WorldWideScience

Sample records for prediction method based

  1. Connecting clinical and actuarial prediction with rule-based methods.

    Science.gov (United States)

    Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H

    2015-06-01

    Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).

  2. The Dissolved Oxygen Prediction Method Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Zhong Xiao

    2017-01-01

    Full Text Available The dissolved oxygen (DO is oxygen dissolved in water, which is an important factor for the aquaculture. Using BP neural network method with the combination of purelin, logsig, and tansig activation functions is proposed for the prediction of aquaculture’s dissolved oxygen. The input layer, hidden layer, and output layer are introduced in detail including the weight adjustment process. The breeding data of three ponds in actual 10 consecutive days were used for experiments; these ponds were located in Beihai, Guangxi, a traditional aquaculture base in southern China. The data of the first 7 days are used for training, and the data of the latter 3 days are used for the test. Compared with the common prediction models, curve fitting (CF, autoregression (AR, grey model (GM, and support vector machines (SVM, the experimental results show that the prediction accuracy of the neural network is the highest, and all the predicted values are less than 5% of the error limit, which can meet the needs of practical applications, followed by AR, GM, SVM, and CF. The prediction model can help to improve the water quality monitoring level of aquaculture which will prevent the deterioration of water quality and the outbreak of disease.

  3. Connecting clinical and actuarial prediction with rule-based methods

    NARCIS (Netherlands)

    Fokkema, M.; Smits, N.; Kelderman, H.; Penninx, B.W.J.H.

    2015-01-01

    Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction

  4. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.

    Science.gov (United States)

    Hidalgo, J Ignacio; Colmenar, J Manuel; Kronberger, Gabriel; Winkler, Stephan M; Garnica, Oscar; Lanchares, Juan

    2017-08-08

    Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.

  5. Method of predicting Splice Sites based on signal interactions

    Directory of Open Access Journals (Sweden)

    Deogun Jitender S

    2006-04-01

    Full Text Available Abstract Background Predicting and proper ranking of canonical splice sites (SSs is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE and Intronic (ISE Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand.

  6. A prediction method based on grey system theory in equipment condition based maintenance

    International Nuclear Information System (INIS)

    Yan, Shengyuan; Yan, Shengyuan; Zhang, Hongguo; Zhang, Zhijian; Peng, Minjun; Yang, Ming

    2007-01-01

    Grey prediction is a modeling method based on historical or present, known or indefinite information, which can be used for forecasting the development of the eigenvalues of the targeted equipment system and setting up the model by using less information. In this paper, the postulate of grey system theory, which includes the grey generating, the sorts of grey generating and the grey forecasting model, is introduced first. The concrete application process, which includes the grey prediction modeling, grey prediction, error calculation, equal dimension and new information approach, is introduced secondly. Application of a so-called 'Equal Dimension and New Information' (EDNI) technology in grey system theory is adopted in an application case, aiming at improving the accuracy of prediction without increasing the amount of calculation by replacing old data with new ones. The proposed method can provide a new way for solving the problem of eigenvalue data exploding in equal distance effectively, short time interval and real time prediction. The proposed method, which was based on historical or present, known or indefinite information, was verified by the vibration prediction of induced draft fan of a boiler of the Yantai Power Station in China, and the results show that the proposed method based on grey system theory is simple and provides a high accuracy in prediction. So, it is very useful and significant to the controlling and controllable management in safety production. (authors)

  7. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  8. DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?

    Science.gov (United States)

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...

  9. A prediction method based on wavelet transform and multiple models fusion for chaotic time series

    International Nuclear Information System (INIS)

    Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha

    2017-01-01

    In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.

  10. A Method for Driving Route Predictions Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available We present a driving route prediction method that is based on Hidden Markov Model (HMM. This method can accurately predict a vehicle’s entire route as early in a trip’s lifetime as possible without inputting origins and destinations beforehand. Firstly, we propose the route recommendation system architecture, where route predictions play important role in the system. Secondly, we define a road network model, normalize each of driving routes in the rectangular coordinate system, and build the HMM to make preparation for route predictions using a method of training set extension based on K-means++ and the add-one (Laplace smoothing technique. Thirdly, we present the route prediction algorithm. Finally, the experimental results of the effectiveness of the route predictions that is based on HMM are shown.

  11. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  12. An auxiliary optimization method for complex public transit route network based on link prediction

    Science.gov (United States)

    Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian

    2018-02-01

    Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.

  13. Improving local clustering based top-L link prediction methods via asymmetric link clustering information

    Science.gov (United States)

    Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan

    2018-02-01

    Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.

  14. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    Science.gov (United States)

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  15. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  16. Machine learning-based methods for prediction of linear B-cell epitopes.

    Science.gov (United States)

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  17. The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network

    Science.gov (United States)

    Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.

    2017-05-01

    The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.

  18. Predictive Methods for Dense Polymer Networks: Combating Bias with Bio-Based Structures

    Science.gov (United States)

    2016-03-16

    Combating bias with bio - based structures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J. Guenthner...unlimited. PA Clearance 16152 Integrity  Service  Excellence Predictive methods for dense polymer networks: Combating bias with bio -based...Architectural Bias • Comparison of Petroleum-Based and Bio -Based Chemical Architectures • Continuing Research on Structure-Property Relationships using

  19. A postprocessing method in the HMC framework for predicting gene function based on biological instrumental data

    Science.gov (United States)

    Feng, Shou; Fu, Ping; Zheng, Wenbin

    2018-03-01

    Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.

  20. A Prediction Method of Airport Noise Based on Hybrid Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Tao XU

    2014-05-01

    Full Text Available Using monitoring history data to build and to train a prediction model for airport noise is a normal method in recent years. However, the single model built in different ways has various performances in the storage, efficiency and accuracy. In order to predict the noise accurately in some complex environment around airport, this paper presents a prediction method based on hybrid ensemble learning. The proposed method ensembles three algorithms: artificial neural network as an active learner, nearest neighbor as a passive leaner and nonlinear regression as a synthesized learner. The experimental results show that the three learners can meet forecast demands respectively in on- line, near-line and off-line. And the accuracy of prediction is improved by integrating these three learners’ results.

  1. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  2. A deep learning-based multi-model ensemble method for cancer prediction.

    Science.gov (United States)

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

    Science.gov (United States)

    Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke

    2016-01-15

    Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A GPS Satellite Clock Offset Prediction Method Based on Fitting Clock Offset Rates Data

    Directory of Open Access Journals (Sweden)

    WANG Fuhong

    2016-12-01

    Full Text Available It is proposed that a satellite atomic clock offset prediction method based on fitting and modeling clock offset rates data. This method builds quadratic model or linear model combined with periodic terms to fit the time series of clock offset rates, and computes the model coefficients of trend with the best estimation. The clock offset precisely estimated at the initial prediction epoch is directly adopted to calculate the model coefficient of constant. The clock offsets in the rapid ephemeris (IGR provided by IGS are used as modeling data sets to perform certain experiments for different types of GPS satellite clocks. The results show that the clock prediction accuracies of the proposed method for 3, 6, 12 and 24 h achieve 0.43, 0.58, 0.90 and 1.47 ns respectively, which outperform the traditional prediction method based on fitting original clock offsets by 69.3%, 61.8%, 50.5% and 37.2%. Compared with the IGU real-time clock products provided by IGS, the prediction accuracies of the new method have improved about 15.7%, 23.7%, 27.4% and 34.4% respectively.

  5. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  6. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed to ...

  7. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  8. A variable capacitance based modeling and power capability predicting method for ultracapacitor

    Science.gov (United States)

    Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang

    2018-01-01

    Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.

  9. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  10. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Science.gov (United States)

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  11. Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods

    Science.gov (United States)

    Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric

    2018-03-01

    Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.

  12. Network-based ranking methods for prediction of novel disease associated microRNAs.

    Science.gov (United States)

    Le, Duc-Hau

    2015-10-01

    Many studies have shown roles of microRNAs on human disease and a number of computational methods have been proposed to predict such associations by ranking candidate microRNAs according to their relevance to a disease. Among them, machine learning-based methods usually have a limitation in specifying non-disease microRNAs as negative training samples. Meanwhile, network-based methods are becoming dominant since they well exploit a "disease module" principle in microRNA functional similarity networks. Of which, random walk with restart (RWR) algorithm-based method is currently state-of-the-art. The use of this algorithm was inspired from its success in predicting disease gene because the "disease module" principle also exists in protein interaction networks. Besides, many algorithms designed for webpage ranking have been successfully applied in ranking disease candidate genes because web networks share topological properties with protein interaction networks. However, these algorithms have not yet been utilized for disease microRNA prediction. We constructed microRNA functional similarity networks based on shared targets of microRNAs, and then we integrated them with a microRNA functional synergistic network, which was recently identified. After analyzing topological properties of these networks, in addition to RWR, we assessed the performance of (i) PRINCE (PRIoritizatioN and Complex Elucidation), which was proposed for disease gene prediction; (ii) PageRank with Priors (PRP) and K-Step Markov (KSM), which were used for studying web networks; and (iii) a neighborhood-based algorithm. Analyses on topological properties showed that all microRNA functional similarity networks are small-worldness and scale-free. The performance of each algorithm was assessed based on average AUC values on 35 disease phenotypes and average rankings of newly discovered disease microRNAs. As a result, the performance on the integrated network was better than that on individual ones. In

  13. Efficient operation scheduling for adsorption chillers using predictive optimization-based control methods

    Science.gov (United States)

    Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz

    2017-10-01

    Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.

  14. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads

    International Nuclear Information System (INIS)

    Hattori, S; Hirose, T; Sugiyama, K

    2009-01-01

    The prediction of cavitation erosion rates is important in order to evaluate the exact life of components. The measurement of impact loads in bubble collapses helps to predict the life under cavitation erosion. In this study, we carried out erosion tests and the measurements of impact loads in bubble collapses with a vibratory apparatus. We evaluated the incubation period based on a cumulative damage rule by measuring the impact loads of cavitation acting on the specimen surface and by using the 'constant impact load - number of impact loads curve' similar to the modified Miner's rule which is employed for fatigue life prediction. We found that the parameter Σ(F i α xn i ) (F i : impact load, n i : number of impacts and α: constant) is suitable for the evaluation of the erosion life. Moreover, we propose a new method that can predict the incubation period under various cavitation conditions.

  15. Genomic prediction based on data from three layer lines: a comparison between linear methods

    NARCIS (Netherlands)

    Calus, M.P.L.; Huang, H.; Vereijken, J.; Visscher, J.; Napel, ten J.; Windig, J.J.

    2014-01-01

    Background The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction. Methods Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we

  16. Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations

    Directory of Open Access Journals (Sweden)

    Faming Zhang

    2016-11-01

    Full Text Available The prediction of travel times is challenging because of the sparseness of real-time traffic data and the intrinsic uncertainty of travel on congested urban road networks. We propose a new gradient–boosted regression tree method to accurately predict travel times. This model accounts for spatiotemporal correlations extracted from historical and real-time traffic data for adjacent and target links. This method can deliver high prediction accuracy by combining simple regression trees with poor performance. It corrects the error found in existing models for improved prediction accuracy. Our spatiotemporal gradient–boosted regression tree model was verified in experiments. The training data were obtained from big data reflecting historic traffic conditions collected by probe vehicles in Wuhan from January to May 2014. Real-time data were extracted from 11 weeks of GPS records collected in Wuhan from 5 May 2014 to 20 July 2014. Based on these data, we predicted link travel time for the period from 21 July 2014 to 25 July 2014. Experiments showed that our proposed spatiotemporal gradient–boosted regression tree model obtained better results than gradient boosting, random forest, or autoregressive integrated moving average approaches. Furthermore, these results indicate the advantages of our model for urban link travel time prediction.

  17. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.

    Directory of Open Access Journals (Sweden)

    Daniel M de Brito

    Full Text Available Genomic Islands (GIs are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.

  18. Reliability residual-life prediction method for thermal aging based on performance degradation

    International Nuclear Information System (INIS)

    Ren Shuhong; Xue Fei; Yu Weiwei; Ti Wenxin; Liu Xiaotian

    2013-01-01

    The paper makes the study of the nuclear power plant main pipeline. The residual-life of the main pipeline that failed due to thermal aging has been studied by the use of performance degradation theory and Bayesian updating methods. Firstly, the thermal aging impact property degradation process of the main pipeline austenitic stainless steel has been analyzed by the accelerated thermal aging test data. Then, the thermal aging residual-life prediction model based on the impact property degradation data is built by Bayesian updating methods. Finally, these models are applied in practical situations. It is shown that the proposed methods are feasible and the prediction accuracy meets the needs of the project. Also, it provides a foundation for the scientific management of aging management of the main pipeline. (authors)

  19. Predicting Taxi-Out Time at Congested Airports with Optimization-Based Support Vector Regression Methods

    Directory of Open Access Journals (Sweden)

    Guan Lian

    2018-01-01

    Full Text Available Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial Neural Network method and two improved Support Vector Regression (SVR approaches based on swarm intelligence algorithm optimization, which include Particle Swarm Optimization (PSO and Firefly Algorithm. In order to improve the global searching ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series of specific dynamic analyses, a case study of Beijing International Airport (PEK is tested with historical data. The performance measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA optimization-based SVR method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but also can achieve a better predictive performance when dealing with abnormal taxi-out time states.

  20. Simplified method to predict mutual interactions of human transcription factors based on their primary structure

    KAUST Repository

    Schmeier, Sebastian

    2011-07-05

    Background: Physical interactions between transcription factors (TFs) are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. Methodology: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39% on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus) and in the same type of molecular process (transcription initiation). Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. Conclusions: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account. © 2011 Schmeier et al.

  1. Simplified method to predict mutual interactions of human transcription factors based on their primary structure.

    Directory of Open Access Journals (Sweden)

    Sebastian Schmeier

    Full Text Available BACKGROUND: Physical interactions between transcription factors (TFs are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. METHODOLOGY: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39% on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus and in the same type of molecular process (transcription initiation. Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. CONCLUSIONS: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account.

  2. A link prediction method for heterogeneous networks based on BP neural network

    Science.gov (United States)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  3. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  4. Prediction Model of Collapse Risk Based on Information Entropy and Distance Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Hujun He

    2017-01-01

    Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.

  5. A Meta-Path-Based Prediction Method for Human miRNA-Target Association

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    2016-01-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNAs that play important roles in regulating gene expressing, and the perturbed miRNAs are often associated with development and tumorigenesis as they have effects on their target mRNA. Predicting potential miRNA-target associations from multiple types of genomic data is a considerable problem in the bioinformatics research. However, most of the existing methods did not fully use the experimentally validated miRNA-mRNA interactions. Here, we developed RMLM and RMLMSe to predict the relationship between miRNAs and their targets. RMLM and RMLMSe are global approaches as they can reconstruct the missing associations for all the miRNA-target simultaneously and RMLMSe demonstrates that the integration of sequence information can improve the performance of RMLM. In RMLM, we use RM measure to evaluate different relatedness between miRNA and its target based on different meta-paths; logistic regression and MLE method are employed to estimate the weight of different meta-paths. In RMLMSe, sequence information is utilized to improve the performance of RMLM. Here, we carry on fivefold cross validation and pathway enrichment analysis to prove the performance of our methods. The fivefold experiments show that our methods have higher AUC scores compared with other methods and the integration of sequence information can improve the performance of miRNA-target association prediction.

  6. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model

    International Nuclear Information System (INIS)

    Chen, Jiaoliao; Xu, Fang; Tan, Dapeng; Shen, Zheng; Zhang, Libin; Ai, Qinglin

    2015-01-01

    Highlights: • A novel control method for the heating greenhouse with SWSHPS is proposed. • CFD is employed to predict the priorities of FCU loops for thermal performance. • EPM is act as an on-line tool to predict the total energy demand of greenhouse. • The CFD–EPM-based method can save energy and improve control accuracy. • The energy savings potential is between 8.7% and 15.1%. - Abstract: As energy heating is one of the main production costs, many efforts have been made to reduce the energy consumption of agricultural greenhouses. Herein, a novel control method of greenhouse heating using computational fluid dynamics (CFD) and energy prediction model (EPM) is proposed for energy savings and system performance. Based on the low-Reynolds number k–ε turbulence principle, a CFD model of heating greenhouse is developed, applying the discrete ordinates model for the radiative heat transfers and porous medium approach for plants considering plants sensible and latent heat exchanges. The CFD simulations have been validated, and used to analyze the greenhouse thermal performance and the priority of fan coil units (FCU) loops under the various heating conditions. According to the heating efficiency and temperature uniformity, the priorities of each FCU loop can be predicted to generate a database with priorities for control system. EPM is built up based on the thermal balance, and used to predict and optimize the energy demand of the greenhouse online. Combined with the priorities of FCU loops from CFD simulations offline, we have developed the CFD–EPM-based heating control system of greenhouse with surface water source heat pumps system (SWSHPS). Compared with conventional multi-zone independent control (CMIC) method, the energy savings potential is between 8.7% and 15.1%, and the control temperature deviation is decreased to between 0.1 °C and 0.6 °C in the investigated greenhouse. These results show the CFD–EPM-based method can improve system

  7. A Predictive-Control-Based Over-Modulation Method for Conventional Matrix Converters

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Yang, Jian; Sun, Yao

    2018-01-01

    To increase the voltage transfer ratio of the matrix converter and improve the input/output current performance simultaneously, an over-modulation method based on predictive control is proposed in this paper, where the weighting factor is selected by an automatic adjusting mechanism, which is able...... to further enhance the system performance promptly. This method has advantages like the maximum voltage transfer ratio can reach 0.987 in the experiments; the total harmonic distortion of the input and output current are reduced, and the losses in the matrix converter are decreased. Moreover, the specific...

  8. Systems-based biological concordance and predictive reproducibility of gene set discovery methods in cardiovascular disease.

    Science.gov (United States)

    Azuaje, Francisco; Zheng, Huiru; Camargo, Anyela; Wang, Haiying

    2011-08-01

    The discovery of novel disease biomarkers is a crucial challenge for translational bioinformatics. Demonstration of both their classification power and reproducibility across independent datasets are essential requirements to assess their potential clinical relevance. Small datasets and multiplicity of putative biomarker sets may explain lack of predictive reproducibility. Studies based on pathway-driven discovery approaches have suggested that, despite such discrepancies, the resulting putative biomarkers tend to be implicated in common biological processes. Investigations of this problem have been mainly focused on datasets derived from cancer research. We investigated the predictive and functional concordance of five methods for discovering putative biomarkers in four independently-generated datasets from the cardiovascular disease domain. A diversity of biosignatures was identified by the different methods. However, we found strong biological process concordance between them, especially in the case of methods based on gene set analysis. With a few exceptions, we observed lack of classification reproducibility using independent datasets. Partial overlaps between our putative sets of biomarkers and the primary studies exist. Despite the observed limitations, pathway-driven or gene set analysis can predict potentially novel biomarkers and can jointly point to biomedically-relevant underlying molecular mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Esophageal cancer prediction based on qualitative features using adaptive fuzzy reasoning method

    Directory of Open Access Journals (Sweden)

    Raed I. Hamed

    2015-04-01

    Full Text Available Esophageal cancer is one of the most common cancers world-wide and also the most common cause of cancer death. In this paper, we present an adaptive fuzzy reasoning algorithm for rule-based systems using fuzzy Petri nets (FPNs, where the fuzzy production rules are represented by FPN. We developed an adaptive fuzzy Petri net (AFPN reasoning algorithm as a prognostic system to predict the outcome for esophageal cancer based on the serum concentrations of C-reactive protein and albumin as a set of input variables. The system can perform fuzzy reasoning automatically to evaluate the degree of truth of the proposition representing the risk degree value with a weight value to be optimally tuned based on the observed data. In addition, the implementation process for esophageal cancer prediction is fuzzily deducted by the AFPN algorithm. Performance of the composite model is evaluated through a set of experiments. Simulations and experimental results demonstrate the effectiveness and performance of the proposed algorithms. A comparison of the predictive performance of AFPN models with other methods and the analysis of the curve showed the same results with an intuitive behavior of AFPN models.

  10. Feature selection for splice site prediction: A new method using EDA-based feature ranking

    Directory of Open Access Journals (Sweden)

    Rouzé Pierre

    2004-05-01

    Full Text Available Abstract Background The identification of relevant biological features in large and complex datasets is an important step towards gaining insight in the processes underlying the data. Other advantages of feature selection include the ability of the classification system to attain good or even better solutions using a restricted subset of features, and a faster classification. Thus, robust methods for fast feature selection are of key importance in extracting knowledge from complex biological data. Results In this paper we present a novel method for feature subset selection applied to splice site prediction, based on estimation of distribution algorithms, a more general framework of genetic algorithms. From the estimated distribution of the algorithm, a feature ranking is derived. Afterwards this ranking is used to iteratively discard features. We apply this technique to the problem of splice site prediction, and show how it can be used to gain insight into the underlying biological process of splicing. Conclusion We show that this technique proves to be more robust than the traditional use of estimation of distribution algorithms for feature selection: instead of returning a single best subset of features (as they normally do this method provides a dynamical view of the feature selection process, like the traditional sequential wrapper methods. However, the method is faster than the traditional techniques, and scales better to datasets described by a large number of features.

  11. The steady performance prediction of propeller-rudder-bulb system based on potential iterative method

    International Nuclear Information System (INIS)

    Liu, Y B; Su, Y M; Ju, L; Huang, S L

    2012-01-01

    A new numerical method was developed for predicting the steady hydrodynamic performance of propeller-rudder-bulb system. In the calculation, the rudder and bulb was taken into account as a whole, the potential based surface panel method was applied both to propeller and rudder-bulb system. The interaction between propeller and rudder-bulb was taken into account by velocity potential iteration in which the influence of propeller rotation was considered by the average influence coefficient. In the influence coefficient computation, the singular value should be found and deleted. Numerical results showed that the method presented is effective for predicting the steady hydrodynamic performance of propeller-rudder system and propeller-rudder-bulb system. Comparing with the induced velocity iterative method, the method presented can save programming and calculation time. Changing dimensions, the principal parameter—bulb size that affect energy-saving effect was studied, the results show that the bulb on rudder have a optimal size at the design advance coefficient.

  12. Comparison of Four Weighting Methods in Fuzzy-based Land Suitability to Predict Wheat Yield

    Directory of Open Access Journals (Sweden)

    Fatemeh Rahmati

    2017-06-01

    Full Text Available Introduction: Land suitability evaluation is a process to examine the degree of land fitness for specific utilization and also makes it possible to estimate land productivity potential. In 1976, FAO provided a general framework for land suitability classification. It has not been proposed a specific method to perform this classification in the framework. In later years, a collection of methods was presented based on the FAO framework. In parametric method, different land suitability aspects are defined as completely discrete groups and are separated from each other by distinguished and consistent ranges. Therefore, land units that have moderate suitability can only choose one of the characteristics of predefined classes of land suitability. Fuzzy logic is an extension of Boolean logic by LotfiZadeh in 1965 based on the mathematical theory of fuzzy sets, which is a generalization of the classical set theory. By introducing the notion of degree in the verification of a condition, fuzzy method enables a condition to be in a state other than true or false, as well as provides a very valuable flexibility for reasoning, which makes it possible to take into account inaccuracies and uncertainties. One advantage of fuzzy logic in order to formalize human reasoning is that the rules are set in natural language. In evaluation method based on fuzzy logic, the weights are used for land characteristics. The objective of this study was to compare four methods of weight calculation in the fuzzy logic to predict the yield of wheat in the study area covering 1500 ha in Kian town in Shahrekord (Chahrmahal and Bakhtiari province, Iran. Materials and Methods: In such investigations, climatic factors, and soil physical and chemical characteristics are studied. This investigation involves several studies including a lab study, and qualitative and quantitative land suitability evaluation with fuzzy logic for wheat. Factors affecting the wheat production consist of

  13. Selecting the minimum prediction base of historical data to perform 5-year predictions of the cancer burden: The GoF-optimal method.

    Science.gov (United States)

    Valls, Joan; Castellà, Gerard; Dyba, Tadeusz; Clèries, Ramon

    2015-06-01

    Predicting the future burden of cancer is a key issue for health services planning, where a method for selecting the predictive model and the prediction base is a challenge. A method, named here Goodness-of-Fit optimal (GoF-optimal), is presented to determine the minimum prediction base of historical data to perform 5-year predictions of the number of new cancer cases or deaths. An empirical ex-post evaluation exercise for cancer mortality data in Spain and cancer incidence in Finland using simple linear and log-linear Poisson models was performed. Prediction bases were considered within the time periods 1951-2006 in Spain and 1975-2007 in Finland, and then predictions were made for 37 and 33 single years in these periods, respectively. The performance of three fixed different prediction bases (last 5, 10, and 20 years of historical data) was compared to that of the prediction base determined by the GoF-optimal method. The coverage (COV) of the 95% prediction interval and the discrepancy ratio (DR) were calculated to assess the success of the prediction. The results showed that (i) models using the prediction base selected through GoF-optimal method reached the highest COV and the lowest DR and (ii) the best alternative strategy to GoF-optimal was the one using the base of prediction of 5-years. The GoF-optimal approach can be used as a selection criterion in order to find an adequate base of prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A new wind power prediction method based on chaotic theory and Bernstein Neural Network

    International Nuclear Information System (INIS)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Fan, Xiaochao

    2016-01-01

    The accuracy of wind power prediction is important for assessing the security and economy of the system operation when wind power connects to the grids. However, multiple factors cause a long delay and large errors in wind power prediction. Hence, efficient wind power forecasting approaches are still required for practical applications. In this paper, a new wind power forecasting method based on Chaos Theory and Bernstein Neural Network (BNN) is proposed. Firstly, the largest Lyapunov exponent as a judgment for wind power system's chaotic behavior is made. Secondly, Phase Space Reconstruction (PSR) is used to reconstruct the wind power series' phase space. Thirdly, the prediction model is constructed using the Bernstein polynomial and neural network. Finally, the weights and thresholds of the model are optimized by Primal Dual State Transition Algorithm (PDSTA). The practical hourly data of wind power generation in Xinjiang is used to test this forecaster. The proposed forecaster is compared with several current prominent research findings. Analytical results indicate that the forecasting error of PDSTA + BNN is 3.893% for 24 look-ahead hours, and has lower errors obtained compared with the other forecast methods discussed in this paper. The results of all cases studying confirm the validity of the new forecast method. - Highlights: • Lyapunov exponent is used to verify chaotic behavior of wind power series. • Phase Space Reconstruction is used to reconstruct chaotic wind power series. • A new Bernstein Neural Network to predict wind power series is proposed. • Primal dual state transition algorithm is chosen as the training strategy of BNN.

  15. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method.

    Science.gov (United States)

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  16. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  17. A critical pressure based panel method for prediction of unsteady loading of marine propellers under cavitation

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2002-01-01

    A simple numerical procedure is established and implemented into a time domain panel method to predict hydrodynamic performance of marine propellers with sheet cavitation. This paper describes the numerical formulations and procedures to construct this integration. Predicted hydrodynamic loads were compared with both a previous numerical model and experimental measurements for a propeller in steady flow. The current method gives a substantial improvement in thrust and torque coefficient prediction over a previous numerical method at low cavitation numbers of less than 2.0, where severe cavitation occurs. Predicted pressure coefficient distributions are also presented. (author)

  18. Accuracy assessment of the ERP prediction method based on analysis of 100-year ERP series

    Science.gov (United States)

    Malkin, Z.; Tissen, V. M.

    2012-12-01

    A new method has been developed at the Siberian Research Institute of Metrology (SNIIM) for highly accurate prediction of UT1 and Pole motion (PM). In this study, a detailed comparison was made of real-time UT1 predictions made in 2006-2011 and PMpredictions made in 2009-2011making use of the SNIIM method with simultaneous predictions computed at the International Earth Rotation and Reference Systems Service (IERS), USNO. Obtained results have shown that proposed method provides better accuracy at different prediction lengths.

  19. Short-term prediction method of wind speed series based on fractal interpolation

    International Nuclear Information System (INIS)

    Xiu, Chunbo; Wang, Tiantian; Tian, Meng; Li, Yanqing; Cheng, Yi

    2014-01-01

    Highlights: • An improved fractal interpolation prediction method is proposed. • The chaos optimization algorithm is used to obtain the iterated function system. • The fractal extrapolate interpolation prediction of wind speed series is performed. - Abstract: In order to improve the prediction performance of the wind speed series, the rescaled range analysis is used to analyze the fractal characteristics of the wind speed series. An improved fractal interpolation prediction method is proposed to predict the wind speed series whose Hurst exponents are close to 1. An optimization function which is composed of the interpolation error and the constraint items of the vertical scaling factors in the fractal interpolation iterated function system is designed. The chaos optimization algorithm is used to optimize the function to resolve the optimal vertical scaling factors. According to the self-similarity characteristic and the scale invariance, the fractal extrapolate interpolation prediction can be performed by extending the fractal characteristic from internal interval to external interval. Simulation results show that the fractal interpolation prediction method can get better prediction result than others for the wind speed series with the fractal characteristic, and the prediction performance of the proposed method can be improved further because the fractal characteristic of its iterated function system is similar to that of the predicted wind speed series

  20. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features.

    Science.gov (United States)

    Zhu, Xiaolei; Mitchell, Julie C

    2011-09-01

    Hot spots constitute a small fraction of protein-protein interface residues, yet they account for a large fraction of the binding affinity. Based on our previous method (KFC), we present two new methods (KFC2a and KFC2b) that outperform other methods at hot spot prediction. A number of improvements were made in developing these new methods. First, we created a training data set that contained a similar number of hot spot and non-hot spot residues. In addition, we generated 47 different features, and different numbers of features were used to train the models to avoid over-fitting. Finally, two feature combinations were selected: One (used in KFC2a) is composed of eight features that are mainly related to solvent accessible surface area and local plasticity; the other (KFC2b) is composed of seven features, only two of which are identical to those used in KFC2a. The two models were built using support vector machines (SVM). The two KFC2 models were then tested on a mixed independent test set, and compared with other methods such as Robetta, FOLDEF, HotPoint, MINERVA, and KFC. KFC2a showed the highest predictive accuracy for hot spot residues (True Positive Rate: TPR = 0.85); however, the false positive rate was somewhat higher than for other models. KFC2b showed the best predictive accuracy for hot spot residues (True Positive Rate: TPR = 0.62) among all methods other than KFC2a, and the False Positive Rate (FPR = 0.15) was comparable with other highly predictive methods. Copyright © 2011 Wiley-Liss, Inc.

  1. An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Yi Luo; Jian-wei Cheng [West Virginia University, Morgantown, WV (United States). Department of Mining Engineering

    2009-09-15

    The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorporated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model. 9 refs., 8 figs.

  2. Molecular Structure-Based Methods of Property Prediction in Application to Lipids: A Review and Refinement

    DEFF Research Database (Denmark)

    Cunico, Larissa; Hukkerikar, Amol; Ceriani, Roberta

    2013-01-01

    The paper is a review of the combined group contribution (GC)–atom connectivity index (CI) approachfor prediction of physical and thermodynamic properties of organic chemicals and their mixtures withspecial emphasis on lipids. The combined approach employs carefully selected datasets of different...... dependent, have been developed. For mixtures, properties related to phase equilibria aremodeled with GE-based models (UNIQUAC, UNIFAC, NRTL, and combined UNIFAC-CI method). The col-lected phase equilibrium data for VLE and SLE have been tested for thermodynamic consistency togetherwith a performance...... evaluation of the GE-models. The paper also reviews the role of the databases andthe mathematical and thermodynamic consistency of the measured/estimated data and the predictivenature of the developed models....

  3. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....

  4. A measurement-based method for predicting margins and uncertainties for unprotected accidents in the Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1990-01-01

    A measurement-based method for predicting the response of an LMR core to unprotected accidents has been developed. The method processes plant measurements taken at normal operation to generate a stochastic model for the core dynamics. This model can be used to predict three sigma confidence intervals for the core temperature and power response. Preliminary numerical simulations performed for EBR-2 appear promising. 6 refs., 2 figs

  5. Online sequential condition prediction method of natural circulation systems based on EOS-ELM and phase space reconstruction

    International Nuclear Information System (INIS)

    Chen, Hanying; Gao, Puzhen; Tan, Sichao; Tang, Jiguo; Yuan, Hongsheng

    2017-01-01

    Highlights: •An online condition prediction method for natural circulation systems in NPP was proposed based on EOS-ELM. •The proposed online prediction method was validated using experimental data. •The training speed of the proposed method is significantly fast. •The proposed method can achieve good accuracy in wide parameter range. -- Abstract: Natural circulation design is widely used in the passive safety systems of advanced nuclear power reactors. The irregular and chaotic flow oscillations are often observed in boiling natural circulation systems so it is difficult for operators to monitor and predict the condition of these systems. An online condition forecasting method for natural circulation system is proposed in this study as an assisting technique for plant operators. The proposed prediction approach was developed based on Ensemble of Online Sequential Extreme Learning Machine (EOS-ELM) and phase space reconstruction. Online Sequential Extreme Learning Machine (OS-ELM) is an online sequential learning neural network algorithm and EOS-ELM is the ensemble method of it. The proposed condition prediction method can be initiated by a small chunk of monitoring data and it can be updated by newly arrived data at very fast speed during the online prediction. Simulation experiments were conducted on the data of two natural circulation loops to validate the performance of the proposed method. The simulation results show that the proposed predication model can successfully recognize different types of flow oscillations and accurately forecast the trend of monitored plant variables. The influence of the number of hidden nodes and neural network inputs on prediction performance was studied and the proposed model can achieve good accuracy in a wide parameter range. Moreover, the comparison results show that the proposed condition prediction method has much faster online learning speed and better prediction accuracy than conventional neural network model.

  6. A Practical and Fast Method To Predict the Thermodynamic Preference of omega-Transaminase-Based Transformations

    DEFF Research Database (Denmark)

    Meier, Robert J.; Gundersen Deslauriers, Maria; Woodley, John

    2015-01-01

    A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir...

  7. Method of critical power prediction based on film flow model coupled with subchannel analysis

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Yokomizo, Osamu; Yoshimoto, Yuichiro; Sugawara, Satoshi.

    1988-01-01

    A new method was developed to predict critical powers for a wide variety of BWR fuel bundle designs. This method couples subchannel analysis with a liquid film flow model, instead of taking the conventional way which couples subchannel analysis with critical heat flux correlations. Flow and quality distributions in a bundle are estimated by the subchannel analysis. Using these distributions, film flow rates along fuel rods are then calculated with the film flow model. Dryout is assumed to occur where one of the film flows disappears. This method is expected to give much better adaptability to variations in geometry, heat flux, flow rate and quality distributions than the conventional methods. In order to verify the method, critical power data under BWR conditions were analyzed. Measured and calculated critical powers agreed to within ±7%. Furthermore critical power data for a tight-latticed bundle obtained by LeTourneau et al. were compared with critical powers calculated by the present method and two conventional methods, CISE correlation and subchannel analysis coupled with the CISE correlation. It was confirmed that the present method can predict critical powers more accurately than the conventional methods. (author)

  8. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model

    Science.gov (United States)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.

  9. TEHRAN AIR POLLUTANTS PREDICTION BASED ON RANDOM FOREST FEATURE SELECTION METHOD

    Directory of Open Access Journals (Sweden)

    A. Shamsoddini

    2017-09-01

    Full Text Available Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  10. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    Science.gov (United States)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  11. Interior Noise Prediction of the Automobile Based on Hybrid FE-SEA Method

    Directory of Open Access Journals (Sweden)

    S. M. Chen

    2011-01-01

    created using hybrid FE-SEA method. The modal density was calculated using analytical method and finite element method; the damping loss factors of the structural and acoustic cavity subsystems were also calculated with analytical method; the coupling loss factors between structure and structure, structure and acoustic cavity were both calculated. Four different kinds of excitations including road excitations, engine mount excitations, sound radiation excitations of the engine, and wind excitations are exerted on the body of automobile when the automobile is running on the road. All the excitations were calculated using virtual prototype technology, computational fluid dynamics (CFD, and experiments realized in the design and development stage. The interior noise of the automobile was predicted and verified at speed of 120 km/h. The predicted and tested overall SPLs of the interior noise were 73.79 and 74.44 dB(A respectively. The comparison results also show that the prediction precision is satisfied, and the effectiveness and reliability of the hybrid FE-SEA model of the automobile is verified.

