WorldWideScience

Sample records for predicting air permeability

  1. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    Science.gov (United States)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  2. Suitability of Torrent Permeability Tester to measure air-permeability of covercrete

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Gonzales-Gasca, C. [Institute of Construction Sciences ' Eduardo Torroja' , Madrid (Spain); Torrent, R. [Portland Cement Institute, (Argentina)

    2000-07-01

    Suitability of the Torrent Permeability Tester (TPT) to measure the permeability of covercrete to air, both in the laboratory and the field, is investigated, and test results obtained in laboratory studies are discussed. The tests performed included the determination of air permeability (TPT method), oxygen permeability (Cembureau method) and capillary suction, rapid chloride permeability test (ASTM C 1202), as well as a one-year carbonation depth test. Concrete specimens of various compositions and curing regimes were used in the tests; the gas-permeability tests were repeated on the same specimens after 28 days, than again at 6 months and 12 months. Test results confirmed the suitability of the TPT as a useful tool in the characterization of the quality the of concrete cover. It was found to be sensitive to changes in concrete quality; repeatable for sensitive properties such as gas permeability ; also, it was found to correlate well with other durability-related properties. 10 refs., 8 tabs., 8 figs.

  3. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  4. Improvement of air permeability of Bubbfil nanofiber membrane

    Directory of Open Access Journals (Sweden)

    Wang Fei-Yan

    2018-01-01

    Full Text Available Nanofiber membranes always have extremely high filter efficiency and remarkably low pressure drop. In order to further improve air permeability of bubbfil nanofiber membranes, the plasma technology is used for surface treatment in this paper. The results show that plasma treatment can improve air permeability by 4.45%. Under higher power plasma treatment, earthworm like etchings are produced on the membrane surface with fractal dimensions of about 1.138.

  5. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  6. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  7. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  8. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  9. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...

  10. Permeability of gypsum samples dehydrated in air

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  11. Using artificial intelligence to predict permeability from petrographic data

    Energy Technology Data Exchange (ETDEWEB)

    Maqsood Ali; Adwait Chawathe [New Mexico Petroleum Recovery Research Centre (Mexico)

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate

  12. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    Science.gov (United States)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  13. The Structure Characteristics and Air Permeability of PA and PES Plain and Plated Knits Influenced of Antimicrobial Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Agne MICKEVIČIENĖ

    2014-09-01

    Full Text Available Textile materials are usually exposed to thermal, physical and mechanical effects during treatment processes. These influence the changes of material dimensions. Designing knitted products it is important to predict direction and rate of dimensions change, because this can affect physical properties such as air permeability of knits. The objective of this research was to investigate the influence of antimicrobial treatment conditions on the structure characteristics, thickness and air permeability of plain and plaited knits. The investigations were carried out with two groups of plain and plated single jersey knits. The face yarns of these groups were cotton, bamboo viscose yarn and polyester (Dacron® thread. 10 tex × 2 textured polyamide (PA and 20 tex textured polyester (PES threads were used as the base threads in plated knits. Knitted samples were treated with antimicrobial material Isys AG and organic-inorganic binder Isys MTX (CHT, Germany. It was established that blank and antimicrobial treated knits changed structure parameters, thickness and air permeability. The changes of structure parameters, thickness and air permeability were more associated with conditions of treatment (temperature, treatment in solution, mechanical action rather than with antimicrobial and sol-gel substances used in treatment. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.3196

  14. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  15. Prediction of permeability changes in an excavation response zone

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Ishii, Takashi; Kuroda, Hidetaka; Tada, Hiroyuki

    1992-01-01

    In geologic disposal of radioactive wastes, stress changes due to cavern excavation may expand the existing fractures and create possible bypasses for groundwater. This paper proposes a simple method for predicting permeability changes in the excavation response zones. Numerical analyses using this method predict that the response zones created by cavern excavation would differ greatly in thickness and permeability depending on the depth of the cavern site and the initial in-situ stress, that when the cavern site is deeper, response zones would expand more and permeability would increases more, and that if the ratio of horizontal to vertical in-situ stress is small, extensive permeable zones at the crown and the bottom would occur, whereas if the ratio is large, extensive permeable zones would occur in the side walls. (orig.)

  16. Air-Filled porosity and permeability relationships during solid-waste fermentation

    NARCIS (Netherlands)

    Richard, T.L.; Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2004-01-01

    An experimental apparatus was constructed to measure the structural parameters of organic porous media, i.,e. mechanical strength, air-filled porosity, air permeability, and the Ergun particle size. These parameters are critical to the engineering of aerobic bioconversion systems and were measured

  17. Effect of the aggregate grading on the concrete air permeability

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2014-09-01

    Full Text Available Great durability problems are being found in concrete structures related to the penetrability of aggressive agents through the concrete (ie. chloride penetration, sulphate attack, carbonation, freezing and thawing, and so on. Air permeability coefficient is used as an effective tool to estimate the potential durability of concrete structures due to its direct relation with the microstructure and the moisture content. This paper discusses the effect of the aggregate grading and water/cement ratio on the air permeability coefficient. An aggregate grading with more sand than coarse aggregates has resulted more beneficial from the point of view of concrete air permeability. This fact can be attributed to a denser skeleton formed by the finer aggregates. With fine aggregates, the higher water/cement ratio, the lower air permeability. However, the contrary was found with coarse aggregates. Overall, a temperature increase from 20 °C to 60 °C during preconditioning led to a Dair increase of 40–80%.Se han encontrado una gran cantidad de problemas de durabilidad de estructuras de hormigón relacionados con la penetración de agentes agresivos externos (es decir, penetración de cloruros, ataque por sulfatos, carbonatación, hielo-deshielo, etc.. El coeficiente de permeabilidad al aire se utiliza como una herramienta eficaz para estimar la durabilidad potencial de las estructuras de hormigón debido a su relación directa con su microestructura y contenido de humedad. Se discute el efecto de la gradación de los áridos y relación agua/cemento en el coeficiente de permeabilidad al aire. Con áridos más finos que gruesos, el resultado es más beneficioso, lo que se atribuye a que la arena forma un esqueleto más denso. Con áridos más finos, al aumentar la relación agua/cemento, disminuye la permeabilidad al aire; pero con áridos más gruesos se ha observado lo contrario. Cuando se pre-acondiciona de 20 °C a 60 °C, se produce un aumento del Dair

  18. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  19. Errors in Air Permeability Rationing as Key Sources of Construction Quality Risk Assessment

    Science.gov (United States)

    Popov, A. A.; Nitievski, A. A.; Ivanov, R. N.

    2018-04-01

    The article deals with different approaches to the valuation parameters of air permeability n50 and q50. Examples of erroneous conclusions about the state of the building are presented as well as the ways to obtain reliable results. There are obtained comparative data of the air permeability parameters on examples of buildings with different configuration and with different values of compactness factor.

  20. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-07-01

    A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs

  1. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Science.gov (United States)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  2. Demonstrations of Magnetic Phenomena: Measuring the Air Permeability Using Tablets

    Science.gov (United States)

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-01-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…

  3. Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda T K K; Arthur, Emmanuel; Møldrup, Per

    2013-01-01

    measurements from two Danish arable fields, each located on natural clay gradients, this study presents a pore tortuosity–disconnectivity analysis to characterize the soil–gas phase. The main objective of this study is to investigate the effect of soil–moisture condition, clay content, and other potential......Understanding soil–gas phase properties and processes is important for finding solutions to critical environmental problems such as greenhouse gas emissions and transport of gaseous-phase contaminants in soils. Soil–air permeability, ka (μm2), is the key parameter governing advective gas movement...... in soil and is controlled by soil physical characteristics representing soil texture and structure. Models predicting ka as a function of air-filled porosity (ɛ) often use a reference-point measurement, for example, ka,1000 at ɛ1000 (where the measurement is done at a suction of –1000 cm H2O). Using ka...

  4. A new method to calculate permeability of gob for air leakage calculations and for improvements in methane control

    Energy Technology Data Exchange (ETDEWEB)

    Karacan, C.O. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Office of Mine Safety and Health Research

    2010-07-01

    Although longwall underground mining can maximize coal production, it causes large scale disturbances of the surrounding rock mass due to fracturing and caving of the mine roof as the mine face advances. The porosity and permeability of the longwall gob can affect the methane and air flow patterns considerably. Since methane is a major hazard in underground coal mining operations, extensive methane control techniques are used to supplement the existing mine ventilation system, such as gob gas ventholes (GGV). However, the gob is rarely accessible for performing direct measurements of porosity and permeability. Therefore, this study presented a fractal approach for calculating the porosity and permeability from the size distribution of broken rock material in the gob, which can be determined from image analyses. The fractal approach constructs flow equations and fractal crushing equations for granular materials to predict porosity for a completely fragmented porous medium. The virtual fragmented fractal porous medium is exposed to various uniaxial stresses to simulate gob compaction and porosity and permeability changes during this process. It was concluded that the use of this fractal approach will result in better predictions regarding the flow amount and flow patterns in the gob, and facilitate leakage calculations and methane control projections. 29 refs., 4 tabs., 5 figs.

  5. Reservoir rock permeability prediction using support vector regression in an Iranian oil field

    International Nuclear Information System (INIS)

    Saffarzadeh, Sadegh; Shadizadeh, Seyed Reza

    2012-01-01

    Reservoir permeability is a critical parameter for the evaluation of hydrocarbon reservoirs. It is often measured in the laboratory from reservoir core samples or evaluated from well test data. The prediction of reservoir rock permeability utilizing well log data is important because the core analysis and well test data are usually only available from a few wells in a field and have high coring and laboratory analysis costs. Since most wells are logged, the common practice is to estimate permeability from logs using correlation equations developed from limited core data; however, these correlation formulae are not universally applicable. Recently, support vector machines (SVMs) have been proposed as a new intelligence technique for both regression and classification tasks. The theory has a strong mathematical foundation for dependence estimation and predictive learning from finite data sets. The ultimate test for any technique that bears the claim of permeability prediction from well log data is the accurate and verifiable prediction of permeability for wells where only the well log data are available. The main goal of this paper is to develop the SVM method to obtain reservoir rock permeability based on well log data. (paper)

  6. Analytic Model for Predicting the Permeability of Foam-type Wick

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Ich-Long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2016-06-15

    Wicks play an important role in determining the thermal performance of heat pipes. Foam-type wicks are known to have good potential for enhancing the capillary performance of conventional types of wicks, and this is because of their high porosity and permeability. In this study, we develop an analytic expression for predicting the permeability of a foam-type wick based on extensive numerical work. The proposed correlation is based on the modified Kozeny-Carman’s equation, where the Kozeny-Carman coefficient is given as an exponential function of porosity. The proposed correlations are shown to predict the previous experimental results well for an extensive parametric range. The permeability of the foam-type wick is shown to be significantly higher than that of conventional wicks because of their high porosity.

  7. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical–Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin

  8. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R 2 = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q 2 ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and

  9. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability p...... significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas....

  10. Wheel traffic effect on air-filled porosity and air permeability in a soil catena across the wheel rut

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Lamandé, Mathieu

    might induce different effects on soil physical properties. The objective of this study was to investigate the impact of vehicle traffic on soil physical properties and air permeability by systematic collection of samples in a transect running from the center to the outside of the wheel rut. A field...... catena running from center of the wheel rut to un wheeled part of the field ( 0, 20, 40, 50,60 and 400 cm horizontal distance). We measured water retention and air permeability (ka) at -30, -100 and -300 hPa matric potentials. At -100 hPa, we obtained consistently lower air filled under the wheel rut......The impact of wheel traffic on soil physical properties is usually quantified by randomly collecting soil cores at specific depths below the wheeled surface. However, modeling studies as well as few measurements indicated a non-uniform stress distribution in a catena across the wheel rut, which...

  11. Mathematical Model to Predict the Permeability of Water Transport in Concrete Structure

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Mathematical model to predict the permeability of water transport in concrete has been established, the model is to monitor the rate of water transport in concrete structure. The process of this water transport is based on the constituent in the mixture of concrete. Permeability established a relation on the influence of the micropores on the constituent that made of concrete, the method of concrete placement determine the rate of permeability deposition in concrete structure, permeability es...

  12. Gas diffusion, non-Darcy air permeability, and computed tomography images of a clay subsoil affected by compaction

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Berisso, Feto Esimo

    2013-01-01

    Soil productivity and other soil functions are dependent on processes in the untilled subsoil. Undisturbed soil cores were collected at the 0.3- to 0.4-m depth from a heavy clay soil in Finland subjected to a single heavy traffic event by agricultural machinery three decades before sampling....... Untrafficked control plots were used as a reference. Computed tomography (CT) scanning was performed on soil cores at a field-sampled field capacity water content. Gas diffusion and air permeability were measured when the soil cores were drained to −1000 hPa matric potential (air permeability also at −100...... and −300 hPa). The air-filled pore space was measured with an air pycnometer and also calculated from mass balance and CT data. Gas diffusion and air permeability were also measured on a straight model tube and on autoclaved aerated concrete. The compaction treatment had not influenced soil total porosity...

  13. Leak-Based Method for the Measurement of Air Permeability of Papers

    Directory of Open Access Journals (Sweden)

    Colard Stéphane

    2016-01-01

    Full Text Available The air permeability of cigarette paper is currently assessed according to the international standard ISO 2965 by applying a constant pressure difference of 1 kPa between the two faces of a sample and by measuring the corresponding airflow.

  14. A fractal model for predicting permeability and liquid water relative permeability in the gas diffusion layer (GDL) of PEMFCs

    Science.gov (United States)

    He, Guangli; Zhao, Zongchang; Ming, Pingwen; Abuliti, Abudula; Yin, Caoyong

    In this study, a fractal model is developed to predict the permeability and liquid water relative permeability of the GDL (TGP-H-120 carbon paper) in proton exchange membrane fuel cells (PEMFCs), based on the micrographs (by SEM, i.e. scanning electron microscope) of the TGP-H-120. Pore size distribution (PSD), maximum pore size, porosity, diameter of the carbon fiber, pore tortuosity, area dimension, hydrophilicity or hydrophobicity, the thickness of GDL and saturation are involved in this model. The model was validated by comparison between the predicted results and experimental data. The results indicate that the water relative permeability in the hydrophobicity case is much higher than in the hydrophilicity case. So, a hydrophobic carbon paper is preferred for efficient removal of liquid water from the cathode of PEMFCs.

  15. Computational Prediction of Blood-Brain Barrier Permeability Using Decision Tree Induction

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2012-08-01

    Full Text Available Predicting blood-brain barrier (BBB permeability is essential to drug development, as a molecule cannot exhibit pharmacological activity within the brain parenchyma without first transiting this barrier. Understanding the process of permeation, however, is complicated by a combination of both limited passive diffusion and active transport. Our aim here was to establish predictive models for BBB drug permeation that include both active and passive transport. A database of 153 compounds was compiled using in vivo surface permeability product (logPS values in rats as a quantitative parameter for BBB permeability. The open source Chemical Development Kit (CDK was used to calculate physico-chemical properties and descriptors. Predictive computational models were implemented by machine learning paradigms (decision tree induction on both descriptor sets. Models with a corrected classification rate (CCR of 90% were established. Mechanistic insight into BBB transport was provided by an Ant Colony Optimization (ACO-based binary classifier analysis to identify the most predictive chemical substructures. Decision trees revealed descriptors of lipophilicity (aLogP and charge (polar surface area, which were also previously described in models of passive diffusion. However, measures of molecular geometry and connectivity were found to be related to an active drug transport component.

  16. Air-injection field tests to determine the effect of a heat cycle on the permeability of welded tuff

    International Nuclear Information System (INIS)

    Lee, K.H.; Ueng, Tzou-Shin.

    1991-01-01

    As part of a series of prototype tests conducted in preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were conducted in the welded tuffs in G-Tunnel at the Nevada Test Site. The objectives were to characterize the permeability of the highly fractured tuff around a horizontal heater emplacement borehole, and to determine the effect of a heating and cooling cycle on the rock-mass permeability. Air was injected into packed-off intervals along the heater borehole. The bulk permeability of the rock adjacent to the test interval and the aperture of fractures intersecting the interval were computed from the air-flow rate, temperature, and pressure at steady state. The bulk permeability of intervals along with borehole varied from a minimum of 0.08 D to a maximum of over 144 D and the equivalent parallel-plate apertures of fractures intersecting the borehole varied from 70 to 589 μm. Higher permeabilities seemed to correlate spatially with the mapped fractures. The rock was then heated for a period of 6.5 months with an electrical-resistive heater installed in the borehole. After heating, the rock was allowed to cool down to the ambient temperature. The highest borehole wall temperature measured was 242 degree C. Air injection tests were repeated following the heating and cooling cycle, and the results showed significant increases in bulk permeability ranging from 10 to 1830% along the borehole. 8 ref., 6 figs., 3 tabs

  17. An intelligent detecting system for permeability prediction of MBR.

    Science.gov (United States)

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  18. The Hybrid of Classification Tree and Extreme Learning Machine for Permeability Prediction in Oil Reservoir

    KAUST Repository

    Prasetyo Utomo, Chandra

    2011-06-01

    Permeability is an important parameter connected with oil reservoir. Predicting the permeability could save millions of dollars. Unfortunately, petroleum engineers have faced numerous challenges arriving at cost-efficient predictions. Much work has been carried out to solve this problem. The main challenge is to handle the high range of permeability in each reservoir. For about a hundred year, mathematicians and engineers have tried to deliver best prediction models. However, none of them have produced satisfying results. In the last two decades, artificial intelligence models have been used. The current best prediction model in permeability prediction is extreme learning machine (ELM). It produces fairly good results but a clear explanation of the model is hard to come by because it is so complex. The aim of this research is to propose a way out of this complexity through the design of a hybrid intelligent model. In this proposal, the system combines classification and regression models to predict the permeability value. These are based on the well logs data. In order to handle the high range of the permeability value, a classification tree is utilized. A benefit of this innovation is that the tree represents knowledge in a clear and succinct fashion and thereby avoids the complexity of all previous models. Finally, it is important to note that the ELM is used as a final predictor. Results demonstrate that this proposed hybrid model performs better when compared with support vector machines (SVM) and ELM in term of correlation coefficient. Moreover, the classification tree model potentially leads to better communication among petroleum engineers concerning this important process and has wider implications for oil reservoir management efficiency.

  19. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    Energy Technology Data Exchange (ETDEWEB)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  20. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption.

    Science.gov (United States)

    Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat

    2015-01-27

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Predicting permeability and electrical conductivity of sedimentary rocks from microgeometry

    International Nuclear Information System (INIS)

    Schlueter, E.M.; Cook, N.G.W.

    1991-02-01

    The determination of hydrologic parameters that characterize fluid flow through rock masses on a large scale (e.g., hydraulic conductivity, capillary pressure, and relative permeability) is crucial to activities such as the planning and control of enhanced oil recovery operations, and the design of nuclear waste repositories. Hydraulic permeability and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. The cross-sectional areas and perimeters of the individual pores are estimated from two-dimensional scanning electron micrographs of rock sections. The hydraulic and electrical conductivities of the individual pores are determined from these geometrical parameters, using Darcy's law and Ohm's law. Account is taken of the fact that the cross-sections are randomly oriented with respect to the channel axes, and for possible variation of cross-sectional area along the length of the pores. The effective medium theory from solid-state physics is then used to determine an effective average conductance of each pore. Finally, the pores are assumed to be arranged on a cubic lattice, which allows the calculation of overall macroscopic values for the permeability and the electrical conductivity. Preliminary results using Berea, Boise, Massilon and Saint-Gilles sandstones show reasonably close agreement between the predicted and measured transport properties. 12 refs., 5 figs., 1 tab

  2. Permeability of Aluminium Foams Produced by Replication Casting

    Directory of Open Access Journals (Sweden)

    Maxim L. Cherny

    2012-12-01

    Full Text Available The replication casting process is used for manufacturing open-pore aluminum foams with advanced performances, such as stability and repeatability of foam structure with porosity over 60%. A simple foam structure model based on the interaction between sodium chloride solid particles poorly wetted by melted aluminum, which leads to the formation of air pockets (or “air collars”, is proposed for the permeability of porous material. The equation for the minimum pore radius of replicated aluminum foam is derived. According to the proposed model, the main assumption of the permeability model consists in a concentration of flow resistance in a circular aperture of radius rmin. The permeability of aluminum open-pore foams is measured using transformer oil as the fluid, changing the fractions of initial sodium chloride. Measured values of minimum pore size are close to theoretically predicted ones regardless of the particle shape. The expression for the permeability of replicated aluminum foam derived on the basis of the “bottleneck” model of porous media agrees well with the experimental data. The obtained data can be applied for commercial filter cells and pneumatic silencers.

  3. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Science.gov (United States)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. PMID:25560673

  4. Coupling between cracking and permeability, a model for structure service life prediction

    International Nuclear Information System (INIS)

    Lasne, M.; Gerard, B.; Breysse, D.

    1993-01-01

    Many authors have chosen permeability coefficients (permeation, diffusion) as a reference for material durability and for structure service life prediction. When we look for designing engineered barriers for radioactive waste storage we find these macroscopic parameters very essential. In order to work with a predictive model of transfer properties evolution in a porous media (concrete, mortar, rock) we introduce a 'micro-macro' hierarchical model of permeability whose data are the total porosity and the pore size distribution. In spite of the simplicity of the model (very small CPU time consuming) comparative studies show predictive results for sound cement pastes, mortars and concretes. Associated to these works we apply a model of damage due to hydration processes at early ages to a container as a preliminary underproject for the definitive storage of Low Level radioactive Waste (LLW). Data are geometry, cement properties and damage measurement of concrete. This model takes into account the mechanical property of the concrete maturation (volumic variations during cement hydration can damage the structures). Some local microcracking can appear and affect the long term durability. Following these works we introduce our research program for the concrete cracking analysis. An experimental campaign is designed in order to determine damage-cracking-porosity-permeability coupling. (authors). 12 figs., 16 refs

  5. The effect of air permeability characteristics of protective garments on the induced physiological strain under exercise-heat stress.

    Science.gov (United States)

    Epstein, Yoram; Heled, Yuval; Ketko, Itay; Muginshtein, Jeni; Yanovich, Ran; Druyan, Amit; Moran, Daniel S

    2013-08-01

    The high values of thermal resistance (Rct) and/or vapor resistance (Ret) of chemical protective clothing (CPC) induce a considerable thermal stress. The present study compared the physiological strain induced by CPCs and evaluates the relative importance of the fabrics' Rct, Ret, and air permeability in determining heat strain. Twelve young (20-30 years) healthy, heat-acclimated male subjects were exposed fully encapsulated for 3h daily to an exercise-heat stress (35°C and 30% relative humidity, walking on a motor-driven treadmill at a pace of 5 km h(1) and a 4% inclination, in a work-rest cycle of 45 min work and 15 min rest). Two bipack CPCs (PC1 and PC2) were tested and the results were compared with those attained by two control suits-a standard cotton military BDU (CO1) and an impermeable material suit (CO2). The physiological burden imposed by the two bilayer garments was within the boundaries set by the control conditions. Overall, PC2 induced a lower strain, which was closer to CO1, whereas PC1 was closer to CO2. Air permeability of the PC2 cloth was almost three times higher than that of PC1, enabling a better heat dissipation and consequently a lower physiological strain. Furthermore, air permeability characteristic of the fabrics, which is associated with its construction and weave, significantly correlated with the physiological strain, whereas the correlation with Rct, Ret, and weight was poor. The results emphasize the importance of air permeability in reducing the physiological strain induced by CPCs.

  6. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    Directory of Open Access Journals (Sweden)

    Keshavarzian Ali

    2011-06-01

    Full Text Available Abstract Background Exposure to particulate matter (PM air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. Methods We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours. Results PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. Conclusions Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.

  7. Wood Permeability in Eucalyptus grandis and Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Raphael Nogueira Rezende

    2017-12-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the flow of air and water in Eucalyptus grandis and Eucalyptus dunnii wood. Wood was collected from four trees aged 37 years in an experimental plantation of the Federal University of Lavras, Brazil. Planks were cut off the basal logs to produce specimens for air and water permeability testing. Results indicated that the longitudinal permeability to air and water of E. grandis wood were, on average, 5% and 10% higher, respectively, than that of E. dunnii wood. E. grandis and E. dunnii wood showed neither air nor water flow in the test for permeability transversal to the fibers, and longitudinal permeability to air exceeded that to water by approximately 50 fold in both species.

  8. Prediction of Central Nervous System Side Effects Through Drug Permeability to Blood-Brain Barrier and Recommendation Algorithm.

    Science.gov (United States)

    Fan, Jun; Yang, Jing; Jiang, Zhenran

    2018-04-01

    Drug side effects are one of the public health concerns. Using powerful machine-learning methods to predict potential side effects before the drugs reach the clinical stages is of great importance to reduce time consumption and protect the security of patients. Recently, researchers have proved that the central nervous system (CNS) side effects of a drug are closely related to its permeability to the blood-brain barrier (BBB). Inspired by this, we proposed an extended neighborhood-based recommendation method to predict CNS side effects using drug permeability to the BBB and other known features of drug. To the best of our knowledge, this is the first attempt to predict CNS side effects considering drug permeability to the BBB. Computational experiments demonstrated that drug permeability to the BBB is an important factor in CNS side effects prediction. Moreover, we built an ensemble recommendation model and obtained higher AUC score (area under the receiver operating characteristic curve) and AUPR score (area under the precision-recall curve) on the data set of CNS side effects by integrating various features of drug.

  9. Water modelling studies of blockage with discrete permeabilities in an 11 pin geometry

    International Nuclear Information System (INIS)

    Robinson, D.P.

    1977-06-01

    A linear array of 11 pins, representing a radial section through a 325 pin bundle, has been used to investigate the effect of discrete permeabilities on the wake geometry behind a local blockage in water. Three series of experiments were performed in each of which a different position of the permeability was considered. The complex wake geometries, visualised by the injection of air, are shown to be controlled by the position of, and flowrate through the permeability. Good agreement is shown between the experimental flow patterns and predictions by SABRE 1. (author)

  10. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  11. Support vector regression to predict porosity and permeability: Effect of sample size

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2012-02-01

    Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function

  12. Long-term bioventing performance in low-permeability soils

    International Nuclear Information System (INIS)

    Phelps, M.B.; Stanin, F.T.; Downey, D.C.

    1995-01-01

    Short-term and long-term bioventing treatability testing has shown that in situ air injection and extraction is a practical method for sustaining increased oxygen levels and enhancing aerobic biodegradation of petroleum hydrocarbons in low-permeability soils. At several test sites, initial physical parameter analysis of soils and air permeability tests indicated that impacted soils (fine sandy silts and clays) had low air permeabilities. Measurements of depleted soil-gas oxygen levels and increased soil-gas carbon dioxide levels indicated that the natural process of aerobic biodegradation of petroleum hydrocarbons was oxygen-limited. Initial treatability testing consisted of air permeability tests to measure the permeability of the soils to air and in situ respiration tests to measure the rates at which native microorganisms could biodegrade the contaminants when provided with sufficient oxygen. During the long-term treatment period, active air injection or extraction systems were operated for 1 year or longer. Soil gas was periodically monitored within the treatment zone to evaluate the success of the bioventing systems in increasing soil-gas oxygen levels in the low-permeability soils. Follow-up respiration tests and soil and soil-gas sampling were conducted to evaluate changes in respiration rates and contaminant concentrations with time

  13. Predicting carbonate permeabilities from wireline logs using a back-propagation neural network

    International Nuclear Information System (INIS)

    Wiener, J.M.; Moll, R.F.; Rogers, J.A.

    1991-01-01

    This paper explores the applicability of using Neural Networks to aid in the determination of carbonate permeability from wireline logs. Resistivity, interval transit time, neutron porosity, and bulk density logs form Texaco's Stockyard Creek Oil field were used as input to a specially designed neural network to predict core permeabilities in this carbonate reservoir. Also of interest was the comparison of the neural network's results to those of standard statistical techniques. The process of developing the neural network for this problem has shown that a good understanding of the data is required when creating the training set from which the network learns. This network was trained to learn core permeabilities from raw and transformed log data using a hyperbolic tangent transfer function and a sum of squares global error function. Also, it required two hidden layers to solve this particular problem

  14. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis

    DEFF Research Database (Denmark)

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle Juhl

    2015-01-01

    in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison...... with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging...... fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent...

  16. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability.

    Science.gov (United States)

    Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi

    2015-12-01

    In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  18. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    International Nuclear Information System (INIS)

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.; Lipavsky, A.; Murray, J.F.

    1984-01-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the control group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation

  19. Predicting skin permeability from complex chemical mixtures

    International Nuclear Information System (INIS)

    Riviere, Jim E.; Brooks, James D.

    2005-01-01

    Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k p = c + mMF + aΣα 2 H + bΣβ 2 H + sπ 2 H + rR 2 + vV x where Σα 2 H is the hydrogen-bond donor acidity, Σβ 2 H is the hydrogen-bond acceptor basicity, π 2 H is the dipolarity/polarizability, R 2 represents the excess molar refractivity, and V x is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k p ) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, ρ-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R 2 for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive index, polarizability and log (1/Henry's Law Constant) of the mixture components. These factors should not be considered final as the focus of these studies

  20. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

    Science.gov (United States)

    Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2018-03-21

    Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

  1. Air permeability of the artificially synthesized Zn-Al-Mg alloy rusts

    International Nuclear Information System (INIS)

    Ishikawa, Tatsuo; Ueda, Masato; Kandori, Kazuhiko; Nakayama, Takenori

    2007-01-01

    The rust particles of Zn-Al-Mg alloys were synthesized from aqueous solutions dissolving ZnCl 2 , AlCl 3 , and MgCl 2 at different atomic ratios of the metal ions. The crystal phase and particle morphology of the products depended on the composition of the starting solutions. The compactness of the layers of the products was estimated by measuring their air permeability. The layer of mixed metal hydroxide chloride formed at Zn:Al:Mg = 1:1:1 showed a highest compactness, that was ascribed to the preferred orientation of the fine plate particles. The addition of Mg(II) made plate particles smaller to give more compact layers

  2. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.

    Science.gov (United States)

    Malykh, O V; Golub, A Yu; Teplyakov, V V

    2011-05-11

    Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4

  3. Predicting permeability of low enthalpy geothermal reservoirs: A case study from the Upper Triassic − Lower Jurassic Gassum Formation, Norwegian–Danish Basin

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    2017-01-01

    This paper aims at improving the predictability of permeability in low enthalpy geothermal reser-voirs by investigating the effect of diagenesis on sandstone permeability. Applying the best fittedporosity–permeability trend lines, obtained from conventional core analysis, to log-interpreted poros...

