heat transfer experiments in a sand layer made with Toyoura sand and silicone oil were conducted and the thermal effect with ultrasound was investigated.

  12. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations

    Directory of Open Access Journals (Sweden)

    Parnian Alizadeh Oskoee

    2017-03-01

    Full Text Available Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90] and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C. Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P < 0.05. Results. The maximum and minimum gaps were detected in groups 1-A and 2-B, respectively. The effects of composite resin type, preheating and interactive effect of these variables on gap formation were significant (P<0.001. Post-hoc Tukey tests showed greater gap in dimethacrylate compared to silorane composite resins (P< 0.001. In each group, gap values were greater in composite resins at room temperature compared to composite resins after 40 preheating cycles (P<0.001. Conclusion. Gap formation at the gingival margins of Class V cavities decreased due to preheating of both composite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  13. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  14. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  15. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  16. Is the Aluminum Hypothesis dead?

    Science.gov (United States)

    Lidsky, Theodore I

    2014-05-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  17. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  18. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  19. The new Polish nitriding and nitriding like processes in the modern technology

    Energy Technology Data Exchange (ETDEWEB)

    Has, Z.; Kula, P. [Technical Univ. of Lodz (Poland)

    1995-12-31

    Modern technological methods for making nitrided layers and low-friction combined layers have been described. The possibilities of structures and properties forming were analyzed as well as the area and examples of application were considered. Nitrided layers are applied in high loaded frictional couples, widely. They can be formed on steel or cast iron machine parts by the classic gas nitriding process or by modern numerous nitriding technologies.

  20. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    OpenAIRE

    Garcia, Baldomero

    2007-01-01

    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  1. Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liao

    2009-04-01

    Full Text Available ThepH sensing and nonideal characteristics of a ruthenium nitride (RuN sensing membrane pH sensor were investigated. RuN thin films were deposited from a 99.9% ruthenium target on p-type silicon substrates using radio frequency (r.f. sputtering with N2 gas. Subsequently, the nanometric structure and surface morphology of RuN thin films were determined. The sensitivity of the RuN sensing membrane pH sensor was 58.03 mV/pH, obtained from ID-VG curves with a current-voltage (I-V measurement system in standard buffer solutions from pH 1 to pH 13 at room temperature (25 °C. Moreover, the nonideal characteristics of the RuN sensing membrane, such as temperature coefficient, drift with light influence, drift rate and hysteresis width, etc. were also investigated. Finally, the sensing characteristics of the RuN membrane were compared with titanium nitride (TiN, aluminum nitride (AlN and silicon nitride (Si3N4 membranes.

  2. Phase identification of iron nitrides and iron oxy-nitrides with Mossbauer spectroscopy

    NARCIS (Netherlands)

    Borsa, DM; Boerma, DO

    2003-01-01

    The Mossbauer spectroscopy of all known Fe nitrides is the topic of this paper. Most of the data were accumulated during a study of the growth of the various Fe nitride phases using molecular beam epitaxy of Fe in the presence of a flux of atomic N, or by post-nitriding freshly grown Fe layers also

  3. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2014-05-09

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE Composite Reinforcement using Boron Nitride Nanotubes...AVAILABILITY STATEMENT Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Boron nitride nanotubes have been proposed as a...and titanium (Ti) metal clusters with boron nitride nanotubes (BNNT). First-principles density-functional theory plus dispersion (DFT-D) calculations

  4. Analysis of plasma-nitrided steels

    Science.gov (United States)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1986-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  5. Nonlinear ultrasonic phased array imaging of closed cracks using global preheating and local cooling

    Science.gov (United States)

    Ohara, Yoshikazu; Takahashi, Koji; Ino, Yoshihiro; Yamanaka, Kazushi

    2015-10-01

    Closed cracks are the main cause of underestimation in ultrasonic inspection, because the ultrasound transmits through the crack. Specifically, the measurement of closed-crack depth in coarse-grained materials, which are highly attenuative due to linear scatterings at the grains, is the most difficult issue. To solve this problem, we have developed a temporary crack opening method, global preheating and local cooling (GPLC), using tensile thermal stress, and a high-selectivity imaging method, load difference phased array (LDPA), based on the subtraction of phased array images between different stresses. To demonstrate our developed method, we formed a closed fatigue crack in coarse-grained stainless steel (SUS316L) specimen. As a result of applying it to the specimen, the high-selectivity imaging performance was successfully demonstrated. This will be useful in improving the measurement accuracy of closed-crack depths in coarse-grained material.

  6. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-04-30

    The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.

  7. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    Science.gov (United States)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  8. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  9. Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Tian, Guifang; Lu, Chang; Zhao, Shaojie; Bao, Yuming; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-09-06

    Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.

  10. Effects of extrusion-billet preheating on the microstructure and properties of Zr-2.5Nb pressure tube materials

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Cann, C.D. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada). Whiteshell Labs.; Aldridge, S.A. [Nu-Tech Precision Metals, Inc., Arnprior, Ontario (Canada); Theaker, J.R.; Coleman, C.E. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-31

    The effects of extrusion temperature and pre-heat soak time for billets on the mechanical properties of Zr-2.5Nb pressure tubes for CANDU reactors have been examined. The {beta}-quenched billets from a quadruple-melted ingot containing approximately 1,200 ppm of oxygen were extruded at 780, 815, and 850 C with pre-heat soak times of 15 to 300 min. The extruded hollows were finished by cold drawing (with a 28% reduction in area) and then stress relieving at 400 C. The {alpha}-phase grain structure, tensile strength, and fracture toughness properties were found to vary with the pre-heat temperature and soak time. All the materials were tough because embrittling impurities were absent. The tubes with 780 C preheat had a very fine and uniform {alpha}-grain structure, giving high strength and toughness at all soak times. The opposite was true for the 850 C soaks; the grain structure was coarse and inhomogeneous and the materials tended to be less strong and less touch. The tubes with the 815 C soaks showed intermediate values of strength and toughness. These variations in mechanical properties are discussed in terms of {alpha}-grain refinement and oxygen enrichment.

  11. Effect Of Preheating And Different Moisture Content Of Input Materials On Durability Of Pellets Made From Different Phytomass Content

    Directory of Open Access Journals (Sweden)

    Macák Miroslav

    2015-03-01

    Full Text Available This paper analyses the effects of the storage process on the durability of pellets made of different types of biomass (lucerne hay, maize stover, wheat straw, miscanthus, prickly lettuce for energy purposes. Pellets were produced on a hydraulic press that allowed modifying the size of pellets. The durability of pellets was measured on a special testing instrument according to the ASAE S269.4 (2007 standard method. The pellets used in the test were produced by pressing without preheating and with preheating. Durability rating was expressed as the ratio of the original mass of pellets and the mass of pellets remaining on a 17 mm opening sieve after tumbling. Storage negatively affected the durability of pellets made without preheating for all the types of biomass materials in different moisture contents. On the other hand, there was some positive response to storing of pellets made with preheating. The durability of pellets made of maize stover, wheat straw and miscanthus in the moisture content of 5 % increased with storing.

  12. Effect of Preheating on the Inertia Friction Welding of the Dissimilar Superalloys Mar-M247 and LSHR

    Science.gov (United States)

    Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.

    2016-12-01

    Differences in the elevated temperature mechanical properties of cast Mar-M247 and forged LSHR make it difficult to produce sound joints of these alloys by inertia friction welding (IFW). While extensive plastic upset occurs on the LSHR side, only a small upset is typically developed on the Mar-M247 side. The limited plastic flow of Mar-M247 thus restricts the extent of "self-cleaning" and mechanical mixing of the mating surfaces, so that defects remain at the bond line after welding. In the present work, the effect of local preheating of Mar-M247 immediately prior to IFW on the welding behavior of Mar-M247/LSHR couples was determined. An increase in the preheat temperature enhanced the plastic flow of Mar-M247 during IFW, which resulted in extensive mechanical mixing with LSHR at the weld interface, the formation of extensive flash on both the Mar-M247 and LSHR sides, and a sound bond. Performed in parallel with the experimental work, finite-element-method (FEM) simulations showed that higher temperatures are achieved within the preheated sample during IFW relative to its non-preheated counterpart, and plastic flow is thus facilitated within it. Microstructure and post-weld mechanical properties of the welded samples were also established.

  13. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  14. Effect of plasma nitriding on electrodeposited Ni–Al composite coating

    DEFF Research Database (Denmark)

    Daemi, N.; Mahboubi, F.; Alimadadi, Hossein

    2011-01-01

    In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2......–20% H2, at 500°C, for 5h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction....... The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously....