  12. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.

    Science.gov (United States)

    Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M

    2018-01-01

    Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.

  13. A simple fracture energy prediction method for fiber network based on its morphological features extracted by X-ray tomography

    International Nuclear Information System (INIS)

    Huang, Xiang; Wang, Qinghui; Zhou, Wei; Li, Jingrong

    2013-01-01

    The fracture behavior of a novel porous metal fiber sintered sheet (PMFSS) was predicted using a semi-empirical method combining the knowledge of its morphological characteristics and micro-mechanical responses. The morphological characteristics were systematically summarized based on the analysis of the topologically identical skeleton representation extracted from the X-ray tomography images. The analytical model firstly proposed by Tan et al. [1] was further modified according to the experimental observations from both tensile tests of single fibers and sintered fiber sheets, which built the coupling of single fiber segment and fiber network in terms of fracture energy using a simple prediction method. The efficacy of the prediction model was verified by comparing the predicted results to the experimental measurements. The prediction error that arose at high porosity was analyzed through fiber orientation distribution. Moreover, the tensile fracture process evolving from single fiber segments at micro-scale to the global mechanical performance was investigated

  14. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  15. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    Science.gov (United States)

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  16. New method for probabilistic traffic demand predictions for en route sectors based on uncertain predictions of individual flight events.

    Science.gov (United States)

    2011-06-14

    This paper presents a novel analytical approach to and techniques for translating characteristics of uncertainty in predicting sector entry times and times in sector for individual flights into characteristics of uncertainty in predicting one-minute ...

  17. In-depth performance evaluation of PFP and ESG sequence-based function prediction methods in CAFA 2011 experiment

    Directory of Open Access Journals (Sweden)

    Chitale Meghana

    2013-02-01

    Full Text Available Abstract Background Many Automatic Function Prediction (AFP methods were developed to cope with an increasing growth of the number of gene sequences that are available from high throughput sequencing experiments. To support the development of AFP methods, it is essential to have community wide experiments for evaluating performance of existing AFP methods. Critical Assessment of Function Annotation (CAFA is one such community experiment. The meeting of CAFA was held as a Special Interest Group (SIG meeting at the Intelligent Systems in Molecular Biology (ISMB conference in 2011. Here, we perform a detailed analysis of two sequence-based function prediction methods, PFP and ESG, which were developed in our lab, using the predictions submitted to CAFA. Results We evaluate PFP and ESG using four different measures in comparison with BLAST, Prior, and GOtcha. In addition to the predictions submitted to CAFA, we further investigate performance of a different scoring function to rank order predictions by PFP as well as PFP/ESG predictions enriched with Priors that simply adds frequently occurring Gene Ontology terms as a part of predictions. Prediction accuracies of each method were also evaluated separately for different functional categories. Successful and unsuccessful predictions by PFP and ESG are also discussed in comparison with BLAST. Conclusion The in-depth analysis discussed here will complement the overall assessment by the CAFA organizers. Since PFP and ESG are based on sequence database search results, our analyses are not only useful for PFP and ESG users but will also shed light on the relationship of the sequence similarity space and functions that can be inferred from the sequences.

  18. Power Transformer Operating State Prediction Method Based on an LSTM Network

    Directory of Open Access Journals (Sweden)

    Hui Song

    2018-04-01

    Full Text Available The state of transformer equipment is usually manifested through a variety of information. The characteristic information will change with different types of equipment defects/faults, location, severity, and other factors. For transformer operating state prediction and fault warning, the key influencing factors of the transformer panorama information are analyzed. The degree of relative deterioration is used to characterize the deterioration of the transformer state. The membership relationship between the relative deterioration degree of each indicator and the transformer state is obtained through fuzzy processing. Through the long short-term memory (LSTM network, the evolution of the transformer status is extracted, and a data-driven state prediction model is constructed to realize preliminary warning of a potential fault of the equipment. Through the LSTM network, the quantitative index and qualitative index are organically combined in order to perceive the corresponding relationship between the characteristic parameters and the operating state of the transformer. The results of different time-scale prediction cases show that the proposed method can effectively predict the operation status of power transformers and accurately reflect their status.

  19. A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy

    International Nuclear Information System (INIS)

    Lin, Y.C.; Chen, Xiao-Min; Chen, Ming-Song; Wen, Dong-Xu; Zhou, Ying; He, Dao-Guang

    2016-01-01

    The metadynamic recrystallization (MDRX) behaviors of a typical nickel-based superalloy are investigated by two-pass hot compression tests and four conventional stress-based conventional approaches (offset stress method, back-extrapolation stress method, peak stress method, and mean stress method). It is found that the conventional stress-based methods are not suitable to evaluate the MDRX softening fractions for the studied superalloy. Therefore, a new approach, 'maximum stress method', is proposed to evaluate the MDRX softening fraction. Based on the proposed method, the effects of deformation temperature, strain rate, initial average grain size, and interpass time on MDRX behaviors are discussed in detail. Results show that MDRX softening fraction is sensitive to deformation parameters. The MDRX softening fraction rapidly increases with the increase of deformation temperature, strain rate, and interpass time. The MDRX softening fraction in the coarse-grain material is lower than that in the fine-grain material. Moreover, the observed microstructures indicate that the initial coarse grains can be effectively refined by MDRX. Based on the experimental results, the kinetics equations are established and validated to describe the MDRX behaviors of the studied superalloy. (orig.)

  20. Shelf Life Prediction for Canned Gudeg using Accelerated Shelf Life Testing (ASLT) Based on Arrhenius Method

    Science.gov (United States)

    Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.

    2017-04-01

    Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.

  1. Epitope prediction methods

    DEFF Research Database (Denmark)

    Karosiene, Edita

    Analysis. The chapter provides detailed explanations on how to use different methods for T cell epitope discovery research, explaining how input should be given as well as how to interpret the output. In the last chapter, I present the results of a bioinformatics analysis of epitopes from the yellow fever...... peptide-MHC interactions. Furthermore, using yellow fever virus epitopes, we demonstrated the power of the %Rank score when compared with the binding affinity score of MHC prediction methods, suggesting that this score should be considered to be used for selecting potential T cell epitopes. In summary...... immune responses. Therefore, it is of great importance to be able to identify peptides that bind to MHC molecules, in order to understand the nature of immune responses and discover T cell epitopes useful for designing new vaccines and immunotherapies. MHC molecules in humans, referred to as human...

  2. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  3. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  4. Why Is There a Glass Ceiling for Threading Based Protein Structure Prediction Methods?

    Science.gov (United States)

    Skolnick, Jeffrey; Zhou, Hongyi

    2017-04-20

    Despite their different implementations, comparison of the best threading approaches to the prediction of evolutionary distant protein structures reveals that they tend to succeed or fail on the same protein targets. This is true despite the fact that the structural template library has good templates for all cases. Thus, a key question is why are certain protein structures threadable while others are not. Comparison with threading results on a set of artificial sequences selected for stability further argues that the failure of threading is due to the nature of the protein structures themselves. Using a new contact map based alignment algorithm, we demonstrate that certain folds are highly degenerate in that they can have very similar coarse grained fractions of native contacts aligned and yet differ significantly from the native structure. For threadable proteins, this is not the case. Thus, contemporary threading approaches appear to have reached a plateau, and new approaches to structure prediction are required.

  5. Application of different Scheimpflug-based lens densitometry methods in phacodynamics prediction

    Directory of Open Access Journals (Sweden)

    Faria-Correia F

    2016-04-01

    Full Text Available Fernando Faria-Correia,1–5 Bernardo T Lopes,5,6 Isaac C Ramos,5,6 Tiago Monteiro,1,2 Nuno Franqueira,1 Renato Ambrósio Jr5–8 1Ophthalmology Department, Hospital de Braga, Braga, Portugal; 2Life and Health Sciences Research Institute (ICVS, School of Health Sciences, University of Minho, Braga, Portugal; 3ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal; 4ICVS/3B’s - PT Government Associate Laboratory, Guimarães, Portugal; 5Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil; 6Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil; 7VisareRio, Rio de Janeiro, Brazil; 8Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo, Brazil Purpose: To evaluate the correlations between preoperative Scheimpflug-based lens densitometry metrics and phacodynamics. Methods: The Lens Opacities Classification System III (LOCS III was used to grade nuclear opalescence (NO, along with different methods of lens densitometry evaluation (absolute scale from 0% to 100%: three-dimensional (3D, linear, and region of interest (ROI modes. Cumulative dissipated energy (CDE and total ultrasound (US time were recorded and correlated with the different methods of cataract grading. Significant correlations were evaluated using Pearson or Spearman correlation coefficients according to data normality. Results: A positive correlation was detected between the NO score and the average density and the maximum density derived from the 3D mode (r=0.624, P<0.001; r=0.619, P<0.001, respectively and the ROI mode (r=0.600, P<0.001; r=0.642, P<0.001, respectively. Regarding the linear mode, only the average density parameter presented a significant relationship with the NO score (r=0.569, P<0.001. The 3D-derived average density and maximum density were positively correlated with CDE (rho =0.682, P<0.001; rho =0.683, P<0.001, respectively and total US time (rho =0.631 and rho =0

  6. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    Science.gov (United States)

    Xie, Weihong; Yu, Yang

    2017-01-01

    Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly. PMID:29124062

  7. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2017-01-01

    Full Text Available Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.

  8. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model.

    Science.gov (United States)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO 2 leaks and associated concentrations from geological CO 2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO 2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO 2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO 2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Riccati-Based Interior Point Method for Efficient Model Predictive Control of SISO Systems

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Johansson, Rolf; Bagterp Jørgensen, John

    2017-01-01

    model parts separate. The controller is designed based on the deterministic model, while the Kalman filter results from the stochastic part. The controller is implemented as a primal-dual interior point (IP) method using Riccati recursion and the computational savings possible for SISO systems...

  10. Improved method for SNR prediction in machine-learning-based test

    NARCIS (Netherlands)

    Sheng, Xiaoqin; Kerkhoff, Hans G.

    2010-01-01

    This paper applies an improved method for testing the signal-to-noise ratio (SNR) of Analogue-to-Digital Converters (ADC). In previous work, a noisy and nonlinear pulse signal is exploited as the input stimulus to obtain the signature results of ADC. By applying a machine-learning-based approach,

  11. Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Institute of Scientific and Technical Information of China (English)

    Cao Jiufa; Wang Tongguang; Long Hui; Ke Shitang; Xu Bofeng

    2015-01-01

    With large scale wind turbines ,the issue of aerodynamic elastic response is even more significant on dy-namic behaviour of the system .Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load .Considering the effect of aerodynamic load ,inertial load and gravity load ,the decoupling dy-namic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach .Finally ,the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling .The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently .Under the influence of the gravitational force ,the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed .The difference in dynamic response be-tween the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of signifi-cance in both wind turbine design and performance calculation .

  12. Pipe break prediction based on evolutionary data-driven methods with brief recorded data

    International Nuclear Information System (INIS)

    Xu Qiang; Chen Qiuwen; Li Weifeng; Ma Jinfeng

    2011-01-01

    Pipe breaks often occur in water distribution networks, imposing great pressure on utility managers to secure stable water supply. However, pipe breaks are hard to detect by the conventional method. It is therefore necessary to develop reliable and robust pipe break models to assess the pipe's probability to fail and then to optimize the pipe break detection scheme. In the absence of deterministic physical models for pipe break, data-driven techniques provide a promising approach to investigate the principles underlying pipe break. In this paper, two data-driven techniques, namely Genetic Programming (GP) and Evolutionary Polynomial Regression (EPR) are applied to develop pipe break models for the water distribution system of Beijing City. The comparison with the recorded pipe break data from 1987 to 2005 showed that the models have great capability to obtain reliable predictions. The models can be used to prioritize pipes for break inspection and then improve detection efficiency.

  13. Logic-based models in systems biology: a predictive and parameter-free network analysis method.

    Science.gov (United States)

    Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago

    2012-11-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.

  14. HuMiTar: A sequence-based method for prediction of human microRNA targets

    Directory of Open Access Journals (Sweden)

    Chen Ke

    2008-12-01

    Full Text Available Abstract Background MicroRNAs (miRs are small noncoding RNAs that bind to complementary/partially complementary sites in the 3' untranslated regions of target genes to regulate protein production of the target transcript and to induce mRNA degradation or mRNA cleavage. The ability to perform accurate, high-throughput identification of physiologically active miR targets would enable functional characterization of individual miRs. Current target prediction methods include traditional approaches that are based on specific base-pairing rules in the miR's seed region and implementation of cross-species conservation of the target site, and machine learning (ML methods that explore patterns that contrast true and false miR-mRNA duplexes. However, in the case of the traditional methods research shows that some seed region matches that are conserved are false positives and that some of the experimentally validated target sites are not conserved. Results We present HuMiTar, a computational method for identifying common targets of miRs, which is based on a scoring function that considers base-pairing for both seed and non-seed positions for human miR-mRNA duplexes. Our design shows that certain non-seed miR nucleotides, such as 14, 18, 13, 11, and 17, are characterized by a strong bias towards formation of Watson-Crick pairing. We contrasted HuMiTar with several representative competing methods on two sets of human miR targets and a set of ten glioblastoma oncogenes. Comparison with the two best performing traditional methods, PicTar and TargetScanS, and a representative ML method that considers the non-seed positions, NBmiRTar, shows that HuMiTar predictions include majority of the predictions of the other three methods. At the same time, the proposed method is also capable of finding more true positive targets as a trade-off for an increased number of predictions. Genome-wide predictions show that the proposed method is characterized by 1.99 signal

  15. Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Jun Bi

    2018-04-01

    Full Text Available Battery electric vehicles (BEVs reduce energy consumption and air pollution as compared with conventional vehicles. However, the limited driving range and potential long charging time of BEVs create new problems. Accurate charging time prediction of BEVs helps drivers determine travel plans and alleviate their range anxiety during trips. This study proposed a combined model for charging time prediction based on regression and time-series methods according to the actual data from BEVs operating in Beijing, China. After data analysis, a regression model was established by considering the charged amount for charging time prediction. Furthermore, a time-series method was adopted to calibrate the regression model, which significantly improved the fitting accuracy of the model. The parameters of the model were determined by using the actual data. Verification results confirmed the accuracy of the model and showed that the model errors were small. The proposed model can accurately depict the charging time characteristics of BEVs in Beijing.

  16. Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland); Nesteruk, Marta [Faculty of Physics, University of Warsaw, Warsaw (Poland); Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich (Switzerland); Brzozowska, Beata [Faculty of Physics, University of Warsaw, Warsaw (Poland); Kukołowicz, Paweł F. [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland)

    2017-04-01

    The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared for 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.

  17. BICEPP: an example-based statistical text mining method for predicting the binary characteristics of drugs

    Directory of Open Access Journals (Sweden)

    Tsafnat Guy

    2011-04-01

    Full Text Available Abstract Background The identification of drug characteristics is a clinically important task, but it requires much expert knowledge and consumes substantial resources. We have developed a statistical text-mining approach (BInary Characteristics Extractor and biomedical Properties Predictor: BICEPP to help experts screen drugs that may have important clinical characteristics of interest. Results BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a document frequency-based measure. Evaluation experiments were performed to validate BICEPP's performance on 484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH and the PharmacoKinetic Interaction Screening (PKIS database. Stratified cross-validations revealed that BICEPP was able to classify drugs into all 20 major therapeutic classes (100% and 157 (of 197 minor drug classes (80% with areas under the receiver operating characteristic curve (AUC > 0.80. Similarly, AUC > 0.80 could be obtained in the classification of 173 (of 238 adverse events (73%, up to 12 (of 15 groups of clinically significant cytochrome P450 enzyme (CYP inducers or inhibitors (80%, and up to 11 (of 14 groups of narrow therapeutic index drugs (79%. Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the most predictive ones for the classification task. Conclusions BICEPP has sufficient classification power to automatically distinguish a wide range of clinical properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large drug databases to identify important characteristics for further evaluation.

  18. A computational method based on the integration of heterogeneous networks for predicting disease-gene associations.

    Directory of Open Access Journals (Sweden)

    Xingli Guo

    Full Text Available The identification of disease-causing genes is a fundamental challenge in human health and of great importance in improving medical care, and provides a better understanding of gene functions. Recent computational approaches based on the interactions among human proteins and disease similarities have shown their power in tackling the issue. In this paper, a novel systematic and global method that integrates two heterogeneous networks for prioritizing candidate disease-causing genes is provided, based on the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein interactions. In this method, the association score function between a query disease and a candidate gene is defined as the weighted sum of all the association scores between similar diseases and neighbouring genes. Moreover, the topological correlation of these two heterogeneous networks can be incorporated into the definition of the score function, and finally an iterative algorithm is designed for this issue. This method was tested with 10-fold cross-validation on all 1,126 diseases that have at least a known causal gene, and it ranked the correct gene as one of the top ten in 622 of all the 1,428 cases, significantly outperforming a state-of-the-art method called PRINCE. The results brought about by this method were applied to study three multi-factorial disorders: breast cancer, Alzheimer disease and diabetes mellitus type 2, and some suggestions of novel causal genes and candidate disease-causing subnetworks were provided for further investigation.

  19. A Hierarchical Method for Transient Stability Prediction of Power Systems Using the Confidence of a SVM-Based Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Yanzhen Zhou

    2016-09-01

    Full Text Available Machine learning techniques have been widely used in transient stability prediction of power systems. When using the post-fault dynamic responses, it is difficult to draw a definite conclusion about how long the duration of response data used should be in order to balance the accuracy and speed. Besides, previous studies have the problem of lacking consideration for the confidence level. To solve these problems, a hierarchical method for transient stability prediction based on the confidence of ensemble classifier using multiple support vector machines (SVMs is proposed. Firstly, multiple datasets are generated by bootstrap sampling, then features are randomly picked up to compress the datasets. Secondly, the confidence indices are defined and multiple SVMs are built based on these generated datasets. By synthesizing the probabilistic outputs of multiple SVMs, the prediction results and confidence of the ensemble classifier will be obtained. Finally, different ensemble classifiers with different response times are built to construct different layers of the proposed hierarchical scheme. The simulation results show that the proposed hierarchical method can balance the accuracy and rapidity of the transient stability prediction. Moreover, the hierarchical method can reduce the misjudgments of unstable instances and cooperate with the time domain simulation to insure the security and stability of power systems.

  20. A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments

    Directory of Open Access Journals (Sweden)

    Vassal Aurélien

    2008-01-01

    Full Text Available Abstract Background The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM patients. Results After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM. Conclusion This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with

  1. Road Short-Term Travel Time Prediction Method Based on Flow Spatial Distribution and the Relations

    Directory of Open Access Journals (Sweden)

    Mingjun Deng

    2016-01-01

    Full Text Available There are many short-term road travel time forecasting studies based on time series, but indeed, road travel time not only relies on the historical travel time series, but also depends on the road and its adjacent sections history flow. However, few studies have considered that. This paper is based on the correlation of flow spatial distribution and the road travel time series, applying nearest neighbor and nonparametric regression method to build a forecasting model. In aspect of spatial nearest neighbor search, three different space distances are defined. In addition, two forecasting functions are introduced: one combines the forecasting value by mean weight and the other uses the reciprocal of nearest neighbors distance as combined weight. Three different distances are applied in nearest neighbor search, which apply to the two forecasting functions. For travel time series, the nearest neighbor and nonparametric regression are applied too. Then minimizing forecast error variance is utilized as an objective to establish the combination model. The empirical results show that the combination model can improve the forecast performance obviously. Besides, the experimental results of the evaluation for the computational complexity show that the proposed method can satisfy the real-time requirement.

  2. Empirical Flutter Prediction Method.

    Science.gov (United States)

    1988-03-05

    been used in this way to discover species or subspecies of animals, and to discover different types of voter or comsumer requiring different persuasions...respect to behavior or performance or response variables. Once this were done, corresponding clusters might be sought among descriptive or predictive or...jump in a response. The first sort of usage does not apply to the flutter prediction problem. Here the types of behavior are the different kinds of

  3. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-02-01

    Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  4. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-02-06

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  5. Rainfall prediction with backpropagation method

    Science.gov (United States)

    Wahyuni, E. G.; Fauzan, L. M. F.; Abriyani, F.; Muchlis, N. F.; Ulfa, M.

    2018-03-01

    Rainfall is an important factor in many fields, such as aviation and agriculture. Although it has been assisted by technology but the accuracy can not reach 100% and there is still the possibility of error. Though current rainfall prediction information is needed in various fields, such as agriculture and aviation fields. In the field of agriculture, to obtain abundant and quality yields, farmers are very dependent on weather conditions, especially rainfall. Rainfall is one of the factors that affect the safety of aircraft. To overcome the problems above, then it’s required a system that can accurately predict rainfall. In predicting rainfall, artificial neural network modeling is applied in this research. The method used in modeling this artificial neural network is backpropagation method. Backpropagation methods can result in better performance in repetitive exercises. This means that the weight of the ANN interconnection can approach the weight it should be. Another advantage of this method is the ability in the learning process adaptively and multilayer owned on this method there is a process of weight changes so as to minimize error (fault tolerance). Therefore, this method can guarantee good system resilience and consistently work well. The network is designed using 4 input variables, namely air temperature, air humidity, wind speed, and sunshine duration and 3 output variables ie low rainfall, medium rainfall, and high rainfall. Based on the research that has been done, the network can be used properly, as evidenced by the results of the prediction of the system precipitation is the same as the results of manual calculations.

  6. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    Science.gov (United States)

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  7. PREDICTION OF DISTURBANCES IN VEHICLE CONTROL SYSTEMS BASED ON THE METHODS OF COMPUTATIONAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    L. Lyubchik

    2009-01-01

    Full Text Available The problem of disturbances forecasting in vehicles control systems is considered in the given article. On the basis of nuclear campaign recurrence there have been obtained algorithms of identification and prediction of disturbances time series.

  8. Simplified method to predict mutual interactions of human transcription factors based on their primary structure

    KAUST Repository

    Schmeier, Sebastian; Jankovic, Boris R.; Bajic, Vladimir B.

    2011-01-01

    ). Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. Conclusions: The performance of our predictor compares well to those of much more complex approaches for predicting

  9. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    Science.gov (United States)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Prediction method abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This conference was held December 4--8, 1994 in Asilomar, California. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information concerning the prediction of protein structure. Attention if focused on the following: comparative modeling; sequence to fold assignment; and ab initio folding.

  11. A New Navigation Satellite Clock Bias Prediction Method Based on Modified Clock-bias Quadratic Polynomial Model

    Science.gov (United States)

    Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.

    2016-01-01

    In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.

  12. Transcription-based prediction of response to IFNbeta using supervised computational methods.

    Directory of Open Access Journals (Sweden)

    Sergio E Baranzini

    2005-01-01

    Full Text Available Changes in cellular functions in response to drug therapy are mediated by specific transcriptional profiles resulting from the induction or repression in the activity of a number of genes, thereby modifying the preexisting gene activity pattern of the drug-targeted cell(s. Recombinant human interferon beta (rIFNbeta is routinely used to control exacerbations in multiple sclerosis patients with only partial success, mainly because of adverse effects and a relatively large proportion of nonresponders. We applied advanced data-mining and predictive modeling tools to a longitudinal 70-gene expression dataset generated by kinetic reverse-transcription PCR from 52 multiple sclerosis patients treated with rIFNbeta to discover higher-order predictive patterns associated with treatment outcome and to define the molecular footprint that rIFNbeta engraves on peripheral blood mononuclear cells. We identified nine sets of gene triplets whose expression, when tested before the initiation of therapy, can predict the response to interferon beta with up to 86% accuracy. In addition, time-series analysis revealed potential key players involved in a good or poor response to interferon beta. Statistical testing of a random outcome class and tolerance to noise was carried out to establish the robustness of the predictive models. Large-scale kinetic reverse-transcription PCR, coupled with advanced data-mining efforts, can effectively reveal preexisting and drug-induced gene expression signatures associated with therapeutic effects.

  13. Earthquake prediction by Kina Method

    International Nuclear Information System (INIS)

    Kianoosh, H.; Keypour, H.; Naderzadeh, A.; Motlagh, H.F.

    2005-01-01

    Earthquake prediction has been one of the earliest desires of the man. Scientists have worked hard to predict earthquakes for a long time. The results of these efforts can generally be divided into two methods of prediction: 1) Statistical Method, and 2) Empirical Method. In the first method, earthquakes are predicted using statistics and probabilities, while the second method utilizes variety of precursors for earthquake prediction. The latter method is time consuming and more costly. However, the result of neither method has fully satisfied the man up to now. In this paper a new method entitled 'Kiana Method' is introduced for earthquake prediction. This method offers more accurate results yet lower cost comparing to other conventional methods. In Kiana method the electrical and magnetic precursors are measured in an area. Then, the time and the magnitude of an earthquake in the future is calculated using electrical, and in particular, electrical capacitors formulas. In this method, by daily measurement of electrical resistance in an area we make clear that the area is capable of earthquake occurrence in the future or not. If the result shows a positive sign, then the occurrence time and the magnitude can be estimated by the measured quantities. This paper explains the procedure and details of this prediction method. (authors)

  14. A novel method for predicting activity of cis-regulatory modules, based on a diverse training set.

    Science.gov (United States)

    Yang, Wei; Sinha, Saurabh

    2017-01-01

    With the rapid emergence of technologies for locating cis-regulatory modules (CRMs) genome-wide, the next pressing challenge is to assign precise functions to each CRM, i.e. to determine the spatiotemporal domains or cell-types where it drives expression. A popular approach to this task is to model the typical k-mer composition of a set of CRMs known to drive a common expression pattern, and assign that pattern to other CRMs exhibiting a similar k-mer composition. This approach does not rely on prior knowledge of transcription factors relevant to the CRM or their binding motifs, and is thus more widely applicable than motif-based methods for predicting CRM activity, but is also prone to false positive predictions. We present a novel strategy to improve the above-mentioned approach: to predict if a CRM drives a specific gene expression pattern, assess not only how similar the CRM is to other CRMs with similar activity but also to CRMs with distinct activities. We use a state-of-the-art statistical method to quantify a CRM's sequence similarity to many different training sets of CRMs, and employ a classification algorithm to integrate these similarity scores into a single prediction of the CRM's activity. This strategy is shown to significantly improve CRM activity prediction over current approaches. Our implementation of the new method, called IMMBoost, is freely available as source code, at https://github.com/weiyangedward/IMMBoost CONTACT: sinhas@illinois.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    Science.gov (United States)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  16. FaaPred: a SVM-based prediction method for fungal adhesins and adhesin-like proteins.

    Directory of Open Access Journals (Sweden)

    Jayashree Ramana

    Full Text Available Adhesion constitutes one of the initial stages of infection in microbial diseases and is mediated by adhesins. Hence, identification and comprehensive knowledge of adhesins and adhesin-like proteins is essential to understand adhesin mediated pathogenesis and how to exploit its therapeutic potential. However, the knowledge about fungal adhesins is rudimentary compared to that of bacterial adhesins. In addition to host cell attachment and mating, the fungal adhesins play a significant role in homotypic and xenotypic aggregation, foraging and biofilm formation. Experimental identification of fungal adhesins is labor- as well as time-intensive. In this work, we present a Support Vector Machine (SVM based method for the prediction of fungal adhesins and adhesin-like proteins. The SVM models were trained with different compositional features, namely, amino acid, dipeptide, multiplet fractions, charge and hydrophobic compositions, as well as PSI-BLAST derived PSSM matrices. The best classifiers are based on compositional properties as well as PSSM and yield an overall accuracy of 86%. The prediction method based on best classifiers is freely accessible as a world wide web based server at http://bioinfo.icgeb.res.in/faap. This work will aid rapid and rational identification of fungal adhesins, expedite the pace of experimental characterization of novel fungal adhesins and enhance our knowledge about role of adhesins in fungal infections.

  17. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    Science.gov (United States)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  18. Predictive Methods of Pople

    Indian Academy of Sciences (India)

    Chemistry for their pioneering contri butions to the development of computational methods in quantum chemistry and density functional theory .... program of Pop Ie for ab-initio electronic structure calculation of molecules. This ab-initio MO ...

  19. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action

    International Nuclear Information System (INIS)

    De Abrew, K. Nadira; Overmann, Gary J.; Adams, Rachel L.; Tiesman, Jay P.; Dunavent, John; Shan, Yuqing K.; Carr, Gregory J.; Daston, George P.; Naciff, Jorge M.

    2015-01-01

    High-content data have the potential to inform mechanism of action for toxicants. However, most data to support this notion have been generated in vivo. Because many cell lines and primary cells maintain a differentiated cell phenotype, it is possible that cells grown in culture may also be useful in predictive toxicology via high-content approaches such as whole-genome microarray. We evaluated global changes in gene expression in primary rat hepatocytes exposed to two concentrations of ten hepatotoxicants: acetaminophen (APAP), β-naphthoflavone (BNF), chlorpromazine (CPZ), clofibrate (CLO), bis(2-ethylhexyl)phthalate (DEHP), diisononyl phthalate (DINP), methapyrilene (MP), valproic acid (VPA), phenobarbital (PB) and WY14643 at two separate time points. These compounds were selected to cover a range of mechanisms of toxicity, with some overlap in expected mechanism to address the question of how predictive gene expression analysis is, for a given mode of action. Gene expression microarray analysis was performed on cells after 24 h and 48 h of exposure to each chemical using Affymetrix microarrays. Cluster analysis suggests that the primary hepatocyte model was capable of responding to these hepatotoxicants, with changes in gene expression that appear to be mode of action-specific. Among the different methods used for analysis of the data, a combination method that used pathways (MOAs) to filter total probesets provided the most robust analysis. The analysis resulted in the phthalates clustering closely together, with the two other peroxisome proliferators, CLO and WY14643, eliciting similar responses at the whole-genome and pathway levels. The Cyp inducers PB, MP, CPZ and BNF also clustered together. VPA and APAP had profiles that were unique. A similar analysis was performed on externally available (TG-GATES) in vivo data for 6 of the chemicals (APAP, CLO, CPZ, MP, MP and WY14643) and compared to the in vitro result. These results indicate that transcription

  20. Ordering decision-making methods on spare parts for a new aircraft fleet based on a two-sample prediction

    International Nuclear Information System (INIS)

    Yongquan, Sun; Xi, Chen; He, Ren; Yingchao, Jin; Quanwu, Liu

    2016-01-01

    Ordering decision-making on spare parts is crucial in maximizing aircraft utilization and minimizing total operating cost. Extensive researches on spare parts inventory management and optimal allocation could be found based on the amount of historical operation data or condition-monitoring data. However, it is challengeable to make an ordering decision on spare parts under the case of establishment of a fleet by introducing new aircraft with little historical data. In this paper, spare parts supporting policy and ordering decision-making policy for new aircraft fleet are analyzed firstly. Then two-sample predictions for a Weibull distribution and a Weibull process are incorporated into forecast of the first failure time and failure number during certain time period using Bayesian and classical method respectively, according to which the ordering time and ordering quantity for spare parts are identified. Finally, a case study is presented to illustrate the methods of identifying the ordering time and ordering number of engine-driven pumps through forecasting the failure time and failure number, followed by a discussion on the impact of various fleet sizes on prediction results. This method has the potential to decide the ordering time and quantity of spare parts when a new aircraft fleet is established. - Highlights: • A modeling framework of ordering spare parts for a new fleet is proposed. • Models for ordering time and number are established based on two-sample prediction. • The computation of future failure time is simplified using Newtonian binomial law. • Comparison of the first failure time PDFs is used to identify process parameters. • Identification methods for spare parts are validated by Engine Driven Pump case study.

  1. Automatic Offline Formulation of Robust Model Predictive Control Based on Linear Matrix Inequalities Method

    Directory of Open Access Journals (Sweden)

    Longge Zhang

    2013-01-01

    Full Text Available Two automatic robust model predictive control strategies are presented for uncertain polytopic linear plants with input and output constraints. A sequence of nested geometric proportion asymptotically stable ellipsoids and controllers is constructed offline first. Then the feedback controllers are automatically selected with the receding horizon online in the first strategy. Finally, a modified automatic offline robust MPC approach is constructed to improve the closed system's performance. The new proposed strategies not only reduce the conservatism but also decrease the online computation. Numerical examples are given to illustrate their effectiveness.

  2. Experimental validation of alternate integral-formulation method for predicting acoustic radiation based on particle velocity measurements.

    Science.gov (United States)

    Ni, Zhi; Wu, Sean F

    2010-09-01

    This paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations. To gain some insight into practical applications of AIM, laser Doppler anemometer (LDA) and double hotwire sensor (DHS) are used as measurement devices to collect the particle velocities in the air. Measurement limitations of using LDA and DHS are discussed.

  3. COMPUTER-BASED PREDICTION OF TOXICITY USING THE ELECTRON-CONFORMATIONAL METHOD. APPLICATION TO FRAGRANCE ALLERGENS AND OTHER ENVIRONMENTAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Natalia N. Gorinchoy

    2012-06-01

    Full Text Available The electron-conformational (EC method is employed for the toxicophore (Tph identification and quantitative prediction of toxicity using the training set of 24 compounds that are considered as fragrance allergens. The values of a=LD50 in oral exposure of rats were chosen as a measure of toxicity. EC parameters are evaluated on the base of conformational analysis and ab initio electronic structure calculations (including solvent influence. The Tph consists of four sites which in this series of compounds are represented by three carbon and one oxygen atoms, but may be any other atoms that have the same electronic and geometric features within the tolerance limits. The regression model taking into consideration the Tph flexibility, anti-Tph shielding, and influence of out-of-Tph functional groups predicts well the experimental values of toxicity (R2 = 0.93 with a reasonable leaveone- out cross-validation.

  4. A Bipartite Network-based Method for Prediction of Long Non-coding RNA–protein Interactions

    Directory of Open Access Journals (Sweden)

    Mengqu Ge

    2016-02-01

    Full Text Available As one large class of non-coding RNAs (ncRNAs, long ncRNAs (lncRNAs have gained considerable attention in recent years. Mutations and dysfunction of lncRNAs have been implicated in human disorders. Many lncRNAs exert their effects through interactions with the corresponding RNA-binding proteins. Several computational approaches have been developed, but only few are able to perform the prediction of these interactions from a network-based point of view. Here, we introduce a computational method named lncRNA–protein bipartite network inference (LPBNI. LPBNI aims to identify potential lncRNA–interacting proteins, by making full use of the known lncRNA–protein interactions. Leave-one-out cross validation (LOOCV test shows that LPBNI significantly outperforms other network-based methods, including random walk (RWR and protein-based collaborative filtering (ProCF. Furthermore, a case study was performed to demonstrate the performance of LPBNI using real data in predicting potential lncRNA–interacting proteins.

  5. ANFIS Based Time Series Prediction Method of Bank Cash Flow Optimized by Adaptive Population Activity PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-06-01

    Full Text Available In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO algorithm combined with the least squares method (LMS to optimize the adaptive network-based fuzzy inference system (ANFIS model parameters. Through the introduction of metric function of population diversity to ensure the diversity of population and adaptive changes in inertia weight and learning factors, the optimization ability of the particle swarm optimization (PSO algorithm is improved, which avoids the premature convergence problem of the PSO algorithm. The simulation comparison experiments are carried out with BP-LMS algorithm and standard PSO-LMS by adopting real commercial banks’ cash flow data to verify the effectiveness of the proposed time series prediction of bank cash flow based on improved PSO-ANFIS optimization method. Simulation results show that the optimization speed is faster and the prediction accuracy is higher.