  4. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    Science.gov (United States)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  5. Prediction of Placental Barrier Permeability: A Model Based on Partial Least Squares Variable Selection Procedure

    Directory of Open Access Journals (Sweden)

    Yong-Hong Zhang

    2015-05-01

    Full Text Available Assessing the human placental barrier permeability of drugs is very important to guarantee drug safety during pregnancy. Quantitative structure–activity relationship (QSAR method was used as an effective assessing tool for the placental transfer study of drugs, while in vitro human placental perfusion is the most widely used method. In this study, the partial least squares (PLS variable selection and modeling procedure was used to pick out optimal descriptors from a pool of 620 descriptors of 65 compounds and to simultaneously develop a QSAR model between the descriptors and the placental barrier permeability expressed by the clearance indices (CI. The model was subjected to internal validation by cross-validation and y-randomization and to external validation by predicting CI values of 19 compounds. It was shown that the model developed is robust and has a good predictive potential (r2 = 0.9064, RMSE = 0.09, q2 = 0.7323, rp2 = 0.7656, RMSP = 0.14. The mechanistic interpretation of the final model was given by the high variable importance in projection values of descriptors. Using PLS procedure, we can rapidly and effectively select optimal descriptors and thus construct a model with good stability and predictability. This analysis can provide an effective tool for the high-throughput screening of the placental barrier permeability of drugs.

  6. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja

    2015-08-20

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable polymers of intrinsic microporosity (PIMs), with gas-sieving ultramicroporosity yields high-performance gas separation membranes. Highly ultramicroporous PIMs have redefined the state-of-the-art in large-scale air (e.g., O2/N2) and hydrogen recovery (e.g., H2/N2, H2/CH4) applications with unprecedented molecular sieving gas transport properties. Accordingly, presented herein are new 2015 permeability/selectivity “upper bounds” for large-scale commercial membrane-based air and hydrogen applications that accommodate the substantial performance enhancements of recent PIMs over preceding polymers. A subtle balance between intrachain rigidity and interchain spacing has been achieved in the amorphous microstructures of PIMs, fine-tuned using unique bridged-bicyclic building blocks (i.e., triptycene, ethanoanthracene and Tröger’s base) in both ladder and semiladder (e.g., polyimide) structures.

  7. High-permeability region size on perfusion CT predicts hemorrhagic transformation after intravenous thrombolysis in stroke.

    Directory of Open Access Journals (Sweden)

    Josep Puig

    Full Text Available Blood-brain barrier (BBB permeability has been proposed as a predictor of hemorrhagic transformation (HT after tissue plasminogen activator (tPA administration; however, the reliability of perfusion computed tomography (PCT permeability imaging for predicting HT is uncertain. We aimed to determine the performance of high-permeability region size on PCT (HPrs-PCT in predicting HT after intravenous tPA administration in patients with acute stroke.We performed a multimodal CT protocol (non-contrast CT, PCT, CT angiography to prospectively study patients with middle cerebral artery occlusion treated with tPA within 4.5 hours of symptom onset. HT was graded at 24 hours using the European-Australasian Acute Stroke Study II criteria. ROC curves selected optimal volume threshold, and multivariate logistic regression analysis identified predictors of HT.The study included 156 patients (50% male, median age 75.5 years. Thirty-seven (23,7% developed HT [12 (7,7%, parenchymal hematoma type 2 (PH-2]. At admission, patients with HT had lower platelet values, higher NIHSS scores, increased ischemic lesion volumes, larger HPrs-PCT, and poorer collateral status. The negative predictive value of HPrs-PCT at a threshold of 7mL/100g/min was 0.84 for HT and 0.93 for PH-2. The multiple regression analysis selected HPrs-PCT at 7mL/100g/min combined with platelets and baseline NIHSS score as the best model for predicting HT (AUC 0.77. HPrs-PCT at 7mL/100g/min was the only independent predictor of PH-2 (OR 1, AUC 0.68, p = 0.045.HPrs-PCT can help predict HT after tPA, and is particularly useful in identifying patients at low risk of developing HT.

  8. High-permeability region size on perfusion CT predicts hemorrhagic transformation after intravenous thrombolysis in stroke

    Science.gov (United States)

    Puig, Josep; Blasco, Gerard; Daunis-i-Estadella, Pepus; van Eendendburg, Cecile; Carrillo-García, María; Aboud, Carlos; Hernández-Pérez, María; Serena, Joaquín; Biarnés, Carles; Nael, Kambiz; Liebeskind, David S.; Thomalla, Götz; Menon, Bijoy K.; Demchuk, Andrew; Wintermark, Max; Pedraza, Salvador

    2017-01-01

    Objective Blood-brain barrier (BBB) permeability has been proposed as a predictor of hemorrhagic transformation (HT) after tissue plasminogen activator (tPA) administration; however, the reliability of perfusion computed tomography (PCT) permeability imaging for predicting HT is uncertain. We aimed to determine the performance of high-permeability region size on PCT (HPrs-PCT) in predicting HT after intravenous tPA administration in patients with acute stroke. Methods We performed a multimodal CT protocol (non-contrast CT, PCT, CT angiography) to prospectively study patients with middle cerebral artery occlusion treated with tPA within 4.5 hours of symptom onset. HT was graded at 24 hours using the European-Australasian Acute Stroke Study II criteria. ROC curves selected optimal volume threshold, and multivariate logistic regression analysis identified predictors of HT. Results The study included 156 patients (50% male, median age 75.5 years). Thirty-seven (23,7%) developed HT [12 (7,7%), parenchymal hematoma type 2 (PH-2)]. At admission, patients with HT had lower platelet values, higher NIHSS scores, increased ischemic lesion volumes, larger HPrs-PCT, and poorer collateral status. The negative predictive value of HPrs-PCT at a threshold of 7mL/100g/min was 0.84 for HT and 0.93 for PH-2. The multiple regression analysis selected HPrs-PCT at 7mL/100g/min combined with platelets and baseline NIHSS score as the best model for predicting HT (AUC 0.77). HPrs-PCT at 7mL/100g/min was the only independent predictor of PH-2 (OR 1, AUC 0.68, p = 0.045). Conclusions HPrs-PCT can help predict HT after tPA, and is particularly useful in identifying patients at low risk of developing HT. PMID:29182658

  9. Dynamic compressibility of air in porous structures at audible frequencies

    DEFF Research Database (Denmark)

    Lafarge, Denis; Lemarinier, Pavel; Allard, Jean F.

    1997-01-01

    Measurements of dynamic compressibility of air-filled porous sound-absorbing materials are compared with predictions involving two parametere, the static thermal permeability k'_0 and the thermal characteristic dimension GAMMA'. Emphasis on the notion of dynamic and static thermal permeability...... of the viscous forces. Using both parameters, a simple model is constructed for the dynamic thermal permeability k', which is completely analogous to the Johnson et al. [J. Fluid Mech. vol. 176, 379 (1987)] model of dynamic viscous permeability k. The resultant modeling of dynamic compressibility provides...... predictions which are closer to the experimental results than the previously used simpler model where the compressibility is the same as in identical circular cross-sectional shaped pores, or distributions of slits, related to a given GAMMA'....

  10. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China

    Science.gov (United States)

    2013-01-01

    The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293

  11. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.

  12. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  13. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    International Nuclear Information System (INIS)

    Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F.; Neuman, S.P.

    1996-03-01

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45 degree to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence

  14. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    Science.gov (United States)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  16. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  17. Epithelial Permeability Alterations in an In Vitro Air-Liquid Interface Model of Allergic Fungal Rhinosinusitis

    Science.gov (United States)

    Den Beste, Kyle A.; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.

    2012-01-01

    Background Chronic rhinosinusitis (CRS) is an inflammatory upper-airway disease with numerous etiologies. Patients with a characteristic subtype of CRS, allergic fungal rhinosinusitis (AFRS), display increased expression of Th2 cytokines and antigen-specific IgE. Various sinonasal inflammatory conditions are associated with alterations in epithelial barrier function. The aim of this study was to compare epithelial permeability and intercellular junctional protein expression amongst cultured primary sinonasal cells from AFRS patients versus non-inflammatory controls. Methods Epithelial cells isolated from paranasal sinus mucosa of AFRS and non-inflammatory control patients were grown to confluence on permeable supports and transitioned to air-liquid interface (ALI). Trans-epithelial resistance (TER) was measured with a horizontal Ussing chamber to characterize the functional permeability of each cell type. After TER recordings were complete, a panel of intercellular junctional proteins was assessed by Western blot and immunofluorescence labeling followed by confocal microscopy. Results After 12 samples were measured from each group, we observed a 41% mean decrease in TER in AFRS cells (296±89 ohms × cm2) compared to control (503±134 ohms × cm2, P=0.006). TER deficits observed in AFRS were associated with decreased expression of the tight junction proteins occludin and Junctional Adhesion Molecule-A (JAM-A), and increased expression of a leaky tight junction protein claudin-2. Conclusions Cultured sinonasal epithelium from AFRS patients displayed increased epithelial permeability and altered expression of intercellular junctional proteins. Given that these cells were not incubated with inflammatory cytokines in vitro, the cultured AFRS epithelial alterations may represent a retained modification in protein expression from the in vivo phenotype. PMID:22927233

  18. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  20. Lattice gas methods for predicting intrinsic permeability of porous media

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.O.E.; Philippi, P.C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Propriedades Termofisicas e Meios Porosos)]. E-mail: emerich@lmpt.ufsc.br; philippi@lmpt.ufsc.br; Damiani, M.C. [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil). Parque Tecnologico]. E-mail: damiani@lmpt.ufsc.br

    2000-07-01

    This paper presents a method for predicting intrinsic permeability of porous media based on Lattice Gas Cellular Automata methods. Two methods are presented. The first is based on a Boolean model (LGA). The second is Boltzmann method (LB) based on Boltzmann relaxation equation. LGA is a relatively recent method developed to perform hydrodynamic calculations. The method, in its simplest form, consists of a regular lattice populated with particles that hop from site to site in discrete time steps in a process, called propagation. After propagation, the particles in each site interact with each other in a process called collision, in which the number of particles and momentum are conserved. An exclusion principle is imposed in order to achieve better computational efficiency. In despite of its simplicity, this model evolves in agreement with Navier-Stokes equation for low Mach numbers. LB methods were recently developed for the numerical integration of the Navier-Stokes equation based on discrete Boltzmann transport equation. Derived from LGA, LB is a powerful alternative to the standard methods in computational fluid dynamics. In recent years, it has received much attention and has been used in several applications like simulations of flows through porous media, turbulent flows and multiphase flows. It is important to emphasize some aspects that make Lattice Gas Cellular Automata methods very attractive for simulating flows through porous media. In fact, boundary conditions in flows through complex geometry structures are very easy to describe in simulations using these methods. In LGA methods simulations are performed with integers needing less resident memory capability and boolean arithmetic reduces running time. The two methods are used to simulate flows through several Brazilian reservoir petroleum rocks leading to intrinsic permeability prediction. Simulation is compared with experimental results. (author)

  1. Defining clogging potential for permeable concrete.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Relationships between air-tightness and its influencing factors of post-2006 new-build dwellings in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [School of Architecture, Design and Environment, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom)

    2010-11-15

    Addressing air leakage of dwellings is important to improving energy efficiency and thermal comfort. This paper reports on the air permeability test results of 287 post-2006 new-build dwellings in the UK. The paper explores the relationships between air-tightness and its influencing factors including build method, dwelling type, management context, design target, season, number of significant penetrations, and envelope and floor area. One-way ANOVA analysis was utilised to compare means of air permeability in relation to the individual factors, and two- and three-way ANOVA analyses were applied for examining the interactions between them. The air-tightness of the dwellings averaged 5.97 m{sup 3}/(h m{sup 2}) at 50 Pa, which has improved from UK historic data. Dwellings built using precast concrete panels were significantly air-tighter than those built using timber frame, whilst those masonry and reinforced concrete frame dwellings were most leaky. Greater extent of innovative practice and 'self-build' procurement led to achieving superior air-tightness. Interaction was observed between 'build method' and 'dwelling type' and between 'dwelling type' and 'management context'. A modest positive correlation was noticed between air permeability and design target, which became weak in relation to the number of significant penetrations and envelope area. Applying the linear regression technique a predictive model is developed for estimating air permeability of dwellings. This model integrates the influencing factors and their significant interactions. The findings should contribute to future research in predicting impacts of controlling the influencing factors on achieving air-tightness of dwellings more consistently. (author)

  3. Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Rutqvist, J.; Freifeld, B.; Tsang, Y.W.; Min, K.B.; Elsworth, D.

    2008-01-01

    This paper presents results from a coupled thermal, hydrological and mechanical analysis of thermally-induced permeability changes during heating and cooling of fractured volcanic rock at the Drift Scale Test at Yucca Mountain, Nevada. The analysis extends the previous analysis of the four-year heating phase to include newly available data from the subsequent four year cooling phase. The new analysis of the cooling phase shows that the measured changes in fracture permeability follows that of a thermo-hydro-elastic model on average, but at several locations the measured permeability indicates (inelastic) irreversible behavior. At the end of the cooling phase, the air-permeability had decreased at some locations (to as low as 0.2 of initial), whereas it had increased at other locations (to as high as 1.8 of initial). Our analysis shows that such irreversible changes in fracture permeability are consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). These data are important for bounding model predictions of potential thermally-induced changes in rock-mass permeability at a future repository at Yucca Mountain

  4. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Deepak, E-mail: deepak.pant@vito.b [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium); Van Bogaert, Gilbert; De Smet, Mark; Diels, Ludo; Vanbroekhoven, Karolien [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium)

    2010-11-01

    In the existing microbial fuel cells (MFCs), the use of platinized electrodes and Nafion as proton exchange membrane (PEM) leads to high costs leading to a burden for wastewater treatment. In the present study, two different novel electrode materials are reported which can replace conventional platinized electrodes and can be used as very efficient oxygen reducing cathodes. Further, a novel membrane which can be used as an ion permeable membrane (Zirfon) can replace Nafion as the membrane of choice in MFCs. The above mentioned gas porous electrodes were first tested in an electrochemical half cell configuration for their ability to reduce oxygen and later in a full MFC set up. It was observed that these non-platinized air electrodes perform very well in the presence of acetate under MFC conditions (pH 7, room temperature) for oxygen reduction. Current densities of -0.43 mA cm{sup -2} for a non-platinized graphite electrode and -0.6 mA cm{sup -2} for a non-platinized activated charcoal electrode at -200 mV vs. Ag/AgCl of applied potential were obtained. The proposed ion permeable membrane, Zirfonwas tested for its oxygen mass transfer coefficient, K{sub 0} which was compared with Nafion. The K{sub 0} for Zirfon was calculated as 1.9 x 10{sup -3} cm s{sup -1}.

  5. AIR POLLUITON INDEX PREDICTION USING MULTIPLE NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Zainal Ahmad

    2017-05-01

    Full Text Available Air quality monitoring and forecasting tools are necessary for the purpose of taking precautionary measures against air pollution, such as reducing the effect of a predicted air pollution peak on the surrounding population and ecosystem. In this study a single Feed-forward Artificial Neural Network (FANN is shown to be able to predict the Air Pollution Index (API with a Mean Squared Error (MSE and coefficient determination, R2, of 0.1856 and 0.7950 respectively. However, due to the non-robust nature of single FANN, a selective combination of Multiple Neural Networks (MNN is introduced using backward elimination and a forward selection method. The results show that both selective combination methods can improve the robustness and performance of the API prediction with the MSE and R2 of 0.1614 and 0.8210 respectively. This clearly shows that it is possible to reduce the number of networks combined in MNN for API prediction, without losses of any information in terms of the performance of the final API prediction model.

  6. pH-dependent solubility and permeability profiles: A useful tool for prediction of oral bioavailability.

    Science.gov (United States)

    Sieger, P; Cui, Y; Scheuerer, S

    2017-07-15

    pH-dependent solubility - permeability profiles offer a simple way to predict bioavailability after oral application, if bioavailability is only solubility and permeability driven. Combining both pH-dependent solubility and pH-dependent permeability in one diagram provides a pH-window (=ΔpH sol-perm ) from which the conditions for optimal oral bioavailability can be taken. The size of this window is directly proportional to the observed oral bioavailability. A set of 21 compounds, with known absolute human oral bioavailability, was used to establish this correlation. Compounds with ΔpH sol-perm bioavailability (bioavailability typically by approximately 25%. For compounds where ΔpH sol-perm ≥3 but still showing poor bioavailability, most probably other pharmacokinetic aspects (e.g. high clearance), are limiting exposure. Interestingly, the location of this pH-window seems to have a negligible influence on the observed oral bioavailability. In scenarios, where the bioavailability is impaired by certain factors, like for example proton pump inhibitor co-medication or food intake, the exact position of this pH-window might be beneficial for understanding the root cause. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Simulating Air-Entrapment in Low Permeability Mudrocks using a Macroscopic Invasion Percolation Model

    Science.gov (United States)

    Singh, A.; Holt, R. M.; Ramarao, B.; Clemo, T.

    2011-12-01

    Three radioactive waste disposal landfills at the Waste Control Specialists (WCS) facility in Andrews County, Texas are constructed below grade, within the low-permeability Dockum Group mudrocks (Cooper Canyon Formation) of Triassic age. Recent site investigations at the WCS disposal facilities indicate the presence of a trapped and compressed gas phase in the mudrocks. The Dockum is a low-permeability medium with vertical and horizontal effective hydraulic conductivities of 1.2E-9 cm/s and 2.9E-7 cm/s. The upper 300+ feet of the Dockum is in the unsaturated zone, with an average saturation of 0.87 and average capillary pressure of 2.8 MPa determined from core samples. Air entry pressures on core samples range from from 0.016 to 9.8 MPa, with a mean of 1.0 MPa. Heat dissipation sensors, thermocouple psychrometers, and advanced tensiometers installed in Dockum borehole arrays generally show capillary pressures one order of magnitude less than those measured on core samples. These differences with core data are attributed to the presence of a trapped and compressed gas phase within Dockum materials. In the vicinity of an instrumented borehole, the gas phase pressure equilibrates with atmospheric pressure, lowering the capillary pressure. We have developed a new macroscopic invasion percolation (MIP) model to illustrate the origin of the trapped gas phase in the Dockum rocks. An MIP model differs from invasion percolation (IP) through the definition of macro-scale capillarity. Individual pore throats and necks are not considered. Instead, a near pore-scale block is defined and characterized by a local threshold spanning pressure (a local block-scale breakthrough pressure) that represents the behavior of the subscale network. The model domain is discretized into an array of grid blocks with assigned spanning pressures. An invasion pressure for each block is then determined by the sum of spanning pressure, buoyance forces, and viscous forces. An IP algorithm sorts the

  8. Medición "in situ" de la permeabilidad al aire del hormigón: status quo Concrete air permeability "in situ "test status quo

    Directory of Open Access Journals (Sweden)

    Luis Ebensperger

    2010-01-01

    Full Text Available Los autores han estado involucrados en la creación y primeros ensayos y desarrollos del llamado "Método Torrent" para medir la permeabilidad al aire del hormigón. Transcurridos más de 15 años de ese trabajo fundacional, el artículo presenta una revisión de la evolución y estado de situación del método, incluido como Norma Oficial Suiza en 2003. Se presentan ejemplos de su aplicación en laboratorio y en obras (puentes, túneles, etc., con datos de valores medidos, provenientes de distintos países del mundo. Se presentan correlaciones entre el coeficiente de permeabilidad al aire kT y otros indicadores de durabilidad, tales como la migración de cloruros (ASTM C1202 y la penetración de agua a presión (EN 12390-8 o por capilaridad. Finalmente se discuten sus perspectivas de uso futuro, como herramienta de control de calidad de estructuras nuevas, con las importantes implicancias que ello acarreará, así como de diagnóstico de estructuras existentes.The authors have been involved in the creation, preliminary tests and development of the "Torrent Method", which is intended to test air permeability in concrete. It's been more than 15 years since such foundational research and, now, this paper presents a review of the evolution and current situation of the Method, included in the Switzerland standards in 2003. Application examples conducted in laboratory and civil works (bridges, tunnels, and so on are introduced, including data from different countries worldwide. Correlations between the air permeability coefficient kT and other durability indicators, such as chloride migration (ASTM C1202, penetration of water under pressure (EN 12390-8 or capillary action are presented. Finally the future prospective uses are discussed, as quality control tool for new structures, considering relevant implications they would lead to, as well as the diagnosis on existing structures.

  9. Extended power-law scaling of air permeabilities measured on a block of tuff

    Directory of Open Access Journals (Sweden)

    M. Siena

    2012-01-01

    Full Text Available We use three methods to identify power-law scaling of multi-scale log air permeability data collected by Tidwell and Wilson on the faces of a laboratory-scale block of Topopah Spring tuff: method of moments (M, Extended Self-Similarity (ESS and a generalized version thereof (G-ESS. All three methods focus on q-th-order sample structure functions of absolute increments. Most such functions exhibit power-law scaling at best over a limited midrange of experimental separation scales, or lags, which are sometimes difficult to identify unambiguously by means of M. ESS and G-ESS extend this range in a way that renders power-law scaling easier to characterize. Our analysis confirms the superiority of ESS and G-ESS over M in identifying the scaling exponents, ξ(q, of corresponding structure functions of orders q, suggesting further that ESS is more reliable than G-ESS. The exponents vary in a nonlinear fashion with q as is typical of real or apparent multifractals. Our estimates of the Hurst scaling coefficient increase with support scale, implying a reduction in roughness (anti-persistence of the log permeability field with measurement volume. The finding by Tidwell and Wilson that log permeabilities associated with all tip sizes can be characterized by stationary variogram models, coupled with our findings that log permeability increments associated with the smallest tip size are approximately Gaussian and those associated with all tip sizes scale show nonlinear variations in ξ(q with q, are consistent with a view of these data as a sample from a truncated version (tfBm of self-affine fractional Brownian motion (fBm. Since in theory the scaling exponents, ξ(q, of tfBm vary linearly with q we conclude that nonlinear scaling in our case is not an indication of multifractality but an artifact of sampling from tfBm. This allows us to explain theoretically how power-law scaling of our data, as well

  10. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...

  11. Computer Prediction of Air Quality in Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Bjerg, Bjarne

    In modem livestock buildings the design of ventilation systems is important in order to obtain good air quality. The use of Computational Fluid Dynamics for predicting the air distribution makes it possible to include the effect of room geometry and heat sources in the design process. This paper...... presents numerical prediction of air flow in a livestock building compared with laboratory measurements. An example of the calculation of contaminant distribution is given, and the future possibilities of the method are discussed....

  12. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    Science.gov (United States)

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  13. Predicting capillarity of mudrocks for geological storage of CO2

    Science.gov (United States)

    Busch, Andreas; Amann-Hildenbrand, Alexandra

    2013-04-01

    Various rock types were investigated, with the main focus on the determination and prediction of the capillary breakthrough and snap-off pressure in mudrocks (e.g. shales, siltstones, mudstones). Knowledge about these two critical pressures is important for the prediction of the capillary sealing capacity of CO2 storage sites. Capillary pressure experiments, when performed on low-permeable core plugs, are difficult and time consuming. Laboratory measurements on core plugs under in-situ conditions are mostly performed using nitrogen, but also with methane and carbon dioxide. Therefore, mercury porosimetry measurements (MIP) are preferably used in the industry to determine an equivalent value for the capillary breakthrough pressure. These measurements have the advantage to be quick and cheap and only require cuttings or trim samples. When evaluating the database in detail we find that (1) MIP data plot well with the drainage breakthrough pressures determined on sample plugs, while the conversion of the system Hg/air to CO2/brine using interfacial and wettability data does not provide a uniform match, potentially caused by non fully water-wet conditions; (2) brine permeability versus capillary breakthrough pressure determined on sample plugs shows a good match and could provide a first estimate of Pc-values since permeability is easier to determine than capillary breakthrough pressures. For imbibition snap-off pressures a good correlation was found for CH4 measured on sample plugs only; (3) porosity shows a fairly good correlation with permeability for sandstone only, and with plug-derived capillary breakthrough pressures for sandstones, carbonates and evaporates. No such correlations exist for mudrocks; (4) air and brine-derived permeabilities show an excellent correlation and (5) from the data used we do not infer any direct correlations between specific surface area (SSA), mineralogy or organic carbon content with permeability or capillary pressure however were

  14. Relation between histamine release and dye permeability of pulmonary blood-air barrier in x-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, H [Kobe Univ. (Japan). School of Medicine

    1976-04-01

    The histamine-release kinetics and the influence of released histamine on the permeability of the pulmonary blood-air(BA) barrier during the early period after either whole-body or thoracic x irradiation of the rat were studied. Histamine contents of skin and lung of the irradiated rat decreased rapidly, reaching a minimum at 5 h, and this histamine depletion continued for at least 7 days. Conversely, in circulating blood histamine increased during the early period of 5 h and then decreased gradually. This early increase was linear up to 500R and then became saturated between 500 and 1,000R. Administration of polymixine B (5mg/100g body weight) to rats liberated histamine similarly. Rat sera containg histamine released soon after irradiation enhanced the capillary permeability of Evans blue(EB) in the guinea pig skin reaction, which was effectively countered by pretreatment of the guinea pig with anti-histaminic pyribenzamine (29..mu..g/100g body weight), but not by anti-serotonic chlorpromazine (0.3mg/100g body weight). Similarly, perhaps only the EB-bound serum albumin (EB-albumin), that was seen in alveolar perfusate, penetrated more through the pulmonary BA-barrier with increasing x-ray dose, in parallel with the increase in blood histamine. Pyribenzamine inhibited this effect effectively, but cysteamine (a radical scavenger) did so only partially. Thus, it seems possible that at soon after x irradiation the enhanced permeability of EB-albumin through the BA barrier of rat lung is due preferentially to the pharmacologic action of released histamine and subsidiarily to radiation damage to pulmonary cells.

  15. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

    2012-09-15

    Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

  16. In-situ permeability measurements with direct push techniques: Phase II topical report

    International Nuclear Information System (INIS)

    Lowry, W.; Mason, N.; Chipman, V.; Kisiel, K.; Stockton, J.

    1999-01-01

    This effort designed, fabricated, and field tested the engineering prototype of the Cone Permeametertrademark system. The integrated system includes the instrumented penetrometer probe, air and water pumps, flowrate controls, flow sensors, and a laptop-controlled data system. All of the equipment is portable and can be transported as luggage on airlines. The data system acquired and displays the process measurements (pressures, flows, and downhole temperature) in real time and calculates the resulting permeability. The measurement probe is a 2 inch diameter CPT rod section, incorporating a screened injection zone near the lower end of the rod and multiple sensitive absolute pressure sensors embedded in the probe at varying distances from the injection zone. Laboratory tests in a large test cell demonstrated the system's ability to measure nominally 1 Darcy permeability soil (30 to 40 Darcy material had been successfully measured in the Phase 1 effort). These tests also provided a shakedown of the system and identified minor instrument problems, which were resolved. Supplemental numerical modeling was conducted to evaluate the effects of layered permeability (heterogeneity) and anisotropy on the measurement system's performance. The general results of the analysis were that the Cone Permeameter could measure accurately, in heterogeneous media, the volume represented by the sample port radii if the outer pressure ports were used. Anisotropic permeability, while readily analyzed numerically, is more complicated to resolve with the simple analytical approach of the 1-D model, and will need further work to quantify. This phase culminated in field demonstrations at the DOE Savannah River Site. Saturated hydraulic conductivity measurements were completed at the D-Area Coal Pile Runoff Basin, and air permeability measurements were conducted at the M Area Integrated Demonstration Site and the 321 M area. The saturated hydraulic conductivity measurements were the most

  17. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L

    2010-10-04

    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that

  18. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum.

    Science.gov (United States)

    Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon

    2006-08-01

    In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.

  19. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  20. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    Science.gov (United States)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  1. Effect of ozone and histamine on airway permeability to horseradish peroxidase in guinea pigs

    International Nuclear Information System (INIS)

    Miller, P.D.; Gordon, T.; Warnick, M.; Amdur, M.O.

    1986-01-01

    Airway permeability was studied in groups of male guinea pigs at 2, 8, and 24 h after a 1-h exposure to 1 ppm ozone or at 2 h after a 1-h exposure to filtered air (control). Intratracheal administration of 2 mg horseradish peroxidase (HRP) was followed by blood sampling at 5-min intervals up to 30 min. The rate of appearance of HRP in plasma was significantly higher at 2 and 8 h after ozone exposure than that found in animals examined 2 h after air exposure or 24 h after ozone exposure. A dose of 0.12 mg/kg of subcutaneous histamine given after the 15 min blood sample significantly increased the already elevated permeability seen at 2 h post ozone, but had no effect on animals exposed to filtered air 2 h earlier or to ozone 24 h earlier. No difference was seen in the amount of subcutaneous radiolabeled histamine in the lungs of animals exposed 2 h earlier either to air or to ozone. These data indicate that a short-term exposure to ozone produced a reversible increase in respiratory epithelial permeability to HRP in guinea pigs. The potentiation of this increased permeability by histamine may be another manifestation of ozone-induced hyperreactivity

  2. Artificial Lipid Membrane Permeability Method for Predicting Intestinal Drug Transport: Probing the Determining Step in the Oral Absorption of Sulfadiazine; Influence of the Formation of Binary and Ternary Complexes with Cyclodextrins.

    Science.gov (United States)

    Delrivo, Alicia; Aloisio, Carolina; Longhi, Marcela R; Granero, Gladys

    2018-04-01

    We propose an in vitro permeability assay by using a modified lipid membrane to predict the in vivo intestinal passive permeability of drugs. Two conditions were tested, one with a gradient pH (pH 5.5 donor/pH 7.4 receptor) and the other with an iso-pH 7.4. The predictability of the method was established by correlating the obtained apparent intestinal permeability coefficients (P app ) and the oral dose fraction absorbed in humans (f a ) of 16 drugs with different absorption properties. The P app values correlated well with the absorption rates under the two conditions, and the method showed high predictability and good reproducibility. On the other hand, with this method, we successfully predicted the transport characteristics of oral sulfadiazine (SDZ). Also, the tradeoff between the increase in the solubility of SDZ by its complex formation with cyclodextrins and/or aminoacids and its oral permeability was assessed. Results suggest that SDZ is transported through the gastrointestinal epithelium by passive diffusion in a pH-dependent manner. These results support the classification of SDZ as a high/low borderline permeability compound and are in agreement with the Biopharmaceutics Classification Systems (BCS). This conclusion is consistent with the in vivo pharmacokinetic properties of SDZ.