  15. A modern perspective on the history of semiconductor nitride blue light sources

    Science.gov (United States)

    Maruska, Herbert Paul; Rhines, Walden Clark

    2015-09-01

    In this paper we shall discuss the development of blue light-emitting (LED) and laser diodes (LD), starting early in the 20th century. Various materials systems were investigated, but in the end, the nitrides of aluminum, gallium and indium proved to be the most effective. Single crystal thin films of GaN first emerged in 1968. Blue light-emitting diodes were first reported in 1971. Devices grown in the 1970s were prepared by the halide transport method, and were never efficient enough for commercial products due to contamination. Devices created by metal-organic vapor-phase epitaxy gave far superior performance. Actual true blue LEDs based on direct band-to-band transitions, free of recombination through deep levels, were finally developed in 1994, leading to a breakthrough in LED performance, as well as nitride based laser diodes in 1996. In 2014, the scientists who achieved these critical results were awarded the Nobel Prize in Physics.

  16. Silicon nitride equation of state

    Science.gov (United States)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  17. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically......The nucleation of iron nitrides during gaseous nitriding has been investigated using light microscopy and X-ray diffraction. Initially, the nucleation of gamma'-Fe4N1-x on a pure iron surface starts at grain boundaries meeting the surface, from where the nitride grains grow laterally into the iron...

  18. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  19. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  20. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  1. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  2. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...

  3. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2016-11-15

    ApprovedOMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...nitride nanotubes change with the presence of atomic oxygen were also carried out. 15.  SUBJECT TERMS Nanotubes, Boron Nitride, Composites, Theoretical

  4. PECVD silicon nitride diaphragms for condenser microphones

    NARCIS (Netherlands)

    Scheeper, P.R.; Voorthuyzen, J.A.; Bergveld, P.

    1991-01-01

    The application of plasma-enhanced chemical vapour deposited (PECVD) silicon nitride as a diaphragm material for condenser microphones has been investigated. By means of adjusting the SiH4/NH3 gas-flow composition, silicon-rich silicon nitride films have been obtained with a relatively low tensile s

  5. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  6. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    , the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  7. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  8. Hard carbon nitride and method for preparing same

    Science.gov (United States)

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  9. Molten-Salt-Based Growth of Group III Nitrides

    Science.gov (United States)

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  10. Shock experiments on pre-heated alpha- and beta-quartz: 1. Optical and density data

    Science.gov (United States)

    Langenhorst, Falko; Deutsch, Alexander

    1994-07-01

    Discs of single crystal quartz, unheated, and pre-heated to 275 C and 540 C (i.e., alpha-quartz) and 630 C (i.e., beta-quartz) were experimentally shocked to pressures ranging from 20 to 40 GPa, with the shock front propagating parallel to either (10-10) or (0001). Refractive indices, density and the orientation of planar deformation features (PDFs) were determined on the recovered quartz samples. Refractive indices of pre-heated quartz are unaffected up to 25 GPa but density starts to decrease slightly up to this pressure. Above 25 GPa, pre-heating causes drastic variations: Refractive indices and birefringence of quartz shocked at ambient temperature decrease continuously, until complete isotropization is reached at 35 GPa. In quartz shocked at 630 C, refractivity drops discontinuously in the interval from 25 to 26 GPa, and complete transformation to diaplectic glass is reached at 26 GPa. Density follows the trends demonstrated by the optical parameters, with higher pre-shock temperatures yielding lower density at a given shock pressure. These results indicate that the threshold pressure for the onset of transformation to diaplectic quartz glass is largely temperature-invariant, lying at 25 GPa, whereas the pressure limit for complete transformation decreases with increasing pre-shock temperature from approximately equal 35 to approximately equal 26 GPa. Quartz shocked parallel to (0001) always has a higher density and refractivity than that shocked parallel to (10-10), indicating a significant influence of the structural anisotropy. This is also evident from the distribution of PDF orientations. Pressures greater than or equal 25 GPa cause, in quartz shocked parallel to (10-10), PDFs that are predominantly oriented parallel to set of (10-12) planes, while quartz shocked to the same pressures but parallel to (0001) contains almost exclusively PDFs parallel to set of (10-13) planes. PDF orientations in quartz shocked at ambient temperature parallel to (10-10) show

  11. Azide SHS of aluminium nitride nanopowder and its application for obtaining Al-Cu-AlN cast nanocomposite

    Science.gov (United States)

    Titova, Y. V.; Sholomova, A. V.; Kuzina, A. A.; Maidan, D. A.; Amosov, A. P.

    2016-11-01

    Method of azide self-propagating high-temperature synthesis (SHS-Az), using sodium azide (NaN3) as a nitriding reagent, was used for obtaining the nanopowder of aluminum nitride (AlN) from precursor that was sodium hexafluoroaluminate (Na3AlF6). The product of burning the mixture of Na3AlF6 + 3NaN3 after water rinsing consisted of micro - and nanoparticles of AlN (65%) and the residue of salt Na3AlF6 (35%). This product of SHS-Az was mixed with copper powder and pressed into a briquette of nanopowdery master alloy Cu- 4%(65%AlN+35%Na3AlF6), which was successfully introduced into aluminium melt at a temperature of 850°C. The salt Na3AlF6 in the product of combustion played a role of flux during introducing into the aluminum melt and was not included in the final composition of the composite alloy. The microstructure of the obtained cast composite aluminum alloy with the calculated composition of Al-1.2%Cu-0.035%AlN showed that the reinforcing particles of AlN of different sizes, including nanoparticles, were distributed mainly along the grain boundaries of the aluminum alloy.

  12. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  13. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  14. The Structure, Composition and Properties of Nitrided Alloys after Diffusion Metallization

    Directory of Open Access Journals (Sweden)

    V.G. Hignjak

    1990-01-01

    Full Text Available It has been examined the possibility of obtaining 9ХС and solid steel alloy multilayer coatings BK6 combination of nitriding in ammonia environment followed by titanium-aluminum in a powder mixture in containers with consumable gate. Barrier compositions of TiC, TiN positively effects on the phase and chemical composition of coatings. It also inhibits the formation of Fe(Al layer on steel 9ХС and areas with a high content of aluminum and oxygen on BK6 solid alloy. Nitrogen plus Titanium calorizing promotes abrasive wear resistance and stability of steel 9ХС, as well as stability of multifaceted carbide indexable BK6 plates.

  15. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  16. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.B.; Smetana, F.O.

    1977-03-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using insolation levels present in North Carolina are presented. The effects of monthly variations in insolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  17. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  18. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  19. GMA-laser Hybrid Welding of High-strength Fine-grain Structural Steel with an Inductive Preheating

    Science.gov (United States)

    Lahdo, Rabi; Seffer, Oliver; Springer, André; Kaierle, Stefan; Overmeyer, Ludger

    The industrial useof GMA-laser hybrid welding has increased in the last 10 years, due to the brilliant quality of the laser beam radiation, and higher laser output powers. GMA-laser hybrid welding processes operate in a common molten pool. The combination of the laser beam and the arc results in improved welding speed, penetration depth, heat affected zone and gap bridgeability. Single-layer, GMA-laser hybrid welding processes have been developed for high-strength fine-grain structural steels with a grade of S690QL and a thickness of 15 mm and 20 mm. In addition, the welding process is assisted by an integrated, inductive preheating process to improve the mechanical properties of the welding seam. By using the determined parameters regarding the energy per unit length, and the preheating temperature, welding seams with high quality can be achieved.

  20. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  1. An analysis of metallurgical ladle preheating; Uma analise do processo de pre-aquecimento da panela de aciaria

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Eliana F. [Ouro Preto Univ., MG (Brazil). Escola de Minas; Figueira, Renato M. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica

    1996-12-31

    An analysis of the pre-heating effects of the siderurgical ladle refractory lining on the steel making process is developed. The modeling is based essentially on the transient two-dimensional heat conduction equation, expressed in cylindrical coordinates, and also taking into account radiation and convection boundary conditions. The solution procedure is accomplished by means of an `ANSYS` F.E.M. scheme. The analysis enables the evaluation of the preheating influence on the other phases of the complete continuous casting process . The conditions which have to be used in the control of the whole process can be determined by this simulation, enabling the optimization of energy consumption, refractory lining wear, and holding time. (author) 10 refs., 6 figs.