  6. Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method

    International Nuclear Information System (INIS)

    Liu Huanxiang; Yao Xiaojun; Liu Mancang; Hu Zhide; Fan Botao

    2006-01-01

    Based on calculated molecular descriptors from the solutes' structure alone, the micelle-water partition coefficients of 103 solutes in micellar electrokinetic chromatography (MEKC) were predicted using the heuristic method (HM). At the same time, in order to show the influence of different molecular descriptors on the micelle-water partition of solute and to well understand the retention mechanism in MEKC, HM was used to build several multivariable linear models using different numbers of molecular descriptors. The best 6-parameter model gave the following results: the square of correlation coefficient R 2 was 0.958 and the mean relative error was 3.98%, which proved that the predictive values were in good agreement with the experimental results. From the built model, it can be concluded that the hydrophobic, H-bond, polar interactions of solutes with the micellar and aqueous phases are the main factors that determine their partitioning behavior. In addition, this paper provided a simple, fast and effective method for predicting the retention of the solutes in MEKC from their structures and gave some insight into structural features related to the retention of the solutes

  7. A new method for fatigue life prediction based on the Thick Level Set approach

    NARCIS (Netherlands)

    Voormeeren, L.O.; van der Meer, F.P.; Maljaars, J.; Sluys, L.J.

    2017-01-01

    The last decade has seen a growing interest in cohesive zone models for fatigue applications. These cohesive zone models often suffer from a lack of generality and applying them typically requires calibrating a large number of model-specific parameters. To improve on these issues a new method has

  8. A new method for fatigue life prediction based on the Thick Level set approach

    NARCIS (Netherlands)

    Voormeeren, L.O.; Meer, F.P. van der; Maljaars, J.; Sluys, L.J.

    2017-01-01

    The last decade has seen a growing interest in cohesive zone models for fatigue applications. These cohesive zone models often suffer from a lack of generality and applying them typically requires calibrating a large number of model-specific parameters. To improve on these issues a new method has

  9. A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy

    NARCIS (Netherlands)

    Capiau, S.; Wilk, L.S.; Aalders, M.C.G.; Stove, C.P.

    2016-01-01

    Dried blood spot (DBS) sampling is recognized as a valuable alternative sampling strategy both in research and in clinical routine. Although many advantages are associated with DBS sampling, its more widespread use is hampered by several issues, of which the hematocrit effect on DBS-based

  10. A Review of Element-Based Galerkin Methods for Numerical Weather Prediction

    Science.gov (United States)

    2015-04-01

    weighted residuals because a linear system of algebraic equations in the unknowns q̂ is built by imposing that∫ Ω wRdΩ = 0, (30) where R = L−S is the (non...space; this spectral transform is evaluated using a combination of Fourier and 10 Simone Marras1 et al. Legendre transforms. We perform an elementary ...For the first algebraic system, the GMRES method with a simple diagonal preconditioning is efficient in most of the cases, and few iterations are

  11. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  12. Machine learning methods for metabolic pathway prediction

    Science.gov (United States)

    2010-01-01

    Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations. PMID:20064214

  13. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    International Nuclear Information System (INIS)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-01-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of −40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C −1 . ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of −40 to 60 °C. (paper)

  14. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis.

    Science.gov (United States)

    Huang, Yan Xin; Bao, Yong Li; Guo, Shu Yan; Wang, Yan; Zhou, Chun Guang; Li, Yu Xin

    2008-12-16

    The prediction of conformational B-cell epitopes is one of the most important goals in immunoinformatics. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues of interaction between an antigen and an antibody. Consequently, this area of research has received considerable attention from immunologists, structural biologists and computational biologists. Phage-displayed random peptide libraries are powerful tools used to obtain mimotopes that are selected by binding to a given monoclonal antibody (mAb) in a similar way to the native epitope. These mimotopes can be considered as functional epitope mimics. Mimotope analysis based methods can predict not only linear but also conformational epitopes and this has been the focus of much research in recent years. Though some algorithms based on mimotope analysis have been proposed, the precise localization of the interaction site mimicked by the mimotopes is still a challenging task. In this study, we propose a method for B-cell epitope prediction based on mimotope analysis called Pep-3D-Search. Given the 3D structure of an antigen and a set of mimotopes (or a motif sequence derived from the set of mimotopes), Pep-3D-Search can be used in two modes: mimotope or motif. To evaluate the performance of Pep-3D-Search to predict epitopes from a set of mimotopes, 10 epitopes defined by crystallography were compared with the predicted results from a Pep-3D-Search: the average Matthews correlation coefficient (MCC), sensitivity and precision were 0.1758, 0.3642 and 0.6948. Compared with other available prediction algorithms, Pep-3D-Search showed comparable MCC, specificity and precision, and could provide novel, rational results. To verify the capability of Pep-3D-Search to align a motif sequence to a 3D structure for predicting epitopes, 6 test cases were used. The predictive performance of Pep-3D-Search was demonstrated to be superior to that of other similar programs

  15. Prediction based on mean subset

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Brown, P. J.; Madsen, Henrik

    2002-01-01

    , it is found that the proposed mean subset method has superior prediction performance than prediction based on the best subset method, and in some settings also better than the ridge regression and lasso methods. The conclusions drawn from the Monte Carlo study is corroborated in an example in which prediction......Shrinkage methods have traditionally been applied in prediction problems. In this article we develop a shrinkage method (mean subset) that forms an average of regression coefficients from individual subsets of the explanatory variables. A Bayesian approach is taken to derive an expression of how...... the coefficient vectors from each subset should be weighted. It is not computationally feasible to calculate the mean subset coefficient vector for larger problems, and thus we suggest an algorithm to find an approximation to the mean subset coefficient vector. In a comprehensive Monte Carlo simulation study...

  16. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.

    Science.gov (United States)

    Zhang, Shanxin; Zhou, Zhiping; Chen, Xinmeng; Hu, Yong; Yang, Lindong

    2017-08-07

    DNase I hypersensitive sites (DHSs) are accessible chromatin regions hypersensitive to cleavages by DNase I endonucleases. DHSs are indicative of cis-regulatory DNA elements (CREs), all of which play important roles in global gene expression regulation. It is helpful for discovering CREs by recognition of DHSs in genome. To accelerate the investigation, it is an important complement to develop cost-effective computational methods to identify DHSs. However, there is a lack of tools used for identifying DHSs in plant genome. Here we presented pDHS-SVM, a computational predictor to identify plant DHSs. To integrate the global sequence-order information and local DNA properties, reverse complement kmer and dinucleotide-based auto covariance of DNA sequences were applied to construct the feature space. In this work, fifteen physical-chemical properties of dinucleotides were used and Support Vector Machine (SVM) was employed. To further improve the performance of the predictor and extract an optimized subset of nucleotide physical-chemical properties positive for the DHSs, a heuristic nucleotide physical-chemical property selection algorithm was introduced. With the optimized subset of properties, experimental results of Arabidopsis thaliana and rice (Oryza sativa) showed that pDHS-SVM could achieve accuracies up to 87.00%, and 85.79%, respectively. The results indicated the effectiveness of proposed method for predicting DHSs. Furthermore, pDHS-SVM could provide a helpful complement for predicting CREs in plant genome. Our implementation of the novel proposed method pDHS-SVM is freely available as source code, at https://github.com/shanxinzhang/pDHS-SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm.

    Science.gov (United States)

    Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian

    2016-01-01

    With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.

  18. Study on Air-cooled Self-humidifying PEMFC Control Method Based on Segmented Predict Negative Feedback Control

    International Nuclear Information System (INIS)

    Zhiyu, You; Tao, Xu; Zhixiang, Liu; Yun, Peng; Weirong, Cheng

    2014-01-01

    In order to obtain the optimal output performance of the air-cooled self-humidifying proton exchange membrane fuel cell (PEMFC), the operating temperature, the air flow, purge interval and some other parameters must be controlled strictly. As a key factor, the operating temperature mainly determines the optimal output performance of the fuel cell. However, some intrinsic issues such as long adjusting time, over-shoot still exist inevitably for the traditional PID temperature-controlled method in circumstances of the load variation. Consequently, output performance of PEMFC decreases because the operating temperature of the fuel cell fails to reach, and the corresponding lifetime of PEMFC is also reduced. In this study, a segmented predict negative feedback control method, based on the advance proportional control one, is proposed and verified by experiments to overcome the shortcomings of PID temperature control. The results demonstrate that the optimal output performance of PEMFC can be realized by utilizing the proposed method for temperature control due to its excellent properties, simple controlling and small over-shoot

  19. Nonparametric method for genomics-based prediction of performance of quantitative traits involving epistasis in plant breeding.

    Directory of Open Access Journals (Sweden)

    Xiaochun Sun

    Full Text Available Genomic selection (GS procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA and reproducing kernel Hilbert spaces (RKHS regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression.

  20. Nonparametric method for genomics-based prediction of performance of quantitative traits involving epistasis in plant breeding.

    Science.gov (United States)

    Sun, Xiaochun; Ma, Ping; Mumm, Rita H

    2012-01-01

    Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression.

  1. Comparison of classification methods for voxel-based prediction of acute ischemic stroke outcome following intra-arterial intervention

    Science.gov (United States)

    Winder, Anthony J.; Siemonsen, Susanne; Flottmann, Fabian; Fiehler, Jens; Forkert, Nils D.

    2017-03-01

    Voxel-based tissue outcome prediction in acute ischemic stroke patients is highly relevant for both clinical routine and research. Previous research has shown that features extracted from baseline multi-parametric MRI datasets have a high predictive value and can be used for the training of classifiers, which can generate tissue outcome predictions for both intravenous and conservative treatments. However, with the recent advent and popularization of intra-arterial thrombectomy treatment, novel research specifically addressing the utility of predictive classi- fiers for thrombectomy intervention is necessary for a holistic understanding of current stroke treatment options. The aim of this work was to develop three clinically viable tissue outcome prediction models using approximate nearest-neighbor, generalized linear model, and random decision forest approaches and to evaluate the accuracy of predicting tissue outcome after intra-arterial treatment. Therefore, the three machine learning models were trained, evaluated, and compared using datasets of 42 acute ischemic stroke patients treated with intra-arterial thrombectomy. Classifier training utilized eight voxel-based features extracted from baseline MRI datasets and five global features. Evaluation of classifier-based predictions was performed via comparison to the known tissue outcome, which was determined in follow-up imaging, using the Dice coefficient and leave-on-patient-out cross validation. The random decision forest prediction model led to the best tissue outcome predictions with a mean Dice coefficient of 0.37. The approximate nearest-neighbor and generalized linear model performed equally suboptimally with average Dice coefficients of 0.28 and 0.27 respectively, suggesting that both non-linearity and machine learning are desirable properties of a classifier well-suited to the intra-arterial tissue outcome prediction problem.

  2. A consistency-based feature selection method allied with linear SVMs for HIV-1 protease cleavage site prediction.

    Directory of Open Access Journals (Sweden)

    Orkun Oztürk

    Full Text Available BACKGROUND: Predicting type-1 Human Immunodeficiency Virus (HIV-1 protease cleavage site in protein molecules and determining its specificity is an important task which has attracted considerable attention in the research community. Achievements in this area are expected to result in effective drug design (especially for HIV-1 protease inhibitors against this life-threatening virus. However, some drawbacks (like the shortage of the available training data and the high dimensionality of the feature space turn this task into a difficult classification problem. Thus, various machine learning techniques, and specifically several classification methods have been proposed in order to increase the accuracy of the classification model. In addition, for several classification problems, which are characterized by having few samples and many features, selecting the most relevant features is a major factor for increasing classification accuracy. RESULTS: We propose for HIV-1 data a consistency-based feature selection approach in conjunction with recursive feature elimination of support vector machines (SVMs. We used various classifiers for evaluating the results obtained from the feature selection process. We further demonstrated the effectiveness of our proposed method by comparing it with a state-of-the-art feature selection method applied on HIV-1 data, and we evaluated the reported results based on attributes which have been selected from different combinations. CONCLUSION: Applying feature selection on training data before realizing the classification task seems to be a reasonable data-mining process when working with types of data similar to HIV-1. On HIV-1 data, some feature selection or extraction operations in conjunction with different classifiers have been tested and noteworthy outcomes have been reported. These facts motivate for the work presented in this paper. SOFTWARE AVAILABILITY: The software is available at http

  3. Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems

    International Nuclear Information System (INIS)

    Traore, M.; Chammas, A.; Duviella, E.

    2015-01-01

    In this paper, we are concerned by the improvement of the safety, availability and reliability of dynamical systems’ components subjected to slow degradations (slow drifts). We propose an architecture for efficient Predictive Maintenance (PM) according to the real time estimate of the future state of the components. The architecture is built on supervision and prognosis tools. The prognosis method is based on an appropriated supervision technique that consists in drift tracking of the dynamical systems using AUDyC (AUto-adaptive and Dynamical Clustering), that is an auto-adaptive dynamical classifier. Thus, due to the complexity and the dynamical of the considered systems, the Failure Mode Effect and Criticity Analysis (FMECA) is used to identify the key components of the systems. A component is defined as an element of the system that can be impacted by only one failure. A failure of a key component causes a long downtime of the system. From the FMECA, a Fault Tree Analysis (FTA) of the system are built to determine the propagation laws of a failure on the system by using a deductive method. The proposed architecture is implemented for the PM of a thermoregulator. The application on this real system highlights the interests and the performances of the proposed architecture

  4. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Directory of Open Access Journals (Sweden)

    Pontil Massimiliano

    2009-10-01

    Full Text Available Abstract Background Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (ΔΔG measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots" at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. Results We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which ΔΔG ≥ 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. Conclusion We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been

  5. Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method

    Energy Technology Data Exchange (ETDEWEB)

    Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.; Liebsch, Norbert J.; Paganetti, Harald, E-mail: hpaganetti@mgh.harvard.edu

    2017-04-01

    Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-target in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment

  6. Prediction of Student's Mood during an Online Test Using Formula-based and Neural Network-based Method

    Science.gov (United States)

    Moridis, Christos N.; Economides, Anastasios A.

    2009-01-01

    Building computerized mechanisms that will accurately, immediately and continually recognize a learner's affective state and activate an appropriate response based on integrated pedagogical models is becoming one of the main aims of artificial intelligence in education. The goal of this paper is to demonstrate how the various kinds of evidence…

  7. A Riccati Based Homogeneous and Self-Dual Interior-Point Method for Linear Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Edlund, Kristian

    2013-01-01

    In this paper, we develop an efficient interior-point method (IPM) for the linear programs arising in economic model predictive control of linear systems. The novelty of our algorithm is that it combines a homogeneous and self-dual model, and a specialized Riccati iteration procedure. We test...

  8. Analytical solutions for prediction of the ignition time of wood particles based on a time and space integral method

    NARCIS (Netherlands)

    Haseli, Y.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    The main idea of this paper is to establish a simple approach for prediction of the ignition time of a wood particle assuming that the thermo-physical properties remain constant and ignition takes place at a characteristic ignition temperature. Using a time and space integral method, explicit

  9. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance.

    Science.gov (United States)

    Peng, Di; Saravia, Florencia; Abbt-Braun, Gudrun; Horn, Harald

    2016-01-01

    Trihalomethanes (THM) are the most typical disinfection by-products (DBPs) found in public swimming pool water. DBPs are produced when organic and inorganic matter in water reacts with chemical disinfectants. The irregular contribution of substances from pool visitors and long contact time with disinfectant make the forecast of THM in pool water a challenge. In this work occurrence of THM in a public indoor swimming pool was investigated and correlated with the dissolved organic carbon (DOC). Daily sampling of pool water for 26 days showed a positive correlation between DOC and THM with a time delay of about two days, while THM and DOC didn't directly correlate with the number of visitors. Based on the results and mass-balance in the pool water, a simple simulation model for estimating THM concentration in indoor swimming pool water was proposed. Formation of THM from DOC, volatilization into air and elimination by pool water treatment were included in the simulation. Formation ratio of THM gained from laboratory analysis using native pool water and information from field study in an indoor swimming pool reduced the uncertainty of the simulation. The simulation was validated by measurements in the swimming pool for 50 days. The simulated results were in good compliance with measured results. This work provides a useful and simple method for predicting THM concentration and its accumulation trend for long term in indoor swimming pool water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. High temperature strength data-base of SUS304 steel and a study on life prediction method under ceep-fatigue interaction

    International Nuclear Information System (INIS)

    Matsubara, Masaaki; Nitta, Akito; Ogata, Takashi; Kuwabara, Kazuo

    1985-01-01

    As a part of ''Study for practical use of Tank Type FBR'', ''Practical use of inelastic analysis method to FBR structural design'' is carried out as a cooperative study for three years from 1984. In this cooperative study, to establish the life prediction method under creep-fatigue interaction is one of the most important theme. To attain this purpose, many different type tests are planned and then conducted. By the way, to use these many data rapidly and effectively, it is necessary to make a data base. So in this work, we developed the simple data base of high temperature strength. And the data of SUS304 obtained at this place to this day are inputted into this data base. Next, we investigated about five life prediction methods under creep-fatigue interaction, Frequency Modified Method, Ostergren Method, Strain Range Partitioning Method, Damage Rate Approach and Strain Energy Parameter Method. As a result, Strain Range Partitioning Method can predict the lives within Factor of 2. In the other four methods, it is supported that material constants in the prediction formula are dependent on temperature. (author)

  11. Ensemble method for dengue prediction.

    Science.gov (United States)

    Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan

    2018-01-01

    In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  12. Ensemble method for dengue prediction.

    Directory of Open Access Journals (Sweden)

    Anna L Buczak

    Full Text Available In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico during four dengue seasons: 1 peak height (i.e., maximum weekly number of cases during a transmission season; 2 peak week (i.e., week in which the maximum weekly number of cases occurred; and 3 total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date.Our approach used ensemble models created by combining three disparate types of component models: 1 two-dimensional Method of Analogues models incorporating both dengue and climate data; 2 additive seasonal Holt-Winters models with and without wavelet smoothing; and 3 simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations.Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week.The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  13. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    Science.gov (United States)

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  14. Development of Reliability Based Life Prediction Methods for Thermal and Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin

    2001-01-01

    Literature survey related to the EBC/TBC (environmental barrier coating/thermal barrier coating) fife models, failure mechanisms in EBC/TBC and the initial work plan for the proposed EBC/TBC life prediction methods development was developed as well as the finite element model for the thermal/stress analysis of the GRC-developed EBC system was prepared. Technical report for these activities is given in the subsequent sections.

  15. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0.

    Science.gov (United States)

    Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke

    2015-03-01

    Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. http://kiharalab.org/patchsurfer2.0/ CONTACT: dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Investigation into Methods for Predicting Connection Temperatures

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2009-01-01

    Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results. 

  17. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    “Recent Results on Glucose–Insulin Predictions by Means of a State Observer for Time-Delay Systems” by Pasquale Palumbo et al. introduces a prediction model which in real time predicts the insulin concentration in blood which in turn is used in a control system. The method is tested in simulation...... EEG signals to predict upcoming hypoglycemic situations in real-time by employing artificial neural networks. The results of a 30-day long clinical study with the implanted device and the developed algorithm are presented. The chapter “Meta-Learning Based Blood Glucose Predictor for Diabetic......, but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two...

  18. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States); Monaco, Stephen; Schatschneider, Bohdan [The Pennsylvania State University, The Eberly Campus, 2201 University Dr, Lemont Furnace, Pennsylvania 15456 (United States)

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  19. SU-D-BRB-01: A Comparison of Learning Methods for Knowledge Based Dose Prediction for Coplanar and Non-Coplanar Liver Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A; Ruan, D; Woods, K; Yu, V; Nguyen, D; Sheng, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: The predictive power of knowledge based planning (KBP) has considerable potential in the development of automated treatment planning. Here, we examine the predictive capabilities and accuracy of previously reported KBP methods, as well as an artificial neural networks (ANN) method. Furthermore, we compare the predictive accuracy of these methods on coplanar volumetric-modulated arc therapy (VMAT) and non-coplanar 4π radiotherapy. Methods: 30 liver SBRT patients previously treated using coplanar VMAT were selected for this study. The patients were re-planned using 4π radiotherapy, which involves 20 optimally selected non-coplanar IMRT fields. ANNs were used to incorporate enhanced geometric information including liver and PTV size, prescription dose, patient girth, and proximity to beams. The performance of ANN was compared to three methods from statistical voxel dose learning (SVDL), wherein the doses of voxels sharing the same distance to the PTV are approximated by either taking the median of the distribution, non-parametric fitting, or skew-normal fitting. These three methods were shown to be capable of predicting DVH, but only median approximation can predict 3D dose. Prediction methods were tested using leave-one-out cross-validation tests and evaluated using residual sum of squares (RSS) for DVH and 3D dose predictions. Results: DVH prediction using non-parametric fitting had the lowest average RSS with 0.1176(4π) and 0.1633(VMAT), compared to 0.4879(4π) and 1.8744(VMAT) RSS for ANN. 3D dose prediction with median approximation had lower RSS with 12.02(4π) and 29.22(VMAT), compared to 27.95(4π) and 130.9(VMAT) for ANN. Conclusion: Paradoxically, although the ANNs included geometric features in addition to the distances to the PTV, it did not perform better in predicting DVH or 3D dose compared to simpler, faster methods based on the distances alone. The study further confirms that the prediction of 4π non-coplanar plans were more accurate than

  20. Candidate Prediction Models and Methods

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik

    2005-01-01

    This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....

  1. A Sequence and Structure Based Method to Predict Putative Substrates, Functions and Regulatory Networks of Endo Proteases

    Science.gov (United States)

    Venkatraman, Prasanna; Balakrishnan, Satish; Rao, Shashidhar; Hooda, Yogesh; Pol, Suyog

    2009-01-01

    Background Proteases play a central role in cellular homeostasis and are responsible for the spatio- temporal regulation of function. Many putative proteases have been recently identified through genomic approaches, leading to a surge in global profiling attempts to characterize their function. Through such efforts and others it has become evident that many proteases play non-traditional roles. Accordingly, the number and the variety of the substrate repertoire of proteases are expected to be much larger than previously assumed. In line with such global profiling attempts, we present here a method for the prediction of natural substrates of endo proteases (human proteases used as an example) by employing short peptide sequences as specificity determinants. Methodology/Principal Findings Our method incorporates specificity determinants unique to individual enzymes and physiologically relevant dual filters namely, solvent accessible surface area-a parameter dependent on protein three-dimensional structure and subcellular localization. By incorporating such hitherto unused principles in prediction methods, a novel ligand docking strategy to mimic substrate binding at the active site of the enzyme, and GO functions, we identify and perform subjective validation on putative substrates of matriptase and highlight new functions of the enzyme. Using relative solvent accessibility to rank order we show how new protease regulatory networks and enzyme cascades can be created. Conclusion We believe that our physiologically relevant computational approach would be a very useful complementary method in the current day attempts to profile proteases (endo proteases in particular) and their substrates. In addition, by using functional annotations, we have demonstrated how normal and unknown functions of a protease can be envisaged. We have developed a network which can be integrated to create a proteolytic world. This network can in turn be extended to integrate other regulatory

  2. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods.

    Science.gov (United States)

    Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin

    2018-03-05

    The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.

  3. Soft Computing Methods for Disulfide Connectivity Prediction.

    Science.gov (United States)

    Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S

    2015-01-01

    The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.

  4. Lifting scheme-based method for joint coding 3D stereo digital cinema with luminace correction and optimized prediction

    Science.gov (United States)

    Darazi, R.; Gouze, A.; Macq, B.

    2009-01-01

    Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.

  5. Novel hyperspectral prediction method and apparatus

    Science.gov (United States)

    Kemeny, Gabor J.; Crothers, Natalie A.; Groth, Gard A.; Speck, Kathy A.; Marbach, Ralf

    2009-05-01

    Both the power and the challenge of hyperspectral technologies is the very large amount of data produced by spectral cameras. While off-line methodologies allow the collection of gigabytes of data, extended data analysis sessions are required to convert the data into useful information. In contrast, real-time monitoring, such as on-line process control, requires that compression of spectral data and analysis occur at a sustained full camera data rate. Efficient, high-speed practical methods for calibration and prediction are therefore sought to optimize the value of hyperspectral imaging. A novel method of matched filtering known as science based multivariate calibration (SBC) was developed for hyperspectral calibration. Classical (MLR) and inverse (PLS, PCR) methods are combined by spectroscopically measuring the spectral "signal" and by statistically estimating the spectral "noise." The accuracy of the inverse model is thus combined with the easy interpretability of the classical model. The SBC method is optimized for hyperspectral data in the Hyper-CalTM software used for the present work. The prediction algorithms can then be downloaded into a dedicated FPGA based High-Speed Prediction EngineTM module. Spectral pretreatments and calibration coefficients are stored on interchangeable SD memory cards, and predicted compositions are produced on a USB interface at real-time camera output rates. Applications include minerals, pharmaceuticals, food processing and remote sensing.

  6. A likelihood ratio-based method to predict exact pedigrees for complex families from next-generation sequencing data.

    Science.gov (United States)

    Heinrich, Verena; Kamphans, Tom; Mundlos, Stefan; Robinson, Peter N; Krawitz, Peter M

    2017-01-01

    Next generation sequencing technology considerably changed the way we screen for pathogenic mutations in rare Mendelian disorders. However, the identification of the disease-causing mutation amongst thousands of variants of partly unknown relevance is still challenging and efficient techniques that reduce the genomic search space play a decisive role. Often segregation- or linkage analysis are used to prioritize candidates, however, these approaches require correct information about the degree of relationship among the sequenced samples. For quality assurance an automated control of pedigree structures and sample assignment is therefore highly desirable in order to detect label mix-ups that might otherwise corrupt downstream analysis. We developed an algorithm based on likelihood ratios that discriminates between different classes of relationship for an arbitrary number of genotyped samples. By identifying the most likely class we are able to reconstruct entire pedigrees iteratively, even for highly consanguineous families. We tested our approach on exome data of different sequencing studies and achieved high precision for all pedigree predictions. By analyzing the precision for varying degrees of relatedness or inbreeding we could show that a prediction is robust down to magnitudes of a few hundred loci. A java standalone application that computes the relationships between multiple samples as well as a Rscript that visualizes the pedigree information is available for download as well as a web service at www.gene-talk.de CONTACT: heinrich@molgen.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. Prediction and evaluation method of wind environment in the early design stage using BIM-based CFD simulation

    International Nuclear Information System (INIS)

    Lee, Sumi; Song, Doosam

    2010-01-01

    Drastic urbanization and manhattanization are causing various problems in wind environment. This study suggests a CFD simulation method to evaluate wind environment in the early design stage of high-rise buildings. The CFD simulation of this study is not a traditional in-depth simulation, but a method to immediately evaluate wind environment for each design alternative and provide guidelines for design modification. Thus, the CFD simulation of this study to evaluate wind environments uses BIM-based CFD tools to utilize building models in the design stage. This study examined previous criteria to evaluate wind environment for pedestrians around buildings and selected evaluation criteria applicable to the CFD simulation method of this study. Furthermore, proper mesh generation method and CPU time were reviewed to find a meaningful CFD simulation result for determining optimal design alternative from the perspective of wind environment in the design stage. In addition, this study is to suggest a wind environment evaluation method through a BIM-based CFD simulation.

  8. Data-Based Predictive Control with Multirate Prediction Step

    Science.gov (United States)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  9. ChloroP, a neural network-based method for predicting chloroplast transitpeptides and their cleavage sites

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Nielsen, Henrik; von Heijne, Gunnar

    1999-01-01

    the cleavage sites given in SWISS-PROT. An analysis of 715 Arabidopsis thaliana sequences from SWISS-PROT suggests that the ChloroP method should be useful for the identification of putative transit peptides in genome-wide sequence data. The ChloroP predictor is available as a web-server at http......We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level...

  10. An analytically-based method for predicting the noise generated by the interaction between turbulence and a serrated leading edge

    Science.gov (United States)

    Mathews, J. R.; Peake, N.

    2018-05-01

    This paper considers the interaction of turbulence with a serrated leading edge. We investigate the noise produced by an aerofoil moving through a turbulent perturbation to uniform flow by considering the scattered pressure from the leading edge. We model the aerofoil as an infinite half plane with a leading edge serration, and develop an analytical model using a Green's function based upon the work of Howe. This allows us to consider both deterministic eddies and synthetic turbulence interacting with the leading edge. We show that it is possible to reduce the noise by using a serrated leading edge compared with a straight edge, but the optimal noise-reducing choice of serration is hard to predict due to the complex interaction. We also consider the effect of angle of attack, and find that in general the serrations are less effective at higher angles of attack.

  11. A SOM clustering pattern sequence-based next symbol prediction method for day-ahead direct electricity load and price forecasting

    International Nuclear Information System (INIS)

    Jin, Cheng Hao; Pok, Gouchol; Lee, Yongmi; Park, Hyun-Woo; Kim, Kwang Deuk; Yun, Unil; Ryu, Keun Ho

    2015-01-01

    Highlights: • A novel pattern sequence-based direct time series forecasting method was proposed. • Due to the use of SOM’s topology preserving property, only SOM can be applied. • SCPSNSP only deals with the cluster patterns not each specific time series value. • SCPSNSP performs better than recently developed forecasting algorithms. - Abstract: In this paper, we propose a new day-ahead direct time series forecasting method for competitive electricity markets based on clustering and next symbol prediction. In the clustering step, pattern sequence and their topology relations are obtained from self organizing map time series clustering. In the next symbol prediction step, with each cluster label in the pattern sequence represented as a pair of its topologically identical coordinates, artificial neural network is used to predict the topological coordinates of next day by training the relationship between previous daily pattern sequence and its next day pattern. According to the obtained topology relations, the nearest nonzero hits pattern is assigned to next day so that the whole time series values can be directly forecasted from the assigned cluster pattern. The proposed method was evaluated on Spanish, Australian and New York electricity markets and compared with PSF and some of the most recently published forecasting methods. Experimental results show that the proposed method outperforms the best forecasting methods at least 3.64%

  12. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    Science.gov (United States)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  13. Analytical solutions for prediction of the ignition time of wood particles based on a time and space integral method

    International Nuclear Information System (INIS)

    Haseli, Y.; Oijen, J.A. van; Goey, L.P.H. de

    2012-01-01

    Highlights: ► A simple model for prediction of the ignition time of a wood particle is presented. ► The formulation is given for both thermally thin and thermally thick particles. ► Transition from thermally thin to thick regime occurs at a critical particle size. ► The model is validated against a numerical model and various experimental data. - Abstract: The main idea of this paper is to establish a simple approach for prediction of the ignition time of a wood particle assuming that the thermo-physical properties remain constant and ignition takes place at a characteristic ignition temperature. Using a time and space integral method, explicit relationships are derived for computation of the ignition time of particles of three common shapes (slab, cylinder and sphere), which may be characterized as thermally thin or thermally thick. It is shown through a dimensionless analysis that the dimensionless ignition time can be described as a function of non-dimensional ignition temperature, reactor temperature or external incident heat flux, and parameter K which represents the ratio of conduction heat transfer to the external radiation heat transfer. The numerical results reveal that for the dimensionless ignition temperature between 1.25 and 2.25 and for values of K up to 8000 (corresponding to woody materials), the variation of the ignition time of a thermally thin particle with K and the dimensionless ignition temperature is linear, whereas the dependence of the ignition time of a thermally thick particle on the above two parameters obeys a quadratic function. Furthermore, it is shown that the transition from the regime of thermally thin to the regime of thermally thick occurs at K cr (corresponding to a critical size of particle) which is found to be independent of the particle shape. The model is validated by comparing the predicted and the measured ignition time of several wood particles obtained from different sources. Good agreement is achieved which

  14. An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology

    Science.gov (United States)

    Qiu, Yuchen; Wang, Yunzhi; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Liu, Hong; Zheng, Bin

    2016-03-01

    In order to establish a new personalized breast cancer screening paradigm, it is critically important to accurately predict the short-term risk of a woman having image-detectable cancer after a negative mammographic screening. In this study, we developed and tested a novel short-term risk assessment model based on deep learning method. During the experiment, a number of 270 "prior" negative screening cases was assembled. In the next sequential ("current") screening mammography, 135 cases were positive and 135 cases remained negative. These cases were randomly divided into a training set with 200 cases and a testing set with 70 cases. A deep learning based computer-aided diagnosis (CAD) scheme was then developed for the risk assessment, which consists of two modules: adaptive feature identification module and risk prediction module. The adaptive feature identification module is composed of three pairs of convolution-max-pooling layers, which contains 20, 10, and 5 feature maps respectively. The risk prediction module is implemented by a multiple layer perception (MLP) classifier, which produces a risk score to predict the likelihood of the woman developing short-term mammography-detectable cancer. The result shows that the new CAD-based risk model yielded a positive predictive value of 69.2% and a negative predictive value of 74.2%, with a total prediction accuracy of 71.4%. This study demonstrated that applying a new deep learning technology may have significant potential to develop a new short-term risk predicting scheme with improved performance in detecting early abnormal symptom from the negative mammograms.

  15. A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks.

    Science.gov (United States)

    Peng, Wei; Lan, Wei; Zhong, Jiancheng; Wang, Jianxin; Pan, Yi

    2017-07-15

    MicroRNAs have been reported to have close relationship with diseases due to their deregulation of the expression of target mRNAs. Detecting disease-related microRNAs is helpful for disease therapies. With the development of high throughput experimental techniques, a large number of microRNAs have been sequenced. However, it is still a big challenge to identify which microRNAs are related to diseases. Recently, researchers are interesting in combining multiple-biological information to identify the associations between microRNAs and diseases. In this work, we have proposed a novel method to predict the microRNA-disease associations based on four biological properties. They are microRNA, disease, gene and environment factor. Compared with previous methods, our method makes predictions not only by using the prior knowledge of associations among microRNAs, disease, environment factors and genes, but also by using the internal relationship among these biological properties. We constructed four biological networks based on the similarity of microRNAs, diseases, environment factors and genes, respectively. Then random walking was implemented on the four networks unequally. In the walking course, the associations can be inferred from the neighbors in the same networks. Meanwhile the association information can be transferred from one network to another. The results of experiment showed that our method achieved better prediction performance than other existing state-of-the-art methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. DBAC: A simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts

    Science.gov (United States)

    2011-01-01

    Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480

  17. Prediction of Floor Water Inrush: The Application of GIS-Based AHP Vulnerable Index Method to Donghuantuo Coal Mine, China

    Science.gov (United States)

    Wu, Qiang; Liu, Yuanzhang; Liu, Donghai; Zhou, Wanfang

    2011-09-01

    Floor water inrush represents a geohazard that can pose significant threat to safe operations for instance in coal mines in China and elsewhere. Its occurrence is controlled by many factors, and the processes are often not amenable to mathematical expressions. To evaluate the water inrush risk, the paper proposes the vulnerability index approach by coupling the analytic hierarchy process (AHP) and geographic information system (GIS). The detailed procedures of using this innovative approach are shown in a case study in China (Donghuantuo Coal Mine). The powerful spatial data analysis functions of GIS was used to establish the thematic layer of each of the six factors that control the water inrush, and the contribution weights of each factor was determined with the AHP method. The established AHP evaluation model was used to determine the threshold value for each risk level with a histogram of the water inrush vulnerability index. As a result, the mine area was divided into five regions with different vulnerability levels which served as general guidelines for the mine operations. The prediction results were further corroborated with the actual mining data, and the evaluation result is satisfactory.

  18. Mechatronics technology in predictive maintenance method

    Science.gov (United States)

    Majid, Nurul Afiqah A.; Muthalif, Asan G. A.

    2017-11-01

    This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.