  3. Long-term air monitoring of organochlorine pesticides using Semi Permeable Membrane Devices (SPMDs) in the Alps

    Energy Technology Data Exchange (ETDEWEB)

    Levy, W.; Henkelmann, B.; Pfister, G.; Bernhoeft, S.; Kirchner, M.; Jakobi, G. [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Bassan, R. [Regional Agency for Environmental Prevention and Protection of Veneto, Via Matteotti 27, 35137 Padova (Italy); Kraeuchi, N. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland); Schramm, K.-W., E-mail: schramm@helmholtz-muenchen.d [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); TUM-Technische Universitaet Muenchen, Department fuer Biowissenschaftliche Grundlagen Weihenstephaner Steig 23, D-85350 Freising (Germany)

    2009-12-15

    Atmospheric sampling of organochlorine pesticides (OCPs) was conducted using Semi Permeable Membrane Devices (SPMDs) deployed in the Alps at different altitudinal transects for two consecutive exposure periods of half a year and a third simultaneous year-long period. Along all the altitude profiles, the sequestered amounts of OCPs increased in general with altitude. SPMDs were still working as kinetic samplers after half a year for the majority of the OCPs. However, compounds with the lowest octanol-air partition coefficient (K{sub oa}), reached equilibrium within six months. This change in the SPMD uptake was determined for the temperature gradient along the altitude profile influencing K{sub oa}, OCPs availability in the gaseous phase, and SPMD performance. In sum, it seems two effects are working in parallel along the altitude profiles: the change in SPMD performance and the different availability of OCPs along the altitudinal transects determined by their compound properties and concentrations in air. - SPMDs were in different uptake stages regarding OCPs, as they were influenced by the temperature (season, triolein state, and altitude) and K{sub oa}.

  4. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines.

    Science.gov (United States)

    Volpe, Donna A

    2011-12-01

    The human colon adenocarcinoma Caco-2 and Madin-Darby canine kidney epithelial cell lines provide in vitro tools to assess a drug's permeability and transporter interactions during discovery and development. The cells, when cultured on semiporous filters, form confluent monolayers that model the intestinal epithelial barrier for permeability, transporter and drug-interaction assays. The applications of these assays in pharmaceutical research include qualitative prediction and ranking of absorption, determining mechanism(s) of permeability, formulation effects on drug permeability, and the potential for transporter-mediated drug-drug interactions. This review focuses on recent examples of Caco-2 and Madin-Darby canine kidney cells assays for drug permeability including transfected and knock-down cells, miniaturization and automation, and assay combinations to better understand and predict intestinal drug absorption.

  5. Bronchoalveolar permeability changes in rats inhaling gas/particle combinations during rest or exercise

    International Nuclear Information System (INIS)

    Bhalla, D.K.; Phalen, R.F.; Mannix, R.C.; Lavan, S.M.; Crocker, T.T.

    1986-01-01

    Bronchoalveolar (BA) injury in rats exposed at rest or exercise to air pollutants was studied by changes in epithelial permeability. Rats exposed to air, single gases or pollutant combinations were anesthetized, tracheostomized, and placed on an incline. /sup 99m/Tc-DTPA was delivered directly to a major bronchus. Radioactivity measurements were made on blood samples collected during first 10 min. Exposure of resting rats to 0.6 ppm O 3 increased BA permeability just after exposure, but it was normal 24 hrs later; in exercising rats the increase was greater than in rats exposed at rest, and it persisted up to 24 hrs. NO 2 at 6 ppm did not affect permeability. Exposure of resting rats to 2.5 ppm NO 2 + 0.6 ppm O 3 only increased permeability right after the exposure, but in exercising rats this exposure resulted in a greater permeability which remained elevated up to 24 hrs. Exposure of exercising rats to 0.8 ppm O 3 + 10 ppm HCHO increased permeability. Exposure of resting rats to an atmosphere of 0.6 ppm O 3 + 2.5 ppm NO 2 + 5 ppm SO 2 + 1 mg/m 3 sulfates of ferric, ammonium and manganese also produced an increase in permeability that persisted up to 24 hrs. The results suggest potentiation of the pollutant effects by exercise, but there is no indication of synergistic effect of pollutant combinations on BA permeability

  6. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo

    2003-01-01

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  7. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  8. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  9. Airspace Analyzer for Assessing Airspace Directional Permeability, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We build a software tool which enables the user (airline or Air Traffic Service Provider (ATSP)) the ability to analyze the flight-level-by-flight-level permeability...

  10. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye.

    Science.gov (United States)

    Ramsay, Eva; Del Amo, Eva M; Toropainen, Elisa; Tengvall-Unadike, Unni; Ranta, Veli-Pekka; Urtti, Arto; Ruponen, Marika

    2018-07-01

    On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically applied drugs, but barrier contributions of these two membranes have not been systemically compared. Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70 × 10 -6  cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their conjunctival drug permeability values. Ocular drug bioavailability and systemic absorption via conjunctiva were predicted for this drug set with pharmacokinetic calculations. Drug bioavailability in the aqueous humour was simulated to be drug across the conjunctiva to the blood circulation restricts significantly ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the increasing corneal drug permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. OBSERVATION AND ANALYSIS OF A PRONOUNCED PERMEABILITY AND POROSITY SCALE-EFFECT IN UNSATURATED FRACTURED TUFF

    Energy Technology Data Exchange (ETDEWEB)

    V. VESSELINOV; ET AL

    2001-01-01

    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  12. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  13. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  14. Lightweight, Low Permeability, Cryogenic Thoraeus RubberTM Inflatables, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed a candidate state-of-the-art inflatable as a novel bladder material for life critical, space habitats that maintains low air permeability...

  15. Principal permeability determination from multiple horizontal well tests

    Energy Technology Data Exchange (ETDEWEB)

    Economides, M. [Texas A and M Univ., TX (United States); Munoz, A.; Ehlig-Economides, C.

    1998-12-31

    A method for obtaining principal permeability magnitudes and direction that requires only the linear flow regime from transient tests in three horizontal wells oriented in three distinct and arbitrary directions, is described. Well design optimization strategies require knowledge of both the principal permeability orientation as well as the horizontal permeability magnitudes. When the degree of horizontal permeability anisotropy (i.e. permeability in the bedding plane with respect to direction) is significant, the productivity of a long horizontal well will depend greatly on its direction, especially when the well is first brought into production. Productivities have been found to deviate substantially among wells in the same reservoir and this deviation has been attributed to differences in well orientation. In view of this fact, measuring permeability anisotropy becomes a compelling necessity. The success of the proposed method is illustrated by a case study in which the principal permeability magnitudes and direction from three wells were used to predict the productivity of a fourth well within 10 per cent. Use of the computed principal permeabilities from the case study, it was possible to forecast the cumulative production to show the significance of well trajectory optimization on the discounted cash flow and the net present value. 20 refs., 3 figs.

  16. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  17. SPATIAL PREDICTION OF AIR TEMPERATURE IN EAST CENTRAL ANATOLIA OF TURKEY

    Directory of Open Access Journals (Sweden)

    B. C. Bilgili

    2017-11-01

    Full Text Available Air temperature is an essential component of the factors used in landscape planning. At similar topographic conditions, vegetation may show considerable differences depending on air temperature and precipitation. In large areas, measuring temperature is a cost and time-consuming work. Therefore, prediction of climate variables at unmeasured sites at an acceptable accuracy is very important in regional resource planning. In addition, use a more proper prediction method is crucial since many different prediction techniques yield different performance in different landscape and geographical conditions. We compared inverse distance weighted (IDW, ordinary kriging (OK, and ordinary cokriging (OCK to predict air temperature at unmeasured sites in Malatya region (East Central Anatolia of Turkey. Malatya region is the most important apricot production area of Turkey and air temperature is the most important factor determining the apricot growing zones in this region. We used mean monthly temperatures from 1975 to 2010 measured at 28 sites in the study area and predicted temperature with IDW, OC, and OCK techniques, mapped temperature in the region, and tested the reliability of these maps. The OCK with elevation as an auxiliary variable occurred the best procedure to predict temperature against the criteria of model efficiency and relative root mean squared error.

  18. Permeability measurements and modeling of topology-optimized metallic 3-D woven lattices

    International Nuclear Information System (INIS)

    Zhao, Longyu; Ha, Seunghyun; Sharp, Keith W.; Geltmacher, Andrew B.; Fonda, Richard W.; Kinsey, Alex H.; Zhang, Yong; Ryan, Stephen M.; Erdeniz, Dinc; Dunand, David C.; Hemker, Kevin J.; Guest, James K.; Weihs, Timothy P.

    2014-01-01

    Topology optimization was combined with a 3-D weaving technique to design and fabricate structures with optimized combinations of fluid permeability and mechanical stiffness. Two different microarchitected structures are considered: one is a “standard” weave in which all wires were included, while the other is termed an “optimized” weave as specific wires were removed to maximize the permeability of the resulting porous materials with only a limited reduction in stiffness. Permeability was measured and predicted for both structures that were 3-D woven with either Cu or Ni–20Cr wires. The as-woven wires in the Cu lattices were bonded at contact points using solder or braze while the Ni–20Cr wires were bonded at contact points using pack aluminization. Permeability was measured under laminar flow conditions in all three normal directions for unbonded and bonded samples and in the optimized structure it was found to increase between 200% and 600%, depending on direction, over the standard structures. Permeability was also predicted using finite-element modeling with as-fabricated wires positions that were identified with optical microscopy or X-ray tomography; the measurements and predictions show good agreement. Lastly, the normalized permeability values significantly exceed those found for stochastic, metallic foams and other periodic structures with a material volume fraction of over 30%

  19. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    Science.gov (United States)

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  20. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    Science.gov (United States)

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  1. WIPP air-intake shaft disturbed-rock zone study

    International Nuclear Information System (INIS)

    Dale, T.; Hurtado, L.D.

    1996-01-01

    The disturbed-rock zone surrounding the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site was investigated to determine the extent and the permeability of the disturbed-rock zone as a function of radial distance from the 6.1 m diameter shaft, at different elevations within the Salado. Gas- and brine-permeability tests were performed in the bedded halite of the Salado formation at two levels within the air-intake shaft. The gas- and brine-permeability test results demonstrated that the radial distance to an undisturbed formation permeability of 1 x 10 -21 m 2 was less than 3.0 m

  2. Ambient air quality predictions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents dispersion modelling predictions for SO 2 , NOx, CO, HC and particulate matter (PM), which complement regional monitoring observations. The air quality simulation models provide a scientific means of relating industrial emissions to changes in ambient air quality. The four models applied to the emission sources in the region were: (1) SCREEN3, (2) ISC3BE, (3) ADEPT2, and (4) the box model. Model predictions were compared to air quality guidelines. It was concluded that the largest SO 2 concentrations were associated with intermittent flaring, and with the Suncor Powerhouse whose emissions are continuous. 45 refs., 36 tabs., 40 figs

  3. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    Science.gov (United States)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media

  4. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  5. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    International Nuclear Information System (INIS)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-01-01

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately

  6. Estimating the gas permeability of commercial volatile corrosion inhibitors at elevated temperatures with thermo-gravimetry

    CSIR Research Space (South Africa)

    Pieterse, N

    2006-08-01

    Full Text Available ) in the surrounding atmosphere. However, the rate at which the VCI can be delivered across the air gap to a metal surface is determined by the gas permeability. This is the product of the vapour pressure and the diffusion coefficient: S-A = PADAB. The gas permeability...

  7. NOAA's National Air Quality Predictions and Development of Aerosol and Atmospheric Composition Prediction Components for the Next Generation Global Prediction System

    Science.gov (United States)

    Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.

    2016-12-01

    NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics

  8. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  9. Focal Low and Global High Permeability Predict the Possibility, Risk, and Location of Hemorrhagic Transformation following Intra-Arterial Thrombolysis Therapy in Acute Stroke.

    Science.gov (United States)

    Li, Y; Xia, Y; Chen, H; Liu, N; Jackson, A; Wintermark, M; Zhang, Y; Hu, J; Wu, B; Zhang, W; Tu, J; Su, Z; Zhu, G

    2017-09-01

    The contrast volume transfer coefficient ( K trans ), which reflects blood-brain barrier permeability, is influenced by circulation and measurement conditions. We hypothesized that focal low BBB permeability values can predict the spatial distribution of hemorrhagic transformation and global high BBB permeability values can predict the likelihood of hemorrhagic transformation. We retrospectively enrolled 106 patients with hemispheric stroke who received intra-arterial thrombolytic treatment. K trans maps were obtained with first-pass perfusion CT data. The K trans values at the region level, obtained with the Alberta Stroke Program Early CT Score system, were compared to determine the differences between the hemorrhagic transformation and nonhemorrhagic transformation regions. The K trans values of the whole ischemic region based on baseline perfusion CT were obtained as a variable to hemorrhagic transformation possibility at the global level. Forty-eight (45.3%) patients had hemorrhagic transformation, and 21 (19.8%) had symptomatic intracranial hemorrhage. At the region level, there were 82 ROIs with hemorrhagic transformation and parenchymal hemorrhage with a mean K trans , 0.5 ± 0.5/min, which was significantly lower than that in the nonhemorrhagic transformation regions ( P transformation ROIs was 0.7 ± 0.6/min. At the global level, there was a significant difference ( P = .01) between the mean K trans values of patients with symptomatic intracranial hemorrhage (1.3 ± 0.9) and those without symptomatic intracranial hemorrhage (0.8 ± 0.4). Only a high K trans value at the global level could predict the occurrence of symptomatic intracranial hemorrhage ( P transformation or symptomatic intracranial hemorrhage at the patient level, whereas focal low K trans values can predict the spatial distributions of hemorrhagic transformation at the region level. © 2017 by American Journal of Neuroradiology.

  10. Predicting flow through low-permeability, partially saturated, fractured rock: A review of modeling and experimental efforts at Yucca Mountain

    International Nuclear Information System (INIS)

    Eaton, R.R.; Bixler, N.E.; Glass, R.J.

    1989-01-01

    Current interest in storing high-level nuclear waste in underground repositories has resulted in an increased effort to understand the physics of water flow through low-permeability rock. The US Department of Energy is investigating a prospective repository site located in volcanic ash (tuff) hundreds of meters above the water table at Yucca Mountain, Nevada. Consequently, mathematical models and experimental procedures are being developed to provide a better understanding of the hydrology of this low-permeability, partially saturated, fractured rock. Modeling water flow in the vadose zone in soils and in relatively permeable rocks such as sandstone has received considerable attention for many years. The treatment of flow (including nonisothermal conditions) through materials such as the Yucca Mountain tuffs, however, has not received the same level of attention, primarily because it is outside the domain of agricultural and petroleum technology. This paper reviews the status of modeling and experimentation currently being used to understand and predict water flow at the proposed repository site. Several areas of research needs emphasized by the review are outlined. The extremely nonlinear hydraulic properties of these tuffs in combination with their heterogeneous nature makes it a challenging and unique problem from a computational and experimental view point. 101 refs., 14 figs., 1 tab

  11. Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials

    KAUST Repository

    Hussaini, Irfan; Wang, Chao-Yang

    2009-01-01

    Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.

  12. Cell permeability beyond the rule of 5.

    Science.gov (United States)

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan

    2016-06-01

    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    Science.gov (United States)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  14. Gas permeability of ice-templated, unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  15. Uncertainty estimation and risk prediction in air quality

    International Nuclear Information System (INIS)

    Garaud, Damien

    2011-01-01

    This work is about uncertainty estimation and risk prediction in air quality. Firstly, we build a multi-model ensemble of air quality simulations which can take into account all uncertainty sources related to air quality modeling. Ensembles of photochemical simulations at continental and regional scales are automatically generated. Then, these ensemble are calibrated with a combinatorial optimization method. It selects a sub-ensemble which is representative of uncertainty or shows good resolution and reliability for probabilistic forecasting. This work shows that it is possible to estimate and forecast uncertainty fields related to ozone and nitrogen dioxide concentrations or to improve the reliability of threshold exceedance predictions. The approach is compared with Monte Carlo simulations, calibrated or not. The Monte Carlo approach appears to be less representative of the uncertainties than the multi-model approach. Finally, we quantify the observational error, the representativeness error and the modeling errors. The work is applied to the impact of thermal power plants, in order to quantify the uncertainty on the impact estimates. (author) [fr

  16. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  17. Determination of Intrinsic Permeability for Packed Waste of Indonesian Solid Waste

    Directory of Open Access Journals (Sweden)

    Benno Rahardyan

    2010-11-01

    Full Text Available Gas permeability and intrinsic permeability are the major parameters to promote aeration for packed waste. The objectives of this research are to identify physical parameters of gas transfer from a various type of packed wastes and examine ventilation design theory for landfill to enhance waste stabilization. Method to determine value of gas permeability and intrinsic permeability for packed waste is by flushing the packed column containing various type and physical characteristics of wastes with an air pump. Permeability was calculated by measuring pressure gradient on sampling points of the column using inclined manometer at distance 10 cm, 23 cm, 46 cm, 69 cm, 92 cm and 115 cm from origin. Gas permeability is specifically relied on physical parameters of wastes as follows, density, moisture content, particle size and gas velocity on the surface of compacted waste layer. Compost has finer pore structure and smaller pore size than leaves as well as mixed organic (65% and inorganic wastes (35%. The experiment found the intrinsic permeability of leaves waste are in the order of 10-11 to 10-8 m2, 10-11 to 10-9 m2 for compost and 10-9 m2 for mixed organic (65% and inorganic wastes (35%.

  18. NOAA's National Air Quality Prediction and Development of Aerosol and Atmospheric Composition Prediction Components for NGGPS

    Science.gov (United States)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.

    2017-12-01

    NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.

  19. Comparison of observed and predicted Kr-85 air concentrations

    International Nuclear Information System (INIS)

    Yildiran, M.; Miller, C.W.

    1984-01-01

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plume equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearson's correlation between pairs of logarithms of observed and predicted annual-average values was r=0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. (orig.)

  20. In situ permeable flow sensors at the Savannah River Integrated Demonstration: Phase 2 results

    International Nuclear Information System (INIS)

    Ballard, S.

    1994-08-01

    A suite of In Situ Permeable Flow Sensors was deployed at the site of the Savannah River Integrated Demonstration to monitor the interaction between the groundwater flow regime and air injected into the saturated subsurface through a horizontal well. One of the goals of the experiment was to determine if a groundwater circulation system was induced by the air injection process. The data suggest that no such circulation system was established, perhaps due to the heterogeneous nature of the sediments through which the injected gas has to travel. The steady state and transient groundwater flow patterns observed suggest that the injected air followed high permeability pathways from the injection well to the water table. The preferential pathways through the essentially horizontal impermeable layers appear to have been created by drilling activities at the site

  1. Postprocessing for Air Quality Predictions

    Science.gov (United States)

    Delle Monache, L.

    2017-12-01

    In recent year, air quality (AQ) forecasting has made significant progress towards better predictions with the goal of protecting the public from harmful pollutants. This progress is the results of improvements in weather and chemical transport models, their coupling, and more accurate emission inventories (e.g., with the development of new algorithms to account in near real-time for fires). Nevertheless, AQ predictions are still affected at times by significant biases which stem from limitations in both weather and chemistry transport models. Those are the result of numerical approximations and the poor representation (and understanding) of important physical and chemical process. Moreover, although the quality of emission inventories has been significantly improved, they are still one of the main sources of uncertainties in AQ predictions. For operational real-time AQ forecasting, a significant portion of these biases can be reduced with the implementation of postprocessing methods. We will review some of the techniques that have been proposed to reduce both systematic and random errors of AQ predictions, and improve the correlation between predictions and observations of ground-level ozone and surface particulate matter less than 2.5 µm in diameter (PM2.5). These methods, which can be applied to both deterministic and probabilistic predictions, include simple bias-correction techniques, corrections inspired by the Kalman filter, regression methods, and the more recently developed analog-based algorithms. These approaches will be compared and contrasted, and strength and weaknesses of each will be discussed.

  2. In-Situ Air Permeability Measurements Using the Cone Permeameter at the 200 East Area of the Hanford Site

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1999-01-01

    This report documents the field demonstration of the Cone Permeametertrademark (CPer) conducted at the Immobilization Low-Activity Waste (ILAW) site in the 200 East area of the Department of Energy's (DOE) Hanford facility. The demonstration was conducted using the Hanford Site Cone Penetration Platform (CPP) shown in Figure 1.1. The purpose of the technology demonstration was to (1) gather baseline data and evaluate the CPer's ability to measure air permeability in arid sands, silts and gravels; and (2) to determine the system's ability to replicate permeability profiles with multiple pushes in close proximity. The demonstration was jointly conducted by Applied Research Associates, Inc. (ARA) and Science and Engineering Associates (SEA). This report satisfies the requirements of ARA's contract No.2075 to Lockheed Martin Hanford Company. The report is organized into six major sections. This first section presents an introduction and outline to the report. Section 2 contains a discussion of the technologies used for the demonstration. Section 3 contains a brief description of the site where the demonstration was conducted. Section 4 describes the testing methodology and chronology. Section 5 presents the results obtained during the field test program. Comparisons between these results and existing site data are developed and discussed in Section 5. A conclusion and recommendation section is presented in Section 6 of the report

  3. Measurements and prediction of inhaled air quality with personalized ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Majer, M.; Melikov, Arsen Krikor

    2002-01-01

    the room air) at flow rates ranging from less than 5 L/s up to 23 L/s. The air quality assessment was based on temperature measurements of the inhaled air and on the portion of the personalized air inhaled. The percentage of dissatisfied with the air quality was predicted. The results suggest......This paper examines the performance of five different air terminal devices for personalized ventilation in relation to the quality of air inhaled by a breathing thermal manikin in a climate chamber. The personalized air was supplied either isothermally or non-isothermally (6 deg.C cooler than...... that regardless of the temperature combinations, personalized ventilation may decrease significantly the number of occupants dissatisfied with the air quality. Under non-isothermal conditions the percentage of dissatisfied may decrease up to 4 times....

  4. Estimation of permeability and permeability anisotropy in horizontal wells through numerical simulation of mud filtrate invasion

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Nelson [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Altman, Raphael; Rasmus, John; Oliveira, Jansen [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper describes how permeability and permeability anisotropy is estimated in horizontal wells using LWD (logging-while-drilling) laterolog resistivity data. Laterolog-while-drilling resistivity passes of while-drilling and timelapse (while reaming) were used to capture the invasion process. Radial positions of water based mud invasion fronts were calculated from while-drilling and reaming resistivity data. The invasion process was then recreated by constructing forward models with a fully implicit, near-wellbore numerical simulation such that the invasion front at a given time was consistent with the position of the front predicted by resistivity inversions. The radial position of the invasion front was shown to be sensitive to formation permeability. The while-drilling environment provides a fertile scenario to investigate reservoir dynamic properties because mud cake integrity and growth is not fully developed which means that the position of the invasion front at a particular point in time is more sensitive to formation permeability. The estimation of dynamic formation properties in horizontal wells is of particular value in marginal fields and deep-water offshore developments where running wireline and obtaining core is not always feasible, and where the accuracy of reservoir models can reduce the risk in field development decisions. (author)

  5. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 μdarcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  6. The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model

    Directory of Open Access Journals (Sweden)

    Sergio Fucile

    2017-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are cation-selective ligand-gated ion channels exhibiting variable Ca2+ permeability depending on their subunit composition. The Ca2+ permeability is a crucial functional parameter to understand the physiological role of nAChRs, in particular considering their ability to modulate Ca2+-dependent processes such as neurotransmitter release. The rings of extracellular and intracellular charged amino acid residues adjacent to the pore-lining TM2 transmembrane segment have been shown to play a key role in the cation selectivity of these receptor channels, but to date a quantitative relationship between these structural determinants and the Ca2+ permeability of nAChRs is lacking. In the last years the Ca2+ permeability of several nAChR subtypes has been experimentally evaluated, in terms of fractional Ca2+ current (Pf, i.e., the percentage of the total current carried by Ca2+ ions. In the present study, the available Pf-values of nAChRs are used to build a simplified modular model describing the contribution of the charged residues in defined regions flanking TM2 to the selectivity filter controlling Ca2+ influx. This model allows to predict the currently unknown Pf-values of existing nAChRs, as well as the hypothetical Ca2+ permeability of subunit combinations not able to assemble into functional receptors. In particular, basing on the amino acid sequences, a Pf > 50% would be associated with homomeric nAChRs composed by different α subunits, excluding α7, α9, and α10. Furthermore, according to the model, human α7β2 receptors should have Pf-values ranging from 3.6% (4:1 ratio to 0.1% (1:4 ratio, much lower than the 11.4% of homomeric α7 nAChR. These results help to understand the evolution and the function of the large diversity of the nicotinic receptor family.

  7. Predictive monitoring and diagnosis of periodic air pollution in a subway station.

    Science.gov (United States)

    Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo

    2010-11-15

    The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment

    Science.gov (United States)

    Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon

    2010-09-01

    Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM 2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO 2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO 2) and nitrogen oxides (NO x) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO 2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM 2.5 can also decline by 3-15 μg m -3 (4-25%) due to the lower SO 2 and sulfate concentrations. If similar controls are implemented for NO x emissions, NO x concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM 2.5 concentrations will also decline by 2-14 μg m -3 (3-12%). In addition, the number of ozone (O 3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O 3 concentrations in the summer reduced by 8-30 ppb.

  9. Permeability and dispersivity of variable-aperture fracture systems

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    A number of recent experiments have pointed out the need of including the effects of aperture variation within each fracture in predicting flow and transport properties of fractured media. This paper introduces a new approach in which medium properties, such as the permeability to flow and dispersivity in tracer transport, are correlated to only three statistical parameters describing the fracture aperture probability distribution and the aperture spatial correlation. We demonstrate how saturated permeability and relative permeabilities for flow, as well as dispersion for solute transport in fractures may be calculated. We are in the process of examining the applicability of these concepts to field problems. Results from the evaluation and analysis of the recent Stripa-3D field data are presented. 13 refs., 10 figs

  10. Apparent permeability of electrical steel under PWM magnetisation

    International Nuclear Information System (INIS)

    Moses, A.J.; Leicht, J.; Anderson, P.

    2006-01-01

    In recent years much attention has been paid to material performance under pulse width modulation (PWM) excitation conditions, which is of increasing importance to motor applications particularly in energy efficient variable speed drive systems. It is well known that in general, losses increase significantly with reducing modulation index, the increase depending on parameters such as silicon contents, thickness and grain size. The effect of the PWM waveform on permeability has attracted little attention until now. So in this paper its influence on the permeability of electrical steel is analysed and characterised. A prediction approach based on the permeability under sine wave excitation and total harmonic distortion is introduced which results in errors below 10% for non-electrical steel at 1.5 T

  11. Comparison of observed and predicted Kr-85 air concentrations

    International Nuclear Information System (INIS)

    Yildiran, M.; Miller, C.W.

    1984-01-01

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plum equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant (SRP), Aiken, South Carolina, have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearsons's correlation between pairs of logarithms of observed and predicted annual-average values was r = 0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. 18 references, 3 figures, 3 tables

  12. Effect of permeability enhancers on paracellular permeability of acyclovir.

    Science.gov (United States)

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  13. Experimental study of the permeability of concrete under variable thermal and hydric conditions

    International Nuclear Information System (INIS)

    Chen, W.

    2011-01-01

    The main objective of this study is to evaluate the variable thermal and hydric effect, with fissuration effect on the hydraulic behaviour of two concretes. Many experimental tests (saturation and permeability measurements, uniaxial and triaxial compressions tests) were carried out in order to investigate the temperature and saturation influence on the behaviour hydraulic on sound and micro-cracked concrete. Moreover, an experimental device for permeability measurement on macro-cracked concrete was realized, it allows to study the behaviour of macro-cracked of concrete confined and subjected to dry gas flow or very moist air at different temperatures. Multiaxial mechanical tests are coupled to the permeability measurements of sound concrete and micro-cracked by freezing and thawing, which allow to measuring the permeability under deviatoric load-unload with the effect of pre-cracking under stress. We also effectuated a test of relative permeability of concrete as a function of water saturation, subjected to drying and re-saturation, conditioning by the different relative humidity imposed. (author)

  14. Effect of Drying Method on the Permeability Coefficient of Oak Wood (Quercus infactoria

    Directory of Open Access Journals (Sweden)

    Shuboo Salehpour

    2014-05-01

    Full Text Available In this study, the effect of drying method on the permeability coefficient of the oak wood (Quercus infectoria Oliv was studied. Freshly-cut logs of oak were prepared from Oureman, the east area of Kourdistan in Iran. Then, boards with nominal thickness of 6 cm were cut. The boards were dried using two methods. In the first method, the boards were air dried to the moisture content close to FSP for 45 days and then they were kiln dried using T5-D1 schedule. In the second method, the boards were dried from green condition to the final moisture content of 10% using T5-D1 schedule. Then, the permeability coefficient in the transverse and longitudinal directions in both heartwood and sapwood regions was measured, separately. Results showed that the permeability of oak boards dried by kiln drying method both in the transverse and longitudinal directions and also in the heartwood and sapwood regions was greater than that of those dried by the combined method (air drying + kiln drying.

  15. The Hybrid of Classification Tree and Extreme Learning Machine for Permeability Prediction in Oil Reservoir

    KAUST Repository

    Prasetyo Utomo, Chandra

    2011-01-01

    the permeability value. These are based on the well logs data. In order to handle the high range of the permeability value, a classification tree is utilized. A benefit of this innovation is that the tree represents knowledge in a clear and succinct fashion

  16. Study of air and steam leak rate through damaged concrete wall

    International Nuclear Information System (INIS)

    Abdeslam Laghcha; Gerard Debicki; Benoit Masson

    2005-01-01

    Full text of publication follows: The leak rate prediction of air and steam through a cracked concrete wall is an extremely important issue in assessing the safety of nuclear reactor containment building. Furthermore the relation between air leak rate and steam leak rate on the same wall could have some interest for safety prediction. This laboratory study investigates the transfer of fluids through a wall of 1.3 m of thickness, with a focus on two cases: one on a mechanically damaged concrete by compressive stress and another one on a crossing artificial flaw in a construction joint realized in the concrete specimen (cylindrical / section 0.1925 m 2 / length 1.3 m). The both specimens were made of ordinary concrete (compressive strength: 35 MPa). To initiate residual compressive cracks, the specimen (A) was loaded in compression under controlled strains until a level of 90% of the failure strain was reached. To create a crossing artificial flaw in a construction joint, the concrete was set in the mould in two times, the second time, a water saturated sand bed was placed on the surface of the hardened concrete to realize the flaw along a diameter of the specimen (B). The permeability of damaged concrete wall was studied comparatively under two conditions, but without appreciable stresses applied on. The first condition was at ambient temperature, a reference test of permeability, with dry air, gave the characteristics of permeability and the type of flow through the specimen. In this case, the used method consisted to proceed by stages. The imposed pressures on the exposed face were successively 0.1, 0.18, 0.23, 0.28, 0.34 and 0.42 MPa, the other face was at atmospheric pressure. The second condition was an accidental scenario with simultaneous effects of temperature and gas (a mix of air and steam) pressure applied on a face, the other one remaining at atmospheric pressure and temperature. During the test, the lateral face of the cylindrical specimen was thermally

  17. Nonequilibrium gas absorption in rotating permeable media

    Science.gov (United States)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  18. Relative permeability of the endothelium and epithelium of rabbit lungs

    International Nuclear Information System (INIS)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.

    1986-01-01

    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. 36 Cl - and 125 I - were lost from air-spaces almost twice as rapidly as 22 Na + . In contrast, the endothelium is equally permeable to 22 Na + and these anions. Loss of 3 H-mannitol from the perfusate resembled that of 22 Na + for about 30 minutes, after which diffusion of 3 H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange

  19. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.