  2. Application of a Device for Uniform Web Drying and Preheating Using Microwave Energy

    Energy Technology Data Exchange (ETDEWEB)

    Frederick W. Ahrens; C. Habeger; J. Loughran; T. Patterson

    2003-10-02

    The project summarized in this report dealt with an evaluation of new microwave applicator ideas for paper preheating and drying. The technical basis for success in this project is the fact that Industrial Microwave Systems has recently identified certain previously unrecognized wave guide ''design variables'' and hardware implementation concepts that can be employed to greatly improve the uniformity of microwave energy distribution for continuous flow processes. Two applicator concepts were ultimately evaluated, a Cross-Machine Direction (CD) oriented applicator and a Machine Direction (MD) oriented applicator. The economic basis for success is the result of several factors. Since 1985, the capital expenditure required for an industrial microwave applicator system has decreased by a factor of four. The maintenance costs have decreased by a factor of 10 and the life expectancy of the magnetron has increased by more than a factor of four to in excess of 8,000 hours (nearly one year at 24 hours/day operation).

  3. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  4. Effects of Preheating Temperature,Moisture and Sodium Metabisulfite Content on Property of Maize Flour Dough

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Processing temperature,maze flour particle size,and level of water and sodium metabisulfite were varied during the preparation of maize noodles.Preheated to 90-95 ℃ a mixture of maize flour or meal,water(43%-45% moisture) and salt enabled the preparation of noodles using a pasta extruder.Maize flour with smaller particle size yielded better noodles than did maize meal.The addition of sodium metabisulfite enabled the production of noodles at lower processing temperatures; however,cooking losses increased.Processing maize flour with higher water absorption yielded noodles that required longer cooking time but with decreased losses.The functionalities of starch and protein in raw ingredients and in products were determined.Starch gelatinized and retorgraded during processing maize noodles,as indicated by changes in pasting viscosity curves.Maize proteins contributed to the increased viscosity of dough above 40 ℃.The increased integrity of cooked maize noodles,however,corresponded to the increased amounts of gelatinized and retrograded starch.

  5. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    Science.gov (United States)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2016-11-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  6. MINLP model for simultaneous scheduling and retrofit of refinery preheat train

    Directory of Open Access Journals (Sweden)

    Zulkafli N. Izyan, M. Noryani, Abdul H. Dayanasari, M. Shuhaimi

    2014-01-01

    Full Text Available There is greater awareness today on the depleting fossil energy resources and the growing problem of atmospheric pollution. Engineers are developing practical techniques to ensure energy processes are designed and operated efficiently. Inefficient heat exchangers lead to higher fuel demand and higher carbon emission. This paper presents mixed-integer nonlinear programming (MINLP model for simultaneous cleaning and retrofit of crude preheat train (CPT in oil refinery plant. The formulation of the model is generated and coded in General Algebraic Modeling System (GAMS. The model minimizes the cost of energy and the cost of cleaning. The model takes into account the changes in fouling rates throughout time. There are two cases for this study. The cases are online cleaning (Case 1 and simultaneous online cleaning and retrofit (Case 2. The largest energy saving are found in Case 2. The installation of high efficiency heat exchangers improves furnace inlet temperature (FIT from 215oC to 227oC. Furthermore, Case 2 results in the highest percentage of cost saving by about 59%. The payback period for investment in high efficiency heat exchangers is 5 months. Thus, Case 2 is the most cost effective option for reductions of energy consumption in Crude Distillation Unit (CDU.

  7. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    Science.gov (United States)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  8. Preheating of the early universe by radiation from high-mass X-ray binaries

    Science.gov (United States)

    Sazonov, S. Yu.; Khabibullin, I. I.

    2017-04-01

    Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25-2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s-1, could significantly heat ( T > T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.

  9. Method of synthesizing cubic system boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  10. Friction Characteristics of Nitrided Layers on AISI 430 Ferritic Stainless Steel Obtained by Various Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Hakan AYDIN

    2013-03-01

    Full Text Available The influence of plasma, gas and salt-bath nitriding techniques on the friction coefficient of AISI 430 ferritic stainless steel was studied in this paper. Samples were plasma nitrided in 80 % N2 + 20 % H2 atmosphere at 450 °C and 520 °C for 8 h at a pressure of 2 mbar, gas nitrided in NH3 and CO2 atmosphere at 570 °C for 13 h and salt-bath nitrided in a cyanide-cyanate salt-bath at 570 °C for 1.5 h. Characterisation of nitrided layers on the ferritic stainless steel was carried out by means of microstructure, microhardness, surface roughness and friction coefficient measurements. Friction characteristics of the nitrided layers on the 430 steel were investigated using a ball-on-disc friction-wear tester with a WC-Co ball as the counter-body under dry sliding conditions. Analysis of wear tracks was carried out by scanning electron microscopy. Maximum hardness and maximum case depth were achieved on the plasma nitrided sample at 520 ºC for 8 h. The plasma and salt-bath nitriding techniques significantly decreased the average surface roughness of the 430 ferritic stainless steel. The friction test results showed that the salt-bath nitrided layer had better friction-reducing ability than the other nitrided layers under dry sliding conditions. Furthermore, the friction characteristic of the plasma nitrided layer at 520 ºC was better than that of the plasma nitrided layer at 450 °C.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3819

  11. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey [Department of Automotive, Faculty of Technical Education, Firat University, Elazig 23119 (Turkey); Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey)

    2010-03-15

    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil-50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil-80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO's viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil. (author)

  12. Formation of the preheated zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition

    Science.gov (United States)

    Liberman, M. A.; Kuznetsov, M.; Ivanov, A.; Matsukov, I.

    2009-01-01

    The Letter presents analytical, numerical and experimental studies of the mechanism underlying the deflagration-to-detonation transition (DDT). Insight into how, when, and where DDT occurs is obtained by analyzing analytically and by means of multidimensional numerical simulations dynamics of a flame accelerating in a tube with no-slip walls. It is shown that the deflagration-to-detonation transition exhibits three separate stages of evolution corroborating majority experimental observations. During the first stage flame accelerates and generates shocks far ahead of the flame front. During the second stage the flame slows down, shocks are formed in the immediate proximity of the flame front and the preheated zone ahead of the flame front is created. The third stage is self-restructuring of the steep temperature profile within the flame, formation of a reactivity gradient and the actual formation of the detonation wave itself. The mechanism for the detonation wave formation, given an appropriate formation of the preheated zone, seems to be universal and involves a reactivity gradient formed from the initially steep flame temperature profile in the presence of the preheated zone. The developed theory and numerical simulations are found to be well consistent with extensive experiments of the DDT in hydrogen-oxygen and ethylene-oxygen mixtures in tubes with smooth and rough walls.

  13. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  14. Plasma Nitriding of Low Alloy Sintered Steels

    Institute of Scientific and Technical Information of China (English)

    Shiva Mansoorzadeh; Fakhreddin Ashrafizadeh; Xiao-Ying Li; Tom Bell

    2004-01-01

    Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-1.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materials had similar nitriding case properties. 1.4% manganese did not change the as-sintered microstructure considerably.It was observed that monophase compound layer, γ, formed with increasing temperature. Compound layer thickness increased with increasing temperature while nitriding depth increased up to a level and then decreased. Core softening was more pronounced at higher temperature owing to cementite coarsening.

  15. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  16. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one precip...... layer between the crystalline nitride and ferrite matrix. Usually precipitates are described as having (semi) coherent or incoherent interfaces, but in this case it is more energetically favourable to create an amorphous layer instead of the incoherent interface....

  17. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.;

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  18. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer

    Indian Academy of Sciences (India)

    Ravindra Kumar; J Alphonsa; Ram Prakash; K S Boob; J Ghanshyam; P A Rayjada; P M Raole; S Mukherjee

    2011-02-01

    In this paper an effort has been made to plasma nitride the ball bearing steel AISI 52100. The difficulty with this specific steel is that its tempering temperature (∼170–200°C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed on three different types of ball bearing races i.e. annealed, quenched and quench-tempered samples. Different gas compositions and process temperatures are maintained while nitriding these samples. In the quenched and quench-tempered samples, the surface hardness has decreased after plasma nitriding process. Plasma nitriding of annealed sample with argon and nitrogen gas mixture gives higher hardness in comparison to the hydrogen–nitrogen gas mixture. It is reported that the later heat treatment of the plasma nitrided annealed sample has shown improvement in the hardness of this steel. X-ray diffraction analysis shows that the dominant phases in the plasma nitrided annealed sample are (Fe2−3N) and (Fe4N), whereas in the plasma nitrided annealed sample with later heat treatment only -Fe peak occurs.

  19. Effect of Current Pathways During Spark Plasma Sintering of an Aluminum Alloy Powder

    Science.gov (United States)

    Kellogg, Frank; McWilliams, Brandon; Cho, Kyu

    2016-12-01

    Spark plasma sintering has been a well-studied processing technique primarily for its very high cooling and heating rates. However, the underlying phenomenon driving the sintering behavior of powders under an electric field is still poorly understood. In this study, we look at the effect of changing current pathways through the powder bed by changing die materials, from conductive graphite to insulating boron nitride for sintering aluminum alloy 5083 powder. We found that the aluminum powder itself was insulating and that by changing the current paths, we had to find alternate processing methods to initiate sintering. Altering the current pathways led to faster temperature raises and faster melting (and potentially densification) of the aluminum powder. A flash sintering effect in metallic powders is observed in which the powder compact undergoes a rapid transition from electrically insulating to conducting at a temperature of 583 K (310 °C).

  20. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    Science.gov (United States)

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  1. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  2. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  3. Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin

    Science.gov (United States)

    El-Deeb, Heba A.; Abd El-Aziz, Sara; Mobarak, Enas H.

    2014-01-01

    The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT) and dentin microtensile bond strength (μTBS) was evaluated. For the IPT, teeth (n = 15) were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth). The discs were divided into three groups (n = 10/group) according to the temperature of the Filtek LS™ silorane-based resin composite during its placement, either at room temperature (23 ± 1 °C) or preheated to 54 °C or 68 °C using a commercial Calset™ device. Discs were subjected to a simulated intrapulpal pressure (IPP) and placed inside a specially constructed incubator adjusted at 37 °C. IPT was measured before, during and after placement and curing of the resin composite using K-type thermocouple. For μTBS testing, flat occlusal middentin surfaces (n = 24) were obtained. P90 System Adhesive was applied according to manufacturer’s instructions then Filtek LS was placed at the tested temperatures (n = 6). Restorative procedures were done while the specimens were connected to IPP simulation. IPP was maintained and the specimens were immersed in artificial saliva at 37 °C for 24 h before testing. Each specimen was sectioned into sticks (0.9 ± 0.01 mm2). The sticks (24/group) were subjected to μTBS test and their modes of failure were determined using scanning electron microscope (SEM). For both preheated groups, IPT increased equally by 1.5–2 °C upon application of the composite. After light curing, IPT increased by 4–5 °C in all tested groups. Nevertheless, the IPT of the preheated groups required a longer time to return to the baseline temperature. One-way ANOVA revealed no significant difference between the μTBS values of all groups. SEM revealed predominately mixed mode of failure. Preheating of silorane-based resin composite increased the IPT but not to the critical level and had no effect on dentin μTBS. PMID:26257945

  4. Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dent

    Directory of Open Access Journals (Sweden)

    Heba A. El-Deeb

    2015-05-01

    Full Text Available The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT and dentin microtensile bond strength (μTBS was evaluated. For the IPT, teeth (n = 15 were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth. The discs were divided into three groups (n = 10/group according to the temperature of the Filtek LS™ silorane-based resin composite during its placement, either at room temperature (23 ± 1 °C or preheated to 54 °C or 68 °C using a commercial Calset™ device. Discs were subjected to a simulated intrapulpal pressure (IPP and placed inside a specially constructed incubator adjusted at 37 °C. IPT was measured before, during and after placement and curing of the resin composite using K-type thermocouple. For μTBS testing, flat occlusal middentin surfaces (n = 24 were obtained. P90 System Adhesive was applied according to manufacturer’s instructions then Filtek LS was placed at the tested temperatures (n = 6. Restorative procedures were done while the specimens were connected to IPP simulation. IPP was maintained and the specimens were immersed in artificial saliva at 37 °C for 24 h before testing. Each specimen was sectioned into sticks (0.9 ± 0.01 mm2. The sticks (24/group were subjected to μTBS test and their modes of failure were determined using scanning electron microscope (SEM. For both preheated groups, IPT increased equally by 1.5–2 °C upon application of the composite. After light curing, IPT increased by 4–5 °C in all tested groups. Nevertheless, the IPT of the preheated groups required a longer time to return to the baseline temperature. One-way ANOVA revealed no significant difference between the μTBS values of all groups. SEM revealed predominately mixed mode of failure. Preheating of silorane-based resin composite increased the IPT but not to the critical level and had no effect on dentin μTBS.

  5. Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin.

    Science.gov (United States)

    El-Deeb, Heba A; Abd El-Aziz, Sara; Mobarak, Enas H

    2015-05-01

    The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT) and dentin microtensile bond strength (μTBS) was evaluated. For the IPT, teeth (n = 15) were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth). The discs were divided into three groups (n = 10/group) according to the temperature of the Filtek LS™ silorane-based resin composite during its placement, either at room temperature (23 ± 1 °C) or preheated to 54 °C or 68 °C using a commercial Calset™ device. Discs were subjected to a simulated intrapulpal pressure (IPP) and placed inside a specially constructed incubator adjusted at 37 °C. IPT was measured before, during and after placement and curing of the resin composite using K-type thermocouple. For μTBS testing, flat occlusal middentin surfaces (n = 24) were obtained. P90 System Adhesive was applied according to manufacturer's instructions then Filtek LS was placed at the tested temperatures (n = 6). Restorative procedures were done while the specimens were connected to IPP simulation. IPP was maintained and the specimens were immersed in artificial saliva at 37 °C for 24 h before testing. Each specimen was sectioned into sticks (0.9 ± 0.01 mm(2)). The sticks (24/group) were subjected to μTBS test and their modes of failure were determined using scanning electron microscope (SEM). For both preheated groups, IPT increased equally by 1.5-2 °C upon application of the composite. After light curing, IPT increased by 4-5 °C in all tested groups. Nevertheless, the IPT of the preheated groups required a longer time to return to the baseline temperature. One-way ANOVA revealed no significant difference between the μTBS values of all groups. SEM revealed predominately mixed mode of failure. Preheating of silorane-based resin composite increased the IPT but not to the critical level and had no effect on dentin μTBS.

  6. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  7. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  8. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems

    Directory of Open Access Journals (Sweden)

    Faten A. Chaqmaqchee

    2016-04-01

    Full Text Available III-V semiconductors components such as Gallium Arsenic (GaAs, Indium Antimony (InSb, Aluminum Arsenic (AlAs and Indium Arsenic (InAs have high carrier mobilities and direct energy gaps. This is making them indispensable for today’s optoelectronic devices such as semiconductor lasers and optical amplifiers at 1.3 μm wavelength operation. In fact, these elements are led to the invention of the Gallium Indium Nitride Arsenic (GaInNAs, where the lattice is matched to GaAs for such applications. This article is aimed to design dilute nitride GaInNAs quantum wells (QWs enclosed between top and bottom of Aluminum (Gallium Arsenic Al(GaAs distributed bragg mirrors (DBRs using MATLAB® program. Vertical cavity semiconductor optical amplifiers (VCSOAs structures are based on Fabry Perot (FP method to design optical gain and bandwidth gain to be operated in reflection and transmission modes. The optical model gives access to the contact layer of epitaxial structure and the reflectivity for successive radiative modes, their lasing thresholds, emission wavelengths and optical field distributions in the laser cavity.

  9. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  10. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra;

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  11. Materials synthesis: Two-dimensional gallium nitride

    Science.gov (United States)

    Koratkar, Nikhil A.

    2016-11-01

    Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.

  12. Dissolution of bulk specimens of silicon nitride

    Science.gov (United States)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  13. A comparison of winter pre-heating requirements for natural displacement and natural mixing ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Andrew W. [BP Institute, University of Cambridge, Cambridge, CB3 OEZ (United Kingdom); Fitzgerald, Shaun; Livermore, Stephen [E-Stack Ltd., St Johns Innovation Centre, Cambridge (United Kingdom)

    2009-12-15

    In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings. (author)

  14. Equation of state of Mo from shock compression experiments on preheated samples

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2017-03-01

    We present a reanalysis of reported Hugoniot data for Mo, including both experiments shocked from ambient temperature (T) and those preheated to 1673 K, using the most general methods of least-squares fitting to constrain the Grüneisen model. This updated Mie-Grüneisen equation of state (EOS) is used to construct a family of maximum likelihood Hugoniots of Mo from initial temperatures of 298 to 2350 K and a parameterization valid over this range. We adopted a single linear function at each initial temperature over the entire range of particle velocities considered. Total uncertainties of all the EOS parameters and correlation coefficients for these uncertainties are given. The improved predictive capabilities of our EOS for Mo are confirmed by (1) better agreement between calculated bulk sound speeds and published measurements along the principal Hugoniot, (2) good agreement between our Grüneisen data and three reported high-pressure γ ( V ) functions obtained from shock-compression of porous samples, and (3) very good agreement between our 1 bar Grüneisen values and γ ( T ) at ambient pressure recalculated from reported experimental data on the adiabatic bulk modulus K s ( T ) . Our analysis shows that an EOS constructed from shock compression data allows a much more accurate prediction of γ ( T ) values at 1 bar than those based on static compression measurements or first-principles calculations. Published calibrations of the Mie-Grüneisen EOS for Mo using static compression measurements only do not reproduce even low-pressure asymptotic values of γ ( T ) at 1 bar, where the most accurate experimental data are available.

  15. Destruction of DDT wastes in two preheater/precalciner cement kilns in China.

    Science.gov (United States)

    Yan, Dahai; Peng, Zheng; Karstensen, Kåre Helge; Ding, Qiong; Wang, Kaixiang; Wang, Zuguang

    2014-04-01

    The destruction of DDT formulations and DDT contaminated soil was conducted by feeding wastes into the flue gas chamber at the kiln inlet of two different preheater/precalciner cement kilns in China. The concentration of DDT, PCDD/PCDFs and HCB were measured in the flue gas of the main stack, in the solid material under baseline conditions and when feeding DDT-wastes. The destruction efficiency and the destruction and removal efficiency for DDT were in the range of 99.9335%-99.9998% and 99.9984%-99.9999%, respectively. The emissions of PCDD/PCDFs and HCB in the flue gas varied in the range of 0.0019-0.0171 ng I-TEQ/Nm(3) and 0.0064-0.0404 μg/Nm(3), respectively. The emission factor for PCDD/PCDF and HCB varied from 0.0137 to 0.0281 μg/ton and from 17.32 to 109.34 μg/ton of clinker, respectively. The concentration of PCDD/PCDFs and HCB in solid samples decreased as follows: cement kiln dust, 4.1-5 ng I-TEQ/kg and 0.70-0.71 μg/kg, respectively; >raw meal, 0.82-0.97 ng I-TEQ/kg and 0.18 μg/kg, respectively; >cement clinker, 0.09-0.22 ng I-TEQ/kg and 0.14-0.18 μg/kg, respectively. This study indicates that the feeding of DDT and POPs-wastes to the lower temperature part of a cement kiln system possibly to create a buildup of trace not-destroyed compounds in the system and might cause emissions; the technical feasibility and the environmental acceptability of this practice need to be investigated thoroughly.

  16. Recycling ash into the first stage of cyclone pre-heater of cement kiln.

    Science.gov (United States)

    Zhan, Ming-Xiu; Fu, Jian-Ying; Havukainen, Jouni; Chen, Tong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-10-01

    Fly ash collected from the bag filter could be recycled into the first stage of the cyclone pre-heater of the cement kiln, resulting in the possible enrichment of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, soxhlet fly ash (SFA) and raw meal (RM) were selected as the basis for the PCDD/F formation experiments. The levels of 2,3,7,8-PCDD/Fs formed on the SFA and RM were observed to be 2550pg/g (157pg I-TEQ/g) and 1142pg/g (55pg I-TEQ/g), respectively. While less 2,3,7,8-PCDD/Fs was detected when SFA was mixed with RM, suggesting that recycling cement kiln ash would not largely increase the concentration of PCDD/Fs in flue gas. Furthermore, the possible influencing factors on the PCDD/F formation were also investigated. The formation of 2,3,7,8-PCDD/Fs was up to 10,871pg/g (380pg I-TEQ/g) with the adding of CuCl2, which was much higher than the results of CuO and activated carbon. Most importantly, the homologue, congener and gas/particle distribution of PCDD/Fs indicated that de novo synthesis was the dominant PCDD/F formation pathway for SFA. Lastly, principal component analysis (PCA) was also conducted to identify the relationship between the compositions of reactant and the properties of PCDD/Fs produced.

  17. Reticulated porous silicon nitride-based ceramics

    OpenAIRE

    Mazzocchi, Mauro; Medri, Valentina; Guicciardi, Stefano

    2012-01-01

    The interest towards the production of porous silicon nitride originates from the unique combination of light weight, of mechanical and physical properties typical of this class of ceramics that make them attractive for many engineering applications. Although pores are generally believed to deteriorate the mechanical properties of ceramics (the strength of porous ceramics decreases exponentially with an increase of porosity), the recent literature reports that porous silicon nitride can exhib...

  18. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  19. Modelling of the layer evolution during nitriding processes

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, U.; Oseguera, J.; Schabes, P. [CEM, Atizapan (Mexico)

    1995-12-31

    The evolution of concomitant layers of nitrides is presented. The layer formation is experimentally achieved through two processes: Nitriding with a weakly ionized plasma and nitrogen post-discharge nitriding. The nitriding processes were performed on samples of pure iron and carbon steel. Nitriding temperatures were close but different from the eutectoid transformation point temperature. The experimental layer growth pattern is compared with a model of mass transfer, in which interface mass balance is considered. In the model the authors have considered the formation of one and two compact nitride layers. For short time of treatment, it is shown that a parabolic profile does not satisfactorily describe the layer growth.

  20. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  1. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  2. Multi-objective optimization of steel nitriding

    Directory of Open Access Journals (Sweden)

    P. Cavaliere

    2016-03-01

    Full Text Available Steel nitriding is a thermo-chemical process largely employed in the machine components production to solve mainly wear and fatigue damage in materials. The process is strongly influenced by many different variables such as steel composition, nitrogen potential (range 0.8–35, temperature (range 350–1200 °C, time (range 2–180 hours. In the present study, the influence of such parameters affecting the nitriding layers' thickness, hardness, composition and residual stress was evaluated. The aim was to streamline the process by numerical–experimental analysis allowing to define the optimal conditions for the success of the process. The optimization software that was used is modeFRONTIER (Esteco, through which was defined a set of input parameters (steel composition, nitrogen potential, nitriding time, etc. evaluated on the basis of an optimization algorithm carefully chosen for the multi-objective analysis. The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated through control designs and optimized by taking into account physical and processing conditions.

  3. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    Science.gov (United States)

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  4. Junctions between a boron nitride nanotube and a boron nitride sheet.

    Science.gov (United States)

    Baowan, Duangkamon; Cox, Barry J; Hill, James M

    2008-02-20

    For future nanoelectromechanical signalling devices, it is vital to understand how to connect various nanostructures. Since boron nitride nanostructures are believed to be good electronic materials, in this paper we elucidate the classification of defect geometries for combining boron nitride structures. Specifically, we determine possible joining structures between a boron nitride nanotube and a flat sheet of hexagonal boron nitride. Firstly, we determine the appropriate defect configurations on which the tube can be connected, given that the energetically favourable rings for boron nitride structures are rings with an even number of sides. A new formula E = 6+2J relating the number of edges E and the number of joining positions J is established for each defect, and the number of possible distinct defects is related to the so-called necklace and bracelet problems of combinatorial theory. Two least squares approaches, which involve variation in bond length and variation in bond angle, are employed to determine the perpendicular connection of both zigzag and armchair boron nitride nanotubes with a boron nitride sheet. Here, three boron nitride tubes, which are (3, 3), (6, 0) and (9, 0) tubes, are joined with the sheet, and Euler's theorem is used to verify geometrically that the connected structures are sound, and their relationship with the bonded potential energy function approach is discussed. For zigzag tubes (n,0), it is proved that such connections investigated here are possible only for n divisible by 3.

  5. Structural analysis of nitride layer formed on uranium metal by glow plasma surface nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kezhao, E-mail: liukz@hotmail.com [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Bin Ren [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Xiao Hong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Long Zhong [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Hong Zhanglian, E-mail: hong_zhanglian@zju.edu.cn [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yang Hui [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wu Sheng [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The nitride layer was formed on uranium by glow plasma surface nitriding. Black-Right-Pointing-Pointer Four zones were observed in the nitride layer. Black-Right-Pointing-Pointer The chemical states of uranium, nitrogen, and oxygen were identified by AES. - Abstract: The nitride layer was formed on uranium metal by a glow plasma surface nitriding method. The structure and composition of the layer were investigated by X-ray diffraction and Auger electron spectroscopy. The nitride layer mainly consisted of {alpha}-phase U{sub 2}N{sub 3} nanocrystals with an average grain size about 10-20 nm. Four zones were identified in the layer, which were the oxide surface zone, the nitride mainstay zone, the oxide-existence interface zone, and the nitrogen-diffusion matrix zone. The gradual decrease of binding energies of uranium revealed the transition from oxide to nitride to metal states with the layer depth, while the chemical states of nitrogen and oxygen showed small variation.

  6. Experimental Observation and Analytical Modeling of Melting and Solidification during Aluminum Alloy Repair by Turbulence Flow Casting

    Directory of Open Access Journals (Sweden)

    Muki Satya Permana

    2015-10-01

    Full Text Available This paper presents an overview on the state of the art of applicable casting technology for applications in the field of repairing aluminum alloy components. Repair process on the Al alloy sample using similar metal has been carried out to investigate the micro-structural effect. Joining occurs as a result of convection heat transfer of molten flow into the sand mold which melts the existing base metal inside the mold and subsequent solidification. The analytical model has been developed to describe aluminum alloy component repair by turbulence flow casting. The model is designed based on heat transfer principle that can handle the phenomena of heat flow. The experimental result and analytical model analyses pointed out that joint quality are greatly affected by parameters of preheating temperature and duration of molten metal flow in the mold. To obtain a desired metallurgical sound at the joint, the optimum temperature and time were adjusted in order to obtain a similarity of microstructure between filler and base metal. This model is aimed to predict the use of the process parameter ranges in order to have the optimum parameters when it is applied to the experiment. The fixed parameters are flow rate, sand ratio, and pouring temperature. The process parameters are preheating temperature and pouring time. It is concluded that analytical modeling has good agreement with the experimental result.

  7. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si[sub 3]N[sub 4] during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, [approximately] 10 Si[sub 3]N[sub 4] nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si[sub 3]N[sub 4] growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  8. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si{sub 3}N{sub 4} during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, {approximately} 10 Si{sub 3}N{sub 4} nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si{sub 3}N{sub 4} growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  9. Lithium absorption on single-walled boron nitride, aluminum nitride, silicon carbide and carbon nanotubes: A first-principles study

    Science.gov (United States)

    Darvish Ganji, M.; Dalirandeh, Z.; Khorasani, M.

    2016-03-01

    Using the DFT-B3LYP calculations we investigate the adsorption of Li atom on CNT, BNNT, AlNNT and SiCNT. We found that Li atom can be chemisorbed on zig-zag SiCNT with binding energy of -2.358 eV and charge transfer of 0.842 |e|, which are larger than the results of other nanotubes. The binding energy of Li on SiCNT is foun to be stronger than activation energy barrier indicating that Li metal could be well dispersed on SiCNTs. Furthermore, the average voltage caused by the lithium adsorption on SiCNT demonstrated that SiCNTs could exhibit as a stable anode similar to the lithium metal anode. The binding nature has been rationalized by analyzing the electronic structures. Our findings demonstrate that Li-BNNT, Li-SiCNT and Li-AlNNT systems exhibit spin polarized behaviors and can fascinating potential application in future spintronics. Also, Li-SiCNT system with rather small band gap might be a promising material for optical applications and active molecule in its environment.

  10. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Khosravian, N. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Amin-Ahmadi, B. [Electron Microscopy for materials Science (EMAT), Department of Physics, University of Antwerpen, Groenenborgerlan 171, B-2020 Antwerpen (Belgium); Yi, Yang [Data Storage Institute, A*STAR (Agency for Science, Technology and Research), 117608 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Neyts, E.C.; Bogaerts, A. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Tay, B.K. [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-03-02

    A series of [TiN/TiAlN]{sub n} multilayer coatings with different bilayer numbers n = 5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEM imaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces. - Highlights: • TiN/TiAlN multilayer coatings with different bilayer number were deposited on SS. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the coatings was measured by pulsed photothermal reflectance. • Thermal conductivity depends on the coatings' microstructure and number of layers. • With increasing the bilayer number, thermal conductivity decreased.

  11. Microwave power aluminum gallium nitride/gallium nitride heterojunction field effect transistor for X-band applications

    Science.gov (United States)

    Cai, Shujun

    GaN material has been considered in recent years an attractive candidate for microwave power applications owing to its strong piezo-electric (PZ) and spontaneous polarization (SP) effects, high saturation velocity and wideband gap. AlGaN/GaN Heterojunction Field Effect Transistor (HFET) is chosen to overcome the disadvantages of low mobility in wide bandgap materials so that both high power and high speed are feasible. Analysis and simulation are performed to understand the enhancement of sheet charge density due to the PZ and SP effects in the AlGaN/GaN material system. Major factors affecting the sheet channel charge density are discussed. To verify the PZ and SP charge effects, testing structures of AlGaN/GaN with various Al contents for Hall measurement are then fabricated. Results support our analysis. GaN-based HFET devices with 25% Al content are fabricated after solving process issues. An external transconductance of 200 mS/mm, a saturation current density of 800 mA/mm and a breakdown voltage of 40 V to 50 V are achieved. A CW power amplifier with the output of 8 W at 9 GHz is achieved from a single 5 mm AlGaN/GaN HFET device. A novel process, referred to as Gamma gate process, is developed to realize high breakdown performance as well as small gate length. As a result, a 0.3 mum gate length device with an integrated field plate is fabricated using 1 mum conventional optical lithograph techniques. Improvements of breakdown voltage and RF performance by a factor of over 2 have been achieved. High temperature storage and measurement show that the AlGaN/GaN HFET devices can survive at an environment temperature as high as 592°C. The devices also survive after exposing to proton irradiation at a dosage of 1 x 1014 cm-2, indicating its intrinsic resistance to radiation.

  12. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    Science.gov (United States)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate material can have a significant effect on adhesion and the mechanical response between the coating and substrate. Depending on deposition parameters and the selected material MPPMS and DOMS are promising alternatives to DCMS, PMS, and CAD.

  13. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Koshi, E-mail: takenaka@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603 (Japan); Kuzuoka, Kota [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Sugimoto, Norihiro [Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603 (Japan)

    2015-08-28

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  14. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  15. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  16. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average...

  17. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  18. Aluminum Alloy 7050 Extrusions.

    Science.gov (United States)

    1977-03-01

    Artificial Aging Conditions 250 A-l Fatigue Crack Growth Data for C5A Extruded Panel, 7050-T7351X, L-T Orientation, R=0.1 254 A-2 Fatigue...cooldd aluminum and steel bottom blocks (Figure 2) were fabricated for use with this tooling. Metal was melted in a 10,000-lb capacity open- hearth ...time factor, effects of heating through this temperature range to the maximum artificial agirg temperature are additive. The solution of the

  19. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  20. Effect of Pre-heating on Microtensile Bond Strength of Composite Resin to Dentin.

    Directory of Open Access Journals (Sweden)

    Abdolrahim Davari

    2014-10-01

    Full Text Available Direct composite resin restorations are widely used and the impact of different storage temperatures on composites is not well understood. The purpose of this study was to evaluate the microtensile bond strength of composite to dentin after different pre-curing temperatures.Occlusal surfaces of 44 human molars were ground with diamond burs under water coolant and polished with 600 grit silicon carbide papers to obtain flat dentin surfaces. The dentin was etched with 37% phosphoric acid and bonded with Adper Single Bond 2 according to the manufacturer's instructions. The specimens were randomly divided into two groups (n=22 according to the composite resin applied: FiltekP60 and Filtek Z250. Each group included three subgroups of composite resin pre-curing temperatures (4°C, 23°C and 37°C. Composite resins were applied to the dentin surfaces in a plastic mold (8mm in diameter and 4mm in length incrementally and cured. Twenty-two composite-to-dentin hour-glass sticks with one mm(2 cross-sectional area per group were prepared. Microtensile bond strength measurements were made using a universal testing machine at a crosshead speed of one mm/min. For statistical analysis, t-test, one-way and two-way ANOVA were used. The level of significance was set at P<0.05.Filtek P60 pre-heated at 37ºC had significantly higher microtensile bond strength than Filtek Z250 under the same condition. The microtensile bond strengths were not significantly different at 4ºC, 23ºC and 37ºC subgroups of each composite resin group.Filtek P60 and Filtek Z250 did not have significantly different microtensile bond strengths at 4ºC and 23ºC but Filtek P60 had significantly higher microtensile bond strength at 37 ºC. Composite and temperature interactions had significant effects on the bond strength.

  1. Effects of preheating and precooling on the hardness and shrinkage of a composite resin cured with QTH and LED.

    Science.gov (United States)

    Osternack, F H; Caldas, D B M; Almeida, J B; Souza, E M; Mazur, R F

    2013-01-01

    The aim of this study was to evaluate in vitro the hardness and shrinkage of a pre-cooled or preheated hybrid composite resin cured by a quartz-tungsten-halogen light (QTH) and light-emitting diode (LED) curing units. The temperature on the tip of the devices was also investigated. Specimens of Charisma resin composite were produced with a metal mold kept under 37°C. The syringes were submitted to 4°C, 23°C, and 60°C (n=20) before light-curing, which was carried out with the Optilux 501 VCL and Elipar FreeLight 2 units for 20 seconds. The specimens were kept under 37°C in a high humidity condition and darkness for 48 hours. The Knoop hardness test was carried out with a 50 gram-force (gf) load for 10 seconds, and the measurement of the shrinkage gap was carried out using an optical microscope. The data were subjected to analysis of variance and the Games-Howell test (α=0.05). The mean hardness of the groups were similar, irrespective of the temperatures (p>0.05). For 4°C and 60°C, the top surface light-cured by LED presented significantly reduced shrinkage when compared with the bottom and to both surfaces cured by QTH (phardness was not affected by pre-cooling or preheating. However, polymerization shrinkage was slightly affected by different pre-polymerization temperatures. The QTH-curing generated greater shrinkage than LED-curing only when the composite was preheated. Different temperatures did not affect the composite hardness and shrinkage when cured by a LED curing unit.

  2. TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Dan

    2017-03-01

    Full Text Available Wire and arc additive manufacturing(WAAM was investigated by tungsten inert gas arc welding method(TIG, in which φ1.2mm filler wire of aluminum alloy 5A06(Al-6Mg-Mn-Si was selected as deposition metal. The prototyping process was conducted by a TIG power source(working in AC mode manipulated by a four-axis linkage CNC machine. Backplate preheating temperature and arc current on deposited morphologies of single layer and multi-layer were researched. The microstructure was observed and the sample tensile strength was tested. For single layer, a criterion that describes the correlation between backplate preheating temperature and arc peak current, of which both contribute to the smoothening of the deposited layer. The results show that the layer height drops sharply from the first layer of 3.4mm and keeps at 1.7mm after the 8th layer. Fine dendrite grain and equiaxed grain are found inside a layer and coarsest columnar dendrite structure at layer boundary zone; whereas the microstructure of top region of the deposited sample changes from fine dendrite grain to equiaxed grain that turns to be the finest structure. Mechanical property of the deposited sample is isotropic, in which the tensile strength is approximately 295MPa with the elongation around 36%.

  3. Diffusion kinetics of nitrogen in tantalum during plasma-nitriding

    Institute of Scientific and Technical Information of China (English)

    张德元; 林勤; 曾卫军; 李放; 许兰萍; 付青峰

    2001-01-01

    The activation energies of nitrogen in tantalum on plasma nitriding conditions were calculated according to the experimental data of hardness of plasma-nitriding of tantalum vs time and temperature. The activation energy calculated is 148.873±0.390  kJ/mol. The depth increasing of nitriding layer with time follows square root relation. The nitriding process of tantalum is controlled by diffusion of nitrogen atoms in tantalum solid solution.

  4. Effects of target pre-heating and expansion on terahertz radiation production from intense laser-solid interactions

    Institute of Scientific and Technical Information of China (English)

    X.H.Yuan; Y.Fang; D.C.Carroll; D.A.MacLellan; F.Du; N.Booth; M.Burza; M.Chen; R.J.Gray; Y.F.Jin; Y.T.Li; Y.Liu; D.Neely; H.Powell; G.Scott; C.-G.Wahlstrm; J.Zhang; P.McKenna; Z.M.Sheng

    2014-01-01

    The first experimental measurements of intense(~7 × 1019 W cm-2) laser-driven terahertz(THz) radiation from a solid target which is preheated by an intense pulse of laser-accelerated protons is reported. The total energy of the THz radiation is found to decrease by approximately a factor of 2 compared to a cold target reference. This is attributed to an increase in the scale length of the preformed plasma, driven by proton heating, at the front surface of the target,where the THz radiation is generated. The results show the importance of controlling the preplasma scale length for THz production.

  5. A Generalized and Simple Numerical Model to Compute the Feed Water Preheating System for Steam Power Plants

    Directory of Open Access Journals (Sweden)

    Ioana Opriș

    2017-02-01

    Full Text Available A general and simple numerical model is presented to calculate the uncontrolled steam flows extracted from a turbine to preheat the feed-water of a steam generator. For a user-defined technological scheme, a set of clear rules is given to complete the elements of the augmented matrix of the linear system that solves the problem. The model avoids writing of the heat balance equations for each heat exchanger. The steam extractions to the heaters are determined as related to the flow rate at the condenser. A numerical example is given to show the results.

  6. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    Science.gov (United States)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  7. Aluminum Carbothermic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry

  8. Extracting aluminum from dross tailings

    Science.gov (United States)

    Amer, A. M.

    2002-11-01

    Aluminum dross tailings, an industrial waste, from the Egyptian Aluminium Company (Egyptalum) was used to produce two types of alums: aluminum-sulfate alum [itAl2(SO4)3.12H2O] and ammonium-aluminum alum [ (NH 4)2SO4AL2(SO4)3.24H2O]. This was carried out in two processes. The first process is leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of solute sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purifi ed aluminum dross tailings thus produced. The effects of temperature, time of reaction, and acid concentration on leaching and extraction processes were studied. The product alums were analyzed using x-ray diffraction and thermal analysis techniques.

  9. Silicon nitride ceramic having high fatigue life and high toughness

    Science.gov (United States)

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  10. [The effect of plasma nitriding on tungsten burs].

    Science.gov (United States)

    Cicciu, D; Russo, S; Grasso, C

    1989-01-01

    The authors have experimented the nitriding's effects on some cilindrical burs carbide utilized in dentistry after disamination on the applications methodics on plasma nitriding in neurosurgery, orthopedic surgery and in odontotherapy. This reacherys point out that nitriding plasma a durings increase and cutis greater capacity establish.

  11. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  12. Nitridation of chromium powder in ammonia atmosphere

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Qiang Zhen; Rong Li

    2015-01-01

    CrN powder was synthesized by nitriding Cr metal in ammonia gas flow, and its chemical reaction mechanism and nitridation process were studied. Through thermodynamic calculations, the Cr−N−O predominance diagrams were constructed for different tempera-tures. Chromium nitride formed at 700−1200°C under relatively higher nitrogen and lower oxygen partial pressures. Phases in the products were then investigated using X-ray diffraction (XRD), and the Cr2N content varied with reaction temperature and holding time. The results indicate that the Cr metal powder nitridation process can be explained by a diffusion model. Further, Cr2N formed as an intermediate product because of an incomplete reaction, which was observed by high-resolution transmission electron microscopy (HRTEM). After nitriding at 1000°C for 20 h, CrN powder with an average grain size of 63 nm was obtained, and the obtained sample was analyzed by using a scanning electron microscope (SEM).

  13. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  14. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  15. Single gallium nitride nanowire lasers.

    Science.gov (United States)

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.

  16. Nonlinear conductivity in silicon nitride

    Science.gov (United States)

    Tuncer, Enis

    2017-08-01

    To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.

  17. Formation and control of stoichiometric hafnium nitride thin films by direct sputtering of hafnium nitride target

    CERN Document Server

    Gotoh, Y; Ishikawa, J; Liao, M Y

    2003-01-01

    Hafnium nitride thin films were prepared by radio-frequency sputter deposition with a hafnium nitride target. Deposition was performed with various rf powers, argon pressures, and substrate temperatures, in order to investigate the influences of these parameters on the film properties, particularly the nitrogen composition. It was found that stoichiometric hafnium nitride films were formed at an argon gas pressure of less than 2 Pa, irrespective of the other deposition parameters within the range investigated. Maintaining the nitrogen composition almost stoichiometric, orientation, stress, and electrical resistivity of the films could be controlled with deposition parameters. (author)

  18. Fracture resistance of surface-nitrided zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Feder, A.; Casellas, D.; Llanes, L.; Anglada, M. [Universidad Politecnica de Cataluna, Barcelona (Spain). Dept. of Material Science and Metallurgy

    2002-07-01

    Heat treatments have been conducted at 1650 C for 2 hours in Y-TZP stabilised with 2.5% molar of yttria in two different environments: in air and in nitrogen gas with the specimens embedded in a zirconium nitride powder bed. Relevant microstructural changes were induced by these heat treatments. It is highlighted the formation of a nitrided surface layer of about 400 {mu}m in thickness. Such layer has clear microstructural differences with respect to the bulk, and is formed by different sublayers with cubic and tetragonal phases with distinct degrees of transformability, as revealed by XRD and Raman spectroscopy. The fracture toughness and the hardness of the nitrided surface layer are higher than for the original Y-TZP. (orig.)

  19. Effect of preheating on the damage to tungsten targets after repetitive ITER ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Makhlay, V A [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Tereshin, V I [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany)

    2007-03-15

    The behaviour of a preheated tungsten target under repetitive pulsed plasma impacts of the energy density 0.75 MJ m{sup -2} with the pulse duration of 0.25 ms was studied with the quasi-stationary plasma accelerator (QSPA) Kh-50. Two identical samples of pure sintered tungsten have been exposed to numbers of pulses exceeding 100. One sample was maintained at room temperature and the other sample preheated at 650 deg. C. The experiments demonstrated that on the cold surface some macro-cracks dominate, but on the hot surface they do not develop. However, in both cases some fine meshes of micro-cracks are observed. With increasing the number of exposures, the width of the micro-cracks gradually increases, achieving 0.8-1.5 {mu}m after 100 pulses. In addition, the SEM shows some cellular structure with the cell sizes about 0.3 {mu}m, and after large numbers of exposures some blisters of sizes up to 100-150 {mu}m appear.

  20. Influence of pre-heat treatment and different light-curing units on Vickers hardness of a microhybrid composite resin

    Science.gov (United States)

    Saade, E. G.; Bandeca, M. C.; Rastelli, A. N. S.; Bagnato, V. S.; Porto-Neto, S. T.

    2009-06-01

    The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60°C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.

  1. Nitride Fuel Development at the INL

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Windes

    2007-06-01

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  2. Low pressure growth of cubic boron nitride films

    Science.gov (United States)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  3. Microbial adherence to a nonprecious alloy after plasma nitriding process.

    Science.gov (United States)

    Sonugelen, Mehmet; Destan, Uhmut Iyiyapici; Lambrecht, Fatma Yurt; Oztürk, Berran; Karadeniz, Süleyman

    2006-01-01

    To investigate the microbial adherence to the surfaces of a nonprecious metal alloy after plasma nitriding. The plasma-nitriding process was performed to the surfaces of metals prepared from a nickel-chromium alloy. The microorganisms were labeled with technetium-99m. After the labeling procedure, 60 metal disks were treated with a microorganism for each use. The results revealed that the amount of adherence of all microorganisms on surfaces was changed by plasma-nitriding process; adherence decreased substantially (P plasma nitriding time were not significant (P> .05) With the plasma-nitriding process, the surface properties of nonprecious metal alloys can be changed, leading to decreased microbial adherence.

  4. Dynamic Property of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    S Irie

    2016-09-01

    Full Text Available Aluminum in the foam of metallic foam is in the early stage of industrialization. It has various beneficial characteristics such as being lightweight, heat resistance, and an electromagnetic radiation shield. Therefore, the use of aluminum foam is expected to reduce the weight of equipment for transportation such as the car, trains, and aircraft. The use as energy absorption material is examined. Moreover aluminum foam can absorb the shock wave, and decrease the shock of the blast. Many researchers have reported about aluminum foam, but only a little information is available for high strain rates (103 s-1 or more. Therefore, the aluminum foam at high strain rates hasn't been not characterized yet. The purpose in this research is to evaluate the behavior of the aluminum form in the high-strain rate. In this paper, the collision test on high strain rate of the aluminum foam is investigated. After experiment, the numerical analysis model will be made. In this experiment, a powder gun was used to generate the high strain rate in aluminum foam. In-situ PVDF gauges were used for measuring pressure and the length of effectiveness that acts on the aluminum foam. The aluminum foam was accelerated to about 400 m/s from deflagration of single component powder and the foam were made to collide with the PVDF gauge. The high strain rate deformation of the aluminum form was measured at two collision speeds. As for the result, pressure was observed to go up rapidly when about 70% was compressed. From this result, it is understood that complete crush of the cell is caused when the relative volume is about 70%. In the next stage, this data will be compared with the numerical analysis.

  5. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V.M.Y.; Trojanowski, J.Q.

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  6. Effects of pin angle and preheating on temperature distribution during friction stir welding operation%搅拌摩擦焊接过程中搅拌针锥角和预热对温度分布的影响

    Institute of Scientific and Technical Information of China (English)

    R. KEIVANI; B. BAGHERI; F. SHARIFI; M. KETABCHI; M. ABBASI

    2013-01-01

    Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C11000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanical characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.%搅拌摩擦焊(FSW)被广泛应用在工业上,用来连接有色金属,尤其是铝合金。采用基于有限元分析的三维模型研究FSW过程中铜C11000的热特性。模型包含了搅拌头的机械作用和待焊接材料的热性能,以材料和搅拌针以及轴肩之间的摩擦作为热源。结果表明,温度的预测结果与实验结果具有良好的一致性。此外,数值模拟方法可以简单地应用于测量搅拌头下方工件的温度。研究了预热温度和搅拌针锥角对温度分布的影响。搅拌针锥角的增加可提高焊缝周围的温度,但预热不会影响焊缝周围的温度分布。

  7. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.;

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  8. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  9. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  10. Stability of fluorinated parylenes to oxygen reactive-ion etching under aluminum, aluminum oxide, and tantalum nitride overlayers

    Science.gov (United States)

    Senkevich, Jay J.; Wang, B.; Fortin, J. B.; Nielsen, M. C.; McDonald, J. F.; Lu, T.-M.; Nuesca, G. M.; Peterson, G. G.; Selbrede, S. C.; Weise, M. T.

    2003-09-01

    The fluorine stability of two parylenes, aliphatic-fluorinated AF-4 (α, α, α', α' poly(p-tetrafluoroxylylene) and aromatic-fluorinated VT-4 (2, 3, 5, 6 poly(p-tetrafluoroxylylene), were investigated underneath Al, Al2O3, and TaNX overlayers with and without exposure to oxygen reactive-ion etching (RIE). No fluorine diffusion was observed for Al films deposited onto the as-received parylenes. However, after oxygen RIE, x-ray photoelectron spectroscopy (XPS) depth profiling detected fluorine diffusion throughout Al and to a lesser extent Al2O3 but in contrast to Ta2.67N. Metal-fluoride bonding was evident at the metal/parylene interface for all the overlayers after the parylene was exposed to oxygen RIE and annealed.

  11. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  12. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  13. Ultrahard nanotwinned cubic boron nitride.

    Science.gov (United States)

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  14. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.

    Science.gov (United States)

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-03-07

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.

  15. Low temperature aluminum soldering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Peterkort, W.G.

    1976-09-01

    The investigation of low temperature aluminum soldering included the collection of spread factor and dihedral angle data for several solder alloys and a study of flux effects on aluminum. Selected solders were subjected to environmental tests and evaluated on the basis of tensile strength, joint resistance, visual appearance, and metallurgical analysis. A production line method for determining adequate flux removal was developed.

  16. Ballistic Evaluation of 2060 Aluminum

    Science.gov (United States)

    2016-05-24

    experiments in Experimental Facilities (EFs) 108 and 106, as well as John Hogan of ARL/AMB, Hugh Walter of Bowhead Science and Technology, and David Handshoe...new aluminum (Al)-based monocoque armored-vehicle hulls such as those of the M2 Bradley Infantry Fighting Vehicles. Also in 2012 the Aluminum

  17. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  18. 预热工艺对钢化玻璃性能的影响%Influence of Preheating Process on Tempered Glass Properties

    Institute of Scientific and Technical Information of China (English)

    赵旭东; 张晓娟

    2015-01-01

    Preheat under different conditions (other things being equal), double chamber strong convection horizontal tempering furnace was carried out on 6mm clear glass tempered processing, analyzed the effects of preheating parameters on the performance of the tempered glass, and the results are discussed.%在不同的预热条件(其它条件相同)下,利用双室强对流水平钢化炉对6 mm白玻进行钢化处理,分析了预热参数对钢化玻璃性能的影响,并对结果进行了讨论.

  19. Wettability of Aluminum on Alumina

    Science.gov (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  20. Hot Extrusion of Aluminum Chips

    Science.gov (United States)

    Tekkaya, A. Erman; Güley, Volkan; Haase, Matthias; Jäger, Andreas

    The process of hot extrusion is a promising approach for the direct recycling of aluminum machining chips to aluminum profiles. The presented technology is capable of saving energy, as remelting of aluminum chips can be avoided. Depending on the deformation route and process parameters, the chip-based aluminum extradates showed mechanical properties comparable or superior to cast aluminum billets extruded under the same conditions. Using different metal flow schemes utilizing different extrusion dies the mechanical properties of the profiles extruded from chips can be improved. The energy absorption capacity of the profiles the rectangular hollow profiles extruded from chips and as-cast billets were analyzed using the drop hammer test set-up. The formability of the profiles extruded from chips and as-cast material were compared using tube bending tests in a three-roller-bending machine.