  19. NEURAL METHODS FOR THE FINANCIAL PREDICTION

    OpenAIRE

    Jerzy Balicki; Piotr Dryja; Waldemar Korłub; Piotr Przybyłek; Maciej Tyszka; Marcin Zadroga; Marcin Zakidalski

    2016-01-01

    Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.

  20. NEURAL METHODS FOR THE FINANCIAL PREDICTION

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2016-06-01

    Full Text Available Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.

  1. A storm-based CSLE incorporating the modified SCS-CN method for soil loss prediction on the Chinese Loess Plateau

    Science.gov (United States)

    Shi, Wenhai; Huang, Mingbin

    2017-04-01

    the storm-based CSLE. In addition, the surface runoff used by the storm-based CSLE was either obtained from measurements or from the values predicted by the modified Soil Conservation Service Curve Number (SCS-CN) method. When using the measured runoff, the storm-based CSLE had an E of 76.6%, whereas the use of the predicted runoff gave an E of 76.4%. The high E values indicated that the storm-based CSLE incorporating the modified SCS-CN method could accurately predict storm-event-based soil losses resulting from both sheet and rill erosion at the field scale on the Chinese Loess Plateau. This approach could be applicable to other areas of the world once the model parameters have been suitably calibrated.

  2. A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Liucun; Zhang, Yu-Hang; Su, Fangchu; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2016-01-01

    Biologically, fruits are defined as seed-bearing reproductive structures in angiosperms that develop from the ovary. The fertilization, development and maturation of fruits are crucial for plant reproduction and are precisely regulated by intrinsic genetic regulatory factors. In this study, we used Arabidopsis thaliana as a model organism and attempted to identify novel genes related to fruit-associated biological processes. Specifically, using validated genes, we applied a shortest-path-based method to identify several novel genes in a large network constructed using the protein-protein interactions observed in Arabidopsis thaliana. The described analyses indicate that several of the discovered genes are associated with fruit fertilization, development and maturation in Arabidopsis thaliana.

  3. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    -day workshop on the design, use and evaluation of prediction methods for blood glucose concentration was held at the Johannes Kepler University Linz, Austria. One intention of the workshop was to bring together experts working in various fields on the same topic, in order to shed light from different angles...... discussions which allowed to receive direct feedback from the point of view of different disciplines. This book is based on the contributions of that workshop and is intended to convey an overview of the different aspects involved in the prediction. The individual chapters are based on the presentations given...... in the process of writing this book: All authors for their individual contributions, all reviewers of the book chapters, Daniela Hummer for the entire organization of the workshop, Boris Tasevski for helping with the typesetting, Florian Reiterer for his help editing the book, as well as Oliver Jackson and Karin...

  4. Artificial neural network intelligent method for prediction

    Science.gov (United States)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  5. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    International Nuclear Information System (INIS)

    Kahrobaee, Saeed; Hejazi, Taha-Hossein

    2017-01-01

    Highlights: • A statistical relationship between NDE inputs and heat treating outputs was provided. • Predicting austenitizing/tempering temperatures at unknown heat treating conditions. • An optimization model that achieves minimum error in prediction was developed. • Applying two simultaneous magnetic NDE methods led to better measuring reliability. - Abstract: Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025–1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  6. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: kahrobaee@sadjad.ac.ir [Department of Mechanical and Materials Engineering, Sadjad University of Technology, P.O. Box 91881-48848, Mashhad (Iran, Islamic Republic of); Hejazi, Taha-Hossein [Department of Industrial Engineering and Management, Sadjad University of Technology, P.O. Box 91881-48848, Mashhad (Iran, Islamic Republic of)

    2017-07-01

    Highlights: • A statistical relationship between NDE inputs and heat treating outputs was provided. • Predicting austenitizing/tempering temperatures at unknown heat treating conditions. • An optimization model that achieves minimum error in prediction was developed. • Applying two simultaneous magnetic NDE methods led to better measuring reliability. - Abstract: Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025–1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  7. Prediction of stress- and strain-based forming limits of automotive thin sheets by numerical, theoretical and experimental methods

    Science.gov (United States)

    Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós

    2018-05-01

    Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.

  8. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method.

    Science.gov (United States)

    Capiau, Sara; Wilk, Leah S; De Kesel, Pieter M M; Aalders, Maurice C G; Stove, Christophe P

    2018-02-06

    The hematocrit (Hct) effect is one of the most important hurdles currently preventing more widespread implementation of quantitative dried blood spot (DBS) analysis in a routine context. Indeed, the Hct may affect both the accuracy of DBS methods as well as the interpretation of DBS-based results. We previously developed a method to determine the Hct of a DBS based on its hemoglobin content using noncontact diffuse reflectance spectroscopy. Despite the ease with which the analysis can be performed (i.e., mere scanning of the DBS) and the good results that were obtained, the method did require a complicated algorithm to derive the total hemoglobin content from the DBS's reflectance spectrum. As the total hemoglobin was calculated as the sum of oxyhemoglobin, methemoglobin, and hemichrome, the three main hemoglobin derivatives formed in DBS upon aging, the reflectance spectrum needed to be unmixed to determine the quantity of each of these derivatives. We now simplified the method by only using the reflectance at a single wavelength, located at a quasi-isosbestic point in the reflectance curve. At this wavelength, assuming 1-to-1 stoichiometry of the aging reaction, the reflectance is insensitive to the hemoglobin degradation and only scales with the total amount of hemoglobin and, hence, the Hct. This simplified method was successfully validated. At each quality control level as well as at the limits of quantitation (i.e., 0.20 and 0.67) bias, intra- and interday imprecision were within 10%. Method reproducibility was excellent based on incurred sample reanalysis and surpassed the reproducibility of the original method. Furthermore, the influence of the volume spotted, the measurement location within the spot, as well as storage time and temperature were evaluated, showing no relevant impact of these parameters. Application to 233 patient samples revealed a good correlation between the Hct determined on whole blood and the predicted Hct determined on venous DBS. The

  9. Prediction methods and databases within chemoinformatics

    DEFF Research Database (Denmark)

    Jónsdóttir, Svava Osk; Jørgensen, Flemming Steen; Brunak, Søren

    2005-01-01

    MOTIVATION: To gather information about available databases and chemoinformatics methods for prediction of properties relevant to the drug discovery and optimization process. RESULTS: We present an overview of the most important databases with 2-dimensional and 3-dimensional structural information...... about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability...

  10. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods

    International Nuclear Information System (INIS)

    Zhang, Yachao; Liu, Kaipei; Qin, Liang; An, Xueli

    2016-01-01

    Highlights: • Variational mode decomposition is adopted to process original wind power series. • A novel combined model based on machine learning methods is established. • An improved differential evolution algorithm is proposed for weight adjustment. • Probabilistic interval prediction is performed by quantile regression averaging. - Abstract: Due to the increasingly significant energy crisis nowadays, the exploitation and utilization of new clean energy gains more and more attention. As an important category of renewable energy, wind power generation has become the most rapidly growing renewable energy in China. However, the intermittency and volatility of wind power has restricted the large-scale integration of wind turbines into power systems. High-precision wind power forecasting is an effective measure to alleviate the negative influence of wind power generation on the power systems. In this paper, a novel combined model is proposed to improve the prediction performance for the short-term wind power forecasting. Variational mode decomposition is firstly adopted to handle the instability of the raw wind power series, and the subseries can be reconstructed by measuring sample entropy of the decomposed modes. Then the base models can be established for each subseries respectively. On this basis, the combined model is developed based on the optimal virtual prediction scheme, the weight matrix of which is dynamically adjusted by a self-adaptive multi-strategy differential evolution algorithm. Besides, a probabilistic interval prediction model based on quantile regression averaging and variational mode decomposition-based hybrid models is presented to quantify the potential risks of the wind power series. The simulation results indicate that: (1) the normalized mean absolute errors of the proposed combined model from one-step to three-step forecasting are 4.34%, 6.49% and 7.76%, respectively, which are much lower than those of the base models and the hybrid

  11. Dynameomics: Data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction

    Science.gov (United States)

    Rysavy, Steven J; Beck, David AC; Daggett, Valerie

    2014-01-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412

  12. Dynameomics: data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction.

    Science.gov (United States)

    Rysavy, Steven J; Beck, David A C; Daggett, Valerie

    2014-11-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.

  13. Hybrid methods for airframe noise numerical prediction

    Energy Technology Data Exchange (ETDEWEB)

    Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)

    2005-07-01

    This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)

  14. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    Science.gov (United States)

    Kahrobaee, Saeed; Hejazi, Taha-Hossein

    2017-07-01

    Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025-1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  15. Prediction of liquid-liquid equilibria for polyethylene glycol based aqueous two-phase system by ASOG and UNIFAC method

    Directory of Open Access Journals (Sweden)

    M. Perumalsamy

    2009-03-01

    Full Text Available Liquid-Liquid equilibrium data were obtained for the polyethylene glycol2000(PEG2000-sodium citrate-water system at 298.15, 308.15 and 318.15 K. The effect of temperature on binodal and tie line data was studied and published in a previous article (Murugesan and Perumalsamy, 2005. The interaction parameters of ASOG and UNIFAC models were estimated using the LLE data of PEG2000-sodium citrate-water system and are used to predict the LLE data for PEG6000-sodium citrate-water system at 298.15, 308.15 and 318.15 K (literature data. The predicted LLE data by both ASOG and UNIFAC models showed good agreement with the experimental and literature data.

  16. Force prediction in cold rolling mills by polynomial methods

    Directory of Open Access Journals (Sweden)

    Nicu ROMAN

    2007-12-01

    Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.

  17. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis

    OpenAIRE

    Huang, Yan Xin; Bao, Yong Li; Guo, Shu Yan; Wang, Yan; Zhou, Chun Guang; Li, Yu Xin

    2008-01-01

    Abstract Background The prediction of conformational B-cell epitopes is one of the most important goals in immunoinformatics. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues of interaction between an antigen and an antibody. Consequently, this area of research has received considerable attention from immunologists, structural biologists and computational biologists. Phage-displayed random peptide libraries are powerful tools...

  18. Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology

    DEFF Research Database (Denmark)

    Damaceno, Daniela S.; Perederic, Olivia A.; Ceriani, Roberta

    2017-01-01

    structures that the first-order functional groups are unable to handle. In the particular case of fatty systems these models are not able to adequately predict the non-ideality in the liquid phase. Consequently, a new set of functional groups is proposed to represent the lipid compounds, requiring thereby....... There are rather small differences between the models and no single model is the best in all cases....

  19. Functional analysis of rare variants in mismatch repair proteins augments results from computation-based predictive methods

    Science.gov (United States)

    Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.

    2017-01-01

    ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185

  20. A Novel Method for Predicting Late Genitourinary Toxicity After Prostate Radiation Therapy and the Need for Age-Based Risk-Adapted Dose Constraints

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Egleston, Brian; Alcantara, Pino; Li, Linna; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.

    2013-01-01

    Background: There are no well-established normal tissue sparing dose–volume histogram (DVH) criteria that limit the risk of urinary toxicity from prostate radiation therapy (RT). The aim of this study was to determine which criteria predict late toxicity among various DVH parameters when contouring the entire solid bladder and its contents versus the bladder wall. The area under the histogram curve (AUHC) was also analyzed. Methods and Materials: From 1993 to 2000, 503 men with prostate cancer received 3-dimensional conformal RT (median follow-up time, 71 months). The whole bladder and the bladder wall were contoured in all patients. The primary endpoint was grade ≥2 genitourinary (GU) toxicity occurring ≥3 months after completion of RT. Cox regressions of time to grade ≥2 toxicity were estimated separately for the entire bladder and bladder wall. Concordance probability estimates (CPE) assessed model discriminative ability. Before training the models, an external random test group of 100 men was set aside for testing. Separate analyses were performed based on the mean age (≤ 68 vs >68 years). Results: Age, pretreatment urinary symptoms, mean dose (entire bladder and bladder wall), and AUHC (entire bladder and bladder wall) were significant (P 68 years. Conclusion: The AUHC method based on bladder wall volumes was superior for predicting late GU toxicity. Age >68 years was associated with late grade ≥2 GU toxicity, which suggests that risk-adapted dose constraints based on age should be explored

  1. River channel and bar patterns explained and predicted by an empirical and a physics-based method

    NARCIS (Netherlands)

    Kleinhans, M.G.; Berg, J.H. van den

    2011-01-01

    Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power-based classification and a physics-based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and

  2. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    Science.gov (United States)

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  3. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    Directory of Open Access Journals (Sweden)

    Shiyao Wang

    2016-02-01

    Full Text Available A high-performance differential global positioning system (GPS  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU/dead reckoning (DR data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  4. A comparison of accuracy validation methods for genomic and pedigree-based predictions of swine litter size traits using Large White and simulated data.

    Science.gov (United States)

    Putz, A M; Tiezzi, F; Maltecca, C; Gray, K A; Knauer, M T

    2018-02-01

    The objective of this study was to compare and determine the optimal validation method when comparing accuracy from single-step GBLUP (ssGBLUP) to traditional pedigree-based BLUP. Field data included six litter size traits. Simulated data included ten replicates designed to mimic the field data in order to determine the method that was closest to the true accuracy. Data were split into training and validation sets. The methods used were as follows: (i) theoretical accuracy derived from the prediction error variance (PEV) of the direct inverse (iLHS), (ii) approximated accuracies from the accf90(GS) program in the BLUPF90 family of programs (Approx), (iii) correlation between predictions and the single-step GEBVs from the full data set (GEBV Full ), (iv) correlation between predictions and the corrected phenotypes of females from the full data set (Y c ), (v) correlation from method iv divided by the square root of the heritability (Y ch ) and (vi) correlation between sire predictions and the average of their daughters' corrected phenotypes (Y cs ). Accuracies from iLHS increased from 0.27 to 0.37 (37%) in the Large White. Approximation accuracies were very consistent and close in absolute value (0.41 to 0.43). Both iLHS and Approx were much less variable than the corrected phenotype methods (ranging from 0.04 to 0.27). On average, simulated data showed an increase in accuracy from 0.34 to 0.44 (29%) using ssGBLUP. Both iLHS and Y ch approximated the increase well, 0.30 to 0.46 and 0.36 to 0.45, respectively. GEBV Full performed poorly in both data sets and is not recommended. Results suggest that for within-breed selection, theoretical accuracy using PEV was consistent and accurate. When direct inversion is infeasible to get the PEV, correlating predictions to the corrected phenotypes divided by the square root of heritability is adequate given a large enough validation data set. © 2017 Blackwell Verlag GmbH.

  5. 基于业务预测的时隙分配算法%Timeslot Assign Method Based on Business Predicts

    Institute of Scientific and Technical Information of China (English)

    徐达; 张有志; 郝学坤

    2016-01-01

    The resource of MF⁃TDMA satellite systems is very precious,how efficiently assign and make use of channel resources of satellite communication system,it is necessary to design an algoritm which can reduce satellite communication delay.This paper puts forward a timeslot assign method based on business predicts in MF⁃TDMA satellite communication system. This method performs the business predict of next moment based on the queue size and business arrival rate and the master station performs in advance channel resource allocation of next moment according to the business predict value. The simulation results show that the timeslot assign method can effectively reduce the transmission delay and improve the channel resource utilization.%多频-时分多址( MF⁃TDMA)卫星通信系统中信道资源十分宝贵,如何高效地分配和利用卫星通信系统信道资源,研究出一种可以降低卫星通信时延的算法很有必要。提出了一种MF⁃TDMA卫星通信系统中基于业务预测的时隙分配方法,通过终端缓存区域的队列长度和业务到达率来进行下一时刻的业务预测,中心站根据业务预测值来提前进行下一时刻信道资源的分配。仿真结果表明,通过基于业务预测的时隙分配算法可以有效降低传输时延,提高信道资源的利用率。

  6. A Secondary Voltage Control Method for an AC/DC Coupled Transmission System Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Xu, Fengda; Guo, Qinglai; Sun, Hongbin

    2015-01-01

    For an AC/DC coupled transmission system, the change of transmission power on the DC lines will significantly influence the AC systems’ voltage. This paper describes a method to coordinated control the reactive power of power plants and shunt capacitors at DC converter stations nearby, in order t...

  7. Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data.

    Science.gov (United States)

    Martin, Bryan D; Addona, Vittorio; Wolfson, Julian; Adomavicius, Gediminas; Fan, Yingling

    2017-09-08

    We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as much as possible in order to reduce the computational burden of the classification. We combine dimension reduction and classification algorithms and compare them with a metric that balances accuracy and dimensionality. In doing so, we develop a classification algorithm that accurately classifies five different modes of transportation (i.e., walking, biking, car, bus and rail) while being computationally simple enough to run on a typical smartphone. Further, we use data that required no behavioral changes from the smartphone users to collect. Our best classification model uses the random forest algorithm to achieve 96.8% accuracy.

  8. Seminal quality prediction using data mining methods.

    Science.gov (United States)

    Sahoo, Anoop J; Kumar, Yugal

    2014-01-01

    fertility rate. In this paper, eight feature selection methods are applied on fertility dataset to find out a set of good features. The investigational results shows that childish diseases (0.079) and high fever features (0.057) has less impact on fertility rate while age (0.8685), season (0.843), surgical intervention (0.7683), alcohol consumption (0.5992), smoking habit (0.575), number of hours spent on setting (0.4366) and accident (0.5973) features have more impact. It is also observed that feature selection methods increase the accuracy of above mentioned techniques (multilayer perceptron 92%, support vector machine 91%, SVM+PSO 94%, Navie Bayes (Kernel) 89% and decision tree 89%) as compared to without feature selection methods (multilayer perceptron 86%, support vector machine 86%, SVM+PSO 85%, Navie Bayes (Kernel) 83% and decision tree 84%) which shows the applicability of feature selection methods in prediction. This paper lightens the application of artificial techniques in medical domain. From this paper, it can be concluded that data mining methods can be used to predict a person with or without disease based on environmental and lifestyle parameters/features rather than undergoing various medical test. In this paper, five data mining techniques are used to predict the fertility rate and among which SVM+PSO provide more accurate results than support vector machine and decision tree.

  9. Comparison of Capability of Digitizing Methods to Predict Soil classification According to the Soil Taxonomy and World Reference Base for Soil Resources

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-02-01

    Full Text Available Introduction: Soil classification generally aims to establish a taxonomy based on breaking the soil continuum into homogeneous groups that can highlight the essential differences in soil properties and functions between classes.The two most widely used modern soil classification schemes are Soil Taxonomy (ST and World Reference Base for Soil Resources (WRB.With the development of computers and technology, digital and quantitative approaches have been developed. These new techniques that include the spatial prediction of soil properties or classes, relies on finding the relationships between soil and the auxiliary information that explain the soil forming factors or processes and finally predict soil patterns on the landscape. These approaches are commonly referred to as digital soil mapping (DSM (14. A key component of any DSM mapping activity is the method used to define the relationship between soil observation and auxiliary information (4. Several types of machine learning approaches have been applied for digital soil mapping of soil classes, such as logistic and multinomial logistic regressions (10,12, random forests (15, neural networks (3,13 and classification trees (22,4. Many decisions about the soil use and management are based on the soil differences that cannot be captured by higher taxonomic levels (i.e., order, suborder and great group (4. In low relief areas such as plains, it is expected that the soil forming factors are more homogenous and auxiliary information explaining soil forming factors may have low variation and cannot show the soil variability. Materials and Methods: The study area is located in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province. According tothe semi-detailed soil survey (16, 120 pedons with approximate distance of 750 m were excavated and described according to the “field book for describing and sampling soils” (19. Soil samples were taken from different genetic horizons, air dried and

  10. Method for Predicting Solubilities of Solids in Mixed Solvents

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O'Connell, J. P.

    2009-01-01

    A method is presented for predicting solubilities of solid solutes in mixed solvents, based on excess Henry's law constants. The basis is statistical mechanical fluctuation solution theory for composition derivatives of solute/solvent infinite dilution activity coefficients. Suitable approximatio...

  11. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    National Research Council Canada - National Science Library

    Morrill, Jason

    2004-01-01

    A designer Quantitative Structure-Property Relationsbip (QSPR) based upon molecular properties calculated using the AM1 semi-empirical quantum mechanical metbod was developed to predict the glass transition temperature (Tg...

  12. Method for Predicting Thermal Buckling in Rails

    Science.gov (United States)

    2018-01-01

    A method is proposed herein for predicting the onset of thermal buckling in rails in such a way as to provide a means of avoiding this type of potentially devastating failure. The method consists of the development of a thermomechanical model of rail...

  13. Life prediction methods for the combined creep-fatigue endurance

    International Nuclear Information System (INIS)

    Wareing, J.; Lloyd, G.J.

    1980-09-01

    The basis and current status of development of the various approaches to the prediction of the combined creep-fatigue endurance are reviewed. It is concluded that an inadequate materials data base makes it difficult to draw sensible conclusions about the prediction capabilities of each of the available methods. Correlation with data for stainless steel 304 and 316 is presented. (U.K.)

  14. A method for predicting monthly rainfall patterns

    International Nuclear Information System (INIS)

    Njau, E.C.

    1987-11-01

    A brief survey is made of previous methods that have been used to predict rainfall trends or drought spells in different parts of the earth. The basic methodologies or theoretical strategies used in these methods are compared with contents of a recent theory of Sun-Weather/Climate links (Njau, 1985a; 1985b; 1986; 1987a; 1987b; 1987c) which point towards the possibility of practical climatic predictions. It is shown that not only is the theoretical basis of each of these methodologies or strategies fully incorporated into the above-named theory, but also this theory may be used to develop a technique by which future monthly rainfall patterns can be predicted in further and finer details. We describe the latter technique and then illustrate its workability by means of predictions made on monthly rainfall patterns in some East African meteorological stations. (author). 43 refs, 11 figs, 2 tabs

  15. Measuring body composition using the bioelectrical impedance method can predict the outcomes of gemcitabine-based chemotherapy in patients with pancreatobiliary tract cancer.

    Science.gov (United States)

    Muramatsu, Mami; Tsuchiya, Aya; Ohta, Seiko; Iijima, Yukie; Maruyama, Miyuki; Onodera, Yoshiko; Hagihara, Megumi; Nakaya, Naoki; Sato, Itaru; Omura, Kenji; Ueno, Soichiro; Nakajima, Hideo

    2015-12-01

    In order to examine the effect on body composition of anticancer drug treatments, the body composition rate in patients being treated with gemcitabine (GEM)-based chemotherapy was measured over time on an outpatient basis with a simple body composition monitor using the bioelectrical impedance (BI) method. The results revealed a significant reduction in the body fat rate (P=0.01) over the course of treatment in patients with pancreatobiliary tract cancer who became unable to continue GEM-based chemotherapy due to progressive disease or a decreased performance status. Meanwhile, no changes were observed in the body composition of control patients with urothelial carcinoma receiving GEM-based chemotherapy. In association with the adverse reactions to GEM and the hematotoxicity profile, a decreased white blood cell count was more likely to occur in body fat-dominant patients (mean fat rate, 25.8%; mean muscle rate, 26.2%), whereas a decreased blood platelet count was more likely to occur in skeletal muscle-dominant patients (mean fat rate, 23.3%; mean muscle rates, 28.7%). The correlation between body composition parameters and the relative dose intensity (RDI) associated with GEM administration was also analyzed. The results revealed a positive correlation between the RDI and basal metabolism amount (P=0.03); however, the RDI did not correlate with the body fat rate, skeletal muscle rate or body mass index (P=0.61, P=0.14 and P=0.20, respectively). In conclusion, the body composition rate measurement using the BI method over time may be useful for predicting the outcome of GEM-based chemotherapy and adverse events in patients with pancreatobiliary tract cancer. In particular, the present findings indicate that the changes in body fat rate may be helpful as an adjunct index for assessing potential continuation of chemotherapy and changes in physical conditions.

  16. New prediction methods for collaborative filtering

    Directory of Open Access Journals (Sweden)

    Hasan BULUT

    2016-05-01

    Full Text Available Companies, in particular e-commerce companies, aims to increase customer satisfaction, hence in turn increase their profits, using recommender systems. Recommender Systems are widely used nowadays and they provide strategic advantages to the companies that use them. These systems consist of different stages. In the first stage, the similarities between the active user and other users are computed using the user-product ratings matrix. Then, the neighbors of the active user are found from these similarities. In prediction calculation stage, the similarities computed at the first stage are used to generate the weight vector of the closer neighbors. Neighbors affect the prediction value by the corresponding value of the weight vector. In this study, we developed two new methods for the prediction calculation stage which is the last stage of collaborative filtering. The performance of these methods are measured with evaluation metrics used in the literature and compared with other studies in this field.

  17. New methods for fall risk prediction.

    Science.gov (United States)

    Ejupi, Andreas; Lord, Stephen R; Delbaere, Kim

    2014-09-01

    Accidental falls are the leading cause of injury-related death and hospitalization in old age, with over one-third of the older adults experiencing at least one fall or more each year. Because of limited healthcare resources, regular objective fall risk assessments are not possible in the community on a large scale. New methods for fall prediction are necessary to identify and monitor those older people at high risk of falling who would benefit from participating in falls prevention programmes. Technological advances have enabled less expensive ways to quantify physical fall risk in clinical practice and in the homes of older people. Recently, several studies have demonstrated that sensor-based fall risk assessments of postural sway, functional mobility, stepping and walking can discriminate between fallers and nonfallers. Recent research has used low-cost, portable and objective measuring instruments to assess fall risk in older people. Future use of these technologies holds promise for assessing fall risk accurately in an unobtrusive manner in clinical and daily life settings.

  18. Knowledge-based Fragment Binding Prediction

    Science.gov (United States)

    Tang, Grace W.; Altman, Russ B.

    2014-01-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  19. Prediction of the heat gain of external walls: An innovative approach for full-featured excitations based on the simplified method of Mackey-and-Wright

    International Nuclear Information System (INIS)

    Ruivo, C.R.; Vaz, D.C.

    2015-01-01

    Highlights: • The transient thermal behaviour of external multilayer walls of buildings is studied. • Reference results for four representative walls, obtained with a numerical model, are provided. • Shortcomings of approaches based on the Mackey-and-Wright method are identified. • Handling full-feature excitations with Fourier series decomposition improves accuracy. • A simpler, yet accurate, promising novel approach to predict heat gain is proposed. - Abstract: Nowadays, simulation tools are available for calculating the thermal loads of multiple rooms of buildings, for given inputs. However, due to inaccuracies or uncertainties in some of the input data (e.g., thermal properties, air infiltrations flow rates, building occupancy), the evaluated thermal load may represent no more than just an estimate of the actual thermal load of the spaces. Accordingly, in certain practical situations, simplified methods may offer a more reasonable trade-off between effort and results accuracy than advanced software. Hence, despite the advances in computing power over the last decades, simplified methods for the evaluation of thermal loads are still of great interest nowadays, for both the practicing engineer and the graduating student, since these can be readily implemented or developed in common computational-tools, like a spreadsheet. The method of Mackey and Wright (M&W) is a simplified method that upon values of the decrement factor and time lag of a wall (or roof) estimates the instantaneous rate of heat transfer through its indoor surface. It assumes cyclic behaviour and shows good accuracy when the excitation and response have matching shapes, but it involves non negligible error otherwise, for example, in the case of walls of high thermal inertia. The aim of this study is to develop a simplified procedure that considerably improves the accuracy of the M&W method, particularly for excitations that noticeably depart from the sinusoidal shape, while not

  20. PREDICTING THE BOILING POINT OF PCDD/Fs BY THE QSPR METHOD BASED ON THE MOLECULAR DISTANCE-EDGE VECTOR INDEX

    Directory of Open Access Journals (Sweden)

    Long Jiao

    2015-05-01

    Full Text Available The quantitative structure property relationship (QSPR for the boiling point (Tb of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs was investigated. The molecular distance-edge vector (MDEV index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR and artificial neural network (ANN, respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.

  1. Link prediction based on nonequilibrium cooperation effect

    Science.gov (United States)

    Li, Lanxi; Zhu, Xuzhen; Tian, Hui

    2018-04-01

    Link prediction in complex networks has become a common focus of many researchers. But most existing methods concentrate on neighbors, and rarely consider degree heterogeneity of two endpoints. Node degree represents the importance or status of endpoints. We describe the large-degree heterogeneity as the nonequilibrium between nodes. This nonequilibrium facilitates a stable cooperation between endpoints, so that two endpoints with large-degree heterogeneity tend to connect stably. We name such a phenomenon as the nonequilibrium cooperation effect. Therefore, this paper proposes a link prediction method based on the nonequilibrium cooperation effect to improve accuracy. Theoretical analysis will be processed in advance, and at the end, experiments will be performed in 12 real-world networks to compare the mainstream methods with our indices in the network through numerical analysis.

  2. Prediction methods environmental-effect reporting

    International Nuclear Information System (INIS)

    Jonker, R.J.; Koester, H.W.

    1987-12-01

    This report provides a survey of prediction methods which can be applied to the calculation of emissions in cuclear-reactor accidents, in the framework of environment-effect reports (dutch m.e.r.) or risk analyses. Also emissions during normal operation are important for m.e.r.. These can be derived from measured emissions of power plants being in operation. Data concerning the latter are reported. The report consists of an introduction into reactor technology, among which a description of some reactor types, the corresponding fuel cycle and dismantling scenarios - a discussion of risk-analyses for nuclear power plants and the physical processes which can play a role during accidents - a discussion of prediction methods to be employed and the expected developments in this area - some background information. (aughor). 145 refs.; 21 figs.; 20 tabs

  3. Towards a unified fatigue life prediction method for marine structures

    CERN Document Server

    Cui, Weicheng; Wang, Fang

    2014-01-01

    In order to apply the damage tolerance design philosophy to design marine structures, accurate prediction of fatigue crack growth under service conditions is required. Now, more and more people have realized that only a fatigue life prediction method based on fatigue crack propagation (FCP) theory has the potential to explain various fatigue phenomena observed. In this book, the issues leading towards the development of a unified fatigue life prediction (UFLP) method based on FCP theory are addressed. Based on the philosophy of the UFLP method, the current inconsistency between fatigue design and inspection of marine structures could be resolved. This book presents the state-of-the-art and recent advances, including those by the authors, in fatigue studies. It is designed to lead the future directions and to provide a useful tool in many practical applications. It is intended to address to engineers, naval architects, research staff, professionals and graduates engaged in fatigue prevention design and survey ...

  4. A comparison of methods for cascade prediction

    OpenAIRE

    Guo, Ruocheng; Shakarian, Paulo

    2016-01-01

    Information cascades exist in a wide variety of platforms on Internet. A very important real-world problem is to identify which information cascades can go viral. A system addressing this problem can be used in a variety of applications including public health, marketing and counter-terrorism. As a cascade can be considered as compound of the social network and the time series. However, in related literature where methods for solving the cascade prediction problem were proposed, the experimen...

  5. Comparison of stochastic and regression based methods for quantification of predictive uncertainty of model-simulated wellhead protection zones in heterogeneous aquifers

    DEFF Research Database (Denmark)

    Christensen, Steen; Moore, C.; Doherty, J.

    2006-01-01

    accurate and required a few hundred model calls to be computed. (b) The linearized regression-based interval (Cooley, 2004) required just over a hundred model calls and also appeared to be nearly correct. (c) The calibration-constrained Monte-Carlo interval (Doherty, 2003) was found to be narrower than......For a synthetic case we computed three types of individual prediction intervals for the location of the aquifer entry point of a particle that moves through a heterogeneous aquifer and ends up in a pumping well. (a) The nonlinear regression-based interval (Cooley, 2004) was found to be nearly...... the regression-based intervals but required about half a million model calls. It is unclear whether or not this type of prediction interval is accurate....

  6. From viral genome to specific peptide epitopes: methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndah, Mikkel

    2013-01-01

    to predict likely candidates for peptide-SLA binding. These results were combined with binding predictions generated by the algorithm, NetMHCpan (http://www.cbs.dtu.dk/services/NetMHCpan/) in order to select peptide candidates for in vitro analysis. The correlation between high affinity and high stability.......000 peptides. T cell epitopes were identified using peptide-SLA complexes assembled into fluorescent tetramers to stain swine influenza specific CTLs derived from immunized animals and MHC-defined pigs vaccinated against foot-and-mouth disease virus. These results demonstrate the broad applicability of methods...... originally developed for analysis of human leukocyte antigen (HLA) presentation of peptides. The methods presented provide a timely and cost-effective approach to CTL epitope discovery that can be applied to diseases of swine and of other mammalian species of interest....

  7. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit

    2016-05-02

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.

  8. Machine Learning Methods to Predict Diabetes Complications.

    Science.gov (United States)

    Dagliati, Arianna; Marini, Simone; Sacchi, Lucia; Cogni, Giulia; Teliti, Marsida; Tibollo, Valentina; De Cata, Pasquale; Chiovato, Luca; Bellazzi, Riccardo

    2018-03-01

    One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.

  9. A process-based method to predict 3D sedimentary architecture conditioned to real-world data: alluvial architecture in the Rhine-Meuse delta

    NARCIS (Netherlands)

    Karssenberg, D.J.; Vries, Luis Manuel de; Bridge, J.S.; Cohen, K.M.

    2010-01-01

    Current methods for interpretation and interpolation of sedimentological records often rely on qualitative process knowledge. This has the disadvantage that results are often subjective and open for multiple interpretations. An alternative approach is to use process-based models simulating

  10. Prediction of soil urea conversion and quantification of the importance degrees of influencing factors through a new combinatorial model based on cluster method and artificial neural network.

    Science.gov (United States)

    Lei, Tao; Guo, Xianghong; Sun, Xihuan; Ma, Juanjuan; Zhang, Shaowen; Zhang, Yong

    2018-05-01

    Quantitative prediction of soil urea conversion is crucial in determining the mechanism of nitrogen transformation and understanding the dynamics of soil nutrients. This study aimed to establish a combinatorial prediction model (MCA-F-ANN) for soil urea conversion and quantify the relative importance degrees (RIDs) of influencing factors with the MCA-F-ANN method. Data samples were obtained from laboratory culture experiments, and soil nitrogen content and physicochemical properties were measured every other day. Results showed that when MCA-F-ANN was used, the mean-absolute-percent error values of NH 4 + -N, NO 3 - -N, and NH 3 contents were 3.180%, 2.756%, and 3.656%, respectively. MCA-F-ANN predicted urea transformation under multi-factor coupling conditions more accurately than traditional models did. The RIDs of reaction time (RT), electrical conductivity (EC), temperature (T), pH, nitrogen application rate (F), and moisture content (W) were 32.2%-36.5%, 24.0%-28.9%, 12.8%-15.2%, 9.8%-12.5%, 7.8%-11.0%, and 3.5%-6.0%, respectively. The RIDs of the influencing factors in a descending order showed the pattern RT > EC > T > pH > F > W. RT and EC were the key factors in the urea conversion process. The prediction accuracy of urea transformation process was improved, and the RIDs of the influencing factors were quantified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Computational predictive methods for fracture and fatigue

    Science.gov (United States)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-09-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  12. Highway traffic noise prediction based on GIS

    Science.gov (United States)

    Zhao, Jianghua; Qin, Qiming

    2014-05-01

    Before building a new road, we need to predict the traffic noise generated by vehicles. Traditional traffic noise prediction methods are based on certain locations and they are not only time-consuming, high cost, but also cannot be visualized. Geographical Information System (GIS) can not only solve the problem of manual data processing, but also can get noise values at any point. The paper selected a road segment from Wenxi to Heyang. According to the geographical overview of the study area and the comparison between several models, we combine the JTG B03-2006 model and the HJ2.4-2009 model to predict the traffic noise depending on the circumstances. Finally, we interpolate the noise values at each prediction point and then generate contours of noise. By overlaying the village data on the noise contour layer, we can get the thematic maps. The use of GIS for road traffic noise prediction greatly facilitates the decision-makers because of GIS spatial analysis function and visualization capabilities. We can clearly see the districts where noise are excessive, and thus it becomes convenient to optimize the road line and take noise reduction measures such as installing sound barriers and relocating villages and so on.