    Science.gov (United States)

    Ghaemi, Z; Alimohammadi, A; Farnaghi, M

    2018-04-20

    Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pollutant concentration is influenced by various factors such as the historical pollution data and weather conditions. Conventional methods such as the support vector machine (SVM) or artificial neural networks (ANN) show some deficiencies when huge amount of streaming data have to be analyzed for urban air pollution prediction. In order to overcome the limitations of the conventional methods and improve the performance of urban air pollution prediction in Tehran, a spatio-temporal system is designed using a LaSVM-based online algorithm. Pollutant concentration and meteorological data along with geographical parameters are continually fed to the developed online forecasting system. Performance of the system is evaluated by comparing the prediction results of the Air Quality Index (AQI) with those of a traditional SVM algorithm. Results show an outstanding increase of speed by the online algorithm while preserving the accuracy of the SVM classifier. Comparison of the hourly predictions for next coming 24 h, with those of the measured pollution data in Tehran pollution monitoring stations shows an overall accuracy of 0.71, root mean square error of 0.54 and coefficient of determination of 0.81. These results are indicators of the practical usefulness of the online algorithm for real-time spatial and temporal prediction of the urban air quality.

  20. Three-dimensional quantitative structure-permeability relationship analysis for a series of inhibitors of rhinovirus replication.

    Science.gov (United States)

    Ekins, S; Durst, G L; Stratford, R E; Thorner, D A; Lewis, R; Loncharich, R J; Wikel, J H

    2001-01-01

    Multiple three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches were applied to predicting passive Caco-2 permeability for a series of 28 inhibitors of rhinovirus replication. Catalyst, genetic function approximation (GFA) with MS-WHIM descriptors, CoMFA, and VolSurf were all used for generating 3D-quantitative structure permeability relationships utilizing a training set of 19 molecules. Each of these approaches was then compared using a test set of nine molecules not present in the training set. Statistical parameters for the test set predictions (r(2) and leave-one-out q(2)) were used to compare the models. It was found that the Catalyst pharmacophore model was the most predictive (test set of predicted versus observed permeability, r(2) = 0.94). This model consisted of a hydrogen bond acceptor, hydrogen bond donor, and ring aromatic feature with a training set correlation of r(2) = 0.83. The CoMFA model consisted of three components with an r(2) value of 0.96 and produced good predictions for the test set (r(2) = 0.84). VolSurf resulted in an r(2) value of 0.76 and good predictions for the test set (r(2) = 0.83). Test set predictions with GFA/WHIM descriptors (r(2) = 0.46) were inferior when compared with the Catalyst, CoMFA, and VolSurf model predictions in this evaluation. In summary it would appear that the 3D techniques have considerable value in predicting passive permeability for a congeneric series of molecules, representing a valuable asset for drug discovery.

  1. Microstructure-based characterization of permeability using a random walk model

    International Nuclear Information System (INIS)

    Chen, F F; Yang, Y S

    2012-01-01

    Quantitative transport properties of materials are analysed using a random walk model, based on the microscopic compositional distribution of compositions in the materials. A material sample is defined on a simple-cubic lattice, with volume fractions specified for each composition on every volume pixel (voxel). The quantitative relation between bulk permeability and fine-scale anisotropy is investigated by assuming fully anisotropic and fully isotropic voxel morphology. Such a study has prompted an analytic approximate formulation to predict bulk permeability range for a heterogeneous multi-component system that lacks detailed microstructure information. The numerical approach is verified on synthetic structures with known permeability. The analysis technique is applied to a real-world rock sample, as illustrated by a case study detailed in this paper. The investigations show that the bulk permeability is affected significantly by fine length scale anisotropy. (paper)

  2. TEHRAN AIR POLLUTANTS PREDICTION BASED ON RANDOM FOREST FEATURE SELECTION METHOD

    Directory of Open Access Journals (Sweden)

    A. Shamsoddini

    2017-09-01

    Full Text Available Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  3. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    Science.gov (United States)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  4. Turbulence-induced noise of a submerged cylinder using a permeable FW–H method

    Directory of Open Access Journals (Sweden)

    Woen-Sug Choi

    2016-05-01

    Full Text Available Among underwater noise sources around submerged bodies, turbulence-induced noise has not been well investigated because of the difficulty of predicting it. In computational aeroacoustics, a number of studies has been conducted using the Ffowcs Williams–Hawkings (FW–H acoustic analogy without consideration of quadrupole source term due to the unacceptable calculation cost. In this paper, turbulence-induced noise is predicted, including that due to quadrupole sources, using a large eddy simulation (LES turbulence model and a developed formulation of permeable FW–H method with an open source computational fluid dynamics (CFD tool-kit. Noise around a circular cylinder is examined and the results of using the acoustic analogy method with and without quadrupole noise are compared, i.e. the FW–H method without quadrupole noise versus the permeable FW–H method that includes quadrupole sources. The usability of the permeable FW–H method for the prediction of turbulence-noise around submerged bodies is shown.

  5. A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    Science.gov (United States)

    Olives, Casey; Kim, Sun-Young; Sheppard, Lianne; Sampson, Paul D.; Szpiro, Adam A.; Oron, Assaf P.; Lindström, Johan; Vedal, Sverre; Kaufman, Joel D.

    2014-01-01

    Background: Cohort studies of the relationship between air pollution exposure and chronic health effects require predictions of exposure over long periods of time. Objectives: We developed a unified modeling approach for predicting fine particulate matter, nitrogen dioxide, oxides of nitrogen, and black carbon (as measured by light absorption coefficient) in six U.S. metropolitan regions from 1999 through early 2012 as part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Methods: We obtained monitoring data from regulatory networks and supplemented those data with study-specific measurements collected from MESA Air community locations and participants’ homes. In each region, we applied a spatiotemporal model that included a long-term spatial mean, time trends with spatially varying coefficients, and a spatiotemporal residual. The mean structure was derived from a large set of geographic covariates that was reduced using partial least-squares regression. We estimated time trends from observed time series and used spatial smoothing methods to borrow strength between observations. Results: Prediction accuracy was high for most models, with cross-validation R2 (R2CV) > 0.80 at regulatory and fixed sites for most regions and pollutants. At home sites, overall R2CV ranged from 0.45 to 0.92, and temporally adjusted R2CV ranged from 0.23 to 0.92. Conclusions: This novel spatiotemporal modeling approach provides accurate fine-scale predictions in multiple regions for four pollutants. We have generated participant-specific predictions for MESA Air to investigate health effects of long-term air pollution exposures. These successes highlight modeling advances that can be adopted more widely in modern cohort studies. Citation: Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA, Oron AP, Lindström J, Vedal S, Kaufman JD. 2015. A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the Multi

  6. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation

    International Nuclear Information System (INIS)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-01-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%). - Highlights: • Regional air pollutant concentration shows an obvious spatiotemporal correlation. • Our prediction model presents superior performance. • Climate data and metadata can significantly

  7. Thermomechanical effects on permeability for a 3-D model of YM rock

    International Nuclear Information System (INIS)

    Berge, P A; Blair, S C; Wang, H F

    1999-01-01

    The authors estimate how thermomechanical processes affect the spatial variability of fracture permeability for a 3-D model representing Topopah Spring tuff at the nuclear-waste repository horizon in Yucca Mountain, Nevada. Using a finite-difference code, they compute thermal stress changes. They evaluate possible permeability enhancement resulting from shear slip along various mapped fracture sets after 50 years of heating, for rock in the near-field environment of the proposed repository. The results indicate permeability enhancement of a factor of 2 for regions about 10 to 30 m above drifts, for north-south striking vertical fractures. Shear slip and permeability increases of a factor of 4 can occur in regions just above drifts, for east-west striking vertical fractures. Information on how permeability may change over the lifetime of a geologic repository is important to the prediction and evaluation of repository performance

  8. Permeability of salt-crystal interfaces to brine

    International Nuclear Information System (INIS)

    Gilpatrick, L.O.; Baes, C.F. Jr.; Shor, A.J.; Canonico, C.M.

    1982-06-01

    To investigate the movement of brine along grain boundaries in polycrystalline salt, measurements have been made of the radial flow of brine through the interface between cylindrical salt crystals under axial stresses to 140 bar and temperatures to 80 0 C. For constant conditions, the total flow of brine showed a linear dependence on the logarithm of time, and the reciprocal permeability increased linearly with time. Loss of salt from the interface by pressure solution effects was more than enough to account for the decrease in the apparent thickness of the interface (i.e., that which may be estimated for an interface of the same permeability formed by plane parallel surfaces). This apparent thickness, initially as large as 10 μm, decreased to as little as 0.2 μm with exposure to stress and flowing brine. It decreased quickly with sudden increases in axial stress and usually increased, though not reversibly, with decreases in stress. The rate of increase in the reciprocal permeability with time was roughly proportional to the stress and to the square of the hydraulic pressure drop. Assuming similar apparent thicknesses for the grain boundaries in polycrystalline salt, permeabilities are predicted that are quite consistent with the low values reported for stressed core specimens

  9. Suppressions of Serotonin-Induced Increased Vascular Permeability and Leukocyte Infiltration by Bixa orellana Leaf Extract

    Directory of Open Access Journals (Sweden)

    Yoke Keong Yong

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO, indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg−1 prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats’ paws were observed with AEBO at the dose of 150 mg kg−1. Pharmacological screening of the extract showed significant (P<0.05 anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.

  10. Simulating urban-scale air pollutants and their predicting capabilities over the Seoul metropolitan area.

    Science.gov (United States)

    Park, Il-Soo; Lee, Suk-Jo; Kim, Cheol-Hee; Yoo, Chul; Lee, Yong-Hee

    2004-06-01

    Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.

  11. Permeability model of sintered porous media: analysis and experiments

    Science.gov (United States)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  12. Quantitative computed tomography versus spirometry in predicting air leak duration after major lung resection for cancer.

    Science.gov (United States)

    Ueda, Kazuhiro; Kaneda, Yoshikazu; Sudo, Manabu; Mitsutaka, Jinbo; Li, Tao-Sheng; Suga, Kazuyoshi; Tanaka, Nobuyuki; Hamano, Kimikazu

    2005-11-01

    Emphysema is a well-known risk factor for developing air leak or persistent air leak after pulmonary resection. Although quantitative computed tomography (CT) and spirometry are used to diagnose emphysema, it remains controversial whether these tests are predictive of the duration of postoperative air leak. Sixty-two consecutive patients who were scheduled to undergo major lung resection for cancer were enrolled in this prospective study to define the best predictor of postoperative air leak duration. Preoperative factors analyzed included spirometric variables and area of emphysema (proportion of the low-attenuation area) that was quantified in a three-dimensional CT lung model. Chest tubes were removed the day after disappearance of the air leak, regardless of pleural drainage. Univariate and multivariate proportional hazards analyses were used to determine the influence of preoperative factors on chest tube time (air leak duration). By univariate analysis, site of resection (upper, lower), forced expiratory volume in 1 second, predicted postoperative forced expiratory volume in 1 second, and area of emphysema ( 10%) were significant predictors of air leak duration. By multivariate analysis, site of resection and area of emphysema were the best independent determinants of air leak duration. The results were similar for patients with a smoking history (n = 40), but neither forced expiratory volume in 1 second nor predicted postoperative forced expiratory volume in 1 second were predictive of air leak duration. Quantitative CT is superior to spirometry in predicting air leak duration after major lung resection for cancer. Quantitative CT may aid in the identification of patients, particularly among those with a smoking history, requiring additional preventive procedures against air leak.

  13. Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

    Directory of Open Access Journals (Sweden)

    Sadegh Mahmoudi

    2013-04-01

    Full Text Available This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e., the pressure gradient. The influence of relationship between cohesion and adsorption parameters and the interfacial tension values in Young's equation, pore structure (micro scan image derived porous media response is compared with corresponding porosity and permeability ideal sphere pack structure, and saturation distribution on relative permeability curves are studied with the aim to achieve the realistic stable condition for the simulation of gas-liquid systems with a low viscosity ratio.

  14. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Nabovati, Aydin; Hinebaugh, James; Bazylak, Aimy; Amon, Cristina H.

    2014-02-01

    In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120™ GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher cross-plane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage.

  15. Determination of the permeability of α-, β- and γ-radiation in textile fabrics by Gamma-Scout device

    International Nuclear Information System (INIS)

    Gintibidze, N.; Mardaleishvili, Z.

    2009-01-01

    The goal of the present was the measurement of radiation permeability in textile fabrics by Gamma-Scout device and the comparison of the obtained results with the radiation background of the ambient air. The authors of this article have produced new fiber Fibron-3, which, according to theoretical calculations, reduces permeability of solar radiation. With this in mind, an experiment was performed. Three samples of the knitted cloth from Fibron-3 were taken, and the permeability of solar radiation in them was determined. The measurements were performed on Gamma-Scout device. The comparative analysis of the permeability of solar radiation in fabrics of different fibrous structure was performed. It was inferred that the degree of radiation permeability in fabrics depended on the thread thickness and the fiber structure. (author)

  16. Explaining Air and Water Transport in Undisturbed Soils By X-Ray CT Derived Macroporosity and CT- Number-Derived Matrix Density

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    The characterization of soil pore space geometry is important to predict the fluxes of air, water and solutes through soil and understand soil hydrogeochemical functions. X-ray computed tomography (CT) -derived parameters were evaluated as predictors of water, air and solute transport through soil....... Forty five soil columns (20-cm × 20-cm) were collected at an agricultural field in Estrup, Denmark. The soil columns were scanned in a medical CT-scanner. Subsequent to this, non-reactive tracer leaching experiments were performed in the laboratory together with measurements of air permeability (Ka...... is considered a robust indicator of preferential flow. Meanwhile, CT-derived limiting macro-porosity was the best predictor for Ka and log10Ksat. A best subsets regression analysis was performed combining macroporosity, limiting macroporosity and CTmatrix. The predictions of water and air flow improved using...

  17. Grading of Emphysema Is Indispensable for Predicting Prolonged Air Leak After Lung Lobectomy.

    Science.gov (United States)

    Murakami, Junichi; Ueda, Kazuhiro; Tanaka, Toshiki; Kobayashi, Taiga; Hamano, Kimikazu

    2018-04-01

    The aim of this study was to assess the utility of quantitative computed tomography-based grading of emphysema for predicting prolonged air leak after thoracoscopic lobectomy. A consecutive series of 284 patients undergoing thoracoscopic lobectomy for lung cancer was retrospectively reviewed. Prolonged air leak was defined as air leaks lasting 7 days or longer. The grade of emphysema (emphysema index) was defined by the proportion of the emphysematous lung volume (less than -910 HU) to the total lung volume (-600 to -1,024 HU) by a computer-assisted histogram analysis of whole-lung computed tomography scans. The mean length of chest tube drainage was 1.5 days. Fifteen patients (5.3%) presented with prolonged air leak. According to a receiver-operating characteristics curve analysis, the emphysema index was the best predictor of prolonged air leak, with an area under the curve of 0.85 (95% confidence interval: 0.73 to 0.98). An emphysema index of 35% or greater was the best cutoff value for predicting prolonged air leak, with a negative predictive value of 0.99. The emphysema index was the only significant predictor for the length of postoperative chest tube drainage among conventional variables, including the pulmonary function and resected lobe, in both univariate and multivariate analyses. Prolonged air leak resulted in an increased duration of hospitalization (p leak that adversely influences early postoperative outcomes. We must take new measures against prolonged air leak in quantitative computed tomography-based high-risk patients. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Prediction of the permeability of neutral drugs inferred from their solvation properties

    KAUST Repository

    Milanetti, Edoardo

    2015-12-10

    Motivation: Determination of drug absorption is an important component of the drug discovery and development process in that it plays a key role in the decision to promote drug candidates to clinical trials. We have developed a method that, on the basis of an analysis of the dynamic distribution of water molecules around a compound obtained by molecular dynamics simulations, can compute a parameter-free value that correlates very well with the compound permeability measured using the human colon adenocarcinoma (Caco-2) cell line assay. Results: The method has been tested on twenty-three neutral drugs for which a consistent set of experimental data is available. We show here that our method reproduces the experimental data better than other existing tools. Furthermore it provides a detailed view of the relationship between the hydration and the permeability properties of molecules.

  19. An integrated approach to permeability modeling using micro-models

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.H.; Leuangthong, O.; Deutsch, C.V. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    An important factor in predicting the performance of steam assisted gravity drainage (SAGD) well pairs is the spatial distribution of permeability. Complications that make the inference of a reliable porosity-permeability relationship impossible include the presence of short-scale variability in sand/shale sequences; preferential sampling of core data; and uncertainty in upscaling parameters. Micro-modelling is a simple and effective method for overcoming these complications. This paper proposed a micro-modeling approach to account for sampling bias, small laminated features with high permeability contrast, and uncertainty in upscaling parameters. The paper described the steps and challenges of micro-modeling and discussed the construction of binary mixture geo-blocks; flow simulation and upscaling; extended power law formalism (EPLF); and the application of micro-modeling and EPLF. An extended power-law formalism to account for changes in clean sand permeability as a function of macroscopic shale content was also proposed and tested against flow simulation results. There was close agreement between the model and simulation results. The proposed methodology was also applied to build the porosity-permeability relationship for laminated and brecciated facies of McMurray oil sands. Experimental data was in good agreement with the experimental data. 8 refs., 17 figs.

  20. Effective stress law for the permeability and deformation of four porous limestones

    Science.gov (United States)

    Wang, Y.; Meng, F.; Wang, X.; Baud, P.; Wong, T. F.

    2017-12-01

    The effective stress behavior of a rock is related to the geometric of its pore space. In a microscopically homogeneous assemblage, effective stress coefficients for permeability, volumetric strain and porosity change are predicted to be equal to or less than unity. Experimental measurements are in basic agreement with this prediction, with exceptions particularly in clay-rich sandstones, for which effective stress coefficient for permeability up to 7 was documented. Little is known about carbonates, but Ghabezloo et al. [2009] studied the permeability of an oolitic limestone (from Nimes, France) with 17% porosity and reported effective stress coefficients up to 2.4. We investigated this phenomenon in Indiana, Leitha, Purbeck, and Thala limestones with porosities of 13-30%. Measurements were made at room temperature on water-saturated samples at confining and pore pressures of 7-15 MPa and 1-3 MPa, respectively. Unlike previous studies limited to the permeability, we also determined the effective stress coefficients for volumetric strain and porosity change. Indiana limestone is oolitic, and not surprisingly its behaviour was similar to Nimes limestone, with an effective stress coefficient for permeability of 2.5. Our Indiana limestone data showed that whereas the effective stress coefficient for volumetric strain was 1. Measurements on Purbeck and Thala limestones are consistent with these inequalities, with effective stress coefficients for permeability and porosity change >1 and that for volumetric strain <1. Even though Purbeck and Thala limestones are micritic with appreciable amount of quartz and dolomite, microstructural and mercury porosimetry data showed that their pore spaces are similar to the oolitic limestones, in that the pore size distribution is bimodal with significant fractions of both macropores and micropores. Berryman [1992] analyzed theoretically a rock made up of two porous constituents. Our new data are in agreement with inequalities he

  1. Estimation of relative permeability and capillary pressure from mass imbibition experiments

    Science.gov (United States)

    Alyafei, Nayef; Blunt, Martin J.

    2018-05-01

    We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.

  2. Permeability of granular beds emplaced in vertical drill holes

    International Nuclear Information System (INIS)

    Griffiths, S.K.; Morrison, F.A. Jr.

    1979-01-01

    To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes

  3. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  4. Permeability and long-term durability of concrete in final repository conditions

    International Nuclear Information System (INIS)

    Pihlajavaara, S.

    1990-02-01

    The interrelation of the permeability properties and longterm durability especially in wet repository conditions has been studied. The study is based on the author's long-term experience, literary survey and experiments on the durability, service life prediction, and on water and gas permeability. Degradation models and experimental results on water and gas permeability are presented. The experiments made indicated that high class concrete is practically water and gas tight, especially in the long run when stored under water. This meant that there will hardly be any mass transfer into concrete or out of it, if concrete is of good quality. Concrete structures can be designed to meet the required service life. It can be said that practically the precision increases and the scatter decreases in the service life estimation significantly when the thickness of the anticipated deteriorated surface layer is smaller due to the higher concrete quality. The service life of well-designed concrete silo walls made of high class concrete can be predicted to be at least 1000 years in the repository conditions. (orig.)

  5. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Hoffman, Amnon; Amidon, Gregory E; Amidon, Gordon L

    2010-06-01

    A quasi-equilibrium mass transport analysis has been developed to quantitatively explain the solubility-permeability interplay that exists when using cyclodextrins as pharmaceutical solubilizers. The model considers the effects of cyclodextrins on the membrane permeability (P(m)) as well as the unstirred water layer (UWL) permeability (P(aq)), to predict the overall effective permeability (P(eff)) dependence on cyclodextrin concentration (C(CD)). The analysis reveals that: (1) UWL permeability markedly increases with increasing C(CD) since the effective UWL thickness quickly decreases with increasing C(CD); (2) membrane permeability decreases with increasing C(CD), as a result of the decrease in the free fraction of drug; and (3) since P(aq) increases and P(m) decreases with increasing C(CD), the UWL is effectively eliminated and the overall P(eff) tends toward membrane control, that is, P(eff) approximately P(m) above a critical C(CD). Application of this transport model enabled excellent quantitative prediction of progesterone P(eff) as a function of HP beta CD concentrations in PAMPA assay, Caco-2 transepithelial studies, and in situ rat jejunal-perfusion model. This work demonstrates that when using cyclodextrins as pharmaceutical solubilizers, a trade-off exists between solubility increase and permeability decrease that must not be overlooked; the transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  6. Linking air and water transport in intact soils to macro-porosity by combining laboratory measurements and X-ray Computed Tomography

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Norgaard, Trine; Møldrup, Per

    -porosity (R2 = 0.80 for air permeability: R2= 0.61 for 5% arrival time) and macro-porosity of the restricting layer (R2=0.83 for air permeability: R2= 0.71 for 5% arrival time) over air-filled porosity and all the correlations were positive. The high positive correlation these air and water transport...... functions with macro-porosity stressed the importance of continuity and tortuosity of pores in air, water and solute flow and transport through the soils. Negative correlations of air permeability, 5% arrival time of tracer and macro-porosity were obtained with bulk density whereas with other soil physical......With an objective to link the hydraulic properties of soil with the soil structural properties, air permeability and 5% arrival time of a conservative tracer was measured for large undisturbed soil columns from the same agricultural field. The same soil columns were scanned with a medical scanner...

  7. Exploring the applicability of future air quality predictions based on synoptic system forecasts

    International Nuclear Information System (INIS)

    Yuval; Broday, David M.; Alpert, Pinhas

    2012-01-01

    For a given emissions inventory, the general levels of air pollutants and the spatial distribution of their concentrations are determined by the physiochemical state of the atmosphere. Apart from the trivial seasonal and daily cycles, most of the variability is associated with the atmospheric synoptic scale. A simple methodology for assessing future levels of air pollutants' concentrations based on synoptic forecasts is presented. At short time scales the methodology is comparable and slightly better than persistence and seasonal forecasts at categorical classification of pollution levels. It's utility is shown for air quality studies at the long time scale of a changing climate scenario, where seasonality and persistence cannot be used. It is demonstrated that the air quality variability due to changes in the pollution emissions can be expected to be much larger than that associated with the effects of climatic changes. - Highlights: ► A method for short and long term air quality forecasts is introduced. ► The method is based on prediction of synoptic systems. ► The method beats simple benchmarks in short term forecasts. ► Assessment of future air pollution in a changing climate scenario is demonstrated. - Air quality in a changing climate scenario can be studied using air pollution predictions based on synoptic system forecasts.

  8. Hydraulic, water-quality, and temperature performance of three types of permeable pavement under high sediment loading conditions

    Science.gov (United States)

    Selbig, William R.; Buer, Nicolas

    2018-05-11

    three permeable surfaces.Temperatures below each permeable surface generally followed changes in air temperature with a more gradual response observed in deeper layers. Therefore, permeable pavement may do little to mitigate heated runoff during summer. During winter, deeper layers remained above freezing even when air temperature was below freezing. Although temperatures were not high enough to melt snow or ice accumulated on the surface, temperatures below each permeable pavement did allow void spaces to remain open, which promoted infiltration of melted ice and snow as air temperatures rose above freezing. These open void spaces could potentially reduce the need for application of deicing agents in winter because melted snow and ice would infiltrate, thereby preventing refreezing of pooled water in what is known as the “black ice” effect.

  9. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  10. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.

    Science.gov (United States)

    Zhang, Jiangshe; Ding, Weifu

    2017-01-24

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  11. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    Directory of Open Access Journals (Sweden)

    Jiangshe Zhang

    2017-01-01

    Full Text Available With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  12. Prediction of Geomechanical Properties from Thermal Conductivity of Low-Permeable Reservoirs

    Science.gov (United States)

    Chekhonin, Evgeny; Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Ovcharenko, Yury; Zhukov, Vladislav; Martemyanov, Andrey

    2016-04-01

    A key to assessing a sedimentary basin's hydrocarbon prospect is correct reconstruction of thermal and structural evolution. It is impossible without adequate theory and reliable input data including among other factors thermal and geomechanical rock properties. Both these factors are also important in geothermal reservoirs evaluation and carbon sequestration problem. Geomechanical parameters are usually estimated from sonic logging and rare laboratory measurements, but sometimes it is not possible technically (low quality of the acoustic signal, inappropriate borehole and mud conditions, low core quality). No wonder that there are attempts to correlate the thermal and geomechanical properties of rock, but no one before did it with large amount of high quality thermal conductivity data. Coupling results of sonic logging and non-destructive non-contact thermal core logging opens wide perspectives for studying a relationship between the thermal and geomechanical properties. More than 150 m of full size cores have been measured at core storage with optical scanning technique. Along with results of sonic logging performed with Sonic Scanner in different wells drilled in low permeable formations in West Siberia (Russia) it provided us with unique data set. It was established a strong correlation between components of thermal conductivity (measured perpendicular and parallel to bedding) and compressional and shear acoustic velocities in Bazhen formation. As a result, prediction of geomechanical properties via thermal conductivity data becomes possible, corresponding results was demonstrated. The work was supported by the Russian Ministry of Education and Science, project No. RFMEFI58114X0008.

  13. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    Science.gov (United States)

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  14. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  15. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  16. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  17. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    Science.gov (United States)

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  18. Changes in permeability of the alveolar-capillary barrier in firefighters.

    Science.gov (United States)

    Minty, B D; Royston, D; Jones, J G; Smith, D J; Searing, C S; Beeley, M

    1985-09-01

    The effect on alveolar-capillary barrier permeability of chronic exposure to a smoke produced by the partial combusion of diesel oil, paraffin, and wood was examined. An index of permeability was determined from the rate of transfer from the lung into the blood of the hydrophilic, labelled chelate 99mTc diethylene triamine penta-acetate (MW 492 dalton). The results of this test were expressed as the half time clearance of the tracer from the lung into the blood (T1/2 LB). The study was carried out at the Royal Naval Firefighting School, HMS Excellent. Permeability index was measured on seven non-smoking naval firefighting instructors who had worked at the school for periods of longer than two and a half months. Tests of airway function and carbon monoxide transfer factor were performed on four of these seven instructors. The results of the permeability index showed a T1/2 LB of 26 min +/- 5 (SEM) which differed significantly from that of normal non-smokers. By contrast all other lung function tests had values within the predicted normal range.

  19. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  20. Modelling the permeability of polymers: a neural network approach

    NARCIS (Netherlands)

    Wessling, Matthias; Mulder, M.H.V.; Bos, A.; Bos, A.; van der Linden, M.K.T.; Bos, M.; van der Linden, W.E.

    1994-01-01

    In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a

  1. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Li, Cai; Wang, Xiaoyu

    2016-01-01

    CAES (Compressed air energy storage) is credited with its potential ability for large-scale energy storage. Generally, it is more convenient using deep aquifers than employing underground caverns for energy storage, because of extensive presence of aquifers. During the first stage in a typical process of CAESA (compressed air energy storage in aquifers), a large amount of compressed air is injected into the target aquifer to develop an initial space (a gas bubble) for energy storage. In this study, numerical simulations were conducted to investigate the influence of aquifer's permeability, geological structure and operation parameters on the formation of gas bubble and the sustainability for the later cycling operation. The SCT (system cycle times) was designed as a parameter to evaluate the reservoir performance and the effect of operation parameters. Simulation results for pressure and gas saturation results of basic model confirm the feasibility of compressed air energy storage in aquifers. The results of different permeability cases show that, for a certain scale of CAESA system, there is an optimum permeability range for a candidate aquifer. An aquifer within this permeability range will not only satisfy the injectivity requirement but also have the best energy efficiency. Structural impact analysis indicates that the anticline structure has the best performance to hold the bubble under the same daily cycling schedule with the same initial injected air mass. In addition, our results indicate that the SCT shows a logarithmic growth as the injected air mass increase. During the formation of gas bubble, compressed air should be injected into aquifers with moderate rate and the injection can be done in several stages with different injection rate to avoid onset pressure. - Highlights: • Impact of permeability, geological structure, operation parameters was investigated. • With certain air production rate, an optimum permeability exists for performance.

  2. A robust model predictive control strategy for improving the control performance of air-conditioning systems

    International Nuclear Information System (INIS)

    Huang Gongsheng; Wang Shengwei; Xu Xinhua

    2009-01-01

    This paper presents a robust model predictive control strategy for improving the supply air temperature control of air-handling units by dealing with the associated uncertainties and constraints directly. This strategy uses a first-order plus time-delay model with uncertain time-delay and system gain to describe air-conditioning process of an air-handling unit usually operating at various weather conditions. The uncertainties of the time-delay and system gain, which imply the nonlinearities and the variable dynamic characteristics, are formulated using an uncertainty polytope. Based on this uncertainty formulation, an offline LMI-based robust model predictive control algorithm is employed to design a robust controller for air-handling units which can guarantee a good robustness subject to uncertainties and constraints. The proposed robust strategy is evaluated in a dynamic simulation environment of a variable air volume air-conditioning system in various operation conditions by comparing with a conventional PI control strategy. The robustness analysis of both strategies under different weather conditions is also presented.

  3. Comparison between traditional laboratory tests, permeability measurements and CT-based fluid flow modelling for cultural heritage applications

    Energy Technology Data Exchange (ETDEWEB)

    De Boever, Wesley, E-mail: Wesley.deboever@ugent.be [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Bultreys, Tom; Derluyn, Hannelore [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Van Hoorebeke, Luc [UGCT/Radiation Physics, Dept. of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); Cnudde, Veerle [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium)

    2016-06-01

    In this paper, we examine the possibility to use on-site permeability measurements for cultural heritage applications as an alternative for traditional laboratory tests such as determination of the capillary absorption coefficient. These on-site measurements, performed with a portable air permeameter, were correlated with the pore network properties of eight sandstones and one granular limestone that are discussed in this paper. The network properties of the 9 materials tested in this study were obtained from micro-computed tomography (μCT) and compared to measurements and calculations of permeability and the capillary absorption rate of the stones under investigation, in order to find the correlation between pore network characteristics and fluid management characteristics of these sandstones. Results show a good correlation between capillary absorption, permeability and network properties, opening the possibility of using on-site permeability measurements as a standard method in cultural heritage applications. - Highlights: • Measurements of capillary absorption are compared to in-situ permeability. • We obtain pore size distribution and connectivity by using micro-CT. • These properties explain correlation between permeability and capillarity. • Correlation between both methods is good to excellent. • Permeability measurements could be a good alternative to capillarity measurement.