  13. Evaluation and comparison of mammalian subcellular localization prediction methods

    Directory of Open Access Journals (Sweden)

    Fink J Lynn

    2006-12-01

    Full Text Available Abstract Background Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER, peroxisome, and lysosome. The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE

  14. The wind power prediction research based on mind evolutionary algorithm

    Science.gov (United States)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  15. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    Science.gov (United States)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using

  16. Extending Theory-Based Quantitative Predictions to New Health Behaviors.

    Science.gov (United States)

    Brick, Leslie Ann D; Velicer, Wayne F; Redding, Colleen A; Rossi, Joseph S; Prochaska, James O

    2016-04-01

    Traditional null hypothesis significance testing suffers many limitations and is poorly adapted to theory testing. A proposed alternative approach, called Testing Theory-based Quantitative Predictions, uses effect size estimates and confidence intervals to directly test predictions based on theory. This paper replicates findings from previous smoking studies and extends the approach to diet and sun protection behaviors using baseline data from a Transtheoretical Model behavioral intervention (N = 5407). Effect size predictions were developed using two methods: (1) applying refined effect size estimates from previous smoking research or (2) using predictions developed by an expert panel. Thirteen of 15 predictions were confirmed for smoking. For diet, 7 of 14 predictions were confirmed using smoking predictions and 6 of 16 using expert panel predictions. For sun protection, 3 of 11 predictions were confirmed using smoking predictions and 5 of 19 using expert panel predictions. Expert panel predictions and smoking-based predictions poorly predicted effect sizes for diet and sun protection constructs. Future studies should aim to use previous empirical data to generate predictions whenever possible. The best results occur when there have been several iterations of predictions for a behavior, such as with smoking, demonstrating that expected values begin to converge on the population effect size. Overall, the study supports necessity in strengthening and revising theory with empirical data.

  17. Methods for early prediction of lactation flow in Holstein heifers

    Directory of Open Access Journals (Sweden)

    Vesna Gantner

    2010-12-01

    Full Text Available The aim of this research was to define methods for early prediction (based on I. milk control record of lactation flow in Holstein heifers as well as to choose optimal one in terms of prediction fit and application simplicity. Total of 304,569 daily yield records automatically recorded on a 1,136 first lactation Holstein cows, from March 2003 till August 2008., were included in analysis. According to the test date, calving date, the age at first calving, lactation stage when I. milk control occurred and to the average milk yield in first 25th, T1 (and 25th-45th, T2 lactation days, measuring monthcalving month-age-production-time-period subgroups were formed. The parameters of analysed nonlinear and linear methods were estimated for each defined subgroup. As models evaluation measures,adjusted coefficient of determination, and average and standard deviation of error were used. Considering obtained results, in terms of total variance explanation (R2 adj, the nonlinear Wood’s method showed superiority above the linear ones (Wilmink’s, Ali-Schaeffer’s and Guo-Swalve’s method in both time-period subgroups (T1 - 97.5 % of explained variability; T2 - 98.1 % of explained variability. Regarding the evaluation measures based on prediction error amount (eavg±eSD, the lowest average error of daily milk yield prediction (less than 0.005 kg/day, as well as of lactation milk yield prediction (less than 50 kg/lactation (T1 time-period subgroup and less than 30 kg/lactation (T2 time-period subgroup; were determined when Wood’s nonlinear prediction method were applied. Obtained results indicate that estimated Wood’s regression parameters could be used in routine work for early prediction of Holstein heifer’s lactation flow.

  18. NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole

    2011-01-01

    Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new "omics"-based approaches towards the analysis of complex biological processes. However, the amount and complexity...... to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs...... associated with quantitative readouts. Here, we provide a web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method parameters), and in return receive a trained method (including a visual representation of the identified motif) that subsequently can...

  19. Prediction of Protein–Protein Interactions by Evidence Combining Methods

    Directory of Open Access Journals (Sweden)

    Ji-Wei Chang

    2016-11-01

    Full Text Available Most cellular functions involve proteins’ features based on their physical interactions with other partner proteins. Sketching a map of protein–protein interactions (PPIs is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy.

  20. The energetic cost of walking: a comparison of predictive methods.

    Directory of Open Access Journals (Sweden)

    Patricia Ann Kramer

    Full Text Available BACKGROUND: The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is "best", but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1 to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2 to investigate to what degree the prediction methods explain the variation in energy expenditure. METHODOLOGY/PRINCIPAL FINDINGS: We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. CONCLUSION: Our results indicate that the choice of predictive method is dependent on the question(s of interest and the data available for use as inputs. Although we

  1. The energetic cost of walking: a comparison of predictive methods.

    Science.gov (United States)

    Kramer, Patricia Ann; Sylvester, Adam D

    2011-01-01

    The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is "best", but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1) to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2) to investigate to what degree the prediction methods explain the variation in energy expenditure. We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. Our results indicate that the choice of predictive method is dependent on the question(s) of interest and the data available for use as inputs. Although we used modern humans as our model organism, these results can be extended

  2. TWT transmitter fault prediction based on ANFIS

    Science.gov (United States)

    Li, Mengyan; Li, Junshan; Li, Shuangshuang; Wang, Wenqing; Li, Fen

    2017-11-01

    Fault prediction is an important component of health management, and plays an important role in the reliability guarantee of complex electronic equipments. Transmitter is a unit with high failure rate. The cathode performance of TWT is a common fault of transmitter. In this dissertation, a model based on a set of key parameters of TWT is proposed. By choosing proper parameters and applying adaptive neural network training model, this method, combined with analytic hierarchy process (AHP), has a certain reference value for the overall health judgment of TWT transmitters.

  3. Development of a regional ensemble prediction method for probabilistic weather prediction

    International Nuclear Information System (INIS)

    Nohara, Daisuke; Tamura, Hidetoshi; Hirakuchi, Hiromaru

    2015-01-01

    A regional ensemble prediction method has been developed to provide probabilistic weather prediction using a numerical weather prediction model. To obtain consistent perturbations with the synoptic weather pattern, both of initial and lateral boundary perturbations were given by differences between control and ensemble member of the Japan Meteorological Agency (JMA)'s operational one-week ensemble forecast. The method provides a multiple ensemble member with a horizontal resolution of 15 km for 48-hour based on a downscaling of the JMA's operational global forecast accompanied with the perturbations. The ensemble prediction was examined in the case of heavy snow fall event in Kanto area on January 14, 2013. The results showed that the predictions represent different features of high-resolution spatiotemporal distribution of precipitation affected by intensity and location of extra-tropical cyclone in each ensemble member. Although the ensemble prediction has model bias of mean values and variances in some variables such as wind speed and solar radiation, the ensemble prediction has a potential to append a probabilistic information to a deterministic prediction. (author)

  4. Predicting Liaison: an Example-Based Approach

    NARCIS (Netherlands)

    Greefhorst, A.P.M.; Bosch, A.P.J. van den

    2016-01-01

    Predicting liaison in French is a non-trivial problem to model. We compare a memory-based machine-learning algorithm with a rule-based baseline. The memory-based learner is trained to predict whether liaison occurs between two words on the basis of lexical, orthographic, morphosyntactic, and

  5. Prediction-based dynamic load-sharing heuristics

    Science.gov (United States)

    Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.

    1993-01-01

    The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.

  6. Predicting Metabolic Syndrome Using the Random Forest Method

    Directory of Open Access Journals (Sweden)

    Apilak Worachartcheewan

    2015-01-01

    Full Text Available Aims. This study proposes a computational method for determining the prevalence of metabolic syndrome (MS and to predict its occurrence using the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III criteria. The Random Forest (RF method is also applied to identify significant health parameters. Materials and Methods. We used data from 5,646 adults aged between 18–78 years residing in Bangkok who had received an annual health check-up in 2008. MS was identified using the NCEP ATP III criteria. The RF method was applied to predict the occurrence of MS and to identify important health parameters surrounding this disorder. Results. The overall prevalence of MS was 23.70% (34.32% for males and 17.74% for females. RF accuracy for predicting MS in an adult Thai population was 98.11%. Further, based on RF, triglyceride levels were the most important health parameter associated with MS. Conclusion. RF was shown to predict MS in an adult Thai population with an accuracy >98% and triglyceride levels were identified as the most informative variable associated with MS. Therefore, using RF to predict MS may be potentially beneficial in identifying MS status for preventing the development of diabetes mellitus and cardiovascular diseases.

  7. Customer churn prediction using a hybrid method and censored data

    Directory of Open Access Journals (Sweden)

    Reza Tavakkoli-Moghaddam

    2013-05-01

    Full Text Available Customers are believed to be the main part of any organization’s assets and customer retention as well as customer churn management are important responsibilities of organizations. In today’s competitive environment, organization must do their best to retain their existing customers since attracting new customers cost significantly more than taking care of existing ones. In this paper, we present a hybrid method based on neural network and Cox regression analysis where neural network is used for outlier data and Cox regression method is implemented for prediction of future events. The proposed model of this paper has been implemented on some data and the results are compared based on five criteria including prediction accuracy, errors’ type I and II, root mean square error and mean absolute deviation. The preliminary results indicate that the proposed model of this paper performs better than alternative methods.

  8. Available Prediction Methods for Corrosion under Insulation (CUI: A Review

    Directory of Open Access Journals (Sweden)

    Burhani Nurul Rawaida Ain

    2014-07-01

    Full Text Available Corrosion under insulation (CUI is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external surface piping and its insulation was carried out. The results, prediction models and methods available were presented for future research references. However, most of the prediction methods available are based on each local industrial data only which might be different based on the plant location, environment, temperature and many other factors which may contribute to the difference and reliability of the model developed. Thus, it is more reliable if those models or method supported by laboratory testing or simulation which includes the factors promoting CUI such as environment temperature, insulation types, operating temperatures, and other factors.

  9. Lattice gas methods for predicting intrinsic permeability of porous media

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.O.E.; Philippi, P.C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Propriedades Termofisicas e Meios Porosos)]. E-mail: emerich@lmpt.ufsc.br; philippi@lmpt.ufsc.br; Damiani, M.C. [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil). Parque Tecnologico]. E-mail: damiani@lmpt.ufsc.br

    2000-07-01

    This paper presents a method for predicting intrinsic permeability of porous media based on Lattice Gas Cellular Automata methods. Two methods are presented. The first is based on a Boolean model (LGA). The second is Boltzmann method (LB) based on Boltzmann relaxation equation. LGA is a relatively recent method developed to perform hydrodynamic calculations. The method, in its simplest form, consists of a regular lattice populated with particles that hop from site to site in discrete time steps in a process, called propagation. After propagation, the particles in each site interact with each other in a process called collision, in which the number of particles and momentum are conserved. An exclusion principle is imposed in order to achieve better computational efficiency. In despite of its simplicity, this model evolves in agreement with Navier-Stokes equation for low Mach numbers. LB methods were recently developed for the numerical integration of the Navier-Stokes equation based on discrete Boltzmann transport equation. Derived from LGA, LB is a powerful alternative to the standard methods in computational fluid dynamics. In recent years, it has received much attention and has been used in several applications like simulations of flows through porous media, turbulent flows and multiphase flows. It is important to emphasize some aspects that make Lattice Gas Cellular Automata methods very attractive for simulating flows through porous media. In fact, boundary conditions in flows through complex geometry structures are very easy to describe in simulations using these methods. In LGA methods simulations are performed with integers needing less resident memory capability and boolean arithmetic reduces running time. The two methods are used to simulate flows through several Brazilian reservoir petroleum rocks leading to intrinsic permeability prediction. Simulation is compared with experimental results. (author)

  10. Construction of possible integrated predictive index based on EGFR and ANXA3 polymorphisms for chemotherapy response in fluoropyrimidine-treated Japanese gastric cancer patients using a bioinformatic method

    International Nuclear Information System (INIS)

    Takahashi, Hiro; Kaniwa, Nahoko; Saito, Yoshiro; Sai, Kimie; Hamaguchi, Tetsuya; Shirao, Kuniaki; Shimada, Yasuhiro; Matsumura, Yasuhiro; Ohtsu, Atsushi; Yoshino, Takayuki; Doi, Toshihiko; Takahashi, Anna; Odaka, Yoko; Okuyama, Misuzu; Sawada, Jun-ichi; Sakamoto, Hiromi; Yoshida, Teruhiko

    2015-01-01

    Variability in drug response between individual patients is a serious concern in medicine. To identify single-nucleotide polymorphisms (SNPs) related to drug response variability, many genome-wide association studies have been conducted. We previously applied a knowledge-based bioinformatic approach to a pharmacogenomics study in which 119 fluoropyrimidine-treated gastric cancer patients were genotyped at 109,365 SNPs using the Illumina Human-1 BeadChip. We identified the SNP rs2293347 in the human epidermal growth factor receptor (EGFR) gene as a novel genetic factor related to chemotherapeutic response. In the present study, we reanalyzed these hypothesis-free genomic data using extended knowledge. We identified rs2867461 in annexin A3 (ANXA3) gene as another candidate. Using logistic regression, we confirmed that the performance of the rs2867461 + rs2293347 model was superior to those of the single factor models. Furthermore, we propose a novel integrated predictive index (iEA) based on these two polymorphisms in EGFR and ANXA3. The p value for iEA was 1.47 × 10 −8 by Fisher’s exact test. Recent studies showed that the mutations in EGFR is associated with high expression of dihydropyrimidine dehydrogenase, which is an inactivating and rate-limiting enzyme for fluoropyrimidine, and suggested that the combination of chemotherapy with fluoropyrimidine and EGFR-targeting agents is effective against EGFR-overexpressing gastric tumors, while ANXA3 overexpression confers resistance to tyrosine kinase inhibitors targeting the EGFR pathway. These results suggest that the iEA index or a combination of polymorphisms in EGFR and ANXA3 may serve as predictive factors of drug response, and therefore could be useful for optimal selection of chemotherapy regimens. The online version of this article (doi:10.1186/s12885-015-1721-z) contains supplementary material, which is available to authorized users

  11. Polyadenylation site prediction using PolyA-iEP method.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tzanis, George; Vlahavas, Ioannis

    2014-01-01

    This chapter presents a method called PolyA-iEP that has been developed for the prediction of polyadenylation sites. More precisely, PolyA-iEP is a method that recognizes mRNA 3'ends which contain polyadenylation sites. It is a modular system which consists of two main components. The first exploits the advantages of emerging patterns and the second is a distance-based scoring method. The outputs of the two components are finally combined by a classifier. The final results reach very high scores of sensitivity and specificity.

  12. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    Science.gov (United States)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  13. Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    OpenAIRE

    Wu, Han-Zhou; Wang, Hong-Xia; Shi, Yun-Qing

    2016-01-01

    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on th...

  14. SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, V [The Johns Hopkins University, Computer Science. Baltimore, MD (United States); Jacobs, MA [The Johns Hopkins University School of Medicine, Dept of Radiology and Oncology. Baltimore, MD (United States)

    2016-06-15

    Purpose: Multiparametric radiological imaging is used for diagnosis in patients. Potentially extracting useful features specific to a patient’s pathology would be crucial step towards personalized medicine and assessing treatment options. In order to automatically extract features directly from multiparametric radiological imaging datasets, we developed an advanced unsupervised machine learning algorithm called the multidimensional imaging radiomics-geodesics(MIRaGe). Methods: Seventy-six breast tumor patients underwent 3T MRI breast imaging were used for this study. We tested the MIRaGe algorithm to extract features for classification of breast tumors into benign or malignant. The MRI parameters used were T1-weighted, T2-weighted, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted imaging(DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGFs) from multiparametric MRI datasets. This enable our method to learn the intrinsic manifold representations corresponding to the patients. To determine the informative RGF, a modified Isomap algorithm(t-Isomap) was created for a radiomics-geodesics feature space(tRGFS) to avoid overfitting. Final classification was performed using SVM. The predictive power of the RGFs was tested and validated using k-fold cross validation. Results: The RGFs extracted by the MIRaGe algorithm successfully classified malignant lesions from benign lesions with a sensitivity of 93% and a specificity of 91%. The top 50 RGFs identified as the most predictive by the t-Isomap procedure were consistent with the radiological parameters known to be associated with breast cancer diagnosis and were categorized as kinetic curve characterizing RGFs, wash-in rate characterizing RGFs, wash-out rate characterizing RGFs and morphology characterizing RGFs. Conclusion: In this paper, we developed a novel feature extraction algorithm for multiparametric radiological imaging. The results demonstrated the power of the MIRa

  15. SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging

    International Nuclear Information System (INIS)

    Parekh, V; Jacobs, MA

    2016-01-01

    Purpose: Multiparametric radiological imaging is used for diagnosis in patients. Potentially extracting useful features specific to a patient’s pathology would be crucial step towards personalized medicine and assessing treatment options. In order to automatically extract features directly from multiparametric radiological imaging datasets, we developed an advanced unsupervised machine learning algorithm called the multidimensional imaging radiomics-geodesics(MIRaGe). Methods: Seventy-six breast tumor patients underwent 3T MRI breast imaging were used for this study. We tested the MIRaGe algorithm to extract features for classification of breast tumors into benign or malignant. The MRI parameters used were T1-weighted, T2-weighted, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted imaging(DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGFs) from multiparametric MRI datasets. This enable our method to learn the intrinsic manifold representations corresponding to the patients. To determine the informative RGF, a modified Isomap algorithm(t-Isomap) was created for a radiomics-geodesics feature space(tRGFS) to avoid overfitting. Final classification was performed using SVM. The predictive power of the RGFs was tested and validated using k-fold cross validation. Results: The RGFs extracted by the MIRaGe algorithm successfully classified malignant lesions from benign lesions with a sensitivity of 93% and a specificity of 91%. The top 50 RGFs identified as the most predictive by the t-Isomap procedure were consistent with the radiological parameters known to be associated with breast cancer diagnosis and were categorized as kinetic curve characterizing RGFs, wash-in rate characterizing RGFs, wash-out rate characterizing RGFs and morphology characterizing RGFs. Conclusion: In this paper, we developed a novel feature extraction algorithm for multiparametric radiological imaging. The results demonstrated the power of the MIRa

  16. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  17. A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications

    International Nuclear Information System (INIS)

    Liu, Guangming; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Hua, Jianfeng

    2015-01-01

    Highlights: • An energy prediction (EP) method is introduced for battery E RDE determination. • EP determines E RDE through coupled prediction of future states, parameters, and output. • The PAEP combines parameter adaptation and prediction to update model parameters. • The PAEP provides improved E RDE accuracy compared with DC and other EP methods. - Abstract: In order to estimate the remaining driving range (RDR) in electric vehicles, the remaining discharge energy (E RDE ) of the applied battery system needs to be precisely predicted. Strongly affected by the load profiles, the available E RDE varies largely in real-world applications and requires specific determination. However, the commonly-used direct calculation (DC) method might result in certain energy prediction errors by relating the E RDE directly to the current state of charge (SOC). To enhance the E RDE accuracy, this paper presents a battery energy prediction (EP) method based on the predictive control theory, in which a coupled prediction of future battery state variation, battery model parameter change, and voltage response, is implemented on the E RDE prediction horizon, and the E RDE is subsequently accumulated and real-timely optimized. Three EP approaches with different model parameter updating routes are introduced, and the predictive-adaptive energy prediction (PAEP) method combining the real-time parameter identification and the future parameter prediction offers the best potential. Based on a large-format lithium-ion battery, the performance of different E RDE calculation methods is compared under various dynamic profiles. Results imply that the EP methods provide much better accuracy than the traditional DC method, and the PAEP could reduce the E RDE error by more than 90% and guarantee the relative energy prediction error under 2%, proving as a proper choice in online E RDE prediction. The correlation of SOC estimation and E RDE calculation is then discussed to illustrate the

  18. A Versatile Nonlinear Method for Predictive Modeling

    Science.gov (United States)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  19. Ensemble-based prediction of RNA secondary structures.

    Science.gov (United States)

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between

  20. Prediction of pipeline corrosion rate based on grey Markov models

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Peng Guichu; Wang Yuemin

    2009-01-01

    Based on the model that combined by grey model and Markov model, the prediction of corrosion rate of nuclear power pipeline was studied. Works were done to improve the grey model, and the optimization unbiased grey model was obtained. This new model was used to predict the tendency of corrosion rate, and the Markov model was used to predict the residual errors. In order to improve the prediction precision, rolling operation method was used in these prediction processes. The results indicate that the improvement to the grey model is effective and the prediction precision of the new model combined by the optimization unbiased grey model and Markov model is better, and the use of rolling operation method may improve the prediction precision further. (authors)

  1. Trust-based collective view prediction

    CERN Document Server

    Luo, Tiejian; Xu, Guandong; Zhou, Jia

    2013-01-01

    Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users' past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View

  2. Churn prediction based on text mining and CRM data analysis

    OpenAIRE

    Schatzmann, Anders; Heitz, Christoph; Münch, Thomas

    2014-01-01

    Within quantitative marketing, churn prediction on a single customer level has become a major issue. An extensive body of literature shows that, today, churn prediction is mainly based on structured CRM data. However, in the past years, more and more digitized customer text data has become available, originating from emails, surveys or scripts of phone calls. To date, this data source remains vastly untapped for churn prediction, and corresponding methods are rarely described in literature. ...

  3. An image based method for crop yield prediction using remotely sensed and crop canopy data: the case of Paphos district, western Cyprus

    Science.gov (United States)

    Papadavid, G.; Hadjimitsis, D.

    2014-08-01

    Remote sensing techniques development have provided the opportunity for optimizing yields in the agricultural procedure and moreover to predict the forthcoming yield. Yield prediction plays a vital role in Agricultural Policy and provides useful data to policy makers. In this context, crop and soil parameters along with NDVI index which are valuable sources of information have been elaborated statistically to test if a) Durum wheat yield can be predicted and b) when is the actual time-window to predict the yield in the district of Paphos, where Durum wheat is the basic cultivation and supports the rural economy of the area. 15 plots cultivated with Durum wheat from the Agricultural Research Institute of Cyprus for research purposes, in the area of interest, have been under observation for three years to derive the necessary data. Statistical and remote sensing techniques were then applied to derive and map a model that can predict yield of Durum wheat in this area. Indeed the semi-empirical model developed for this purpose, with very high correlation coefficient R2=0.886, has shown in practice that can predict yields very good. Students T test has revealed that predicted values and real values of yield have no statistically significant difference. The developed model can and will be further elaborated with more parameters and applied for other crops in the near future.

  4. Predicting the impact of lava flows at Mount Etna by an innovative method based on Cellular Automata: Applications regarding land-use and civil defence planning

    Science.gov (United States)

    Crisci, G. M.; Avolio, M. V.; D'Ambrosio, D.; di Gregorio, S.; Lupiano, G. V.; Rongo, R.; Spataro, W.; Benhcke, B.; Neri, M.

    2009-04-01

    Forecasting the time, character and impact of future eruptions is difficult at volcanoes with complex eruptive behaviour, such as Mount Etna, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Modern efforts for hazard evaluation and contingency planning in volcanic areas draw heavily on hazard maps and numerical simulations. The computational model here applied belongs to the SCIARA family of lava flow simulation models. In the specific case this is the SCIARA-fv release, which is considered to give the most accurate and efficient performance, given the extent (567 km2) of the study area and the great number of simulations to be carried out. The model is based on the Cellular Automata computational paradigm and, specifically, on the Macroscopic Cellular Automata approach for the modelling of spatially extended dynamic systems2. This work addresses the problem of compiling high-detailed susceptibility maps with an elaborate approach in the numerical simulation of Etnean lava flows, based on the results of 39,300 simulations of flows erupted from a grid of 393 hypothetical vents in the eastern sector of Etna. This sector was chosen because it is densely populated and frequently affected by flank eruptions. Besides the definition of general susceptibility maps, the availability of a large number of lava flows of different eruption types, magnitudes and locations simulated for this study allows the instantaneous extraction of various scenarios on demand. For instance, in a Civil Defence oriented application, it is possible to identify all source areas of lava flows capable of affecting a given area of interest, such as a town or a major infrastructure. Indeed, this application is rapidly accomplished by querying the simulation database, by selecting the lava flows that affect the area of interest and by circumscribing their sources. Eventually, a specific category of simulation is dedicated to the assessment of protective

  5. Analytical methods for predicting contaminant transport

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1989-09-01

    This paper summarizes some of the previous and recent work at the University of California on analytical solutions for predicting contaminate transport in porous and fractured geologic media. Emphasis is given here to the theories for predicting near-field transport, needed to derive the time-dependent source term for predicting far-field transport and overall repository performance. New theories summarized include solubility-limited release rate with flow backfill in rock, near-field transport of radioactive decay chains, interactive transport of colloid and solute, transport of carbon-14 as carbon dioxide in unsaturated rock, and flow of gases out of and a waste container through cracks and penetrations. 28 refs., 4 figs

  6. Attribute-Based Methods

    Science.gov (United States)

    Thomas P. Holmes; Wiktor L. Adamowicz

    2003-01-01

    Stated preference methods of environmental valuation have been used by economists for decades where behavioral data have limitations. The contingent valuation method (Chapter 5) is the oldest stated preference approach, and hundreds of contingent valuation studies have been conducted. More recently, and especially over the last decade, a class of stated preference...

  7. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    Science.gov (United States)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  8. Simplified Predictive Models for CO2 Sequestration Performance Assessment: Research Topical Report on Task #4 - Reduced-Order Method (ROM) Based Models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta; Jin, Larry; He, Jincong; Durlofsky, Louis

    2015-06-30

    Reduced-order models provide a means for greatly accelerating the detailed simulations that will be required to manage CO2 storage operations. In this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively small number of parameters. We describe the application of POD-TPWL for CO2-water systems simulated using a compositional procedure. Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control. Simulation results are presented for CO2 injection into a synthetic aquifer and into a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full- order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather than well controls) is also presented. Results in this case involve only small differences between

  9. CREME96 and Related Error Rate Prediction Methods

    Science.gov (United States)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  10. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  11. Speech Intelligibility Prediction Based on Mutual Information

    DEFF Research Database (Denmark)

    Jensen, Jesper; Taal, Cees H.

    2014-01-01

    This paper deals with the problem of predicting the average intelligibility of noisy and potentially processed speech signals, as observed by a group of normal hearing listeners. We propose a model which performs this prediction based on the hypothesis that intelligibility is monotonically related...... to the mutual information between critical-band amplitude envelopes of the clean signal and the corresponding noisy/processed signal. The resulting intelligibility predictor turns out to be a simple function of the mean-square error (mse) that arises when estimating a clean critical-band amplitude using...... a minimum mean-square error (mmse) estimator based on the noisy/processed amplitude. The proposed model predicts that speech intelligibility cannot be improved by any processing of noisy critical-band amplitudes. Furthermore, the proposed intelligibility predictor performs well ( ρ > 0.95) in predicting...

  12. Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods

    Directory of Open Access Journals (Sweden)

    Ling Yao

    2016-01-01

    Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.

  13. Calorimeter prediction based on multiple exponentials

    International Nuclear Information System (INIS)

    Smith, M.K.; Bracken, D.S.

    2002-01-01

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented

  14. River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method

    Directory of Open Access Journals (Sweden)

    H. Sanikhani

    2016-02-01

    Full Text Available Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1 methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE methodology for an application to runoff prediction, (2 methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3 methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system. Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models

  15. Can Morphing Methods Predict Intermediate Structures?

    Science.gov (United States)

    Weiss, Dahlia R.; Levitt, Michael

    2009-01-01

    Movement is crucial to the biological function of many proteins, yet crystallographic structures of proteins can give us only a static snapshot. The protein dynamics that are important to biological function often happen on a timescale that is unattainable through detailed simulation methods such as molecular dynamics as they often involve crossing high-energy barriers. To address this coarse-grained motion, several methods have been implemented as web servers in which a set of coordinates is usually linearly interpolated from an initial crystallographic structure to a final crystallographic structure. We present a new morphing method that does not extrapolate linearly and can therefore go around high-energy barriers and which can produce different trajectories between the same two starting points. In this work, we evaluate our method and other established coarse-grained methods according to an objective measure: how close a coarse-grained dynamics method comes to a crystallographically determined intermediate structure when calculating a trajectory between the initial and final crystal protein structure. We test this with a set of five proteins with at least three crystallographically determined on-pathway high-resolution intermediate structures from the Protein Data Bank. For simple hinging motions involving a small conformational change, segmentation of the protein into two rigid sections outperforms other more computationally involved methods. However, large-scale conformational change is best addressed using a nonlinear approach and we suggest that there is merit in further developing such methods. PMID:18996395

  16. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  17. Uncertainties in model-based outcome predictions for treatment planning

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Chao, K.S. Clifford; Markman, Jerry

    2001-01-01

    Purpose: Model-based treatment-plan-specific outcome predictions (such as normal tissue complication probability [NTCP] or the relative reduction in salivary function) are typically presented without reference to underlying uncertainties. We provide a method to assess the reliability of treatment-plan-specific dose-volume outcome model predictions. Methods and Materials: A practical method is proposed for evaluating model prediction based on the original input data together with bootstrap-based estimates of parameter uncertainties. The general framework is applicable to continuous variable predictions (e.g., prediction of long-term salivary function) and dichotomous variable predictions (e.g., tumor control probability [TCP] or NTCP). Using bootstrap resampling, a histogram of the likelihood of alternative parameter values is generated. For a given patient and treatment plan we generate a histogram of alternative model results by computing the model predicted outcome for each parameter set in the bootstrap list. Residual uncertainty ('noise') is accounted for by adding a random component to the computed outcome values. The residual noise distribution is estimated from the original fit between model predictions and patient data. Results: The method is demonstrated using a continuous-endpoint model to predict long-term salivary function for head-and-neck cancer patients. Histograms represent the probabilities for the level of posttreatment salivary function based on the input clinical data, the salivary function model, and the three-dimensional dose distribution. For some patients there is significant uncertainty in the prediction of xerostomia, whereas for other patients the predictions are expected to be more reliable. In contrast, TCP and NTCP endpoints are dichotomous, and parameter uncertainties should be folded directly into the estimated probabilities, thereby improving the accuracy of the estimates. Using bootstrap parameter estimates, competing treatment

  18. Prediction Methods in Science and Technology

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    Presents the H-principle, the Heisenberg modelling principle. General properties of the Heisenberg modelling procedure is developed. The theory is applied to principal component analysis and linear regression analysis. It is shown that the H-principle leads to PLS regression in case the task...... is linear regression analysis. The book contains different methods to find the dimensions of linear models, to carry out sensitivity analysis in latent structure models, variable selection methods and presentation of results from analysis....

  19. Amorphous silicon EPID calibration for dosimetric applications: comparison of a method based on Monte Carlo prediction of response with existing techniques

    International Nuclear Information System (INIS)

    Parent, L; Fielding, A L; Dance, D R; Seco, J; Evans, P M

    2007-01-01

    For EPID dosimetry, the calibration should ensure that all pixels have a similar response to a given irradiation. A calibration method (MC), using an analytical fit of a Monte Carlo simulated flood field EPID image to correct for the flood field image pixel intensity shape, was proposed. It was compared with the standard flood field calibration (FF), with the use of a water slab placed in the beam to flatten the flood field (WS) and with a multiple field calibration where the EPID was irradiated with a fixed 10 x 10 field for 16 different positions (MF). The EPID was used in its normal configuration (clinical setup) and with an additional 3 mm copper slab (modified setup). Beam asymmetry measured with a diode array was taken into account in MC and WS methods. For both setups, the MC method provided pixel sensitivity values within 3% of those obtained with the MF and WS methods (mean difference 2 ) and IMRT fields to within 3% of that obtained with WS and MF calibrations while differences with images calibrated with the FF method for fields larger than 10 x 10 cm 2 were up to 8%. MC, WS and MF methods all provided a major improvement on the FF method. Advantages and drawbacks of each method were reviewed

  20. The effect of genealogy-based haplotypes on genomic prediction

    DEFF Research Database (Denmark)

    Edriss, Vahid; Fernando, Rohan L.; Su, Guosheng

    2013-01-01

    on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. Methods A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using...... local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (pi) of the haplotype covariates had zero effect......, i.e. a Bayesian mixture method. Results About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some...

  1. Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2015-01-01

    Full Text Available Currently, we are experiencing a rapid growth of the number of social-based online systems. The availability of the vast amounts of data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics is the prediction of social connections between users. Although a lot of effort has been made to develop new prediction approaches, the existing methods are not comprehensively analysed. In this paper we investigate the correlation between network metrics and accuracy of different prediction methods. We selected six time-stamped real-world social networks and ten most widely used link prediction methods. The results of the experiments show that the performance of some methods has a strong correlation with certain network metrics. We managed to distinguish “prediction friendly” networks, for which most of the prediction methods give good performance, as well as “prediction unfriendly” networks, for which most of the methods result in high prediction error. Correlation analysis between network metrics and prediction accuracy of prediction methods may form the basis of a metalearning system where based on network characteristics it will be able to recommend the right prediction method for a given network.

  2. Development of an integrated method for long-term water quality prediction using seasonal climate forecast

    Directory of Open Access Journals (Sweden)

    J. Cho

    2016-10-01

    Full Text Available The APEC Climate Center (APCC produces climate prediction information utilizing a multi-climate model ensemble (MME technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1 the Simple Bias Correction (SBC method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2 the Moving Window Regression (MWR method, which indirectly utilizes dynamic prediction data; (3 the Climate Index Regression (CIR method, which predominantly uses observation-based climate indices; and (4 the Integrated Time Regression (ITR method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.

  3. Amorphous silicon EPID calibration for dosimetric applications: comparison of a method based on Monte Carlo prediction of response with existing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Parent, L [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Fielding, A L [School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane (Australia); Dance, D R [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London (United Kingdom); Seco, J [Department of Radiation Oncology, Francis Burr Proton Therapy Center, Massachusetts General Hospital, Harvard Medical School, Boston (United States); Evans, P M [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)

    2007-07-21

    For EPID dosimetry, the calibration should ensure that all pixels have a similar response to a given irradiation. A calibration method (MC), using an analytical fit of a Monte Carlo simulated flood field EPID image to correct for the flood field image pixel intensity shape, was proposed. It was compared with the standard flood field calibration (FF), with the use of a water slab placed in the beam to flatten the flood field (WS) and with a multiple field calibration where the EPID was irradiated with a fixed 10 x 10 field for 16 different positions (MF). The EPID was used in its normal configuration (clinical setup) and with an additional 3 mm copper slab (modified setup). Beam asymmetry measured with a diode array was taken into account in MC and WS methods. For both setups, the MC method provided pixel sensitivity values within 3% of those obtained with the MF and WS methods (mean difference <1%, standard deviation <2%). The difference of pixel sensitivity between MC and FF methods was up to 12.2% (clinical setup) and 11.8% (modified setup). MC calibration provided images of open fields (5 x 5 to 20 x 20 cm{sup 2}) and IMRT fields to within 3% of that obtained with WS and MF calibrations while differences with images calibrated with the FF method for fields larger than 10 x 10 cm{sup 2} were up to 8%. MC, WS and MF methods all provided a major improvement on the FF method. Advantages and drawbacks of each method were reviewed.

  4. Generic methods for aero-engine exhaust emission prediction

    NARCIS (Netherlands)

    Shakariyants, S.A.

    2008-01-01

    In the thesis, generic methods have been developed for aero-engine combustor performance, combustion chemistry, as well as airplane aerodynamics, airplane and engine performance. These methods specifically aim to support diverse emission prediction studies coupled with airplane and engine

  5. An Approximate Method for Pitch-Damping Prediction

    National Research Council Canada - National Science Library

    Danberg, James

    2003-01-01

    ...) method for predicting the pitch-damping coefficients has been employed. The CFD method provides important details necessary to derive the correlation functions that are unavailable from the current experimental database...

  6. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  7. Meta-path based heterogeneous combat network link prediction

    Science.gov (United States)

    Li, Jichao; Ge, Bingfeng; Yang, Kewei; Chen, Yingwu; Tan, Yuejin

    2017-09-01

    The combat system-of-systems in high-tech informative warfare, composed of many interconnected combat systems of different types, can be regarded as a type of complex heterogeneous network. Link prediction for heterogeneous combat networks (HCNs) is of significant military value, as it facilitates reconfiguring combat networks to represent the complex real-world network topology as appropriate with observed information. This paper proposes a novel integrated methodology framework called HCNMP (HCN link prediction based on meta-path) to predict multiple types of links simultaneously for an HCN. More specifically, the concept of HCN meta-paths is introduced, through which the HCNMP can accumulate information by extracting different features of HCN links for all the six defined types. Next, an HCN link prediction model, based on meta-path features, is built to predict all types of links of the HCN simultaneously. Then, the solution algorithm for the HCN link prediction model is proposed, in which the prediction results are obtained by iteratively updating with the newly predicted results until the results in the HCN converge or reach a certain maximum iteration number. Finally, numerical experiments on the dataset of a real HCN are conducted to demonstrate the feasibility and effectiveness of the proposed HCNMP, in comparison with 30 baseline methods. The results show that the performance of the HCNMP is superior to those of the baseline methods.

  8. Static Formation Temperature Prediction Based on Bottom Hole Temperature

    Directory of Open Access Journals (Sweden)

    Changwei Liu

    2016-08-01

    Full Text Available Static formation temperature (SFT is required to determine the thermophysical properties and production parameters in geothermal and oil reservoirs. However, it is not easy to determine SFT by both experimental and physical methods. In this paper, a mathematical approach to predicting SFT, based on a new model describing the relationship between bottom hole temperature (BHT and shut-in time, has been proposed. The unknown coefficients of the model were derived from the least squares fit by the particle swarm optimization (PSO algorithm. Additionally, the ability to predict SFT using a few BHT data points (such as the first three, four, or five points of a data set was evaluated. The accuracy of the proposed method to predict SFT was confirmed by a deviation percentage less than ±4% and a high regression coefficient R2 (>0.98. The proposed method could be used as a practical tool to predict SFT in both geothermal and oil wells.

  9. The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Directory of Open Access Journals (Sweden)

    César Hernández-Hernández

    2017-06-01

    Full Text Available Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation.

  10. A novel time series link prediction method: Learning automata approach

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2017-09-01

    Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.

  11. Predicting Learned Helplessness Based on Personality

    Science.gov (United States)

    Maadikhah, Elham; Erfani, Nasrollah

    2014-01-01

    Learned helplessness as a negative motivational state can latently underlie repeated failures and create negative feelings toward the education as well as depression in students and other members of a society. The purpose of this paper is to predict learned helplessness based on students' personality traits. The research is a predictive…

  12. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  13. NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.

    Science.gov (United States)

    Pardoe, Heath R; Kuzniecky, Ruben

    2018-01-01

    The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.

  14. DASPfind: new efficient method to predict drug–target interactions

    KAUST Repository

    Ba Alawi, Wail

    2016-03-16

    Background Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions. Results Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually. Conclusions DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind

  15. A Boosting Algorithm Based Method to Predict Cyber-Threats Situation of Power Information Network%采用Boosting方法预测电力信息网络的威胁态势

    Institute of Scientific and Technical Information of China (English)

    徐茹枝; 王婧; 朱少敏; 许瑞辉

    2013-01-01

    The prediction of cyber-threats situation can effectively reflect the macroscopic security situation of power information network in the future time. To realize the accurate prediction of cyber-threats situation, an AdaBoosting algorithm based cyber-threats situation prediction method for information network is proposed. In the proposed method, the values of cyber-threats situation are used to describe the macroscopic security situation of power information network, and the prediction of macroscopic security situation is abstracted to a regression problem, and then the regression problem is solved by AdaBoosting algorithm. Firstly, using the sliding time window a time series sample set is constructed by cyber-threats situation values;then the sample set is input into AdaBoosting algorithm to be trained to obtain a regression analysis model;finally the prediction of cyber-threats situation is completed by the regression analysis model. Finally, the effectiveness of the proposed method is verified by results of replication experiments based on field data.%威胁态势预测可以有效反映电力信息网络在未来时刻的宏观安全状况。为实现威胁态势的精确预测,提出一种基于AdaBoosting方法的网络威胁态势预测方法。该方法采用威胁态势值描述电力信息网络的宏观安全态势,并将威胁态势值的预测抽象为回归问题,进而利用AdaBoosting方法求解。该方法先利用滑动时间窗口将威胁态势值构造成时间序列样本集,再将样本集输入到AdaBoosting方法中训练,以得到回归分析模型,并利用该模型完成威胁态势预测。最后基于现场数据的验证性实验证明了所提方法的有效性。

  16. Decision tree methods: applications for classification and prediction.

    Science.gov (United States)

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  17. Method for predicting peptide detection in mass spectrometry

    Science.gov (United States)

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  18. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  19. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  20. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Science.gov (United States)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  1. Computational methods in sequence and structure prediction

    Science.gov (United States)

    Lang, Caiyi

    This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed

  2. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  3. Activity based costing (ABC Method

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D. Saveta Tudorache

    2008-05-01

    Full Text Available In the present paper the need and advantages are presented of using the Activity BasedCosting method, need arising from the need of solving the information pertinence issue. This issue has occurreddue to the limitation of classic methods in this field, limitation also reflected by the disadvantages ofsuch classic methods in establishing complete costs.

  4. Development of a Chemistry-Based, Predictive Method for Determining the Amount of Non-Pertechnetate Technetium in the Hanford Tanks: FY 2012 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Bryan, Samuel A.; Bryant, Janet L.; Chatterjee, Sayandev; Edwards, Matthew K.; Houchin, Joy Y.; Janik, Tadeusz J.; Levitskaia, Tatiana G.; Peterson, James M.; Peterson, Reid A.; Sinkov, Sergey I.; Smith, Frances N.; Wittman, Richard S.

    2013-01-30

    This report describes investigations directed toward understanding the extent of the presence of highly alkaline soluble, non-pertechnetate technetium (n-Tc) in the Hanford Tank supernatants. The goals of this report are to: a) present a review of the available literature relevant to the speciation of technetium in the Hanford tank supernatants, b) attempt to establish a chemically logical correlation between available Hanford tank measurements and the presence of supernatant soluble n-Tc, c) use existing measurement data to estimate the amount of n-Tc in the Hanford tank supernatants, and d) report on any likely, process-friendly methods to eventually sequester soluble n-Tc from Hanford tank supernatants.

  5. Accurate Multisteps Traffic Flow Prediction Based on SVM

    Directory of Open Access Journals (Sweden)

    Zhang Mingheng

    2013-01-01

    Full Text Available Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the multisteps prediction has the ability that can predict the traffic state trends over a certain period in the future. From the perspective of dynamic decision, it is far important than the current traffic condition obtained. Thus, in this paper, an accurate multi-steps traffic flow prediction model based on SVM was proposed. In which, the input vectors were comprised of actual traffic volume and four different types of input vectors were compared to verify their prediction performance with each other. Finally, the model was verified with actual data in the empirical analysis phase and the test results showed that the proposed SVM model had a good ability for traffic flow prediction and the SVM-HPT model outperformed the other three models for prediction.

  6. Use of simplified methods for predicting natural resource damages

    International Nuclear Information System (INIS)

    Loreti, C.P.; Boehm, P.D.; Gundlach, E.R.; Healy, E.A.; Rosenstein, A.B.; Tsomides, H.J.; Turton, D.J.; Webber, H.M.

    1995-01-01

    To reduce transaction costs and save time, the US Department of the Interior (DOI) and the National Oceanic and Atmospheric Administration (NOAA) have developed simplified methods for assessing natural resource damages from oil and chemical spills. DOI has proposed the use of two computer models, the Natural Resource Damage Assessment Model for Great Lakes Environments (NRDAM/GLE) and a revised Natural Resource Damage Assessment Model for Coastal and Marine Environments (NRDAM/CME) for predicting monetary damages for spills of oils and chemicals into the Great Lakes and coastal and marine environments. NOAA has used versions of these models to create Compensation Formulas, which it has proposed for calculating natural resource damages for oil spills of up to 50,000 gallons anywhere in the US. Based on a review of the documentation supporting the methods, the results of hundreds of sample runs of DOI's models, and the outputs of the thousands of model runs used to create NOAA's Compensation Formulas, this presentation discusses the ability of these simplified assessment procedures to make realistic damage estimates. The limitations of these procedures are described, and the need for validating the assumptions used in predicting natural resource injuries is discussed

  7. VAN method of short-term earthquake prediction shows promise

    Science.gov (United States)

    Uyeda, Seiya

    Although optimism prevailed in the 1970s, the present consensus on earthquake prediction appears to be quite pessimistic. However, short-term prediction based on geoelectric potential monitoring has stood the test of time in Greece for more than a decade [VarotsosandKulhanek, 1993] Lighthill, 1996]. The method used is called the VAN method.The geoelectric potential changes constantly due to causes such as magnetotelluric effects, lightning, rainfall, leakage from manmade sources, and electrochemical instabilities of electrodes. All of this noise must be eliminated before preseismic signals are identified, if they exist at all. The VAN group apparently accomplished this task for the first time. They installed multiple short (100-200m) dipoles with different lengths in both north-south and east-west directions and long (1-10 km) dipoles in appropriate orientations at their stations (one of their mega-stations, Ioannina, for example, now has 137 dipoles in operation) and found that practically all of the noise could be eliminated by applying a set of criteria to the data.

  8. Predicting human height by Victorian and genomic methods.

    Science.gov (United States)

    Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M

    2009-08-01

    In the Victorian era, Sir Francis Galton showed that 'when dealing with the transmission of stature from parents to children, the average height of the two parents, ... is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified.

  9. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  10. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  11. Dst Prediction Based on Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2009-12-01

    Full Text Available We reevaluate the Burton equation (Burton et al. 1975 of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q and the decay time (tau of the equation, we examine the relationships between Dst* and VB_s, Delta Dst* and VB_s, and Delta Dst* and Dst* during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h=0 for VB_s leq0.5mV/m. The tau (hour is estimated as 0.060 Dst* + 16.65 for Dst*>-175nT and 6.15 hours for Dst* leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst* is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975 and O'Brien & McPherron (2000a. The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst* lesssim -200nT.

  12. What Predicts Use of Learning-Centered, Interactive Engagement Methods?

    Science.gov (United States)

    Madson, Laura; Trafimow, David; Gray, Tara; Gutowitz, Michael

    2014-01-01

    What makes some faculty members more likely to use interactive engagement methods than others? We use the theory of reasoned action to predict faculty members' use of interactive engagement methods. Results indicate that faculty members' beliefs about the personal positive consequences of using these methods (e.g., "Using interactive…

  13. Wavelet-based prediction of oil prices

    International Nuclear Information System (INIS)

    Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik

    2005-01-01

    This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced

  14. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wá ng, Yì ; Yu, Bo; Sun, Shuyu

    2012-01-01

    , the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering

  15. Development of motion image prediction method using principal component analysis

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Kamiaka, Kazuma

    2012-01-01

    Respiratory motion can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to minimize the impact of healthy tissue irradiation due to the lung tumor motion. The purpose of this research is to develop an algorithm for the improvement of image guided radiation therapy by the prediction of motion images. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. The images/movies were successfully predicted and verified using the developed algorithm. With the proposed prediction method it is possible to forecast the tumor images over the next breathing period. The implementation of this method in real time is believed to be significant for higher level of tumor tracking including the detection of sudden abdominal changes during radiation therapy. (author)

  16. An assessment on epitope prediction methods for protozoa genomes

    Directory of Open Access Journals (Sweden)

    Resende Daniela M

    2012-11-01

    Full Text Available Abstract Background Epitope prediction using computational methods represents one of the most promising approaches to vaccine development. Reduction of time, cost, and the availability of completely sequenced genomes are key points and highly motivating regarding the use of reverse vaccinology. Parasites of genus Leishmania are widely spread and they are the etiologic agents of leishmaniasis. Currently, there is no efficient vaccine against this pathogen and the drug treatment is highly toxic. The lack of sufficiently large datasets of experimentally validated parasites epitopes represents a serious limitation, especially for trypanomatids genomes. In this work we highlight the predictive performances of several algorithms that were evaluated through the development of a MySQL database built with the purpose of: a evaluating individual algorithms prediction performances and their combination for CD8+ T cell epitopes, B-cell epitopes and subcellular localization by means of AUC (Area Under Curve performance and a threshold dependent method that employs a confusion matrix; b integrating data from experimentally validated and in silico predicted epitopes; and c integrating the subcellular localization predictions and experimental data. NetCTL, NetMHC, BepiPred, BCPred12, and AAP12 algorithms were used for in silico epitope prediction and WoLF PSORT, Sigcleave and TargetP for in silico subcellular localization prediction against trypanosomatid genomes. Results A database-driven epitope prediction method was developed with built-in functions that were capable of: a removing experimental data redundancy; b parsing algorithms predictions and storage experimental validated and predict data; and c evaluating algorithm performances. Results show that a better performance is achieved when the combined prediction is considered. This is particularly true for B cell epitope predictors, where the combined prediction of AAP12 and BCPred12 reached an AUC value

  17. Prediction of welding shrinkage deformation of bridge steel box girder based on wavelet neural network

    Science.gov (United States)

    Tao, Yulong; Miao, Yunshui; Han, Jiaqi; Yan, Feiyun

    2018-05-01

    Aiming at the low accuracy of traditional forecasting methods such as linear regression method, this paper presents a prediction method for predicting the relationship between bridge steel box girder and its displacement with wavelet neural network. Compared with traditional forecasting methods, this scheme has better local characteristics and learning ability, which greatly improves the prediction ability of deformation. Through analysis of the instance and found that after compared with the traditional prediction method based on wavelet neural network, the rigid beam deformation prediction accuracy is higher, and is superior to the BP neural network prediction results, conform to the actual demand of engineering design.

  18. EMD-Based Predictive Deep Belief Network for Time Series Prediction: An Application to Drought Forecasting

    Directory of Open Access Journals (Sweden)

    Norbert A. Agana

    2018-02-01

    Full Text Available Drought is a stochastic natural feature that arises due to intense and persistent shortage of precipitation. Its impact is mostly manifested as agricultural and hydrological droughts following an initial meteorological phenomenon. Drought prediction is essential because it can aid in the preparedness and impact-related management of its effects. This study considers the drought forecasting problem by developing a hybrid predictive model using a denoised empirical mode decomposition (EMD and a deep belief network (DBN. The proposed method first decomposes the data into several intrinsic mode functions (IMFs using EMD, and a reconstruction of the original data is obtained by considering only relevant IMFs. Detrended fluctuation analysis (DFA was applied to each IMF to determine the threshold for robust denoising performance. Based on their scaling exponents, irrelevant intrinsic mode functions are identified and suppressed. The proposed method was applied to predict different time scale drought indices across the Colorado River basin using a standardized streamflow index (SSI as the drought index. The results obtained using the proposed method was compared with standard methods such as multilayer perceptron (MLP and support vector regression (SVR. The proposed hybrid model showed improvement in prediction accuracy, especially for multi-step ahead predictions.

  19. Assessment of a method for the prediction of mandibular rotation.

    Science.gov (United States)

    Lee, R S; Daniel, F J; Swartz, M; Baumrind, S; Korn, E L

    1987-05-01

    A new method to predict mandibular rotation developed by Skieller and co-workers on a sample of 21 implant subjects with extreme growth patterns has been tested against an alternative sample of 25 implant patients with generally similar mean values, but with less extreme facial patterns. The method, which had been highly successful in retrospectively predicting changes in the sample of extreme subjects, was much less successful in predicting individual patterns of mandibular rotation in the new, less extreme sample. The observation of a large difference in the strength of the predictions for these two samples, even though their mean values were quite similar, should serve to increase our awareness of the complexity of the problem of predicting growth patterns in individual cases.

  20. Link Prediction in Evolving Networks Based on Popularity of Nodes.

    Science.gov (United States)

    Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian

    2017-08-02

    Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.

  1. Comparison of four statistical and machine learning methods for crash severity prediction.

    Science.gov (United States)

    Iranitalab, Amirfarrokh; Khattak, Aemal

    2017-11-01

    Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Blind Test of Physics-Based Prediction of Protein Structures

    Science.gov (United States)

    Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.

    2009-01-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130

  3. Performance prediction method for a multi-stage Knudsen pump

    Science.gov (United States)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.; Yamaguchi, H.; Niimi, T.

    2017-12-01

    In this study, the novel method to predict the performance of a multi-stage Knudsen pump is proposed. The performance prediction method is carried out in two steps numerically with the assistance of a simple experimental result. In the first step, the performance of a single-stage Knudsen pump was measured experimentally under various pressure conditions, and the relationship of the mass flow rate was obtained with respect to the average pressure between the inlet and outlet of the pump and the pressure difference between them. In the second step, the performance of a multi-stage pump was analyzed by a one-dimensional model derived from the mass conservation law. The performances predicted by the 1D-model of 1-stage, 2-stage, 3-stage, and 4-stage pumps were validated by the experimental results for the corresponding number of stages. It was concluded that the proposed prediction method works properly.

  4. Drug-target interaction prediction from PSSM based evolutionary information.

    Science.gov (United States)

    Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-01-01

    The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A comparison of different methods for predicting coal devolatilisation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Pevida, C.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2001-04-01

    Knowledge of the coal devolatilisation rate is of great importance because it exerts a marked effect on the overall combustion behaviour. Different approaches can be used to obtain the kinetics of the complex devolatilisation process. The simplest are empirical and employ global kinetics, where the Arrhenius expression is used to correlate rates of mass loss with temperature. In this study a high volatile bituminous coal was devolatilised at four different heating rates in a thermogravimetric analyser (TG) linked to a mass spectrometer (MS). As a first approach, the Arrhenius kinetic parameters (k and A) were calculated from the experimental results, assuming a single step process. Another approach is the distributed-activation energy model, which is more complex due to the assumption that devolatilisation occurs through several first-order reactions, which occur simultaneously. Recent advances in the understanding of coal structure have led to more fundamental approaches for modelling devolatilisation behaviour, such as network models. These are based on a physico-chemical description of coal structure. In the present study the FG-DVC (Functional Group-Depolymerisation, Vaporisation and Crosslinking) computer code was used as the network model and the FG-DVC predicted evolution of volatile compounds was compared with the experimental results. In addition, the predicted rate of mass loss from the FG-DVC model was used to obtain a third devolatilisation kinetic approach. The three methods were compared and discussed, with the experimental results as a reference.

  6. A prediction method of natural gas hydrate formation in deepwater gas well and its application

    Directory of Open Access Journals (Sweden)

    Yanli Guo

    2016-09-01

    Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.

  7. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    Science.gov (United States)

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Based on Penalty Function Method

    Directory of Open Access Journals (Sweden)

    Ishaq Baba

    2015-01-01

    Full Text Available The dual response surface for simultaneously optimizing the mean and variance models as separate functions suffers some deficiencies in handling the tradeoffs between bias and variance components of mean squared error (MSE. In this paper, the accuracy of the predicted response is given a serious attention in the determination of the optimum setting conditions. We consider four different objective functions for the dual response surface optimization approach. The essence of the proposed method is to reduce the influence of variance of the predicted response by minimizing the variability relative to the quality characteristics of interest and at the same time achieving the specific target output. The basic idea is to convert the constraint optimization function into an unconstraint problem by adding the constraint to the original objective function. Numerical examples and simulations study are carried out to compare performance of the proposed method with some existing procedures. Numerical results show that the performance of the proposed method is encouraging and has exhibited clear improvement over the existing approaches.

  9. Prediction on carbon dioxide emissions based on fuzzy rules

    Science.gov (United States)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  10. Predicting online ratings based on the opinion spreading process

    Science.gov (United States)

    He, Xing-Sheng; Zhou, Ming-Yang; Zhuo, Zhao; Fu, Zhong-Qian; Liu, Jian-Guo

    2015-10-01

    Predicting users' online ratings is always a challenge issue and has drawn lots of attention. In this paper, we present a rating prediction method by combining the user opinion spreading process with the collaborative filtering algorithm, where user similarity is defined by measuring the amount of opinion a user transfers to another based on the primitive user-item rating matrix. The proposed method could produce a more precise rating prediction for each unrated user-item pair. In addition, we introduce a tunable parameter λ to regulate the preferential diffusion relevant to the degree of both opinion sender and receiver. The numerical results for Movielens and Netflix data sets show that this algorithm has a better accuracy than the standard user-based collaborative filtering algorithm using Cosine and Pearson correlation without increasing computational complexity. By tuning λ, our method could further boost the prediction accuracy when using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as measurements. In the optimal cases, on Movielens and Netflix data sets, the corresponding algorithmic accuracy (MAE and RMSE) are improved 11.26% and 8.84%, 13.49% and 10.52% compared to the item average method, respectively.

  11. The trajectory prediction of spacecraft by grey method

    International Nuclear Information System (INIS)

    Wang, Qiyue; Wang, Zhongyu; Zhang, Zili; Wang, Yanqing; Zhou, Weihu

    2016-01-01

    The real-time and high-precision trajectory prediction of a moving object is a core technology in the field of aerospace engineering. The real-time monitoring and tracking technology are also significant guarantees of aerospace equipment. A dynamic trajectory prediction method called grey dynamic filter (GDF) which combines the dynamic measurement theory and grey system theory is proposed. GDF can use coordinates of the current period to extrapolate coordinates of the following period. At meantime, GDF can also keep the instantaneity of measured coordinates by the metabolism model. In this paper the optimal model length of GDF is firstly selected to improve the prediction accuracy. Then the simulation for uniformly accelerated motion and variably accelerated motion is conducted. The simulation results indicate that the mean composite position error of GDF prediction is one-fifth to that of Kalman filter (KF). By using a spacecraft landing experiment, the prediction accuracy of GDF is compared with the KF method and the primitive grey method (GM). The results show that the motion trajectory of spacecraft predicted by GDF is much closer to actual trajectory than the other two methods. The mean composite position error calculated by GDF is one-eighth to KF and one-fifth to GM respectively. (paper)

  12. Predicting chaos in memristive oscillator via harmonic balance method.

    Science.gov (United States)

    Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai

    2012-12-01

    This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.

  13. Safety prediction for basic components of safety critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2001-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, both of which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  14. Safety prediction for basic components of safety-critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2000-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  15. Available Prediction Methods for Corrosion under Insulation (CUI): A Review

    OpenAIRE

    Burhani Nurul Rawaida Ain; Muhammad Masdi; Ismail Mokhtar Che

    2014-01-01

    Corrosion under insulation (CUI) is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external su...

  16. Methods, apparatus and system for notification of predictable memory failure

    Energy Technology Data Exchange (ETDEWEB)

    Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2017-01-03

    A method for providing notification of a predictable memory failure includes the steps of: obtaining information regarding at least one condition associated with a memory; calculating a memory failure probability as a function of the obtained information; calculating a failure probability threshold; and generating a signal when the memory failure probability exceeds the failure probability threshold, the signal being indicative of a predicted future memory failure.

  17. Three-dimensional protein structure prediction: Methods and computational strategies.

    Science.gov (United States)

    Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C

    2014-10-12

    A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  19. Methods and techniques for prediction of environmental impact

    International Nuclear Information System (INIS)

    1992-04-01

    Environmental impact assessment (EIA) is the procedure that helps decision makers understand the environmental implications of their decisions. The prediction of environmental effects or impact is an extremely important part of the EIA procedure and improvements in existing capabilities are needed. Considerable attention is paid within environmental impact assessment and in handbooks on EIA to methods for identifying and evaluating environmental impacts. However, little attention is given to the issue distribution of information on impact prediction methods. The quantitative or qualitative methods for the prediction of environmental impacts appear to be the two basic approaches for incorporating environmental concerns into the decision-making process. Depending on the nature of the proposed activity and the environment likely to be affected, a combination of both quantitative and qualitative methods is used. Within environmental impact assessment, the accuracy of methods for the prediction of environmental impacts is of major importance while it provides for sound and well-balanced decision making. Pertinent and effective action to deal with the problems of environmental protection and the rational use of natural resources and sustainable development is only possible given objective methods and techniques for the prediction of environmental impact. Therefore, the Senior Advisers to ECE Governments on Environmental and Water Problems, decided to set up a task force, with the USSR as lead country, on methods and techniques for the prediction of environmental impacts in order to undertake a study to review and analyse existing methodological approaches and to elaborate recommendations to ECE Governments. The work of the task force was completed in 1990 and the resulting report, with all relevant background material, was approved by the Senior Advisers to ECE Governments on Environmental and Water Problems in 1991. The present report reflects the situation, state of

  20. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  1. DASPfind: new efficient method to predict drug–target interactions

    KAUST Repository

    Ba Alawi, Wail; Soufan, Othman; Essack, Magbubah; Kalnis, Panos; Bajic, Vladimir B.

    2016-01-01

    DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind can be accessed online at: http://​www.​cbrc.​kaust.​edu.​sa/​daspfind.

  2. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  3. Prediction of polymer flooding performance using an analytical method

    International Nuclear Information System (INIS)

    Tan Czek Hoong; Mariyamni Awang; Foo Kok Wai

    2001-01-01

    The study investigated the applicability of an analytical method developed by El-Khatib in polymer flooding. Results from a simulator UTCHEM and experiments were compared with the El-Khatib prediction method. In general, by assuming a constant viscosity polymer injection, the method gave much higher recovery values than the simulation runs and the experiments. A modification of the method gave better correlation, albeit only oil production. Investigation is continuing on modifying the method so that a better overall fit can be obtained for polymer flooding. (Author)

  4. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN)

    International Nuclear Information System (INIS)

    Ernst, Floris; Schweikard, Achim

    2008-01-01

    Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)

  5. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN)

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Floris; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)

    2008-06-15

    Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)

  6. Entropy-based benchmarking methods

    NARCIS (Netherlands)

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth

  7. Preface to the Focus Issue: Chaos Detection Methods and Predictability

    International Nuclear Information System (INIS)

    Gottwald, Georg A.; Skokos, Charalampos

    2014-01-01

    This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17–21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue

  8. Preface to the Focus Issue: chaos detection methods and predictability.

    Science.gov (United States)

    Gottwald, Georg A; Skokos, Charalampos

    2014-06-01

    This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17-21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.

  9. Offset Free Tracking Predictive Control Based on Dynamic PLS Framework

    Directory of Open Access Journals (Sweden)

    Jin Xin

    2017-10-01

    Full Text Available This paper develops an offset free tracking model predictive control based on a dynamic partial least square (PLS framework. First, state space model is used as the inner model of PLS to describe the dynamic system, where subspace identification method is used to identify the inner model. Based on the obtained model, multiple independent model predictive control (MPC controllers are designed. Due to the decoupling character of PLS, these controllers are running separately, which is suitable for distributed control framework. In addition, the increment of inner model output is considered in the cost function of MPC, which involves integral action in the controller. Hence, the offset free tracking performance is guaranteed. The results of an industry background simulation demonstrate the effectiveness of proposed method.

  10. Crystal density predictions for nitramines based on quantum chemistry

    International Nuclear Information System (INIS)

    Qiu Ling; Xiao Heming; Gong Xuedong; Ju Xuehai; Zhu Weihua

    2007-01-01

    An efficient and convenient method for predicting the crystalline densities of energetic materials was established based on the quantum chemical computations. Density functional theory (DFT) with four different basis sets (6-31G**, 6-311G**, 6-31+G**, and 6-311++G**) and various semiempirical molecular orbital (MO) methods have been employed to predict the molecular volumes and densities of a series of energetic nitramines including acyclic, monocyclic, and polycyclic/cage molecules. The relationships between the calculated values and experimental data were discussed in detail, and linear correlations were suggested and compared at different levels. The calculation shows that if the selected basis set is larger, it will expend more CPU (central processing unit) time, larger molecular volume and smaller density will be obtained. And the densities predicted by the semiempirical MO methods are all systematically larger than the experimental data. In comparison with other methods, B3LYP/6-31G** is most accurate and economical to predict the solid-state densities of energetic nitramines. This may be instructive to the molecular designing and screening novel HEDMs

  11. Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding.

    Science.gov (United States)

    Zhang, Xianguo; Huang, Tiejun; Tian, Yonghong; Gao, Wen

    2014-02-01

    The exponential growth of surveillance videos presents an unprecedented challenge for high-efficiency surveillance video coding technology. Compared with the existing coding standards that were basically developed for generic videos, surveillance video coding should be designed to make the best use of the special characteristics of surveillance videos (e.g., relative static background). To do so, this paper first conducts two analyses on how to improve the background and foreground prediction efficiencies in surveillance video coding. Following the analysis results, we propose a background-modeling-based adaptive prediction (BMAP) method. In this method, all blocks to be encoded are firstly classified into three categories. Then, according to the category of each block, two novel inter predictions are selectively utilized, namely, the background reference prediction (BRP) that uses the background modeled from the original input frames as the long-term reference and the background difference prediction (BDP) that predicts the current data in the background difference domain. For background blocks, the BRP can effectively improve the prediction efficiency using the higher quality background as the reference; whereas for foreground-background-hybrid blocks, the BDP can provide a better reference after subtracting its background pixels. Experimental results show that the BMAP can achieve at least twice the compression ratio on surveillance videos as AVC (MPEG-4 Advanced Video Coding) high profile, yet with a slightly additional encoding complexity. Moreover, for the foreground coding performance, which is crucial to the subjective quality of moving objects in surveillance videos, BMAP also obtains remarkable gains over several state-of-the-art methods.

  12. Empirical comparison of web-based antimicrobial peptide prediction tools.

    Science.gov (United States)

    Gabere, Musa Nur; Noble, William Stafford

    2017-07-01

    Antimicrobial peptides (AMPs) are innate immune molecules that exhibit activities against a range of microbes, including bacteria, fungi, viruses and protozoa. Recent increases in microbial resistance against current drugs has led to a concomitant increase in the need for novel antimicrobial agents. Over the last decade, a number of AMP prediction tools have been designed and made freely available online. These AMP prediction tools show potential to discriminate AMPs from non-AMPs, but the relative quality of the predictions produced by the various tools is difficult to quantify. We compiled two sets of AMP and non-AMP peptides, separated into three categories-antimicrobial, antibacterial and bacteriocins. Using these benchmark data sets, we carried out a systematic evaluation of ten publicly available AMP prediction methods. Among the six general AMP prediction tools-ADAM, CAMPR3(RF), CAMPR3(SVM), MLAMP, DBAASP and MLAMP-we find that CAMPR3(RF) provides a statistically significant improvement in performance, as measured by the area under the receiver operating characteristic (ROC) curve, relative to the other five methods. Surprisingly, for antibacterial prediction, the original AntiBP method significantly outperforms its successor, AntiBP2 based on one benchmark dataset. The two bacteriocin prediction tools, BAGEL3 and BACTIBASE, both provide very good performance and BAGEL3 outperforms its predecessor, BACTIBASE, on the larger of the two benchmarks. gaberemu@ngha.med.sa or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. Bayesian Methods for Predicting the Shape of Chinese Yam in Terms of Key Diameters

    Directory of Open Access Journals (Sweden)

    Mitsunori Kayano

    2017-01-01

    Full Text Available This paper proposes Bayesian methods for the shape estimation of Chinese yam (Dioscorea opposita using a few key diameters of yam. Shape prediction of yam is applicable to determining optimal cutoff positions of a yam for producing seed yams. Our Bayesian method, which is a combination of Bayesian estimation model and predictive model, enables automatic, rapid, and low-cost processing of yam. After the construction of the proposed models using a sample data set in Japan, the models provide whole shape prediction of yam based on only a few key diameters. The Bayesian method performed well on the shape prediction in terms of minimizing the mean squared error between measured shape and the prediction. In particular, a multiple regression method with key diameters at two fixed positions attained the highest performance for shape prediction. We have developed automatic, rapid, and low-cost yam-processing machines based on the Bayesian estimation model and predictive model. Development of such shape prediction approaches, including our Bayesian method, can be a valuable aid in reducing the cost and time in food processing.

  14. Color image definition evaluation method based on deep learning method

    Science.gov (United States)

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  15. Prediction of residual stress using explicit finite element method

    Directory of Open Access Journals (Sweden)

    W.A. Siswanto

    2015-12-01

    Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.

  16. Multi-Objective Predictive Balancing Control of Battery Packs Based on Predictive Current

    Directory of Open Access Journals (Sweden)

    Wenbiao Li

    2016-04-01

    Full Text Available Various balancing topology and control methods have been proposed for the inconsistency problem of battery packs. However, these strategies only focus on a single objective, ignore the mutual interaction among various factors and are only based on the external performance of the battery pack inconsistency, such as voltage balancing and state of charge (SOC balancing. To solve these problems, multi-objective predictive balancing control (MOPBC based on predictive current is proposed in this paper, namely, in the driving process of an electric vehicle, using predictive control to predict the battery pack output current the next time. Based on this information, the impact of the battery pack temperature caused by the output current can be obtained. Then, the influence is added to the battery pack balancing control, which makes the present degradation, temperature, and SOC imbalance achieve balance automatically due to the change of the output current the next moment. According to MOPBC, the simulation model of the balancing circuit is built with four cells in Matlab/Simulink. The simulation results show that MOPBC is not only better than the other traditional balancing control strategies but also reduces the energy loss in the balancing process.

  17. Combining gene prediction methods to improve metagenomic gene annotation

    Directory of Open Access Journals (Sweden)

    Rosen Gail L

    2011-01-01

    Full Text Available Abstract Background Traditional gene annotation methods rely on characteristics that may not be available in short reads generated from next generation technology, resulting in suboptimal performance for metagenomic (environmental samples. Therefore, in recent years, new programs have been developed that optimize performance on short reads. In this work, we benchmark three metagenomic gene prediction programs and combine their predictions to improve metagenomic read gene annotation. Results We not only analyze the programs' performance at different read-lengths like similar studies, but also separate different types of reads, including intra- and intergenic regions, for analysis. The main deficiencies are in the algorithms' ability to predict non-coding regions and gene edges, resulting in more false-positives and false-negatives than desired. In fact, the specificities of the algorithms are notably worse than the sensitivities. By combining the programs' predictions, we show significant improvement in specificity at minimal cost to sensitivity, resulting in 4% improvement in accuracy for 100 bp reads with ~1% improvement in accuracy for 200 bp reads and above. To correctly annotate the start and stop of the genes, we find that a consensus of all the predictors performs best for shorter read lengths while a unanimous agreement is better for longer read lengths, boosting annotation accuracy by 1-8%. We also demonstrate use of the classifier combinations on a real dataset. Conclusions To optimize the performance for both prediction and annotation accuracies, we conclude that the consensus of all methods (or a majority vote is the best for reads 400 bp and shorter, while using the intersection of GeneMark and Orphelia predictions is the best for reads 500 bp and longer. We demonstrate that most methods predict over 80% coding (including partially coding reads on a real human gut sample sequenced by Illumina technology.

  18. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  19. Deep-Learning-Based Drug-Target Interaction Prediction.