  4. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  5. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.

    Science.gov (United States)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-12-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  7. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption

    OpenAIRE

    Newby, Danielle; Freitas, Alex. A.; Ghafourian, Taravat

    2015-01-01

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqu...

  8. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Xiao, Boqi; Fan, Jintu; Ding, Feng

    2014-01-01

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D T ), pore area fractal dimensions (d f ), water phase (d f,w ) and gas phase (d f,g ) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  9. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  10. An equation for the prediction of human skin permeability of neutral molecules, ions and ionic species.

    Science.gov (United States)

    Zhang, Keda; Abraham, Michael H; Liu, Xiangli

    2017-04-15

    Experimental values of permeability coefficients, as log K p , of chemical compounds across human skin were collected by carefully screening the literature, and adjusted to 37°C for the effect of temperature. The values of log K p for partially ionized acids and bases were separated into those for their neutral and ionic species, forming a total data set of 247 compounds and species (including 35 ionic species). The obtained log K p values have been regressed against Abraham solute descriptors to yield a correlation equation with R 2 =0.866 and SD=0.432 log units. The equation can provide valid predictions for log K p of neutral molecules, ions and ionic species, with predictive R 2 =0.858 and predictive SD=0.445 log units calculated by the leave-one-out statistics. The predicted log K p values for Na + and Et 4 N + are in good agreement with the observed values. We calculated the values of log K p of ketoprofen as a function of the pH of the donor solution, and found that log K p markedly varies only when ketoprofen is largely ionized. This explains why models that neglect ionization of permeants still yield reasonable statistical results. The effect of skin thickness on log K p was investigated by inclusion of two indicator variables, one for intermediate thickness skin and one for full thickness skin, into the above equation. The newly obtained equations were found to be statistically very close to the above equation. Therefore, the thickness of human skin used makes little difference to the experimental values of log K p . Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prediction of the permeability of neutral drugs inferred from their solvation properties

    KAUST Repository

    Milanetti, Edoardo; Raimondo, Domenico; Tramontano, Anna

    2015-01-01

    Results: The method has been tested on twenty-three neutral drugs for which a consistent set of experimental data is available. We show here that our method reproduces the experimental data better than other existing tools. Furthermore it provides a detailed view of the relationship between the hydration and the permeability properties of molecules.

  12. Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Fisher, Quentin

    2015-01-01

    Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity and pore size is derived for a porous medium with a homogeneous pore size, whereas...... the pore sizes in tight sandstones can range from nm to μm. Nuclear magnetic resonance (NMR) transverse relaxation was used to estimate a pore size distribution for 63 samples of Rotliegend sandstone. The surface relaxation parameter required to relate NMR to pore size is estimated by combination of NMR...

  13. Prediction of biopore- and matrix-dominated flow from X-ray CT-derived macropore network characteristics

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Schaap, Marcel G

    2016-01-01

    was to investigate the predictive performance of previously developed empirical models for both water and air flow and to explore the potential applicability of X-ray computed tomography (CT)-derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height......Prediction and modeling of localized flow processes in macropores is of crucial importance for sustaining both soil and water quality. However, currently there are no reliable means to predict preferential flow due to its inherently large spatial variability. The aim of this study......) were extracted from the topsoil (5 cm to 8.5 cm depth) in a 15m15m grid from an agricultural field located in Silstrup, Denmark. All soil columns were scanned with an industrial X-ray CT scanner (129 μm resolution) and later employed for measurement of saturated hydraulic conductivity, air permeability...

  14. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    OpenAIRE

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The e...

  15. A decision support tool for evaluating the air quality and wind comfort induced by different opening configurations for buildings in canyons.

    Science.gov (United States)

    Fan, M; Chau, C K; Chan, E H W; Jia, J

    2017-01-01

    This study formulated a new index for evaluating both the air quality and wind comfort induced by building openings at the pedestrian level of street canyons. The air pollutant concentrations and wind velocities induced by building openings were predicted by a series of CFD simulations using ANSYS Fluent software based on standard k-ɛ model. The types of opening configurations investigated inside isolated and non-isolated canyons included separations, voids and permeable elements. It was found that openings with permeability values of 10% were adequate for improving the air quality and wind comfort conditions for pedestrians after considering the reduction in development floor areas. Openings were effective in improving the air quality in isolated canyons and different types of opening configurations were suggested for different street aspect ratios. On the contrary, openings were not always found effective for non-isolated canyons if there were pollutant sources in adjacent street canyons. As such, it would also be recommended introducing openings to adjacent canyons along with openings to the target canyons. The formulated index can help city planners and building designers to strike an optimal balance between air quality and wind comfort for pedestrians when designing and planning buildings inside urban streets and thus promoting urban environmental sustainability. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Diagnosis of hydrostatic versus increased permeability pulmonary edema with chest radiographic criteria in critically ILL patients

    International Nuclear Information System (INIS)

    Aberle, D.R.; Wiener-Kronish, J.P.; Webb, W.R.; Matthay, M.A.

    1987-01-01

    To evaluate chest radiographic criteria in distinguishing mechanisms of pulmonary edema, the authors studied 45 intubated patients with extensive edema. Edema type was clinically classified by the ratio of alveolar edema-to-plasma protein concentration in association with compatible clinical/hemodynamic parameters. Chest films were scored as hydrostatic, permeability, or mixed by three readers in blinded fashion based on cardiac size, vascular pedicle width, distribution of edema, effusions, peribronchial cuffs, septal lines, or air bronchograms. Overall radiographic score accurately identified 87% of patients with hydrostatic edema but only 60% of those with permeability edema. Edema distribution was most discriminating, with a patchy peripheral pattern relatively specific for clinical permeability edema. Hydrostatic features on chest radiograph were common with permeability edema, including effusions (36%), widened pedicle (56%), cuffs (72%), or septa (40%). The authors conclude that the chest radiograph is limited in distinguishing edema mechanism in the face of extensive pulmonary edema

  17. Influence of effective stress and dry density on the permeability of municipal solid waste.

    Science.gov (United States)

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  18. Ozone exposure increases respiratory epithelial permeability in humans

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  19. Permeability of porour rhyolite

    Science.gov (United States)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.

    2003-04-01

    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  20. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  1. An in vitro transport model for rapid screening and predicting the permeability of candidate compounds at blood-brain barrier.

    Science.gov (United States)

    Yang, Zhi-Hong; Sun, Xiao; Mei, Chao; Sun, Xiao-Bo; Liu, Xiao-Dong; Chang, Qi

    2011-12-01

    The aim of this study was to design and develop a simple in vitro blood-brain barrier (BBB) permeation model for elementarily and rapidly predicting the permeability of candidate compounds at BBB and further evaluating whether P-glycoprotein (P-gp) affects them across BBB. The model was mainly composed of cultured rat brain microvascular endothelial cells (rBMECs), glass contraption, and micropore membrane. First, we evaluated the model by morphological observation. Second, the restriction effects of paracellular transport were verified by measuring marker probes transport, and monitoring transendothelial electrical resistance (TEER) and leakage. Finally, protein expression and activity of P-gp were confirmed by carrying out Western blot analysis and polarized transport of rhodamine-123 (Rho123) in rBMECs. The rBMECs retained both endothelial cells and BBB features. The rBMECs model reproducibly attained approximately 130 Ω cm² on the steady-state TEER value, and displayed a barrier function to marker probes transport by decreasing the permeability. Protein band of 170 kDa manifested the existence of P-gp in the rBMECs, and the findings of cyclosporin A-sensitive decrease of Rho123 efflux confirmed the presence of P-gp activity. A simple, rapid, and convenient in vitro BBB permeation model was successfully established and applied to evaluate the BBB transport profiles of three natural flavonoids: quercetin, naringenin, and rutin.

  2. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    Energy Technology Data Exchange (ETDEWEB)

    ChiBin, Zhang; XiaoHui, Lin, E-mail: lxh60@seu.edu.cn; ZhaoMin, Wang; ChangBao, Wang

    2017-03-15

    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5–8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall. - Highlights: • A model of MDCPs for IA-MDT in permeable microvessels was established. • An experimental device was established, the CE of MDCPs was measured. • The predicted CE of MDCPs was 5–8% higher in the IA-MDT model.

  3. Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy

    Directory of Open Access Journals (Sweden)

    Goopyo Hong

    2018-02-01

    Full Text Available The purpose of this study was to develop a data-driven predictive model that can predict the supply air temperature (SAT in an air-handling unit (AHU by using a neural network. A case study was selected, and AHU operational data from December 2015 to November 2016 was collected. A data-driven predictive model was generated through an evolving process that consisted of an initial model, an optimal model, and an adaptive model. In order to develop the optimal model, input variables, the number of neurons and hidden layers, and the period of the training data set were considered. Since AHU data changes over time, an adaptive model, which has the ability to actively cope with constantly changing data, was developed. This adaptive model determined the model with the lowest mean square error (MSE of the 91 models, which had two hidden layers and sets up a 12-hour test set at every prediction. The adaptive model used recently collected data as training data and utilized the sliding window technique rather than the accumulative data method. Furthermore, additional testing was performed to validate the adaptive model using AHU data from another building. The final adaptive model predicts SAT to a root mean square error (RMSE of less than 0.6 °C.

  4. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    Science.gov (United States)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  5. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling...... in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low...

  6. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  7. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies

    KAUST Repository

    Alsaadi, Ahmad S.; Francis, Lijo; Maab, Husnul; Amy, Gary L.; Ghaffour, NorEddine

    2015-01-01

    The importance of removing non-condensable gases from air gap membrane distillation (AGMD) modules in improving the water vapor flux is presented in this paper. Additionally, a previously developed AGMD mathematical model is used to predict to the degree of flux enhancement under sub-atmospheric pressure conditions. Since the mathematical model prediction is expected to be very sensitive to membrane distillation (MD) membrane resistance when the mass diffusion resistance is eliminated, the permeability of the membrane was carefully measured with two different methods (gas permeance test and vacuum MD permeability test). The mathematical model prediction was found to highly agree with the experimental data, which showed that the removal of non-condensable gases increased the flux by more than three-fold when the gap pressure was maintained at the saturation pressure of the feed temperature. The importance of staging the sub-atmospheric AGMD process and how this could give better control over the gap pressure as the feed temperature decreases are also highlighted in this paper. The effect of staging on the sub-atmospheric AGMD flux and its relation to membrane capital cost are briefly discussed.

  8. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies

    KAUST Repository

    Alsaadi, Ahmad S.

    2015-04-16

    The importance of removing non-condensable gases from air gap membrane distillation (AGMD) modules in improving the water vapor flux is presented in this paper. Additionally, a previously developed AGMD mathematical model is used to predict to the degree of flux enhancement under sub-atmospheric pressure conditions. Since the mathematical model prediction is expected to be very sensitive to membrane distillation (MD) membrane resistance when the mass diffusion resistance is eliminated, the permeability of the membrane was carefully measured with two different methods (gas permeance test and vacuum MD permeability test). The mathematical model prediction was found to highly agree with the experimental data, which showed that the removal of non-condensable gases increased the flux by more than three-fold when the gap pressure was maintained at the saturation pressure of the feed temperature. The importance of staging the sub-atmospheric AGMD process and how this could give better control over the gap pressure as the feed temperature decreases are also highlighted in this paper. The effect of staging on the sub-atmospheric AGMD flux and its relation to membrane capital cost are briefly discussed.

  9. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    Science.gov (United States)

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  12. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery.

    Science.gov (United States)

    Varma, Manthena V; Gardner, Iain; Steyn, Stefanus J; Nkansah, Paul; Rotter, Charles J; Whitney-Pickett, Carrie; Zhang, Hui; Di, Li; Cram, Michael; Fenner, Katherine S; El-Kattan, Ayman F

    2012-05-07

    The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 μg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified

  13. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  14. Gas and water permeability of concrete for reactor buildings small specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1986-03-01

    The effect on permeability of artifical aging by drying shrinkage and by freeze-thaw was determined by observing mass transfer of gas and water under a pressure gradient. It was found that damage due to freeze-thaw was negligible but that cracking around aggregate caused by drying shrinkage resulted in significantly increased permeability to both gas and water. The absence of freeze-thaw damage was attributed to self-dessication. Since the concrete was not exposed to an external source of water, the chemical reaction was sustained by consumption of mixing water. The resulting air voids were, apparently, sufficient to absorb expansive pressures due to ice formation. The response to lateral prestress was different for cracked and uncracked concrete. Although, in all cases, increased prestress resulted in reduced leakage, the effect was stronger in cracked concrete. Mean pore diameter as determined by gas diffusion was not, however, substantially affected because the leakage in cracked concrete remained very low. Reinforcing steel did not have a great influence on permeability of small specimens. Gas transmission through concrete was strongly influenced by moisture content. Free moisture constituted a barrier to gas flow, acting as a virtual solid. This is important since aging of concrete results in reduced free moisture. Ultrasonic pulse velocity appeared to vary with moisture content and porosity of concrete in the same way as gas permeability and gave promise of being effective for in-situ monitoring of concrete in reactor buildings

  15. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  16. Prediction of air temperature for thermal comfort of people using sleeping bags: a review.

    Science.gov (United States)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  17. Predictability, Work-Family Conflict, and Intent to Stay: An Air Force Case Study

    National Research Council Canada - National Science Library

    Obruba, Patrick

    2001-01-01

    A survey was completed by 362 active duty Air Force members in December 2000 regarding their perceptions of schedule predictability, work-family conflict, job satisfaction, organizational commitment...

  18. Examination of the uncertainty in air concentration predictions using Hanford field data

    International Nuclear Information System (INIS)

    Miller, C.W.; Fields, D.E.; Cotter, S.J.

    1986-10-01

    The accuracy of an environmental transport model is best determined by comparing model predictions with environmental measurements made under conditions similar to those assumed by the model, a process commonly referred to as model validation. Over the past several years, we have done a variety of validation studies with the popular Gaussian plume atmospheric dispersion model using data from tests conducted on the Hanford reservation. Data for short-term releases of small particles for release heights of 2 m, 56 m, and 111 m have been used. Up to six different sets of atmospheric dispersion parameters and three different atmospheric stability class specification schemes have been examined. Overall, dispersion parameters based on measurements made near Juelich, West Germany, give the best comparisons between observed and predicted air concentrations. The commonly-used vertical temperature gradient method for determining atmospheric stability class consistently gives poor results. The accuracy of air concentration predictions improves when dry deposition processes are included in the model. Further validation studies using various Hanford data sets are planned

  19. Remote assessment of permeability/thermal diffusivity of consolidated clay sediments

    International Nuclear Information System (INIS)

    Lovell, M.A.; Ogden, P.

    1984-02-01

    The aim of this project was to examine the feasibility of predicting marine sediment permeability and thermal diffusivity by remote geophysical observations. For this purpose a modified consolidation cell was developed and constructed and tests on deep sea sediment samples carried out. Results and conclusions of a nineteen month programme are presented. (U.K.)

  20. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)

    2014-09-15

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  1. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  2. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  3. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  4. Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence

    Science.gov (United States)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.

  5. Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants

    International Nuclear Information System (INIS)

    Senior, C.L.; Helble, J.J.; Sarofim, A.F.

    2000-01-01

    Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants

  6. Film Permeability Determination Using Static Permeability Cells

    Science.gov (United States)

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  7. GNAQPMS v1.1: accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on Intel Xeon Phi processors

    OpenAIRE

    H. Wang; H. Wang; H. Wang; H. Wang; H. Chen; H. Chen; Q. Wu; Q. Wu; J. Lin; X. Chen; X. Xie; R. Wang; R. Wang; X. Tang; Z. Wang

    2017-01-01

    The Global Nested Air Quality Prediction Modeling System (GNAQPMS) is the global version of the Nested Air Quality Prediction Modeling System (NAQPMS), which is a multi-scale chemical transport model used for air quality forecast and atmospheric environmental research. In this study, we present the porting and optimisation of GNAQPMS on a second-generation Intel Xeon Phi processor, codenamed Knights Landing (KNL). Compared with the first-generation Xeon Phi coprocessor (code...

  8. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  9. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  10. An asymptotic model of seismic reflection from a permeable layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Goloshubin, G.

    2009-10-15

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  11. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  12. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  13. Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China

    Science.gov (United States)

    Hu, Jianlin; Li, Xun; Huang, Lin; Ying, Qi; Zhang, Qiang; Zhao, Bin; Wang, Shuxiao; Zhang, Hongliang

    2017-11-01

    Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM2.5 in the 60 cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 to -0.16) and MFE (0.26-0.31) of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06-0.19 and

  14. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  16. PERMEABILITY OF SAVCIBEY DAM (BİLECİK AXIS LOCATION AND DESIGN OF GROUT CURTAIN

    Directory of Open Access Journals (Sweden)

    Mustafa Can Canoğlu

    2016-12-01

    Full Text Available This study comprise the design of the planned grout curtain in Savcıbey Dam (Söğüt/Bilecik in order to provide impermeability along the dam axis. Within the context of field studies, engineering geology map was generated, ground investigation drilling was realized and permeability tests were performed. Within the field studies, the joint conditions of the geological units (Triassic aged Bozuyük Metamorphic schists under the dam axis and its effect on permeability was observed considering the positions of the discontinuities with regard to the dam axis location. Orientation of discontinuities generally have strikes changing between N – S and NNE – SSW. 5 boreholes on dam axis, 2 boreholes on cofferdam, 3 boreholes on diversion tunnel and 2 boreholes on spillway total 245 m ground investigation borehole were drilled. In order to determine the permeability profile of dam axis and design the grout curtain, Lugeon tests in Bozuyük Metamorphic units observed in dam axis, falling head permeability tests in alluviums observed in thalveg and slope debris observed in right abutment were performed. Lugeon tests realized in Bozuyük Metamorphic units show that the unit is generally permeable and partly low permeable. Alluvium and slope debris are highly permeable. In addition, drilling works realized in dam axis shows that the augmentation of the weathering degree cause an increase of permeability in Triassic aged Bozüyük Metamorphic schists. As a result of these studies information about the permeability of Savcıbey Dam was collected and the grout curtain hole was designed. Accordingly, it is predicted that approximately 40 m depth of grout curtain from the stripping excavation with the depth of 1.50 m would prevent the possible leakages.

  17. Prediction of the theoretical capacity of non-aqueous lithium-air batteries

    International Nuclear Information System (INIS)

    Tan, Peng; Wei, Zhaohuan; Shyy, W.; Zhao, T.S.

    2013-01-01

    Highlights: • The theoretical capacity of non-aqueous lithium-air batteries is predicted. • Key battery design parameters are defined and considered. • The theoretical battery capacity is about 10% of the lithium capacity. • The battery mass and volume changes after discharge are also studied. - Abstract: In attempt to realistically assess the high-capacity feature of emerging lithium-air batteries, a model is developed for predicting the theoretical capacity of non-aqueous lithium-air batteries. Unlike previous models that were formulated by assuming that the active materials and electrolyte are perfectly balanced according to the electrochemical reaction, the present model takes account of the fraction of the reaction products (Li 2 O 2 and Li 2 O), the utilization of the onboard lithium metal, the utilization of the void volume of the porous cathode, and the onboard excess electrolyte. Results show that the gravimetric capacity increases from 1033 to 1334 mA h/g when the reaction product varies from pure Li 2 O 2 to pure Li 2 O. It is further demonstrated that the capacity declines drastically from 1080 to 307 mA h/g when the case of full utilization of the onboard lithium is altered to that only 10% of the metal is utilized. Similarly, the capacity declines from 1080 to 144 mA h/g when the case of full occupation of the cathode void volume by the reaction products is varied to that only 10% of the void volume is occupied. In general, the theoretical gravimetric capacity of typical non-aqueous lithium-air batteries falls in the range of 380–450 mA h/g, which is about 10–12% of the gravimetric capacity calculated based on the energy density of the lithium metal. The present model also facilitates the study of the effects of different parameters on the mass and volume change of non-aqueous lithium-air batteries

  18. Assessment of ventilation efficiency for the study of indoor air quality; Appreciation de l'efficacite de la ventilation pour l'etude de la qualite de l'air interieur

    Energy Technology Data Exchange (ETDEWEB)

    Akoua, A.A.

    2004-10-15

    An efficient ventilation system provides a good indoor air quality by eliminating air pollutants and ensuring a satisfactory air renewal. Unlike most research works that deal with test cells with controlled boundary conditions, our study focuses on ventilation efficiency in a real environment. In situ experiments are performed and provide the boundary conditions necessary for CFD (Computational Fluid Dynamics) computations. Using CFD for predicting indoor air quality in a real environment is thus analyzed. The influence of permeability on numerical predictions quality is shown. Unfortunately, it is difficult to quantify accurately the air leakages and their airflow rates. Our study proposes a simplified model that includes air infiltration rates in the CFD computations, and that yields satisfactory results. A critical analysis of ventilation efficiency indices is then performed. It is shown that it is currently impossible to evaluate the air change efficiency ( a e ) in an occupied zone. Concerning the air pollutants removal effectiveness, it is shown that the usual index C e is not suited to ventilation systems with variable airflow rates. For such cases, a new formulation of this index is given. The ratio between the airflow rate and the nominal airflow rate of the ventilation system is also taken into consideration. A coupled analysis of this new index and of this airflow rate ratio enables us to assess the air pollutants removal effectiveness while considering the energetic cost of ventilation. We finally show that there is no universal index. The choice of the index depends on the pollutant, on the pollutant concentration, and on the airflow rate. A tool of decision-making aid is thus proposed in order to evaluate the air pollutants removal effectiveness for various ventilation systems. This tool is flexible and rather simple to use. (author)

  19. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  20. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  1. Drug-like properties and the causes of poor solubility and poor permeability.

    Science.gov (United States)

    Lipinski, C A

    2000-01-01

    There are currently about 10000 drug-like compounds. These are sparsely, rather than uniformly, distributed through chemistry space. True diversity does not exist in experimental combinatorial chemistry screening libraries. Absorption, distribution, metabolism, and excretion (ADME) and chemical reactivity-related toxicity is low, while biological receptor activity is higher dimensional in chemistry space, and this is partly explainable by evolutionary pressures on ADME to deal with endobiotics and exobiotics. ADME is hard to predict for large data sets because current ADME experimental screens are multi-mechanisms, and predictions get worse as more data accumulates. Currently, screening for biological receptor activity precedes or is concurrent with screening for properties related to "drugability." In the future, "drugability" screening may precede biological receptor activity screening. The level of permeability or solubility needed for oral absorption is related to potency. The relative importance of poor solubility and poor permeability towards the problem of poor oral absorption depends on the research approach used for lead generation. A "rational drug design" approach as exemplified by Merck advanced clinical candidates leads to time-dependent higher molecular weight, higher H-bonding properties, unchanged lipophilicity, and, hence, poorer permeability. A high throughput screening (HTS)-based approach as exemplified by unpublished data on Pfizer (Groton, CT) early candidates leads to higher molecular weight, unchanged H-bonding properties, higher lipophilicity, and, hence, poorer aqueous solubility.

  2. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Directory of Open Access Journals (Sweden)

    Hubert M. Quinn

    2014-01-01

    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  3. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  4. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    International Nuclear Information System (INIS)

    Kim, Hyung-Mok; Rutqvist, Jonny; Ryu, Dong-Woo; Choi, Byung-Hee; Sunwoo, Choon; Song, Won-Kyong

    2012-01-01

    Highlights: ► We carried out coupled thermodynamic, multiphase fluid flow and heat transport analysis. ► Coupled behavior associated with underground lined caverns for CAES was investigated. ► Air leakage could be reduced by controlling the permeability of concrete lining. ► Heat loss during compression would be gained back at subsequent decompression phase. -- Abstract: This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operation costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1 × 10 −18 m 2 would result in an acceptable air leakage rate of less than 1%, with the operation pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operation air pressure and when the lining is kept at relatively high moisture content. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability of less than 1 × 10 −18 m 2 , heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be

  5. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    Science.gov (United States)

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  6. Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction

    Directory of Open Access Journals (Sweden)

    Takemasa Miyoshi

    2012-09-01

    Full Text Available In addition to conventional observations, atmospheric temperature and humidity profile data from the Atmospheric Infrared Sounder (AIRS Version 5 retrieval products are assimilated into the Weather Research and Forecasting (WRF model, using the local ensemble transform Kalman filter (LETKF. Although a naive assimilation of all available quality-controlled AIRS retrieval data yields an inferior analysis, the additional enhancements of adaptive inflation and horizontal data thinning result in a general improvement of numerical weather prediction skill due to AIRS data. In particular, the adaptive inflation method is enhanced so that it no longer assumes temporal homogeneity of the observing network and allows for a better treatment of the temporally inhomogeneous AIRS data. Results indicate that the improvements due to AIRS data are more significant in longer-lead forecasts. Forecasts of Typhoons Sinlaku and Jangmi in September 2008 show improvements due to AIRS data.

  7. AN ANALYSIS OF THE INFLUENCE OF THE TEXTILE MATERIAL DOUBLING PROCESS BY THERMOFUSING ON VAPOR PERMEABILITY

    Directory of Open Access Journals (Sweden)

    Viorica PORAV

    2016-05-01

    Full Text Available To confer shape and volume parameters, to ensure dimensional stability of surfaces and contours, some parts of clothing are doubled using the process of thermofusion with certain woven or nonwoven chemicalized materials. A priority in the work of producers of fabrics and textiles is to ensure comfort parameters and functions of apparel products are met and respected. Clothing products should ensure optimum insulation, air permeability, moisture absorption and transfer in order to give the wearer wellbeing and safety. In this paper we propose to analyze the influence of the technological process of doubling on the vapour permeability of the doubled assembly, compared with the permeability of the non-doubled material. As materials made of natural fibers are increasingly required, we focused on two natural fiber fabrics – 100% linen and 100% cotton - and a mixed natural fiber material – 64% linen, 34% viscose and 2% elastane. They were each doubled using thermofusion with woven or nonwoven chemicalized materials composed of wool mixed with polyamide. Laboratory measurements allow us to conclude to what extent the vapor permeability of the thermofused assemblies is influenced.

  8. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. However, an increase in the aquifer temperature might reduce permeability, and thereby increase production costs. An understanding of the factors that control permeability is required in order...... and the Klinkenberg procedure showed the expected correlation between the two measures, however, differences could be around one order of magnitude. In tight gas sandstones, permeability is often sensitive to net stress, which might change due to the pore pressure change in the Klinkenberg procedure. Besides...... affecting the Klinkenberg procedure, the combined effect of slip and changes in permeability would affect production during pressure depletion in tight gas sandstone reservoirs; therefore effects of gas slip and net stress on permeability were combined in a model based on the Klinkenberg equation. A lower...

  9. Prediction of solubility and permeability class membership: provisional BCS classification of the world's top oral drugs.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Amidon, Gordon L

    2009-12-01

    The Biopharmaceutics Classification System (BCS) categorizes drugs into one of four biopharmaceutical classes according to their water solubility and membrane permeability characteristics and broadly allows the prediction of the rate-limiting step in the intestinal absorption process following oral administration. Since its introduction in 1995, the BCS has generated remarkable impact on the global pharmaceutical sciences arena, in drug discovery, development, and regulation, and extensive validation/discussion/extension of the BCS is continuously published in the literature. The BCS has been effectively implanted by drug regulatory agencies around the world in setting bioavailability/bioequivalence standards for immediate-release (IR) oral drug product approval. In this review, we describe the BCS scientific framework and impact on regulatory practice of oral drug products and review the provisional BCS classification of the top drugs on the global market. The Biopharmaceutical Drug Disposition Classification System and its association with the BCS are discussed as well. One notable finding of the provisional BCS classification is that the clinical performance of the majority of approved IR oral drug products essential for human health can be assured with an in vitro dissolution test, rather than empirical in vivo human studies.

  10. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    Science.gov (United States)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  11. Integrated vacuum extraction/pneumatic soil fracturing system for remediation of low permeability soil

    International Nuclear Information System (INIS)

    Plaines, A.L.; Piniewski, R.J.; Yarbrough, G.D.

    1994-01-01

    There is wide use of vacuum extraction to remove volatile and semi-volatile organic compounds (VOCs) from unsaturated soil. At sites with soil of low permeability, VOC extraction rates may not be sufficient to meet soil clean-up objectives within the desired time frame. During vacuum extraction in low permeability soil, the diffusion rates of VOCs through the soil matrix may limit VOC removal rates. An increase in the number of subsurface paths for advective flow through the contaminated zone results in a larger mass of contaminant being removed in a shorter time frame, accelerating site remediation. One technique for increasing the number of subsurface flow paths is Terra Vac's process of pneumatic soil fracturing (PSF). In this process, pressurized air is injected into the subsurface, creating micro-fractures for the vacuum extraction system to withdraw contaminants. Similar to hydraulic fracturing techniques long used in the petroleum industry for increasing yield from oil and gas production wells, this technique has applications for soil remediation in low permeability conditions. Two case studies, one in Louisiana at a gasoline service station and one at a manufacturing plant in New York, are presented

  12. Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China

    Directory of Open Access Journals (Sweden)

    J. Hu

    2017-11-01

    Full Text Available Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ model with meteorological inputs from the Weather Research and Forecasting (WRF model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC, the Emission Inventory for China by School of Environment at Tsinghua University (SOE, the Emissions Database for Global Atmospheric Research (EDGAR, and the Regional Emission inventory in Asia version 2 (REAS2. Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB and mean fractional errors (MFEs of the ensemble annual PM2.5 in the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25 to −0.16 and MFE (0.26–0.31 of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h concentrations are also improved, with mean normalized bias (MNB of 0.03 and mean normalized errors (MNE of 0.14, compared to MNB

  13. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management

    International Nuclear Information System (INIS)

    Li, H; Harvey, J T; Holland, T J; Kayhanian, M

    2013-01-01

    To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ∼0.5 cm s −1 ). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ∼0.1 cm s −1 , which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15–35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2–7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management. (letter)

  14. Research on Permeability of Poly(ethylene) Terephthalate Track Membranes Modified in Plasma

    CERN Document Server

    Dmitriev, S N; Sleptsov, V V; Elinson, V M; Potrjasaj, V V

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to the plasma RF-discharge treatment in air have been investigated. The effect of the treatment conditions in plasma on the structure and the properties of the membranes formed in the gas-discharge etching has been studied. It has been figured out that the influence of the air plasma on the membranes under study leads to a formation of asymmetric membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It is shown that the presence of the modified layer on the surface of the membranes causes changing their hydrodynamic characteristics - water permeability of the membranes treated in plasma in a greater degree depends upon {pH} of the filtered solution.