    Science.gov (United States)

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  20. Skill forecasting from different wind power ensemble prediction methods

    International Nuclear Information System (INIS)

    Pinson, Pierre; Nielsen, Henrik A; Madsen, Henrik; Kariniotakis, George

    2007-01-01

    This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the dispersion of ensemble members for a single prediction horizon, or over a set of successive look-ahead times. It is shown on the test case of a Danish offshore wind farm how prediction risk indices may be related to several levels of forecast uncertainty (and energy imbalances). Wind power ensemble predictions are derived from the transformation of ECMWF and NCEP ensembles of meteorological variables to power, as well as by a lagged average approach alternative. The ability of risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed

  1. Orthology prediction methods: a quality assessment using curated protein families.

    Science.gov (United States)

    Trachana, Kalliopi; Larsson, Tomas A; Powell, Sean; Chen, Wei-Hua; Doerks, Tobias; Muller, Jean; Bork, Peer

    2011-10-01

    The increasing number of sequenced genomes has prompted the development of several automated orthology prediction methods. Tests to evaluate the accuracy of predictions and to explore biases caused by biological and technical factors are therefore required. We used 70 manually curated families to analyze the performance of five public methods in Metazoa. We analyzed the strengths and weaknesses of the methods and quantified the impact of biological and technical challenges. From the latter part of the analysis, genome annotation emerged as the largest single influencer, affecting up to 30% of the performance. Generally, most methods did well in assigning orthologous group but they failed to assign the exact number of genes for half of the groups. The publicly available benchmark set (http://eggnog.embl.de/orthobench/) should facilitate the improvement of current orthology assignment protocols, which is of utmost importance for many fields of biology and should be tackled by a broad scientific community. Copyright © 2011 WILEY Periodicals, Inc.

  2. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wáng, Yì

    2012-03-14

    A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  4. A Novel Grey Wave Method for Predicting Total Chinese Trade Volume

    Directory of Open Access Journals (Sweden)

    Kedong Yin

    2017-12-01

    Full Text Available The total trade volume of a country is an important way of appraising its international trade situation. A prediction based on trade volume will help enterprises arrange production efficiently and promote the sustainability of the international trade. Because the total Chinese trade volume fluctuates over time, this paper proposes a Grey wave forecasting model with a Hodrick–Prescott filter (HP filter to forecast it. This novel model first parses time series into long-term trend and short-term cycle. Second, the model uses a general GM (1,1 to predict the trend term and the Grey wave forecasting model to predict the cycle term. Empirical analysis shows that the improved Grey wave prediction method provides a much more accurate forecast than the basic Grey wave prediction method, achieving better prediction results than autoregressive moving average model (ARMA.

  5. Predicting proteasomal cleavage sites: a comparison of available methods

    DEFF Research Database (Denmark)

    Saxova, P.; Buus, S.; Brunak, Søren

    2003-01-01

    -terminal, in particular, of CTL epitopes is cleaved precisely by the proteasome, whereas the N-terminal is produced with an extension, and later trimmed by peptidases in the cytoplasm and in the endoplasmic reticulum. Recently, three publicly available methods have been developed for prediction of the specificity...

  6. PNN-based Rockburst Prediction Model and Its Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2017-07-01

    Full Text Available Rock burst is one of main engineering geological problems significantly threatening the safety of construction. Prediction of rock burst is always an important issue concerning the safety of workers and equipment in tunnels. In this paper, a novel PNN-based rock burst prediction model is proposed to determine whether rock burst will happen in the underground rock projects and how much the intensity of rock burst is. The probabilistic neural network (PNN is developed based on Bayesian criteria of multivariate pattern classification. Because PNN has the advantages of low training complexity, high stability, quick convergence, and simple construction, it can be well applied in the prediction of rock burst. Some main control factors, such as rocks’ maximum tangential stress, rocks’ uniaxial compressive strength, rocks’ uniaxial tensile strength, and elastic energy index of rock are chosen as the characteristic vector of PNN. PNN model is obtained through training data sets of rock burst samples which come from underground rock project in domestic and abroad. Other samples are tested with the model. The testing results agree with the practical records. At the same time, two real-world applications are used to verify the proposed method. The results of prediction are same as the results of existing methods, just same as what happened in the scene, which verifies the effectiveness and applicability of our proposed work.

  7. PROXIMAL: a method for Prediction of Xenobiotic Metabolism.

    Science.gov (United States)

    Yousofshahi, Mona; Manteiga, Sara; Wu, Charmian; Lee, Kyongbum; Hassoun, Soha

    2015-12-22

    Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.

  8. Driver's mental workload prediction model based on physiological indices.

    Science.gov (United States)

    Yan, Shengyuan; Tran, Cong Chi; Wei, Yingying; Habiyaremye, Jean Luc

    2017-09-15

    Developing an early warning model to predict the driver's mental workload (MWL) is critical and helpful, especially for new or less experienced drivers. The present study aims to investigate the correlation between new drivers' MWL and their work performance, regarding the number of errors. Additionally, the group method of data handling is used to establish the driver's MWL predictive model based on subjective rating (NASA task load index [NASA-TLX]) and six physiological indices. The results indicate that the NASA-TLX and the number of errors are positively correlated, and the predictive model shows the validity of the proposed model with an R 2 value of 0.745. The proposed model is expected to provide a reference value for the new drivers of their MWL by providing the physiological indices, and the driving lesson plans can be proposed to sustain an appropriate MWL as well as improve the driver's work performance.

  9. Ontology-based prediction of surgical events in laparoscopic surgery

    Science.gov (United States)

    Katić, Darko; Wekerle, Anna-Laura; Gärtner, Fabian; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2013-03-01

    Context-aware technologies have great potential to help surgeons during laparoscopic interventions. Their underlying idea is to create systems which can adapt their assistance functions automatically to the situation in the OR, thus relieving surgeons from the burden of managing computer assisted surgery devices manually. To this purpose, a certain kind of understanding of the current situation in the OR is essential. Beyond that, anticipatory knowledge of incoming events is beneficial, e.g. for early warnings of imminent risk situations. To achieve the goal of predicting surgical events based on previously observed ones, we developed a language to describe surgeries and surgical events using Description Logics and integrated it with methods from computational linguistics. Using n-Grams to compute probabilities of followup events, we are able to make sensible predictions of upcoming events in real-time. The system was evaluated on professionally recorded and labeled surgeries and showed an average prediction rate of 80%.

  10. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  11. Predicting and explaining inflammation in Crohn's disease patients using predictive analytics methods and electronic medical record data.

    Science.gov (United States)

    Reddy, Bhargava K; Delen, Dursun; Agrawal, Rupesh K

    2018-01-01

    Crohn's disease is among the chronic inflammatory bowel diseases that impact the gastrointestinal tract. Understanding and predicting the severity of inflammation in real-time settings is critical to disease management. Extant literature has primarily focused on studies that are conducted in clinical trial settings to investigate the impact of a drug treatment on the remission status of the disease. This research proposes an analytics methodology where three different types of prediction models are developed to predict and to explain the severity of inflammation in patients diagnosed with Crohn's disease. The results show that machine-learning-based analytic methods such as gradient boosting machines can predict the inflammation severity with a very high accuracy (area under the curve = 92.82%), followed by regularized regression and logistic regression. According to the findings, a combination of baseline laboratory parameters, patient demographic characteristics, and disease location are among the strongest predictors of inflammation severity in Crohn's disease patients.

  12. Power system dynamic state estimation using prediction based evolutionary technique

    International Nuclear Information System (INIS)

    Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan

    2016-01-01

    In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.

  13. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  14. A probabilistic fragment-based protein structure prediction algorithm.

    Directory of Open Access Journals (Sweden)

    David Simoncini

    Full Text Available Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of [Formula: see text] proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold's decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software.html [corrected].

  15. A METHOD OF PREDICTING BREAST CANCER USING QUESTIONNAIRES

    Directory of Open Access Journals (Sweden)

    V. N. Malashenko

    2017-01-01

    Full Text Available Purpose. Simplify and increase the accuracy of the questionnaire method of predicting breast cancer (BC for subsequent computer processing and Automated dispensary at risk without the doctor.Materials and methods. The work was based on statistical data obtained by surveying 305 women. The questionnaire included 63 items: 17 open-ended questions, 46 — with a choice of response. It was established multifactor model, the development of which, in addition to the survey data were used materials from the medical histories of patients and respondents data immuno-histochemical studies. Data analysis was performed using Statistica 10.0 and MedCalc 12.7.0 programs.Results. The ROC analysis was performas and the questionnaire data revealed 8 significant predictors of breast cancer. On their basis we created the formula for calculating the prognostic factor of risk of development of breast cancer with a sensitivity 83,12% and a specificity of 91,43%.Conclusions. The completed developments allow to create a computer program for automated processing of profiles on the formation of groups at risk of breast cancer and clinical supervision. The introduction of a screening questionnaire over the Internet with subsequent computer processing of the results, without the direct involvement of doctors, will increase the coverage of the female population of the Russian Federation activities related to the prevention of breast cancer. It can free up time for physicians to receive primary patients, as well as improve oncological vigilance of the female population of the Russian Federation.

  16. A study on the fatigue life prediction of tire belt-layers using probabilistic method

    International Nuclear Information System (INIS)

    Lee, Dong Woo; Park, Jong Sang; Lee, Tae Won; Kim, Seong Rae; Sung, Ki Deug; Huh, Sun Chul

    2013-01-01

    Tire belt separation failure is occurred by internal cracks generated in *1 and *2 belt layers and by its growth. And belt failure seriously affects tire endurance. Therefore, to improve the tire endurance, it is necessary to analyze tire crack growth behavior and predict fatigue life. Generally, the prediction of tire endurance is performed by the experimental method using tire test machine. But it takes much cost and time to perform experiment. In this paper, to predict tire fatigue life, we applied deterministic fracture mechanics approach, based on finite element analysis. Also, probabilistic analysis method based on statistics using Monte Carlo simulation is presented. Above mentioned two methods include a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and calculate the J-integral for tire life prediction.

  17. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    Science.gov (United States)

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction

  18. Method of predicting surface deformation in the form of sinkholes

    Energy Technology Data Exchange (ETDEWEB)

    Chudek, M.; Arkuszewski, J.

    1980-06-01

    Proposes a method for predicting probability of sinkhole shaped subsidence, number of funnel-shaped subsidences and size of individual funnels. The following factors which influence the sudden subsidence of the surface in the form of funnels are analyzed: geologic structure of the strata between mining workings and the surface, mining depth, time factor, and geologic disolocations. Sudden surface subsidence is observed only in the case of workings situated up to a few dozen meters from the surface. Using the proposed method is explained with some examples. It is suggested that the method produces correct results which can be used in coal mining and in ore mining. (1 ref.) (In Polish)

  19. Wind power prediction based on genetic neural network

    Science.gov (United States)

    Zhang, Suhan

    2017-04-01

    The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.

  20. Machine learning methods to predict child posttraumatic stress: a proof of concept study.

    Science.gov (United States)

    Saxe, Glenn N; Ma, Sisi; Ren, Jiwen; Aliferis, Constantin

    2017-07-10

    The care of traumatized children would benefit significantly from accurate predictive models for Posttraumatic Stress Disorder (PTSD), using information available around the time of trauma. Machine Learning (ML) computational methods have yielded strong results in recent applications across many diseases and data types, yet they have not been previously applied to childhood PTSD. Since these methods have not been applied to this complex and debilitating disorder, there is a great deal that remains to be learned about their application. The first step is to prove the concept: Can ML methods - as applied in other fields - produce predictive classification models for childhood PTSD? Additionally, we seek to determine if specific variables can be identified - from the aforementioned predictive classification models - with putative causal relations to PTSD. ML predictive classification methods - with causal discovery feature selection - were applied to a data set of 163 children hospitalized with an injury and PTSD was determined three months after hospital discharge. At the time of hospitalization, 105 risk factor variables were collected spanning a range of biopsychosocial domains. Seven percent of subjects had a high level of PTSD symptoms. A predictive classification model was discovered with significant predictive accuracy. A predictive model constructed based on subsets of potentially causally relevant features achieves similar predictivity compared to the best predictive model constructed with all variables. Causal Discovery feature selection methods identified 58 variables of which 10 were identified as most stable. In this first proof-of-concept application of ML methods to predict childhood Posttraumatic Stress we were able to determine both predictive classification models for childhood PTSD and identify several causal variables. This set of techniques has great potential for enhancing the methodological toolkit in the field and future studies should seek to

  1. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  2. Activity – based costing method

    Directory of Open Access Journals (Sweden)

    Èuchranová Katarína

    2001-06-01

    Full Text Available Activity based costing is a method of identifying and tracking the operating costs directly associated with processing items. It is the practice of focusing on some unit of output, such as a purchase order or an assembled automobile and attempting to determine its total as precisely as poccible based on the fixed and variable costs of the inputs.You use ABC to identify, quantify and analyze the various cost drivers (such as labor, materials, administrative overhead, rework. and to determine which ones are candidates for reduction.A processes any activity that accepts inputs, adds value to these inputs for customers and produces outputs for these customers. The customer may be either internal or external to the organization. Every activity within an organization comprimes one or more processes. Inputs, controls and resources are all supplied to the process.A process owner is the person responsible for performing and or controlling the activity.The direction of cost through their contact to partial activity and processes is a new modern theme today. Beginning of this method is connected with very important changes in the firm processes.ABC method is a instrument , that bring a competitive advantages for the firm.

  3. Predicting Plasma Glucose From Interstitial Glucose Observations Using Bayesian Methods

    DEFF Research Database (Denmark)

    Hansen, Alexander Hildenbrand; Duun-Henriksen, Anne Katrine; Juhl, Rune

    2014-01-01

    One way of constructing a control algorithm for an artificial pancreas is to identify a model capable of predicting plasma glucose (PG) from interstitial glucose (IG) observations. Stochastic differential equations (SDEs) make it possible to account both for the unknown influence of the continuous...... glucose monitor (CGM) and for unknown physiological influences. Combined with prior knowledge about the measurement devices, this approach can be used to obtain a robust predictive model. A stochastic-differential-equation-based gray box (SDE-GB) model is formulated on the basis of an identifiable...

  4. Predicting Drug-Target Interactions Based on Small Positive Samples.

    Science.gov (United States)

    Hu, Pengwei; Chan, Keith C C; Hu, Yanxing

    2018-01-01

    A basic task in drug discovery is to find new medication in the form of candidate compounds that act on a target protein. In other words, a drug has to interact with a target and such drug-target interaction (DTI) is not expected to be random. Significant and interesting patterns are expected to be hidden in them. If these patterns can be discovered, new drugs are expected to be more easily discoverable. Currently, a number of computational methods have been proposed to predict DTIs based on their similarity. However, such as approach does not allow biochemical features to be directly considered. As a result, some methods have been proposed to try to discover patterns in physicochemical interactions. Since the number of potential negative DTIs are very high both in absolute terms and in comparison to that of the known ones, these methods are rather computationally expensive and they can only rely on subsets, rather than the full set, of negative DTIs for training and validation. As there is always a relatively high chance for negative DTIs to be falsely identified and as only partial subset of such DTIs is considered, existing approaches can be further improved to better predict DTIs. In this paper, we present a novel approach, called ODT (one class drug target interaction prediction), for such purpose. One main task of ODT is to discover association patterns between interacting drugs and proteins from the chemical structure of the former and the protein sequence network of the latter. ODT does so in two phases. First, the DTI-network is transformed to a representation by structural properties. Second, it applies a oneclass classification algorithm to build a prediction model based only on known positive interactions. We compared the best AUROC scores of the ODT with several state-of-art approaches on Gold standard data. The prediction accuracy of the ODT is superior in comparison with all the other methods at GPCRs dataset and Ion channels dataset. Performance

  5. Prediction of mortality based on facial characteristics

    Directory of Open Access Journals (Sweden)

    Arnaud Delorme

    2016-05-01

    Full Text Available Recent studies have shown that characteristics of the face contain a wealth of information about health, age and chronic clinical conditions. Such studies involve objective measurement of facial features correlated with historical health information. But some individuals also claim to be adept at gauging mortality based on a glance at a person’s photograph. To test this claim, we invited 12 such individuals to see if they could determine if a person was alive or dead based solely on a brief examination of facial photographs. All photos used in the experiment were transformed into a uniform gray scale and then counterbalanced across eight categories: gender, age, gaze direction, glasses, head position, smile, hair color, and image resolution. Participants examined 404 photographs displayed on a computer monitor, one photo at a time, each shown for a maximum of 8 seconds. Half of the individuals in the photos were deceased, and half were alive at the time the experiment was conducted. Participants were asked to press a button if they thought the person in a photo was living or deceased. Overall mean accuracy on this task was 53.8%, where 50% was expected by chance (p < 0.004, two-tail. Statistically significant accuracy was independently obtained in 5 of the 12 participants. We also collected 32-channel electrophysiological recordings and observed a robust difference between images of deceased individuals correctly vs. incorrectly classified in the early event related potential at 100 ms post-stimulus onset. Our results support claims of individuals who report that some as-yet unknown features of the face predict mortality. The results are also compatible with claims about clairvoyance and warrants further investigation.

  6. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    Science.gov (United States)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  7. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  8. Genomic prediction in families of perennial ryegrass based on genotyping-by-sequencing

    DEFF Research Database (Denmark)

    Ashraf, Bilal

    In this thesis we investigate the potential for genomic prediction in perennial ryegrass using genotyping-by-sequencing (GBS) data. Association method based on family-based breeding systems was developed, genomic heritabilities, genomic prediction accurancies and effects of some key factors wer...... explored. Results show that low sequencing depth caused underestimation of allele substitution effects in GWAS and overestimation of genomic heritability in prediction studies. Other factors susch as SNP marker density, population structure and size of training population influenced accuracy of genomic...... prediction. Overall, GBS allows for genomic prediction in breeding families of perennial ryegrass and holds good potential to expedite genetic gain and encourage the application of genomic prediction...

  9. Analysis of deep learning methods for blind protein contact prediction in CASP12.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2018-03-01

    Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.

  10. Fault trend prediction of device based on support vector regression

    International Nuclear Information System (INIS)

    Song Meicun; Cai Qi

    2011-01-01

    The research condition of fault trend prediction and the basic theory of support vector regression (SVR) were introduced. SVR was applied to the fault trend prediction of roller bearing, and compared with other methods (BP neural network, gray model, and gray-AR model). The results show that BP network tends to overlearn and gets into local minimum so that the predictive result is unstable. It also shows that the predictive result of SVR is stabilization, and SVR is superior to BP neural network, gray model and gray-AR model in predictive precision. SVR is a kind of effective method of fault trend prediction. (authors)

  11. A method of predicting the reliability of CDM coil insulation

    International Nuclear Information System (INIS)

    Kytasty, A.; Ogle, C.; Arrendale, H.

    1992-01-01

    This paper presents a method of predicting the reliability of the Collider Dipole Magnet (CDM) coil insulation design. The method proposes a probabilistic treatment of electrical test data, stress analysis, material properties variability and loading uncertainties to give the reliability estimate. The approach taken to predict reliability of design related failure modes of the CDM is to form analytical models of the various possible failure modes and their related mechanisms or causes, and then statistically assess the contributions of the various contributing variables. The probability of the failure mode occurring is interpreted as the number of times one would expect certain extreme situations to combine and randomly occur. One of the more complex failure modes of the CDM will be used to illustrate this methodology

  12. Drug-Target Interactions: Prediction Methods and Applications.

    Science.gov (United States)

    Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael

    2018-01-01

    Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  14. Water hammer prediction and control: the Green's function method

    Science.gov (United States)

    Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi

    2012-04-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.

  15. A comparison of radiosity with current methods of sound level prediction in commercial spaces

    Science.gov (United States)

    Beamer, C. Walter, IV; Muehleisen, Ralph T.

    2002-11-01

    The ray tracing and image methods (and variations thereof) are widely used for the computation of sound fields in architectural spaces. The ray tracing and image methods are best suited for spaces with mostly specular reflecting surfaces. The radiosity method, a method based on solving a system of energy balance equations, is best applied to spaces with mainly diffusely reflective surfaces. Because very few spaces are either purely specular or purely diffuse, all methods must deal with both types of reflecting surfaces. A comparison of the radiosity method to other methods for the prediction of sound levels in commercial environments is presented. [Work supported by NSF.

  16. Predictive Distribution of the Dirichlet Mixture Model by the Local Variational Inference Method

    DEFF Research Database (Denmark)

    Ma, Zhanyu; Leijon, Arne; Tan, Zheng-Hua

    2014-01-01

    the predictive likelihood of the new upcoming data, especially when the amount of training data is small. The Bayesian estimation of a Dirichlet mixture model (DMM) is, in general, not analytically tractable. In our previous work, we have proposed a global variational inference-based method for approximately...... calculating the posterior distributions of the parameters in the DMM analytically. In this paper, we extend our previous study for the DMM and propose an algorithm to calculate the predictive distribution of the DMM with the local variational inference (LVI) method. The true predictive distribution of the DMM...... is analytically intractable. By considering the concave property of the multivariate inverse beta function, we introduce an upper-bound to the true predictive distribution. As the global minimum of this upper-bound exists, the problem is reduced to seek an approximation to the true predictive distribution...

  17. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  18. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)

    1998-12-31

    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  19. Improving protein function prediction methods with integrated literature data

    Directory of Open Access Journals (Sweden)

    Gabow Aaron P

    2008-04-01

    Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder

  20. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  1. Machine learning methods in predicting the student academic motivation

    Directory of Open Access Journals (Sweden)

    Ivana Đurđević Babić

    2017-01-01

    Full Text Available Academic motivation is closely related to academic performance. For educators, it is equally important to detect early students with a lack of academic motivation as it is to detect those with a high level of academic motivation. In endeavouring to develop a classification model for predicting student academic motivation based on their behaviour in learning management system (LMS courses, this paper intends to establish links between the predicted student academic motivation and their behaviour in the LMS course. Students from all years at the Faculty of Education in Osijek participated in this research. Three machine learning classifiers (neural networks, decision trees, and support vector machines were used. To establish whether a significant difference in the performance of models exists, a t-test of the difference in proportions was used. Although, all classifiers were successful, the neural network model was shown to be the most successful in detecting the student academic motivation based on their behaviour in LMS course.

  2. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  3. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments

    Directory of Open Access Journals (Sweden)

    Kurgan Lukasz

    2008-10-01

    Full Text Available Abstract Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM values serve as an input to the support vector machine (SVM predictor. Results We show that (1 all four predicted secondary structures are useful; (2 the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3 the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an

  4. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  5. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  6. A summary of methods of predicting reliability life of nuclear equipment with small samples

    International Nuclear Information System (INIS)

    Liao Weixian

    2000-03-01

    Some of nuclear equipment are manufactured in small batch, e.g., 1-3 sets. Their service life may be very difficult to determine experimentally in view of economy and technology. The method combining theoretical analysis with material tests to predict the life of equipment is put forward, based on that equipment consists of parts or elements which are made of different materials. The whole life of an equipment part consists of the crack forming life (i.e., the fatigue life or the damage accumulation life) and the crack extension life. Methods of predicting machine life has systematically summarized with the emphasis on those which use theoretical analysis to substitute large scale prototype experiments. Meanwhile, methods and steps of predicting reliability life have been described by taking into consideration of randomness of various variables and parameters in engineering. Finally, the latest advance and trends of machine life prediction are discussed

  7. Kinetic mesh-free method for flutter prediction in turbomachines

    Indian Academy of Sciences (India)

    -based mesh-free method for unsteady flows. ... Council for Scientific and Industrial Research, National Aerospace Laboratories, Computational and Theoretical Fluid Dynamics Division, Bangalore 560 017, India; Engineering Mechanics Unit, ...

  8. Comparison of RF spectrum prediction methods for dynamic spectrum access

    Science.gov (United States)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  9. Incorporating information on predicted solvent accessibility to the co-evolution-based study of protein interactions.

    Science.gov (United States)

    Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2013-01-27

    A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.

  10. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.

    Science.gov (United States)

    Zhang, Wen; Zhu, Xiaopeng; Fu, Yu; Tsuji, Junko; Weng, Zhiping

    2017-12-01

    Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints. Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method. In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.

  11. Application of the backstepping method to the prediction of increase or decrease of infected population.

    Science.gov (United States)

    Kuniya, Toshikazu; Sano, Hideki

    2016-05-10

    In mathematical epidemiology, age-structured epidemic models have usually been formulated as the boundary-value problems of the partial differential equations. On the other hand, in engineering, the backstepping method has recently been developed and widely studied by many authors. Using the backstepping method, we obtained a boundary feedback control which plays the role of the threshold criteria for the prediction of increase or decrease of newly infected population. Under an assumption that the period of infectiousness is same for all infected individuals (that is, the recovery rate is given by the Dirac delta function multiplied by a sufficiently large positive constant), the prediction method is simplified to the comparison of the numbers of reported cases at the current and previous time steps. Our prediction method was applied to the reported cases per sentinel of influenza in Japan from 2006 to 2015 and its accuracy was 0.81 (404 correct predictions to the total 500 predictions). It was higher than that of the ARIMA models with different orders of the autoregressive part, differencing and moving-average process. In addition, a proposed method for the estimation of the number of reported cases, which is consistent with our prediction method, was better than that of the best-fitted ARIMA model ARIMA(1,1,0) in the sense of mean square error. Our prediction method based on the backstepping method can be simplified to the comparison of the numbers of reported cases of the current and previous time steps. In spite of its simplicity, it can provide a good prediction for the spread of influenza in Japan.

  12. An ensemble method for predicting subnuclear localizations from primary protein structures.

    Directory of Open Access Journals (Sweden)

    Guo Sheng Han

    Full Text Available BACKGROUND: Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods. METHODOLOGY/PRINCIPAL FINDINGS: A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis. CONCLUSIONS: It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method

  13. Methods for predicting isochronous stress-strain curves

    International Nuclear Information System (INIS)

    Kiyoshige, Masanori; Shimizu, Shigeki; Satoh, Keisuke.

    1976-01-01

    Isochronous stress-strain curves show the relation between stress and total strain at a certain temperature with time as a parameter, and they are drawn up from the creep test results at various stress levels at a definite temperature. The concept regarding the isochronous stress-strain curves was proposed by McVetty in 1930s, and has been used for the design of aero-engines. Recently the high temperature characteristics of materials are shown as the isochronous stress-strain curves in the design guide for the nuclear energy equipments and structures used in high temperature creep region. It is prescribed that these curves are used as the criteria for determining design stress intensity or the data for analyzing the superposed effects of creep and fatigue. In case of the isochronous stress-strain curves used for the design of nuclear energy equipments with very long service life, it is impractical to determine the curves directly from the results of long time creep test, accordingly the method of predicting long time stress-strain curves from short time creep test results must be established. The method proposed by the authors, for which the creep constitution equations taking the first and second creep stages into account are used, and the method using Larson-Miller parameter were studied, and it was found that both methods were reliable for the prediction. (Kako, I.)

  14. Stand diameter distribution modelling and prediction based on Richards function.

    Directory of Open Access Journals (Sweden)

    Ai-guo Duan

    Full Text Available The objective of this study was to introduce application of the Richards equation on modelling and prediction of stand diameter distribution. The long-term repeated measurement data sets, consisted of 309 diameter frequency distributions from Chinese fir (Cunninghamia lanceolata plantations in the southern China, were used. Also, 150 stands were used as fitting data, the other 159 stands were used for testing. Nonlinear regression method (NRM or maximum likelihood estimates method (MLEM were applied to estimate the parameters of models, and the parameter prediction method (PPM and parameter recovery method (PRM were used to predict the diameter distributions of unknown stands. Four main conclusions were obtained: (1 R distribution presented a more accurate simulation than three-parametric Weibull function; (2 the parameters p, q and r of R distribution proved to be its scale, location and shape parameters, and have a deep relationship with stand characteristics, which means the parameters of R distribution have good theoretical interpretation; (3 the ordinate of inflection point of R distribution has significant relativity with its skewness and kurtosis, and the fitted main distribution range for the cumulative diameter distribution of Chinese fir plantations was 0.4∼0.6; (4 the goodness-of-fit test showed diameter distributions of unknown stands can be well estimated by applying R distribution based on PRM or the combination of PPM and PRM under the condition that only quadratic mean DBH or plus stand age are known, and the non-rejection rates were near 80%, which are higher than the 72.33% non-rejection rate of three-parametric Weibull function based on the combination of PPM and PRM.

  15. Performance reliability prediction for thermal aging based on kalman filtering

    International Nuclear Information System (INIS)

    Ren Shuhong; Wen Zhenhua; Xue Fei; Zhao Wensheng

    2015-01-01

    The performance reliability of the nuclear power plant main pipeline that failed due to thermal aging was studied by the performance degradation theory. Firstly, through the data obtained from the accelerated thermal aging experiments, the degradation process of the impact strength and fracture toughness of austenitic stainless steel material of the main pipeline was analyzed. The time-varying performance degradation model based on the state space method was built, and the performance trends were predicted by using Kalman filtering. Then, the multi-parameter and real-time performance reliability prediction model for the main pipeline thermal aging was developed by considering the correlation between the impact properties and fracture toughness, and by using the stochastic process theory. Thus, the thermal aging performance reliability and reliability life of the main pipeline with multi-parameter were obtained, which provides the scientific basis for the optimization management of the aging maintenance decision making for nuclear power plant main pipelines. (authors)

  16. Comparison of selected methods of prediction of wine exports and imports

    Directory of Open Access Journals (Sweden)

    Radka Šperková

    2008-01-01

    Full Text Available For prediction of future events, there exist a number of methods usable in managerial practice. Decision on which of them should be used in a particular situation depends not only on the amount and quality of input information, but also on a subjective managerial judgement. Paper performs a practical application and consequent comparison of results of two selected methods, which are statistical method and deductive method. Both methods were used for predicting wine exports and imports in (from the Czech Republic. Prediction was done in 2003 and it related to the economic years 2003/2004, 2004/2005, 2005/2006, and 2006/2007, within which it was compared with the real values of the given indicators.Within the deductive methods there were characterized the most important factors of external environment including the most important influence according to authors’ opinion, which was the integration of the Czech Republic into the EU from 1st May, 2004. On the contrary, the statistical method of time-series analysis did not regard the integration, which is comes out of its principle. Statistics only calculates based on data from the past, and cannot incorporate the influence of irregular future conditions, just as the EU integration. Because of this the prediction based on deductive method was more optimistic and more precise in terms of its difference from real development in the given field.

  17. Risk prediction of cardiovascular death based on the QTc interval

    DEFF Research Database (Denmark)

    Nielsen, Jonas B; Graff, Claus; Rasmussen, Peter V

    2014-01-01

    electrocardiograms from 173 529 primary care patients aged 50-90 years were collected during 2001-11. The Framingham formula was used for heart rate-correction of the QT interval. Data on medication, comorbidity, and outcomes were retrieved from administrative registries. During a median follow-up period of 6......AIMS: Using a large, contemporary primary care population we aimed to provide absolute long-term risks of cardiovascular death (CVD) based on the QTc interval and to test whether the QTc interval is of value in risk prediction of CVD on an individual level. METHODS AND RESULTS: Digital...

  18. A Lifetime Prediction Method for LEDs Considering Real Mission Profiles

    DEFF Research Database (Denmark)

    Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing

    2017-01-01

    operations due to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and also the statistical......The Light-Emitting Diode (LED) has become a very promising alternative lighting source with the advantages of longer lifetime and higher efficiency than traditional ones. The lifetime prediction of LEDs is important to guide the LED system designers to fulfill the design specifications...... properties of the life data available from accelerated degradation testing. The electrical and thermal characteristics of LEDs are measured by a T3Ster system, used for the electro-thermal modeling. It also identifies key variables (e.g., heat sink parameters) that can be designed to achieve a specified...

  19. Long-Term Prediction of Satellite Orbit Using Analytical Method

    Directory of Open Access Journals (Sweden)

    Jae-Cheol Yoon

    1997-12-01

    Full Text Available A long-term prediction algorithm of geostationary orbit was developed using the analytical method. The perturbation force models include geopotential upto fifth order and degree and luni-solar gravitation, and solar radiation pressure. All of the perturbation effects were analyzed by secular variations, short-period variations, and long-period variations for equinoctial elements such as the semi-major axis, eccentricity vector, inclination vector, and mean longitude of the satellite. Result of the analytical orbit propagator was compared with that of the cowell orbit propagator for the KOREASAT. The comparison indicated that the analytical solution could predict the semi-major axis with an accuarcy of better than ~35meters over a period of 3 month.

  20. Rutting Prediction in Asphalt Pavement Based on Viscoelastic Theory

    Directory of Open Access Journals (Sweden)

    Nahi Mohammed Hadi

    2016-01-01

    Full Text Available Rutting is one of the most disturbing failures on the asphalt roads due to the interrupting it is caused to the drivers. Predicting of asphalt pavement rutting is essential tool leads to better asphalt mixture design. This work describes a method of predicting the behaviour of various asphalt pavement mixes and linking these to an accelerated performance testing. The objective of this study is to develop a finite element model based on viscoplastic theory for simulating the laboratory testing of asphalt mixes in Hamburg Wheel Rut Tester (HWRT for rutting. The creep parameters C1, C2 and C3 are developed from the triaxial repeated load creep test at 50°C and at a frequency of 1 Hz and the modulus of elasticity and Poisson’ s ratio determined at the same temperature. Viscoelastic model (creep model is adopted using a FE simulator (ANSYS in order to calculate the rutting for various mixes under a uniform loading pressure of 500 kPa. An eight-node with a three Degrees of Freedom (UX, UY, and UZ Element is used for the simulation. The creep model developed for HWRT tester was verified by comparing the predicted rut depths with the measured one and by comparing the rut depth with ABAQUS result from literature. Reasonable agreement can be obtained between the predicted rut depths and the measured one. Moreover, it is found that creep model parameter C1 and C3 have a strong relationship with rutting. It was clear that the parameter C1 strongly influences rutting than the parameter C3. Finally, it can be concluded that creep model based on finite element method can be used as an effective tool to analyse rutting of asphalt pavements.

  1. Fingerprint image reconstruction for swipe sensor using Predictive Overlap Method

    Directory of Open Access Journals (Sweden)

    Mardiansyah Ahmad Zafrullah

    2018-01-01

    Full Text Available Swipe sensor is one of many biometric authentication sensor types that widely applied to embedded devices. The sensor produces an overlap on every pixel block of the image, so the picture requires a reconstruction process before heading to the feature extraction process. Conventional reconstruction methods require extensive computation, causing difficult to apply to embedded devices that have limited computing process. In this paper, image reconstruction is proposed using predictive overlap method, which determines the image block shift from the previous set of change data. The experiments were performed using 36 images generated by a swipe sensor with 128 x 8 pixels size of the area, where each image has an overlap in each block. The results reveal computation can increase up to 86.44% compared with conventional methods, with accuracy decreasing to 0.008% in average.

  2. FERAL : Network-based classifier with application to breast cancer outcome prediction

    NARCIS (Netherlands)

    Allahyar, A.; De Ridder, J.

    2015-01-01

    Motivation: Breast cancer outcome prediction based on gene expression profiles is an important strategy for personalize patient care. To improve performance and consistency of discovered markers of the initial molecular classifiers, network-based outcome prediction methods (NOPs) have been proposed.

  3. Feature-Based and String-Based Models for Predicting RNA-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Donald Adjeroh

    2018-03-01

    Full Text Available In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI. In the first approach, we use a feature-based technique by combining extracted features from both sequences and secondary structures. The feature-based approach enhanced the prediction accuracy as it included much more available information about the RNA-protein pairs. In the second approach, we apply search algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences, and structure information (protein and RNA secondary structures. This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed approaches, including comparative results against leading state-of-the-art methods.

  4. Decline curve based models for predicting natural gas well performance

    Directory of Open Access Journals (Sweden)

    Arash Kamari

    2017-06-01

    Full Text Available The productivity of a gas well declines over its production life as cannot cover economic policies. To overcome such problems, the production performance of gas wells should be predicted by applying reliable methods to analyse the decline trend. Therefore, reliable models are developed in this study on the basis of powerful artificial intelligence techniques viz. the artificial neural network (ANN modelling strategy, least square support vector machine (LSSVM approach, adaptive neuro-fuzzy inference system (ANFIS, and decision tree (DT method for the prediction of cumulative gas production as well as initial decline rate multiplied by time as a function of the Arps' decline curve exponent and ratio of initial gas flow rate over total gas flow rate. It was concluded that the results obtained based on the models developed in current study are in satisfactory agreement with the actual gas well production data. Furthermore, the results of comparative study performed demonstrates that the LSSVM strategy is superior to the other models investigated for the prediction of both cumulative gas production, and initial decline rate multiplied by time.