  15. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-12-07

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r(2)  =  0.77); (2) the permeability of the opened BBB (r(2)  =  0.82); (3) the likelihood of safe opening (P  cavitation dose was correlated with the resulting BBB permeability (r(2)  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the BBB opening duration, enabling thus control of opening according to the drug

  16. Fault reactivation by fluid injection considering permeability evolution in fault-bordering damage zones

    Science.gov (United States)

    Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.

    2017-12-01

    Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection

  17. High-energy metal air batteries

    Science.gov (United States)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  18. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  19. A Unified Air-Sea Interface in Fully Coupled Atmosphere-Wave-Ocean Models for Data Assimilation and Ensemble Prediction

    Science.gov (United States)

    Chen, Shuyi; Curcic, Milan; Donelan, Mark; Campbell, Tim; Smith, Travis; Chen, Sue; Allard, Rick; Michalakes, John

    2014-05-01

    The goals of this study are to 1) better understand the physical processes controlling air-sea interaction and their impact on coastal marine and storm predictions, 2) explore the use of coupled atmosphere-ocean observations in model verification and data assimilation, and 3) develop a physically based and computationally efficient coupling at the air-sea interface that is flexible for use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for future ensemble forecasts using coupled models that can be used for coupled data assimilation and assessment of uncertainties in coupled model predictions. The current component models include two atmospheric models (WRF and COAMPS), two ocean models (HYCOM and NCOM), and two wave models (UMWM and SWAN). The coupled modeling systems have been tested and evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, drifters and floats) collected in recent field campaigns in the Gulf of Mexico and tropical cyclones in the Atlantic and Pacific basins. This talk will provide an overview of the unified air-sea interface model and fully coupled atmosphere-wave-ocean model predictions over various coastal regions and tropical cyclones in the Pacific and Atlantic basins including an example from coupled ensemble prediction of Superstorm Sandy (2012).

  20. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    Science.gov (United States)

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted

  1. Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Vandegrift, G.F.; Chiarizia, R.

    1981-01-01

    Equations describing the permeability of a liquid membrane to metal cations have been derived taking into account aqueous diffusion, membrane diffusion, and interfacial chemical reactions as simultaneous permeability controlling factors. Diffusion and chemical reactions have been coupled by a simple model analogous to the one previously described by us to represent liquid-liquid extraction kinetics. The derived equations, which make use of experimentally determined interfacial reaction mechanisms, qualitatively fit unexplained literature data regarding Cu 2+ transfer through liquid membranes. Their use to predict and optimize membrane permeability in practical separation processes by setting the appropriate concentration of the membrane carrier [LIX 64 (General Mills), a commercial β-hydroxy-oxime] and the pH of the aqueous copper feed solution is briefly discussed. 4 figures

  2. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  3. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  4. Prediction of the thermohydraulic performance of porous-media reservoirs for compressed-air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    The numerical modeling capability that has been developed at the Pacific Northwest Laboratory (PNL) for the prediction of the thermohydraulic performance of porous media reservoirs for compressed air energy storage (CAES) is described. The capability of the numerical models was demonstrated by application to a variety of parametric analyses and the support analyses for the CAES porous media field demonstration program. The demonstration site analyses include calculations for the displacement of aquifer water to develop the air storage zone, the potential for water coning, thermal development in the reservoir, and the dehydration of the near-wellbore region. Unique features of the demonstration site reservoir that affect the thermohydraulic performance are identified and contrasted against the predicted performance for conditions that would be considered more typical of a commercial CAES site.

  5. Ion current prediction model considering columnar recombination in alpha radioactivity measurement using ionized air transportation

    International Nuclear Information System (INIS)

    Naito, Susumu; Hirata, Yosuke; Izumi, Mikio; Sano, Akira; Miyamoto, Yasuaki; Aoyama, Yoshio; Yamaguchi, Hiromi

    2007-01-01

    We present a reinforced ion current prediction model in alpha radioactivity measurement using ionized air transportation. Although our previous model explained the qualitative trend of the measured ion current values, the absolute values of the theoretical curves were about two times as large as the measured values. In order to accurately predict the measured values, we reinforced our model by considering columnar recombination and turbulent diffusion, which affects columnar recombination. Our new model explained the considerable ion loss in the early stage of ion diffusion and narrowed the gap between the theoretical and measured values. The model also predicted suppression of ion loss due to columnar recombination by spraying a high-speed air flow near a contaminated surface. This suppression was experimentally investigated and confirmed. In conclusion, we quantitatively clarified the theoretical relation between alpha radioactivity and ion current in laminar flow and turbulent pipe flow. (author)

  6. USAF Enlisted Air Traffic Controller Selection: Examination of the Predictive Validity of the FAA Air Traffic Selection and Training Battery versus Training Performance

    National Research Council Canada - National Science Library

    Carretta, Thomas R; King, Raymond E

    2008-01-01

    .... The current study examined the utility of the FAA Air Traffic Selection and Training (AT-SAT) battery for incrementing the predictiveness of the ASVAB versus several enlisted ATC training criteria...

  7. Microorganism Removal in Permeable Pavement Parking Lots ...

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  8. Hydrotropic solubilization of lipophilic drugs for oral delivery: The effects of urea and nicotinamide on carbamazepine solubility-permeability interplay

    Directory of Open Access Journals (Sweden)

    Avital Beig

    2016-10-01

    Full Text Available Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs' permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility-permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility-permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ~30-fold. A concomitant permeability decrease was evident both in-vitro and in-vivo (~17-fold for nicotinamide and ~9-fold for urea, revealing a solubility-permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility-permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility-permeability balance may promote the overall goal of the formulation to maximize oral drug exposure.

  9. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility–Permeability Interplay

    Science.gov (United States)

    Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik

    2016-01-01

    Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241

  10. An HPLC-UV method for the measurement of permeability of marker drugs in the Caco-2 cell assay

    Directory of Open Access Journals (Sweden)

    J.M. Kratz

    2011-06-01

    Full Text Available The Caco-2 cell line has been used as a model to predict the in vitro permeability of the human intestinal barrier. The predictive potential of the assay relies on an appropriate in-house validation of the method. The objective of the present study was to develop a single HPLC-UV method for the identification and quantitation of marker drugs and to determine the suitability of the Caco-2 cell permeability assay. A simple chromatographic method was developed for the simultaneous determination of both passively (propranolol, carbamazepine, acyclovir, and hydrochlorothiazide and actively transported drugs (vinblastine and verapamil. Separation was achieved on a C18 column with step-gradient elution (acetonitrile and aqueous solution of ammonium acetate, pH 3.0 at a flow rate of 1.0 mL/min and UV detection at 275 nm during the total run time of 35 min. The method was validated and found to be specific, linear, precise, and accurate. This chromatographic system can be readily used on a routine basis and its utilization can be extended to other permeability models. The results obtained in the Caco-2 bi-directional transport experiments confirmed the validity of the assay, given that high and low permeability profiles were identified, and P-glycoprotein functionality was established.

  11. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    International Nuclear Information System (INIS)

    Christiansen, R.L.; Kalbus, J.S.

    1997-05-01

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties

  12. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Science.gov (United States)

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning.

    Science.gov (United States)

    Jo, ByungWan; Khan, Rana Muhammad Asad

    2018-03-21

    The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH₄, CO, SO₂, and H₂S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R ² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.

  14. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning

    Directory of Open Access Journals (Sweden)

    ByungWan Jo

    2018-03-01

    Full Text Available The implementation of wireless sensor networks (WSNs for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI. Principal component analysis (PCA identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R2 and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.

  15. Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations

    International Nuclear Information System (INIS)

    Schubert, Gerlind; Harrison, Philip

    2016-01-01

    The isotropic and anisotropic magnetic permeability of Magneto-Rheological Elastomers (MREs) is identified using a simple inverse modelling approach. This involves measuring the magnetic flux density and attractive force occurring between magnets, when MRE specimens are placed in between the magnets. Tests were conducted using isotropic MREs with 10–40% and for anisotropic MREs with 10–30%, particle volume concentration. Magnetic permeabilities were then identified through inverse modelling, by simulating the system using commercially available multi-physics finite element software. As expected, the effective permeability of isotropic MREs was found to be scalar-valued; increasing with increasing particle volume concentration (from about 1.6 at 10% to 3.7 at 30% particle volume concentration). The magnetic permeability of transversely isotropic MRE was itself found to be transversely isotropic, with permeabilities in the direction of particle chain alignment from 1.6 at 10% to 4.45 at 30%, which is up to 1.07–1.25 times higher than in the transverse directions. Results of this investigation are demonstrated to show good agreement with those reported in the literature. - Highlights: • An inverse modelling approach for permeability identification of MREs. • Comparison of magnetic flux measurements with finite element simulations. • Permeability of isotropic and anisotropic MREs of varying iron content identified. • Results compare favourably with theoretical predictions. • Simple experimental setup. • Inexpensive technique that can be conducted in most mechanical test labs.

  16. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  17. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  18. Effect of vehicles and sodium lauryl sulphate on xenobiotic permeability and stratum corneum partitioning in porcine skin

    International Nuclear Information System (INIS)

    Merwe, Deon van der; Riviere, Jim E.

    2005-01-01

    Dermal contact with potentially toxic agricultural and industrial chemicals is a common hazard encountered in occupational, accidental spill and environmental contamination scenarios. Different solvents and chemical mixtures may influence dermal absorption. The effects of sodium lauryl sulphate (SLS) on the stratum corneum partitioning and permeability in porcine skin of 10 agricultural and industrial chemicals in water, ethanol and propylene glycol were investigated. The chemicals were phenol, p-nitrophenol, pentachlorophenol, methyl parathion, ethyl parathion, chlorpyrifos, fenthion, simazine, atrazine and propazine. SLS decreased partitioning into stratum corneum from water for lipophilic compounds, decreased partitioning from propylene glycol and did not alter partitioning from ethanol. SLS effects on permeability were less consistent, but generally decreased permeability from water, increased permeability from ethanol and had an inconsistent effect on permeability from propylene glycol. It was concluded that, for the compounds tested, partitioning into the stratum corneum was determined by the relative solubility of the solute in the donor solvent and the stratum corneum lipids. Permeability, however, reflected the result of successive, complex processes and was not predictable from stratum corneum partitioning alone. Addition of SLS to solvents altered partitioning and absorption characteristics across a range of compounds, which indicates that partition coefficients or skin permeability from neat chemical exposure should be used with caution in risk assessment procedures for chemical mixtures

  19. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  20. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  1. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  2. Research on permeability of poly(ethylene) terephthalate track membranes modified in plasma

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Kravets, L.I.; Sleptsov, V.V.; Elinson, V.M.; Potryasaj, V.V.

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to the plasma RF-discharge treatment in air have been investigated. The effect of the treatment conditions in plasma on the structure and the properties of the membranes formed in the gas-discharge etching has been studied. It has been figured out that the influence of the air plasma on the membranes under study leads to a formation of asymmetric membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It is shown that the presence of the modified layer on the surface of the membranes causes changing their hydrodynamic characteristics - water permeability of the membranes treated in plasma in a greater degree depends upon pH of the filtered solution. (author)

  3. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  4. Modeling studies of unsaturated flow with long-term permeability change at Yucca Mountain

    International Nuclear Information System (INIS)

    Zhang Chengyuan; Liu Xiaoyan; Liu Quansheng

    2008-01-01

    The amount of water seeping into the waste emplacement drifts is crucial for the performance of underground nuclear waste repository, since it controls the corrosion rates of waste packages and the mobilization rate of radionuclides. It is limited by water flow through drift vicinity. In the present work we study the potential rates of water flow around drifts as a function of predicted long-term change of permeability at Yucca Mountain, based on a dual-continuum model of the unsaturated flow in fractured rock mass. For stage of DECOVALEX Ⅳ, we used a simplified practical model on unsaturated flow in Yucca Mountain case simulation. These models contain main physical processes that should be considered, including thermal expansion, thermal radiation, water-rock coupling and stress-induced change of permeability. Comparative study with other DECOVALEX team's results shows that they are both good enough and flexible enough to include more physical processes. We can draw the conclusion that it is necessary to model stress-induced changes in permeability and relative processes in future studies, because there are obvious differences (in water saturation and water flux) between simulation cases with and without variable permeability, especially in areas very close to the drift. (authors)

  5. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  6. Research on water permeability of poly(ethylene) terephthalate track membranes modified with plasma

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Sleptsov, V.V.; Elinson, V.M.; Potryasay, V.V.

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to effect of plasma of the RF-discharge in air have been investigated. The influence conditions of a plasma treatment on the surface properties and hydrodynamic characteristics of the membranes has been studied. It has been found that the effect of the air plasma on the researched membranes results in a formation of asymmetric track membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It was shown that the availability of the modified layer on the membrane surface caused changing in their hydrodynamic characteristics - the water permeability of the membranes, processed in plasma, in a greater degree depends upon pH of a filtered solution. (author)

  7. Negative permeability from random particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid, E-mail: shussain2@qinetiq.com

    2017-04-15

    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies. - Highlights: • Negative permeability from random particle composites is

  8. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja; Ghanem, Bader; Pinnau, Ingo

    2015-01-01

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable

  9. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  10. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  11. Measurements and predictions of the air distribution systems in high compute density (Internet) data centers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jinkyun [HIMEC (Hanil Mechanical Electrical Consultants) Ltd., Seoul 150-103 (Korea); Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea); Lim, Taesub; Kim, Byungseon Sean [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea)

    2009-10-15

    When equipment power density increases, a critical goal of a data center cooling system is to separate the equipment exhaust air from the equipment intake air in order to prevent the IT server from overheating. Cooling systems for data centers are primarily differentiated according to the way they distribute air. The six combinations of flooded and locally ducted air distribution make up the vast majority of all installations, except fully ducted air distribution methods. Once the air distribution system (ADS) is selected, there are other elements that must be integrated into the system design. In this research, the design parameters and IT environmental aspects of the cooling system were studied with a high heat density data center. CFD simulation analysis was carried out in order to compare the heat removal efficiencies of various air distribution systems. The IT environment of an actual operating data center is measured to validate a model for predicting the effect of different air distribution systems. A method for planning and design of the appropriate air distribution system is described. IT professionals versed in precision air distribution mechanisms, components, and configurations can work more effectively with mechanical engineers to ensure the specification and design of optimized cooling solutions. (author)

  12. Irradiation-induced permeability in pyrocarbon coatings. Final report of work conducted under PWS FD-12

    International Nuclear Information System (INIS)

    Kania, M.J.; Thiele, B.A.; Homan, F.J.

    1982-10-01

    Two US irradiation experiments were planned to provide information to supplement data from the German program on irradiation-induced permeability in pyrocarbon coatings. Hopefully, the data from both programs could be combined to define the onset of neutron-induced permeability in a variety of Biso coatings produced with different process variables (coating temperature, coating gases, and coating rates). The effort was not successful. None of the preirradiation characterization procedures were able to adequately predict irradiation performance. A large amount of within-batch scatter was observed in the fission gas and cesium release data along with significant within-batch variation in coating properties. Additional preirradiation characterization might result in a procedure that could successfully predict irradiation performance, but little can be done about the within-batch variation in coating properties. This variation is probably the result of random movement of particles within the coating furnace during pyrocarbon deposition. 19 figures, 4 tables

  13. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    Science.gov (United States)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  14. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    International Nuclear Information System (INIS)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-01-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r 2   =  0.77); (2) the permeability of the opened BBB (r 2   =  0.82); (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r 2   =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response

  15. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C.; Konofagou, Elisa E.

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r2  =  0.77) (2) the permeability of the opened BBB (r2  =  0.82) (3) the likelihood of safe opening (P  cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r2  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the

  16. Microwave-assisted extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs) used to indoor air monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Esteve-Turrillas, Francesc A. [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain); Pastor, Agustin [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain)]. E-mail: agustin.pastor@uv.es; Guardia, Miguel de la [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain)

    2006-02-23

    A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass-mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 deg. C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile-hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C{sub 18}. Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, {lambda}-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 {+-} 8 to 103 {+-} 7% for microwave-assisted extraction, versus 54 {+-} 4 to 104 {+-} 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure. High concentration levels of pyrethroid compounds, from 0.14 to 7.3 {mu}g/SPMD, were found in indoor air after 2 h of a standard application.

  17. Active intestinal drug absorption and the solubility-permeability interplay.

    Science.gov (United States)

    Porat, Daniel; Dahan, Arik

    2018-02-15

    The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. BDDCS Class Prediction for New Molecular Entities

    DEFF Research Database (Denmark)

    Broccatelli, Fabio; Cruciani, Gabriele; Benet, Leslie Z.

    2012-01-01

    M) predicts high versus low intestinal permeability rate, and vice versa, at least when uptake transporters or paracellular transport is not involved. We recently published a collection of over 900 marketed drugs classified for BDDCS. We suggest that a reliable model for predicting BDDCS class, integrated...... chemistry compounds (over 30,000 chemicals). Based on this application, we suggest that solubility, and not permeability, is the major difference between NMEs and drugs. We anticipate that the forecast of BDDCS categories in early drug discovery may lead to a significant R&D cost reduction....... descriptors calculated or derived from the VolSurf+ software. For each molecule, a probability of BDDCS class membership was given, based on predicted EoM, FDA solubility (FDAS) and their confidence scores. The accuracy in predicting FDAS was 78% in training and 77% in validation, while for EoM prediction...

  19. In-vitro percutaneous absorption of losartan potassium in human skin and prediction of human skin permeability

    Directory of Open Access Journals (Sweden)

    Petkar K.C.

    2007-05-01

    Full Text Available This study describes the feasibility of transdermal controlled administration of Losartan potassium (LP across human cadaver skin. Study also defines the influence of capsaicin, sex and site of application on permeation characteristics and determined an appropriate animal model for human skin permeability. The permeation of LP of various formulations was studied using Keshary-Chein diffusion cell. Optimized controlled formulation (without capsaicin released 42.17% (±1.85 of LP in 12 hr whereas treatment formulation (with capsaicin 0.028 % w/v released 48.94% (±1.71 of LP with significant difference on null hypothesis. Influence of sex showed statistically significant difference for permeation of LP through male and female rats, as well as male and female mice across both the abdominal and dorsal sides of the skin (p<0.05. Similarly statistically significant differences were noted for permeation of LP across male and female mice abdomen-dorsal, but not for male rat abdomen-dorsal and female rat abdomen-dorsal. Furthermore, in-vitro permeation of LP across human skin was compared with the permeation across rat and mice skins. Male rat and male mice dorsal skin was found to have closer permeability characteristics to human than other skin membranes, but the Factor of Difference values were < 3 for all membranes which were used suggesting the membranes are good models for human skin permeability. In conclusion simple transdermal adhesive patches formulations incorporating high molecular weight of LP can deliver a dose in-vivo and proposed model skin membranes can be utilized for future pharmacokineic and toxicokinetic studies as well as metabolism studies of LP

  20. Comparison of Dentin Permeability After Tooth Cavity Preparation with Diamond Bur and Er:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masoumeh Hasani Tabatabaei

    2016-05-01

    Full Text Available Objectives: The aim of this study was to compare the permeability of dentin after using diamond bur and Er:YAG laser.Materials and Methods: Seventy-two recently extracted, intact, and restoration-free human permanent molars were used in this study. The samples were randomly divided into three groups of 24 each and class I cavities were prepared as follows. Group 1: High speed diamond bur with air and water spray. Group 2: Er:YAG laser. Group 3: Er:YAG laser followed by additional sub-ablative laser treatment. Each group consisted of two subgroups with different cavity depths of 2mm and 4mm.  The entire cavity floor was in dentin. Two samples from each subgroup were observed under scanning electron microscope (SEM. The external surfaces of other samples were covered with nail varnish (except the prepared cavity and immersed in 0.5% methylene blue solution for 48 hours.  After irrigation of samples with water, they were sectioned in bucco-lingual direction. Then, the samples were evaluated under a stereomicroscope at ×160 magnification. The data were analyzed using two-way ANOVA and Tukey’s HSD test.Results: Two-way ANOVA showed significant difference in permeability between groups 2 and 3 (laser groups with and without further treatment and group 1 (bur group. The highest permeability was seen in the group 1. There was no significant difference in dentin permeability between groups 2 and 3 and no significant difference was observed between different depths (2mm and 4mm.Conclusion: Cavities prepared by laser have less dentin permeability than cavities prepared by diamond bur.

  1. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  2. Damage-induced permeability changes around underground excavations

    International Nuclear Information System (INIS)

    Coll, C.

    2005-07-01

    The storage of nuclear waste in deep geological formations is now considered more and more as a potential solution. During excavation, a disturbed zone develops in which damaging can be important and which can lead eventually to the failure of the rock. Fluid flow and permeability in the rock mass can be significantly modified producing a possible security risk. Our work consisted in an experimental study of the hydro-mechanical coupling of two argillaceous rocks: Boom clay (Mol, Belgium) and Opalinus clay (Mont-Terri, Switzerland). Triaxial tests were performed in a saturated state to study the permeability evolution of both clays with isotropic and deviatoric stresses. Argillaceous rocks are geo-materials with complex behaviour governed by numerous coupled processes. Strong physico-chemical interactions between the fluid and the solid particles and their very low permeability required the modification of the experimental set up. Moreover, specific procedures were developed to measure permeability and to detect strain localisation in shear bands. We show that for Boom Clay, permeability is not significantly influenced by strain localisation. For Opalinus clay, fracturing can induce an increase of the permeability at low confining pressure. (author)

  3. Long-term Metal Performance of Three Permeable Pavements

    Science.gov (United States)

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  4. Classification of cassava starch films by physicochemical properties and water vapor permeability quantification by FTIR and PLS.

    Science.gov (United States)

    Henrique, C M; Teófilo, R F; Sabino, L; Ferreira, M M C; Cereda, M P

    2007-05-01

    Cassava starches are widely used in the production of biodegradable films, but their resistance to humidity migration is very low. In this work, commercial cassava starch films were studied and classified according to their physicochemical properties. A nondestructive method for water vapor permeability determination, which combines with infrared spectroscopy and multivariate calibration, is also presented. The following commercial cassava starches were studied: pregelatinized (amidomax 3550), carboxymethylated starch (CMA) of low and high viscosities, and esterified starches. To make the films, 2 different starch concentrations were evaluated, consisting of water suspensions with 3% and 5% starch. The filmogenic solutions were dried and characterized for their thickness, grammage, water vapor permeability, water activity, tensile strength (deformation force), water solubility, and puncture strength (deformation). The minimum thicknesses were 0.5 to 0.6 mm in pregelatinized starch films. The results were treated by means of the following chemometric methods: principal component analysis (PCA) and partial least squares (PLS) regression. PCA analysis on the physicochemical properties of the films showed that the differences in concentration of the dried material (3% and 5% starch) and also in the type of starch modification were mainly related to the following properties: permeability, solubility, and thickness. IR spectra collected in the region of 4000 to 600 cm(-1) were used to build a PLS model with good predictive power for water vapor permeability determination, with mean relative errors of 10.0% for cross-validation and 7.8% for the prediction set.

  5. Permeable Pavement Research - Edison, New Jersey

    Science.gov (United States)

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  6. Short-Term Prediction of Air Pollution in Macau Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Chi-Man Vong

    2012-01-01

    Full Text Available Forecasting of air pollution is a popular and important topic in recent years due to the health impact caused by air pollution. It is necessary to build an early warning system, which provides forecast and also alerts health alarm to local inhabitants by medical practitioners and the local government. Meteorological and pollutions data collected daily at monitoring stations of Macau can be used in this study to build a forecasting system. Support vector machines (SVMs, a novel type of machine learning technique based on statistical learning theory, can be used for regression and time series prediction. SVM is capable of good generalization while the performance of the SVM model is often hinged on the appropriate choice of the kernel.

  7. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  8. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    International Nuclear Information System (INIS)

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-01-01

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described

  9. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    Science.gov (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  10. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography

    DEFF Research Database (Denmark)

    Katuwal, S.; Nørgaard, Trine; Møldrup, Per

    2015-01-01

    Soil macropores often control fluid flow and solute transport, and quantification of macropore characteristics including their variability in space and time are essential to predict soil hydraulic and hydrogeochemical functions. In this study, measurements of air and solute transport properties...... and direct macropore visualization by X-ray CT scanning were carried out on 17 large (19-cm diam.; 20-cm length) undisturbed soil columns sampled across a field site (Silstrup, Denmark) with natural gradients in texture and density. Air permeability (ka) at in-situ water content and -20 hPa of matric......-porosity, suggesting that density is the main control of functional soil structure and gas and solute transport at the Silstrup site. Linking gas transport and chemical tracer experiments with X-ray CT based visualization and quantification of macro-porosity was found to be a powerful method to understand field scale...

  11. Permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier

    International Nuclear Information System (INIS)

    Squier, C.A.; Hall, B.K.

    1985-01-01

    The permeability of porcine skin and keratinized and nonkeratinized oral mucosa to tritium-labeled water and horseradish peroxidase (HRPO) was determined using perfusion chambers. Small blocks from each tissue were also incubated with HRPO and the extent of penetration visualized microscopically; this enabled measurements to be made of the thickness of the permeability barrier to this water-soluble tracer. Results obtained after inverting the oral mucosa in the chambers or adding metabolic inhibitors indicated that both compounds diffuse across the tissue. The permeability constants derived directly in the study showed that skin was less permeable than oral mucosa and that the floor of the mouth was significantly more permeable than all other regions. When these constants were normalized in terms of a standard permeability barrier thickness and the different tissues compared, the values obtained for skin were again less than those of the oral regions but, of these, the buccal mucosa was significantly higher. The difference in permeability between epidermis and keratinized oral epithelium may be due to differences in the volume density of membrane-coating granules known to exist between the tissues; differences between the oral mucosal regions may reflect differences in the nature of the intercellular barrier material

  12. Update to Permeable Pavement Research at the Edison ...

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  13. Bioventing feasibility study of low permeability soils for remediation of petroleum contamination

    International Nuclear Information System (INIS)

    Brackney, K.M.

    1994-01-01

    A site characterization of leaking underground gasoline and diesel storage tanks at the University of Idaho, West Farm Operations Center, identified approximately 800 cubic yards of petroleum-contaminated soil exceedingly regulatory action limits of 100 ppm TPH. Bioventing, a combination of in situ soil vapor extraction and microbial degradation, was selected as a remedial alternative on the basis of the presumably unsaturated paleo-soil with a 45-foot depth to groundwater, and a microbial study which concluded that indigenous petroleum-degrading microorganisms existed throughout the contamination. Soil vapor extraction tests were conducted by applying a 60-inch water column vacuum to a soil vapor extraction well and monitoring pneumatic pressure drawdown in 12 adjacent pneumatic piezometers and vertically distributed piezometer clusters. Pressure drawdown vs time data plots indicated that air permeability is inadequate everywhere at the site except at 20 feet below ground surface. Low soil permeability creates conditions for a perched water table that was documented during the investigation, resulting in unsatisfactory conditions for in situ bioventing. 8 refs., 14 figs

  14. Seasonal Prediction of Regional Surface Air Temperature and First-flowering Date in South Korea using Dynamical Downscaling

    Science.gov (United States)

    Ahn, J. B.; Hur, J.

    2015-12-01

    The seasonal prediction of both the surface air temperature and the first-flowering date (FFD) over South Korea are produced using dynamical downscaling (Hur and Ahn, 2015). Dynamical downscaling is performed using Weather Research and Forecast (WRF) v3.0 with the lateral forcing from hourly outputs of Pusan National University (PNU) coupled general circulation model (CGCM) v1.1. Gridded surface air temperature data with high spatial (3km) and temporal (daily) resolution are obtained using the physically-based dynamical models. To reduce systematic bias, simple statistical correction method is then applied to the model output. The FFDs of cherry, peach and pear in South Korea are predicted for the decade of 1999-2008 by applying the corrected daily temperature predictions to the phenological thermal-time model. The WRF v3.0 results reflect the detailed topographical effect, despite having cold and warm biases for warm and cold seasons, respectively. After applying the correction, the mean temperature for early spring (February to April) well represents the general pattern of observation, while preserving the advantages of dynamical downscaling. The FFD predictabilities for the three species of trees are evaluated in terms of qualitative, quantitative and categorical estimations. Although FFDs derived from the corrected WRF results well predict the spatial distribution and the variation of observation, the prediction performance has no statistical significance or appropriate predictability. The approach used in the study may be helpful in obtaining detailed and useful information about FFD and regional temperature by accounting for physically-based atmospheric dynamics, although the seasonal predictability of flowering phenology is not high enough. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953 and

  15. SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD

    Science.gov (United States)

    An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...

  16. A low-frequency asymptotic model of seismic reflection from a high-permeability layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy; Goloshubin, Gennady

    2009-03-01

    Analysis of compression wave propagation through a high-permeability layer in a homogeneous poroelastic medium predicts a peak of reflection in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of the Biot's model of poroelasticity. A new physical interpretation of some coefficients of the classical poroelasticity is a result of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and the Darcy's law. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The latter is equal to the product of the kinematic reservoir fluid mobility, an imaginary unit, and the frequency of the signal. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). The practical implications of the theory developed here are seismic modeling, inversion, and attribute analysis.

  17. Meta-Prediction of the Effect of Methylenetetrahydrofolate Reductase Polymorphisms and Air Pollution on Alzheimer’s Disease Risk

    Directory of Open Access Journals (Sweden)

    Suh-Mian Wu

    2017-01-01

    Full Text Available Background: Alzheimer’s disease (AD is a significant public health issue. AD has been linked with methylenetetrahydrofolate reductase (MTHFR C677T polymorphism, but the findings have been inconsistent. The purpose of this meta-predictive analysis is to examine the associations between MTHFR polymorphisms and epigenetic factors, including air pollution, with AD risk using big data analytics approaches. Methods and Results: Forty-three studies (44 groups were identified by searching various databases. MTHFR C677T TT and CT genotypes had significant associations with AD risk in all racial populations (RR = 1.13, p = 0.0047; and RR = 1.12, p < 0.0001 respectively. Meta-predictive analysis showed significant increases of percentages of MTHFR C677T polymorphism with increased air pollution levels in both AD case group and control group (p = 0.0021–0.0457; with higher percentages of TT and CT genotypes in the AD case group than that in the control group with increased air pollution levels. Conclusions: The impact of MTHFR C677T polymorphism on susceptibility to AD was modified by level of air pollution. Future studies are needed to further examine the effects of gene-environment interactions including air pollution on AD risk for world populations.

  18. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  19. Laboratory measurement of permeability upscaling: Results for the Topopah Spring Member of the Paintbrush Tuff

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Wilson, J.L.

    1997-01-01

    Parameterization of predictive models is often complicated by the inability to make measurements at the same scale at which one wishes to perform the analysis. This disparity in scales necessitates the use of some averaging or upscaling model to compute the desired effective media properties. In efforts to better model permeability upscaling, laboratory experiments have been conducted on a series of rock samples with different genetic origins. These experiments involve the collection of exhaustive permeability data sets at different sample supports (i.e., sample volumes) using a specially designed minipermeameter test system. Here the authors present a synopsis of such a data set collected from a block of volcanic tuff

  20. Effects of roof tile permeability on the thermal performance of ventilated roofs. Analysis of annual performance

    Energy Technology Data Exchange (ETDEWEB)

    D' Orazio, M.; Di Perna, C.; Principi, P.; Stazi, A. [DACS, Universita politecnica delle Marche, 60100 Ancona (Italy)

    2008-07-01

    This paper shows the results of the second part of an experimental study aimed at analysing the effects of roof tile permeability on the thermal performances of ventilation ducts. Ventilation ducts under the layer of tiles are typically used in south European countries to limit the energy load during the summer period. The results of the first part of the study, carried out by analysing 14 different types of roof, proved that the air permeability of the layer of tiles determines a certain amount of heat to be released, in addition to the release connected with the stack effect, in ventilation ducts which have the same characteristics but are perfectly airtight. However, the study did not completely resolve some issues since it was carried out on a model roof (6 m x 1.5 m) with devices to raise the layer of tiles and to create the ventilation duct but without those building elements which are present in real roofs and are used to stop insects and small animals from entering the ventilation duct. These elements narrow the inlet and outlet and consequently cause important reductions in pressure. Moreover, the measurements were based on data collected for limited periods of time during the summer season. So as to eliminate any possible uncertainty from the results of the research, the study continued with the creation of a model building on which five types of ventilated roof with different cross sections of the ventilation duct were analysed. The results show that the presence of air permeable layers and elements to protect the ventilation duct eliminate any differences in performance which were due to the cross section of the ventilation duct. (author)

  1. Rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems in the presence of trees.

    Science.gov (United States)

    Scholz, Miklas; Uzomah, Vincent C

    2013-08-01

    The retrofitting of sustainable drainage systems (SuDS) such as permeable pavements is currently undertaken ad hoc using expert experience supported by minimal guidance based predominantly on hard engineering variables. There is a lack of practical decision support tools useful for a rapid assessment of the potential of ecosystem services when retrofitting permeable pavements in urban areas that either feature existing trees or should be planted with trees in the near future. Thus the aim of this paper is to develop an innovative rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems close to trees. This unique tool proposes the retrofitting of permeable pavements that obtained the highest ecosystem service score for a specific urban site enhanced by the presence of trees. This approach is based on a novel ecosystem service philosophy adapted to permeable pavements rather than on traditional engineering judgement associated with variables based on quick community and environment assessments. For an example case study area such as Greater Manchester, which was dominated by Sycamore and Common Lime, a comparison with the traditional approach of determining community and environment variables indicates that permeable pavements are generally a preferred SuDS option. Permeable pavements combined with urban trees received relatively high scores, because of their great potential impact in terms of water and air quality improvement, and flood control, respectively. The outcomes of this paper are likely to lead to more combined permeable pavement and tree systems in the urban landscape, which are beneficial for humans and the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    Science.gov (United States)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  3. Soils - Mean Permeability

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  4. Effect of aggregate grain size distribution on properties of permeable ...

    African Journals Online (AJOL)

    ) ratio on the mechanical properties of permeable concrete is investigated. The aim of this study is to prepare permeable concrete mixture with optimum properties in terms of strength and permeability. For this purpose, five different permeable ...

  5. Predicting Proton-Air Cross Sections at {radical}(s) {approx} 30 TeV Using Accelerator and Cosmic Ray Data

    Energy Technology Data Exchange (ETDEWEB)

    Block, M. M. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Halzen, Francis [Physics Department, University of Wisconsin, Madison, Wisconsin 53706 (United States); Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (United States)

    1999-12-13

    We use the high-energy predictions of a QCD-inspired parametrization of all accelerator data on forward proton-proton and antiproton-proton scattering amplitudes, along with Glauber theory, to predict proton-air cross sections at energies near {radical}(s){approx_equal}30 TeV . The parametrization of the proton-proton cross section incorporates analyticity and unitarity and demands that the asymptotic proton is a black disk of soft partons. By comparing with the p -air cosmic ray measurements, our analysis results in a constraint on the inclusive particle production cross section. (c) 1999 The American Physical Society.

  6. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  7. Determination of lamivudine and zidovudine permeability using a different ex vivo method in Franz cells.

    Science.gov (United States)

    Dezani, André Bersani; Pereira, Thaisa Marinho; Caffaro, Arthur Massabki; Reis, Juliana Mazza; Serra, Cristina Helena Dos Reis

    2013-01-01

    The major processes that control the absorption of orally administered drugs are dissolution and gastrointestinal permeation. These processes depend on two main properties: solubility and permeability. Based on these characteristics, the Biopharmaceutical Classification System (BCS) was proposed as a tool to assist in biowaiver and bioavailability prediction of drugs. The purpose of the present study was to evaluate the permeability of lamivudine (3TC) and zidovudine (AZT) using a different ex vivo method in Franz cells. A segment of jejunum was inserted in a Franz cells apparatus, in order to assess drug permeability in the apical-basolateral (A-B) and basolateral-apical (B-A) directions. Each drug was added to the donor chamber, collected from the acceptor chamber and analyzed by HPLC. Fluorescein (FLU) and metoprolol (METO) were used as low and high permeability markers, respectively. The apparent permeability (Papp) results for the A-B direction were: Papp FLU A-B=0.54×10(-4)cm·s(-1), Papp METO A-B=7.99×10(-4)cm·s(-1), Papp 3TC A-B=4.58×10(-4)cm·s(-1) and Papp AZT A-B=5.34×10(-4)cm·s(-1). For the B-A direction, the Papp results were: Papp FLU B-A=0.56×10(-4)cm·s(-1), Papp METO B-A=0.25×10(-4)cm·s(-1), Papp 3TC B-A=0.24×10(-4)cm·s(-1) and Papp AZT B-A=0.19×10(-4)cm·s(-1). For the A-B direction, the Papp results of fluorescein and metoprolol show low and high permeability, respectively, indicating that the membranes were appropriate for permeability studies. For the A-B direction, the Papp results of 3TC and AZT suggest that these antiretroviral drugs have permeability values close to metoprolol. Nevertheless, for the B-A direction the Papp results do not suggest efflux mechanism for any of the drugs. Thereby, the different ex vivo methods using Franz cells can be successfully applied in drug permeability studies, in particular for drug biopharmaceutical classification. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Permeability of a Fluid Lipid Bilayer to Short-Chain Alcohols from First Principles.

    Science.gov (United States)

    Comer, Jeffrey; Schulten, Klaus; Chipot, Christophe

    2017-06-13

    Computational prediction of membrane permeability to small molecules requires accurate description of both the thermodynamics and kinetics underlying translocation across the lipid bilayer. In this contribution, well-converged, microsecond-long free-energy calculations are combined with a recently developed subdiffusive kinetics framework to describe the membrane permeation of a homologous series of short-tail alcohols, from methanol to 1-butanol, with unprecedented fidelity to the underlying molecular models. While the free-energy profiles exhibit barriers for passage through the center of the bilayer in all cases, the height of these barriers decreases with the length of the aliphatic chain of the alcohol, in quantitative agreement with experimentally determined differential solvation free energies in water and oil. A unique aspect of the subdiffusive model employed herein, which was developed in a previous article, is the determination of a position-dependent fractional order which quantifies the degree to which the motion of the alcohol deviates from classical diffusion along the thickness of the membrane. In the aqueous medium far from the bilayer, this quantity approaches 1.0, the asymptotic limit for purely classical diffusion, whereas it dips below 0.75 near the center of the membrane irrespective of the permeant. Remarkably, the fractional diffusivity near the center of membrane, where its influence on the permeability is the greatest, is similar among the four permeants despite the large difference in molecular weight and lipophilicity between methanol and 1-butanol. The relative permeabilities, which are estimated from the free-energy and fractional diffusivity profiles, are therefore determined predominantly by differences in the former rather than the latter. The predicted relative permeabilities are highly correlated with existing experimental results, albeit they do not agree quantitatively with them. On the other hand, quite unexpectedly, the

  9. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  10. Investigation of compaction and permeability during the out-of-autoclave and vacuum-bag-only manufacturing of a laminate composite with aligned carbon nanofibers

    Science.gov (United States)

    Mann, Erin

    Both industry and commercial entities are in the process of using more lightweight composites. Fillers, such as fibers, nanofibers and other nanoconstituents in polymer matrix composites have been proven to enhance the properties of composites and are still being studied in order to optimize the benefits. Further optimization can be studied during the manufacturing process. The air permeability during the out-of-autoclave-vacuum-bag-only (OOA-VBO) cure method is an important property to understand during the optimization of manufacturing processes. Changes in the manufacturing process can improve or decrease composite quality depending on the ability of the composite to evacuate gases such as air and moisture during curing. Therefore, in this study, the axial permeability of a prepreg stack was experimentally studied. Three types of samples were studied: control (no carbon nanofiber (CNF) modification), unaligned CNF modified and aligned CNF modified samples.

  11. Microwave-assisted extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs) used to indoor air monitoring

    International Nuclear Information System (INIS)

    Esteve-Turrillas, Francesc A.; Pastor, Agustin; Guardia, Miguel de la

    2006-01-01

    A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass-mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 deg. C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile-hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C 18 . Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, λ-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 ± 8 to 103 ± 7% for microwave-assisted extraction, versus 54 ± 4 to 104 ± 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure. High concentration levels of pyrethroid compounds, from 0.14 to 7.3 μg/SPMD, were found in indoor air after 2 h of a standard application

  12. Evaluation of permeability of compacted bentonite ground considering heterogeneity by geostatistics

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko; Kudo, Kohji; Hironaga, Michihiko; Nakagami, Motonori; Niwase, Kazuhito; Komatsu, Shin-ichi

    2007-01-01

    The permeability of the bentonite ground as an engineered barrier is possibly designed to the value which is lower than that determined in terms of required performance because of heterogeneous distribution of permeability in the ground, which might be considerable when the ground is created by the compaction method. The effect of heterogeneity in the ground on the permeability of the bentonite ground should be evaluated by overall permeability of the ground, whereas in practice, the effect is evaluated by the distribution of permeability in the ground. Thus, in this study, overall permeability of the bentonite ground is evaluated from the permeability of the bentonite ground is evaluated from the permeability distribution determined using the geostatistical method with the dry density data as well as permeability data of the undisturbed sample recovered from the bentonite ground. Consequently, it was proved through this study that possibility of overestimation of permeability of the bentonite ground can be reduced if the overall permeability is used. (author)

  13. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  14. The permeability and consolidation of deep-sea sediments

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Gunn, D.E.

    1985-01-01

    This report presents permeability and consolidation data for a wide range of sediment types. Permeability is one of the two parameters which are needed to directly quantify pore water advection in deep sea sediments and which are being investigated in high-level radioactive waste study areas. While it is desirable that these parameters should be measured in situ it is argued that values of permeability can be measured sufficiently accurately in the laboratory from core samples. Consequently, an apparatus has been developed which enables sediment permeability to be measured at decreasing void ratios during a back-pressured consolidation test. Data presented in this report from over 60 samples have established the major differences in permeability between various sediment types and how permeability changes as a function of burial depth and void ratio. Samples from two study areas in the North Atlantic Ocean, King's Trough Flank (KTF) and Great Meteor East (GME), have been compared with samples of Red Clay (RC) obtained from the NW Pacific Ocean. Results are presented and discussed. (author)

  15. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  16. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J

    1991-08-01

    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  17. A method for predicting the impact velocity of a projectile fired from a compressed air gun facility

    International Nuclear Information System (INIS)

    Attwood, G.J.

    1988-03-01

    This report describes the development and use of a method for calculating the velocity at impact of a projectile fired from a compressed air gun. The method is based on a simple but effective approach which has been incorporated into a computer program. The method was developed principally for use with the Horizontal Impact Facility at AEE Winfrith but has been adapted so that it can be applied to any compressed air gun of a similar design. The method has been verified by comparison of predicted velocities with test data and the program is currently being used in a predictive manner to specify test conditions for the Horizontal Impact Facility at Winfrith. (author)

  18. Permeability Estimation Directly From Logging-While-Drilling Induced Polarization Data

    DEFF Research Database (Denmark)

    Fiandaca, G.; Maurya, P.K.; Balbarini, Nicola

    2018-01-01

    In this study we present the prediction of permeability from time‐domain spectral induced polarization (IP) data, measured in boreholes on undisturbed formations using the El‐log logging‐while‐drilling technique. We collected El‐log data and hydraulic properties on unconsolidated Quaternary...... and Miocene deposits in boreholes at three locations at a field site in Denmark, characterized by different electrical water conductivity and chemistry. The high vertical resolution of the El‐log technique matches the lithological variability at the site, minimizing ambiguity in the interpretation originating...

  19. A casting and imaging technique for determining void geometry and relative permeability behavior of a single fracture specimen

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B.L.; Pruess, K.; Persoff, P.

    1990-01-01

    A casting technique has been developed for making translucent replicas of the void space of natural rock fractures. Attenuation of light shined through the cast combined with digital image analysis provides a pointwise definition of fracture apertures. The technique has been applied to a fracture specimen from Dixie Valley, Nevada, and the measured void space geometry has been used to develop theoretical predictions of two-phase relative permeability. A strong anisotropy in relative permeabilities has been found, which is caused by highly anisotropic spatial correlations among fracture apertures. 16 refs., 6 figs.

  20. Permeability, zonulin production, and enteropathy in dermatitis herpetiformis.

    Science.gov (United States)

    Smecuol, Edgardo; Sugai, Emilia; Niveloni, Sonia; Vázquez, Horacio; Pedreira, Silvia; Mazure, Roberto; Moreno, María Laura; Label, Marcelo; Mauriño, Eduardo; Fasano, Alessio; Meddings, Jon; Bai, Julio César

    2005-04-01

    Dermatitis herpetiformis (DH) is characterized by variable degrees of enteropathy and increased intestinal permeability. Zonulin, a regulator of tight junctions, seems to play a key role in the altered intestinal permeability that characterizes the early phase of celiac disease. Our aim was to assess both intestinal permeability and serum zonulin levels in a group of patients with DH having variable grades of enteropathy. We studied 18 DH patients diagnosed on the basis of characteristic immunoglobulin (Ig)A granular deposits in the dermal papillae of noninvolved skin. Results were compared with those of classic celiac patients, patients with linear IgA dermatosis, and healthy controls. According to Marsh's classification, 5 patients had no evidence of enteropathy (type 0), 4 patients had type II, 2 patients had type IIIb damage, and 7 patients had a more severe lesion (type IIIc). Intestinal permeability (lactulose/mannitol ratio [lac/man]) was abnormal in all patients with DH. Patients with more severe enteropathy had significantly greater permeability ( P zonulin concentration (enzyme-linked immunosorbent assay) for patients with DH was 2.1 +/- .3 ng/mg with 14 of 16 (87.5%) patients having abnormally increased values. In contrast, patients with linear IgA dermatosis had normal histology, normal intestinal permeability, and negative celiac serology. Increased intestinal permeability and zonulin up-regulation are common and concomitant findings among patients with DH, likely involved in pathogenesis. Increased permeability can be observed even in patients with no evidence of histologic damage in biopsy specimens. Patients with linear IgA dermatosis appear to be a distinct population with no evidence of gluten sensitivity.

  1. A mathematical model for two-phase water, air, and heat flow around a linear heat source emplaced in a permeable medium

    International Nuclear Information System (INIS)

    Doughty, C.; Pruess, K.

    1991-03-01

    A semianalytical solution for transient two-phase water, air, and heat flow in a uniform porous medium surrounding a constant-strength linear heat source has been developed, using a similarity variable η=r/√t (r is radial distance, t is time). Although the similarity transformation requires a simplified radial geometry, all the physical mechanisms involved in two-phase fluid and heat flow may be taken into account in a rigorous way. The solution includes nonlinear thermophysical fluid and material properties, such as relative permeability and capillary pressure variations with saturation, and density and viscosity variations with temperature and pressure. The resulting governing equations form a set of coupled nonlinear ODEs, necessitating numerical integration. The solution has been applied to a partially saturated porous medium initially at a temperature well below the saturation temperature, which is the setting for the potential nuclear waste repository site at Yucca Mountain, Nevada. The resulting heat and fluid flows provide a stringent test of many of the capabilities of numerical simulation models, making the similarity solution a useful tool for model verification. Comparisons to date have shown excellent agreement between the TOUGH2 simulator and the similarity solution for a variety of conditions. 13 refs., 6 figs., 1 tab

  2. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  3. Accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) model on Intel Xeon Phi processors

    OpenAIRE

    Wang, Hui; Chen, Huansheng; Wu, Qizhong; Lin, Junming; Chen, Xueshun; Xie, Xinwei; Wang, Rongrong; Tang, Xiao; Wang, Zifa

    2017-01-01

    The GNAQPMS model is the global version of the Nested Air Quality Prediction Modelling System (NAQPMS), which is a multi-scale chemical transport model used for air quality forecast and atmospheric environmental research. In this study, we present our work of porting and optimizing the GNAQPMS model on the second generation Intel Xeon Phi processor codename “Knights Landing” (KNL). Compared with the first generation Xeon Phi coprocessor, KNL introduced many new hardware features such as a boo...

  4. Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension.

    Science.gov (United States)

    Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R

    2009-02-15

    Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.

  5. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  6. Self-Microemulsifying Drug Delivery System: Formulation and Study Intestinal Permeability of Ibuprofen in Rats

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan Subudhi

    2013-01-01

    Full Text Available The study was aimed at developing a self-microemulsifying drug delivery system (SMEDDS of Ibuprofen for investigating its intestinal transport behavior using the single-pass intestinal perfusion (SPIP method in rat. Methods. Ibuprofen loaded SMEDDS (ISMEDDS was developed and was characterized. The permeability behavior of Ibuprofen over three different concentrations (20, 30, and 40 µg/mL was studied in each isolated region of rat intestine by SPIP method at a flow rate of 0.2 mL/min. The human intestinal permeability was predicted using the Lawrence compartment absorption and transit (CAT model since effective permeability coefficients (Peff values for rat are highly correlated with those of human, and comparative intestinal permeability of Ibuprofen was carried out with plain drug suspension (PDS and marketed formulation (MF. Results. The developed ISMEDDS was stable, emulsified upon mild agitation with 44.4 nm ± 2.13 and 98.86% ± 1.21 as globule size and drug content, respectively. Higher Peff in colon with no significant Peff difference in jejunum, duodenum, and ileum was observed. The estimated human absorption of Ibuprofen for the SMEDDS was higher than that for PDS and MF (P<0.01. Conclusion. Developed ISMEDDS would possibly be advantageous in terms of minimized side effect, increased bioavailability, and hence the patient compliance.

  7. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  8. Validation of Heat-Flux Predictions on the Outer Air Seal of a Transonic Turbine Blade (Preprint)

    National Research Council Canada - National Science Library

    Clark, John P; Polanka, Marc D; Meininger, Matthew; Praisner, Thomas J

    2006-01-01

    .... So, a set of predictions of the heat flux on the Blade Outer Air Seal (BOAS) of a transonic turbine is here validated with time-resolved measurements obtained in a single-stage high pressure turbine rig...

  9. Hierarchical multi-taxa models inform riparian vs. hydrologic restoration of urban streams in a permeable landscape.

    Science.gov (United States)

    Gwinn, Daniel C; Middleton, Jen A; Beesley, Leah; Close, Paul; Quinton, Belinda; Storer, Tim; Davies, Peter M

    2018-03-01

    The degradation of streams caused by urbanization tends to follow predictable patterns; however, there is a growing appreciation for heterogeneity in stream response to urbanization due to the local geoclimatic context. Furthermore, there is building evidence that streams in mildly sloped, permeable landscapes respond uncharacteristically to urban stress calling for a more nuanced approach to restoration. We evaluated the relative influence of local-scale riparian characteristics and catchment-scale imperviousness on the macroinvertebrate assemblages of streams in the flat, permeable urban landscape of Perth, Western Australia. Using a hierarchical multi-taxa model, we predicted the outcomes of stylized stream restoration strategies to increase the riparian integrity at the local scale or decrease the influences of imperviousness at the catchment scale. In the urban streams of Perth, we show that local-scale riparian restoration can influence the structure of macroinvertebrate assemblages to a greater degree than managing the influences of catchment-scale imperviousness. We also observed an interaction between the effect of riparian integrity and imperviousness such that the effect of increased riparian integrity was enhanced at lower levels of catchment imperviousness. This study represents one of few conducted in flat, permeable landscapes and the first aimed at informing urban stream restoration in Perth, adding to the growing appreciation for heterogeneity of the Urban Stream Syndrome and its importance for urban stream restoration. © 2017 by the Ecological Society of America.

  10. CMHC research project: Testing of air barriers construction details: Report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This project was conducted to quantify the air leakage characteristics of the header joist, the electric outlets, and the window openings in wood-frame walls. The study evaluated the sealed internal membrane method, where polyethylene sheet and sealant provide the air barrier; the external air barrier method, which uses a continuous vapour permeable membrane (spun-bonded olefin film), sandwiched between two layers of external wall sheathing; and the airtight drywall method, where the interior gypsum board finish, together with framing materials and gaskets, are used as the air barrier. In addition, the traditional approach to wood-frame wall construction, where no special attention is given to achieving a continuous air barrier, was evaluated for comparison.

  11. Consolidation and permeability of salt in brine

    International Nuclear Information System (INIS)

    Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

    1981-07-01

    The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0) 3 ), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl 2 showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85 0 C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste

  12. Estimating reservoir permeability from gravity current modeling of CO2 flow at Sleipner storage project, North Sea

    Science.gov (United States)

    Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.

    2017-12-01

    Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model

  13. Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions

    International Nuclear Information System (INIS)

    Berryman, J.G.; Blair, S.C.

    1986-01-01

    Scanning electron microscope images of cross sections of several porous specimens have been digitized and analyzed using image processing techniques. The porosity and specific surface area may be estimated directly from measured two-point spatial correlation functions. The measured values of porosity and image specific surface were combined with known values of electrical formation factors to estimate fluid permeability using one version of the Kozeny-Carman empirical relation. For glass bead samples with measured permeability values in the range of a few darcies, our estimates agree well ( +- 10--20%) with the measurements. For samples of Ironton-Galesville sandstone with a permeability in the range of hundreds of millidarcies, our best results agree with the laboratory measurements again within about 20%. For Berea sandstone with still lower permeability (tens of millidarcies), our predictions from the images agree within 10--30%. Best results for the sandstones were obtained by using the porosities obtained at magnifications of about 100 x (since less resolution and better statistics are required) and the image specific surface obtained at magnifications of about 500 x (since greater resolution is required)

  14. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  15. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  16. In Vitro-In Vivo Predictive Dissolution-Permeation-Absorption Dynamics of Highly Permeable Drug Extended-Release Tablets via Drug Dissolution/Absorption Simulating System and pH Alteration.

    Science.gov (United States)

    Li, Zi-Qiang; Tian, Shuang; Gu, Hui; Wu, Zeng-Guang; Nyagblordzro, Makafui; Feng, Guo; He, Xin

    2018-05-01

    Each of dissolution and permeation may be a rate-limiting factor in the absorption of oral drug delivery. But the current dissolution test rarely took into consideration of the permeation property. Drug dissolution/absorption simulating system (DDASS) valuably gave an insight into the combination of drug dissolution and permeation processes happening in human gastrointestinal tract. The simulated gastric/intestinal fluid of DDASS was improved in this study to realize the influence of dynamic pH change on the complete oral dosage form. To assess the effectiveness of DDASS, six high-permeability drugs were chosen as model drugs, including theophylline (pK a1  = 3.50, pK a2  = 8.60), diclofenac (pK a  = 4.15), isosorbide 5-mononitrate (pK a  = 7.00), sinomenine (pK a  = 7.98), alfuzosin (pK a  = 8.13), and metoprolol (pK a  = 9.70). A general elution and permeation relationship of their commercially available extended-release tablets was assessed as well as the relationship between the cumulative permeation and the apparent permeability. The correlations between DDASS elution and USP apparatus 2 (USP2) dissolution and also between DDASS permeation and beagle dog absorption were developed to estimate the predictability of DDASS. As a result, the common elution-dissolution relationship was established regardless of some variance in the characteristic behavior between DDASS and USP2 for drugs dependent on the pH for dissolution. Level A in vitro-in vivo correlation between DDASS permeation and dog absorption was developed for drugs with different pKa. The improved DDASS will be a promising tool to provide a screening method on the predictive dissolution-permeation-absorption dynamics of solid drug dosage forms in the early-phase formulation development.

  17. Application of data mining to the analysis of meteorological data for air quality prediction: A case study in Shenyang

    Science.gov (United States)

    Zhao, Chang; Song, Guojun

    2017-08-01

    Air pollution is one of the important reasons for restricting the current economic development. PM2.5 which is a vital factor in the measurement of air pollution is defined as a kind of suspended particulate matter with its equivalent diameter less than 25μm, which may enter the alveoli and therefore make a great impact on the human body. Meteorological factors are also one of the main factors affecting the production of PM2.5, therefore, it is essential to establish the model between meteorological factors and PM2.5 for the prediction. Data mining is a promising approach to model PM2.5 change, Shenyang which is one of the most important industrial city in Northeast China with severe air pollutions is set as the case city. Meteorological data (wind direction, wind speed, temperature, humidity, rainfall, etc.) from 2013 to 2015 and PM2.5 concentration data are used for this prediction. As to the requirements of the World Health Organization (WHO), three data mining models, whereby the predictions of PM2.5 are directly generated by the meteorological data. After assessment, the random forest model is appeared to offer better prediction performance than the other two. At last, the accuracy of the generated models are analysed.

  18. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  19. Incremental Validity of Biographical Data in the Prediction of En Route Air Traffic Control Specialist Technical Skills

    Science.gov (United States)

    2012-07-01

    Previous research demonstrated that an empirically-keyed, response-option scored biographical data (biodata) : scale predicted supervisory ratings of air traffic control specialist (ATCS) job performance (Dean & Broach, : 2011). This research f...

  20. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... to formations with a significant fraction of fine particles including clay minerals are investigated. The porosities range from 0.10 to 0.30 and permeabilities span the range from 1 to 1000 md. To compare different rock types, specific surface is determined from permeability and porosity using Kozeny’s equation...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  1. Density and permeability of a loess soil: long-term organic matter effect and the response to compressive stress

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2013-01-01

    to compressive stress, undisturbed soil cores were collected from a long-term fertilisation experiment in Bad Lauchstädt in Germany, including combinations of animal manure and mineral fertilisers. The cores were drained to -100 hPa matric potential and exposed to uniaxial confined compression (200k......Pa). Investigated indicators for compression resistance included compression index, precompression stress, and resistance and resilience indices based on measured soil physical properties (bulk density, air-filled porosity, air permeability, and void ratio). Soil resilience was assessed following exposure...... but the correlation was not significant. However, initial bulk density (ρbi) and initial gravimetric water content (wi) were significantly positively correlated to the indices of soil compression resistance, with the effect of ρbi being significantly stronger. Significant recovery of airfilled porosity and air...

  2. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  3. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  4. Hardware-in-the-Loop Simulation of a Distribution System with Air Conditioners under Model Predictive Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lunacek, Monte S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Wesley B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wu, Hongyu [Kansas State University; Mittal, Saurabh [Mitre Corporation; Marks, Jesse [University of Missouri

    2017-08-01

    Many have proposed that responsive load provided by distributed energy resources (DERs) and demand response (DR) are an option to provide flexibility to the grid and especially to distribution feeders. However, because responsive load involves a complex interplay between tariffs and DER and DR technologies, it is challenging to test and evaluate options without negatively impacting customers. This paper describes a hardware-in-the-loop (HIL) simulation system that has been developed to reduce the cost of evaluating the impact of advanced controllers (e.g., model predictive controllers) and technologies (e.g., responsive appliances). The HIL simulation system combines large-scale software simulation with a small set of representative building equipment hardware. It is used to perform HIL simulation of a distribution feeder and the loads on it under various tariff structures. In the reported HIL simulation, loads include many simulated air conditioners and one physical air conditioner. Independent model predictive controllers manage operations of all air conditioners under a time-of-use tariff. Results from this HIL simulation and a discussion of future development work of the system are presented.

  5. Study on Surface Permeability of Concrete under Immersion

    OpenAIRE

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured af...

  6. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  7. Studying behavior of multilayer materials: A 1-D model correlated to magnetic domain walls through complex permeability

    International Nuclear Information System (INIS)

    Ahmadi, B.; Chazal, H.; Waeckerle, T.; Roudet, J.

    2008-01-01

    Multilayer cores are suitable for integrated planar magnetic components. We proposed here to investigate the frequency behavior of multilayer nanocrystalline cores in the frame of a one-dimensional (1-D) electromagnetic propagation model. Electromagnetic wave equations are considered to explain the phenomena from the macroscopic point of view. A domain wall description is considered to take into account non-homogeneity of magnetic media. This mesoscopic model is correlated to macroscopic model through complex permeability. The scope of validity of the model is determined by means of indirect permeability measurement. Finally, the behavior of the multilayer core is predicted by using an equivalent electrical circuit and will interest component designers

  8. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  9. Octopus microvasculature: permeability to ferritin and carbon.

    Science.gov (United States)

    Browning, J

    1979-01-01

    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  10. Permeability After Impact Testing of Composite Laminates

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  11. Study on Surface Permeability of Concrete under Immersion.

    Science.gov (United States)

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-28

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations.

  12. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  13. A simple approach to the prediction of waterhammer transients in a pipe line with entrapped air

    International Nuclear Information System (INIS)

    Epstein, Michael

    2008-01-01

    The pressure histories within entrapped air bubbles in a pipe line during a waterhammer transient are treated theoretically. A convenient integral method is introduced, which takes full account of air/water interface movement and liquid compressibility. The significance of the method is that it provides a simple equation set for approximating, with good accuracy and with a small degree of conservatism, the solution to a problem that otherwise involves coupled partial differential equations on time dependent domains with non-linear boundary conditions. The accuracy of the method is defined by its comparison with available numerical-solution-predictions and measurements of the pressure within an entrapped-air-bubble at a dead end in a pipe. The method is shown to be a computationally simple and efficient way of assessing the impact of liquid compressibility on pressure rise when multiple water columns and air pockets are present in a pipe line

  14. A multiscale model of distributed fracture and permeability in solids in all-round compression

    Science.gov (United States)

    De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna

    2017-07-01

    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.

  15. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation.

    Science.gov (United States)

    Zhang, Xiuqing; Liu, Ting; Fan, Xiaohui; Ai, Ni

    2017-08-01

    In silico modeling of blood-brain barrier (BBB) permeability plays an important role in early discovery of central nervous system (CNS) drugs due to its high-throughput and cost-effectiveness. Natural products (NP) have demonstrated considerable therapeutic efficacy against several CNS diseases. However, BBB permeation property of NP is scarcely evaluated both experimentally and computationally. It is well accepted that significant difference in chemical spaces exists between NP and synthetic drugs, which calls into doubt on suitability of available synthetic chemical based BBB permeability models for the evaluation of NP. Herein poor discriminative performance on BBB permeability of NP are first confirmed using internal constructed and previously published drug-derived computational models, which warrants the need for NP-oriented modeling. Then a quantitative structure-property relationship (QSPR) study on a NP dataset was carried out using four different machine learning methods including support vector machine, random forest, Naïve Bayes and probabilistic neural network with 67 selected features. The final consensus model was obtained with approximate 90% overall accuracy for the cross-validation study, which is further taken to predict passive BBB permeability of a large dataset consisting of over 10,000 compounds from traditional Chinese medicine (TCM). For 32 selected TCM molecules, their predicted BBB permeability were evaluated by in vitro parallel artificial membrane permeability assay and overall accuracy for in vitro experimental validation is around 81%. Interestingly, our in silico model successfully predicted different BBB permeation potentials of parent molecules and their known in vivo metabolites. Finally, we found that the lipophilicity, the number of hydrogen bonds and molecular polarity were important molecular determinants for BBB permeability of NP. Our results suggest that the consensus model proposed in current work is a reliable tool for

  16. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  17. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia

    2014-01-01

    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes...... of moisture removal capacity, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. The results show that higher effect on the dehumidification is due to the regeneration temperature and outdoor air humidity ratio rather than the outdoor air temperature...... and the ratio between regeneration and process air flow rates. A simple method based on multiple linear regression theory for predicting the performance of the wheel has been proposed. The predicted values and the experimental data are compared and good agreements are obtained. Regression models are established...

  18. Sensitivity Analysis of Interfacial Tension on Saturation and Relative Permeability Model Predictions

    KAUST Repository

    Abdallah, Wael; Zhao, Weishu; Gmira, Ahmed; Negara, Ardiansyah; Buiting, Jan

    2011-01-01

    Interfacial tension (IFT) measurements of Dodecane/brine systems at different concentrations and Dodecane/deionized water subject to different Dodecane purification cycles were taken over extended durations at room temperature and pressure to investigate the impact of aging. When a fresh droplet was formed, a sharp drop in IFT was observed assumed to be a result of intrinsic impurity adsorption at the interface. The subsequent measurements exhibited a prolonged equilibration period consistent with diffusion from the bulk phase to the interface. Our results indicate that minute amounts of impurities present in experimental chemical fluids "used as received" have a drastic impact on the properties of the interface. Initial and equilibrium IFT are shown to be dramatically different, therefore it is important to be cautious of utilizing IFT values in numerical models. The study demonstrates the impact these variations in IFT have on relative permeability relationships by adopting a simple pore network model simulation.

  19. Sensitivity Analysis of Interfacial Tension on Saturation and Relative Permeability Model Predictions

    KAUST Repository

    Abdallah, Wael

    2011-05-18

    Interfacial tension (IFT) measurements of Dodecane/brine systems at different concentrations and Dodecane/deionized water subject to different Dodecane purification cycles were taken over extended durations at room temperature and pressure to investigate the impact of aging. When a fresh droplet was formed, a sharp drop in IFT was observed assumed to be a result of intrinsic impurity adsorption at the interface. The subsequent measurements exhibited a prolonged equilibration period consistent with diffusion from the bulk phase to the interface. Our results indicate that minute amounts of impurities present in experimental chemical fluids "used as received" have a drastic impact on the properties of the interface. Initial and equilibrium IFT are shown to be dramatically different, therefore it is important to be cautious of utilizing IFT values in numerical models. The study demonstrates the impact these variations in IFT have on relative permeability relationships by adopting a simple pore network model simulation.

  20. Permeability and stress-jump effects on magnetic drug targeting in a permeable microvessel using Darcy model

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, S., E-mail: sachinshaw@gmail.com [Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye (Botswana); Sutradhar, A.; Murthy, PVSN [Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India)

    2017-05-01

    In the present paper, we investigated the influence of permeability of the carrier particle and stress jump condition on the porous spherical surface in magnetic drug targeting through a permeable microvessel. The nature of blood is defined by non-Newtonian Casson fluid in the core region of the microvessel and Newtonian fluid in the peripheral region which is located near the surface of the wall of the microvessel. The magnetic particles are considered as spherical and in nanosize, embedded in the carrier particle along with drug particles. A magnet is placed near the tumor position to generate a magnetic field. The relative motion of the carrier particle is the resultant of the fluidic force, magnetic force and Saffman drag force which are calculated for the spherical carrier particle. Trajectories of the carrier particle along the radial and axial direction are calculated. Effect of different parameters such as stress-jump constant, permeability of the carrier particle, pressure gradient, yield stress, Saffman force, volume fraction of the embedded magnetic nanoparticles, permeability of the microvessel wall, and the radius of the carrier particle on the trajectory of the carrier particle are discussed and displayed graphically. - Highlights: • In the present manuscript, we considered the porous carrier particle which provide a larger surface area contact with the fluid than the solid spherical carrier particle. It shows that the porous carrier particle are captured easily than the solid carrier particle. • Introduce Suffman force on the carrier particle which commences an additional resistance which acts opposite to the surface wall and helps the particles to go away from the tumor position. • Considered stress jump condition at the surface of the porous carrier particle which enhanced the tendency of the carrier particle to be capture near the tumor. • Used Darcy model to define the permeability of the wall of the microvessel.

  1. Selection of Air Terminal Device

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    This paper discusses the selection of the air terminal device for the experiments and numerical prediction in the International Energy Agency Annex 20 work: Air Flow Pattern within Buildings,......This paper discusses the selection of the air terminal device for the experiments and numerical prediction in the International Energy Agency Annex 20 work: Air Flow Pattern within Buildings,...

  2. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  3. Detection of semi-volatile organic compounds in permeable ...

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  4. The permeability of concrete for reactor containment vessels

    International Nuclear Information System (INIS)

    Mills, R.H.

    1983-07-01

    Review of the literature pertaining to water, water vapour and gas transmission through concrete revealed conflicting views on the mechanisms involved and the influence of mix design parameters such as initial porosities and water/cement ratio. Consideration of the effects of ageing and of construction defects in field concrete were totally neglected in published work. Permeability data from three published papers were compared with permeability calculated according to Powers. The ratio of calculated to observed permeability varied from 40 x 10 -3 to 860 x 10 -3 for one group: from 0.17 x 10 3 to 8.6 x 10 3 in the second; and from 24 x 10 3 to 142 x 10 3 for the third. There were therefore wide discrepancies within each group of data and between groups. A bibliography was prepared and an exploratory experimental programme was mounted to determine the relative importance of key parameters such as cement type, porosity and water/cement ratio. Contrary to frequently cited references it was found that permeability of concrete was not significantly influenced by water/cement ratio when the starting porosity was constant. If water/cement ratio was held constant, however, the permeability was strongly influenced by starting porosity. It was also found that with constant water/cement ratio permeability increased with cement content. The value of fly ash and blast furnace slag in partial substitution for Portland cement is neglected in the literature but it is important since such substitutions alleviate alkali-silicate reactions. Permeability of concrete was significantly decreased by partial substitution of Portland cement with fly ash but there was no benefit in the use of blast furnace slag

  5. A non-erasable magnetic memory based on the magnetic permeability

    International Nuclear Information System (INIS)

    Petrie, J.R.; Wieland, K.A.; Burke, R.A.; Newburgh, G.A.; Burnette, J.E.; Fischer, G.A.; Edelstein, A.S.

    2014-01-01

    A non-erasable memory based on using differences in the magnetic permeability is demonstrated. The method can potentially store information indefinitely. Initially the high permeability bits were 10–50 μm wide lines of sputtered permalloy (Ni 81 Fe 19 ) on a glass substrate. In a second writing technique a continuous film of amorphous, high permeability ferromagnetic Metglas (Fe 78 Si 13 B 9 ) was sputtered onto a similar glass substrate. Low permeability, crystalline 50 μm wide lines were then written in the film by laser heating. Both types of written media were read by applying an external probe field that is locally modified by the permeability of each bit. The modifications in the probe field were read by a nearby set of 10 micron wide magnetic tunnel junctions with a signal-to-noise ratio of up to 45 dB. This large response to changes in bit permeability is not altered after the media has been exposed to a 6400 Oe field. While being immediately applicable for data archiving and secure information storage, higher densities are possible with smaller read and write heads. - Highlights: • We demonstrate a non-erasable memory based on changes in the magnetic permeability. • Large change in permeability occur when Metglas changes from amorphous to crystalline. • Micron size regions of Metglas can be crystallized using a laser. • Permeability changes read by observing deviations of a probe field with an MTJ

  6. Detection of semi-volatile organic compounds in permeable pavement infiltrate

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) performs research on green infrastructure (GI) treatment options. One such treatment option is the use of permeable pavements. EEC constructed a parking lot comprised of three different permeable systems: permeable asphalt, porous ...

  7. Kozeny-Carman permeability relationship with disintegration process predicted from early dissolution profiles of immediate release tablets.

    Science.gov (United States)

    Kumari, Parveen; Rathi, Pooja; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir

    2017-07-01

    This study was oriented toward the disintegration profiling of the diclofenac sodium (DS) immediate-release (IR) tablets and development of its relationship with medium permeability k perm based on Kozeny-Carman equation. Batches (L1-L9) of DS IR tablets with different porosities and specific surface area were prepared at different compression forces and evaluated for porosity, in vitro dissolution and particle-size analysis of the disintegrated mass. The k perm was calculated from porosities and specific surface area, and disintegration profiles were predicted from the dissolution profiles of IR tablets by stripping/residual method. The disintegration profiles were subjected to exponential regression to find out the respective disintegration equations and rate constants k d . Batches L1 and L2 showed the fastest disintegration rates as evident from their bi-exponential equations while the rest of the batches L3-L9 exhibited the first order or mono-exponential disintegration kinetics. The 95% confidence interval (CI 95% ) revealed significant differences between k d values of different batches except L4 and L6. Similar results were also spotted for dissolution profiles of IR tablets by similarity (f 2 ) test. The final relationship between k d and k perm was found to be hyperbolic, signifying the initial effect of k perm on the disintegration rate. The results showed that disintegration profiling is possible because a relationship exists between k d and k perm . The later being relatable with porosity and specific surface area can be determined by nondestructive tests.

  8. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  9. Predicting the Air Quality, Thermal Comfort and Draught Risk for a Virtual Classroom with Desk-Type Personalized Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2018-02-01

    Full Text Available This paper concerns the prediction of indoor air quality (IAQ, thermal comfort (TC and draught risk (DR for a virtual classroom with desk-type personalized ventilation system (PVS. This numerical study considers a coupling of the computational fluid dynamics (CFD, human thermal comfort (HTC and building thermal behavior (BTB numerical models. The following indexes are used: the predicted percentage of dissatisfied people (PPD index is used for the evaluation of the TC level; the carbon dioxide (CO2 concentration in the breathing zone is used for the calculation of IAQ; and the DR level around the occupants is used for the evaluation of the discomfort due to draught. The air distribution index (ADI, based in the TC level, the IAQ level, the effectiveness for heat removal and the effectiveness for contaminant removal, is used for evaluating the performance of the personalized air distribution system. The numerical simulation is made for a virtual classroom with six desks. Each desk is equipped with one PVS with two air terminal devices located overhead and two air terminal devices located below the desktop. In one numerical simulation six occupants are used, while in another simulation twelve occupants are considered. For each numerical simulation an air supply temperature of 20 °C and 24 °C is applied. The results obtained show that the ADI value is higher for twelve persons than for six persons in the classroom and it is higher for an inlet air temperature of 20 °C than for an inlet air temperature of 24 °C. In future works, more combinations of upper and lower air terminal devices located around the body area and more combinations of occupants located in the desks will be analyzed.

  10. Effect of desensitizing agents on dentin permeability.

    Science.gov (United States)

    Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).

  11. Evolution of permeability in diatomaceous rocks mediated by pressure solution

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Kishida, Kiyoshi

    2007-01-01

    A conceptual model is presented to follow the evolution of permeability in diatomaceous rocks mediated by pressure solution. The progress of compaction and the evolution of permeability may be followed with time. Specifically, the main minerals of diatomaceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective stresses of 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increase of the dissolution rate constants. Ultimate permeabilities reduce to the order of 90% at the completion of dissolution-mediated compaction. (author)

  12. Permeability of WIPP Salt During Damage Evolution and Healing

    International Nuclear Information System (INIS)

    BODNER, SOL R.; CHAN, KWAI S.; MUNSON, DARRELL E.

    1999-01-01

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering

  13. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  14. Stochastic description of heterogeneities of permeability within groundwater flow models

    International Nuclear Information System (INIS)

    Cacas, M.C.; Lachassagne, P.; Ledoux, E.; Marsily, G. de

    1991-01-01

    In order to model radionuclide migration in the geosphere realistically at the field scale, the hydrogeologist needs to be able to simulate groundwater flow in heterogeneous media. Heterogeneity of the medium can be described using a stochastic approach, that affects the way in which a flow model is formulated. In this paper, we discuss the problems that we have encountered in modelling both continuous and fractured media. The stochastic approach leads to a methodology that enables local measurements of permeability to be integrated into a model which gives a good prediction of groundwater flow on a regional scale. 5 Figs.; 8 Refs

  15. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    Science.gov (United States)

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field

  16. Experimental measurements and numerical simulation of permittivity and permeability of Teflon in X band

    Directory of Open Access Journals (Sweden)

    Adriano Luiz de Paula

    2011-01-01

    Full Text Available Recognizing the importance of an adequate characterization of radar absorbing materials, and consequently their development, the present study aims to contribute for the establishment and validation of experimental determination and numerical simulation of electromagnetic materials complex permittivity and permeability, using a Teflon® sample. The present paper branches out into two related topics. The first one is concerned about the implementation of a computational modeling to predict the behavior of electromagnetic materials in confined environment by using electromagnetic three-dimensional simulation. The second topic re-examines the Nicolson-Ross-Weir mathematical model to retrieve the constitutive parameters (complex permittivity and permeability of a homogeneous sample (Teflon®, from scattering coefficient measurements. The experimental and simulated results show a good convergence that guarantees the application of the used methodologies for the characterization of different radar absorbing materials samples.

  17. Estimating retinal vascular permeability using the adiabatic approximation to the tissue homogeneity model with fluorescein videoangiography

    Science.gov (United States)

    Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.

    2015-06-01

    Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.

  18. Improvements in scaling of counter-current imbibition recovery curves using a shape factor including permeability anisotropy

    Science.gov (United States)

    Abbasi, Jassem; Sarafrazi, Shiva; Riazi, Masoud; Ghaedi, Mojtaba

    2018-02-01

    Spontaneous imbibition is the main oil production mechanism in the water invaded zone of a naturally fractured reservoir (NFR). Different scaling equations have been presented in the literature for upscaling of core scale imbibition recovery curves to field scale matrix blocks. Various scale dependent parameters such as gravity effects and boundary influences are required to be considered in the upscaling process. Fluid flow from matrix blocks to the fracture system is highly dependent on the permeability value in the horizontal and vertical directions. The purpose of this study is to include permeability anisotropy in the available scaling equations to improve the prediction of imbibition assisted oil production in NFRs. In this paper, a commercial reservoir simulator was used to obtain imbibition recovery curves for different scenarios. Then, the effect of permeability anisotropy on imbibition recovery curves was investigated, and the weakness of the existing scaling equations for anisotropic rocks was demonstrated. Consequently, an analytical shape factor was introduced that can better scale all the curves related to anisotropic matrix blocks.

  19. Modeling stress/strain-dependent permeability changes for deep geoenergy applications

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny

    2016-04-01

    Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.

  20. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Ying-Chang; Wang, Yan-Zhong

    2016-01-01

    The relationships between permeability and dynamics in hydrocarbon accumulation determine oilbearing potential (the potential oil charge) of low permeability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member...... facies A and diagenetic facies B do not develop accumulation conditions with low accumulation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock. Also...

  1. Hydrogeology of rocks of low permeability: region studies

    International Nuclear Information System (INIS)

    Llamas, M.R.

    1985-01-01

    Hydrogeological regional studies on low permeability rocks are rather scarce in comparison to similar studies on normal permeability rocks. Economic and technological difficulties to develop ground water from these terrains may be the main cause of this scarcity. Several facts may indicate that these studies will increase in the near future. First, the need to supply water to the people living in underdeveloped arid zones over extensive areas of low permeability rocks. Second, the relevant role that some low permeability large groundwater basins may play in conjunctive ground and surface-water use. And last but not least the feasibility of some low permeability rock areas as sites for nuclear waste repositories. Some specific difficulties in these regional studies may be: a) intrinsic difficulties in obtaining representative water samples and measuring hydraulic heads; b) scarcity of observation and/or pumping wells; c) important hydraulic head and chemical properties variations in a vertical direction; d) old groundwater ages; this may require paleohydrological considerations to understand certain apparent anomalies. In most of these regional studies hydrogeochemical methods and modelling (flow and mass transport) may be very valuable tools. 77 references, 7 figures

  2. Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media

    International Nuclear Information System (INIS)

    Roy Haggerty

    2004-01-01

    Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the

  3. Prediction of cold start hydrocarbon emissions of air cooled two wheeler spark ignition engines by simple fuzzy logic simulation

    Directory of Open Access Journals (Sweden)

    Samuel Raja Ayyanan

    2014-01-01

    Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.

  4. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  5. Hydrogen permeability through metals

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tsvetkov, I.V.; Marenkov, E.D.; Yarko, S.S.

    2011-01-01

    The mechanisms of hydrogen permeability through one-layer and multi-layer membranes are considered. The effect of surface roughness, crystal defects, cracks and pores is described. Mathematical description of the processes is given [ru

  6. Permeable Pavement Research at the Edison Environmental Center

    Science.gov (United States)

    There are few detailed studies of full-scale, replicated, actively-used permeable pavement systems. Practitioners need additional studies of permeable pavement systems in its intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditio...

  7. High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun, E-mail: fengzekun@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Zhongyan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Jiangmen Magsource New Material CO., LTD., 529000 Guangdong (China); Su, Zhijuan; Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-05-07

    Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.

  8. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  9. Highly permeable, cement-bounded backfilling mortars for SMA repositories

    International Nuclear Information System (INIS)

    Jacobs, F.; Mayer, G.; Wittmann, F.H.

    1994-03-01

    In low- and intermediate-level waste repositories, gas is produced due e.g. to corrosion. This gas must be able to escape from the repository in order to prevent damage to the repository structure. A cement-based backfill should take over this function. For this purpose, the composition of cement-based materials was varied to study their influence on porosity and permeability. In parallel to this study the behaviour of fresh concrete, the liberation of the heat of hydration and the hardened concrete properties were investigated. To characterize the permeability of cement-based materials the following parameters are important: 1) composition of the material (pore fabric), 2) storage conditions (degree of saturation), 3) degree of hydration (age), 4) measuring fluid. A change in the composition of cement-based materials can vary the permeability by ten orders of magnitude. It is shown that, by using dense aggregates, the transport of the fluid takes place through the matrix and along the aggregate/matrix interface. By using porous aggregates the permeability can be increased by two orders of magnitude. In the case of a dense matrix, porous aggregates do not alter the permeability. Increasing the matrix content or interface content increases permeability. Hence light weight mortars are an obvious choice. Like-grained mixes showed higher permeabilities in combination with better mechanical properties but, in comparison to normal mixes, they showed worse flow properties. With the composition cement-: water-: aggregate content 1:0.4:5.33 the likegrained mix with aggregates ranging from 2 to 3 mm proved to be a suitable material. With a low compaction after 28 days this mix reaches a permeability of 4.10 -12 m 2 and an uniaxial cylinder compressive strength of 16 N/mm 2 . (author) 58 figs., 23 tabs., refs

  10. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  11. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  12. Corneal permeability for cement dust: prognosis for occupational safety

    Science.gov (United States)

    Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.

    2018-02-01

    The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.

  13. Nitrogen Transformations in Three Types of Permeable Pavement

    Science.gov (United States)

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  14. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance of restorat......Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance...

  15. Meta-Prediction of the Effect of Methylenetetrahydrofolate Reductase Polymorphisms and Air Pollution on Alzheimer's Disease Risk.

    Science.gov (United States)

    Wu, Suh-Mian; Chen, Zhao-Feng; Young, Lufei; Shiao, S Pamela K

    2017-01-11

    Background : Alzheimer's disease (AD) is a significant public health issue. AD has been linked with methylenetetrahydrofolate reductase ( MTHFR ) C677T polymorphism, but the findings have been inconsistent. The purpose of this meta-predictive analysis is to examine the associations between MTHFR polymorphisms and epigenetic factors, including air pollution, with AD risk using big data analytics approaches. Methods and Results : Forty-three studies (44 groups) were identified by searching various databases. MTHFR C677T TT and CT genotypes had significant associations with AD risk in all racial populations (RR = 1.13, p = 0.0047; and RR = 1.12, p analysis showed significant increases of percentages of MTHFR C677T polymorphism with increased air pollution levels in both AD case group and control group ( p = 0.0021-0.0457); with higher percentages of TT and CT genotypes in the AD case group than that in the control group with increased air pollution levels. Conclusions : The impact of MTHFR C677T polymorphism on susceptibility to AD was modified by level of air pollution. Future studies are needed to further examine the effects of gene-environment interactions including air pollution on AD risk for world populations.

  16. A new structure of permeable pavement for mitigating urban heat island.

    Science.gov (United States)

    Liu, Yong; Li, Tian; Peng, Hangyu

    2018-09-01

    The urban heat island (UHI) effect has been a great threat to human habitation, and how to mitigate this problem has been a global concern over decades. This paper addresses the cooling effect of a novel permeable pavement called evaporation-enhancing permeable pavement, which has capillary columns in aggregate and a liner at the bottom. To explore the efficiency of mitigating the UHI, bench-scale permeable pavement units with capillary columns were developed and compared with conventional permeable pavement. Criteria of capillary capacities of the column, evaporation rates, and surface temperature of the pavements were monitored under simulated rainfall and Shanghai local weather conditions. Results show the capillary column was important in increasing evaporation by lifting water from the bottom to the surface, and the evaporation-enhancing permeable pavement was cooler than a conventional permeable pavement by as much as 9.4°C during the experimental period. Moreover, the cooling effect of the former pavement could persist more than seven days under the condition of no further rainfall. Statistical analysis result reveals that evaporation-enhancing permeable pavement can mitigate the UHI effect significantly more than a conventional permeable pavement. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  18. Influence of demagnetizing field on the permeability of soft magnetic composites

    International Nuclear Information System (INIS)

    Lin, G.Q.; Li, Z.W.; Chen, Linfeng; Wu, Y.P.; Ong, C.K.

    2006-01-01

    The influence of demagnetizing field on the effective permeability of magnetic composites has been investigated. A theoretical expression of the effective permeability has been obtained and discussed according to four typical composites with spheres, needles, flakes, and aligned prolate ellipsoidal particles. The results indicate that the demagnetizing field within the particles can reduce the effective permeability significantly. In order to increase the effective permeability, it is necessary to decrease the demagnetizing field within the particles. A linear relationship between effective permeability and volume fraction is also observed for composites filled with spherical particles at low volume fraction

  19. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self

  20. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  1. Compressible fluid flow through rocks of variable permeability

    International Nuclear Information System (INIS)

    Lin, W.

    1977-01-01

    The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks

  2. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  3. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Timóteo, MG (Brazil); Tello, Clédola Cássia Oliveira de, E-mail: tolentino@timoteo.cefetmg.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  4. Preliminary study of the irradiation-induced modification of skin permeability

    International Nuclear Information System (INIS)

    Coelho, R.; Istin, M.

    1978-01-01

    Irradiation of the skin of an animal leads immediately to a strong increase in vascular permeability. If a dye is at once injected intraveinously it diffuses very rapidly in the irradiated zone, this becomes highly coloured and the colour intensity measurement gives a clue to the severity of the lesions produced. This phenomenon has been used in the past as a pharmacological test to study vascular permeability and is employed in this work to observe the effect of diosmine-titrated flavonoids on vascular permeability in inflammatory diseases. The capillary permeability increase due to local γ irradiation of rabbit skin has been accurately determined by measurement of the colouration observed after injection of Geigy Blue. Diosmine, injected intraperitoneally, protects the vascular system against increased permeability due to ionising radiations [fr

  5. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  6. A reassessment of the deposition velocity in the prediction of the environmental transport of radioiodine from air to milk

    International Nuclear Information System (INIS)

    Hoffman, F.O.

    1977-01-01

    The environmental transport of radioiodine from air to milk under conditions of dry deposition is considered with especial reference to the misinterpretation of experimentally derived values of the deposition velocity of elemental iodine by previous workers which has resulted in an apparent underestimation of this value. It is suggested that published predictions of the milk-to-air ratio be adjusted to account for this apparent error. (U.K.)

  7. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    Science.gov (United States)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  8. Measurement of radon permeability through polyethylene membrane using scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A.H.; Abou-Leila, M. [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Abdalla, A.M., E-mail: aymanabdalla62@hotmail.co [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Department of Physics, Faculty of Sciences and Arts, Najran University, Najran, P.O. Box. 11001 (Saudi Arabia); Advanced Materials and Nano-Engineering Laboratory (AMNEL), Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, P.O. Box. 11001 (Saudi Arabia)

    2011-01-15

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211]method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  9. Measurement of radon permeability through polyethylene membrane using scintillation detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abou-Leila, M.; Abdalla, A.M.

    2011-01-01

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211] method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  10. Impact of preferential sampling on exposure prediction and health effect inference in the context of air pollution epidemiology.

    Science.gov (United States)

    Lee, A; Szpiro, A; Kim, S Y; Sheppard, L

    2015-06-01

    Preferential sampling has been defined in the context of geostatistical modeling as the dependence between the sampling locations and the process that describes the spatial structure of the data. It can occur when networks are designed to find high values. For example, in networks based on the U.S. Clean Air Act monitors are sited to determine whether air quality standards are exceeded. We study the impact of the design of monitor networks in the context of air pollution epidemiology studies. The effect of preferential sampling has been illustrated in the literature by highlighting its impact on spatial predictions. In this paper, we use these predictions as input in a second stage analysis, and we assess how they affect health effect inference. Our work is motivated by data from two United States regulatory networks and health data from the Multi-Ethnic Study of Atherosclerosis and Air Pollution. The two networks were designed to monitor air pollution in urban and rural areas respectively, and we found that the health analysis results based on the two networks can lead to different scientific conclusions. We use preferential sampling to gain insight into these differences. We designed a simulation study, and found that the validity and reliability of the health effect estimate can be greatly affected by how we sample the monitor locations. To better understand its effect on second stage inference, we identify two components of preferential sampling that shed light on how preferential sampling alters the properties of the health effect estimate.

  11. Impact of preferential sampling on exposure prediction and health effect inference in the context of air pollution epidemiology

    Science.gov (United States)

    Lee, A.; Szpiro, A.; Kim, S.Y.; Sheppard, L.

    2018-01-01

    Summary Preferential sampling has been defined in the context of geostatistical modeling as the dependence between the sampling locations and the process that describes the spatial structure of the data. It can occur when networks are designed to find high values. For example, in networks based on the U.S. Clean Air Act monitors are sited to determine whether air quality standards are exceeded. We study the impact of the design of monitor networks in the context of air pollution epidemiology studies. The effect of preferential sampling has been illustrated in the literature by highlighting its impact on spatial predictions. In this paper, we use these predictions as input in a second stage analysis, and we assess how they affect health effect inference. Our work is motivated by data from two United States regulatory networks and health data from the Multi-Ethnic Study of Atherosclerosis and Air Pollution. The two networks were designed to monitor air pollution in urban and rural areas respectively, and we found that the health analysis results based on the two networks can lead to different scientific conclusions. We use preferential sampling to gain insight into these differences. We designed a simulation study, and found that the validity and reliability of the health effect estimate can be greatly affected by how we sample the monitor locations. To better understand its effect on second stage inference, we identify two components of preferential sampling that shed light on how preferential sampling alters the properties of the health effect estimate. PMID:29576734

  12. In situ determination of anisotropic permeability of clay

    International Nuclear Information System (INIS)

    Shao, H.; Soennke, J.; Morel, J.; Krug, S.

    2010-01-01

    in clay stone is generally considered to have a depth of approximately 2 metres. Therefore, a 3-m borehole can also be used for both objects. Ail boreholes are drilled by using dry air technique and oriented parallel to the bedding plane, so that the permeability parallel and perpendicular to the bedding plane can be tested only by turning the 'slot'. Hydraulic tests using gas as test medium are carried out immediately after the drilling of the holes. For evaluation of the measured data, the finite element program RockFlow has been used. The packer 'slot' with a width of 1 cm can also be simulated in the numerical model. Most of the measurements show a clear hydraulic anisotropy due to the bedding structure. As summary, following statements can be made: - Hydraulic anisotropy of clay medium can be determined using the developed 'slot packer' system with orientated applications. - The anisotropic ratio of the Opalinus Clay at Mont Terri (permeability parallel to the bedding/permeability perpendicular to the bedding) may be evaluated up to eight times to one order of magnitude. - Fractures in the excavation damaged zone around the underground opening in clay formations can be identified and especially the orientations of the fractures can be determined using the 'slot packer'. - The fracture permeability has a significant importance for the hydraulic characterisation of the near field. A double packer is sufficient to determine the permeability for this purpose. This tool can also be applied in fractured rock (e.g. granite) to determine the fracture orientation. (authors)

  13. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  14. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  15. On the potential importance of transient air flow in advective radon entry into buildings

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y.

    1990-01-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations

  16. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  17. A permeability model for coal and other fractured, sorptive-elastic media

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, E.P.; Christiansen, R.L. [Marathon Oil Co., Houston, TX (United States). Research & Development Facility

    2008-09-15

    This paper describes the derivation of a new equation that can be used to model the permeability behavior of a fractured, sorptive-elastic medium, such as coal, under variable stress conditions. The equation is applicable to confinement pressure schemes commonly used during the collection of permeability data in the laboratory. The model is derived for cubic geometry under biaxial or hydrostatic confining pressures. The model is designed to handle changes in permeability caused by adsorption and desorption of gases onto and from the matrix blocks in fractured media. The model equations can be used to calculate permeability changes caused by the production of methane (CH{sub 4}) from coal as well as the injection of gases, such as carbon dioxide, for sequestration in coal. Sensitivity analysis of the model found that each of the input variables can have a significant impact on the outcome of the permeability forecast as a function of changing pore pressure, thus, accurate input data are essential. The permeability model also can be used as a tool to determine input parameters for field simulations by curve fitting laboratory-generated permeability data. The new model is compared to two other widely used coal-permeability models using a hypothetical coal with average properties.

  18. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    Science.gov (United States)

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  19. Update to permeable pavement research at the Edison Environmental Center - slides

    Science.gov (United States)

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  20. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on