  5. Prediction degradation trend of nuclear equipment based on GM (1, 1)-Markov chain

    International Nuclear Information System (INIS)

    Zhang Liming; Zhao Xinwen; Cai Qi; Wu Guangjiang

    2010-01-01

    The degradation trend prediction results are important references for nuclear equipment in-service inspection and maintenance plan. But it is difficult to predict the nuclear equipment degradation trend accurately by the traditional statistical probability due to the small samples, lack of degradation data and the wavy degradation locus. Therefore, a method of equipment degradation trend prediction based on GM (1, l)-Markov chain was proposed in this paper. The method which makes use of the advantages of both GM (1, 1) method and Markov chain could improve the prediction precision of nuclear equipment degradation trend. The paper collected degradation data as samples and accurately predicted the degradation trend of canned motor pump. Compared with the prediction results by GM (1, 1) method, the prediction precision by GM (1, l)-Markov chain is more accurate. (authors)

  6. Research on bearing life prediction based on support vector machine and its application

    International Nuclear Information System (INIS)

    Sun Chuang; Zhang Zhousuo; He Zhengjia

    2011-01-01

    Life prediction of rolling element bearing is the urgent demand in engineering practice, and the effective life prediction technique is beneficial to predictive maintenance. Support vector machine (SVM) is a novel machine learning method based on statistical learning theory, and is of advantage in prediction. This paper develops SVM-based model for bearing life prediction. The inputs of the model are features of bearing vibration signal and the output is the bearing running time-bearing failure time ratio. The model is built base on a few failed bearing data, and it can fuse information of the predicted bearing. So it is of advantage to bearing life prediction in practice. The model is applied to life prediction of a bearing, and the result shows the proposed model is of high precision.

  7. Prediction method for thermal ratcheting of a cylinder subjected to axially moving temperature distribution

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Igari, Toshihide; Kitade, Shoji.

    1989-01-01

    A prediction method was proposed for plastic ratcheting of a cylinder, which was subjected to axially moving temperature distribution without primary stress. First, a mechanism of this ratcheting was proposed, which considered the movement of temperature distribution as a driving force of this phenomenon. Predictive equations of the ratcheting strain for two representative temperature distributions were proposed based on this mechanism by assuming the elastic-perfectly-plastic material behavior. Secondly, an elastic-plastic analysis was made on a cylinder subjected to the representative two temperature distributions. Analytical results coincided well with the predicted results, and the applicability of the proposed equations was confirmed. (author)

  8. Bicycle Frame Prediction Techniques with Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2015-03-01

    Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.

  9. Bicycle Frame Prediction Techniques with Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2017-03-01

    Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.

  10. Multiplier method may be unreliable to predict the timing of temporary hemiepiphysiodesis for coronal angular deformity.

    Science.gov (United States)

    Wu, Zhenkai; Ding, Jing; Zhao, Dahang; Zhao, Li; Li, Hai; Liu, Jianlin

    2017-07-10

    The multiplier method was introduced by Paley to calculate the timing for temporary hemiepiphysiodesis. However, this method has not been verified in terms of clinical outcome measure. We aimed to (1) predict the rate of angular correction per year (ACPY) at the various corresponding ages by means of multiplier method and verify the reliability based on the data from the published studies and (2) screen out risk factors for deviation of prediction. A comprehensive search was performed in the following electronic databases: Cochrane, PubMed, and EMBASE™. A total of 22 studies met the inclusion criteria. If the actual value of ACPY from the collected date was located out of the range of the predicted value based on the multiplier method, it was considered as the deviation of prediction (DOP). The associations of patient characteristics with DOP were assessed with the use of univariate logistic regression. Only one article was evaluated as moderate evidence; the remaining articles were evaluated as poor quality. The rate of DOP was 31.82%. In the detailed individual data of included studies, the rate of DOP was 55.44%. The multiplier method is not reliable in predicting the timing for temporary hemiepiphysiodesis, even though it is prone to be more reliable for the younger patients with idiopathic genu coronal deformity.

  11. Theoretical bases analysis of scientific prediction on marketing principles

    OpenAIRE

    A.S. Rosohata

    2012-01-01

    The article presents an overview categorical apparatus of scientific predictions and theoretical foundations results of scientific forecasting. They are integral part of effective management of economic activities. The approaches to the prediction of scientists in different fields of Social science and the categories modification of scientific prediction, based on principles of marketing are proposed.

  12. Speaker Prediction based on Head Orientations

    NARCIS (Netherlands)

    Rienks, R.J.; Poppe, Ronald Walter; van Otterlo, M.; Poel, Mannes; Poel, M.; Nijholt, A.; Nijholt, Antinus

    2005-01-01

    To gain insight into gaze behavior in meetings, this paper compares the results from a Naive Bayes classifier, Neural Networks and humans on speaker prediction in four-person meetings given solely the azimuth head angles. The Naive Bayes classifier scored 69.4% correctly, Neural Networks 62.3% and

  13. Alternative Testing Methods for Predicting Health Risk from Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Annamaria Colacci

    2014-08-01

    Full Text Available Alternative methods to animal testing are considered as promising tools to support the prediction of toxicological risks from environmental exposure. Among the alternative testing methods, the cell transformation assay (CTA appears to be one of the most appropriate approaches to predict the carcinogenic properties of single chemicals, complex mixtures and environmental pollutants. The BALB/c 3T3 CTA shows a good degree of concordance with the in vivo rodent carcinogenesis tests. Whole-genome transcriptomic profiling is performed to identify genes that are transcriptionally regulated by different kinds of exposures. Its use in cell models representative of target organs may help in understanding the mode of action and predicting the risk for human health. Aiming at associating the environmental exposure to health-adverse outcomes, we used an integrated approach including the 3T3 CTA and transcriptomics on target cells, in order to evaluate the effects of airborne particulate matter (PM on toxicological complex endpoints. Organic extracts obtained from PM2.5 and PM1 samples were evaluated in the 3T3 CTA in order to identify effects possibly associated with different aerodynamic diameters or airborne chemical components. The effects of the PM2.5 extracts on human health were assessed by using whole-genome 44 K oligo-microarray slides. Statistical analysis by GeneSpring GX identified genes whose expression was modulated in response to the cell treatment. Then, modulated genes were associated with pathways, biological processes and diseases through an extensive biological analysis. Data derived from in vitro methods and omics techniques could be valuable for monitoring the exposure to toxicants, understanding the modes of action via exposure-associated gene expression patterns and to highlight the role of genes in key events related to adversity.

  14. Improving Allergen Prediction in Main Crops Using a Weighted Integrative Method.

    Science.gov (United States)

    Li, Jing; Wang, Jing; Li, Jing

    2017-12-01

    As a public health problem, food allergy is frequently caused by food allergy proteins, which trigger a type-I hypersensitivity reaction in the immune system of atopic individuals. The food allergens in our daily lives are mainly from crops including rice, wheat, soybean and maize. However, allergens in these main crops are far from fully uncovered. Although some bioinformatics tools or methods predicting the potential allergenicity of proteins have been proposed, each method has their limitation. In this paper, we built a novel algorithm PREAL W , which integrated PREAL, FAO/WHO criteria and motif-based method by a weighted average score, to benefit the advantages of different methods. Our results illustrated PREAL W has better performance significantly in the crops' allergen prediction. This integrative allergen prediction algorithm could be useful for critical food safety matters. The PREAL W could be accessed at http://lilab.life.sjtu.edu.cn:8080/prealw .

  15. Prediction of critical heat flux in fuel assemblies using a CHF table method

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)

  16. Prediction of critical heat flux in fuel assemblies using a CHF table method

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)

  17. A lifetime prediction method for LEDs considering mission profiles

    DEFF Research Database (Denmark)

    Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing

    2016-01-01

    and to benchmark the cost-competitiveness of different lighting technologies. The existing lifetime data released by LED manufacturers or standard organizations are usually applicable only for specific temperature and current levels. Significant lifetime discrepancies may be observed in field operations due...... to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and the statistical properties of the life data...

  18. An ensemble method to predict target genes and pathways in uveal melanoma

    Directory of Open Access Journals (Sweden)

    Wei Chao

    2018-04-01

    Full Text Available This work proposes to predict target genes and pathways for uveal melanoma (UM based on an ensemble method and pathway analyses. Methods: The ensemble method integrated a correlation method (Pearson correlation coefficient, PCC, a causal inference method (IDA and a regression method (Lasso utilizing the Borda count election method. Subsequently, to validate the performance of PIL method, comparisons between confirmed database and predicted miRNA targets were performed. Ultimately, pathway enrichment analysis was conducted on target genes in top 1000 miRNA-mRNA interactions to identify target pathways for UM patients. Results: Thirty eight of the predicted interactions were matched with the confirmed interactions, indicating that the ensemble method was a suitable and feasible approach to predict miRNA targets. We obtained 50 seed miRNA-mRNA interactions of UM patients and extracted target genes from these interactions, such as ASPG, BSDC1 and C4BP. The 601 target genes in top 1,000 miRNA-mRNA interactions were enriched in 12 target pathways, of which Phototransduction was the most significant one. Conclusion: The target genes and pathways might provide a new way to reveal the molecular mechanism of UM and give hand for target treatments and preventions of this malignant tumor.

  19. Probability-based collaborative filtering model for predicting gene–disease associations

    OpenAIRE

    Zeng, Xiangxiang; Ding, Ningxiang; Rodríguez-Patón, Alfonso; Zou, Quan

    2017-01-01

    Background Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene–disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. Methods We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated in our mo...

  20. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    International Nuclear Information System (INIS)

    Nedic, Vladimir; Despotovic, Danijela; Cvetanovic, Slobodan; Despotovic, Milan; Babic, Sasa

    2014-01-01

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L eq . Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model

  1. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    Energy Technology Data Exchange (ETDEWEB)

    Nedic, Vladimir, E-mail: vnedic@kg.ac.rs [Faculty of Philology and Arts, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac (Serbia); Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs [Faculty of Economics, University of Kragujevac, Djure Pucara Starog 3, 34000 Kragujevac (Serbia); Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs [Faculty of Economics, University of Niš, Trg kralja Aleksandra Ujedinitelja, 18000 Niš (Serbia); Despotovic, Milan, E-mail: mdespotovic@kg.ac.rs [Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac (Serbia); Babic, Sasa, E-mail: babicsf@yahoo.com [College of Applied Mechanical Engineering, Trstenik (Serbia)

    2014-11-15

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.

  2. Prediction of protein post-translational modifications: main trends and methods

    Science.gov (United States)

    Sobolev, B. N.; Veselovsky, A. V.; Poroikov, V. V.

    2014-02-01

    The review summarizes main trends in the development of methods for the prediction of protein post-translational modifications (PTMs) by considering the three most common types of PTMs — phosphorylation, acetylation and glycosylation. Considerable attention is given to general characteristics of regulatory interactions associated with PTMs. Different approaches to the prediction of PTMs are analyzed. Most of the methods are based only on the analysis of the neighbouring environment of modification sites. The related software is characterized by relatively low accuracy of PTM predictions, which may be due both to the incompleteness of training data and the features of PTM regulation. Advantages and limitations of the phylogenetic approach are considered. The prediction of PTMs using data on regulatory interactions, including the modular organization of interacting proteins, is a promising field, provided that a more carefully selected training data will be used. The bibliography includes 145 references.

  3. Prediction strategies in a TV recommender system - Method and experiments

    NARCIS (Netherlands)

    van Setten, M.J.; Veenstra, M.; van Dijk, Elisabeth M.A.G.; Nijholt, Antinus; Isaísas, P.; Karmakar, N.

    2003-01-01

    Predicting the interests of a user in information is an important process in personalized information systems. In this paper, we present a way to create prediction engines that allow prediction techniques to be easily combined into prediction strategies. Prediction strategies choose one or a

  4. SGC method for predicting the standard enthalpy of formation of pure compounds from their molecular structures

    International Nuclear Information System (INIS)

    Albahri, Tareq A.; Aljasmi, Abdulla F.

    2013-01-01

    Highlights: • ΔH° f is predicted from the molecular structure of the compounds alone. • ANN-SGC model predicts ΔH° f with a correlation coefficient of 0.99. • ANN-MNLR model predicts ΔH° f with a correlation coefficient of 0.90. • Better definition of the atom-type molecular groups is presented. • The method is better than others in terms of combined simplicity, accuracy and generality. - Abstract: A theoretical method for predicting the standard enthalpy of formation of pure compounds from various chemical families is presented. Back propagation artificial neural networks were used to investigate several structural group contribution (SGC) methods available in literature. The networks were used to probe the structural groups that have significant contribution to the overall enthalpy of formation property of pure compounds and arrive at the set of groups that can best represent the enthalpy of formation for about 584 substances. The 51 atom-type structural groups listed provide better definitions of group contributions than others in the literature. The proposed method can predict the standard enthalpy of formation of pure compounds with an AAD of 11.38 kJ/mol and a correlation coefficient of 0.9934 from only their molecular structure. The results are further compared with those of the traditional SGC method based on MNLR as well as other methods in the literature

  5. Transcriptome dynamics-based operon prediction in prokaryotes.

    Science.gov (United States)

    Fortino, Vittorio; Smolander, Olli-Pekka; Auvinen, Petri; Tagliaferri, Roberto; Greco, Dario

    2014-05-16

    Inferring operon maps is crucial to understanding the regulatory networks of prokaryotic genomes. Recently, RNA-seq based transcriptome studies revealed that in many bacterial species the operon structure vary with the change of environmental conditions. Therefore, new computational solutions that use both static and dynamic data are necessary to create condition specific operon predictions. In this work, we propose a novel classification method that integrates RNA-seq based transcriptome profiles with genomic sequence features to accurately identify the operons that are expressed under a measured condition. The classifiers are trained on a small set of confirmed operons and then used to classify the remaining gene pairs of the organism studied. Finally, by linking consecutive gene pairs classified as operons, our computational approach produces condition-dependent operon maps. We evaluated our approach on various RNA-seq expression profiles of the bacteria Haemophilus somni, Porphyromonas gingivalis, Escherichia coli and Salmonella enterica. Our results demonstrate that, using features depending on both transcriptome dynamics and genome sequence characteristics, we can identify operon pairs with high accuracy. Moreover, the combination of DNA sequence and expression data results in more accurate predictions than each one alone. We present a computational strategy for the comprehensive analysis of condition-dependent operon maps in prokaryotes. Our method can be used to generate condition specific operon maps of many bacterial organisms for which high-resolution transcriptome data is available.

  6. Predictive ability of machine learning methods for massive crop yield prediction

    Directory of Open Access Journals (Sweden)

    Alberto Gonzalez-Sanchez

    2014-04-01

    Full Text Available An important issue for agricultural planning purposes is the accurate yield estimation for the numerous crops involved in the planning. Machine learning (ML is an essential approach for achieving practical and effective solutions for this problem. Many comparisons of ML methods for yield prediction have been made, seeking for the most accurate technique. Generally, the number of evaluated crops and techniques is too low and does not provide enough information for agricultural planning purposes. This paper compares the predictive accuracy of ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support vector regression and k-nearest neighbor methods were ranked. Four accuracy metrics were used to validate the models: the root mean square error (RMS, root relative square error (RRSE, normalized mean absolute error (MAE, and correlation factor (R. Real data of an irrigation zone of Mexico were used for building the models. Models were tested with samples of two consecutive years. The results show that M5-Prime and k-nearest neighbor techniques obtain the lowest average RMSE errors (5.14 and 4.91, the lowest RRSE errors (79.46% and 79.78%, the lowest average MAE errors (18.12% and 19.42%, and the highest average correlation factors (0.41 and 0.42. Since M5-Prime achieves the largest number of crop yield models with the lowest errors, it is a very suitable tool for massive crop yield prediction in agricultural planning.

  7. A Practical Radiosity Method for Predicting Transmission Loss in Urban Environments

    Directory of Open Access Journals (Sweden)

    Liang Ming

    2004-01-01

    Full Text Available The ability to predict transmission loss or field strength distribution is crucial for determining coverage in planning personal communication systems. This paper presents a practical method to accurately predict entire average transmission loss distribution in complicated urban environments. The method uses a 3D propagation model based on radiosity and a simplified city information database including surfaces of roads and building groups. Narrowband validation measurements with line-of-sight (LOS and non-line-of-sight (NLOS cases at 1800 MHz give excellent agreement in urban environments.

  8. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Lundegaard, Claus; Lamberth, K.

    2007-01-01

    BACKGROUND: Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein....... of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2 method is available at http://www.cbs.dtu.dk/services/NetCTL.All used datasets are available at http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php....

  9. Research on cardiovascular disease prediction based on distance metric learning

    Science.gov (United States)

    Ni, Zhuang; Liu, Kui; Kang, Guixia

    2018-04-01

    Distance metric learning algorithm has been widely applied to medical diagnosis and exhibited its strengths in classification problems. The k-nearest neighbour (KNN) is an efficient method which treats each feature equally. The large margin nearest neighbour classification (LMNN) improves the accuracy of KNN by learning a global distance metric, which did not consider the locality of data distributions. In this paper, we propose a new distance metric algorithm adopting cosine metric and LMNN named COS-SUBLMNN which takes more care about local feature of data to overcome the shortage of LMNN and improve the classification accuracy. The proposed methodology is verified on CVDs patient vector derived from real-world medical data. The Experimental results show that our method provides higher accuracy than KNN and LMNN did, which demonstrates the effectiveness of the Risk predictive model of CVDs based on COS-SUBLMNN.

  10. Optimization of arterial age prediction models based in pulse wave

    Energy Technology Data Exchange (ETDEWEB)

    Scandurra, A G [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Meschino, G J [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Passoni, L I [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Dai Pra, A L [Engineering Aplied Artificial Intelligence Group, Mathematics Department, Mar del Plata University (Argentina); Introzzi, A R [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Clara, F M [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina)

    2007-11-15

    We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff.

  11. Optimization of arterial age prediction models based in pulse wave

    International Nuclear Information System (INIS)

    Scandurra, A G; Meschino, G J; Passoni, L I; Dai Pra, A L; Introzzi, A R; Clara, F M

    2007-01-01

    We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff

  12. A New Approach to Fatigue Life Prediction Based on Nucleation and Growth (Preprint)

    National Research Council Canada - National Science Library

    McClung, R. C; Francis, W. L; Hudak, S. J

    2006-01-01

    Prediction of total fatigue life in components is often performed by summing "initiation" and "propagation" life phases, where initiation life is based on stress-life or strain-life methods calibrated...

  13. Settlement Prediction of Road Soft Foundation Using a Support Vector Machine (SVM Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Yu Huiling

    2016-01-01

    Full Text Available The suppor1t vector machine (SVM is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. SVM is a new machine learning method based on the statistical learning theory. A case study based on road foundation engineering project shows that the forecast results are in good agreement with the measured data. The SVM model is also compared with BP artificial neural network model and traditional hyperbola method. The prediction results indicate that the SVM model has a better prediction ability than BP neural network model and hyperbola method. Therefore, settlement prediction based on SVM model can reflect actual settlement process more correctly. The results indicate that it is effective and feasible to use this method and the nonlinear mapping relation between foundation settlement and its influence factor can be expressed well. It will provide a new method to predict foundation settlement.

  14. Methods and approaches to prediction in the meat industry

    Directory of Open Access Journals (Sweden)

    A. B. Lisitsyn

    2016-01-01

    Full Text Available The modern stage of the agro-industrial complex is characterized by an increasing complexity, intensification of technological processes of complex processing of materials of animal origin also the need for a systematic analysis of the variety of determining factors and relationships between them, complexity of the objective function of product quality and severe restrictions on technological regimes. One of the main tasks that face the employees of the enterprises of the agro-industrial complex, which are engaged in processing biotechnological raw materials, is the further organizational improvement of work at all stages of the food chain, besides an increase in the production volume. The meat industry as a part of the agro-industrial complex has to use the biological raw materials with maximum efficiency, while reducing and even eliminating losses at all stages of processing; rationally use raw material when selecting a type of processing products; steadily increase quality, biological and food value of products; broaden the assortment of manufactured products in order to satisfy increasing consumer requirements and extend the market for their realization in the conditions of uncertainty of external environment, due to the uneven receipt of raw materials, variations in its properties and parameters, limited time sales and fluctuations in demand for products. The challenges facing the meat industry cannot be solved without changes to the strategy for scientific and technological development of the industry. To achieve these tasks, it is necessary to use the prediction as a method of constant improvement of all technological processes and their performance under the rational and optimal regimes, while constantly controlling quality of raw material, semi-prepared products and finished products at all stages of the technological processing by the physico-chemical, physico-mechanical (rheological, microbiological and organoleptic methods. The paper

  15. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  16. Protein-Protein Interactions Prediction Based on Iterative Clique Extension with Gene Ontology Filtering

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2014-01-01

    Full Text Available Cliques (maximal complete subnets in protein-protein interaction (PPI network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

  17. FREEZING AND THAWING TIME PREDICTION METHODS OF FOODS II: NUMARICAL METHODS

    Directory of Open Access Journals (Sweden)

    Yahya TÜLEK

    1999-03-01

    Full Text Available Freezing is one of the excellent methods for the preservation of foods. If freezing and thawing processes and frozen storage method are carried out correctly, the original characteristics of the foods can remain almost unchanged over an extended periods of time. It is very important to determine the freezing and thawing time period of the foods, as they strongly influence the both quality of food material and process productivity and the economy. For developing a simple and effectively usable mathematical model, less amount of process parameters and physical properties should be enrolled in calculations. But it is a difficult to have all of these in one prediction method. For this reason, various freezing and thawing time prediction methods were proposed in literature and research studies have been going on.

  18. Evaluation of mathematical methods for predicting optimum dose of gamma radiation in sugarcane (Saccharum sp.)

    International Nuclear Information System (INIS)

    Wu, K.K.; Siddiqui, S.H.; Heinz, D.J.; Ladd, S.L.

    1978-01-01

    Two mathematical methods - the reversed logarithmic method and the regression method - were used to compare the predicted and the observed optimum gamma radiation dose (OD 50 ) in vegetative propagules of sugarcane. The reversed logarithmic method, usually used in sexually propagated crops, showed the largest difference between the predicted and observed optimum dose. The regression method resulted in a better prediction of the observed values and is suggested as a better method for the prediction of optimum dose for vegetatively propagated crops. (author)

  19. A nodal method based on matrix-response method

    International Nuclear Information System (INIS)

    Rocamora Junior, F.D.; Menezes, A.

    1982-01-01

    A nodal method based in the matrix-response method, is presented, and its application to spatial gradient problems, such as those that exist in fast reactors, near the core - blanket interface, is investigated. (E.G.) [pt

  20. A novel method for improved accuracy of transcription factor binding site prediction

    KAUST Repository

    Khamis, Abdullah M.; Motwalli, Olaa Amin; Oliva, Romina; Jankovic, Boris R.; Medvedeva, Yulia; Ashoor, Haitham; Essack, Magbubah; Gao, Xin; Bajic, Vladimir B.

    2018-01-01

    Identifying transcription factor (TF) binding sites (TFBSs) is important in the computational inference of gene regulation. Widely used computational methods of TFBS prediction based on position weight matrices (PWMs) usually have high false positive rates. Moreover, computational studies of transcription regulation in eukaryotes frequently require numerous PWM models of TFBSs due to a large number of TFs involved. To overcome these problems we developed DRAF, a novel method for TFBS prediction that requires only 14 prediction models for 232 human TFs, while at the same time significantly improves prediction accuracy. DRAF models use more features than PWM models, as they combine information from TFBS sequences and physicochemical properties of TF DNA-binding domains into machine learning models. Evaluation of DRAF on 98 human ChIP-seq datasets shows on average 1.54-, 1.96- and 5.19-fold reduction of false positives at the same sensitivities compared to models from HOCOMOCO, TRANSFAC and DeepBind, respectively. This observation suggests that one can efficiently replace the PWM models for TFBS prediction by a small number of DRAF models that significantly improve prediction accuracy. The DRAF method is implemented in a web tool and in a stand-alone software freely available at http://cbrc.kaust.edu.sa/DRAF.

  1. A novel method for improved accuracy of transcription factor binding site prediction

    KAUST Repository

    Khamis, Abdullah M.

    2018-03-20

    Identifying transcription factor (TF) binding sites (TFBSs) is important in the computational inference of gene regulation. Widely used computational methods of TFBS prediction based on position weight matrices (PWMs) usually have high false positive rates. Moreover, computational studies of transcription regulation in eukaryotes frequently require numerous PWM models of TFBSs due to a large number of TFs involved. To overcome these problems we developed DRAF, a novel method for TFBS prediction that requires only 14 prediction models for 232 human TFs, while at the same time significantly improves prediction accuracy. DRAF models use more features than PWM models, as they combine information from TFBS sequences and physicochemical properties of TF DNA-binding domains into machine learning models. Evaluation of DRAF on 98 human ChIP-seq datasets shows on average 1.54-, 1.96- and 5.19-fold reduction of false positives at the same sensitivities compared to models from HOCOMOCO, TRANSFAC and DeepBind, respectively. This observation suggests that one can efficiently replace the PWM models for TFBS prediction by a small number of DRAF models that significantly improve prediction accuracy. The DRAF method is implemented in a web tool and in a stand-alone software freely available at http://cbrc.kaust.edu.sa/DRAF.

  2. PREDICTION OF MEAT PRODUCT QUALITY BY THE MATHEMATICAL PROGRAMMING METHODS

    Directory of Open Access Journals (Sweden)

    A. B. Lisitsyn

    2016-01-01

    Full Text Available Abstract Use of the prediction technologies is one of the directions of the research work carried out both in Russia and abroad. Meat processing is accompanied by the complex physico-chemical, biochemical and mechanical processes. To predict the behavior of meat raw material during the technological processing, a complex of physico-technological and structural-mechanical indicators, which objectively reflects its quality, is used. Among these indicators are pH value, water binding and fat holding capacities, water activity, adhesiveness, viscosity, plasticity and so on. The paper demonstrates the influence of animal proteins (beef and pork on the physico-chemical and functional properties before and after thermal treatment of minced meat made from meat raw material with different content of the connective and fat tissues. On the basis of the experimental data, the model (stochastic dependence parameters linking the quantitative resultant and factor variables were obtained using the regression analysis, and the degree of the correlation with the experimental data was assessed. The maximum allowable levels of meat raw material replacement with animal proteins (beef and pork were established by the methods of mathematical programming. Use of the information technologies will significantly reduce the costs of the experimental search and substantiation of the optimal level of replacement of meat raw material with animal proteins (beef, pork, and will also allow establishing a relationship of product quality indicators with quantity and quality of minced meat ingredients.

  3. Predicting lattice thermal conductivity with help from ab initio methods

    Science.gov (United States)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  4. Development of nondestructive method for prediction of crack instability

    International Nuclear Information System (INIS)

    Schroeder, J.L.; Eylon, D.; Shell, E.B.; Matikas, T.E.

    2000-01-01

    A method to characterize the deformation zone at a crack tip and predict upcoming fracture under load using white light interference microscopy was developed and studied. Cracks were initiated in notched Ti-6Al-4V specimens through fatigue loading. Following crack initiation, specimens were subjected to static loading during in-situ observation of the deformation area ahead of the crack. Nondestructive in-situ observations were performed using white light interference microscopy. Profilometer measurements quantified the area, volume, and shape of the deformation ahead of the crack front. Results showed an exponential relationship between the area and volume of deformation and the stress intensity factor of the cracked alloy. These findings also indicate that it is possible to determine a critical rate of change in deformation versus the stress intensity factor that can predict oncoming catastrophic failure. In addition, crack front deformation zones were measured as a function of time under sustained load, and crack tip deformation zone enlargement over time was observed

  5. COMPARISON OF TREND PROJECTION METHODS AND BACKPROPAGATION PROJECTIONS METHODS TREND IN PREDICTING THE NUMBER OF VICTIMS DIED IN TRAFFIC ACCIDENT IN TIMOR TENGAH REGENCY, NUSA TENGGARA

    Directory of Open Access Journals (Sweden)

    Aleksius Madu

    2016-10-01

    Full Text Available The purpose of this study is to predict the number of traffic accident victims who died in Timor Tengah Regency with Trend Projection method and Backpropagation method, and compare the two methods based on the degree of guilt and predict the number traffic accident victims in the Timor Tengah Regency for the coming year. This research was conducted in Timor Tengah Regency where data used in this study was obtained from Police Unit in Timor Tengah Regency. The data is on the number of traffic accidents in Timor Tengah Regency from 2000 – 2013, which is obtained by a quantitative analysis with Trend Projection and Backpropagation method. The results of the data analysis predicting the number of traffic accidents victims using Trend Projection method obtained the best model which is the quadratic trend model with equation Yk = 39.786 + (3.297 X + (0.13 X2. Whereas by using back propagation method, it is obtained the optimum network that consists of 2 inputs, 3 hidden screens, and 1 output. Based on the error rates obtained, Back propagation method is better than the Trend Projection method which means that the predicting accuracy with Back propagation method is the best method to predict the number of traffic accidents victims in Timor Tengah Regency. Thus obtained predicting the numbers of traffic accident victims for the next 5 years (Years 2014-2018 respectively - are 106 person, 115 person, 115 person, 119 person and 120 person.   Keywords: Trend Projection, Back propagation, Predicting.

  6. Extremely Randomized Machine Learning Methods for Compound Activity Prediction

    Directory of Open Access Journals (Sweden)

    Wojciech M. Czarnecki

    2015-11-01

    Full Text Available Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called ‘extremely randomized methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  7. Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Tajber, Lidia; Tian, Yiwei

    2015-01-01

    monomer weight ratios. The drug–polymer solubility at 25 °C was predicted using the Flory–Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point......, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug–polymer solubility....

  8. Size-based predictions of food web patterns

    DEFF Research Database (Denmark)

    Zhang, Lai; Hartvig, Martin; Knudsen, Kim

    2014-01-01

    We employ size-based theoretical arguments to derive simple analytic predictions of ecological patterns and properties of natural communities: size-spectrum exponent, maximum trophic level, and susceptibility to invasive species. The predictions are brought about by assuming that an infinite number...... of species are continuously distributed on a size-trait axis. It is, however, an open question whether such predictions are valid for a food web with a finite number of species embedded in a network structure. We address this question by comparing the size-based predictions to results from dynamic food web...... simulations with varying species richness. To this end, we develop a new size- and trait-based food web model that can be simplified into an analytically solvable size-based model. We confirm existing solutions for the size distribution and derive novel predictions for maximum trophic level and invasion...

  9. Base Oils Biodegradability Prediction with Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Malika Trabelsi

    2010-02-01

    Full Text Available In this paper, we apply various data mining techniques including continuous numeric and discrete classification prediction models of base oils biodegradability, with emphasis on improving prediction accuracy. The results show that highly biodegradable oils can be better predicted through numeric models. In contrast, classification models did not uncover a similar dichotomy. With the exception of Memory Based Reasoning and Decision Trees, tested classification techniques achieved high classification prediction. However, the technique of Decision Trees helped uncover the most significant predictors. A simple classification rule derived based on this predictor resulted in good classification accuracy. The application of this rule enables efficient classification of base oils into either low or high biodegradability classes with high accuracy. For the latter, a higher precision biodegradability prediction can be obtained using continuous modeling techniques.

  10. Computer prediction of subsurface radionuclide transport: an adaptive numerical method

    International Nuclear Information System (INIS)

    Neuman, S.P.

    1983-01-01

    Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1

  11. A dynamic particle filter-support vector regression method for reliability prediction

    International Nuclear Information System (INIS)

    Wei, Zhao; Tao, Tao; ZhuoShu, Ding; Zio, Enrico

    2013-01-01

    Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions. -- Highlights: •A dynamic PF–SVR method is proposed to predict the system reliability. •The method can adjust the SVR parameters according to the change of data. •The method is robust to the size of training data and initial parameter values. •Some cases based on both artificial and real data are studied. •PF–SVR shows superior prediction performance over standard SVR

  12. Life prediction of Ni-base superalloy

    Indian Academy of Sciences (India)

    mean stress exponent, n, and the mean activation energy for creep were calculated from the experimental results. The accelerated creep life of the alloy was evaluated by using iso-stress parametric equations and Monkman–Grant method. Keywords. ... This alloy is age-hardenable by a fine dispersion of γ par- ticles, which ...

  13. Copula-based prediction of economic movements

    Science.gov (United States)

    García, J. E.; González-López, V. A.; Hirsh, I. D.

    2016-06-01

    In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.

  14. Bankruptcy Prediction Based on the Autonomy Ratio

    Directory of Open Access Journals (Sweden)

    Daniel Brîndescu Olariu

    2016-11-01

    Full Text Available The theory and practice of the financial ratio analysis suggest the existence of a negative correlation between the autonomy ratio and the bankruptcy risk. Previous studies conducted on a sample of companies from Timis County (largest county in Romania confirm this hypothesis and recommend the autonomy ratio as a useful tool for measuring the bankruptcy risk two years in advance. The objective of the current research was to develop a methodology for measuring the bankruptcy risk that would be applicable for the companies from the Timis County (specific methodologies are considered necessary for each region. The target population consisted of all the companies from Timis County with annual sales of over 10,000 lei (aprox. 2,200 Euros. The research was performed over all the target population. The study has thus included 53,252 yearly financial statements from the period 2007 – 2010. The results of the study allow for the setting of benchmarks, as well as the configuration of a methodology of analysis. The proposed methodology cannot predict with perfect accuracy the state of the company, but it allows for a valuation of the risk level to which the company is subjected.

  15. [Bases and methods of suturing].

    Science.gov (United States)

    Vogt, P M; Altintas, M A; Radtke, C; Meyer-Marcotty, M

    2009-05-01

    If pharmaceutic modulation of scar formation does not improve the quality of the healing process over conventional healing, the surgeon must rely on personal skill and experience. Therefore a profound knowledge of wound healing based on experimental and clinical studies supplemented by postsurgical means of scar management and basic techniques of planning incisions, careful tissue handling, and thorough knowledge of suturing remain the most important ways to avoid abnormal scarring. This review summarizes the current experimental and clinical bases of surgical scar management.

  16. Modeling and Control of CSTR using Model based Neural Network Predictive Control

    OpenAIRE

    Shrivastava, Piyush

    2012-01-01

    This paper presents a predictive control strategy based on neural network model of the plant is applied to Continuous Stirred Tank Reactor (CSTR). This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neural network predictive control, can be a better match to govern the system dynamics. In the paper, the NN model and the way in which it can be used to predict the behavior of the CSTR process over a certain prediction horizon are described, and some commen...

  17. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    Science.gov (United States)

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cell Based GIS as Cellular Automata for Disaster Spreading Predictions and Required Data Systems

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available A method for prediction and simulation based on the Cell Based Geographic Information System(GIS as Cellular Automata (CA is proposed together with required data systems, in particular metasearch engine usage in an unified way. It is confirmed that the proposed cell based GIS as CA has flexible usage of the attribute information that is attached to the cell in concert with location information and does work for disaster spreading simulation and prediction.

  19. The Prediction of Fatigue Life Based on Four Point Bending Test

    NARCIS (Netherlands)

    Pramesti, F.P.; Molenaar, A.A.A.; Van de Ven, M.F.C.

    2013-01-01

    To be able to devise optimum strategies for maintenance and rehabilitation, it is essential to formulate an accurate prediction of pavement life and its maintenance needs. One of the pavement life prediction methods is based on the pavement's capability to sustain fatigue. If it were possible to

  20. The effect of using genealogy-based haplotypes for genomic prediction.

    Science.gov (United States)

    Edriss, Vahid; Fernando, Rohan L; Su, Guosheng; Lund, Mogens S; Guldbrandtsen, Bernt

    2013-03-06

    Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic