WorldWideScience

Sample records for predict bone erosions

  1. MRI of the wrist and finger joints in inflammatory joint diseases at 1-year interval: MRI features to predict bone erosions

    International Nuclear Information System (INIS)

    Savnik, Anette; Malmskov, Hanne; Graff, Lykke B.; Danneskiold-Samsoee, Bente; Bliddal, Henning; Thomsen, Henrik S.; Nielsen, Henrik; Boesen, Jens

    2002-01-01

    The aim of this study was to assess the ability of MRI determined synovial volumes and bone marrow oedema to predict progressions in bone erosions after 1 year in patients with different types of inflammatory joint diseases. Eighty-four patients underwent MRI, laboratory and clinical examination at baseline and 1 year later. Magnetic resonance imaging of the wrist and finger joints was performed in 22 patients with rheumatoid arthritis less than 3 years (group 1) who fulfilled the American College of Rheumatology (ACR) criteria for rheumatoid arthritis, 18 patients with reactive arthritis or psoriatic arthritis (group 2), 22 patients with more than 3 years duration of rheumatoid arthritis, who fulfilled the ACR criteria for rheumatoid arthritis (group 3), and 20 patients with arthralgia (group 4). The volume of the synovial membrane was outlined manually before and after gadodiamide injection on the T1-weighted sequences in the finger joints. Bones with marrow oedema were summed up in the wrist and fingers on short-tau inversion recovery sequences. These MRI features was compared with the number of bone erosions 1 year later. The MR images were scored independently under masked conditions. The synovial volumes in the finger joints assessed on pre-contrast images was highly predictive of bone erosions 1 year later in patients with rheumatoid arthritis (groups 1 and 3). The strongest individual predictor of bone erosions at 1-year follow-up was bone marrow oedema, if present at the wrist at baseline. Bone erosions on baseline MRI were in few cases reversible at follow-up MRI. The total synovial volume in the finger joints, and the presence of bone oedema in the wrist bones, seems to be predictive for the number of bone erosions 1 year later and may be used in screening. The importance of very early bone changes on MRI and the importance of the reversibility of these findings remain to be clarified. (orig.)

  2. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  3. Patterns of magnetic resonance imaging bone erosion in rheumatoid arthritis--which bones are most frequently involved and show the most change?

    DEFF Research Database (Denmark)

    Ostergaard, Mikkel; Møller Døhn, Uffe; Duer-Jensen, Anne

    2011-01-01

    To investigate by magnetic resonance imaging (MRI) which bones in wrists and metacarpophalangeal (MCP) joints most frequently show bone erosions, and which most frequently demonstrate erosive progression, in early and established rheumatoid arthritis (RA).......To investigate by magnetic resonance imaging (MRI) which bones in wrists and metacarpophalangeal (MCP) joints most frequently show bone erosions, and which most frequently demonstrate erosive progression, in early and established rheumatoid arthritis (RA)....

  4. Use of Tomosynthesis for Detection of Bone Erosions of the Foot in Patients With Established Rheumatoid Arthritis: Comparison With Radiography and CT.

    Science.gov (United States)

    Simoni, Paolo; Gérard, Laurent; Kaiser, Marie-Joëlle; Ribbens, Clio; Rinkin, Charline; Malaise, Olivier; Malaise, Michel

    2015-08-01

    The purpose of this study was to compare tomosynthesis with radiography for the detection of bone erosions of the foot in patients with established rheumatoid arthritis (RA) using MDCT as a reference standard. Eighteen consecutive patients with established RA were included. Each patient underwent radiography, tomosynthesis, and CT examinations of the feet on the same day. Two radiologists independently determined the number of bone erosions and the Sharp-van der Heijde score with each of the three imaging modalities. On a total of 216 joints from 18 patients, 216 bone erosions were detected on CT, 215 on tomosynthesis, and 181 with radiography. The mean (± SD) Sharp-van der Heijde score was equivalent for tomosynthesis (18.8 ± 16.8) and CT (19.8 ± 18.5) but was statistically lower for radiography (16.4 ± 18.0) (p = 0.030). The respective overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for tomosynthesis were 80%, 75%, 78%, 76%, and 80%, whereas the respective corresponding values for radiography were 66%, 81%, 74%, 77%, and 71%. The radiation burden of tomosynthesis was almost equivalent to that of radiography. Tomosynthesis has a higher sensitivity than radiography to detect bone erosions of the foot in patients with established RA and imparts an almost equivalent radiation burden.

  5. Deep erosions of the palmar aspect of the navicular bone diagnosed by standing magnetic resonance imaging.

    Science.gov (United States)

    Sherlock, C; Mair, T; Blunden, T

    2008-11-01

    Erosion of the palmar (flexor) aspect of the navicular bone is difficult to diagnose with conventional imaging techniques. To review the clinical, magnetic resonance (MR) and pathological features of deep erosions of the palmar aspect of the navicular bone. Cases of deep erosions of the palmar aspect of the navicular bone, diagnosed by standing low field MR imaging, were selected. Clinical details, results of diagnostic procedures, MR features and pathological findings were reviewed. Deep erosions of the palmar aspect of the navicular bone were diagnosed in 16 mature horses, 6 of which were bilaterally lame. Sudden onset of lameness was recorded in 63%. Radiography prior to MR imaging showed equivocal changes in 7 horses. The MR features consisted of focal areas of intermediate or high signal intensity on T1-, T2*- and T2-weighted images and STIR images affecting the dorsal aspect of the deep digital flexor tendon, the fibrocartilage of the palmar aspect, subchondral compact bone and medulla of the navicular bone. On follow-up, 7/16 horses (44%) had been subjected to euthanasia and only one was being worked at its previous level. Erosions of the palmar aspect of the navicular bone were confirmed post mortem in 2 horses. Histologically, the lesions were characterised by localised degeneration of fibrocartilage with underlying focal osteonecrosis and fibroplasia. The adjacent deep digital flexor tendon showed fibril formation and fibrocartilaginous metaplasia. Deep erosions of the palmar aspect of the navicular bone are more easily diagnosed by standing low field MR imaging than by conventional radiography. The lesions involve degeneration of the palmar fibrocartilage with underlying osteonecrosis and fibroplasia affecting the subchondral compact bone and medulla, and carry a poor prognosis for return to performance. Diagnosis of shallow erosive lesions of the palmar fibrocartilage may allow therapeutic intervention earlier in the disease process, thereby preventing

  6. Summary Findings of a Systematic Literature Review of the Ultrasound Assessment of Bone Erosions in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Szkudlarek, Marcin; Terslev, Lene; Wakefield, Richard J

    2016-01-01

    OBJECTIVE: Bone erosions in rheumatoid arthritis (RA) have been studied in an increasing amount of research. Both earlier and present classification criteria of RA contain erosions as a significant classification component. Ultrasound (US) can detect bone changes in accessible surfaces. Therefore...... (5 papers). Reliability of assessment was presented in 20 papers and sensitivity to change in 11 papers. CONCLUSION: This paper presents results of a systematic literature review of bone erosion assessment in RA with US. The survey suggests that US can be a helpful adjunct to the existing methods...... of imaging bone erosions in RA. It analyzes definitions, scoring systems, used comparators, and elements of the OMERACT filter. It also presents recommendations for a future research agenda based on the results of the review....

  7. The development of U. S. soil erosion prediction and modeling

    Directory of Open Access Journals (Sweden)

    John M. Laflen

    2013-09-01

    Full Text Available Soil erosion prediction technology began over 70 years ago when Austin Zingg published a relationship between soil erosion (by water and land slope and length, followed shortly by a relationship by Dwight Smith that expanded this equation to include conservation practices. But, it was nearly 20 years before this work's expansion resulted in the Universal Soil Loss Equation (USLE, perhaps the foremost achievement in soil erosion prediction in the last century. The USLE has increased in application and complexity, and its usefulness and limitations have led to the development of additional technologies and new science in soil erosion research and prediction. Main among these new technologies is the Water Erosion Prediction Project (WEPP model, which has helped to overcome many of the shortcomings of the USLE, and increased the scale over which erosion by water can be predicted. Areas of application of erosion prediction include almost all land types: urban, rural, cropland, forests, rangeland, and construction sites. Specialty applications of WEPP include prediction of radioactive material movement with soils at a superfund cleanup site, and near real-time daily estimation of soil erosion for the entire state of Iowa.

  8. Bone erosion and subacromial bursitis caused by diphtheria-tetanus-poliomyelitis vaccine.

    Science.gov (United States)

    Salmon, J H; Geoffroy, M; Eschard, J P; Ohl, X

    2015-11-17

    Revaxis(®) is a vaccine against diphtheria, tetanus and poliomyelitis (dT-IPV). This vaccine should not be administered by the intradermal or intravenous route. Poor injection techniques and related consequences are rare. We report a case of bursitis associated with reactive glenohumeral effusion complicated by bone erosion occurring after injection of the dT-IPV vaccine. A 26 year old patient was admitted for painful left shoulder causing functional impairment. Control magnetic resonance imaging showed bone oedema on the upper outer part of the humeral head, with a slight cortical irregularity, indicating that the vaccine was injected in contact with the bone at this location, causing erosion. Outcome was favourable after intra-articular corticosteroids. Reports of articular or periarticular injury after vaccination are extremely rare, in view of the substantial number of vaccines administered every year. The potential complications of vaccination are well known to general practitioners but under-reported in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Association of bone edema with the progression of bone erosions quantified by hand magnetic resonance imaging in patients with rheumatoid arthritis in remission.

    Science.gov (United States)

    Lisbona, Maria Pilar; Pàmies, Anna; Ares, Jesús; Almirall, Miriam; Navallas, Maria; Solano, Albert; Maymó, Joan

    2014-08-01

    To evaluate the association of synovitis, bone marrow edema (BME), and tenosynovitis in the progression of erosions quantified by hand magnetic resonance imaging (MRI) at 1 year in patients with early rheumatoid arthritis (RA) in remission. A total of 56 of 196 patients with early RA in remission at 1 year and with available MRI data at baseline and at 12 months were included. MRI images were assessed according to the Rheumatoid Arthritis Magnetic Resonance Imaging Scoring (RAMRIS) system. Persistent remission was defined as 28-joint Disease Activity Score-erythrocyte sedimentation rate ≤ 2.6 and/or Simplified Disease Activity Index ≤ 3.3 and/or the new boolean American College of Rheumatology/European League Against Rheumatism remission criteria for a continuous period of at least 6 months. Progression of bone erosions was defined as an increase of 1 or more units in annual RAMRIS score for erosions compared to baseline. At 1 year, the majority of patients with RA in sustained remission showed some inflammatory activity on MRI (94.6% synovitis, 46.4% BME, and 58.9% tenosynovitis) and 19 of the 56 patients (33.9%) showed MRI progression of bone erosions. A significant difference was observed in MRI BME at 1 year, with higher mean score in patients with progression compared to nonprogression of erosions (4.8 ± 5.6 and 1.4 ± 2.6, p = 0.03). Subclinical inflammation was identified by MRI in 96.4% of patients with RA in sustained clinical remission. Significantly higher scores of BME after sustained remission were observed in patients with progression of erosions compared to patients with no progression. The persistence of higher scores of BME may explain the progression of bone erosions in patients with persistent clinical remission.

  10. The Current State of Predicting Furrow Irrigation Erosion

    Science.gov (United States)

    There continues to be a need to predict furrow irrigation erosion to estimate on- and off-site impacts of irrigation management. The objective of this paper is to review the current state of furrow erosion prediction technology considering four models: SISL, WEPP, WinSRFR and APEX. SISL is an empiri...

  11. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    Science.gov (United States)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  12. Angled BIO-RSA (bony-increased offset-reverse shoulder arthroplasty): a solution for the management of glenoid bone loss and erosion.

    Science.gov (United States)

    Boileau, Pascal; Morin-Salvo, Nicolas; Gauci, Marc-Olivier; Seeto, Brian L; Chalmers, Peter N; Holzer, Nicolas; Walch, Gilles

    2017-12-01

    Glenoid deficiency and erosion (excessive retroversion/inclination) must be corrected in reverse shoulder arthroplasty (RSA) to avoid prosthetic notching or instability and to maximize function, range of motion, and prosthesis longevity. This study reports the results of RSA with an angled, autologous glenoid graft harvested from the humerus (angled BIO-RSA). A trapezoidal bone graft, harvested from the humeral head and fixed with a long-post baseplate and screws, was used to compensate for residual glenoid bone loss/erosion. For simple to moderate (25°) and complex (multiplanar) glenoid bone defects, patient-specific grafts and guides were used after 3-dimensional planning. Patients were reviewed with minimum 2 years of follow-up. Mean follow-up was 36 months (range, 24-81 months). Preoperative and postoperative measurements of inclination and version were performed in the plane of the scapula on computed tomography images. The study included 54 patients (41 women, 13 men; mean 73 years old). Fifteen patients had combined vertical and horizontal glenoid bone deficiency. Among E2/E3 glenoids, inclination improved from 37° (range, 14° to 84°) to 10.2° (range -28° to 36°, P RSA predictably corrects glenoid deficiency, including severe (>25°) multiplanar deformity. Graft incorporation is predictable. Advantages of using an autograftharvested in situ include bone stock augmentation, lateralization, low donor-site morbidity, low relative cost, and flexibility needed to simultaneously correct posterior and superior glenoid defects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    Science.gov (United States)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  14. A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System

    Science.gov (United States)

    Tatarko, John; Sporcic, Michael A.; Skidmore, Edward L.

    2013-09-01

    The Great Plains experienced an influx of settlers in the late 1850s-1900. Periodic drought was hard on both settlers and the soil and caused severe wind erosion. The period known as the Dirty Thirties, 1931-1939, produced many severe windstorms, and the resulting dusty sky over Washington, DC helped Hugh Hammond Bennett gain political support for the Soil Conservation Act of 1937 that started the USDA Soil Conservation Service (SCS). Austin W. Zingg and William S. Chepil began wind erosion studies at a USDA laboratory at Kansas State University in 1947. Neil P. Woodruff and Francis H. Siddoway published the first widely used model for wind erosion in 1965, called the Wind Erosion Equation (WEQ). The WEQ was solved using a series of charts and lookup tables. Subsequent improvements to WEQ included monthly magnitudes of the total wind, a computer version of WEQ programmed in FORTRAN, small-grain equivalents for range grasses, tillage systems, effects of residue management, crop row direction, cloddiness, monthly climate factors, and the weather. The SCS and the Natural Resources Conservation Service (NRCS) produced several computer versions of WEQ with the goal of standardizing and simplifying it for field personnel including a standalone version of WEQ was developed in the late 1990s using Microsoft Excel. Although WEQ was a great advancement to the science of prediction and control of wind erosion on cropland, it had many limitations that prevented its use on many lands throughout the United States and the world. In response to these limitations, the USDA developed a process-based model know as the Wind Erosion Prediction System (WEPS). The USDA Agricultural Research Service has taken the lead in developing science and technology for wind erosion prediction.

  15. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  16. EVALUATION OF IL1-α AND TNF-α SERUM LEVELS IN RHEUMATOID ARTHRITIS PATIONTS WITH ACTIVE AND INACTIVE, WITH OR WITHOUT BONE EROSION

    Directory of Open Access Journals (Sweden)

    AR. Rostamian

    2007-09-01

    Full Text Available Rheumatoid arthritis is the most common inflammatory joint disease with 1 percent prevalence in community which presents with symmetrical polyarthritis of hands with inflammatory behavior. Several studies in recent years were conducted for evaluation of inflammatory cytokines such as IL1-α (Interlukin 1α and TNF- α (Tumor necrosis factor in rheumatologic disorders including rheumatoid arthritis to find new treatment methods base to pathogenesis. In this study different serum levels of IL1-α and TNF- α in 160 rheumatoid arthritis patients with active and inactive disease and also disease with or without bone erosion are assessed. 4% of our patients had rheumatoid nodule and 70% of all patients had positive RF, IL1-α, and TNF- α levels. Active with bone erosion patients had IL1-α and TNF- α serum levels higher than active without bone erosion patients; it was not significant in T-test but it was significant in Mann-Whitney Test. The results was the same as expected; IL1-α, and TNF- α serum levels were higher in active with bone erosion in comparison with inactive without bone erosion patients.

  17. The performance of MRI in detecting subarticular bone erosion of sacroiliac joint in patients with spondyloarthropathy: A comparison with X-ray and CT

    International Nuclear Information System (INIS)

    Hu, Libin; Huang, Zhenguo; Zhang, Xuezhe; Chan, Queenie; Xu, Yanyan; Wang, Guochun; Wang, Wu

    2014-01-01

    Highlights: • MRI 3D-WS-bSSFP sequence has high spatial resolution and short scanning time. • This is the first time this sequence was applied to detect bone erosion of SI joint. • Its performance was compared with other commonly used diagnostic methods. • Result shows that this sequence is better than X-ray and T1W in the detection of bone erosion. • This sequence can be considered an alternative to CT in showing erosion in SpA patients. - Abstract: Objective: To assess the sensitivity and specificity of detecting subarticular bone erosion of sacroiliac (SI) joint in patients with spondyloarthritis (SpA) using MRI three-dimensional water selective balanced steady-state free precession sequence (3D-WS-bSSFP) and T1-weighted (T1W) sequence. Materials and methods: Radiography, CT and MRI of SI joint from 43 SpA patients were retrospectively analyzed. MRI examination sequences include T1W, short tau inversion recovery (STIR) and 3D-WS-bSSFP. Two radiologists, blinded to clinical data, independently determined bone erosion at bilateral sacral and iliac sides of the SI joint on radiography, CT, T1W and 3D-WS-bSSFP respectively. X 2 test was used to compare the sensitivity of detecting bone erosion among different diagnostic methods. Results: Of the 86 sacral and 86 iliac articular surfaces from the 43 cases, radiography, CT, MRI T1W and 3D-WS-bSSFP showed the presence of bone erosion in 40, 74, 50 and 71 articular surfaces respectively. CT and MRI 3D-WS-bSSFP demonstrated similar sensitivity (x 2 = 0.11, P = 0.74), and both were superior to radiography (x 2 = 15.17, P < 0.01 and x 2 = 12.78, P < 0.01, respectively) and T1W (x 2 = 7.26, P < 0.01 and x 2 = 5.62, P < 0.05). Using CT diagnosis as the gold standard, the sensitivity and specificity of detecting bone erosion for MRI 3D-WS-bSSFP and T1W sequences were 91.8%, 96.9%, and 60.8%, 94.9% respectively. Conclusion: MRI 3D-WS-bSSFP sequence is associated with short scanning time, zero ionizing radiation, high

  18. The performance of MRI in detecting subarticular bone erosion of sacroiliac joint in patients with spondyloarthropathy: A comparison with X-ray and CT

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Libin [Department of Radiology, China-Japan Friendship Hospital, Beijing (China); Huang, Zhenguo, E-mail: zhuang680911@163.com [Department of Radiology, China-Japan Friendship Hospital, Beijing (China); Zhang, Xuezhe [Department of Radiology, China-Japan Friendship Hospital, Beijing (China); Chan, Queenie [Philips Healthcare, Hong Kong (China); Xu, Yanyan [Department of Radiology, China-Japan Friendship Hospital, Beijing (China); Wang, Guochun [Department of Rheumatology, China-Japan Friendship Hospital, Beijing (China); Wang, Wu [Department of Radiology, China-Japan Friendship Hospital, Beijing (China)

    2014-11-15

    Highlights: • MRI 3D-WS-bSSFP sequence has high spatial resolution and short scanning time. • This is the first time this sequence was applied to detect bone erosion of SI joint. • Its performance was compared with other commonly used diagnostic methods. • Result shows that this sequence is better than X-ray and T1W in the detection of bone erosion. • This sequence can be considered an alternative to CT in showing erosion in SpA patients. - Abstract: Objective: To assess the sensitivity and specificity of detecting subarticular bone erosion of sacroiliac (SI) joint in patients with spondyloarthritis (SpA) using MRI three-dimensional water selective balanced steady-state free precession sequence (3D-WS-bSSFP) and T1-weighted (T1W) sequence. Materials and methods: Radiography, CT and MRI of SI joint from 43 SpA patients were retrospectively analyzed. MRI examination sequences include T1W, short tau inversion recovery (STIR) and 3D-WS-bSSFP. Two radiologists, blinded to clinical data, independently determined bone erosion at bilateral sacral and iliac sides of the SI joint on radiography, CT, T1W and 3D-WS-bSSFP respectively. X{sup 2} test was used to compare the sensitivity of detecting bone erosion among different diagnostic methods. Results: Of the 86 sacral and 86 iliac articular surfaces from the 43 cases, radiography, CT, MRI T1W and 3D-WS-bSSFP showed the presence of bone erosion in 40, 74, 50 and 71 articular surfaces respectively. CT and MRI 3D-WS-bSSFP demonstrated similar sensitivity (x{sup 2} = 0.11, P = 0.74), and both were superior to radiography (x{sup 2} = 15.17, P < 0.01 and x{sup 2} = 12.78, P < 0.01, respectively) and T1W (x{sup 2} = 7.26, P < 0.01 and x{sup 2} = 5.62, P < 0.05). Using CT diagnosis as the gold standard, the sensitivity and specificity of detecting bone erosion for MRI 3D-WS-bSSFP and T1W sequences were 91.8%, 96.9%, and 60.8%, 94.9% respectively. Conclusion: MRI 3D-WS-bSSFP sequence is associated with short scanning time

  19. Detection of bone erosions in rheumatoid arthritis wrist joints with magnetic resonance imaging, computed tomography and radiography

    DEFF Research Database (Denmark)

    Døhn, Uffe Møller; Ejbjerg, Bo J; Hasselquist, Maria

    2008-01-01

    , specificity and accuracy (concordance) of MRI for detecting erosions were 61%, 93% and 77%, respectively, while the respective values were 24%, 99% and 63% for radiography. The intramodality agreements when measuring erosion volumes were high for both CT and MRI (Spearman correlation coefficients 0.92 and 0...... sensitivity and good specificity and accuracy for detection of erosions in rheumatoid arthritis and healthy wrist bones, while radiography showed very low sensitivity. The tested volumetric method was highly reproducible and correlated to scores of erosions....... measuring volumes of erosions on CT and MRI is reproducible and correlated to semiquantitative assessments (scores) of erosions on CT, MRI and radiography. METHODS: Seventeen patients with rheumatoid arthritis and four healthy control individuals underwent CT, MRI and radiography of one wrist, performed...

  20. Theoretical model for cavitation erosion prediction in centrifugal pump impeller

    International Nuclear Information System (INIS)

    Rayan, M.A.; Mahgob, M.M.; Mostafa, N.H.

    1990-01-01

    Cavitation is known to have great effects on pump hydraulic and mechanical characteristics. These effects are mainly described by deviation in pump performance, increasing vibration and noise level as well as erosion of blade and casing materials. In the present work, only the hydrodynamic aspect of cavitation was considered. The efforts were directed toward the study of cavitation inception, cavity mechanics and material erosion in order to clarify the macrohydrodynamic aspects of cavitation erosive wear in real machines. As a result of this study, it was found that cavitation damage can be predicted from model data. The obtained theoretical results show good agreement with the experimental results obtained in this investigation and with results of some other investigations. The application of the findings of this work will help the design engineer in predicting the erosion rate, according to the different operating conditions. (author)

  1. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  2. Predicting coastal cliff erosion using a Bayesian probabilistic model

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  3. Early Subchondral Bone Loss at Arthritis Onset Predicted Late Arthritis Severity in a Rat Arthritis Model.

    Science.gov (United States)

    Courbon, Guillaume; Cleret, Damien; Linossier, Marie-Thérèse; Vico, Laurence; Marotte, Hubert

    2017-06-01

    Synovitis is usually observed before loss of articular function in rheumatoid arthritis (RA). In addition to the synovium and according to the "Inside-Outside" theory, bone compartment is also involved in RA pathogenesis. Then, we investigated time dependent articular bone loss and prediction of early bone loss to late arthritis severity on the rat adjuvant-induced arthritis (AIA) model. Lewis female rats were longitudinally monitored from arthritis induction (day 0), with early (day 10) and late (day 17) steps. Trabecular and cortical microarchitecture parameters of four ankle bones were assessed by microcomputed tomography. Gene expression was determined at sacrifice. Arthritis occurred at day 10 in AIA rats. At this time, bone erosions were detected on four ankle bones, with cortical porosity increase (+67%) and trabecular alterations including bone volume fraction (BV/TV: -13%), and trabecular thickness decrease. Navicular bone assessment was the most reproducible and sensitive. Furthermore, strong correlations were observed between bone alterations at day 10 and arthritis severity or bone loss at day 17, including predictability of day 10 BV/TV to day 17 articular index (R 2  = 0.76). Finally, gene expression at day 17 confirmed massive osteoclast activation and interestingly provided insights on strong activation of bone formation inhibitor markers at the joint level. In rat AIA, bone loss was already observed at synovitis onset and was predicted late arthritis severity. Our results reinforced the key role of subchondral bone in arthritis pathogenesis, in favour to the "Inside-Outside" theory. Mechanisms of bone loss in rat AIA involved resorption activation and formation inhibition changes. J. Cell. Physiol. 232: 1318-1325, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  5. Erosion Prediction Analysis and Landuse Planning in Gunggung Watershed, Bali, Indonesia

    Science.gov (United States)

    Trigunasih, N. M.; Kusmawati, T.; Yuli Lestari, N. W.

    2018-02-01

    The purpose of this research is to predict the erosion that occurs in Gunggung watershed and sustainable landuse management plan. This research used the USLE (Universal Soil Loss Equation) methodology. The method used observation / field survey and soil analysis at the Soil Laboratory of Faculty of Agriculture, Udayana University. This research is divided into 5 stages, (1) land unit determination, (2) Field observation and soil sampling, (3) Laboratory analysis and data collection, (4) Prediction of erosion using USLE (Universal Soil Loss Equation) method, (5) The permissible erosion determination (EDP) then (6) determines the level of erosion hazard based on the depth of the soil, as well as the soil conservation plan if the erosion is greater than the allowed erosion, and (7) determining landuse management plan for sustainable agriculture. Erosion which value is smaller than soil loss tolerance can be exploited in a sustainable manner, while erosion exceeds allowable erosion will be conservation measures. Conservation action is the improvement of vegetation and land management. Land management like improvements the terrace, addition of organic matter, increase plant density, planting ground cover and planting layered header system will increase the land capability classes. Land use recommended after management is mixed plantation high density with forest plants, mix plantation high density with patio bench construction, seasonal cultivation and perennial crops, cultivation of perennial crops and cultivation of seasonal crops.

  6. Predicting the temporal relationship between soil cesium-137 and erosion rate

    International Nuclear Information System (INIS)

    Kachanoski, R.G.; De Jong, E.

    1984-01-01

    A model was developed that predicts the amount of 137 Cs remaining in soil as a function of time and erosion rate. The model accounts for atmospheric deposition, radioactive decay, tillage dilution, and erosion transport of 137 Cs, as well as seasonal differences in 137 Cs deposition and erosion rates. The model was used to estimate minimum resolution of erosion estimates based on detection limits and accuracy of 137 Cs measurement by gamma spectroscopy, as a function of time and erosion rate. The analysis showed that under Saskatchewan conditions, changes in 137 Cs at a given site can be used to estimate erosion rates between 0.5 and 10 kg m -2 yr -1 with reasonable precision, provided the sampling interval is at least 15 yr. The relationship of fraction of 137 Cs lost vs. erosion as predicted by the model was compared with other methods being used. The model was used to estimate erosion from selected Saskatchewan soils where 137 Cs levels were measured in 1966 and again in 1981. Erosion rates calculated with the model varied from 1 kg m -2 yr -1 for a sandy loam soil in continuous forage to 19 kg m -2 yr -1 for a similar soil in a crop-fallow rotation. Erosion estimates using the model were higher than those calculated by assuming that soil loss was directly proportional to 137 Cs loss, especially when 137 Cs loss was high

  7. Cartilage damage and bone erosion are more prominent determinants of functional impairment in longstanding experimental arthritis than synovial inflammation

    Directory of Open Access Journals (Sweden)

    Silvia Hayer

    2016-11-01

    Full Text Available Chronic inflammation of articular joints causing bone and cartilage destruction consequently leads to functional impairment or loss of mobility in affected joints from individuals affected by rheumatoid arthritis (RA. Even successful treatment with complete resolution of synovial inflammatory processes does not lead to full reversal of joint functionality, pointing to the crucial contribution of irreversibly damaged structural components, such as bone and cartilage, to restricted joint mobility. In this context, we investigated the impact of the distinct components, including synovial inflammation, bone erosion or cartilage damage, as well as the effect of blocking tumor necrosis factor (TNF on functional impairment in human-TNF transgenic (hTNFtg mice, a chronic inflammatory erosive animal model of RA. We determined CatWalk-assisted gait profiles as objective quantitative measurements of functional impairment. We first determined body-weight-independent gait parameters, including maximum intensity, print length, print width and print area in wild-type mice. We observed early changes in those gait parameters in hTNFtg mice at week 5 – the first clinical signs of arthritis. Moreover, we found further gait changes during chronic disease development, indicating progressive functional impairment in hTNFtg mice. By investigating the association of gait parameters with inflammation-mediated joint pathologies at different time points of the disease course, we found a relationship between gait parameters and the extent of cartilage damage and bone erosions, but not with the extent of synovitis in this chronic model. Next, we observed a significant improvement of functional impairment upon blocking TNF, even at progressed stages of disease. However, blocking TNF did not restore full functionality owing to remaining subclinical inflammation and structural microdamage. In conclusion, CatWalk gait analysis provides a useful tool for quantitative

  8. Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout.

    Science.gov (United States)

    Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2011-09-01

    Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.

  9. Assessing and Predicting Erosion from Off Highway Vehicle Trails in Front-Range Rocky Mountain Watersheds.

    Science.gov (United States)

    Howard, M. J.; Silins, U.; Anderson, A.

    2016-12-01

    Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.

  10. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    Science.gov (United States)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment

  11. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads

    International Nuclear Information System (INIS)

    Hattori, S; Hirose, T; Sugiyama, K

    2009-01-01

    The prediction of cavitation erosion rates is important in order to evaluate the exact life of components. The measurement of impact loads in bubble collapses helps to predict the life under cavitation erosion. In this study, we carried out erosion tests and the measurements of impact loads in bubble collapses with a vibratory apparatus. We evaluated the incubation period based on a cumulative damage rule by measuring the impact loads of cavitation acting on the specimen surface and by using the 'constant impact load - number of impact loads curve' similar to the modified Miner's rule which is employed for fatigue life prediction. We found that the parameter Σ(F i α xn i ) (F i : impact load, n i : number of impacts and α: constant) is suitable for the evaluation of the erosion life. Moreover, we propose a new method that can predict the incubation period under various cavitation conditions.

  12. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    Science.gov (United States)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting

  13. Utility of combined high-resolution bone SPECT and MRI for the identification of rheumatoid arthritis patients with high-risk for erosive progression

    Energy Technology Data Exchange (ETDEWEB)

    Buchbender, Christian, E-mail: christian.buchbender@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Sewerin, Philipp, E-mail: philipp.sewerin@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Rheumatology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Mattes-György, Katalin, E-mail: katalin.mattes@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Nuclear Medicine, Moorenstr. 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Wittsack, Hans-Joerg, E-mail: hans-joerg.wittsack@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Specker, Christof, E-mail: c.specker@kliniken-essen-sued.de [Department of Rheumatology and Clinical Immunology, Kliniken Essen-Sud, Propsteistrasse 2, D-45239 Essen (Germany); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Müller, Hans-Wilhelm, E-mail: HansW.Mueller@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Nuclear Medicine, Moorenstr. 5, D-40225 Dusseldorf (Germany); Schneider, Matthias, E-mail: matthias.schneider@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Rheumatology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Scherer, Axel, E-mail: scherer@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Ostendorf, Benedikt, E-mail: ostendorf@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Rheumatology, Moorenstr. 5, D-40225 Dusseldorf (Germany)

    2013-02-15

    Objectives: To evaluate the utility of sequentially acquired, post hoc fused, magnetic resonance imaging (MRI) and multi-pinhole single photon emission computed tomography (MPH-SPECT) with technetium-99m-labeled disphosphonates (Tc99m-DPD) for the identification of finger joints with later erosive progression in early rheumatoid arthritis (ERA) patients. Methods: Ten consecutive ERA patients prospectively underwent MPH-SPECT and MRI of metacarpophalangeal (MCP) joints prior to and after 6 months methotrexate therapy. Tc99m-DPD uptake was measured at proximal and distal MCP sites using regional analysis. The course of joint pathologies was scored according to the Rheumatoid Arthritis MRI Score (RAMRIS) criteria. Results: The frequency of increased Tc99m-DPD uptake, synovitis and bone marrow edemadecreased under MTX therapy; but the number of bone erosions increased. Joints with progressive and new erosions on follow-up had a higher baseline Tc99m-DPD uptake (2.64 ± 1.23 vs. 1.43 ± 0.91) (p = 0.02). Conclusions: Joints with erosive progression are characterized by an early increased Tc99m-DPD uptake, even in absence of MRI bone pathologies. Tc99m-DPD MPH-SPECT might thus be of additional value to morphological MRI for the identification of RA patients with a high risk for erosive progression.

  14. A history of wind erosion prediction models in the United States Department of Agriculture: The Wind Erosion Prediction System (WEPS)

    Science.gov (United States)

    Development of the Wind Erosion Prediction System (WEPS) was officially inaugurated in 1985 by United States Department of Agriculture-Agricultural Research Service (USDA-ARS) scientists in response to customer requests, particularly those coming from the USDA Soil Conservation Service (SCS), for im...

  15. Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale

    Science.gov (United States)

    MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah

    2000-01-01

    Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.

  16. Comparison of WEPP and APEX runoff and erosion prediction at field scale in Goodwater Creek Experimental Watershed

    Science.gov (United States)

    The Water Erosion Prediction Project (WEPP) and the Agricultural Policy/Environmental eXtender (APEX) are process-based models that can predict spatial and temporal distributions of erosion for hillslopes and watersheds. This study applies the WEPP model to predict runoff and erosion for a 35-ha fie...

  17. Detection of rheumatoid arthritis bone erosions by two different dedicated extremity MRI units and conventional radiography

    DEFF Research Database (Denmark)

    Duer-Jensen, A.; Vestergaard, A.; Dohn, U.M.

    2008-01-01

    Objectives: To compare the ability of two different dedicated extremity MRI (E-MRI) units and conventional radiography (CR) for identifying bone erosions in rheumatoid arthritis (RA) metacarpophalangeal (MCP) and wrist joints. Methods: CR and two MRI examinations (using 0.2 T Esaote Artoscan and 0...

  18. Detection of rheumatoid arthritis bone erosions by 2 different dedicated extremity MRI units and conventional radiography

    DEFF Research Database (Denmark)

    Duer, Anne; Vestergaard, Aage; Døhn, Uffe Møller

    2008-01-01

    OBJECTIVES: To compare the ability of 2 different dedicated extremity magnetic resonance imaging (E-MRI) units and conventional radiography (CR) for identifying bone erosions in rheumatoid arthritis (RA) metacarpophalangeal (MCP) and wrist joints. METHODS: CR and 2 MRI-examinations (on 0.2T Esaote...

  19. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications

    Science.gov (United States)

    Shuhui Dun; Joan Q. Wu; William J. Elliot; Peter R. Robichaud; Dennis C. Flanagan; James R. Frankenberger; Robert E. Brown; Arthur C. Xu

    2009-01-01

    There has been an increasing public concern over forest stream pollution by excessive sedimentation due to natural or human disturbances. Adequate erosion simulation tools are needed for sound management of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in forest applications where Hortonian flow is the major form of...

  20. Cavitation erosion prediction on Francis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, P.; Farhat, M.; Simoneau, R.; Lavigne, P. [Hydro-Quebec, Montreal, PQ (Canada); Pereira, F.; Dupont, P.; Avellan, F.; Caron, J.F. [IMHEF/EPFL, (France); Dorey, J.M.; Archer, A. [Electricite de France (EDF), 92 - Clamart (France). Dir. des Etudes et Recherches; and others

    1997-12-31

    On-board aggressiveness measurement methods were tested on a severely eroded prototype blade of a 266 MW Francis turbine: pressure, pit counting, DECER electrochemical and vibration measurements. The test program provided understanding of the heterogeneous erosion distribution of the prototype blades and quantitative data for comparison in subsequent tests on the model of the machine. Model tests and flow analysis were also performed, to detect cavitation on a Francis turbine model. The results are compared to those obtained on the prototype measurements. The model used for that study is built on the basis of a geometrical recovery of one of the most eroded blade of the prototype. Different methods were investigated to predict cavitation erosion on Francis turbines from model. They are based on measurement of pitting, pressure fluctuations and acceleration. The methods proposed are suitable to measure cavitation aggressiveness on model and on prototype, and that the level on the model is several orders of magnitude smaller than on the prototype. (author) 18 refs.

  1. Prediction of long-term erosion from landfill covers in the southwest

    International Nuclear Information System (INIS)

    Anderson, C.E.; Stormont, J.C.

    1997-01-01

    Erosion is a primary stressor of landfill covers, especially for climates with high intensity storms and low native plant density. Rills and gullies formed by discrete events can damage barrier layers and induce failure. Geomorphologic, empirical and physical modeling procedures are available to provide estimates of surface erosion, but numerical modeling requires accurate representation of the severe rainfall events that generate erosion. The National Weather Service precipitation frequency data and estimates of 5, 10, 15, 30 and 60-minute intensity can be statistically combined in a numerical model to obtain long-term erosion estimates. Physically based numerical models using the KINEROS and AHYMO programs have been utilized to predict the erosion from a southwestern landfill or waste containment site with 0.03, 0.05 and 0.08 meter per meter surface slopes. Results of AHYMO modeling were within 15 percent of average annual values computed with the empirical Universal Soil Loss Equation. However, the estimation of rill and gully formation that primarily degrades cover systems requires quantifying single events. For Southwestern conditions, a single 10-year storm can produce erosion quantifies equal to three times the average annual erosion and a 100-year storm can produce five times the average annual erosion

  2. Comparison of 137Cs fallout redistribution analysis and conventional erosion-prediction models (WEPP, USLE)

    International Nuclear Information System (INIS)

    Sparovek, G.; Bacchi, O.O.S.; Ranieri, S.B.L.; Schnug, E.; De-Maria, I.C.

    2002-01-01

    Soil erosion is the most important component of the degradation of tropical agroecosystems. The rates of erosion should be considered in land evaluation and conservation planning assessment. The methods available for erosion prediction are not sufficiently well calibrated or validated for tropical soils, climates and crops. Thus, differences in estimated soil-erosion values may be expected, even if considering a single set of input data. Three methods for the estimation of soil erosion (USLE, WEPP, and 137 Cs) were applied to a watershed cultivated with sugarcane in southeastern Brazil. The absolute erosion-rate values and differences in the spatial distribution were evaluated. The overall results suggest important differences in the estimates obtained by the three methods. The differences occurred both in mean values and in geographic locations. The relative mean values for soil loss were USLE>> 137 Cs>WEPP and for standard deviations were USLE>WEPP> 137 Cs, indicating that USLE predicted the highest erosion values spread out over the widest range. The poor geographical coincidence of the results is evidence that values resulting from non-calibrated erosion methods should be considered only as qualitative indications. The method selection should consider overall site variability in relation to factors to which the methods are known to be sensitive. (author)

  3. Erosion prediction for alpine slopes: a symbiosis of remote sensing and a physical based erosion model

    Science.gov (United States)

    Kaiser, Andreas; Neugirg, Fabian; Haas, Florian; Schindewolf, Marcus; Schmidt, Jürgen

    2014-05-01

    As rainfall simulations represent an established tool for quantifying soil detachment on cultivated area in lowlands and low mountain ranges, they are rarely used on steep slopes high mountain ranges. Still this terrain represents productive sediment sources of high morphodynamic. A quantitative differentiation between gravitationally and fluvially relocated material reveals a major challenge in understanding erosion on steep slopes: does solifluction as a result of melting in spring or heavy convective rainstorms during summer cause the essential erosion processes? This paper aims to answer this question by separating gravitational mass movement (solifluction, landslides, mudflow and needle ice) and runoff-induced detachment. First simulated rainstorm experiments are used to assess the sediment production on bare soil on a strongly inclined plot (1 m², 42°) in the northern limestone Alps. Throughout precipitation experiments runoff and related suspended sediments were quantified. In order to enlarge slope length virtually to around 20 m a runoff feeding device is additionally implemented. Soil physical parameters were derived from on-site sampling. The generated data is introduced to the physically based and catchment-scaled erosion model EROSION 3D to upscale plot size to small watershed conditions. Thus infiltration, runoff, detachment, transport and finally deposition can be predicted for single rainstorm events and storm sequences. Secondly, in order to separate gravitational mass movements and water erosion, a LiDAR and structure-from-motion based monitoring approach is carried out to produce high-resolution digital elevation models. A time series analysis of detachment and deposition from different points in time is implemented. Absolute volume losses are then compared to sediment losses calculated by the erosion model as the latter only generates data that is connected to water induced hillside erosion. This methodology will be applied in other watersheds

  4. Building Chinese wind data for Wind Erosion Prediction System using surrogate US data

    Science.gov (United States)

    Wind erosion is a global problem, especially in arid and semiarid regions of the world, which leads to land degradation and atmosphere pollution. The process-based Wind Erosion Prediction System (WEPS), developed by the USDA, is capable of simulating the windblown soil loss with changing weather and...

  5. The role of bathymetry, wave obliquity and coastal curvature in dune erosion prediction

    NARCIS (Netherlands)

    Den Heijer, C.

    2013-01-01

    This study aims at reducing uncertainty in dune erosion predictions, in particular at complex dune coasts, in order to improve the assessment method for dune safety against flooding. To that end, state-of-the-art process-based dune erosion models are employed to further investigate issues

  6. Experience in the application of erosion-corrosion prediction programs

    International Nuclear Information System (INIS)

    Castiella Villacampa, E.; Cacho Cordero, L.; Pascual Velazquez, A.; Casar Asuar, M.

    1994-01-01

    Recently the results of the Nuclear Regulatory Commission's follow-on programme relating to the application of erosion-corrosion supervision and control programs were published. The main problems encountered in their practical application are highlighted, namely those associated with prediction, calculation of minimum thickness acceptable by code, results analyses of the thicknesses measured using ultrasound technology, cases of incorrect substitution, etc. A number of power plants in Spain are currently using a computerised prediction and monitoring program for the erosion-corrosion phenomenon. The experience gained in the application of this program has been such that it has led to a number or benefits: an improvement in the application of the program, proof of its suitability to real situation, the establishment of a series of criteria relative to the inclusion or exclusion of consideration during data input, the monitoring of the phenomenon, selection of elements for inspection, etc. The report describes these areas, using typical examples as illustrations. (Author)

  7. DES Prediction of Cavitation Erosion and Its Validation for a Ship Scale Propeller

    Science.gov (United States)

    Ponkratov, Dmitriy, Dr

    2015-12-01

    Lloyd's Register Technical Investigation Department (LR TID) have developed numerical functions for the prediction of cavitation erosion aggressiveness within Computational Fluid Dynamics (CFD) simulations. These functions were previously validated for a model scale hydrofoil and ship scale rudder [1]. For the current study the functions were applied to a cargo ship's full scale propeller, on which the severe cavitation erosion was reported. The performed Detach Eddy Simulation (DES) required a fine computational mesh (approximately 22 million cells), together with a very small time step (2.0E-4 s). As the cavitation for this type of vessel is primarily caused by a highly non-uniform wake, the hull was also included in the simulation. The applied method under predicted the cavitation extent and did not fully resolve the tip vortex; however, the areas of cavitation collapse were captured successfully. Consequently, the developed functions showed a very good prediction of erosion areas, as confirmed by comparison with underwater propeller inspection results.

  8. Numerical Investigation of Temperature Distribution in an Eroded Bend Pipe and Prediction of Erosion Reduced Thickness

    Science.gov (United States)

    Zhu, Hongjun; Feng, Guang; Wang, Qijun

    2014-01-01

    Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement. PMID:24719576

  9. Prediction of mechanical properties of trabecular bone using quantitative MRI

    International Nuclear Information System (INIS)

    Lammentausta, E; Hakulinen, M A; Jurvelin, J S; Nieminen, M T

    2006-01-01

    Techniques for quantitative magnetic resonance imaging (MRI) have been developed for non-invasive estimation of the mineral density and structure of trabecular bone. The R* 2 relaxation rate (i.e. 1/T* 2 ) is sensitive to bone mineral density (BMD) via susceptibility differences between trabeculae and bone marrow, and by binarizing MRI images, structural variables, such as apparent bone volume fraction, can be assessed. In the present study, trabecular bone samples of human patellae were investigated in vitro at 1.5 T to determine the ability of MRI-derived variables (R* 2 and bone volume fraction) to predict the mechanical properties (Young's modulus, yield stress and ultimate strength). Further, the MRI variables were correlated with reference measurements of volumetric BMD and bone area fraction as determined with a clinical pQCT system. The MRI variables correlated significantly (p 2 and MRI-derived bone volume fraction further improved the prediction of yield stress and ultimate strength. Although pQCT showed a trend towards better prediction of the mechanical properties, current results demonstrate the feasibility of combined MR imaging of marrow susceptibility and bone volume fraction in predicting the mechanical strength of trabecular bone and bone mineral density

  10. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  11. Automated lake-wide erosion predictions and economic damage calculations upstream of the Moses-Saunders power dam

    International Nuclear Information System (INIS)

    Zuzek, P.; Baird, W.F.; International Joint Commission, Ottawa, ON

    2008-01-01

    This presentation discussed an automated flood and erosion prediction system designed for the upstream sections of the Moses-Saunders power dam. The system included a wave prediction component along with 3-D maps, hourly run-ups, geographic information system (GIS) tools and a hazard analysis tool. Parcel, reach, township, and county databases were used to populate the system. The prediction system was used to develop detailed study sites of shore units in the study area. Shoreline classes included sand and cohesive buffs, low banks, coarse beaches, and cobble or boulder lags. Time series plots for Lake Ontario water and wave levels were presented. Great Lakes ice cover data were also included in the system as well as erosion predictions from 1961 to 1995. The system was also used to develop bluff recession equations and cumulative recession analyses for different regulation plans. Cumulative bluff recession and protection requirements were outlined. Screenshots of the flood and erosion prediction system interface were also included. tabs., figs

  12. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion

    Science.gov (United States)

    Rahmati, Omid; Tahmasebipour, Nasser; Haghizadeh, Ali; Pourghasemi, Hamid Reza; Feizizadeh, Bakhtiar

    2017-12-01

    Gully erosion constitutes a serious problem for land degradation in a wide range of environments. The main objective of this research was to compare the performance of seven state-of-the-art machine learning models (SVM with four kernel types, BP-ANN, RF, and BRT) to model the occurrence of gully erosion in the Kashkan-Poldokhtar Watershed, Iran. In the first step, a gully inventory map consisting of 65 gully polygons was prepared through field surveys. Three different sample data sets (S1, S2, and S3), including both positive and negative cells (70% for training and 30% for validation), were randomly prepared to evaluate the robustness of the models. To model the gully erosion susceptibility, 12 geo-environmental factors were selected as predictors. Finally, the goodness-of-fit and prediction skill of the models were evaluated by different criteria, including efficiency percent, kappa coefficient, and the area under the ROC curves (AUC). In terms of accuracy, the RF, RBF-SVM, BRT, and P-SVM models performed excellently both in the degree of fitting and in predictive performance (AUC values well above 0.9), which resulted in accurate predictions. Therefore, these models can be used in other gully erosion studies, as they are capable of rapidly producing accurate and robust gully erosion susceptibility maps (GESMs) for decision-making and soil and water management practices. Furthermore, it was found that performance of RF and RBF-SVM for modelling gully erosion occurrence is quite stable when the learning and validation samples are changed.

  13. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    Science.gov (United States)

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  14. Ultrasound-detected bone erosion is a relapse risk factor after discontinuation of biologic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis whose ultrasound power Doppler synovitis activity and clinical disease activity are well controlled.

    Science.gov (United States)

    Kawashiri, Shin-Ya; Fujikawa, Keita; Nishino, Ayako; Okada, Akitomo; Aramaki, Toshiyuki; Shimizu, Toshimasa; Umeda, Masataka; Fukui, Shoichi; Suzuki, Takahisa; Koga, Tomohiro; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Mizokami, Akinari; Nakamura, Hideki; Origuchi, Tomoki; Ueki, Yukitaka; Aoyagi, Kiyoshi; Maeda, Takahiro; Kawakami, Atsushi

    2017-05-25

    In the present study, we explored the risk factors for relapse after discontinuation of biologic disease-modifying antirheumatic drug (bDMARD) therapy in patients with rheumatoid arthritis (RA) whose ultrasound power Doppler (PD) synovitis activity and clinical disease activity were well controlled. In this observational study in clinical practice, the inclusion criteria were based on ultrasound disease activity and clinical disease activity, set as low or remission (Disease Activity Score in 28 joints based on erythrocyte sedimentation rate Ultrasound was performed in 22 joints of bilateral hands at discontinuation for evaluating synovitis severity and presence of bone erosion. Patients with a maximum PD score ≤1 in each joint were enrolled. Forty patients with RA were consecutively recruited (November 2010-March 2015) and discontinued bDMARD therapy. Variables at the initiation and discontinuation of bDMARD therapy that were predictive of relapse during the 12 months after discontinuation were assessed. The median patient age was 54.5 years, and the median disease duration was 3.5 years. Nineteen (47.5%) patients relapsed during the 12 months after the discontinuation of bDMARD therapy. Logistic regression analysis revealed that only the presence of bone erosion detected by ultrasound at discontinuation was predictive of relapse (OR 8.35, 95% CI 1.78-53.2, p = 0.006). No clinical characteristics or serologic biomarkers were significantly different between the relapse and nonrelapse patients. The ultrasound synovitis scores did not differ significantly between the groups. Our findings are the first evidence that ultrasound bone erosion may be a relapse risk factor after the discontinuation of bDMARD therapy in patients with RA whose PD synovitis activity and clinical disease activity are well controlled.

  15. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  16. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2013-01-01

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...

  17. The effects of bone erosion from aortic aneurysm on the regional uptake of FDG

    DEFF Research Database (Denmark)

    Louring-Andersen, J.; Law, I.

    2008-01-01

    aorta just below the carina. An abnormal crescent-shaped uptake was identified at the margin between the aneurysm and the adjacent thoracic vertebral bodies. At this site a correspondingly shaped bone erosion on CT was proof of the chronic effects of the aneurysm. There were no signs of regional......A 71-year-old white man with a known right-sided apical nonsmall cell lung carcinoma was referred for a F-18 FDG whole body PET-CT examination after chemotherapy before radiotherapy. A staging CT scan had revealed an asymptomatic fusiform 65 mm in diameter nondissecting aneurysm of the thoracic...

  18. Scoring of synovial membrane hypertrophy and bone erosions by MR imaging in clinically active and inactive rheumatoid arthritis of the wrist

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Gideon, P; Sørensen, K

    1995-01-01

    MRI-scores of synovial membrane hypertrophy and bone erosions of the RA-wrist are introduced. Gadolinium-DTPA enhanced magnetic resonance imaging (MRI) and conventional radiography (CR) of the wrist were performed in 16 patients with rheumatoid arthritis (RA) and 3 healthy controls. A MRI...

  19. Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment

    Science.gov (United States)

    Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.

    2018-05-01

    Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some

  20. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  1. Long-term predictive capability of erosion models

    Science.gov (United States)

    Veerabhadra, P.; Buckley, D. H.

    1983-01-01

    A brief overview of long-term cavitation and liquid impingement erosion and modeling methods proposed by different investigators, including the curve-fit approach is presented. A table was prepared to highlight the number of variables necessary for each model in order to compute the erosion-versus-time curves. A power law relation based on the average erosion rate is suggested which may solve several modeling problems.

  2. Improved USLE-K factor prediction: A case study on water erosion areas in China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2016-09-01

    Full Text Available Soil erodibility (K-factor is an essential factor in soil erosion prediction and conservation practises. The major obstacles to any accurate, large-scale soil erodibility estimation are the lack of necessary data on soil characteristics and the misuse of variable K-factor calculators. In this study, we assessed the performance of available erodibility estimators Universal Soil Loss Equation (USLE, Revised Universal Soil Loss Equation (RUSLE, Erosion Productivity Impact Calculator (EPIC and the Geometric Mean Diameter based (Dg model for different geographic regions based on the Chinese soil erodibility database (CSED. Results showed that previous estimators overestimated almost all K-values. Furthermore, only the USLE and Dg approaches could be directly and reliably applicable to black and loess soil regions. Based on the nonlinear best fitting techniques, we improved soil erodibility prediction by combining Dg and soil organic matter (SOM. The NSE, R2 and RE values were 0.94, 0.67 and 9.5% after calibrating the results independently; similar model performance was showed for the validation process. The results obtained via the proposed approach were more accurate that the former K-value predictions. Moreover, those improvements allowed us to effectively establish a regional soil erodibility map (1:250,000 scale of water erosion areas in China. The mean K-value of Chinese water erosion regions was 0.0321 (t ha h·(ha MJ mm−1 with a standard deviation of 0.0107 (t ha h·(ha MJ mm−1; K-values present a decreasing trend from North to South in water erosion areas in China. The yield soil erodibility dataset also satisfactorily corresponded to former K-values from different scales (local, regional, and national.

  3. Erosions of the Petrous Temporal Bone

    African Journals Online (AJOL)

    tumours of the parotid gland; tumours of the paranasal sinuses; and tumours of ... showed severe erosion of the anterior and posterior walls and floor of the external .... sphenoid sinus, the pituitary fossa, and the greater and lesser wings of the ...

  4. Inter-observer reliability of high-resolution ultrasonography in the assessment of bone erosions in patients with rheumatoid arthritis: experience of an intensive dedicated training programme.

    Science.gov (United States)

    Gutierrez, Marwin; Filippucci, Emilio; Ruta, Santiago; Salaffi, Fausto; Blasetti, Patrizia; Di Geso, Luca; Grassi, Walter

    2011-02-01

    The present study was aimed at testing the ability of a rheumatologist without experience in ultrasound (US) who attended an intensive 4-week training programme focused on US assessing bone erosions in the hands and feet in patients with RA. Twenty patients diagnosed with RA according to the ACR criteria were included in the study. All US examinations were performed bilaterally by two investigators (with different experience in the field of musculoskeletal US) at the following sites: the dorsal, lateral and volar aspect of the second metacarpal, ulnar and fifth metatarsal head; and the dorsal and volar aspect of the third metacarpal and second proximal heads. Each quadrant was scanning in longitudinal and transverse scans for assessing the qualitative, semiquantitative and quantitative US findings indicative of bone erosions according the OMERACT preliminary definition. Both κ-values and overall agreement percentages of qualitative and semiquantitative assessments showed moderate to excellent agreement between the two investigators. Similar results were obtained for the quantitative assessment with the concordance correlation coefficient value always significant. The only exception was the volar aspects, in particular those of the fifth metatarsal head. Our study suggests that after a 4-week dedicated training programme, a rheumatologist without experience in US is able to detect and score bone erosions in the hands and feet of patients with RA.

  5. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Science.gov (United States)

    2010-01-01

    .... (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K... 22161.) (b) The factors in the USLE equation are: (1) A is the estimation of average annual soil loss in... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water...

  6. Modeling the fluid/soil interface erosion in the Hole Erosion Test

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2012-07-01

    Full Text Available Soil erosion is a complex phenomenon which yields at its final stage to insidious fluid leakages under the hydraulic infrastructures known as piping and which are the main cause of their rupture. The Hole Erosion Test is commonly used to quantify the rate of piping erosion. In this work, The Hole Erosion Test is modelled by using Fluent software package. The aim is to predict the erosion rate of soil during the hole erosion test. The renormalization group theory – based k–ε turbulence model equations are used. This modelling makes it possible describing the effect of the clay concentration in flowing water on erosion. Unlike the usual one dimensional models, the proposed modelling shows that erosion is not uniform erosion along the hole length. In particular, the concentration of clay is found to increase noticeably the erosion rate.

  7. Forest soil erosion prediction as influenced by wildfire and roads

    Science.gov (United States)

    Cao, L.; Brooks, E. S.; Elliot, W.

    2017-12-01

    Following a wildfire, the risk of erosion is greatly increased. Forest road networks may change the underlying topography and alter natural flow paths. Flow accumulation and energy can be redistributed by roads and alter soil erosion processes. A LiDAR (Light Detection and Ranging) DEM makes it possible to quantify road topography, and estimate how roads influence surface runoff and sediment transport in a fire-disturbed watershed. With GIS technology and a soil erosion model, this study was carried out to evaluate the effect of roads on erosion and sediment yield following the Emerald Fire southwest of Lake Tahoe. The GeoWEPP model was used to estimate onsite erosion and offsite sediment delivery from each hillslope polygon and channel segment before and after fire disturbance in part of the burned area. The GeoWEPP flow path method was used to estimate the post-fire erosion rate of each GIS pixel. A 2-m resolution LiDAR DEM was used as the terrain layer. The Emerald Fire greatly increased onsite soil loss and sediment yields within the fire boundary. Following the fire, 78.71% of the burned area had predicted sediment yields greater than 4 Mg/ha/yr, compared to the preburn condition when 65.3% of the study area was estimated to generate a sediment yield less than 0.25 Mg/ha/yr. Roads had a remarkable influence on the flow path simulation and sub-catchments delineation, affecting sediment transport process spatially. Road segments acted as barriers that intercepted overland runoff and reduced downslope flow energy accumulation, therefore reducing onsite soil loss downslope of the road. Roads also changed the boundary of sub-catchment and defined new hydrological units. Road segments can transport sediment from one sub-catchment to another. This in turn leads to the redistribution of sediment and alters sediment yield for some sub-catchments. Culverts and road drain systems are of vital importance in rerouting runoff and sediment. Conservation structures can be

  8. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    International Nuclear Information System (INIS)

    Chongji, Z; Yexiang, X; Wei, Z; Yangyang, Y; Lei, C; Zhengwei, W

    2014-01-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method

  9. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    Science.gov (United States)

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.

    2014-03-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  10. Predicting vertebral bone strength by vertebral static histomorphometry

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...

  11. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  12. How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis

    NARCIS (Netherlands)

    Visser, Henk; le Cessie, Saskia; Vos, Koen; Breedveld, Ferdinand C.; Hazes, Johanna M. W.

    2002-01-01

    To develop a clinical model for the prediction, at the first visit, of 3 forms of arthritis outcome: self-limiting, persistent nonerosive, and persistent erosive arthritis. A standardized diagnostic evaluation was performed on 524 consecutive, newly referred patients with early arthritis.

  13. Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes.

    Directory of Open Access Journals (Sweden)

    Danielle E Green

    Full Text Available Radiation rapidly undermines trabecular architecture, a destructive process which proceeds despite a devastated cell population. In addition to the 'biologically orchestrated' resorption of the matrix by osteoclasts, physicochemical processes enabled by a damaged matrix may contribute to the rapid erosion of bone quality. 8w male C57BL/6 mice exposed to 5 Gy of Cs(137 γ-irradiation were compared to age-matched control at 2d, 10d, or 8w following exposure. By 10d, irradiation had led to significant loss of trabecular bone volume fraction. Assessed by reflection-based Fourier transform infrared imaging (FTIRI, chemical composition of the irradiated matrix indicated that mineralization had diminished at 2d by -4.3±4.8%, and at 10d by -5.8±3.2%. These data suggest that irradiation facilitates the dissolution of the matrix through a change in the material itself, a conclusion supported by a 13.7±4.5% increase in the elastic modulus as measured by nanoindentation. The decline in viable cells within the marrow of irradiated mice at 2d implies that the immediate collapse of bone quality and inherent increased risk of fracture is not solely a result of an overly-active biologic process, but one fostered by alterations in the material matrix that predisposes the material to erosion.

  14. Water erosion risk prediction in eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Mayesse Aparecida da Silva

    2014-04-01

    Full Text Available Eucalyptus plantations are normally found in vulnerable ecosystems such as steep slope, soil with low natural fertility and lands that were degraded by agriculture. The objective of this study was to obtain Universal Soil Loss Equation (USLE factors and use them to estimate water erosion risk in regions with eucalyptus planted. The USLE factors were obtained in field plots under natural rainfall in the Rio Doce Basin, MG, Brazil, and the model applied to assess erosion risk using USLE in a Geographic Information System. The study area showed rainfall-runoff erosivity values from 10,721 to 10,642 MJ mm ha-1 h-1 yr-1. Some soils (Latosols had very low erodibility values (2.0 x 10-4 and 1.0 x 10-4t h MJ-1 mm-1, the topographic factor ranged from 0.03 to 10.57 and crop and management factor values obtained for native forest, eucalyptus and planted pasture were 0.09, 0.12 and 0.22, respectively. Water erosion risk estimates for current land use indicated that the areas where should receive more attention were mainly areas with greater topographic factors and those with Cambisols. Planning of forestry activities in this region should consider implementation of other conservation practices beyond those already used, reducing areas with a greater risk of soil erosion and increasing areas with very low risk.

  15. Biochemical markers predictive for bone marrow involvement in systemic mastocytosis

    NARCIS (Netherlands)

    Donker, Marjolein L.; van Doormaal, Jasper J.; van Doormaal, Frederiek F.; Kluin, Philip M.; van der Veer, Eveline; de Monchy, Jan G. R.; Kema, Ido P.; Kluin-Nelemans, Hanneke C.

    Systemic mastocytosis is characterized by bone marrow involvement, which requires a bone marrow biopsy for diagnostic work-up. We questioned whether bone marrow involvement could be predicted using biochemical markers. We selected patients with various symptoms suggestive of indolent systemic

  16. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Science.gov (United States)

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  17. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    Science.gov (United States)

    Musick, H. Brad

    1993-01-01

    The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.

  18. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  19. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    Directory of Open Access Journals (Sweden)

    Seyed Mahmud Rabiee

    2012-01-01

    Full Text Available Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties.

  20. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Roxanne; Kim, David H.; Millett, Peter J. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Weissman, Barbara N. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Brigham and Women' s Hospital, Department of Radiology, Musculoskeletal Division, Boston (United States)

    2004-10-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  1. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    International Nuclear Information System (INIS)

    Chan, Roxanne; Kim, David H.; Millett, Peter J.; Weissman, Barbara N.

    2004-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  2. Soil Erosion Prediction Using Morgan-Morgan-Finney Model in a GIS Environment in Northern Ethiopia Catchment

    Directory of Open Access Journals (Sweden)

    Gebreyesus Brhane Tesfahunegn

    2014-01-01

    Full Text Available Even though scientific information on spatial distribution of hydrophysical parameters is critical for understanding erosion processes and designing suitable technologies, little is known in Geographical Information System (GIS application in developing spatial hydrophysical data inputs and their application in Morgan-Morgan-Finney (MMF erosion model. This study was aimed to derive spatial distribution of hydrophysical parameters and apply them in the Morgan-Morgan-Finney (MMF model for estimating soil erosion in the Mai-Negus catchment, northern Ethiopia. Major data input for the model include climate, topography, land use, and soil data. This study demonstrated using MMF model that the rate of soil detachment varied from 170 t ha−1 y−1, whereas the soil transport capacity of overland flow (TC ranged from 5 t ha−1 y−1 to >42 t ha−1 y−1. The average soil loss estimated by TC using MMF model at catchment level was 26 t ha−1 y−1. In most parts of the catchment (>80%, the model predicted soil loss rates higher than the maximum tolerable rate (18 t ha−1 y−1 estimated for Ethiopia. Hence, introducing appropriate interventions based on the erosion severity predicted by MMF model in the catchment is crucial for sustainable natural resources management.

  3. Rill erosion rates in burned forests

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  4. Computer-aided and manual quantifications of MRI synovitis, bone marrow edema-like lesions, erosion and cartilage loss in rheumatoid arthritis of the wrist

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haitao [The First Affiliated Hospital of Chongqing Medical University, Department of Radiology, Chongqing (China); University of California, San Francisco (UCSF), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rivoire, Julien; Hoppe, Michael; Link, Thomas M.; Li, Xiaojuan [University of California, San Francisco (UCSF), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Srikhum, Waraporn [University of California, San Francisco (UCSF), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Thammasat University, Department of Radiology, Pathumthani (Thailand); Imboden, John [San Francisco General Hospital, University of California, Department of Medicine, San Francisco and Division of Rheumatology, San Francisco, CA (United States)

    2014-12-10

    To investigate the reliability and validity of computer-aided automated and manual quantification as well as semiquantitative analysis for MRI synovitis, bone marrow edema-like lesions, erosion and cartilage loss of the wrist in rheumatoid arthritis (RA) compared to the OMERACT-RAMRIS. Wrist MRI was performed at 3 T in 16 patients with RA. Synovial volume and perfusion, bone marrow edema-like lesion (BMEL) volume, signal intensity and perfusion, and erosion dimensions were measured manually and using an in-house-developed automated software algorithm; findings were correlated with the OMERAC-RAMRIS gradings. In addition, a semiquantitative MRI cartilage loss score system was developed. Intraclass correlation coefficients (ICCs) were used to test the reproducibility of these quantitative and semiquantitative techniques. Spearman correlation coefficients were calculated between lesion quantifications and RAMRIS and between the MRI cartilage score and radiographic Sharp van der Heijde joint space narrowing scores. The intra- and interobserver ICCs were excellent for synovial, BMEL and erosion quantifications and cartilage loss grading (all >0.89). The synovial volume, BMEL volume and signal intensity, and erosion dimensions were significantly correlated with the corresponding RAMRIS (r = 0.727 to 0.900, p < 0.05). Synovial perfusion parameter maximum enhancement (Emax) was significantly correlated with synovitis RAMRIS (r = 0.798). BMEL perfusion parameters were not correlated with the RAMRIS BME score. Cartilage loss gradings from MRI were significantly correlated with the Sharp joint space narrowing scores (r = 0.635, p = 0.008). The computer-aided, manual and semiquantitative methods presented in this study can be used to evaluate MRI pathologies in RA with excellent reproducibility. Significant correlations with standard RAMRIS were found in the measurements using these methods. (orig.)

  5. 'pre-erosive' radiologic signs of rheumatoid arthritis in soft tissue radiography of the hands

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, P; Virtama, P [Turku Univ. (Finland). Dept. of Diagnostic Radiology

    1978-01-01

    Soft tissue radiography of the hands using the mammographic immersion technique was performed on 119 patients, having definite or classical rheumatoid arthritis, and on 123 controls of matching age, sex, and professional distribution. A total of 7744 finger joints and carpal borders were investigated for joint swelling, periarticular edema, pre-erosive and erosive bone changes, joint space narrowing, and osteoarthritic joint margin spurs. Slight joint swelling and pre-erosive bone changes were found in connection with osteoarthritic joint changes in elderly control patients. Periarticular edema and moderate to massive joint swelling were quite reliable signs for synovitis. The incidence of pre-erosive bone signs was significantly greater in the rheumatoid arthritis group than in the control group, especially in patients less than 60 years old. These signs can be regarded as suggestive of rheumatoid arthritis; probability diagnosis could be performed using these signs and the Bayesian approach.

  6. The 'pre-erosive' radiologic signs of rheumatoid arthritis in soft tissue radiography of the hands

    International Nuclear Information System (INIS)

    Maekelae, P.; Virtama, P.

    1978-01-01

    Soft tissue radiography of the hands using the mammographic immersion technique was performed on 119 patients, having definite or classical rheumatoid arthritis, and on 123 controls of matching age, sex, and professional distribution. A total of 7744 finger joints and carpal borders were investigated for joint swelling, periarticular edema, pre-erosive and erosive bone changes, joint space narrowing, and osteoarthritic joint margin spurs. Slight joint swelling and pre-erosive bone changes were found in connection with osteoarthritic joint changes in elderly control patients. Periarticular edema and moderate to massive joint swelling were quite reliable signs for synovitis. The incidence of pre-erosive bone signs was significantly greater in the rheumatoid arthritis group than in the control group, especially in patients less than 60 years old. These signs can be regarded as suggestive of rheumatoid arthritis; probability diagnosis could be performed using these signs and the Bayesian approach. (orig.) [de

  7. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  8. Kinetics of gene expression and bone remodelling in the clinical phase of collagen induced arthritis

    DEFF Research Database (Denmark)

    Denninger, Katja Caroline Marie; Litman, Thomas; Marstrand, Troels

    2015-01-01

    Introduction: Pathological bone changes differ considerably between inflammatory arthritic diseases and most studies have focused on bone erosion. Collagen-induced arthritis (CIA) is a model for rheumatoid arthritis, which, in addition to bone erosion, demonstrates bone formation at the time...

  9. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  10. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.

    Science.gov (United States)

    Fernández, Cristina; Vega, José A

    2018-05-04

    Severe fire greatly increases soil erosion rates and overland-flow in forest land. Soil erosion prediction models are essential for estimating fire impacts and planning post-fire emergency responses. We evaluated the performance of a) the Revised Universal Soil Loss Equation (RUSLE), modified by inclusion of an alternative equation for the soil erodibility factor, and b) the Disturbed WEPP model, by comparing the soil loss predicted by the models and the soil loss measured in the first year after wildfire in 44 experimental field plots in NW Spain. The Disturbed WEPP has not previously been validated with field data for use in NW Spain; validation studies are also very scarce in other areas. We found that both models underestimated the erosion rates. The accuracy of the RUSLE model was low, even after inclusion of a modified soil erodibility factor accounting for high contents of soil organic matter. We conclude that neither model is suitable for predicting soil erosion in the first year after fire in NW Spain and suggest that soil burn severity should be given greater weighting in post-fire soil erosion modelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Anti-RANKL treatment inhibits erosive joint destruction and lowers inflammation but has no effect on bone formation in the delayed-type hypersensitivity arthritis (DTHA) model

    DEFF Research Database (Denmark)

    Atkinson, Sara Marie; Bleil, Janine; Maier, Rene

    2016-01-01

    . Periarticular bone formation was observed from day 10. Induction of new bone formation indicated by enhanced Runx2, collagen X, osteocalcin, MMP2, MMP9, and MMP13 mRNA expression was observed only between days 8 and 11. Anti-RANKL treatment resulted in a modest reduction in paw and ankle swelling...... and bone formation were analyzed by mRNA deep sequencing. Serum concentrations of tartrate-resistant acid phosphatase 5b, carboxy-terminal telopeptide I (CTX-I), matrix metalloproteinase 3 (MMP3), and serum amyloid P component (SAP) were determined by enzyme-linked immunosorbent assay. Anti......-RANKL monoclonal antibody treatment was initiated at the time of immunization. Results: Bone destruction (MMP3 serum levels, cathepsin B activity, and RANKL mRNA) peaked at day 3 after arthritis induction, followed by a peak in cartilage destruction and bone erosion on day 5 after arthritis induction...

  12. A GIS-model for predicting the impact of climate change on shore erosion in hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Penner, L.A.; Zimmer, T.A.M.; St Laurent, M.

    2008-01-01

    Shoreline erosion affects inland lakes and hydroelectric reservoirs in several ways. This poster described a vector-based geographic information system (GIS) model designed to predict changes in shore zone geometry, top-of-bluff recession, and eroded sediment volumes. The model was designed for use in Manitoba Hydro's reservoirs in northern Manitoba, and simulated near-shore downcutting and bank recession caused by wind-generated waves. Parameters for the model included deep water wave energy, and water level fluctuations. Effective wave energy was seen as a function of the water level fluctuation range, wave conditions, and near-shore slope. The model was validated by field monitoring studies that included repeated shore zone transect surveys and sediment coring studies. Results of the study showed that the model provides a systematic method of predicting potential changes in erosion associated with climatic change. The volume and mass of eroded sediment predicted for the different modelling scenarios will be used as input data for future sedimentation models. tabs., figs

  13. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    International Nuclear Information System (INIS)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok

    2000-01-01

    In order to determine specific differences, we compared the temporal bone CT findings of chronic otitis media (COM) with and without cholesteatoma, focusing on bone change. Between 1997 and 1998, 82 patients (84 cases) underwent temporal bone CT and were shown to have COM, with or without cholesteatoma after mastoidectomy and tympanoplasty. There were 36 cases of COM with cholesteatoma (26 patients, M:F =3D 11:15; age range, 16-61 (mean, 36,2) years), and 58 cases without chlesteatoma (56 patients, M:F =3D 25:31, age range, 15-61 (mean, 36.2) years). The findings of temporal bone CT were analysed at the point of bony changes including erosion and medial displacement of ossicles (malleus, incus, and stapes), erosion or destruction of the scutum, tegmen, facial canal, and lateral semicircular canal, and ballooning of the tympanic cavity and mastoid antrum. In addition, the soft tissue changes seen on temporal bone CT were analyzed at the site of lateral bulging of soft tissue in Prussak's space, perforation of the pars flaccida, tympanic membrane retraction, and tympanosclerosis. We retrospectively compared the findings of temporal bone CT with the surgical findings, and to assess statistical significance, the Chi-square test was used. Bone erosion or destruction was seen in 36.2% of COM cases without cholesteatoma, and in 96.2% of cases with cholesteatoma. Comparing COM with and without cholesteatoma, the erosion of ossicles including the malleus (81%, 24%), incus (88%, 14%), stapes (58%, 10%), scutum (88%, 10%), facial canal (8%, 0%), and lateral semicircular canal (8%, 0%), was more common in COM with cholesteatoma (p-value less than 0.05), with the exception of erosion of the tegmen (8%, 3%). Other bony changes including medial displacement of ossicles (27%, 3%), ballooning of tympanic cavity and mastoid antrum (96%, 16%), and the soft tissue changes including lateral bulging of soft tissue in Prussak's space (58%, 14%) and perforation of the pars flaccida (35

  14. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2000-01-01

    In order to determine specific differences, we compared the temporal bone CT findings of chronic otitis media (COM) with and without cholesteatoma, focusing on bone change. Between 1997 and 1998, 82 patients (84 cases) underwent temporal bone CT and were shown to have COM, with or without cholesteatoma after mastoidectomy and tympanoplasty. There were 36 cases of COM with cholesteatoma (26 patients, M:F =3D 11:15; age range, 16-61 (mean, 36,2) years), and 58 cases without chlesteatoma (56 patients, M:F =3D 25:31, age range, 15-61 (mean, 36.2) years). The findings of temporal bone CT were analysed at the point of bony changes including erosion and medial displacement of ossicles (malleus, incus, and stapes), erosion or destruction of the scutum, tegmen, facial canal, and lateral semicircular canal, and ballooning of the tympanic cavity and mastoid antrum. In addition, the soft tissue changes seen on temporal bone CT were analyzed at the site of lateral bulging of soft tissue in Prussak's space, perforation of the pars flaccida, tympanic membrane retraction, and tympanosclerosis. We retrospectively compared the findings of temporal bone CT with the surgical findings, and to assess statistical significance, the Chi-square test was used. Bone erosion or destruction was seen in 36.2% of COM cases without cholesteatoma, and in 96.2% of cases with cholesteatoma. Comparing COM with and without cholesteatoma, the erosion of ossicles including the malleus (81%, 24%), incus (88%, 14%), stapes (58%, 10%), scutum (88%, 10%), facial canal (8%, 0%), and lateral semicircular canal (8%, 0%), was more common in COM with cholesteatoma (p-value less than 0.05), with the exception of erosion of the tegmen (8%, 3%). Other bony changes including medial displacement of ossicles (27%, 3%), ballooning of tympanic cavity and mastoid antrum (96%, 16%), and the soft tissue changes including lateral bulging of soft tissue in Prussak's space (58%, 14%) and perforation of the pars

  15. Understanding and Predicting Gun Barrel Erosion

    National Research Council Canada - National Science Library

    Johnston, Ian A

    2005-01-01

    The Australian Defence Force will soon have to contend with gun barrel erosion issues arising from the use of new low-vulnerability gun propellants, the acquisition of new ammunition and gun systems...

  16. Bone Marrow Pathology Predicts Mortality in Chronic Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Cheng-Hao Weng

    2015-01-01

    Full Text Available Introduction. A bone marrow biopsy is a useful procedure for the diagnosis and staging of various hematologic and systemic diseases. The objective of this study was to investigate whether the findings of bone marrow studies can predict mortality in chronic hemodialysis patients. Methods. Seventy-eight end-stage renal disease patients on maintenance hemodialysis underwent bone marrow biopsies between 2000 and 2011, with the most common indication being unexplained anemia followed by unexplained leukocytosis and leukopenia. Results. The survivors had a higher incidence of abnormal megakaryocyte distribution P=0.001, band and segmented cells P=0.021, and lymphoid cells P=0.029 than the nonsurvivors. The overall mortality rate was 38.5% (30/78, and the most common cause of mortality was sepsis (83.3% followed by respiratory failure (10%. In multivariate Cox regression analysis, both decreased (OR 3.714, 95% CI 1.671–8.253, P=0.001 and absent (OR 9.751, 95% CI 2.030–45.115, P=0.004 megakaryocyte distribution (normal megakaryocyte distribution as the reference group, as well as myeloid/erythroid ratio (OR 1.054, CI 1.012–1.098, P=0.011, were predictive of mortality. Conclusion. The results of a bone marrow biopsy can be used to assess the pathology, and, in addition, myeloid/erythroid ratio and abnormal megakaryocyte distribution can predict mortality in chronic hemodialysis patients.

  17. Radiologic comparison of erosive polyarthritis with prominent interphalangeal involvement

    International Nuclear Information System (INIS)

    Gold, R.H.; Bassett, L.W.; Theros, E.G.

    1982-01-01

    Psoriatic arthritis, Reiter's disease, and multicentric reticulohistiocytosis may manifest prominent interphalangeal joint and cutaneous involvement. All three disorders may also affect the sacroiliac joints and spine. Despite these similarities, there are basic radiologic differences enabling distinction between the three disorders. Erosive osteoarthritis must also be considered in the differential diagnosis of interphalangeal erosive arthritis. Psoriatic erosions are characteristically ill defined, often bilaterally asymmetrical, usually unaccompanied by significant osteoporosis, and frequently associated with florid proliferation of subperiosteal new bone. An unilateral polyarticular pattern, which often occurs in a single ray, is the most prevalent of several patterns of involvement. Reiter's disease exhibits many clinical and radiologic similarities to psoriatic arthritis, but in the former there tends to be selective involvement of the joints of the lower limbs and particularly the feet, with relative sparing of the hands and wrists, while in the latter the joints of the upper and lower limbs tend to be involved to an equal extent. Multicentric reticulohistiocytosis (MR). Lesions predominate in skin and synovium and result in sharply circumscribed, rapidly progressive, strikingly bilaterally symmetrical erosions spreading from joint margins to articular surfaces. Most or all of the diarthrodial joints may be affected, but interphalangeal joint predominance and early and severe atlanto-axial involvement are characteristic. Erosive osteoarthritis is characterized by interphalangeal subchondral erosions, accompanying periosteal new bone that is more subtle than that of psoriatic arthritis, and interphalangeal bony ankylosis that occurs with the same frequency as that of psoriatic arthritis. (orig.)

  18. Erosion-Oxidation Response of Boiler Grade Steels: A Mathematical Investigation

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2008-01-01

    Full Text Available A ductile erosion model embodying the mechanisms of erosion involving cutting wear and repeated plastic deformation has been developed to predict erosion rates of boiler grade steels. The issue of erosion-oxidation interaction has also been addressed to further predict the mass loss resulted from this composite mechanism. A deterministic formalism for the kinetics of oxide-scale growth and a probabilistic approach to characterize the material loss are employed to describe simultaneous actions of high-temperature oxidation and mechanical erosion. The model predictions are in good agreement with the published data.

  19. Validation of a probabilistic post-fire erosion model

    Science.gov (United States)

    Pete Robichaud; William J. Elliot; Sarah A. Lewis; Mary Ellen Miller

    2016-01-01

    Post-fire increases of runoff and erosion often occur and land managers need tools to be able to project the increased risk. The Erosion Risk Management Tool (ERMiT) uses the Water Erosion Prediction Project (WEPP) model as the underlying processor. ERMiT predicts the probability of a given amount of hillslope sediment delivery from a single rainfall or...

  20. Carpal erosions in children with juvenile idiopathic arthritis: repeatability of a newly devised MR-scoring system

    International Nuclear Information System (INIS)

    Boavida, Peter; Lambot-Juhan, Karen; Ording Mueller, Lil-Sofie; Damasio, Beatrice; Malattia, Clara; Tanturri de Horatio, Laura; Owens, Catherine M.; Rosendahl, Karen

    2015-01-01

    Juvenile idiopathic arthritis (JIA) is characterized by synovial inflammation, with potential risk of developing progressive joint destruction. Personalized state-of-the-art treatment depends on valid markers for disease activity to monitor response; however, no such markers exist. To evaluate the reliability of scoring of carpal bone erosions on MR in children with JIA using two semi-quantitative scoring systems. A total of 1,236 carpal bones (91 MR wrist examinations) were scored twice by two independent pediatric musculoskeletal radiologists. Bony erosions were scored according to estimated bone volume loss using a 0-4 scale and a 0-10 scale. An aggregate erosion score comprising the sum total carpal bone volume loss was calculated for each examination. The 0-4 scoring system resulted in good intra-reader agreement and moderate to good inter-observer agreement in the assessment of individual bones. Fair and moderate agreement were achieved for inter-reader and intra-reader agreement, respectively, using the 0-10 scale. Intra- and particularly inter-reader aggregate score variability were much less favorable, with wide limits of agreement. Further analysis of erosive disease patterns compared with normal subjects is required, and to facilitate the development of an alternative means of quantifying disease. (orig.)

  1. Carpal erosions in children with juvenile idiopathic arthritis: repeatability of a newly devised MR-scoring system

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Peter [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Lambot-Juhan, Karen [Hospital Necker Enfants Malades, Department of Radiology, Paris (France); Ording Mueller, Lil-Sofie [Oslo University Hospital, Department of Radiology, Oslo (Norway); Damasio, Beatrice; Malattia, Clara [Ospedale Pediatrico Gaslini, Department of Rheumatology, Genoa (Italy); Tanturri de Horatio, Laura [Ospedale Pediatrico Bambino Gesu, Department of Radiology, Rome (Italy); Owens, Catherine M. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); UCL, Institute of Child Health, London (United Kingdom); Rosendahl, Karen [Haukeland University Hospital, Department of Radiology, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway)

    2015-12-15

    Juvenile idiopathic arthritis (JIA) is characterized by synovial inflammation, with potential risk of developing progressive joint destruction. Personalized state-of-the-art treatment depends on valid markers for disease activity to monitor response; however, no such markers exist. To evaluate the reliability of scoring of carpal bone erosions on MR in children with JIA using two semi-quantitative scoring systems. A total of 1,236 carpal bones (91 MR wrist examinations) were scored twice by two independent pediatric musculoskeletal radiologists. Bony erosions were scored according to estimated bone volume loss using a 0-4 scale and a 0-10 scale. An aggregate erosion score comprising the sum total carpal bone volume loss was calculated for each examination. The 0-4 scoring system resulted in good intra-reader agreement and moderate to good inter-observer agreement in the assessment of individual bones. Fair and moderate agreement were achieved for inter-reader and intra-reader agreement, respectively, using the 0-10 scale. Intra- and particularly inter-reader aggregate score variability were much less favorable, with wide limits of agreement. Further analysis of erosive disease patterns compared with normal subjects is required, and to facilitate the development of an alternative means of quantifying disease. (orig.)

  2. Influence of anti-cyclic citrullinated peptide on disease activity, structural severity, and bone loss in Moroccan women with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Imad Ghozlani

    2018-04-01

    Full Text Available Aim of the work: The aim of this study was to assess the influence of anti-cyclic citrullinated peptide (anti-CCP on disease activity, radiological severity, functional disability and bone loss in Moroccan women with rheumatoid arthritis (RA. Patients and methods: One hundred and thirty-six women with RA were recruited. Age, weight, height, disease duration and steroids cumulative dose were identified. Anti-CCP and Rheumatoid factor (RF were determined. Disease activity score (DAS28 was assessed and functional repercussion measured by the Health Assessment Questionnaire-disability index (HAQ-DI. Radiological status was assessed by the Sharp/van der Heijde (SvH erosion and narrowing score. Bone mineral density was determined by a Lunar Prodigy Vision Dual-energy X-ray absorptiometry and vertebral fracture assessment was classified using a combination of Genant semi-quantitative approach and morphometry. Results: Patients mean age was 49.6 ± 7.4 years and disease duration 7.7 ± 5 years. 109 (80.1% patients were anti-CCP positive. There was no significant difference in DAS28 between patients with and without anti-CCP. Nevertheless, weight, erythrocyte sedimentation rate (ESR, rheumatoid factor titer and positivity, SvH narrowing and erosion score and osteoporosis were significantly higher in patients with positive anti-CCP. Stepwise regression analysis showed that the presence of anti-CCP was independently associated with osteoporosis and SvH erosion score. Conclusions: Anti-CCP antibodies are strongly predictive for the development of osteoporosis and erosions in Moroccan RA patients. They not only have a valuable role in the disease prognosis prediction but also may be a relevant determinant of bone loss in RA. The presence of these antibodies warrants special attention. Keywords: Rheumatoid arthritis, Anti-cyclic citrullinated peptide, Disease activity, Joint damage, Bone loss

  3. Challenges in soil erosion research and prediction model development

    Science.gov (United States)

    Quantification of soil erosion has been traditionally considered as a surface hydrologic process with equations for soil detachment and sediment transport derived from the mechanics and hydraulics of the rainfall and surface flow. Under the current erosion modeling framework, the soil has a constant...

  4. Phalangeal bone mineral density predicts incident fractures

    DEFF Research Database (Denmark)

    Friis-Holmberg, Teresa; Brixen, Kim; Rubin, Katrine Hass

    2012-01-01

    This prospective study investigates the use of phalangeal bone mineral density (BMD) in predicting fractures in a cohort (15,542) who underwent a BMD scan. In both women and men, a decrease in BMD was associated with an increased risk of fracture when adjusted for age and prevalent fractures...

  5. Upper Gastrointestinal Symptoms Predictive of Candida Esophagitis and Erosive Esophagitis in HIV and Non-HIV Patients

    Science.gov (United States)

    Takahashi, Yuta; Nagata, Naoyoshi; Shimbo, Takuro; Nishijima, Takeshi; Watanabe, Koji; Aoki, Tomonori; Sekine, Katsunori; Okubo, Hidetaka; Watanabe, Kazuhiro; Sakurai, Toshiyuki; Yokoi, Chizu; Mimori, Akio; Oka, Shinichi; Uemura, Naomi; Akiyama, Junichi

    2015-01-01

    Abstract Upper gastrointestinal (GI) symptoms are common in both HIV and non-HIV-infected patients, but the difference of GI symptom severity between 2 groups remains unknown. Candida esophagitis and erosive esophagitis, 2 major types of esophagitis, are seen in both HIV and non-HIV-infected patients, but differences in GI symptoms that are predictive of esophagitis between 2 groups remain unknown. We aimed to determine whether GI symptoms differ between HIV-infected and non-HIV-infected patients, and identify specific symptoms of candida esophagitis and erosive esophagitis between 2 groups. We prospectively enrolled 6011 patients (HIV, 430; non-HIV, 5581) who underwent endoscopy and completed questionnaires. Nine upper GI symptoms (epigastric pain, heartburn, acid regurgitation, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia) were evaluated using a 7-point Likert scale. Associations between esophagitis and symptoms were analyzed by the multivariate logistic regression model adjusted for age, sex, and proton pump inhibitors. Endoscopy revealed GI-organic diseases in 33.4% (2010/6.011) of patients. The prevalence of candida esophagitis and erosive esophagitis was 11.2% and 12.1% in HIV-infected patients, respectively, whereas it was 2.9% and 10.7 % in non-HIV-infected patients, respectively. After excluding GI-organic diseases, HIV-infected patients had significantly (P symptom scores for heartburn, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia than non-HIV-infected patients. In HIV-infected patients, any symptom was not significantly associated with CD4 cell count. In multivariate analysis, none of the 9 GI symptoms were associated with candida esophagitis in HIV-infected patients, whereas dysphagia and odynophagia were independently (P HIV-infected patients. However, heartburn and acid regurgitation were independently (P symptom scores were reliable in both HIV (α, 0.86) and non-HIV-infected patients

  6. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    Science.gov (United States)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  7. Predicting the effectiveness of different mulching techniques to reduce post-fire runoff and erosion in Mediterranean pine stands - does cover matter?

    Science.gov (United States)

    Vieira, Diana; Nunes, João; Prats, Sergio; Serpa, Dalila; Keizer, Jan

    2016-04-01

    Wildfires have become a recurrent threat for many forest ecosystems of the Mediterranean. The characteristics of the Mediterranean climate with its warm and dry summers and mild and wet winters make it prone to wildfire occurrence as well as to post-fire soil erosion. Furthermore, climate change and continuation of current land management practices and planning are generally expected to further increase this threat. The wide recognition of the effects of wildfires to enhance runoff and erosion has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire forestry operations to mitigate these responses. Such a tool should allow to identify areas with elevated risks of soil erosion and to evaluate which measures should be applied and when to minimize these risks. A key element in evaluating these measures is also their costs, in order to optimize the use of the limited resources that are typically available for post-fire land management. In this study, two "treatments" are compared with control conditions (i.e. doing nothing) after a wildfire with a moderate soil burn severity: (i) 4 erosion plots were treated with hydro-mulch, (ii) 4 erosion plots were untreated but had a high pine needle cover quickly after the fire, due to needle cast from scorched pine crowns (often referred to as "natural mulching") (iii) 4 plots were untreated and had a very reduced protective litter cover . The main objective of this study was to asses if the revised MMF model could effectively predict the impacts of hydro-mulching and natural mulching with pine needle on runoff generation and the associated soil losses. If MMF could predict well the impact of natural mulching, it could be very useful in limiting the areas that should be considered for specific soil mitigation measures, especially in the case of wildfires that affect large areas with moderate severity. The

  8. Low bone mineral density in noncholestatic liver cirrhosis: prevalence, severity and prediction

    Directory of Open Access Journals (Sweden)

    Figueiredo Fátima Aparecida Ferreira

    2003-01-01

    Full Text Available BACKGROUND: Metabolic bone disease has long been associated with cholestatic disorders. However, data in noncholestatic cirrhosis are relatively scant. AIMS: To determine prevalence and severity of low bone mineral density in noncholestatic cirrhosis and to investigate whether age, gender, etiology, severity of underlying liver disease, and/or laboratory tests are predictive of the diagnosis. PATIENTS/METHODS: Between March and September/1998, 89 patients with noncholestatic cirrhosis and 20 healthy controls were enrolled in a cross-sectional study. All subjects underwent standard laboratory tests and bone densitometry at lumbar spine and femoral neck by dual X-ray absorptiometry. RESULTS: Bone mass was significantly reduced at both sites in patients compared to controls. The prevalence of low bone mineral density in noncholestatic cirrhosis, defined by the World Health Organization criteria, was 78% at lumbar spine and 71% at femoral neck. Bone density significantly decreased with age at both sites, especially in patients older than 50 years. Bone density was significantly lower in post-menopausal women patients compared to pre-menopausal and men at both sites. There was no significant difference in bone mineral density among noncholestatic etiologies. Lumbar spine bone density significantly decreased with the progression of liver dysfunction. No biochemical variable was significantly associated with low bone mineral density. CONCLUSIONS: Low bone mineral density is highly prevalent in patients with noncholestatic cirrhosis. Older patients, post-menopausal women and patients with severe hepatic dysfunction experienced more advanced bone disease. The laboratory tests routinely determined in patients with liver disease did not reliably predict low bone mineral density.

  9. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  10. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  11. Molybdenum erosion measurements in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); LaBombard, B.; Lipshultz, B.; Pappas, D.; Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McCracken, G.M. [JET Joint Undertaking, Abingdon (United Kingdom)

    1998-05-01

    Erosion of molybdenum was measured on a set of 21 tiles after a run campaign of 1,090 shots in the Alcator C-Mod tokamak. The net erosion of molybdenum, was determined from changes in the depth of a thin chromium marker layer measured by Rutherford backscattering. Net Mo erosion was found to be approximately 150 nm near the outer divertor strike point, and much less everywhere else. Gross erosion rates by sputtering were estimated using ion energies and fluxes obtained from Langmuir probe measurements of edge-plasma conditions. Predicted net erosion using calculated gross erosion with prompt redeposition and measured net erosion agree within a factor of 3. Sputtering by boron and molybdenum impurities dominates erosion.

  12. Soil erosion assessment - Mind the gap

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-12-01

    Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.

  13. Analysis of C-MOD molybdenum divertor erosion and code/data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.N., E-mail: brooksjn@purdue.edu [Purdue University, West Lafayette, IN (United States); Allain, J.P. [Purdue University, West Lafayette, IN (United States); Whyte, D.G.; Ochoukov, R.; Lipschultz, B. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2011-08-01

    We analyze an important 15 year old Alcator C-MOD study of campaign-integrated molybdenum divertor erosion in which the measured net erosion was significantly higher ({approx}X3) than originally predicted by a simple model . We perform full process sputtering erosion/redeposition computational analysis including the effect of a possible RF induced sheath. The simulations show that most sputtered Mo atoms are ionized close to the surface and strongly redeposited, via Lorentz force motion and collisional friction with the high density incoming plasma. The predicted gross erosion profile is a reasonable match to MoI influx data, however, the critically important net erosion comparison with post-exposure Mo tile analysis is poor, with {approx}X10 higher peak erosion measured than computed. An RF sheath increases predicted erosion by {approx}45%, thus being significant but not fundamental. We plan future analysis.

  14. Finite element method for one-dimensional rill erosion simulation on a curved slope

    Directory of Open Access Journals (Sweden)

    Lijuan Yan

    2015-03-01

    Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.

  15. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    Science.gov (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  16. Rainfall erosivity factor estimation in Republic of Moldova

    Science.gov (United States)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  17. Predicted erosion and sediment delivery of fallout plutonium

    International Nuclear Information System (INIS)

    Foster, G.R.; Hakonson, T.E.

    1984-01-01

    Plutonium (Pu) from fallout after atmospheric explosion of nuclear weapons in the 1950s and 1960s is being redistributed over the landscape by soil erosion and carried on sediment by streams to oceans. Erosion rates computed with the Universal Soil Loss Equation for about 200,000 sample points on nonfederal land across the US were used to estimate Pu removal rates by soil erosion by water, Pu delivery in several major rivers, and concentration of Pu on the transported sediment. Estimates of average annual Pu delivery on sediment ranged from 0.002% of the initial fallout Pu inventory for the Savannah River basin to 0.08% for the Mississippi River basin. If the deposition of Pu had been uniformly 37 Bq/m 2 , the estimated Pu activity on suspended sediment ranged from about 0.26 Bq/kg of sediment for the Savannah River basin to 0.52 Bq/kg for the Columbia and Rio Grande river basins. After 1000 yr, about 9 to 48% of the initial Pu inventory will remain in US soils that are eroding. Much of the Pu on eroded sediment will travel only a short distance from its origin before its host sediment particles are deposited and permanently located, at least for a few hundred years. As much as 90% of the initially deposited Pu will remain, redistributed over the landscape by erosion and deposition. Although the delivery rate of Pu by rivers will not decrease greatly in the next 100 yr, a significant decrease will likely occur by 1000 yr

  18. Predicting soil erosion risk at the Alqueva dam watershed

    OpenAIRE

    Ferreira, Vera; Panagopoulos, Thomas

    2012-01-01

    Soil erosion is serious economic and environmental concern. Assessing soil erosion risk in the Alqueva dam watershed is urgently needed to conserve soil and water resources and prevent the accelerated dam siltation, taking into account the possible land-use changes, due to tourism development, intensification of irrigated farming and biomass production, as well as climate change. A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Info...

  19. Development of a catchment/landscape erosion prediction model (MINErosion 4) for post-mining landscapes in Central Queensland, Australia.

    Science.gov (United States)

    Khalifa, Ashraf; Yu, Bofu; Ghadiri, Hossain; Carroll, Chris; So, Hwat-Bing

    2010-05-01

    industry further require a tool that enables them to predict and manage the impact of on-site and offsite discharges from storm events and to identify the areas of high erosion risk. Work is in progress to develop a user friendly package MINErosion 4 by combining the hillslope model MINErosion 3 with ARC-GIS 9, which allows the prediction of sediment losses and deposition from proposed post-mining landscapes (designed based on criteria derived from MINErosion3) subjected to rainstorms with known recurrence intervals for selected locations. An option is provided to derive mean annual soil loss from these catchments and landscapes. Soil samples were collected from various locations on 6 minesites to provide a measure of variability in erodibilities across a minesite. The model was validated against 9 years of catchment data collected from previous projects and the agreement between predicted (Y) and measured (X) soil losses are good with regression equations of Y = 0.919 X (R2 = 0.81) for individual rainstorms, and Y= 1.473 X (R2 = 0.726) for average annual soil loss.

  20. Cement stress predictions after anatomic total shoulder arthroplasty are correlated with preoperative glenoid bone quality.

    Science.gov (United States)

    Terrier, Alexandre; Obrist, Raphaël; Becce, Fabio; Farron, Alain

    2017-09-01

    We hypothesized that biomechanical parameters typically associated with glenoid implant failure after anatomic total shoulder arthroplasty (aTSA) would be correlated with preoperative glenoid bone quality. We developed an objective automated method to quantify preoperative glenoid bone quality in different volumes of interest (VOIs): cortical bone, subchondral cortical plate, subchondral bone after reaming, subchondral trabecular bone, and successive layers of trabecular bone. Average computed tomography (CT) numbers (in Hounsfield units [HU]) were measured in each VOI from preoperative CT scans. In parallel, we built patient-specific finite element models of simulated aTSAs to predict cement stress, bone-cement interfacial stress, and bone strain around the glenoid implant. CT measurements and finite element predictions were obtained for 20 patients undergoing aTSA for primary glenohumeral osteoarthritis. We tested all linear correlations between preoperative patient characteristics (age, sex, height, weight, glenoid bone quality) and biomechanical predictions (cement stress, bone-cement interfacial stress, bone strain). Average CT numbers gradually decreased from cortical (717 HU) to subchondral and trabecular (362 HU) bone. Peak cement stress (4-10 MPa) was located within the keel hole, above the keel, or behind the glenoid implant backside. Cement stress, bone-cement interfacial stress, and bone strain were strongly negatively correlated with preoperative glenoid bone quality, particularly in VOIs behind the implant backside (subchondral trabecular bone) but also in deeper trabecular VOIs. Our numerical study suggests that preoperative glenoid bone quality is an important parameter to consider in aTSA, which may be associated with aseptic loosening of the glenoid implant. These initial results should now be confronted with clinical and radiologic outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc

  1. Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury: Implications for Superficial Erosion.

    Science.gov (United States)

    Franck, Grégory; Mawson, Thomas L; Folco, Eduardo J; Molinaro, Roberto; Ruvkun, Victoria; Engelbertsen, Daniel; Liu, Xin; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K; Michel, Jean-Baptiste; Nicoletti, Antonino; Lichtman, Andrew; Wagner, Denisa; Croce, Kevin J; Libby, Peter

    2018-06-22

    Neutrophils likely contribute to the thrombotic complications of human atheromata. In particular, neutrophil extracellular traps (NETs) could exacerbate local inflammation and amplify and propagate arterial intimal injury and thrombosis. PAD4 (peptidyl arginine deiminase 4) participates in NET formation, but an understanding of this enzyme's role in atherothrombosis remains scant. This study tested the hypothesis that PAD4 and NETs influence experimental atherogenesis and in processes implicated in superficial erosion, a form of plaque complication we previously associated with NETs. Bone marrow chimeric Ldlr deficient mice reconstituted with either wild-type or PAD4-deficient cells underwent studies that assessed atheroma formation or procedures designed to probe mechanisms related to superficial erosion. PAD4 deficiency neither retarded fatty streak formation nor reduced plaque size or inflammation in bone marrow chimeric mice that consumed an atherogenic diet. In contrast, either a PAD4 deficiency in bone marrow-derived cells or administration of DNaseI to disrupt NETs decreased the extent of arterial intimal injury in mice with arterial lesions tailored to recapitulate characteristics of human atheroma complicated by erosion. These results indicate that PAD4 from bone marrow-derived cells and NETs do not influence chronic experimental atherogenesis, but participate causally in acute thrombotic complications of intimal lesions that recapitulate features of superficial erosion. © 2018 American Heart Association, Inc.

  2. Advances in modeling soil erosion after disturbance on rangelands

    Science.gov (United States)

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  3. 75 FR 75961 - Notice of Implementation of the Wind Erosion Prediction System for Soil Erodibility System...

    Science.gov (United States)

    2010-12-07

    ... implementation of the WEPS system does not affect the Highly Erodible Map Unit List contained in the NRCS Field Office Technical Guide as of January 1, 1990. This 1990 list will continue to be used for all erodibility... plant damage, and predict PM-10 emissions when wind speeds exceed the erosion threshold. The WEPS model...

  4. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Science.gov (United States)

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  5. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  6. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A

    2017-01-01

    to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive...... and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part...... selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency...

  7. Soil erosion assessment on hillslope of GCE using RUSLE model

    Science.gov (United States)

    Islam, Md. Rabiul; Jaafar, Wan Zurina Wan; Hin, Lai Sai; Osman, Normaniza; Din, Moktar Aziz Mohd; Zuki, Fathiah Mohamed; Srivastava, Prashant; Islam, Tanvir; Adham, Md. Ibrahim

    2018-06-01

    A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of 8× 8 and 5× 5 m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and 3.925 t ha^{-1 } yr^{-1} compared to 9.367 to 34.496 t ha^{-1} yr^{-1 } range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than 10 t ha^{-1 } yr^{-1} whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and 50 t ha^{-1 } yr^{-1}.

  8. Bone scintigraphy predicts the risk of spinal cord compression in hormone-refractory prostate cancer

    International Nuclear Information System (INIS)

    Soerdjbalie-Maikoe, Vidija; Pelger, Rob C.M.; Nijeholt, Guus A.B. Lycklama; Arndt, Jan-Willem; Zwinderman, Aeilko H.; Bril, Herman; Papapoulos, Socrates E.; Hamdy, Neveen A.T.

    2004-01-01

    In prostate cancer, confirmation of metastatic involvement of the skeleton has traditionally been achieved by bone scintigraphy, although the widespread availability of prostate-specific antigen (PSA) measurements has tended to eliminate the need for this investigation. The potential of bone scintigraphy to predict skeletal-related events, particularly spinal cord compression, after the onset of hormone refractoriness has never been investigated. The aim of this study was to establish whether a new method of evaluating bone scintigraphy would offer a better predictive value for this complication of the metastatic process than is achieved with currently available grading methods. We studied 84 patients with hormone-refractory prostate cancer who had undergone bone scintigraphy at the time of hormone escape. Tumour grading and parameters of tumour load (PSA and alkaline phosphatase activity) were available in all patients. The incidence of spinal cord compression was documented and all patients were followed up until death. Bone scintigraphy was evaluated by the conventional Soloway grading and by an additional analysis determining total or partial involvement of individual vertebrae. In contrast to the Soloway method, the new method was able to predict spinal cord compression at various spinal levels. Our data suggest that there is still a place for bone scintigraphy in the management of hormone-refractory prostate cancer. (orig.)

  9. Three procedures for estimating erosion from construction areas

    International Nuclear Information System (INIS)

    Abt, S.R.; Ruff, J.F.

    1978-01-01

    Erosion from many mining and construction sites can lead to serious environmental pollution problems. Therefore, erosion management plans must be developed in order that the engineer may implement measures to control or eliminate excessive soil losses. To properly implement a management program, it is necessary to estimate potential soil losses from the time the project begins to beyond project completion. Three methodologies are presented which project the estimated soil losses due to sheet or rill erosion of water and are applicable to mining and construction areas. Furthermore, the three methods described are intended as indicators of the state-of-the-art in water erosion prediction. The procedures herein do not account for gully erosion, snowmelt erosion, wind erosion, freeze-thaw erosion or extensive flooding

  10. Temperature prediction in high speed bone grinding using motor PWM signal.

    Science.gov (United States)

    Tai, Bruce L; Zhang, Lihui; Wang, Anthony C; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J

    2013-10-01

    This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  12. Estimated erosion rate at the SRP burial ground

    International Nuclear Information System (INIS)

    Horton, J.H.; Wilhite, E.L.

    1978-04-01

    The rate of soil erosion at the Savannah River Plant (SRP) burial ground can be calculated by means of the universal soil loss equation. Erosion rates estimated by the equation are more suitable for long-term prediction than those which could be measured with a reasonable effort in field studies. The predicted erosion rate at the SRP burial ground ranges from 0.0007 cm/year under stable forest cover to 0.38 cm/year if farmed with cultivated crops. These values correspond to 170,000 and 320 years, respectively, to expose waste buried 4 ft deep

  13. Numerical and experimental investigations on cavitation erosion

    Science.gov (United States)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  14. KwaZulu-Natal coastal erosion events of 2006/2007 and 2011: A predictive tool?

    OpenAIRE

    Alan Smith; Lisa A. Guastella; Andrew A. Mather; Simon C. Bundy; Ivan D. Haigh

    2013-01-01

    Severe coastal erosion occurred along the KwaZulu-Natal coastline between mid-May and November 2011. Analysis of this erosion event and comparison with previous coastal erosion events in 2006/2007 offered the opportunity to extend the understanding of the time and place of coastal erosion strikes. The swells that drove the erosion hotspots of the 2011 erosion season were relatively low (significant wave heights were between 2 m and 4.5 m) but of long duration. Although swell height was import...

  15. Soil erodibility for water erosion: A perspective and Chinese experiences

    Science.gov (United States)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  16. Wind erosion modelling in a Sahelian environment

    NARCIS (Netherlands)

    Faye-Visser, S.M.; Sterk, G.; Karssenberg, D.

    2005-01-01

    In the Sahel field observations of wind-blown mass transport often show considerable spatial variation related to the spatial variation of the wind erosion controlling parameters, e.g. soil crust and vegetation cover. A model, used to predict spatial variation in wind erosion and deposition is a

  17. Assessing soil erosion risk in the Tillabery landscape, Niger ...

    African Journals Online (AJOL)

    The results show that soil erosion output scenarios predict greater soil erosion in the study area from 2070 onwards. They suggest that human disturbance and topographic factors are the main impact factors in the affected areas. Key words: Tillabéry landscape (Niger), sheet and rill erosion modelling, data mining.

  18. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models.

    Science.gov (United States)

    Vieira, D C S; Serpa, D; Nunes, J P C; Prats, S A; Neves, R; Keizer, J J

    2018-08-01

    Wildfires have become a recurrent threat for many Mediterranean forest ecosystems. The characteristics of the Mediterranean climate, with its warm and dry summers and mild and wet winters, make this a region prone to wildfire occurrence as well as to post-fire soil erosion. This threat is expected to be aggravated in the future due to climate change and land management practices and planning. The wide recognition of wildfires as a driver for runoff and erosion in burnt forest areas has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire management operations to mitigate these responses. In this study, the effectiveness of two post-fire treatments (hydromulch and natural pine needle mulch) in reducing post-fire runoff and soil erosion was evaluated against control conditions (i.e. untreated conditions), at different spatial scales. The main objective of this study was to use field data to evaluate the ability of different erosion models: (i) empirical (RUSLE), (ii) semi-empirical (MMF), and (iii) physically-based (PESERA), to predict the hydrological and erosive response as well as the effectiveness of different mulching techniques in fire-affected areas. The results of this study showed that all three models were reasonably able to reproduce the hydrological and erosive processes occurring in burned forest areas. In addition, it was demonstrated that the models can be calibrated at a small spatial scale (0.5 m 2 ) but provide accurate results at greater spatial scales (10 m 2 ). From this work, the RUSLE model seems to be ideal for fast and simple applications (i.e. prioritization of areas-at-risk) mainly due to its simplicity and reduced data requirements. On the other hand, the more complex MMF and PESERA models would be valuable as a base of a possible tool for assessing the risk of water contamination in fire-affected water bodies and

  19. Radiographic study of bone changes on TMJ arthrosis

    International Nuclear Information System (INIS)

    You, Dong Soo

    1982-01-01

    The author analyzed the morphologic changes of bone structures from 1256 radiographs of 314 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral projection and orthopantomography. The interrelations of the bone changes and clinical symptoms were examined. Also, the positional relationships of condylar head, articular fossa and articular eminence in the mouth open and closed state were observed in the patients with bone changes. The results were as follows; 1. The most frequent bone change in the TMJ arthrosis was eburnation of cortical bone (35.64%) of total cases. Then came bone surface erosion and localized radiolucency (26.18%), marginal proliferation (9.7%) and flattening of articular surface (9.58%) in that order. 2. The most frequent site of bone change was articular eminence (41.70%). The came condylar head (21.09%) and articular fossa (20.73%) in that order. 3. In the patients with bone changes, their clinical symptoms were pain (51.55%), clicking sound during mandibular movement (37.71%) and limited mandibular movement (10.73%). In the patients complaining pain, their radiographs showed eburnation of cortical bone (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening in the (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening of articular surface (10.68%). 4. The condylar positional changes in the TMJ arthrosis patients with bone changes were as follows: in the mouth closed state, there were the widening of joint space in 624 cases (50.00%), the narrowing of joint space in 543 cases (43.47%) and bone on bone relationships in 82 cases (6.57%). In the mouth open state, there were forward positioning of the condyle in 332 cases (28.55%), limitation of movement in 332 cases (28.55%), bone on bone relationships in 248 cases (21.31%) and downward positioning of condyle in 217 cases (18.66%). Bone on bone relationships in 248 cases (21.32%) and downward positioning of

  20. Radiographic study of bone changes on TMJ arthrosis

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Dept. of Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1982-11-15

    The author analyzed the morphologic changes of bone structures from 1256 radiographs of 314 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral projection and orthopantomography. The interrelations of the bone changes and clinical symptoms were examined. Also, the positional relationships of condylar head, articular fossa and articular eminence in the mouth open and closed state were observed in the patients with bone changes. The results were as follows; 1. The most frequent bone change in the TMJ arthrosis was eburnation of cortical bone (35.64%) of total cases. Then came bone surface erosion and localized radiolucency (26.18%), marginal proliferation (9.7%) and flattening of articular surface (9.58%) in that order. 2. The most frequent site of bone change was articular eminence (41.70%). The came condylar head (21.09%) and articular fossa (20.73%) in that order. 3. In the patients with bone changes, their clinical symptoms were pain (51.55%), clicking sound during mandibular movement (37.71%) and limited mandibular movement (10.73%). In the patients complaining pain, their radiographs showed eburnation of cortical bone (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening in the (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening of articular surface (10.68%). 4. The condylar positional changes in the TMJ arthrosis patients with bone changes were as follows: in the mouth closed state, there were the widening of joint space in 624 cases (50.00%), the narrowing of joint space in 543 cases (43.47%) and bone on bone relationships in 82 cases (6.57%). In the mouth open state, there were forward positioning of the condyle in 332 cases (28.55%), limitation of movement in 332 cases (28.55%), bone on bone relationships in 248 cases (21.31%) and downward positioning of condyle in 217 cases (18.66%). Bone on bone relationships in 248 cases (21.32%) and downward positioning of

  1. EVALUATION OF SOIL EROSION IN REGHIN HILLS USING THE USLE METHOD

    Directory of Open Access Journals (Sweden)

    J. SZILAGYI

    2016-03-01

    Full Text Available Soil erosion is one of the main causes of degradation of large areas of agricultural land, causing great economic loss by removing fertile soil. The Universal Soil Loss Equation (USLE predicts the long term average annual rate of erosion on a field slope based on rainfall pattern, soil type, topography, crop system and management practices but does not however predict the soil loss resulting from gully erosion.

  2. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values.

    Science.gov (United States)

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were generated. Based on the consensus of the two observers, 15.6% of sites were of low bone density, 47.9% were of intermediate density, and 36.5% were of high density. Receiver-operating characteristic analysis showed that CBCT intensity values had a high predictive power for predicting high density sites (area under the curve [AUC] =0.94, P < 0.005) and intermediate density sites (AUC = 0.81, P < 0.005). The best cut-off value for intensity to predict intermediate density sites was 218 (sensitivity = 0.77 and specificity = 0.76) and the best cut-off value for intensity to predict high density sites was 403 (sensitivity = 0.93 and specificity = 0.77). CBCT intensity values are considered useful for predicting bone density at posterior mandibular implant sites.

  3. Validation of adult height prediction based on automated bone age determination in the Paris Longitudinal Study of healthy children

    Energy Technology Data Exchange (ETDEWEB)

    Martin, David D. [Tuebingen University Children' s Hospital, Tuebingen (Germany); Filderklinik, Filderstadt (Germany); Schittenhelm, Jan [Tuebingen University Children' s Hospital, Tuebingen (Germany); Thodberg, Hans Henrik [Visiana, Holte (Denmark)

    2016-02-15

    An adult height prediction model based on automated determination of bone age was developed and validated in two studies from Zurich, Switzerland. Varied living conditions and genetic backgrounds might make the model less accurate. To validate the adult height prediction model on children from another geographical location. We included 51 boys and 58 girls from the Paris Longitudinal Study of children born 1953 to 1958. Radiographs were obtained once or twice a year in these children from birth to age 18. Bone age was determined using the BoneXpert method. Radiographs in children with bone age greater than 6 years were considered, in total 1,124 images. The root mean square deviation between the predicted and the observed adult height was 2.8 cm for boys in the bone age range 6-15 years and 3.1 cm for girls in the bone age range 6-13 years. The bias (the average signed difference) was zero, except for girls below bone age 12, where the predictions were 0.8 cm too low. The accuracy of the BoneXpert method in terms of root mean square error was as predicted by the model, i.e. in line with what was observed in the Zurich studies. (orig.)

  4. Validation of adult height prediction based on automated bone age determination in the Paris Longitudinal Study of healthy children

    International Nuclear Information System (INIS)

    Martin, David D.; Schittenhelm, Jan; Thodberg, Hans Henrik

    2016-01-01

    An adult height prediction model based on automated determination of bone age was developed and validated in two studies from Zurich, Switzerland. Varied living conditions and genetic backgrounds might make the model less accurate. To validate the adult height prediction model on children from another geographical location. We included 51 boys and 58 girls from the Paris Longitudinal Study of children born 1953 to 1958. Radiographs were obtained once or twice a year in these children from birth to age 18. Bone age was determined using the BoneXpert method. Radiographs in children with bone age greater than 6 years were considered, in total 1,124 images. The root mean square deviation between the predicted and the observed adult height was 2.8 cm for boys in the bone age range 6-15 years and 3.1 cm for girls in the bone age range 6-13 years. The bias (the average signed difference) was zero, except for girls below bone age 12, where the predictions were 0.8 cm too low. The accuracy of the BoneXpert method in terms of root mean square error was as predicted by the model, i.e. in line with what was observed in the Zurich studies. (orig.)

  5. Developing relations between soil erodibilty factors in two different soil erosion prediction models (USLE/RUSLE and wWEPP) and fludization bed technique for mechanical soil cohesion

    Science.gov (United States)

    Soil erosion models are valuable analysis tools that scientists and engineers use to examine observed data sets and predict the effects of possible future soil loss. In the area of water erosion, a variety of modeling technologies are available, ranging from solely qualitative models, to merely quan...

  6. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    Science.gov (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  7. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  8. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Science.gov (United States)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  9. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  10. Soil erosion assessment on hillslope of GCE using RUSLE model

    Indian Academy of Sciences (India)

    Md. Rabiul Islam

    2018-05-22

    May 22, 2018 ... A vegetation density available on these plots is measured ... Finally, erosion prediction is computed based on the RUSLE model in ... which is lower compared to the C value from the soil erosion ..... Comparison of rainfall erosivity factor (R) value. ...... Vorovencii I and Muntean D 2012 Evaluation of super-.

  11. Use of dietary Ca and P and photon absorptiometry to predict mechanical properties of bone in swine

    International Nuclear Information System (INIS)

    Crenshaw, T.D.; Golz, D.I.; Raab, D.M.; Smith, E.L.

    1986-01-01

    Photjon absorptiometry provides a noninvasive method to determine bone mineral content (BMC) in patients, yet the relationship of BMC and mechanical properties of bone has not been established. To establish the relationship between mechanical properties of bone and BMC, the third metatarsal bones (MT) from 72 growing pigs (23.4 +- 2.5 kg) were collected after either 5, 10 or 15 weeks (T1, T2 and T3) of being fed 1 of 9 treatments. A central composite response surface design was utilized to provide a range of Ca (0.4 to 1.2%) and P (0.4 to 1.2%) levels. Using photon absorptiometry, BMC was predicted from four scans on the midshaft of excised bone, mechanical tests (3-point flexure test) were made and the bone was ashed. BMC can predict force (r 2 = 0.89) and ash (r 2 = 0.97);however, interactions with Ca, P and T were detected. Stress was not predicted reliably with BMC (r 2 = 0.43), ash (r 2 = 0.40) or dietary Ca and P (r 2 = 0.41)

  12. RANK, RANKL and osteoprotegerin in arthritic bone loss

    Directory of Open Access Journals (Sweden)

    M.C. Bezerra

    2005-02-01

    Full Text Available Rheumatoid arthritis is characterized by the presence of inflammatory synovitis and destruction of joint cartilage and bone. Tissue proteinases released by synovia, chondrocytes and pannus can cause cartilage destruction and cytokine-activated osteoclasts have been implicated in bone erosions. Rheumatoid arthritis synovial tissues produce a variety of cytokines and growth factors that induce monocyte differentiation to osteoclasts and their proliferation, activation and longer survival in tissues. More recently, a major role in bone erosion has been attributed to the receptor activator of nuclear factor kappa B ligand (RANKL released by activated lymphocytes and osteoblasts. In fact, osteoclasts are markedly activated after RANKL binding to the cognate RANK expressed on the surface of these cells. RANKL expression can be upregulated by bone-resorbing factors such as glucocorticoids, vitamin D3, interleukin 1 (IL-1, IL-6, IL-11, IL-17, tumor necrosis factor-alpha, prostaglandin E2, or parathyroid hormone-related peptide. Supporting this idea, inhibition of RANKL by osteoprotegerin, a natural soluble RANKL receptor, prevents bone loss in experimental models. Tumor growth factor-ß released from bone during active bone resorption has been suggested as one feedback mechanism for upregulating osteoprotegerin and estrogen can increase its production on osteoblasts. Modulation of these systems provides the opportunity to inhibit bone loss and deformity in chronic arthritis.

  13. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  14. Bone scintigraphy compared to MRI and ultrasound in the early diagnosis of arthritis

    International Nuclear Information System (INIS)

    Sandrock, D.

    2006-01-01

    Chronic inflammatory arthritis is recognized specifically by bone erosions, caused by characteristic pannus tissue. In the finger joints dynamic low-Tesla MRI is nearly double but not completely sensitive in the detection of erosions than conventional radiography, sonography takes an intermediate position. Less specific signs of synovitis and tenosynovitis are shown with high sensitivity by both 3(2)-phase bone scintigraphy and ultrasound, MRI is less sensitive in this respect. However, standard situation of inflammation in bone scintigraphy - positive finding in early as well as late phase - is of surprisingly low sensitivity, any singular finding in the early or late phase has to be regarded as positive. Specificity of these singular findings is nevertheless sufficiently high, acute inflammatory joint changes and even erosions are also seen with MRI in obviously healthy persons. Only 2-phase bone scintigraphy is easily able to present a simultaneous survey of all joints of the body. For this reason 2-phase bone scintigraphy is most suitable for exclusion but also for primary diagnosis of disease, specification must be done afterwards by other imaging modalities or by laboratory findings. (orig.)

  15. Runoff erosion

    OpenAIRE

    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  16. Airphoto analysis of erosion control practices

    Science.gov (United States)

    Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.

    1980-01-01

    The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. In this study, airphoto analysis of color and color infrared 70 mm photography at a scale of 1:60,000 was used to determine the erosion control practice factor in the USLE. Information about contour tillage, contour strip cropping, and grass waterways was obtained from aerial photography for Pheasant Branch Creek watershed in Dane County, Wisconsin.

  17. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  18. Evaluating water erosion prediction project model using Cesium-137-derived spatial soil redistribution data

    Science.gov (United States)

    The lack of spatial soil erosion data has been a major constraint on the refinement and application of physically based erosion models. Spatially distributed models can only be thoroughly validated with distributed erosion data. The fallout cesium-137 has been widely used to generate spatial soil re...

  19. Experiment of cavitation erosion at the exit of a long orifice

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yoshinori; Murase, Michio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    We performed experiments to clarify mechanism of cavitation erosion and to predict cavitation erosion rate at the exit of a long orifice equipped at the chemical and volume control system in a pressurized water reactor (PWR). In order to find this mechanism, we used a high speed video camera. As the result, we observed bubble collapses near the exit of the orifice when flow condition was oscillating. So the bubble collapses due to the oscillation might cause the first stage erosion at the exit of the orifice. Using the orifice which had the cone-shaped exit, we observed that bubbles collapsed near the exit and then they collapsed at the upstream like a chain reaction. So this bubble collapse mechanism could be explained as follows: shock wave was generated by the bubble collapse near the exit, then it propagated upwards, consequently it caused the bubble collapse at the upstream. And we predicted erosion rate by evaluating the effect of the velocity and comparing the erosion resistance between the test speciment (aluminum) and the plant material (stainless steel) by means of vibratory tests. We compared the predicted erosion rate with that of the average value estimated from plant investigation, then we examined the applicability of these method to the plant evaluations. (author)

  20. Radiographic study of bone deformans on charged condylar head position in TMJ arthrosis

    International Nuclear Information System (INIS)

    You, Dong Soo

    1983-01-01

    The author analyzed the morphologic changes of bone structure from 848 radiographics (424 joints) of 212 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral transcranial projection and ortho pantomography. The interrelation of the bone changes and condylar head positions the results were as follows: 1. In the 212 patients with TMJ arthrosis, 210 patients (99.05%) show the condylar positional changes. Among them, 187 patients (89.05%) show the bone changes. 2. In TMJ arthrosis patients with bone changes, 108 patients (57.75%) show both the condylar positional changes and bone changes. 66 patients show the condylar positional changes bilaterally and bone changes unilaterally. On the other hand, 11 patients (5.88%) show the condylar positional changes unilaterally and bone change bilaterally. 3. The bone changes in the TMJ arthrosis patients with the condylar positional changes were as follows: There were the flattening of articular surface in 103 cases (26.55%) the erosion in 99 cases (25.52%), and the erosion in 88 cases (22.68%). There were not much differences among the three types of bone changes. And the deformity in 70 cases (18.04%), the sclerosis in 22 cases (5.67%), the marginal proliferation in 6 cases (1.55%) were seen. 4. The regions of bone changes in TMJ arthrosis patients with condylar positional changes were as follows: They occurred at the condyle head (51.04%), the articular eminence (39.20%) and the articular fossa (9.60%) in that order. The condylar positional changes and bone changes according to the regions were as follows: a) In the bone changes at the condylar head, the flattening (34.63%) was a most frequent finding and the deformity (27.63%) the erosion (34.63%) in the order. In the condylar positional changes, the downward positioning of condyle (41.44%) was a most frequent finding in the mouth closed state and the restricted movement within the articular fossa (35.46%) in the mouth open state. b) In

  1. Radiographic study of bone deformans on charged condylar head position in TMJ arthrosis

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Department of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1983-11-15

    The author analyzed the morphologic changes of bone structure from 848 radiographics (424 joints) of 212 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral transcranial projection and ortho pantomography. The interrelation of the bone changes and condylar head positions the results were as follows: 1. In the 212 patients with TMJ arthrosis, 210 patients (99.05%) show the condylar positional changes. Among them, 187 patients (89.05%) show the bone changes. 2. In TMJ arthrosis patients with bone changes, 108 patients (57.75%) show both the condylar positional changes and bone changes. 66 patients show the condylar positional changes bilaterally and bone changes unilaterally. On the other hand, 11 patients (5.88%) show the condylar positional changes unilaterally and bone change bilaterally. 3. The bone changes in the TMJ arthrosis patients with the condylar positional changes were as follows: There were the flattening of articular surface in 103 cases (26.55%) the erosion in 99 cases (25.52%), and the erosion in 88 cases (22.68%). There were not much differences among the three types of bone changes. And the deformity in 70 cases (18.04%), the sclerosis in 22 cases (5.67%), the marginal proliferation in 6 cases (1.55%) were seen. 4. The regions of bone changes in TMJ arthrosis patients with condylar positional changes were as follows: They occurred at the condyle head (51.04%), the articular eminence (39.20%) and the articular fossa (9.60%) in that order. The condylar positional changes and bone changes according to the regions were as follows: a) In the bone changes at the condylar head, the flattening (34.63%) was a most frequent finding and the deformity (27.63%) the erosion (34.63%) in the order. In the condylar positional changes, the downward positioning of condyle (41.44%) was a most frequent finding in the mouth closed state and the restricted movement within the articular fossa (35.46%) in the mouth open state. b) In

  2. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    Science.gov (United States)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  3. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    Science.gov (United States)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  4. Buffer erosion in dilute groundwater

    International Nuclear Information System (INIS)

    Schatz, T.; Kanerva, N.; Martikainen, J.; Sane, P.; Olin, M.; Seppaelae, A.; Koskinen, K.

    2013-08-01

    One scenario of interest for repository safety assessment involves the loss of bentonite buffer material in contact with dilute groundwater flowing through a transmissive fracture interface. In order to examine the extrusion/erosion behavior of bentonite buffer material under such circumstances, a series of experiments were performed in a flow-through, 1 mm aperture, artificial fracture system. These experiments covered a range of solution chemistry (salt concentration and composition), material composition (sodium montmorillonite and admixtures with calcium montmorillonite), and flow velocity conditions. No erosion was observed for sodium montmorillonite against solution compositions from 0.5 g/L to 10 g/L NaCl. No erosion was observed for 50/50 calcium/sodium montmorillonite against 0.5 g/L NaCl. Erosion was observed for both sodium montmorillonite and 50/50 calcium/sodium montmorillonite against solution compositions ≤ 0.25 g/L NaCl. The calculated erosion rates for the tests with the highest levels of measured erosion, i.e., the tests run under the most dilute conditions (ionic strength (IS) < ∼1 mM), were well-correlated to flow velocity, whereas the calculated erosion rates for the tests with lower levels of measured erosion, i.e., the tests run under somewhat less dilute conditions (∼1 mM < IS < ∼4 mM), were not similarly correlated indicating that material and solution composition can significantly affect erosion rates. In every experiment, both erosive and non-erosive, emplaced buffer material extruded into the fracture and was observed to be impermeable to water flowing in the fracture effectively forming an extended diffusive barrier around the intersecting fracture/buffer interface. Additionally, a model which was developed previously to predict the rate of erosion of bentonite buffer material in low ionic strength water in rock fracture environments was applied to three different cases: sodium montmorillonite expansion in a vertical tube, a

  5. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  6. A history of wind erosion prediction models in the United States Department of Agriculture Prior to the Wind Erosion Prediction System

    Science.gov (United States)

    The Great Plains experienced an influx of settlers in the late 1850s to 1900. Periodic drought was hard on both settlers and the soil and caused severe wind erosion. The period known as the Dirty Thirties, 1931 to 1939, produced many severe windstorms, and the resulting dusty sky over Washington, D....

  7. A field method for soil erosion measurements in agricultural and natural lands

    Science.gov (United States)

    Y.P. Hsieh; K.T. Grant; G.C. Bugna

    2009-01-01

    Soil erosion is one of the most important watershed processes in nature, yet quantifying it under field conditions remains a challenge. The lack of soil erosion field data is a major factor hindering our ability to predict soil erosion in a watershed. We present here the development of a simple and sensitive field method that quantifies soil erosion and the resulting...

  8. Preliminary study for predicting better methotrexate efficacy in Japanese patients with rheumatoid arthritis

    OpenAIRE

    Hashiguchi, Masayuki; Tsuru, Tomomi; Miyawaki, Kumika; Suzaki, Midori; Hakamata, Jun; Shimizu, Mikiko; Irie, Shin; Mochizuki, Mayumi

    2016-01-01

    Background Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic inflammatory status, joint destruction, disability, and pain. Methotrexate (MTX) has been confirmed to reduce disease activity and delay or stabilize the development of bone erosions. However, major drawbacks are that patients show great interindividual variability in response to MTX and the unpredictable occurrence of side effects. A strategy for personalized MTX treatment to predict its efficacy a...

  9. Use of Radiographic Densitometry to Predict the Bone Healing Index in Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    A Saw

    2008-04-01

    Full Text Available Bone lengthening with distraction osteogenesis involves prolonged application of an external fixator frame. Qualitative and quantitative evaluation of callus has been described using various imaging modalities but there is no simple reliable and readily available method. This study aims to investigate the use of a densitometer to analyze plain radiographic images and correlate them with the rate of new bone formation as represented by the bone healing index. A total of 34 bone lengthening procedures in 29 patients were retrospectively reviewed. We used an X-Rite 301 densitometer to measure densities of new callus on plain radiographs taken at 4 and 8 weeks after surgery. Patients aged below 16y had significantly lower BHIs indicating faster bone healing and shorter duration of treatment. The ratio of radiographic densities between centre and edge of the new bone measured from plain radiographs taken at 8 weeks correlated positively with the eventual BHI of the patient. This method provides a simple and easy way to predict the rate of bone healing at an early stage of treatment and may also allow remedial action to be taken for those with poor progress in bone formation.

  10. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    Science.gov (United States)

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Modeling soil erosion and transport on forest landscape

    Science.gov (United States)

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  12. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.

    Science.gov (United States)

    Feldmann, Arne; Gavaghan, Kate; Stebinger, Manuel; Williamson, Tom; Weber, Stefan; Zysset, Philippe

    2017-09-01

    Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.

  13. Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model

    Science.gov (United States)

    Salsabilla, A.; Kusratmoko, E.

    2017-07-01

    Changes in land use watershed led to environmental degradation. Estimated loss of soil erosion is often difficult due to some factors such as topography, land use, climate and human activities. This study aims to predict soil erosion hazard and sediment yield using the Soil and Water Assessment Tools (SWAT) hydrological model. The SWAT was chosen because it can simulate the model with limited data. The study area is Komering watershed (806,001 Ha) in South Sumatera Province. There are two factors land management intervention: 1) land with agriculture, and 2) land with cultivation. These factors selected in accordance with the regulations of spatial plan area. Application of the SWAT demonstrated that the model can predict surface runoff, soil erosion loss and sediment yield. The erosion risk for each watershed can be classified and predicted its changes based on the scenarios which arranged. In this paper, we also discussed the relationship between the distribution of erosion risk and watershed's characteristics in a spatial perspective.

  14. Instrumentation and methods evaluations for shallow land burial of waste materials: water erosion

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Murphy, E.M.; Childs, S.W.

    1981-08-01

    The erosion of geologic materials by water at shallow-land hazardous waste disposal sites can compromise waste containment. Erosion of protective soil from these sites may enhance waste transport to the biosphere through water, air, and biologic pathways. The purpose of this study was to review current methods of evaluating soil erosion and to recommend methods for use at shallow-land, hazardous waste burial sites. The basic principles of erosion control are: minimize raindrop impact on the soil surface; minimize runoff quantity; minimize runoff velocity; and maximize the soil's resistance to erosion. Generally soil erosion can be controlled when these principles are successfully applied at waste disposal sites. However, these erosion control practices may jeopardize waste containment. Typical erosion control practices may enhance waste transport by increasing subsurface moisture movement and biologic uptake of hazardous wastes. A two part monitoring program is recommended for US Department of Energy (DOE) hazardous waste disposal sites. The monitoring programs and associated measurement methods are designed to provide baseline data permitting analysis and prediction of long term erosion hazards at disposal sites. These two monitoring programs are: (1) site reconnaissance and tracking; and (2) site instrumentation. Some potential waste transport problems arising from erosion control practices are identified. This report summarizes current literature regarding water erosion prediction and control

  15. Development of a mobile application based on RUSLE model to predict erosion in olive groves

    Science.gov (United States)

    Marín Moreno, Víctor Javier; Redel, María Dolores; Taguas, Encarnación V.

    2017-04-01

    Apache Cordova, which are very efficient to facilitate its implementation in most of mobile platforms. The first evaluations from farmers and technicians are also presented in order to improve the first version. References: - Areal, F.J., Riesgo, L., 2014. Farmers' views on the future of olive farming in Andalusia, Spain. Land Use Policy 36 (2014) 543- 553. - CAPyDR, 2016. Aforo de producción de olivar en Andalucía, Campaña 2016-2017. Consejería de Agricultura, Pesca y Desarrollo Rural - Junta de Andalucía. Regional Government of Andalusia, Seville (2016) (Spain) - FAOSTAT -2016. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS STATISTICS. Accessed at: http://www.fao.org/faostat - Franco, J.A., 2011. Análisis de los factores de participación en programas agroambientales de lucha contra la erosión en el olivar. ITEA 107 (3), 169-183. - Renard, K. G., Foster, G. R., Wessies, G. A., Mccool, D. K., and Yoder, D. C., 1997. Predicting Soil Ero¬sion by Water: A Guide to Conservation Planning with the Revised Universal LossEquation (RUSLE). USDA Agriculture Handbook, No. 703. - Taguas, E.V., Gómez, J.A., 2015. Vulnerability of olive orchards under the current CAP (Common Agricultural Policy) regulations on soil erosion: a study case in Southern Spain. Land Use Policy, 42, 683-694

  16. Location and incidence of localized juxta-articular demineralizations and erosions at the wrist in early rheumatoid arthritis

    International Nuclear Information System (INIS)

    Fischer, E.

    1988-01-01

    In early rheumatoid arthritis the location and incidence of localized juxta-articular demineralizations and erosions were investigated at 53 points of the wrist. On the level of the metacarpal bases, the distal and proximal row of the carpal bones more changes are seen in the oblique vd. and the lateral view than in the dv. view. At the distal bones of the forearm more changes are seen at the radius than at the ulnar styloid. The most often changes at all occur at the volar middle third of the triquetrum in the oblique view and at the distal volar articular facet of the scaphoid in the lateral view. Close relations between localized juxta-articular demineralizations and erosions do not exist. If the early bone changes at the wrist in rheumatoid arthritis are to be detected additional oblique and lateral view are prerequisite. (orig.) [de

  17. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [OIC, OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven (Belgium); Noriega, Jorge [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)

    2014-09-15

    This study was performed to determine the efficacy of observers' prediction for the need of bone grafting and presence of perioperative complications on the basis of cone-beam computed tomography (CBCT) and panoramic radiographic (PAN) planning as compared to the surgical outcome. One hundred and eight partially edentulous patients with a need for implant rehabilitation were referred for preoperative imaging. Imaging consisted of PAN and CBCT images. Four observers carried out implant planning using PAN image datasets, and at least one month later, using CBCT image datasets. Based on their own planning, the observers assessed the need for bone graft augmentation as well as complication prediction. The implant length and diameter, the need for bone graft augmentation, and the occurrence of anatomical complications during planning and implant placement were statistically compared. In the 108 patients, 365 implants were installed. Receiver operating characteristic analyses of both PAN and CBCT preoperative planning showed that CBCT performed better than PAN-based planning with respect to the need for bone graft augmentation and perioperative complications. The sensitivity and the specificity of CBCT for implant complications were 96.5% and 90.5%, respectively, and for bone graft augmentation, they were 95.2% and 96.3%, respectively. Significant differences were found between PAN-based planning and the surgery of posterior implant lengths. Our findings indicated that CBCT-based preoperative implant planning enabled treatment planning with a higher degree of prediction and agreement as compared to the surgical standard. In PAN-based surgery, the prediction of implant length was poor.

  18. Methods for assessing mine site rehabilitation design for erosion impact

    International Nuclear Information System (INIS)

    Evans, K. G.

    2000-01-01

    Erosion of rehabilitated mines may result in landform instability, which in turn may result in exposure of encapsulated contaminants, elevated sediment delivery at catchment outlets, and subsequent degradation of downstream water quality. Rehabilitation design can be assessed using erosion and hydrology models calibrated to mine site conditions. Incision rates in containment structures can be quantified using 3-dimensional landform evolution simulation techniques. Sediment delivery at catchment outlets for various landform amelioration techniques can be predicted using process-based and empirical erosion-prediction models and sediment delivery ratios. The predicted sediment delivery can be used to estimate an average annual stream sediment load that can, in turn, be used to assess water quality impacts. Application of these techniques is demonstrated through a case study applied to a proposed rehabilitation design option for the Energy Resources of Australia Ltd (ERA) Ranger Mine in the Northern Territory of Australia. Copyright (2000) CSIRO Australia

  19. Registration-based Bone Morphometry for Shape Analysis of the Bones of the Human Wrist

    Science.gov (United States)

    Joshi, Anand A.; Leahy, Richard M.; Badawi, Ramsey D.; Chaudhari, Abhijit J.

    2015-01-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest l2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized l2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis. PMID:26353369

  20. Ability of One-Dimensional Hairsine-Rose Erosion Model to Predict Sediment Transport over a Soil with Significant Surface Stones

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Sander, G. C.; Parlange, J.-Y.; Heng, B. C. P.; Tromp-van Meerveld, H. J.

    2010-05-01

    Surface stones affect erosion rates by reducing raindrop-driven detachment and protecting the original soil against overland flow induced-hydraulic stress. Numerous studies have shown that the effect of surface stones on erosion depends on both the stone characteristics (e.g., size, distribution) and the soil properties. The aim of this study was (i) to quantify how the stone characteristics can affect the total sediment concentration and the concentrations of the individual size classes, (ii) to test if stones affect preferentially a particular size class within the eroded sediment and (iii) to determine whether the 1D Hairsine-Rose (H-R) erosion model can represent the experimental data. A series of laboratory experiments were conducted using the 2 m × 6 m EPFL erosion flume for a high rainfall intensity (60 mm/h) event on a gentle slope (2.2%). The flume was divided into two identical 1-m wide flumes. This separation was done to allow simultaneous replicate experiments. Experiments were conducted with different configurations and scenarios (stone coverage, size and emplacement). Three coverage proportions (20%, 40%, and 70%), two stone diameters (3-4 and 6-7 cm) and two emplacement types (topsoil and partially embedded) were tested. For each experiment, the total sediment concentration, the concentration for the individual size classes, and the flume discharge were measured. Infiltration rates were measured at different depths and locations. A high resolution laser scanner provided details of the surface change due to erosion during the experiments. This technique allowed us to quantify the spatial distribution of eroded soil and to understand better if sediment transport is 1D or rather 2D over the flumes. The one-dimensional Hairsine-Rose (H-R) erosion model was used to fit the integrated data and to provide estimates of the parameters. The ability of the 1D H-R model to predict the measured sediment concentrations in the presence of stones in the soil matrix

  1. How well does the Post-fire Erosion Risk Management Tool (ERMiT) really work?

    Science.gov (United States)

    Robichaud, Peter; Elliot, William; Lewis, Sarah; Miller, Mary Ellen

    2016-04-01

    The decision of where, when, and how to apply the most effective postfire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) was developed to assist post fire assessment teams identify high erosion risk areas and effectiveness of various mitigation treatments to reduce that risk. ERMiT is a web-based application that uses the Water Erosion Prediction Project (WEPP) technology to estimate erosion, in probabilistic terms, on burned and recovering forest, range, and chaparral lands with and without the application of mitigation treatments. User inputs are processed by ERMiT to combine rain event variability with spatial and temporal variabilities of hillslope burn severity and soil properties which are then used as WEPP inputs. Since 2007, the model has been used in making hundreds of land management decisions in the US and elsewhere. We use eight published field study sites in the Western US to compare ERMiT predictions to observed hillslope erosion rates. Most sites experience only a few rainfall events that produced runoff and sediment except for a California site with a Mediterranean climate. When hillslope erosion occurred, significant correlations occurred between the observed hillslope erosion and those predicted by ERMiT. Significant correlation occurred for most mitigation treatments as well as the five recovery years. These model validation results suggest reasonable estimates of probabilistic post-fire hillslope sediment delivery when compared to observation.

  2. Application of PCARES in locating the soil erosion Hotspots in the Manupali River Watershed

    OpenAIRE

    Paningbatan, E.

    2004-01-01

    In this presentation the author covers: GIS mapping of land attributes, dynamic modeling of soil erosion at watershed scale using PCARES (Predicting Catchment Runoff and Soil Erosion for Sustainability), identifying soil erosion "hotspots" in the Manupali River watershed

  3. Usability and Functional Enhancements to an Online Interface for Predicting Post Fire Erosion (WEPP-PEP)

    Science.gov (United States)

    Lew, Roger; Dobre, Mariana; Elliot, William; Robichaud, Pete; Brooks, Erin; Frankenberger, Jim

    2017-04-01

    There is an increased interest in the United States to use soil burn severity maps in watershed-scale hydrologic models to estimate post-fire sediment erosion from burned areas. This information is needed by stakeholders in order to concentrate their pre- or post-fire management efforts in ecologically sensitive areas to decrease the probability of post-fire sediment delivery. But these tools traditionally have been time consuming and difficult to use by managers because input datasets must be obtained and correctly processed for valid results. The Water Erosion Prediction Project (WEPP) has previously been developed as an online and easy-to-use interface to help land managers with running simulations without any knowledge of computer programming or hydrologic modeling. The interface automates the acquisition of DEM, climate, soils, and landcover data, and also automates channel and hillslope delineation for the users. The backend is built with Mapserver, GDAL, PHP, C++, Python while the front end uses OpenLayers, and, of course, JavaScript. The existing WEPP online interface was enhanced to provide better usability to stakeholders in United States (Forest Service, BLM, USDA) as well as to provide enhanced functionality for managing both pre-fire and post-fire treatments. Previously, only site administrators could add burn severity maps. The interface now allows users to create accounts to upload and share FlamMap prediction maps, differenced Normalized Burned Ratio (dNBR), or Burned Area Reflectance Classification (BARC) maps. All maps are loaded into a sortable catalog so users can quickly find their area of interest. Once loaded, the interface has been modified to support running comparisons between baseline condition with "no burn" and with a burn severity classification map. The interface has also been enhanced to allow users to conduct single storm analyses to examine, for example, how much soil loss would result after a 100-year storm. An OpenLayers map

  4. Soil erosion assessment in the core area of the Loss Plateau

    Science.gov (United States)

    Yang, Bo; Wang, Quanjiu

    2017-11-01

    In order to explore the spatiotemporal evolution of erosion and sediment yield before and after Grain for Green Project in the Loss Plateau. The soil loss of Yulin is estimated by Chinese Water Erosion on Hill Slope Prediction Model. The result shows that the spatiotemporal variations of soil erosion are largely related to rainfall erosion distribution, slope, and land use type. The overall soil erosion categories in the south region are higher than that of the northwest. Mid slopes and valleys are the major topographical contributors to soil erosion. With the growth of slope gradient, soil erosion significantly increased. The soil loss has a decreasing tendency after Grain for Green Project. The results indicate that the vegetation restoration as part of the Grain for Green Project on the Loess Plateau is effective.

  5. Using REE tracers to measure sheet erosion changing to rill erosion

    International Nuclear Information System (INIS)

    Liu Puling; Xue Yazhou; Song Wei; Wang Mingyi; Ju Tongjun

    2004-01-01

    Rare Earth Elements (REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different rare earth elements of different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amounts increase with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4-5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amounts. The new REE tracer method should be useful to future studying of erosion processes on slope lands. (authors)

  6. Seasonality of soil erosion under mediterranean conditions at the Alqueva Dam watershed.

    Science.gov (United States)

    Ferreira, Vera; Panagopoulos, Thomas

    2014-07-01

    The Alqueva reservoir created the largest artificial lake of Western Europe in 2010. Since then, the region has faced challenges due to land-use changes that may increase the risk of erosion and shorten the lifetime of the reservoir, increasing the need to promote land management sustainability. This paper investigates the aspect of seasonality of soil erosion using a comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) approach, geographic information systems, geostatistics, and remote-sensing. An experimental agro-silvo pastoral area (typical land-use) was used for the RUSLE factors update. The study confirmed the effect of seasonality on soil erosion rates under Mediterranean conditions. The highest rainfall erosivity values occurred during the autumn season (433.6 MJ mm ha(-1) h(-1)), when vegetation cover is reduced after the long dry season. As a result, the autumn season showed the highest predicted erosion (9.9 t ha(-1)), contributing 65 % of the total annual erosion. The predicted soil erosion for winter was low (1.1 t ha(-1)) despite the high rainfall erosivity during that season (196.6 MJ mm ha(-1) h(-1)). The predicted annual soil loss was 15.1 t ha(-1), and the sediment amount delivery was 4,314 × 10(3) kg. Knowledge of seasonal variation would be essential to outline sustainable land management practices. This model will be integrated with World Overview of Conservation Approaches and Technologies methods to support decision-making in that watershed, and it will involve collaboration with both local people and governmental institutions.

  7. Erosion-corrosion synergistics in the low erosion regime

    International Nuclear Information System (INIS)

    Corey, R.G.; Sethi, V.K.

    1986-01-01

    Many engineering alloys display good high temperature corrosion resistance. However, when they are used in corrosive environments where they are subjected to erosion also, the corrosion resistance has been adversely affected. The phenomenon known as erosion-corrosion is complex and requires detailed investigation of how the erosion and corrosion kinetics interact and compete. At the Kentucky Center for Energy Research Laboratory, an erosion-corrosion tester was used to perform erosion-oxidation tests on 2 1/4 Cr-1 Mo steel at 500-600 0 C using alumina abrasive at low velocities. The erosion-oxidation rate data and morphology of exposed surfaces are consistent with oxide chipping and fracturing being the mode of material loss

  8. Rill erosion of mudstone slope-a case study of southern Taiwan

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-chuan; Cheng, Yuan-Chang

    2014-05-01

    Soil erosion has been studied by many scientists for decades (Zingg, 1940; Meyer & Wischmeier, 1969; Foster, 1982; Luk, 1988) and many soil erosion prediction equations have already been developed, such as USLE, RUSLE. In spite of WEEP is based on hydrological physical model, all of the above models are restricted to predict concentrate flow. On the other hand, rill erosion is not understood completely. The amounts of rill erosion are always underestimated. Rill Erosion correlate closely to gradient (Cerda & Garcia-Fayos, 1997; Fox & Bryan, 1999; Fu,et al., 2011; Clarke & Rendell, 2006), slope length (Gabriel, 1999; Yair, 2004), particle distribution (Gabriel, 1999), proportion of clay (Luk,1977; Bryan2000), rainfall intensity (Römkens et al. 2001), and land use (Dotterweich, 2008). However, the effect of micromorphology of mud rock surface, such as mud-cracks, could be studied in more details. This research aims to simulate rill development by hydraulic flume to observe the morphological change caused by rill/erosion process. Mudstone specimens sampled from the mudstone area of Long-Chi, southern Taiwan. The results show that: (1) The erosion pattern of mudstone slope can be divided into four steps: (a) inter-rill erosion, ( b) rill erosion, (c) rill development, (d) slope failure. (2) Slopes with mud-cracks caused 125% soil loss than smooth slopes. (3) Mud-cracks affect spatial distribution of rill development (4) The sediment concentration decreased sharply in the beginning of experiments, however increased due to rill development. This paper demonstrated such a rill development. 1: Department of Geography, National Taiwan University. E-mail:maxpossibilism0929@gmail.com

  9. Outcome prediction in plasmacytoma of bone: a risk model utilizing bone marrow flow cytometry and light-chain analysis.

    Science.gov (United States)

    Hill, Quentin A; Rawstron, Andy C; de Tute, Ruth M; Owen, Roger G

    2014-08-21

    The purpose of this study was to use multiparameter flow cytometry to detect occult marrow disease (OMD) in patients with solitary plasmacytoma of bone and assess its value in predicting outcome. Aberrant phenotype plasma cells were demonstrable in 34 of 50 (68%) patients and comprised a median of 0.52% of bone marrow leukocytes. With a median follow-up of 3.7 years, 28 of 50 patients have progressed with a median time to progression (TTP) of 18 months. Progression was documented in 72% of patients with OMD vs 12.5% without (median TTP, 26 months vs not reached; P = .003). Monoclonal urinary light chains (ULC) were similarly predictive of outcome because progression was documented in 91% vs 44% without (median TTP, 16 vs 82 months; P < .001). By using both parameters, it was possible to define patients with an excellent outcome (lacking both OMD and ULC, 7.7% progression) and high-risk patients (OMD and/or ULC, 75% progression; P = .001). Trials of systemic therapy are warranted in high-risk patients. © 2014 by The American Society of Hematology.

  10. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows

    Science.gov (United States)

    Mansouri, Amir

    The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in

  11. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  12. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1  h -1  yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  13. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures  ⩽800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. These results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.

  14. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  15. Erosive potential of soft drinks on human enamel: An in vitro study

    Directory of Open Access Journals (Sweden)

    Yin-Lin Wang

    2014-11-01

    Conclusion: All tested soft drinks were found to be erosive. Soft drinks with high calcium contents have significantly lower erosive potential. Low pH value and high citrate content may cause more surface enamel loss. As the erosive time increased, the titratable acidity to pH 7 may be a predictor of the erosive potential for acidic soft drinks. The erosive potential of the soft drinks may be predicted based on the types of acid content, pH value, titratable acidity, and ion concentration.

  16. Hyperextension injuries of the knee. Do patterns of bone bruising predict soft tissue injury?

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.M.; Gibbons, C.E.R. [Chelsea and Westminster Hospital, Department of Orthopaedic Surgery, London (United Kingdom); Pillai, J.K.; Roberton, B.J. [Chelsea and Westminster Hospital, Department of Radiology, London (United Kingdom); Gulati, V. [Homerton University Hospital, Department of Orthopaedic Surgery, London (United Kingdom)

    2018-02-15

    To establish whether patterns of soft tissue injury following knee hyperextension are associated with post-traumatic 'bone bruise' distribution. Patients with a knee MRI within one year of hyperextension injury were identified at our institution over a 7 year period. MRIs, plain radiographs and clinical details of these patients were reviewed. Twenty-five patients were identified (median time from injury to MRI = 24 days). The most common sites of bone bruising were the anteromedial tibial plateau (48%) and anterolateral tibial plateau (44%). There were high rates of injury to the posterior capsule (52%), ACL (40%) and PCL (40%) but lower rates of injury to the menisci (20%), medial and lateral collateral ligaments (16%) and posterolateral corner (16%). Anterior tibial plateau oedema and rupture of the posterior capsule predicted cruciate ligament injury [OR = 10.5 (p = 0.02) and 24.0 (p = 0.001) respectively]. Whilst anterolateral tibial plateau oedema strongly predicted PCL injury [OR = 26.0, p = 0.003], ACL injury was associated with a variable pattern of bone bruising. Meniscal injury was unrelated to the extent or pattern of bone bruising. 5 out of 8 patients with a 'double sulcus' on the lateral radiograph had ACL injury. The presence of a double sulcus showed significant association with anteromedial kissing contusions (OR = 7.8, p = 0.03). Following knee hyperextension, bone bruising patterns may be associated with cruciate ligament injury. Other structures are injured less frequently and have weaker associations with bone bruise distribution. The double sulcus sign is a radiographic marker that confers a high probability of ACL injury. (orig.)

  17. Osteoprotegerin autoantibodies do not predict low bone mineral density in middle-aged women.

    Science.gov (United States)

    Vaziri-Sani, Fariba; Brundin, Charlotte; Agardh, Daniel

    2017-12-01

    Autoantibodies against osteoprotegerin (OPG) have been associated with osteoporosis. The aim was to develop an immunoassay for OPG autoantibodies and test their diagnostic usefulness of identifying women general population with low bone mineral density. Included were 698 women at mean age 55.1 years (range 50.4-60.6) randomly selected from the general population. Measurement of wrist bone mineral density (g/cm 2 ) was performed of the non-dominant wrist by dual-energy X-ray absorptiometry (DXA). A T-score density. Measurements of OPG autoantibodies were carried by radiobinding assays. Cut-off levels for a positive value were determined from the deviation from normality in the distribution of 398 healthy blood donors representing the 99.7th percentile. Forty-five of the 698 (6.6%) women were IgG-OPG positive compared with 2 of 398 (0.5%) controls ( p  density between IgG-OPG positive (median 0.439 (range 0.315-0.547) g/cm 2 ) women and IgG-OPG negative (median 0.435 (range 0.176-0.652) g/cm 2 ) women ( p  = 0.3956). Furthermore, there was neither a correlation between IgG-OPG levels and bone mineral density (r s  = 0.1896; p  = 0.2068) nor T-score (r s  = 0.1889; p  = 0.2086). Diagnostic sensitivity and specificity of IgG-OPG for low bone mineral density were 5.7% and 92.9%, and positive and negative predictive values were 7.4% and 90.8%, respectively. Elevated OPG autoantibody levels do not predict low bone mineral density in middle-aged women selected from the general population.

  18. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens

    Science.gov (United States)

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2017-01-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk. PMID:29170581

  19. Bone mineral density before and after OLT: long-term follow-up and predictive factors.

    Science.gov (United States)

    Guichelaar, Maureen M J; Kendall, Rebecca; Malinchoc, Michael; Hay, J Eileen

    2006-09-01

    Fracturing after liver transplantation (OLT) occurs due to the combination of preexisting low bone mineral density (BMD) and early posttransplant bone loss, the risk factors for which are poorly defined. The prevalence and predictive factors for hepatic osteopenia and osteoporosis, posttransplant bone loss, and subsequent bone gain were studied by the long-term posttransplant follow-up of 360 consecutive adult patients with end-stage primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Only 20% of patients with advanced PBC or PSC have normal bone mass. Risk factors for low spinal BMD are low body mass index, older age, postmenopausal status, muscle wasting, high alkaline phosphatase and low serum albumin. A high rate of spinal bone loss occurred in the first 4 posttransplant months (annual rate of 16%) especially in those with younger age, PSC, higher pretransplant bone density, no inflammatory bowel disease, shorter duration of liver disease, current smoking, and ongoing cholestasis at 4 months. Factors favoring spinal bone gain from 4 to 24 months after transplantation were lower baseline and/or 4-month bone density, premenopausal status, lower cumulative glucocorticoids, no ongoing cholestasis, and higher levels of vitamin D and parathyroid hormone. Bone mass therefore improves most in patients with lowest pretransplant BMD who undergo successful transplantation with normal hepatic function and improved gonadal and nutritional status. Patients transplanted most recently have improved bone mass before OLT, and although bone loss still occurs early after OLT, these patients also have a greater recovery in BMD over the years following OLT.

  20. Simulation of erosion in drilling tools for oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Arefi, B.; Settari, A. [Calgary Univ., AB (Canada); Angman, P. [Tesco Corp., Calgary, AB (Canada)

    2004-07-01

    Erosion in oil well drilling tools is a form of wear which occurs when fluid containing solid particles impacts a solid surface. The intensity of erosion is generally measured as the rate of material removal from the surface, and is expressed as E{sub r}, the weight of material removed by unit weight of impacting particles. Erosion can also be reduced by tool improvement and modification, thereby extending the life of drilling tools. To date, no attempt has been made to model the erosion phenomenon in drilling tools. This paper presents a newly developed erosion simulator which is the first design tool for the drilling industry. This work demonstrates that erosion can be simulated. A model was developed to calibrate the erosion coefficients for drilling tool conditions. The mechanism of erosion can be controlled by the impact velocity and angle. Algorithms were developed for transient simulation of the erosion of any surface in 2-dimensional geometry. The Erosion Simulator has been validated and calibrated against data provided by TESCO Corporation's casing drilling tools. The model has been shown to successfully predict and minimize erosion by modifying the tool geometry and metallurgy. 21 refs., 1 tab., 15 figs.

  1. Bone disease in primary hyperparathyroidism

    Science.gov (United States)

    Bandeira, Francisco; Cusano, Natalie E.; Silva, Barbara C.; Cassibba, Sara; Almeida, Clarissa Beatriz; Machado, Vanessa Caroline Costa; Bilezikian, John P.

    2015-01-01

    Bone disease in severe primary hyperparathyroidism (PHPT) is described classically as osteitis fibrosa cystica (OFC). Bone pain, skeletal deformities and pathological fractures are features of OFC. Bone mineral density is usually extremely low in OFC, but it is reversible after surgical cure. The signs and symptoms of severe bone disease include bone pain, pathologic fractures, proximal muscle weakness with hyperreflexia. Bone involvement is typically characterized as salt-and-pepper appearance in the skull, bone erosions and bone resorption of the phalanges, brown tumors and cysts. In the radiography, diffuse demineralization is observed, along with pathological fractures, particularly in the long bones of the extremities. In severe, symptomatic PHPT, marked elevation of the serum calcium and PTH concentrations are seen and renal involvement is manifested by nephrolithiasis and nephrocalcinosis. A new technology, recently approved for clinical use in the United States and Europe, is likely to become more widely available because it is an adaptation of the lumbar spine DXA image. Trabecular bone score (TBS) is a gray-level textural analysis that provides an indirect index of trabecular microarchitecture. Newer technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have provided further understanding of the microstructural skeletal features in PHPT. PMID:25166047

  2. Erosion corrosion in power plant piping systems - Calculation code for predicting wall thinning

    International Nuclear Information System (INIS)

    Kastner, W.; Erve, M.; Henzel, N.; Stellwag, B.

    1990-01-01

    Extensive experimental and theoretical investigations have been performed to develop a calculation code for wall thinning due to erosion corrosion in power plant piping systems. The so-called WATHEC code can be applied to single-phase water flow as well as to two-phase water/steam flow. Only input data which are available to the operator of the plant are taken into consideration. Together with a continuously updated erosion corrosion data base the calculation code forms one element of a weak point analysis for power plant piping systems which can be applied to minimize material loss due to erosion corrosion, reduce non-destructive testing and curtail monitoring programs for piping systems, recommend life-extending measures. (author). 12 refs, 17 figs

  3. An Easy Tool to Predict Survival in Patients Receiving Radiation Therapy for Painful Bone Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Westhoff, Paulien G., E-mail: p.g.westhoff@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Graeff, Alexander de [Department of Medical Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Monninkhof, Evelyn M. [Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Bollen, Laurens; Dijkstra, Sander P. [Department of Orthopedic Surgery, Leiden University Medical Center (Netherlands); Steen-Banasik, Elzbieta M. van der [ARTI Institute for Radiation Oncology Arnhem, Arnhem (Netherlands); Vulpen, Marco van [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Leer, Jan Willem H. [Department of Radiotherapy, University Medical Center Nijmegen, Nijmegen (Netherlands); Marijnen, Corrie A.; Linden, Yvette M. van der [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands)

    2014-11-15

    Purpose: Patients with bone metastases have a widely varying survival. A reliable estimation of survival is needed for appropriate treatment strategies. Our goal was to assess the value of simple prognostic factors, namely, patient and tumor characteristics, Karnofsky performance status (KPS), and patient-reported scores of pain and quality of life, to predict survival in patients with painful bone metastases. Methods and Materials: In the Dutch Bone Metastasis Study, 1157 patients were treated with radiation therapy for painful bone metastases. At randomization, physicians determined the KPS; patients rated general health on a visual analogue scale (VAS-gh), valuation of life on a verbal rating scale (VRS-vl) and pain intensity. To assess the predictive value of the variables, we used multivariate Cox proportional hazard analyses and C-statistics for discriminative value. Of the final model, calibration was assessed. External validation was performed on a dataset of 934 patients who were treated with radiation therapy for vertebral metastases. Results: Patients had mainly breast (39%), prostate (23%), or lung cancer (25%). After a maximum of 142 weeks' follow-up, 74% of patients had died. The best predictive model included sex, primary tumor, visceral metastases, KPS, VAS-gh, and VRS-vl (C-statistic = 0.72, 95% CI = 0.70-0.74). A reduced model, with only KPS and primary tumor, showed comparable discriminative capacity (C-statistic = 0.71, 95% CI = 0.69-0.72). External validation showed a C-statistic of 0.72 (95% CI = 0.70-0.73). Calibration of the derivation and the validation dataset showed underestimation of survival. Conclusion: In predicting survival in patients with painful bone metastases, KPS combined with primary tumor was comparable to a more complex model. Considering the amount of variables in complex models and the additional burden on patients, the simple model is preferred for daily use. In addition, a risk table for survival is

  4. Climate change impact on soil erosion in the Mandakini River Basin, North India

    Science.gov (United States)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  5. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    Science.gov (United States)

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  6. Relationship among panoramic radiography findings, biochemical markers of bone turnover and hip bone mineral density in the diagnosis of postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Johari Khatoonabad, M.; Aghamohammadzade, N.; Taghilu, H.; Esmaeili, F.; Jabbari Khamnei, H.

    2011-01-01

    Recent investigations have shown that panoramic radiography might be a useful tool in the early diagnosis of osteoporosis. In addition, bone turnover biochemical marker might be valuable in predicting osteoporosis and fracture risks in the elderly, especially in post-menopausal women. The aim of the present study was to evaluate the relationship among the radio morphometric indices of the mandible, biochemical markers of the bone turnover and hip bone mineral density in a group of post-menopausal women. Patients and Methods: Evaluations of mandibular cortical width, mandibular cortical index, panoramic index and alveolar crest resorption ration (M/M ration) were carried out on panoramic radiographs of 140 post-menopausal women with an age range of 44-82 years. Hip bone mineral density was measured by dual-energy X-ray absorptiometry method. Bone mineral density values were divided into three groups of normal (T score>-1.0), Osteopenic (T score, -2.5 to -1.0) and Osteoporotic (T score<-2.5). Serum alkaline phosphatase and 25(OH) D3 were measured. Results: A decrease in mandibular cortical width by 1 mm increases the likelihood of osteopenia or osteoporosis up to 40%, having taken into consideration the effect of menopause duration. A 1 mm decrease in mandibular cortical width increased the likelihood of moderate or severe erosion of the lower cortex of the mandible up to 28% by taking age into consideration. The results did not demonstrate a statistically significant relationship between bone turnover markers and mandibular radio morphometric indices. Conclusion: Panoramic radiography gives sufficient information to make an early diagnosis regarding osteoporosis in post-menopausal women. Panoramic radiographs may be valuable in the prevention of osteoporotic fractures in elderly women.

  7. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.

  8. Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling

    Science.gov (United States)

    Cao, L.; Elliot, W.

    2017-12-01

    Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates

  9. Effect of hard second-phase particles on the erosion resistance of model alloys

    International Nuclear Information System (INIS)

    Kosel, T.H.; Aptekar, S.S.

    1986-01-01

    The dependence of erosion rate on second phase volume fraction (SPVF) has been studied for Cu/Al/sub 2/O/sub 3/ and Cu/WC(W/sub 2/C) model alloys produced by pressing and sintering. The intention was to investigate the reasons for the poor contribution to erosion resistance made by large hard second phase particles (SPP) in other studies. The results show that for Cu/Al/sub 2/O/sub 3/ alloys, the erosion rate generally increased with SPVF, demonstrating a negative contribution to erosion resistance. This occurred despite the fact that the measured erosion rate of monolithic Al/sub 2/O/sub 3/ was lower by one to two orders of magnitude than that of the pure matrix. Changing from severe erosion with large erodent particles at high velocity to mild conditions with small erodent at low velocity caused a change from depression of the SPPs to protrusion from the surface, with some improvement of the relative erosion resistance compared to the pure matrix. For Cu/WC(W/sub 2/C) alloys, changing from severe to mild erosion conditions caused a change from an increase of erosion with SPVF to a decrease. The results are discussed in terms of the increased microfracture of the unsupported edges of the second phase particles compared to a flat single-phase surface. This edge is consistent with the results, and explains observations not predicted by existing theories for erosion of single-phase materials. A model is introduced which predicts a new averaging law for the erosion rate of a two-phase alloy in terms of erosion rates of its constituent phases

  10. Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture

    DEFF Research Database (Denmark)

    Woloszynski, T; Podsiadlo, P; Stachowiak, G W

    2012-01-01

    OBJECTIVE.: To develop a system for prediction of progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone (TB) texture. METHODS.: We studied 203 knees with (n=68) or without (n=135) radiographic tibiofemoral OA in 105 subjects (90 men, 15 women, mean age 54 years) who ha...

  11. Are bone turnover markers capable of predicting callus consolidation during bone healing?

    Science.gov (United States)

    Klein, P; Bail, H J; Schell, H; Michel, R; Amthauer, H; Bragulla, H; Duda, G N

    2004-07-01

    The aim of this study was to determine the ability of the following bone turnover markers to monitor the course of callus consolidation during bone healing: Carboxy-terminal propeptide of procollagen type I (PICP), skeletal alkaline phosphatase (sALP), and amino-terminal propeptide of type III procollagen (PIlINP). Since interfragmentary movements have been proven to possess the ability to document the progression of bone healing in experimental studies, correlations between bone turnover markers and interfragmentary movements in vivo were investigated. Therefore, two different types of osteosyntheses representing different mechanical situations at the fracture site were compared in an ovine osteotomy model. Blood samples were taken preoperatively and postoperatively in weekly intervals over a nine-week healing period. At the same intervals, interfragmentary movements were measured in all sheep. After nine weeks, animals were sacrificed and the tibiae were evaluated both mechanically and histologically. Wide interindividual ranges were observed for all bone turnover markers. The systemic PICP level did not increase with callus consolidation. The bone-healing model seemed to influence the systemic level of PIIINP and sALP but no general correlation between bone turnover markers and interfragmentary movements could be detected. No differences between the different types of osteosyntheses and thus the different mechanical situations were observed. All analyzed markers failed as general predictors for the course of callus consolidation during bone healing.

  12. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.

    2009-07-01

    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  13. A comparison of methods in estimating soil water erosion

    Directory of Open Access Journals (Sweden)

    Marisela Pando Moreno

    2012-02-01

    Full Text Available A comparison between direct field measurements and predictions of soil water erosion using two variant; (FAO and R/2 index of the Revised Universal Soil Loss Equation (RUSLE was carried out in a microcatchment o 22.32 km2 in Northeastern Mexico. Direct field measurements were based on a geomorphologic classification of the area; while environmental units were defined for applying the equation. Environmental units were later grouped withir geomorphologic units to compare results. For the basin as a whole, erosion rates from FAO index were statistical!; equal to those measured on the field, while values obtained from the R/2 index were statistically different from the res and overestimated erosion. However, when comparing among geomorphologic units, erosion appeared overestimate! in steep units and underestimated in more flat areas. The most remarkable differences on erosion rates, between th( direct and FAO methods, were for those units where gullies have developed, fn these cases, erosion was underestimated by FAO index. Hence, it is suggested that a weighted factor for presence of gullies should be developed and included in RUSLE equation.

  14. Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Junior Cesar Avanzi

    2013-10-01

    Full Text Available The process of water erosion occurs in watersheds throughout the world and it is strongly affected by anthropogenic influences. Thus, the knowledge of these processes is extremely necessary for planning of conservation efforts. This study was performed in an experimental forested watershed in order to predict the average potential annual soil loss by water erosion using the Universal Soil Loss Equation (USLE and a Geographic Information System (GIS, and then compared with soil loss tolerance. All the USLE factors were generated in a distributed approach employing a GIS tool. The layers were multiplied in the GIS framework in order to predict soil erosion rates. Results showed that the average soil loss was 6.2 Mg ha-1 yr-1. Relative to soil loss tolerance, 83% of the area had an erosion rate lesser than the tolerable value. According to soil loss classes, 49% of the watershed had erosion less than 2.5 Mg ha-1 yr-1. However, about 8.7% of the watershed had erosion rates greater than 15 Mg ha-1 yr-1, being mainly related to Plinthosol soil class and roads, thus requiring special attention for the improvement of sustainable management practices for such areas. Eucalyptus cultivation was found to have soil loss greater than Atlantic Forest. Thus, an effort should be made to bring the erosion rates closer to the native forest. Implementation of the USLE model in a GIS framework was found to be a simple and useful tool for predicting the spatial variation of soil erosion risk and identifying critical areas for conservation efforts.

  15. Impacts of Climate Change on Soil Erosion in the Great Lakes Region

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-06-01

    Full Text Available Quantifying changes in potential soil erosion under projections of changing climate is important for the sustainable management of land resources, as soil loss estimates will be helpful in identifying areas susceptible to erosion, targeting future erosion control efforts, and/or conservation funding. Therefore, the macro-scale Variable Infiltration Capacity—Water Erosion Prediction Project (VIC-WEPP soil erosion model was utilized to quantify soil losses under three climate change scenarios (A2, A1B, B1 using projections from three general circulation models (GFDL, PCM, HadCM3 for the Great Lakes region from 2000 to 2100. Soil loss was predicted to decrease throughout three future periods (2030s, 2060s, and 2090s by 0.4–0.7 ton ha−1 year−1 (4.99–23.2% relative to the historical period (2000s with predicted air temperature increases of 0.68–4.34 °C and precipitation increases of 1.74–63.7 mm year−1 (0.23–8.6%. In the forested northern study domain erosion kept increasing by 0.01–0.18 ton ha−1 year−1 over three future periods due to increased precipitation of 9.7–68.3 mm year−1. The southern study domain covered by cropland and grassland had predicted soil loss decreases of 0.01–1.43 ton ha−1 year−1 due to air temperature increases of 1.75–4.79 °C and reduced precipitation in the summer. Fall and winter had greater risks of increased soil loss based on predictions for these two seasons under the A2 scenario, with the greatest cropland soil loss increase due to increased fall precipitation, and combined effects of increases in both precipitation and air temperature in the winter. Fall was identified with higher risks under the A1B scenario, while spring and summer were identified with the greatest risk of increased soil losses under the B1 scenario due to the increases in both precipitation and air temperature.

  16. Prediction of autosomal STR typing success in ancient and Second World War bone samples.

    Science.gov (United States)

    Zupanič Pajnič, Irena; Zupanc, Tomaž; Balažic, Jože; Geršak, Živa Miriam; Stojković, Oliver; Skadrić, Ivan; Črešnar, Matija

    2017-03-01

    Human-specific quantitative PCR (qPCR) has been developed for forensic use in the last 10 years and is the preferred DNA quantification technique since it is very accurate, sensitive, objective, time-effective and automatable. The amount of information that can be gleaned from a single quantification reaction using commercially available quantification kits has increased from the quantity of nuclear DNA to the amount of male DNA, presence of inhibitors and, most recently, to the degree of DNA degradation. In skeletal remains samples from disaster victims, missing persons and war conflict victims, the DNA is usually degraded. Therefore the new commercial qPCR kits able to assess the degree of degradation are potentially able to predict the success of downstream short tandem repeat (STR) typing. The goal of this study was to verify the quantification step using the PowerQuant kit with regard to its suitability as a screening method for autosomal STR typing success on ancient and Second World War (WWII) skeletal remains. We analysed 60 skeletons excavated from five archaeological sites and four WWII mass graves from Slovenia. The bones were cleaned, surface contamination was removed and the bones ground to a powder. Genomic DNA was obtained from 0.5g of bone powder after total demineralization. The DNA was purified using a Biorobot EZ1 device. Following PowerQuant quantification, DNA samples were subjected to autosomal STR amplification using the NGM kit. Up to 2.51ng DNA/g of powder were extracted. No inhibition was detected in any of bones analysed. 82% of the WWII bones gave full profiles while 73% of the ancient bones gave profiles not suitable for interpretation. Four bone extracts yielded no detectable amplification or zero quantification results and no profiles were obtained from any of them. Full or useful partial profiles were produced only from bone extracts where short autosomal (Auto) and long degradation (Deg) PowerQuant targets were detected. It is

  17. Predicting soil erosion using Rusle and NDVI time series from TM Landsat 5

    Directory of Open Access Journals (Sweden)

    Daniel Fonseca de Carvalho

    2014-03-01

    Full Text Available The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle, in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor. A corresponding rainfall erosivity factor (R factor was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season to 62.0 Mg ha-1 on March 11, 2007 (rainy season. In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.

  18. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  19. Dune Erosion Models and Swash Zone Kinematics from Remote Video Observations

    Science.gov (United States)

    2010-12-09

    system. Thus, successful prediction of dune erosion requires knowledge of the expected trajectory of the eroding dune toe . If we describe the... dune toe trajectory as following a slope, βT, two end member retreat trajectories exist. The first would be direct landward erosion so that zb never...changes     0 0   T bb ztz  (2.24) The second end member trajectory is that erosion moves the dune toe directly up the foreshore slope

  20. Numerical modelling of concentrated leak erosion during Hole Erosion Tests

    OpenAIRE

    Mercier, F.; Bonelli, S.; Golay, F.; Anselmet, F.; Philippe, P.; Borghi, R.

    2015-01-01

    This study focuses on the numerical modelling of concentrated leak erosion of a cohesive soil by a turbulent flow in axisymmetrical geometry, with application to the Hole Erosion Test (HET). The numerical model is based on adaptive remeshing of the water/soil interface to ensure accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: the critical shear stress and the erosion co...

  1. Development of a Nomogram Model Predicting Current Bone Scan Positivity in Patients Treated with Androgen-Deprivation Therapy for Prostate Cancer

    Science.gov (United States)

    Gotto, Geoffrey T.; Yu, Changhong; Bernstein, Melanie; Eastham, James A.; Kattan, Michael W.

    2014-01-01

    Purpose: To develop a nomogram predictive of current bone scan positivity in patients receiving androgen-deprivation therapy (ADT) for advanced prostate cancer; to augment clinical judgment and highlight patients in need of additional imaging investigations. Materials and methods: A retrospective chart review of bone scan records (conventional 99mTc-scintigraphy) of 1,293 patients who received ADT at the Memorial Sloan-Kettering Cancer Center from 2000 to 2011. Multivariable logistic regression analysis was used to identify variables suitable for inclusion in the nomogram. The probability of current bone scan positivity was determined using these variables and the predictive accuracy of the nomogram was quantified by concordance index. Results: In total, 2,681 bone scan records were analyzed and 636 patients had a positive result. Overall, the median pre-scan prostate-specific antigen (PSA) level was 2.4 ng/ml; median PSA doubling time (PSADT) was 5.8 months. At the time of a positive scan, median PSA level was 8.2 ng/ml; 53% of patients had PSA <10 ng/ml; median PSADT was 4.0 months. Five variables were included in the nomogram: number of previous negative bone scans after initiating ADT, PSA level, Gleason grade sum, and history of radical prostatectomy and radiotherapy. A concordance index value of 0.721 was calculated for the nomogram. This was a retrospective study based on limited data in patients treated in a large cancer center who underwent conventional 99mTc bone scans, which themselves have inherent limitations. Conclusion: This is the first nomogram to predict current bone scan positivity in ADT-treated prostate cancer patients, providing high predictive accuracy. PMID:25386410

  2. Development of a nomogram model predicting current bone scan positivity in patients treated with androgen-deprivation therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Michael eKattan

    2014-10-01

    Full Text Available Purpose: To develop a nomogram predictive of current bone scan positivity in patients receiving androgen-deprivation therapy (ADT for advanced prostate cancer; to augment clinical judgment and highlight patients in need of additional imaging investigations.Materials and Methods: A retrospective chart review of bone scan records (conventional 99mTc-scintigraphy of 1,293 patients who received ADT at the Memorial Sloan-Kettering Cancer Center from 2000 to 2011. Multivariable logistic regression analysis was used to identify variables suitable for inclusion in the nomogram. The probability of current bone scan positivity was determined using these variables and the predictive accuracy of the nomogram was quantified by concordance index.Results: In total, 2,681 bone scan records were analyzed and 636 patients had a positive result. Overall, the median pre-scan prostate-specific antigen (PSA level was 2.4 ng/ml; median PSA doubling time (PSADT was 5.8 months. At the time of a positive scan, median PSA level was 8.2 ng/ml; 53% of patients had PSA <10 ng/ml; median PSADT was 4.0 months. Five variables were included in the nomogram: number of previous negative bone scans after initiating ADT, PSA level, Gleason grade sum, and history of radical prostatectomy and radiotherapy. A concordance index value of 0.721 was calculated for the nomogram. This was a retrospective study based on limited data in patients treated in a large cancer centre who underwent conventional 99mTc bone scans, which themselves have inherent limitations. Conclusions: This is the first nomogram to predict current bone scan positivity in ADT-treated prostate cancer patients, providing high predictive accuracy.

  3. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.

    Science.gov (United States)

    Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A

    2000-01-01

    The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.

  4. Prediction of Splint Therapy Efficacy Using Bone Scan in Patients with Unilateral Temporomandibular Disorder

    International Nuclear Information System (INIS)

    Lee, Sang Mi; Lee, Won Woo; Yun, Pil Young; Kim, Young Kyun; Kim, Sang Eun

    2009-01-01

    It is not known whether bone scan is useful for the prediction of the prognosis of patients with temporomandibular disorders (TMD). The aim of the present study was to identify useful prognostic markers on bone scan for the pre-therapeutic assessment of patients with unilateral TMD. Between January 2005 and July 2007, 55 patients (M:F=9:46; mean age, 34.7±14.1 y) with unilateral TMD that underwent a pre-therapeutic bone scan were enrolled. Uptake of Tc-99m HDP in each temporomandibular joint (TMJ) was quantitated using a 13X13 pixel-square region-of-interest over TMJ and parietal skull area as background. TMJ uptake ratios and asymmetric indices were calculated. TMD patients were classified as improved or not improved and the bone scan findings associated with each group were investigated. Forty-six patients were improved, whereas 9 patients were not improved. There was no significant difference between the two groups of patients regarding the TMJ uptake ratio of the involved joint, the TMJ uptake ratio of the non-involved joint, and the asymmetric index (p>0.05). However, in a subgroup analysis, the patients with an increased uptake of Tc-99m HDP at the disease-involved TMJ, by visual assessment, could be easily identified by the asymmetric index; the patients that improved had a higher asymmetric index than the patients that did not improve (1.32±0.35 vs. 1.08±0.04, p=0.023), The Tc-99m HDP bone scan may help predict the prognosis of patients with unilateral TMD after splint therapy when the TMD-involved joint reveals increased uptake by visual assessment

  5. Prediction of Splint Therapy Efficacy Using Bone Scan in Patients with Unilateral Temporomandibular Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Mi; Lee, Won Woo; Yun, Pil Young; Kim, Young Kyun; Kim, Sang Eun [Seoul National University Bundang Hospital, Seoul (Korea, Republic of)

    2009-04-15

    It is not known whether bone scan is useful for the prediction of the prognosis of patients with temporomandibular disorders (TMD). The aim of the present study was to identify useful prognostic markers on bone scan for the pre-therapeutic assessment of patients with unilateral TMD. Between January 2005 and July 2007, 55 patients (M:F=9:46; mean age, 34.7{+-}14.1 y) with unilateral TMD that underwent a pre-therapeutic bone scan were enrolled. Uptake of Tc-99m HDP in each temporomandibular joint (TMJ) was quantitated using a 13X13 pixel-square region-of-interest over TMJ and parietal skull area as background. TMJ uptake ratios and asymmetric indices were calculated. TMD patients were classified as improved or not improved and the bone scan findings associated with each group were investigated. Forty-six patients were improved, whereas 9 patients were not improved. There was no significant difference between the two groups of patients regarding the TMJ uptake ratio of the involved joint, the TMJ uptake ratio of the non-involved joint, and the asymmetric index (p>0.05). However, in a subgroup analysis, the patients with an increased uptake of Tc-99m HDP at the disease-involved TMJ, by visual assessment, could be easily identified by the asymmetric index; the patients that improved had a higher asymmetric index than the patients that did not improve (1.32{+-}0.35 vs. 1.08{+-}0.04, p=0.023), The Tc-99m HDP bone scan may help predict the prognosis of patients with unilateral TMD after splint therapy when the TMD-involved joint reveals increased uptake by visual assessment.

  6. Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst.

    Science.gov (United States)

    Di Bella, Claudia; Dozza, Barbara; Frisoni, Tommaso; Cevolani, Luca; Donati, Davide

    2010-11-01

    Unicameral bone cysts are benign lesions that usually spontaneously regress with skeletal maturity; however, the high risk of pathologic fractures often justifies treatment that could reinforce a weakened bone cortex. Various treatments have been proposed but there is no consensus regarding the best procedure. We compared the healing rates and failures of two methods of cure based on multiple injections of corticosteroid or a single injection of demineralized bone matrix (DBM) in association with bone marrow concentrate (BMC). We retrospectively reviewed 184 patients who had one of the two treatments for unicameral bone cysts with cortical erosion. Clinical records were reviewed for treatment failures and radiographs for healing in all patients. The minimum followup was 12 months for the Steroids Group (mean, 48 months; range, 12-120 months) and 12 months for the DBM + BMC Group (mean, 20 months; range, 12-28 months). After one treatment we observed a lower healing rate of cysts treated with multiple injections of steroids compared with the healing after the first injection of DBM + BMC (21% versus 58%, respectively). At last followup, 38% healed with steroids and 71% with DBM + BMC. The rate of failure after one steroid injection was higher than after a single injection of BDM + BMC (63% versus 24%, respectively). We observed no difference in fracture rates after treatment between the two groups. A single injection of DBM added with autologous bone marrow concentrate appears to provide a higher healing rate with a lower number of failures compared with a single injection of steroids.

  7. Testing model parameters for wave‐induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, Jacquelyn R.; Long, Joseph W.; Stockdon, Hilary F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave‐impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision‐making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  8. Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, J. R.; Long, J. W.; Stockdon, H. F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  9. Upper Gastrointestinal Symptoms Predictive of Candida Esophagitis and Erosive Esophagitis in HIV and Non-HIV Patients: An Endoscopy-Based Cross-Sectional Study of 6011 Patients.

    Science.gov (United States)

    Takahashi, Yuta; Nagata, Naoyoshi; Shimbo, Takuro; Nishijima, Takeshi; Watanabe, Koji; Aoki, Tomonori; Sekine, Katsunori; Okubo, Hidetaka; Watanabe, Kazuhiro; Sakurai, Toshiyuki; Yokoi, Chizu; Mimori, Akio; Oka, Shinichi; Uemura, Naomi; Akiyama, Junichi

    2015-11-01

    Upper gastrointestinal (GI) symptoms are common in both HIV and non-HIV-infected patients, but the difference of GI symptom severity between 2 groups remains unknown. Candida esophagitis and erosive esophagitis, 2 major types of esophagitis, are seen in both HIV and non-HIV-infected patients, but differences in GI symptoms that are predictive of esophagitis between 2 groups remain unknown. We aimed to determine whether GI symptoms differ between HIV-infected and non-HIV-infected patients, and identify specific symptoms of candida esophagitis and erosive esophagitis between 2 groups.We prospectively enrolled 6011 patients (HIV, 430; non-HIV, 5581) who underwent endoscopy and completed questionnaires. Nine upper GI symptoms (epigastric pain, heartburn, acid regurgitation, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia) were evaluated using a 7-point Likert scale. Associations between esophagitis and symptoms were analyzed by the multivariate logistic regression model adjusted for age, sex, and proton pump inhibitors.Endoscopy revealed GI-organic diseases in 33.4% (2010/6.011) of patients. The prevalence of candida esophagitis and erosive esophagitis was 11.2% and 12.1% in HIV-infected patients, respectively, whereas it was 2.9% and 10.7 % in non-HIV-infected patients, respectively. After excluding GI-organic diseases, HIV-infected patients had significantly (P symptom scores for heartburn, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia than non-HIV-infected patients. In HIV-infected patients, any symptom was not significantly associated with CD4 cell count. In multivariate analysis, none of the 9 GI symptoms were associated with candida esophagitis in HIV-infected patients, whereas dysphagia and odynophagia were independently (P HIV-infected patients. However, heartburn and acid regurgitation were independently (P symptom scores were reliable in both HIV (α, 0.86) and non-HIV-infected patients (α, 0.85).This

  10. Soil erosion in Iran: Issues and solutions

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  11. Regional soil erosion assessment in Slovakia using modelling and farmer's participation

    DEFF Research Database (Denmark)

    Kenderessy, Pavol; Veihe, Anita

    with cereals, sunflowers and corn and is characterised by poor cultivation practices and use of fertilizers leading to land degradation. As a first step, the initial raster-based modelling of soil loss and deposition has provided acceptable and realistic values. The predicted spatial patterns of erosion...... for erosion risk assessments at the landscape scale in Slovakia using a combination of quantitative and qualitative methods for assessing spatial prediction patterns. The model was set up for the Paríž catchment (239.93 km2) in south-western Slovakia. The area has been intensively cultivated primarily...... are now being identified using farmer participation to ensure that the ‘correct’ hot spot areas are being identified. In the end, scenarios will be set up to assess the effect of farming practices and/or conservation measures on soil erosion rates in the area....

  12. Controlled release pharmaceutical composition useful for the treatment of diseases and conditions affecting metabolism and/or structural integrity of cartilage and/or bone in male comprises strontium salt

    DEFF Research Database (Denmark)

    2004-01-01

    , hyperparathyroidism, periarticular erosions in rheumatoid arthritis, osteodystrophy, myositis ossificans, Bechterew's disease, osteolytic lesions produced by bone metastasis, bone pain due to bone metastasis, bone loss due to sex steroid hormone deficiency, bone abnormalities due to steroid hormone treatment, bone...

  13. Damage diagnostic of localized impact erosion by measuring acoustic vibration

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Ikeda, Yujiro

    2004-01-01

    High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact erosion damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic IMpact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between the erosion damage and the damage potential derived from acoustic vibration. It was confirmed that the damage potential related with acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity. (author)

  14. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis.

    Directory of Open Access Journals (Sweden)

    Vimal Chandran

    Full Text Available Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medical imaging techniques such as quantitative computed tomography (QCT. Hip fracture sites involve trabecular bone, whose strength is determined by volume fraction and orientation, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT images of proximal femur. Accordingly, we propose a novel registration-based estimation of bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by a global and local decomposition of the gradient of a non-rigid image registration transformation. Furthermore, no comprehensive analysis on the critical components of this methodology has been previously conducted. Hence, the aim of this work was to identify the best registration-based strategy to assign bone fabric to the QCT image of a patient's proximal femur. The normalized correlation coefficient and curvature-based regularization were used for image-based registration and the Frobenius norm of the stretch tensor of the local gradient was selected to quantify the distance among the proximal femora in the population. Based on this distance, closest, farthest and mean femora with a distinction of sex were chosen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-only, rotation and stretch tensor. Third, we investigated the use of a population average fabric atlas. A leave one out (LOO evaluation study was performed with a dual QCT and HR-pQCT database of 36 pairs of human femora. The quality of the fabric prediction was assessed with three metrics, the tensor norm (TN error, the degree of anisotropy (DA error and the angular deviation of the principal tensor direction (PTD. The closest femur atlas (CTP with a full rotation (CR for fabric mapping delivered the best results with a TN error of 7

  15. Rainfall erosivity in subtropical catchments and implications for erosion and particle-bound contaminant transfer: a case-study of the Fukushima region

    Science.gov (United States)

    Laceby, J. P.; Chartin, C.; Evrard, O.; Onda, Y.; Garcia-Sanchez, L.; Cerdan, O.

    2015-07-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a significant fallout of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is almost irreversibly bound to fine soil particles. Thereafter, rainfall and snow melt run-off events transfer particle-bound radiocesium downstream. Erosion models, such as the Universal Soil Loss Equation (USLE), depict a proportional relationship between rainfall and soil erosion. As radiocesium is tightly bound to fine soil and sediment particles, characterizing the rainfall regime of the fallout-impacted region is fundamental to modelling and predicting radiocesium migration. Accordingly, monthly and annual rainfall data from ~ 60 meteorological stations within a 100 km radius of the FDNPP were analysed. Monthly rainfall erosivity maps were developed for the Fukushima coastal catchments illustrating the spatial heterogeneity of rainfall erosivity in the region. The mean average rainfall in the Fukushima region was 1387 mm yr-1 (σ 230) with the mean rainfall erosivity being 2785 MJ mm ha-1 yr-1 (σ 1359). The results indicate that the majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. During the year, rainfall erosivity evolves positively from northwest to southeast in the eastern part of the prefecture, whereas a positive gradient from north to south occurs in July and August, the most erosive months of the year. During the typhoon season, the coastal plain and eastern mountainous areas of the Fukushima prefecture, including a large part of the contamination plume, are most impacted by erosive events. Understanding these rainfall patterns, particularly their spatial and temporal variation, is fundamental to managing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of typhoons is important for managing sediment transfers in subtropical regions impacted by cyclonic activity.

  16. Soil Erosion Analysis in a Small Forested Catchment Supported by ArcGIS Model Builder

    Directory of Open Access Journals (Sweden)

    CSÁFORDI, Péter

    2012-01-01

    Full Text Available To implement the analysis of soil erosion with the USLE in a GIS environment, a new workflow has been developed with the ArcGIS Model Builder. The aim of this four-part framework is to accelerate data processing and to ensure comparability of soil erosion risk maps. The first submodel generates the stream network with connected catchments, computes slope conditions and the LS factor in USLE based on the DEM. The second submodel integrates stream lines, roads, catchment boundaries, land cover, land use, and soil maps. This combined dataset is the basis for the preparation of other USLE-factors. The third submodel estimates soil loss, and creates zonal statistics of soil erosion. The fourth submodel classifies soil loss into categories enabling the comparison of modelled and observed soil erosion. The framework was applied in a small forested catchment in Hungary. Although there is significant deviation between the erosion of different land covers, the predicted specific soil loss does not increase above the tolerance limit in any area unit. The predicted surface soil erosion in forest subcompartments mostly depends on the slope conditions.

  17. Managing dental erosion.

    Science.gov (United States)

    Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal

    2012-01-01

    The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.

  18. Comparison of erosion and erosion control works in Macedonia, Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivan Blinkov

    2013-12-01

    Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes. Over the history of these countries, people who settled this region used the available natural resources to fill their needs (tree cutting, incorrect plugging, overgrazing, which contributed to soil erosion. Organized erosion control works in the Balkans started in the beginning of the 20th century (1905 in Bulgaria. The highest intensity of erosion control works were carried out during the period 1945 – 1990. Various erosion control works were launched. Bulgaria had a large anti-erosion afforestation, almost 1 million ha. Bulgaria's ecological river restoration approach has been in use for almost 50 years. Serbia contributed significant erosion and torrent control works on hilly agricultural areas. Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia. A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.

  19. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  20. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)

    2014-07-01

    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  1. Can control of soil erosion mitigate water pollution by sediments?

    Science.gov (United States)

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  2. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values

    OpenAIRE

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    Objective: The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. Materials and Methods: CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were g...

  3. Can bone scintigraphy predict the final outcome of pasteurized autografts?

    International Nuclear Information System (INIS)

    Eid, Ahmed Shawky; Jeon, Dae-Geun; Cho, Wan Hyeong

    2010-01-01

    As pasteurization is becoming more widely used in limb salvage reconstruction, more study is required to understand about host-graft junction healing, graft revascularization and incorporation, and the incidence and type of complications among pasteurized autografts. This was mainly achieved by follow-up radiography. We aimed to clarify whether Tc99m bone scanning can be considered a reliable method in determining these three parameters. Twenty-seven osteosarcoma patients with pasteurized autograft reconstructions were retrospectively reviewed using available scintigraphic and radiographic follow-up every 6 months postoperatively for 36 months. Follow-up of the unhealed cases was continued for the maximum follow-up period available for each case beyond the original study period, ranging from 1 to 15 months. Tc99m uptake was classified as cold, faint, moderate and high uptake. Junction healing was classified as none, partial and complete healing. Seventy percent of junctions united with a mean of 22 months. Ninety to 100% of junctions showed increased uptake (high or moderate) at one time of the study regardless of final outcome. 85% of the pasteurized grafts showed the characteristic ''tramline appearance''. Four grafts (15%) were complicated: pseudoarthrosis and implant failure (1), fractured plate (1), intramedullary nail (IMN) fracture (1), and prosthesis stem loosening in the host bone (1), with underlying unhealed junctions in all cases. Bone scanning can determine the stages of the graft's rim revascularization and incorporation; however, it cannot detect or predict junction healing or occurrence of complications. Supplementary treatment of unhealed junctions showing either decreased junctional uptake or graft quiescence may be warranted. Otherwise, detection of distant metastasis and early local recurrence remains the main application of Tc99m scanning in the management of bone sarcomas. (orig.)

  4. Can bone scintigraphy predict the final outcome of pasteurized autografts?

    Energy Technology Data Exchange (ETDEWEB)

    Eid, Ahmed Shawky [Ain Shams University, Department of Orthopedic Surgery, Cairo (Egypt); Jeon, Dae-Geun; Cho, Wan Hyeong [Korea Cancer Center Hospital, Department of Orthopedic Surgery, Seoul (Korea)

    2010-10-15

    As pasteurization is becoming more widely used in limb salvage reconstruction, more study is required to understand about host-graft junction healing, graft revascularization and incorporation, and the incidence and type of complications among pasteurized autografts. This was mainly achieved by follow-up radiography. We aimed to clarify whether Tc99m bone scanning can be considered a reliable method in determining these three parameters. Twenty-seven osteosarcoma patients with pasteurized autograft reconstructions were retrospectively reviewed using available scintigraphic and radiographic follow-up every 6 months postoperatively for 36 months. Follow-up of the unhealed cases was continued for the maximum follow-up period available for each case beyond the original study period, ranging from 1 to 15 months. Tc99m uptake was classified as cold, faint, moderate and high uptake. Junction healing was classified as none, partial and complete healing. Seventy percent of junctions united with a mean of 22 months. Ninety to 100% of junctions showed increased uptake (high or moderate) at one time of the study regardless of final outcome. 85% of the pasteurized grafts showed the characteristic ''tramline appearance''. Four grafts (15%) were complicated: pseudoarthrosis and implant failure (1), fractured plate (1), intramedullary nail (IMN) fracture (1), and prosthesis stem loosening in the host bone (1), with underlying unhealed junctions in all cases. Bone scanning can determine the stages of the graft's rim revascularization and incorporation; however, it cannot detect or predict junction healing or occurrence of complications. Supplementary treatment of unhealed junctions showing either decreased junctional uptake or graft quiescence may be warranted. Otherwise, detection of distant metastasis and early local recurrence remains the main application of Tc99m scanning in the management of bone sarcomas. (orig.)

  5. Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes

    Science.gov (United States)

    2008-01-01

    In preparation for the Apollo program, Leonard Roberts of the NASA Langley Research Center developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts assumed that the erosion rate was determined by the excess shear stress in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumes a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. Roberts calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumed that only one particle size existed in the soil. He assumed that particle ejection angles were determined entirely by the shape of the terrain, which acts like a ballistic ramp, with the particle aerodynamics being negligible. The predicted erosion rate and the upper limit of particle size appeared to be within an order of magnitude of small-scale terrestrial experiments but could not be tested more quantitatively at the time. The lower limit of particle size and the predictions of ejection angle were not tested. We observed in the Apollo landing videos that the ejection angles of particles streaming out from individual craters were time-varying and correlated to the Lunar Module thrust, thus implying that particle aerodynamics dominate. We modified Roberts theory in two ways. First, we used ad hoc the ejection angles measured in the Apollo landing videos, in lieu of developing a more sophisticated method. Second, we integrated Roberts equations over the lunar-particle size distribution and obtained a compact expression that could be implemented in a numerical code. We also added a material damage model that predicts the number and size of divots which the impinging particles will cause in hardware surrounding the landing

  6. Erosivity factor in the Universal Soil Loss Equation estimated from Finnish rainfall data

    Directory of Open Access Journals (Sweden)

    Maximilian Posch

    1993-07-01

    Full Text Available Continuous rainfall data recorded for many years at 8 stations in Finland were used to estimate rainfall erosivity, a quantity needed for soil loss predictions with the Universal Soil Loss Equation (USLE. The obtained erosivity values were then used to determine the 2 parameters of a power-law function describing the relationship between daily precipitation and erosivity. This function is of importance in erosion modeling at locations where no breakpoint rainfall data are available. The parameters of the power-law were estimated both by linear regression of the log-transformed data and by non-linear least-square fitting of the original data. Results indicate a considerable seasonal (monthly variation of the erosivity, whereas the spatial variation over Finland is rather small.

  7. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models.

    Science.gov (United States)

    Teng, Hongfen; Liang, Zongzheng; Chen, Songchao; Liu, Yong; Viscarra Rossel, Raphael A; Chappell, Adrian; Yu, Wu; Shi, Zhou

    2018-04-18

    Soil erosion by water is accelerated by a warming climate and negatively impacts water security and ecological conservation. The Tibetan Plateau (TP) has experienced warming at a rate approximately twice that observed globally, and heavy precipitation events lead to an increased risk of erosion. In this study, we assessed current erosion on the TP and predicted potential soil erosion by water in 2050. The study was conducted in three steps. During the first step, we used the Revised Universal Soil Equation (RUSLE), publicly available data, and the most recent earth observations to derive estimates of annual erosion from 2002 to 2016 on the TP at 1-km resolution. During the second step, we used a multiple linear regression (MLR) model and a set of climatic covariates to predict rainfall erosivity on the TP in 2050. The MLR was used to establish the relationship between current rainfall erosivity data and a set of current climatic and other covariates. The coefficients of the MLR were generalised with climate covariates for 2050 derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) models to estimate rainfall erosivity in 2050. During the third step, soil erosion by water in 2050 was predicted using rainfall erosivity in 2050 and other erosion factors. The results show that the mean annual soil erosion rate on the TP under current conditions is 2.76tha -1 y -1 , which is equivalent to an annual soil loss of 559.59×10 6 t. Our 2050 projections suggested that erosion on the TP will increase to 3.17tha -1 y -1 and 3.91tha -1 y -1 under conditions represented by RCP2.6 and RCP8.5, respectively. The current assessment and future prediction of soil erosion by water on the TP should be valuable for environment protection and soil conservation in this unique region and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Predictive value of ridge dimensions on autologous bone graft resorption in staged maxillary sinus augmentation surgery using Cone-Beam CT.

    NARCIS (Netherlands)

    Klijn, R.J.; Beucken, J.J.J.P van den; Bronkhorst, E.M.; Berge, S.J.; Meijer, G.J.; Jansen, J.B.M.J.

    2012-01-01

    INTRODUCTION: No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft

  9. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  10. The influence of material hardness on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Takano, Shotaro; Saito, Kengo; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio

    2015-01-01

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5

  11. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils.

    Science.gov (United States)

    Rockwell, D L

    2011-02-01

    A series of simulated rainfall experiments, testing several soils and slope gradients in a 10 m x 0.8m laboratory flume, displayed close correlations between initial development of a water table at a 10 cm depth and highly erosive headcut formation. On some soils and gradients, highly erosive headcuts formed consistently and predictably within minutes or seconds of initial water table rise. However, headcuts alone were not good indicators of increased erosion. In most experiments some headcuts formed early, often when surface hydraulic parameter values reached established rill initiation thresholds, but resulted in little or no erosion increase. Later, at initial water table rise, other headcuts formed coincident with major erosion increase, often with surface hydraulic values then less than rill initiation thresholds. On the four soils tested, highly erosive headcuts never formed without groundwater development, except on steep 9 ° slopes. Common visual indicators such as headcut morphology and headcut advance rates were not effective means of determining either erosion or the existence of groundwater. Only local monitoring of subsurface moisture conditions with micro-standpipes and TDR aided in determining headcut processes and erosive regimes. Groundwater-influenced headcut formation was likely caused by increased soil pore-water pressures and decreased soil shear strengths in surface rainflow, not by sapping or seepage from the soil matrix. Highly erosive headcuts can thus form under common agricultural conditions where reductions in permeability, such as plow pans, exist near the surface--without the need for saturated soils. Headcut erosive regimes were also significantly influenced by soil type and slope gradient, with the greatest effects of groundwater on moderate slopes and fairly permeable soils. Copyright © 2010. Published by Elsevier Ltd.

  12. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  13. On the role of "internal variability" on soil erosion assessment

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  14. A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal.

    Science.gov (United States)

    Perai, A H; Nassiri Moghaddam, H; Asadpour, S; Bahrampour, J; Mansoori, Gh

    2010-07-01

    There has been a considerable and continuous interest to develop equations for rapid and accurate prediction of the ME of meat and bone meal. In this study, an artificial neural network (ANN), a partial least squares (PLS), and a multiple linear regression (MLR) statistical method were used to predict the TME(n) of meat and bone meal based on its CP, ether extract, and ash content. The accuracy of the models was calculated by R(2) value, MS error, mean absolute percentage error, mean absolute deviation, bias, and Theil's U. The predictive ability of an ANN was compared with a PLS and a MLR model using the same training data sets. The squared regression coefficients of prediction for the MLR, PLS, and ANN models were 0.38, 0.36, and 0.94, respectively. The results revealed that ANN produced more accurate predictions of TME(n) as compared with PLS and MLR methods. Based on the results of this study, ANN could be used as a promising approach for rapid prediction of nutritive value of meat and bone meal.

  15. Using high-performance mathematical modelling tools to predict erosion and sediment fluxes in peri-urban catchments

    Science.gov (United States)

    Pereira, André; Conde, Daniel; Ferreira, Carla S. S.; Walsh, Rory; Ferreira, Rui M. L.

    2017-04-01

    Deforestation and urbanization generally lead to increased soil erosion andthrough the indirect effect of increased overland flow and peak flood discharges. Mathematical modelling tools can be helpful for predicting the spatial distribution of erosion and the morphological changes on the channel network. This is especially useful to predict the impacts of land-use changes in parts of the watershed, namely due to urbanization. However, given the size of the computational domain (normally the watershed itself), the need for high spatial resolution data to model accurately sediment transport processes and possible need to model transcritical flows, the computational cost is high and requires high-performance computing techniques. The aim of this work is to present the latest developments of the hydrodynamic and morphological model STAV2D and its applicability to predict runoff and erosion at watershed scale. STAV2D was developed at CEris - Instituto Superior Técnico, Universidade de Lisboa - as a tool particularly appropriated to model strong transient flows in complex and dynamic geometries. It is based on an explicit, first-order 2DH finite-volume discretization scheme for unstructured triangular meshes, in which a flux-splitting technique is paired with a reviewed Roe-Riemann solver, yielding a model applicable to discontinuous flows over time-evolving geometries. STAV2D features solid transport in both Euleran and Lagrangian forms, with the aim of describing the transport of fine natural sediments and then the large individual debris. The model has been validated with theoretical solutions and laboratory experiments (Canelas et al., 2013 & Conde et al., 2015). STAV-2D now supports fully distributed and heterogeneous simulations where multiple different hardware devices can be used to accelerate computation time within a unified Object-Oriented approach: the source code for CPU and GPU has the same compilation units and requires no device specific branches, like

  16. Three-phase Bone Scintigraphy Can Predict the Analgesic Efficacy of Ketamine Therapy in CRPS.

    Science.gov (United States)

    Sorel, Marc; Beatrix, Jacques-Christian; Locko, Blanche; Armessen, Catherine; Domec, Anne-Marie; Lecompte, Otilia; Boucheneb, Sofiane; Harache, Benoit; Robert, Jacques; Lefaucheur, Jean-Pascal

    2018-03-13

    The efficacy of ketamine in relieving complex regional pain syndrome (CRPS) lacks predictive factors. The value of three-phase bone scintigraphy (TPBS) was assessed or this purpose. TPBS was performed in 105 patients with unilateral, focal CRPS of type 1 before 5 days of ketamine infusions. Tracer uptake was measured in the region of interest concerned by CRPS and the contralateral homologous region. For the three scintigraphic phases (vascular, tissular, and bone phases), an asymmetry ratio of fixation was calculated between the affected and the unaffected sides (VPr, TPr, and BPr). Ketamine efficacy was assessed on pain intensity scores. Ketamine-induced pain relief did not correlate with VPr, TPr, and BPr, but with the ratios of these ratios: BPr/TPr (r=0.32, P=0.009), BPr/VPr (r=0.34, P=0.005), and TPr/VPr (r=0.23, P=0.02). The optimum cut-off value for predicting the response to ketamine therapy was >1.125 for BPr/TPr, >1.075 for BPr/VPr, and >0.935 for TPr/VPr. The combination of increased values of BPr/TPr, BPr/VPr, and TPr/VPr was extremely significantly associated with ketamine therapy outcome. The relative hyperfixation of the radioactive tracer in the limb region concerned by CRPS in phases 2 and 3 versus phase 1 of TPBS correlated positively to the analgesic efficacy of ketamine. This study shows for the first time the potential predictive value of TPBS regarding ketamine therapy outcome. In addition, these results suggest that the analgesic action of ketamine is not restricted to "central" mechanisms, but may also involve "peripheral" mechanisms related to tissue inflammation and bone remodeling.

  17. Bone changes of mandibular condyle using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Un; Kim, Hyung Seop; Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon [Chonbuk National Univ., Chonju (Korea, Republic of)

    2007-09-15

    To assess bone changes of mandibular condyle using cone beam computed tomography (CBCT) in temporomandibualr disorder (TMD) patients. 314 temporomandibular joints (TMJs) images of 163 TMD patients were examined at the Department of Oral and Maxillofacial Radiology, Chonbuk National University. The images were obtained by PSR9000N (Asahi Roentgen Co., Japan) and reconstructed by using Asahivision software (Asahi Roentgen Co., Japan). The CBCT images were examined three times with four weeks interval by three radiologists. Bone changes of mandibular condyle such as flattening, sclerosis, erosion and osteophyte formation were observed in sagittal, axial, coronal and 3 dimensional images of the mandibular condyle. The statistical analysis was performed using SPSS 12.0. Intra-and interobserver agreement were performed by 3 radiologists without the knowledge of clinical information. Osteopathy (2.9%) was found more frequently on anterior surface of the mandibular condyle. Erosion (31.8%) was found more frequently on anterior surface of the mandibular condyle. The intraobserver agreement was good to excellent (k=0.78{sub 0}.84), but interobserver agreement was fair (k=0.45). CBCT can provide high qualified images of bone changes of the TMJ with axial, coronal and 3 dimensional images.

  18. Bone changes of mandibular condyle using cone beam computed tomography

    International Nuclear Information System (INIS)

    Lee, Ji Un; Kim, Hyung Seop; Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon

    2007-01-01

    To assess bone changes of mandibular condyle using cone beam computed tomography (CBCT) in temporomandibualr disorder (TMD) patients. 314 temporomandibular joints (TMJs) images of 163 TMD patients were examined at the Department of Oral and Maxillofacial Radiology, Chonbuk National University. The images were obtained by PSR9000N (Asahi Roentgen Co., Japan) and reconstructed by using Asahivision software (Asahi Roentgen Co., Japan). The CBCT images were examined three times with four weeks interval by three radiologists. Bone changes of mandibular condyle such as flattening, sclerosis, erosion and osteophyte formation were observed in sagittal, axial, coronal and 3 dimensional images of the mandibular condyle. The statistical analysis was performed using SPSS 12.0. Intra-and interobserver agreement were performed by 3 radiologists without the knowledge of clinical information. Osteopathy (2.9%) was found more frequently on anterior surface of the mandibular condyle. Erosion (31.8%) was found more frequently on anterior surface of the mandibular condyle. The intraobserver agreement was good to excellent (k=0.78 0 .84), but interobserver agreement was fair (k=0.45). CBCT can provide high qualified images of bone changes of the TMJ with axial, coronal and 3 dimensional images

  19. Bone scintigraphy compared to MRI and ultrasound in the early diagnosis of arthritis; Skelettszintigraphie im Vergleich mit MRT und Sonographie beim Fruehnachweis der Arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Sandrock, D. [Klinikum Chemnitz gGmbH, Klinik fuer Nuklearmedizin, Chemnitz (Germany)

    2006-12-15

    Chronic inflammatory arthritis is recognized specifically by bone erosions, caused by characteristic pannus tissue. In the finger joints dynamic low-Tesla MRI is nearly double but not completely sensitive in the detection of erosions than conventional radiography, sonography takes an intermediate position. Less specific signs of synovitis and tenosynovitis are shown with high sensitivity by both 3(2)-phase bone scintigraphy and ultrasound, MRI is less sensitive in this respect. However, standard situation of inflammation in bone scintigraphy - positive finding in early as well as late phase - is of surprisingly low sensitivity, any singular finding in the early or late phase has to be regarded as positive. Specificity of these singular findings is nevertheless sufficiently high, acute inflammatory joint changes and even erosions are also seen with MRI in obviously healthy persons. Only 2-phase bone scintigraphy is easily able to present a simultaneous survey of all joints of the body. For this reason 2-phase bone scintigraphy is most suitable for exclusion but also for primary diagnosis of disease, specification must be done afterwards by other imaging modalities or by laboratory findings. (orig.)

  20. An overview of erosion corrosion models and reliability assessment for corrosion defects in piping system

    International Nuclear Information System (INIS)

    Srividya, A.; Suresh, H.N.; Verma, A.K.; Gopika, V.; Santosh

    2006-01-01

    Piping systems are part of passive structural elements in power plants. The analysis of the piping systems and their quantification in terms of failure probability is of utmost importance. The piping systems may fail due to various degradation mechanisms like thermal fatigue, erosion-corrosion, stress corrosion cracking and vibration fatigue. On examination of previous results, erosion corrosion was more prevalent and wall thinning is a time dependent phenomenon. The paper is intended to consolidate the work done by various investigators on erosion corrosion in estimating the erosion corrosion rate and reliability predictions. A comparison of various erosion corrosion models is made. The reliability predictions based on remaining strength of corroded pipelines by wall thinning is also attempted. Variables in the limit state functions are modelled using normal distributions and Reliability assessment is carried out using some of the existing failure pressure models. A steady state corrosion rate is assumed to estimate the corrosion defect and First Order Reliability Method (FORM) is used to find the probability of failure associated with corrosion defects over time using the software for Component Reliability evaluation (COMREL). (author)

  1. Modeling erosion of unsaturated compacted bentonite by groundwater flow; pinhole erosion test case

    International Nuclear Information System (INIS)

    Laurila, T.; Sane, P.; Olin, M.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. Erosion of compacted clay material by water flow is a critical factor affecting the performance of radioactive waste confinement. Our emphasis in this work is the buffer of KBS-3V concept, proposed to be compacted MX-80 bentonite. Unsaturated erosion occurs during the saturation phase of the EBS, and the main quantity of interest is the total buffer mass carried away by a groundwater flow that induces erosion by forming piping channels near the buffer/rock interface. The purpose of this work is to provide modeling tools to support erosion experiments. Role of modeling is first to interpret experimental observations in terms of processes, and to estimate robustness of experimental results. Secondly, we seek to scale up results from the laboratory scale, particularly to time scales longer than those experimentally accessible. We have performed modeling and data analysis pertaining to tests of unsaturated clay erosion. Pinhole experiments were used to study this erosion case. The main differences to well-understood pinhole erosion tests are that the material is strongly swelling and that the water flow is not determined by the pressure head but by the total flux. Groundwater flow in the buffer is determined by the flux because pressure losses occur overwhelmingly in the surrounding rock, not in the piping channel. We formulate a simple model that links an effective solid diffusivity -based swelling model to erosion by flow on the solid/liquid interface. The swelling model is similar in concept to that developed at KTH, but simpler. Erosion in the model is caused by laminar flow in the pinhole, and happens in a narrow region at the solid/liquid interface where velocity and solid volume fraction overlap. The erosion model can be mapped to erosion by wall shear, and can thus be considered as extension of that classic erosion model. The main quantity defining the behavior of clay erosion in the model is the ratio of

  2. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  3. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  4. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  5. Aging and bone. X-ray bone densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Rikushi (Shiga Univ. of Medical Sciences, Otsu (Japan))

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.).

  6. Aging and bone. X-ray bone densitometry

    International Nuclear Information System (INIS)

    Morita, Rikushi

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.)

  7. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands

    Science.gov (United States)

    Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.

    2018-04-01

    Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.

  8. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  9. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  10. Particle Impact Erosion. Volume 4. User’s Manual Erosion Prediction Procedure for Rocket Nozzle Expansion Region

    Science.gov (United States)

    1983-05-01

    empirical erosion model, with use of the debris-layer model optional. 1.1 INTERFACE WITH ISPP ISPP is a collection of computer codes designed to calculate...expansion with the ODK code, 4. A two-dimensional, two-phase nozzle expansion with the TD2P code, 5. A turbulent boundary layer solution along the...INPUT THERMODYNAMIC DATA FOR TEMPERATURESBELOW 300°K OIF NEEDED) NO A• 11 READ SSP NAMELIST (ODE. BAL. ODK . TD2P. TEL. NOZZLE GEOMETRY) PROfLM 2

  11. The use of spatial empirical models to estimate soil erosion in arid ecosystems.

    Science.gov (United States)

    Abdullah, Meshal; Feagin, Rusty; Musawi, Layla

    2017-02-01

    The central objective of this project was to utilize geographical information systems and remote sensing to compare soil erosion models, including Modified Pacific South-west Inter Agency Committee (MPSIAC), Erosion Potential Method (EPM), and Revised Universal Soil Loss Equation (RUSLE), and to determine their applicability for arid regions such as Kuwait. The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the de-militarized zone (DMZ) adjacent to Iraq and has been fenced off to restrict public access since 1994. Results showed that the MPSIAC and EPM models were similar in spatial distribution of erosion, though the MPSIAC had a more realistic spatial distribution of erosion and presented finer level details. The RUSLE presented unrealistic results. We then predicted the amount of soil loss between coastal and desert areas and fenced and unfenced sites for each model. In the MPSIAC and EPM models, soil loss was different between fenced and unfenced sites at the desert areas, which was higher at the unfenced due to the low vegetation cover. The overall results implied that vegetation cover played an important role in reducing soil erosion and that fencing is much more important in the desert ecosystems to protect against human activities such as overgrazing. We conclude that the MPSIAC model is best for predicting soil erosion for arid regions such as Kuwait. We also recommend the integration of field-based experiments with lab-based spatial analysis and modeling in future research.

  12. The comparison of various approach to evaluation erosion risks and design control erosion measures

    Science.gov (United States)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas

  13. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    Science.gov (United States)

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  14. A Mechanistic Model of Waterfall Plunge Pool Erosion into Bedrock

    Science.gov (United States)

    Scheingross, Joel S.; Lamb, Michael P.

    2017-11-01

    Landscapes often respond to changes in climate and tectonics through the formation and upstream propagation of knickzones composed of waterfalls. Little work has been done on the mechanics of waterfall erosion, and instead most landscape-scale models neglect waterfalls or use rules for river erosion, such as stream power, that may not be applicable to waterfalls. Here we develop a physically based model to predict waterfall plunge pool erosion into rock by abrasion from particle impacts and test the model against flume experiments. Both the model and experiments show that evolving plunge pools have initially high vertical erosion rates due to energetic particle impacts, and erosion slows and eventually ceases as pools deepen and deposition protects the pool floor from further erosion. Lateral erosion can continue after deposition on the pool floor, but it occurs at slow rates that become negligible as pools widen. Our work points to the importance of vertical drilling of successive plunge pools to drive upstream knickzone propagation in homogenous rock, rather than the classic mechanism of headwall undercutting. For a series of vertically drilling waterfalls, we find that upstream knickzone propagation is faster under higher combined water and sediment fluxes and for knickzones composed of many waterfalls that are closely spaced. Our model differs significantly from stream-power-based erosion rules in that steeper knickzones can retreat faster or more slowly depending on the number and spacing of waterfalls within a knickzone, which has implications for interpreting climatic and tectonic history through analysis of river longitudinal profiles.

  15. Physical activity effects on bone metabolism.

    Science.gov (United States)

    Smith, E L; Gilligan, C

    1991-01-01

    The incidence of osteoporotic fractures rises exponentially with age and is increasing faster than the demographic increase in the aging population. Physical activity has great potential to reduce the risk for osteoporotic fractures. Three independent but interactive factors contribute to the risk of fractures: bone strength, the risk of falling, and the effectiveness of neuromuscular response that protects the skeleton from injury. Exercise can reduce fracture risk not only by preventing bone loss, but by decreasing the risk of falling and the force of impact by improving strength, flexibility, balance, and reaction time. Extreme inactivity causes rapid bone loss of up to 40%, while athletic activity results in bone hypertrophy of up to 40%. Exercise intervention programs have reduced bone loss or increased bone mass in both men and women of various ages and initial bone status. These benefits have been shown for arm bone mineral content, total body calcium, spine, calcium bone index, tibia, and calcaneus. In both middle-aged and elderly women, physical activity intervention reduced bone loss or increased bone mass. The mechanisms for maintenance of skeletal integrity rely on a cellular response to hormonal and mechanical load stimuli. Studies in animal models show that training affects cellular activity. In osteoporotics, cellular erosion is increased and mineral apposition rate (MAR) decreased compared with normal age-matched controls. In contrast to this, sows trained on a treadmill 20 min per day for 20 weeks had greater active periosteal surface, periosteal MAR, and osteonal MAR than untrained sows.

  16. Erosion estimation of guide vane end clearance in hydraulic turbines with sediment water flow

    Science.gov (United States)

    Han, Wei; Kang, Jingbo; Wang, Jie; Peng, Guoyi; Li, Lianyuan; Su, Min

    2018-04-01

    The end surface of guide vane or head cover is one of the most serious parts of sediment erosion for high-head hydraulic turbines. In order to investigate the relationship between erosion depth of wall surface and the characteristic parameter of erosion, an estimative method including a simplified flow model and a modificatory erosion calculative function is proposed in this paper. The flow between the end surfaces of guide vane and head cover is simplified as a clearance flow around a circular cylinder with a backward facing step. Erosion characteristic parameter of csws3 is calculated with the mixture model for multiphase flow and the renormalization group (RNG) k-𝜀 turbulence model under the actual working conditions, based on which, erosion depths of guide vane and head cover end surfaces are estimated with a modification of erosion coefficient K. The estimation results agree well with the actual situation. It is shown that the estimative method is reasonable for erosion prediction of guide vane and can provide a significant reference to determine the optimal maintenance cycle for hydraulic turbine in the future.

  17. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)

    Science.gov (United States)

    Angileri, Silvia Eleonora; Conoscenti, Christian; Hochschild, Volker; Märker, Michael; Rotigliano, Edoardo; Agnesi, Valerio

    2016-06-01

    Soil erosion by water constitutes a serious problem affecting various countries. In the last few years, a number of studies have adopted statistical approaches for erosion susceptibility zonation. In this study, the Stochastic Gradient Treeboost (SGT) was tested as a multivariate statistical tool for exploring, analyzing and predicting the spatial occurrence of rill-interrill erosion and gully erosion. This technique implements the stochastic gradient boosting algorithm with a tree-based method. The study area is a 9.5 km2 river catchment located in central-northern Sicily (Italy), where water erosion processes are prevalent, and affect the agricultural productivity of local communities. In order to model soil erosion by water, the spatial distribution of landforms due to rill-interrill and gully erosion was mapped and 12 environmental variables were selected as predictors. Four calibration and four validation subsets were obtained by randomly extracting sets of negative cases, both for rill-interrill erosion and gully erosion models. The results of validation, based on receiving operating characteristic (ROC) curves, showed excellent to outstanding accuracies of the models, and thus a high prediction skill. Moreover, SGT allowed us to explore the relationships between erosion landforms and predictors. A different suite of predictor variables was found to be important for the two models. Elevation, aspect, landform classification and land-use are the main controlling factors for rill-interrill erosion, whilst the stream power index, plan curvature and the topographic wetness index were the most important independent variables for gullies. Finally, an ROC plot analysis made it possible to define a threshold value to classify cells according to the presence/absence of the two erosion processes. Hence, by heuristically combining the resulting rill-interrill erosion and gully erosion susceptibility maps, an integrated water erosion susceptibility map was created. The

  18. Effect of mechanical properties on erosion resistance of ductile materials

    Science.gov (United States)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  19. Erosion Modeling of the High Contraction Chromium Plated Crusader Gun System

    National Research Council Canada - National Science Library

    Sopok, S

    2003-01-01

    Thermal-chemical- mechanical erosion modeling predictions are given for the high contraction chromium plated Crusader gun system based on extensive cannon firing, inspection, characterization, and experimental data...

  20. AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands

    Science.gov (United States)

    Galloza, M.; Webb, N.; Herrick, J.

    2015-12-01

    Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.

  1. New predictive model for monitoring bone remodeling

    Czech Academy of Sciences Publication Activity Database

    Bougherara, H.; Klika, Václav; Maršík, František; Mařík, I.; Yahia, L.H.

    95A, č. 1 (2010), s. 9-24 ISSN 1549-3296 R&D Projects: GA ČR GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z20760514 Keywords : bone remodeling * open system thermodynamics * bone biochemistry Subject RIV: BJ - Thermodynamics Impact factor: 3.044, year: 2010

  2. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The Future Role of Information Technology in Erosion Modelling

    Science.gov (United States)

    Natural resources management and decision-making is a complex process requiring cooperation and communication among federal, state, and local stakeholders balancing biophysical and socio-economic concerns. Predicting soil erosion is common practice in natural resource management for assessing the e...

  4. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.

    Science.gov (United States)

    Martin, August; Gunter, James T; Regens, James L

    2003-01-01

    GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within

  5. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  6. Mechanics of interrill erosion with wind-driven rain

    Science.gov (United States)

    The vector physics of wind-driven rain (WDR) differs from that of wind-free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the...

  7. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Science.gov (United States)

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (perosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  8. Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools.

    Science.gov (United States)

    Ashiagbori, G; Forkuo, E K; Laari, P; Aabeyir, R

    2014-07-01

    Soil erosion involves detachment and transport of soil particles from top soil layers, degrading soil quality and reducing the productivity of affected lands. Soil eroded from the upland catchment causes depletion of fertile agricultural land and the resulting sediment deposited at the river networks creates river morphological change and reservoir sedimentation problems. However, land managers and policy makers are more interested in the spatial distribution of soil erosion risk than in absolute values of soil erosion loss. The aim of this paper is to model the spatial distribution of soil erosion in Densu River Basin of Ghana using RUSLE and GIS tools and to use the model to explore the relationship between erosion susceptibility, slope and land use/land cover (LULC) in the Basin. The rainfall map, digital elevation model, soil type map, and land cover map, were input data in the soil erosion model developed. This model was then categorized into four different erosion risk classes. The developed soil erosion map was then overlaid with the slope and LULC maps of the study area to explore their effects on erosion susceptibility of the soil in the Densu River Basin. The Model, predicted 88% of the basin as low erosion risk and 6% as moderate erosion risk, 3% as high erosion risk and 3% as severe risk. The high and severe erosion areas were distributed mainly within the areas of high slope gradient and also sections of the moderate forest LULC class. Also, the areas within the moderate forest LULC class found to have high erosion risk, had an intersecting high erodibility soil group.

  9. Analysis of erosion and transport of carbon impurity in the TFTR inner bumper limiter region

    International Nuclear Information System (INIS)

    Hua, T.Q.; Brooks, J.N.

    1992-01-01

    Carbon sputtering and transport on the TFTR inner graphite bumper limiter is investigated with the impurity transport code REDEP. Analysis is carried out for a series of ohmic discharges in TFTR. Predictions for Z eff in the core plasma agree well with in-situ experimental measurements. Run-away self-sputtering of carbon is predicted at low densities and high edge plasma temperatures when the limiter surface was purged of deuterium. Surface erosion and deposition is analyzed. In general, redeposition reduces the peak erosion by about a factor of five. Analysis is also carried out for a typical neutral beam heated discharge with a noncircular plasma. Spatial surface erosion and deposition profiles are compared qualitatively with beta backscattering measurements of metal deposition found on the limiter

  10. Association between disk position and degenerative bone changes of the temporomandibular joints: an imaging study in subjects with TMD.

    Science.gov (United States)

    Cortés, Daniel; Sylvester, Daniel Cortés; Exss, Eduardo; Marholz, Carlos; Millas, Rodrigo; Moncada, Gustavo

    2011-04-01

    The aim of this study was to determine the frequency and relationship between disk position and degenerative bone changes in the temporomandibular joints (TMJ), in subjects with internal derangement (ID). MRI and CT scans of 180 subjects with temporomandibular disorders (TMD) were studied. Different image parameters or characteristics were observed, such as disk position, joint effusion, condyle movement, degenerative bone changes (flattened, cortical erosions and irregularities), osteophytes, subchondral cysts and idiopathic condyle resorption. The present study concluded that there is a significant association between disk displacement without reduction and degenerative bone changes in patients with TMD. The study also found a high probability of degenerative bone changes when disk displacement without reduction is present. No association was found between TMD and condyle range of motion, joint effusion and/or degenerative bone changes. The following were the most frequent morphological changes observed: flattening of the anterior surface of the condyle; followed by erosions and irregularities of the joint surfaces; flattening of the articular surface of the temporal eminence, subchondral cysts, osteophytes; and idiopathic condyle resorption, in decreasing order.

  11. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    Science.gov (United States)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  12. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina de Oliveira

    Full Text Available This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15: GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3 for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05. The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm. The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  13. National evaluation of Chinese coastal erosion to sea level rise using a Bayesian approach

    International Nuclear Information System (INIS)

    Zhan, Q; Fan, X; Du, X; Zhu, J

    2014-01-01

    In this paper a Causal Bayesian network is developed to predict decadal-scale shoreline evolution of China to sea-level rise. The Bayesian model defines relationships between 6 factors of Chinese coastal system such as coastal geomorphology, mean tide range, mean wave height, coastal slope, relative sea-level rise rate and shoreline erosion rate. Using the Bayesian probabilistic model, we make quantitative assessment of china's shoreline evolution in response to different future sea level rise rates. Results indicate that the probability of coastal erosion with high and very high rates increases from 28% to 32.3% when relative sea-level rise rates is 4∼6mm/a, and to 44.9% when relative sea-level rise rates is more than 6mm/a. A hindcast evaluation of the Bayesian model shows that the model correctly predicts 79.3% of the cases. Model test indicates that the Bayesian model shows higher predictive capabilities for stable coasts and very highly eroding coasts than moderately and highly eroding coasts. This study demonstrates that the Bayesian model is adapted to predicting decadal-scale Chinese coastal erosion associated with sea-level rise

  14. TILLAGE EROSION: THE PRINCIPLES, CONTROLLING FACTORS AND MAIN IMPLICATIONS FOR FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2014-10-01

    Full Text Available Tillage erosion is one of the major contributors to landscape evolution in hummocky agricultural landscapes. This paper summarizes the available data describing tillage erosion caused by hand-held or other simple tillage implements as well as tools used in typical conventional agriculture in Europe and North America. Variations in equipment, tillage speed, depth and direction result in a wide range of soil translocation rates observed all over the world. The variety of tracers both physical and chemical gives a challenge to introduce the reliable model predicting tillage erosion, considering the number and type of tillage operation in the whole tillage sequence.

  15. [Estimation of the effect derived from wind erosion of soil and dust emission in Tianjin suburbs on the central district based on WEPS model].

    Science.gov (United States)

    Chen, Li; Han, Ting-Ting; Li, Tao; Ji, Ya-Qin; Bai, Zhi-Peng; Wang, Bin

    2012-07-01

    Due to the lack of a prediction model for current wind erosion in China and the slow development for such models, this study aims to predict the wind erosion of soil and the dust emission and develop a prediction model for wind erosion in Tianjin by investigating the structure, parameter systems and the relationships among the parameter systems of the prediction models for wind erosion in typical areas, using the U.S. wind erosion prediction system (WEPS) as reference. Based on the remote sensing technique and the test data, a parameter system was established for the prediction model of wind erosion and dust emission, and a model was developed that was suitable for the prediction of wind erosion and dust emission in Tianjin. Tianjin was divided into 11 080 blocks with a resolution of 1 x 1 km2, among which 7 778 dust emitting blocks were selected. The parameters of the blocks were localized, including longitude, latitude, elevation and direction, etc.. The database files of blocks were localized, including wind file, climate file, soil file and management file. The weps. run file was edited. Based on Microsoft Visualstudio 2008, secondary development was done using C + + language, and the dust fluxes of 7 778 blocks were estimated, including creep and saltation fluxes, suspension fluxes and PM10 fluxes. Based on the parameters of wind tunnel experiments in Inner Mongolia, the soil measurement data and climate data in suburbs of Tianjin, the wind erosion module, wind erosion fluxes, dust emission release modulus and dust release fluxes were calculated for the four seasons and the whole year in suburbs of Tianjin. In 2009, the total creep and saltation fluxes, suspension fluxes and PM10 fluxes in the suburbs of Tianjin were 2.54 x 10(6) t, 1.25 x 10(7) t and 9.04 x 10(5) t, respectively, among which, the parts pointing to the central district were 5.61 x 10(5) t, 2.89 x 10(6) t and 2.03 x 10(5) t, respectively.

  16. Precision comparison of the erosion rates derived from 137Cs measurements models with predictions based on empirical relationship

    International Nuclear Information System (INIS)

    Yang Mingyi; Liu Puling; Li Liqing

    2004-01-01

    The soil samples were collected in 6 cultivated runoff plots with grid sampling method, and the soil erosion rates derived from 137 Cs measurements were calculated. The models precision of Zhang Xinbao, Zhou Weizhi, Yang Hao and Walling were compared with predictions based on empirical relationship, data showed that the precision of 4 models is high within 50m slope length except for the slope with low slope angle and short length. Relatively, the precision of Walling's model is better than that of Zhang Xinbao, Zhou Weizhi and Yang Hao. In addition, the relationship between parameter Γ in Walling's improved model and slope angle was analyzed, the ralation is: Y=0.0109 X 1.0072 . (authors)

  17. Quantifying and modeling soil erosion and sediment export from construction sites in southern California

    Science.gov (United States)

    Wernet, A. K.; Beighley, R. E.

    2006-12-01

    Soil erosion is a power process that continuously alters the Earth's landscape. Human activities, such as construction and agricultural practices, and natural events, such as forest fires and landslides, disturb the landscape and intensify erosion processes leading to sudden increases in runoff sediment concentrations and degraded stream water quality. Understanding soil erosion and sediment transport processes is of great importance to researchers and practicing engineers, who routinely use models to predict soil erosion and sediment movement for varied land use and climate change scenarios. However, existing erosion models are limited in their applicability to constructions sites which have highly variable soil conditions (density, moisture, surface roughness, and best management practices) that change often in both space and time. The goal of this research is to improve the understanding, predictive capabilities and integration of treatment methodologies for controlling soil erosion and sediment export from construction sites. This research combines modeling with field monitoring and laboratory experiments to quantify: (a) spatial and temporal distribution of soil conditions on construction sites, (b) soil erosion due to event rainfall, and (c) potential offsite discharge of sediment with and without treatment practices. Field sites in southern California were selected to monitor the effects of common construction activities (ex., cut/fill, grading, foundations, roads) on soil conditions and sediment discharge. Laboratory experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University, to quantify the impact of individual factors leading to sediment export. SERL experiments utilize a 3-m by 10-m tilting soil bed with soil depths up to 1 m, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). Preliminary modeling, field and laboratory

  18. PREDICTION OF THE DURATION OF DISTRACTION REGENERATED BONE MATURATION

    Directory of Open Access Journals (Sweden)

    N. V. Tushina

    2012-01-01

    Full Text Available Aim of the study the characteristics of changes of serum biochemical parameters in dogs with delayed maturation of the distraction regenerate after surgical lengthening the leg bones by Ilizarov. The comparative analysis of biochemical changes in blood serum of animals with delayed regenerated bone osteogenesis after surgical leg bone lengthening according to Ilizarov has been made in the work. The development of persistent and marked hypocalcemia, significant accumulation of blood serum nonoxidized degradation products during limb bone surgical lengthening according to Ilizarov have been revealed to be adverse signs evidencing of the high probability of the disorder of further formation of the regenerated bone and its subsequent maturation at the stage of fixation.

  19. Three Gorges Reservoir Area: soil erosion under natural condition vs. soil erosion under current land use

    Science.gov (United States)

    Schönbrodt, Sarah; Behrens, Thorsten; Scholten, Thomas

    2010-05-01

    Apparently, the current most prominent human-induced example for large scale environmental impact is the Three Gorges Dam in China. The flooding alongside the Yangtze River, and its tributaries results in a vast loss of settlement and farmland area with productive, fertile valley soils. Due to the associated high land use dynamic on uphill-sites, the soil resources are underlying high land use pressure. Within our study, the soil erosion under natural conditions is compared to the soil erosion under current land use after the impoundment. Both were modeled using the empirical Universal Soil Loss Equation (USLE) which is able to predict long-term annual soil loss with limited data. The database consists of digital terrain data (45 m resolution DEM, erosive slope length based on Monte-Carlo-Aggregation according to Behrens et al. (2008)), field investigations of recent erosion forms, and literature studies. The natural disposition to soil erosion was calculated considering the USLE factors R, S, and K. The soil erosion under current land use was calculated taking into account all USLE factors. The study area is the catchment of the Xiangxi River in the Three Gorges Reservoir area. Within the Xiangxi Catchment (3,200 km²) the highly dynamic backwater area (580 km²), and two micro-scale study sites (Xiangjiaba with 2.8 km², and Quyuan with 88 km²) are considered more detailed as they are directly affected by the river impoundment. Central features of the Xiangxi Catchment are the subtropical monsoon climate, an extremely steep sloping relief (mean slope angle 39°, SD 22.8°) artificially fractured by farmland terraces, and a high soil erodibility (mean K factor 0.37, SD 0.13). On the catchment scale the natural disposition to soil erosion makes up to mean 518.0 t ha-1 a-1. The maximum potential soil loss of 1,730.1 t ha-1 a-1 under natural conditions is reached in the Quyuan site (mean 635.8 t ha-1 a-1) within the backwater area (mean 582.9 t ha-1 a-1). In the

  20. Protection from erosion following wildfire

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  1. Technology development by the U.S. industry to resolve erosion-corrosion

    International Nuclear Information System (INIS)

    Chexal, B.; Dietrich, N.; Horowitz, J.; Layman, W.; Randall, G.; Shevde, V.

    1990-01-01

    Erosion-corrosion is a flow-accelerated corrosion process that leads to wall thinning (metal loss) of steel piping exposed to flowing water or wet steam. The rate of metal loss depends on a complex interplay of several parameters. These parameters include water chemistry, material composition, and hydrodynamics. Erosion-corrosion of plant piping can lead to costly outages and repairs, and can raise concerns about plant reliability and safety. Pipe wall degradation rates as high as 1.5 mm/year have occurred, resulting in pipe ruptures at both fossil and nuclear plants. The Nuclear Management and Resource Council (NUMARC) and EPRI have developed inspection planning methods and tools to help utilities identify areas of piping that might undergo erosion-corrosion. These tools provide utilities with the ability to predict wall thinning and to assess various remedial options. This allows utilities to plan and perform inspections, and to correct problems found during inspection. The U.S. electric power industry has developed the knowledge and the tools needed to protect against erosion-corrosion, and utilities have implemented erosion-corrosion monitoring programs. This paper describes EPRI's technical developments that support the utilities in determining where to inspect for erosion-corrosion. 15 refs, 7 figs

  2. Determining long-term regional erosion rates using impact craters

    Science.gov (United States)

    Hergarten, Stefan; Kenkmann, Thomas

    2015-04-01

    More than 300,000 impact craters have been found on Mars, while the surface of Moon's highlands is even saturated with craters. In contrast, only 184 impact craters have been confirmed on Earth so far with only 125 of them exposed at the surface. The spatial distribution of these impact craters is highly inhomogeneous. Beside the large variation in the age of the crust, consumption of craters by erosion and burial by sediments are the main actors being responsible for the quite small and inhomogeneous crater record. In this study we present a novel approach to infer long-term average erosion rates at regional scales from the terrestrial crater inventory. The basic idea behind this approach is a dynamic equilibrium between the production of new craters and their consumption by erosion. It is assumed that each crater remains detectable until the total erosion after the impact exceeds a characteristic depth depending on the crater's diameter. Combining this model with the terrestrial crater production rate, i.e., the number of craters per unit area and time as a function of their diameter, allows for a prediction of the expected number of craters in a given region as a function of the erosion rate. Using the real crater inventory, this relationship can be inverted to determine the regional long-term erosion rate and its statistical uncertainty. A limitation by the finite age of the crust can also be taken into account. Applying the method to the Colorado Plateau and the Deccan Traps, both being regions with a distinct geological history, yields erosion rates in excellent agreement with those obtained by other, more laborious methods. However, these rates are formally exposed to large statistical uncertainties due to the small number of impact craters. As higher crater densities are related to lower erosion rates, smaller statistical errors can be expected when large regions in old parts of the crust are considered. Very low long-term erosion rates of less than 4

  3. Volumetric measurement of river bank erosion from sequential historical aerial photography

    Science.gov (United States)

    Spiekermann, Raphael; Betts, Harley; Dymond, John; Basher, Les

    2017-11-01

    Understanding of the relative contribution of bank erosion to sediment budgets in New Zealand is limited. Few measurements of bank erosion rates exist, and this is a major limitation to the development of a locally calibrated model of bank erosion. The New Zealand sediment budget model, SedNetNZ, predicts bank erosion based on preliminary data, and this study aims to underpin the development of an improved model for bank erosion. Photogrammetric techniques and LiDAR were used to collect data on bank erosion rates for five different river reaches, ranging from 3 to 14 km in length, in the Kaipara Catchment, Northland, New Zealand. Changing river channel planform between the 1950s and 2015 was assessed using four to five well-spaced dates of historical aerial photographs. Changes in planform were combined with bank height, to calculate erosion and accretion volumes which were compared with SedNetNZ modelled estimates. Erosion and accretion is relatively evenly balanced in the study sites. The largest difference in terms of relative proportions of erosion and accretion are found along the Tangowahine River (13.4 km reach length), where 492,000 m3 of sediment eroded between 1956 and 2015 compared to 364,000 m3 of accretion. Lateral migration rates (erosion) for the five river reaches range between 0.14 m yr- 1 and 0.21 m yr- 1 and are comparable with those measured by previous assessments in New Zealand. The migration rates in channel widths per year for the three larger rivers (stream order 5-6) range between 0.4% and 0.8% of channel width per year. In contrast, the smaller streams (stream order 3-4) are retreating more rapidly, with width-averaged rates of 1.7% and 3.0%. Current SedNetNZ modelling tends to underestimate the bank height and greatly overestimates the migration rate.

  4. Simulation of long-term erosion on an abandoned mine site using the SIBERIA landscape evolution model

    International Nuclear Information System (INIS)

    Hancock, G.; Willgoose, G.; Evans, K.

    1999-01-01

    The SIBERIA catchment evolution model can simulate the evolution of landforms over many years as a result of runoff and erosion. This study discusses testing of the reliability of the erosion predictions of the model in a field study. Using erosion parameters calibrated from field studies of rainfall and runoff from the waste rock dump batters, the SIBERIA landscape evolution model was calibrated and then used to simulate erosion over 50 years on the abandoned Scinto 6 mine site. Scinto 6 is a former uranium mine located in the Kakadu Region, Northern Territory, Australia. The SIBERIA runs simulated the geomorphic development of the gullies on the man-made batters of the waste rock dump. The waste rock of the mine had been dumped in the characteristic pattern of a flat top and steep sided batters typical of many former and current dumps and there had been significant degradation from both sheet and gully erosion. Traditional erosion models cannot model this type of degradation because their erosion model cannot change the landform, while SIBERIA does change the landform. The gully position, depth volume and morphology on the waste rock dump were compared with that of SIBERIA simulations. The geomorphic development of the waste rock dump indicated that SIBERIA can simulate features that arise from the long-term effect of erosion and also their rate of development on a man-made post-mining landscape over periods of up to 50 years. The detailed results of this specific study will be discussed with specific discussion of the type of data required and the implications of the uncertain erosion physics on the reliability of the predictions

  5. Mechanics of Interrill Erosion with Wind-Driven Rain (WDR)

    Science.gov (United States)

    This article provides an evaluation analysis for the performance of the interrill component of the Water Erosion Prediction Project (WEPP) model for Wind-Driven Rain (WDR) events. The interrill delivery rates (Di) were collected in the wind tunnel rainfall simulator facility of the International Cen...

  6. Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone

    Science.gov (United States)

    Purnamasari, Rika; Ribal, Agustinus; Kusuma, Jeffry

    2018-03-01

    Tidal elevation and barotropic current predictions in the gulf of Bone have been carried out in this work based on a two-dimensional, depth-integrated Advanced Circulation (ADCIRC-2DDI) model for 2017. Eight tidal constituents which were obtained from FES2012 have been imposed along the open boundary conditions. However, even using these very high-resolution tidal constituents, the discrepancy between the model and the data from tide gauge is still very high. In order to overcome such issues, Green’s function approach has been applied which reduced the root-mean-square error (RMSE) significantly. Two different starting times are used for predictions, namely from 2015 and 2016. After improving the open boundary conditions, RMSE between observation and model decreased significantly. In fact, RMSEs for 2015 and 2016 decreased 75.30% and 88.65%, respectively. Furthermore, the prediction for tidal elevations as well as tidal current, which is barotropic current, is carried out. This prediction was compared with the prediction conducted by Geospatial Information Agency (GIA) of Indonesia and we found that our prediction is much better than one carried out by GIA. Finally, since there is no tidal current observation available in this area, we assume that, when tidal elevations have been fixed, then the tidal current will approach the actual current velocity.

  7. Conception de couches minces tribologiques pour augmenter la resistance a l'erosion par impacts de particules

    Science.gov (United States)

    Hassani, Salim

    Solid particle erosion (SPE) is a serious problem in gas turbines, pumps, heat exchangers and piping systems in aircrafts and other applications. Sand and dust ingested by gas turbine engines may cause major damage to compressor gas path components, leading to severe performance degradation, excessive wear, increased maintenance and eventually premature failure of the engines. For the compressor section of aerospace gas turbine engines, in addition to the complex filtration systems used to screen the eroding particles, tribological coatings, such as TiN, Ti/TiN, CrN and TiAlN are used as protective layers of the base titanium alloy (Ti-6Al-4V) or stainless steels (17-4PH and 410) materials (substrates) against erosive wear. Such coatings can extend the service life of the components, but their performance still remains insufficient due to the complexity of failure mechanisms occurring upon SPE. Therefore, aerospace industry seeks to develop high performance coatings for the protection against erosion by solid particles. However, with many new materials used and tested for different applications and operation under different conditions, conducting experiments for each one of them is becoming increasingly difficult. Presently, coating selection criteria to prevent damage caused by erosion are based on trial and error experiments instead of prior design of coating's architecture and properties to maximize erosion resistance. The present work focuses on the use of advanced finite element (FE) methods to design erosion resistant (ER) coatings. It contributes a new methodology based on the analysis of transient stresses generated by a single impact event. Identification of coating architectures in which such stresses are minimized and crack propagation suppressed, allows one to predict and possibly minimize the erosion rate. Erosion mechanisms and governing erosion parameters are investigated to predict the coating behavior in simulated erosion conditions. The

  8. Estimation of soil erosion for a sustainable land use planning: RUSLE model validation by remote sensing data utilization in the Kalikonto watershed

    Directory of Open Access Journals (Sweden)

    C. Andriyanto

    2015-10-01

    Full Text Available Technology of Geographic Information Systems (GIS and Remote Sensing (RS are increasingly used for planning and natural resources management. GIS and RS is based on pixels is used as a tool of spatial modeling for predicting the erosion. One of the methods developed for predicting the erosion is a Revised Universal Soil Loss Equation (RUSLE. RUSLE is the method used for predicting the erosion associated with runoff gained from five parameters, namely: rain erosivity (R, soil erodibility (K, length of slopes (L, slope (S, and land management (CP. The main constraint encountered in the process of operating the GIS is the calculation of the slope length factor (L.This study was designed to create a plan of sustainable land use and low erosion through the RULSE erosion modeling by utilizing the remote sensing data. With this approach, this study was divided into three activities, namely (1 the preparation and analysis of spatial data for the determination of the parameters and estimating the erosion by using RUSLE models, (2 the validation and calibration of the model of RUSLE by measuring soil erosion at the scale of plots on the field, and (3 Creating a plan of sustainable land use and low erosion with RUSLE. The validation erosion shows the value of R2 = 0.56 and r = 0.74. Results of this study showed that the RUSLE model could be used in the Kalikonto watershed. The erosions at the value of the actual estimation, spatial Plan (RTRW and land capability class in the Kalikonto watershed were 72t / ha / year, 62 t / ha / year and 58 t / ha / year, respectively.

  9. Formulating Fine to Medium Sand Erosion for Suspended Sediment Transport Models

    Directory of Open Access Journals (Sweden)

    François Dufois

    2015-08-01

    Full Text Available The capacity of an advection/diffusion model to predict sand transport under varying wave and current conditions is evaluated. The horizontal sand transport rate is computed by vertical integration of the suspended sediment flux. A correction procedure for the near-bed concentration is proposed so that model results are independent of the vertical resolution. The method can thus be implemented in regional models with operational applications. Simulating equilibrium sand transport rates, when erosion and deposition are balanced, requires a new empirical erosion law that involves the non-dimensional excess shear stress and a parameter that depends on the size of the sand grain. Comparison with several datasets and sediment transport formulae demonstrated the model’s capacity to simulate sand transport rates for a large range of current and wave conditions and sand diameters in the range 100–500 μm. Measured transport rates were predicted within a factor two in 67% of cases with current only and in 35% of cases with both waves and current. In comparison with the results obtained by Camenen and Larroudé (2003, who provided the same indicators for several practical transport rate formulations (whose means are respectively 72% and 37%, the proposed approach gives reasonable results. Before fitting a new erosion law to our model, classical erosion rate formulations were tested but led to poor comparisons with expected sediment transport rates. We suggest that classical erosion laws should be used with care in advection/diffusion models similar to ours, and that at least a full validation procedure for transport rates involving a range of sand diameters and hydrodynamic conditions should be carried out.

  10. Lumbar bone mass predicts low back pain in males

    NARCIS (Netherlands)

    Hoozemans, M.J.M.; Koppes, L.L.J.; Twisk, J.W.R.; Dieën, J.H. van

    2012-01-01

    STUDY DESIGN.: Longitudinal study of lumbar bone mass as predictor of low back pain (LBP). OBJECTIVE.: To investigate whether low bone mineral content (BMC) and bone mineral density (BMD) values at the age of 36 years are associated with the prevalence of LBP at the age of 42 years among the study

  11. Mapping erosion from space

    NARCIS (Netherlands)

    Vrieling, A.

    2007-01-01

    Soil erosion by water is the most important land degradation problem worldwide. Spatial information on erosion is required for defining effective soil and water conservation strategies. Satellite remote sensing can provide relevant input to regional erosion assessment. This thesis comprises a review

  12. Facing the scaling problem: A multi-methodical approach to simulate soil erosion at hillslope and catchment scale

    Science.gov (United States)

    Schmengler, A. C.; Vlek, P. L. G.

    2012-04-01

    Modelling soil erosion requires a holistic understanding of the sediment dynamics in a complex environment. As most erosion models are scale-dependent and their parameterization is spatially limited, their application often requires special care, particularly in data-scarce environments. This study presents a hierarchical approach to overcome the limitations of a single model by using various quantitative methods and soil erosion models to cope with the issues of scale. At hillslope scale, the physically-based Water Erosion Prediction Project (WEPP)-model is used to simulate soil loss and deposition processes. Model simulations of soil loss vary between 5 to 50 t ha-1 yr-1 dependent on the spatial location on the hillslope and have only limited correspondence with the results of the 137Cs technique. These differences in absolute soil loss values could be either due to internal shortcomings of each approach or to external scale-related uncertainties. Pedo-geomorphological soil investigations along a catena confirm that estimations by the 137Cs technique are more appropriate in reflecting both the spatial extent and magnitude of soil erosion at hillslope scale. In order to account for sediment dynamics at a larger scale, the spatially-distributed WaTEM/SEDEM model is used to simulate soil erosion at catchment scale and to predict sediment delivery rates into a small water reservoir. Predicted sediment yield rates are compared with results gained from a bathymetric survey and sediment core analysis. Results show that specific sediment rates of 0.6 t ha-1 yr-1 by the model are in close agreement with observed sediment yield calculated from stratigraphical changes and downcore variations in 137Cs concentrations. Sediment erosion rates averaged over the entire catchment of 1 to 2 t ha-1 yr-1 are significantly lower than results obtained at hillslope scale confirming an inverse correlation between the magnitude of erosion rates and the spatial scale of the model. The

  13. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  14. Retrospective study of sonographic findings in bone involvement associated with rotator cuff calcific tendinopathy: preliminary results of a case series

    Directory of Open Access Journals (Sweden)

    Marcello H. Nogueira-Barbosa

    2015-12-01

    Full Text Available Abstract Objective: The present study was aimed at investigating bone involvement secondary to rotator cuff calcific tendonitis at ultrasonography. Materials and Methods: Retrospective study of a case series. The authors reviewed shoulder ultrasonography reports of 141 patients diagnosed with rotator cuff calcific tendonitis, collected from the computer-based data records of their institution over a four-year period. Imaging findings were retrospectively and consensually analyzed by two experienced musculoskeletal radiologists looking for bone involvement associated with calcific tendonitis. Only the cases confirmed by computed tomography were considered for descriptive analysis. Results: Sonographic findings of calcific tendinopathy with bone involvement were observed in 7/141 (~ 5% patients (mean age, 50.9 years; age range, 42-58 years; 42% female. Cortical bone erosion adjacent to tendon calcification was the most common finding, observed in 7/7 cases. Signs of intraosseous migration were found in 3/7 cases, and subcortical cysts in 2/7 cases. The findings were confirmed by computed tomography. Calcifications associated with bone abnormalities showed no acoustic shadowing at ultrasonography, favoring the hypothesis of resorption phase of the disease. Conclusion: Preliminary results of the present study suggest that ultrasonography can identify bone abnormalities secondary to rotator cuff calcific tendinopathy, particularly the presence of cortical bone erosion.

  15. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    Science.gov (United States)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  16. Evaluation of revegetation progress and erosion-prone areas along oil and gas pipelines in Azerbaijan

    Energy Technology Data Exchange (ETDEWEB)

    Bayramov, Emil [BP British Petroleum, Baku (Azerbaijan)

    2012-09-15

    The construction of the Baku-Tbilisi-Ceyhan (BTC) oil and South Caucasus gas (SCP) pipelines was completed in 2005 and 2006, respectively. The Azerbaijan section of the BTC oil and SCP gas pipelines is 442 km long and lies in a 44 m wide corridor named as the Right-of-Way (RoW). BTC and SCP pipelines are aligned parallel to each other within the RoW. The construction process significantly disturbed vegetation and soil cover along the RoW of the pipelines. The revegetation and erosion control measures were conducted after the completion of construction to restore disturbed footprints of construction. The general goals of the present studies, dedicated to the environmental monitoring and erosion control measures were to evaluate the status of the revegetation in 2007 since the completion of the construction activities and to determine erosion-prone areas along the RoW. Quantitative assessment of vegetation cover (VC) was based on the regression and RMSE analysis using IKONOS NDVI 2007 and in-situ estimation of VC percentage for the normalization of NDVI to VC. The prediction of erosion-prone areas was based on the Universal Soil Loss Equation (USLE). The prediction reliability of USLE was evaluated using in-situ collected erosion occurrences. (orig.)

  17. Assessing joint effusion and bone changes of the head of the mandible in MR images of symptomatic patients

    Directory of Open Access Journals (Sweden)

    Jefferson Xavier de Oliveira

    2013-02-01

    Full Text Available The aim of the present study was to investigate the relationship between degenerative bone changes of the head of the mandible and the presence of joint effusion (JE. This study was based on sagittal magnetic resonance imaging (MRI reports of 148 temporomandibular joints (TMJs of 74 patients complaining of pain and/or dysfunction in the TMJ area. The mandible heads were surveyed for osteoarthritis characteristics, which were classified as osteophytosis, sclerosis or erosion. The presence of JE was checked whenever high signal intensity was observed in the articular space. The results evidenced the presence of bone changes in 30% of the sample. Osteophytes and erosions were the changes most commonly observed. JE was reported in 10% of TMJs. The results from the statistical tests revealed that bone changes in the head of the mandible are associated with the presence of JE.

  18. Erosive gastritis

    International Nuclear Information System (INIS)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-01-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported. (orig.)

  19. Erosive gastritis

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-08-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported.

  20. Development of a statistical model for the determination of the probability of riverbank erosion in a Meditteranean river basin

    Science.gov (United States)

    Varouchakis, Emmanouil; Kourgialas, Nektarios; Karatzas, George; Giannakis, Georgios; Lilli, Maria; Nikolaidis, Nikolaos

    2014-05-01

    Riverbank erosion affects the river morphology and the local habitat and results in riparian land loss, damage to property and infrastructures, ultimately weakening flood defences. An important issue concerning riverbank erosion is the identification of the areas vulnerable to erosion, as it allows for predicting changes and assists with stream management and restoration. One way to predict the vulnerable to erosion areas is to determine the erosion probability by identifying the underlying relations between riverbank erosion and the geomorphological and/or hydrological variables that prevent or stimulate erosion. A statistical model for evaluating the probability of erosion based on a series of independent local variables and by using logistic regression is developed in this work. The main variables affecting erosion are vegetation index (stability), the presence or absence of meanders, bank material (classification), stream power, bank height, river bank slope, riverbed slope, cross section width and water velocities (Luppi et al. 2009). In statistics, logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable, e.g. binary response, based on one or more predictor variables (continuous or categorical). The probabilities of the possible outcomes are modelled as a function of independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. 1 = "presence of erosion" and 0 = "no erosion") for any value of the independent variables. The regression coefficients are estimated by using maximum likelihood estimation. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding

  1. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  2. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    Science.gov (United States)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  3. Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines

    International Nuclear Information System (INIS)

    Ton-That, L

    2010-01-01

    The prediction of cavitation erosion rates has an important role in order to evaluate the exact life of components in fluid machineries. Hydro-Quebec has studied this phenomenon for several years, in particular in hydraulic turbine runners, to try to understand the different degradation mechanisms related to this phenomenon. This paper presents part of this work. In this study, we carried out experimental erosion tests to compare different steels used in actual hydraulic turbine runners (carbon steels, austenitic and martensitic stainless steels) to high strength steels in terms of cavitation erosion resistance. The results for these different classes of steels are presented. The tests have been performed in a cavitating liquid jet apparatus according to the ASTM G134-95 standard to simulate the flow conditions. The mass loss has been followed during the exposure time. The maximum depth of erosion, the mean depth of erosion, and the mean depth erosion rate are determined. As a result we found that ASTM-A514 high strength steels present excellent cavitation erosion resistance properties. The cavitation eroded surface is followed by optical profilometry technique. Determination of mechanical properties and examinations of the eroded surfaces of the samples have also been carried out in order to identify the erosion mechanisms involved in the degradation of these kinds of materials.

  4. Dental erosion prevalence and associated risk indicators among preschool children in Athens, Greece.

    Science.gov (United States)

    Mantonanaki, Magdalini; Koletsi-Kounari, Haroula; Mamai-Homata, Eleni; Papaioannou, William

    2013-03-01

    The aims of the study were to investigate dental erosion prevalence, distribution and severity in Greek preschool children attending public kindergartens in the prefecture of Attica, Greece and to determine the effect of dental caries, oral hygiene level, socio-economic factors, dental behavior, erosion related medication and chronic illness. A random and stratified sample of 605 Greek preschool children was clinically examined for dental erosion using the Basic Erosive Wear Examination Index (ΒΕWE). Dental caries (dmfs) and Simplified Debris Index were also recorded. The data concerning possible risk indicators were derived by a questionnaire. Zero-inflated Poisson regression was generated to test the predictive effects of the independent variables on dental erosion. The prevalence of dental erosion was 78.8 %, and the mean and SE of BEWE index was 3.64 ± 0.15. High monthly family income was positively related to ΒΕWE cumulative scores [RR = 1.204 (1.016-1.427)], while high maternal education level [RR = 0.872 (0.771-0.986)] and poor oral hygiene level [DI-s, RR = 0.584 (0.450-0.756)] showed a negative association. Dental erosion is a common oral disease in Greek preschool children in Attica, related to oral hygiene and socio-economic factors. Programs aimed at erosion prevention should begin at an early age for all children.

  5. Preliminary results of 137 Cs activity in a soil erosion toposequence in cuenca (castilla la mancha, central spain)

    International Nuclear Information System (INIS)

    Bienes, R.; Alvarez, A.; Jimenez-Ballesta, R.

    2009-01-01

    The soil redistribution due to the conventional tillage practices represents a very severe process of soil erosion and degradation in Mediterranean agricultural lands. The existing methods for soil erosion assessment can be grouped into two main categories: erosion modelling and prediction methods and erosion measurement methods. The use of environmental radionuclides, in particular 1 37 Cs, overcomes many of the limitations associated with traditional approaches and has been shown as an effective way of studying erosion and deposition. Its determination and the study of the characters of soils in a sequence permits know the control of the erosion. The objective of this study was to determine the soil erosion rates using 1 37 Cs activities concentrations in a typical Mediterranean environment; the Chillaron basin (Cuenca, Castilla La Mancha, Spain). (Author) 9 refs.

  6. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  7. The influence of rill density on soil erosion against USLE-soil erosion methode

    OpenAIRE

    Rizalihadi, A.M.; Faimah, B.E.; Nazia, C.L.

    2013-01-01

    Land and water is one of the major natural resource which has an important role for human life. Exploitation of land in catchment areas that not correspond to its carrying capacity will cause damage. One of the effect is increassing the soil erosion. Continuous erosion will also lead to increased sediment transport in rivers that disrupt the ship navigation on estuary due sediment accumulation. At present, soil erosion is estimated using USLE method, which is only limited to the erosion in th...

  8. Modelling soil erosion at European scale: towards harmonization and reproducibility

    Science.gov (United States)

    Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.

    2015-02-01

    Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water-holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale, because a systematic knowledge of local climatological and soil parameters is often unavailable. A new approach for modelling soil erosion at regional scale is here proposed. It is based on the joint use of low-data-demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available data sets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p ≤ 0.05). A comparison with country-level statistics of pre-existing European soil erosion maps is also provided.

  9. Saliva and dental erosion.

    Science.gov (United States)

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  10. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  11. Auto consolidated cohesive sediments erosion; Erosion des sediments cohesifs en autoconsolidation

    Energy Technology Data Exchange (ETDEWEB)

    Ternat, F

    2007-02-15

    Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)

  12. Integrated spatial assessment of wind erosion risk in Hungary

    Directory of Open Access Journals (Sweden)

    L. Pásztor

    2016-11-01

    Full Text Available Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover. Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5′ resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0–5 cm layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc., to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  13. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  14. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    Science.gov (United States)

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, 50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  15. Fibrous dysplasia of bone

    International Nuclear Information System (INIS)

    Kim, Kyung Soo; Lee, Sang Wook; Cho, Young Jun; Kim, Young Sook

    1983-01-01

    Fibrous dysplasia of bone is a skeletal development anomaly of unknown etiology characterized by single or multiple areas of fibrous tissue replacement of medullary cavity of one or more bones. The disease may be localized to single bone (monostotic form) or may affect multiple bones (polyostotic form). Eighteen cases of fibrous dysplasia diagnosed by roentgenlogic or histologic assessment at Chosun University Hospital, Chosun University Hospital and Kwangju Christian Hospital during recent ten tears were analyzed clinically and radiologically. The results were as follows: 1. 16 case of them had monostotic involvement, and 2 cases showed polyostotic disease, but none of our series presented Albright's syndrome. 2. The male to female ratio in this series was 10 : 8, but then 2 polyostotic forms of them were females. In age distribution, peak incidence at the time of diagnosis was in the age group of second decade (10 cases). 3. Maxilla (6 cases) and femur (4 case) were frequently involved sites in patients with monostotic lesion, whereas polyostotic lesions diffusely affected skull, pelvis, ribs and limb bones. 4. The clinical symptoms according to the extent and site of disease were very variable, which were localized painless or painful swelling, nasal obstruction, deformity of face or extremity and incidentally during routine roentgen study. 5. The chemical abnormality of blood serum was moderate degree of elevated serum alkaline phosphatase in only one patients with monostotic lesion. 6. The main radiologic findings of fibrous dysplasia were relatively well circumscribed single or multiloculated cystilike appearance, bone expansion, cortical thinning and/or erosion, bony deformity and pathologic fracture, but especially in maxilla, dense homogenous area with expanding lesion was observed in our series

  16. Model based estimation of sediment erosion in groyne fields along the River Elbe

    International Nuclear Information System (INIS)

    Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard

    2008-01-01

    River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.

  17. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  18. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.

    Science.gov (United States)

    Webb, Nicholas P; Herrick, Jeffrey E; Duniway, Michael C

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation, or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explored how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting, and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass–succulent states across the ecological sites at the plot scale (0.25 ha). We identified vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area could be effectively controlled when bare ground cover was 100 cm in length was less than ∼35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the

  19. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  20. Component wall thinning and a corrosion-erosion monitoring system

    International Nuclear Information System (INIS)

    Bogard, T.; Batt, T.; Roarty, D.

    1989-01-01

    Since a 1986 incident involving failure of a piping elbow due to erosion-corrosion, the electric utility industry has been actively developing technology for implementing long term programs to address corrosion-erosion. This paper describes a typical corrosion-erosion monitoring program, the types of non-destructive examinations (NDE) performed on components, and the extensive NDE data obtained when the program is applied to components in a power plant. To facilitate evaluation of the NDE data on components, an automated NDE data manipulation and data display system is advisable and perhaps necessary due to the large amounts of NDE data typically obtained during a program. Such a comprehensive corrosion-erosion monitoring system (CEMS) needs to be integral with methods for selection of inspection locations and perform NDE data analysis to help in replace, repair, or run decisions. The structure for one CEMS is described which uses IBM PC compatible hardware and a set of software addressing most data evaluation and decision making needs. CEMS features include automated input/output for typical NDE devices, database structuring, graphics outputs including color 2-D or 3-D contour plots of components, trending and predictive evaluations for future inspection planning, EC severity determination, integration of piping isometrics and component properties, and desktop publishing capabilities

  1. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    Science.gov (United States)

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  2. Rainfall erosivity map for Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    Monthly rainfall data, spanning over a period of more than thirty years, were used to compute rainfall erosivity indices for various stations in Ghana, using the Fournier index, c, defined as p 2 /P, where p is the rainfall amount in the wettest month and P is the annual rainfall amount. Values of the rainfall erosivity indices ranged from 24.5 mm at Sunyani in the mid-portion of Ghana to 180.9 mm at Axim in the south western coastal portion. The indices were used to construct a rainfall erosivity map for the country. The map revealed that Ghana may be broadly divided into five major erosion risk zones. The middle sector of Ghana is generally in the low erosion risk zone; the northern sector is in the moderate to severe erosion risk zone, while the coastal sector is in the severe to extreme severe erosion risk zone. (author). 11 refs, 1 fig., 1 tab

  3. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    Science.gov (United States)

    Treece, Graham M; Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth E S

    2015-11-01

    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement. © 2015 The Authors. Journal of Bone and Mineral Research

  4. The Impact of Climate Change in Rainfall Erosivity Index on Humid Mudstone Area

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-Chuan

    2017-04-01

    It has been quite often pointed out in many relevant studies that climate change may result in negative impacts on soil erosion. Then, humid mudstone area is highly susceptible to climate change. Taiwan has extreme erosion in badland area, with annual precipitation over 2000 mm/y which is a considerably 3 times higher than other badland areas around the world, and with around 9-13 cm/y in denudation rate. This is the reason why the Erren River, a badland dominated basin has the highest mean sediment yield in the world, over 105 t km2 y. This study aims to know how the climate change would affect soil erosion from the source in the Erren River catchment. Firstly, the data of hourly precipitation from 1992 to 2016 are used to establish the regression between rainfall erosivity index (R, one of component for USLE) and precipitation. Secondly, using the 10 climate change models (provide form IPCC AR5) simulates the changes of monthly precipitation in different scenario from 2017 to 2216, and then over 200 years prediction R values can be use to describe the tendency of soil erosion in the future. The results show that (1) the relationship between rainfall erosion index and precipitation has high correction (>0.85) during 1992-2016. (2) From 2017 to 2216, 7 scenarios show that annual rainfall erosion index will increase over 2-18%. In contrast, the others will decrease over 7-14%. Overall, the variations of annual rainfall erosion index fall in the range of -14 to 18%, but it is important to pay attention to the variation of annual rainfall erosion index in extreme years. These fall in the range of -34 to 239%. This explains the extremity of soil erosion will occur easily in the future. Keywords: Climate Change, Mudstone, Rainfall Erosivity Index, IPCC AR5

  5. Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Pham Quy Giang

    2017-03-01

    Full Text Available It has been widely predicted that Southeast Asia is among the regions facing the most severe climate change impacts. Despite this forecast, little research has been published on the potential impacts of climate change on soil erosion in this region. This study focused on the impact of climate change on spatial and temporal patterns of soil erosion in the Laos–Vietnam transnational Upper Ca River Watershed. The Soil and Water Assessment Tool (SWAT coupled with downscaled global climate models (GCMs was employed for simulation. Soil erosion in the watershed was mostly found as “hill-slope erosion”, which occurred seriously in the upstream area where topography is dominated by numerous steep hills with sparse vegetation cover. However, under the impact of climate change, it is very likely that soil erosion rate in the downstream area will increase at a higher rate than in its upstream area due to a greater increase in precipitation. Seasonally, soil erosion is predicted to increase significantly in the warmer and wetter climate of the wet season, when higher erosive power of an increased amount and intensity of rainfall is accompanied by higher sediment transport capacity. The results of this study provide useful information for decision makers to plan where and when soil conservation practice should be focused.

  6. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    Science.gov (United States)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  7. Alteration In Bones Metabolism In Active Rheumatoid Arthritis

    International Nuclear Information System (INIS)

    Salem, E.S.

    2013-01-01

    The strength and integrity of the human skeleton depends on a delicate equilibrium between bone resorption and bone formation. Osteocalcin (OC) is synthesized by osteoblasts and is considered to be a marker of bone formation and helps in corporating calcium into bone tissue. Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease characterized by bone complication including bone pain, erosion and osteoporosis. The aim of the present study is to evaluate some factors responsible in bone metabolism termed OC, vitamin D (vit. D), oncostatin M (OSM), ionized calcium and alkaline phosphatase. Fifty pre-menopausal female patients with active RA and twenty healthy controls of the same age were included in the present study. Radioimmunoassay (RIA) was used to estimate serum OC and active vitamin D. The quantitative determination of ionized calcium and alkaline phosphatase were carried out colorimetrically. OSM was measured by ELISA and serum levels of OC and active vitamin D were significantly decreased in RA patients as compared to those of the control group. On the other hand, the levels of serum OSM, ionized calcium and alkaline phosphatase were significantly increased in the RA patients as compared to their healthy control subjects. The results of this study indicated that early investigation and therapy of disturbances of bone metabolism in active RA are necessary for better prognosis and exhibited the importance of OC as a diagnostic tool of alterations of bone metabolism in RA patients.

  8. Using albedo to reform wind erosion modelling, mapping and monitoring

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  9. Evaluation of the serum zinc level in erosive and non-erosive oral lichen planus.

    Science.gov (United States)

    Gholizadeh, N; Mehdipour, M; Najafi, Sh; Bahramian, A; Garjani, Sh; Khoeini Poorfar, H

    2014-06-01

    Lichen planus is a chronic inflammatory immunologic-based disease involving skin and mucosa. This disease is generally divided into two categories: erosive and non-erosive. Many etiologic factors are deliberated regarding the disease; however, the disorders of immune system and the role of cytotoxic T-lymphocytes and monocytes are more highlighted. Zinc is an imperative element for the growth of epithelium and its deficiency induces the cytotoxic activity of T-helper2 cells, which seems to be associated with lichen planus. This study was aimed to evaluate the levels of serum zinc in erosive and non-erosive oral lichen planus (OLP) and to compare it with the healthy control group to find out any feasible inference. A total of 22 patients with erosive oral lichen planus, 22 patients with non erosive OLP and 44 healthy individuals as the control group were recruited in this descriptive-comparative study. All the participants were selected from the referees to the department of oral medicine, school of dentistry, Tabriz University of Medical Sciences. Serum zinc level was examined for all the individuals with liquid-stat kit (Beckman Instruments Inc.; Carlsbad, CA). Data were analyzed by adopting the ANOVA and Tukey tests, using SPSS 16 statistical software. The mean age of patients with erosive and non-erosive LP was 41.7 and 41.3 years, respectively. The mean age of the healthy control group was 34.4 years .The mean serum zinc levels in the erosive and non erosive lichen planus groups and control groups were 8.3 (1.15), 11.15 (0.92) and 15.74 (1.75) μg/dl respectively. The difference was statistically significant (poral lichen planus. This finding may probably indicate the promising role of zinc in development of oral lichen planus.

  10. Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response

    Science.gov (United States)

    Richard A. Shakesby; John A. Moody; Deborah A. Martin; Pete Robichaud

    2016-01-01

    Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including...

  11. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    Directory of Open Access Journals (Sweden)

    Roberto Carretta

    2015-01-01

    Full Text Available Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r=0.65–0.94. Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters.

  12. The use of bone turnover markers in chronic kidney disease-mineral and bone disorders.

    Science.gov (United States)

    Chiang, Cherie

    2017-03-01

    Bone turnover markers assist in fracture risk prediction, management and monitoring of osteoporosis in patients without chronic kidney disease (CKD). The use in CKD-mineral bone disorder (MBD) has been limited as many of these markers and breakdown products are renally excreted, including the most commonly used and well standardized procollagen type I N propeptide and C-terminal cross-linking telopeptide of type I collagen. Of the markers unaffected by renal function, bone specific alkaline phosphatase is associated with mortality and fracture rate in CKD subjects and is now available on several automated analysers. When used in combination with PTH, bone specific alkaline phosphatase as a bone formation marker correlated well with bone biopsy histomorphometry in predicting adynamic bone disease. Tartrate-resistant acid phosphatase 5b is a resorption marker that is under development for automation. Both high and low bone turnover in CKD-MBD patients are associated with increased fracture and mortality risk. Bone biopsy as the gold standard to differentiate between adynamic bone disease and osteitis fibrosa is limited by availability and cost. Appropriate use of bone turnover markers is vital in the decision to commence anti-resorptive agents, and to monitor efficacy in order to avoid over suppression of bone turnover, which may lead to stress fractures. Further efforts are required to develop markers unaffected by renal function with standardized cut-off values and fracture as well as vascular calcification end-points. © 2017 Asian Pacific Society of Nephrology.

  13. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  14. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... need to undress. This scan is the best test to predict your risk of fractures, especially of ...

  15. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river.

    Science.gov (United States)

    Williams, R D; Measures, R; Hicks, D M; Brasington, J

    2016-08-01

    Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.

  16. Evaluation of Mediterranean plants for controlling gully erosion

    International Nuclear Information System (INIS)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-01-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  17. Evaluation of Mediterranean plants for controlling gully erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-07-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  18. Clinical meaning of hot uptake on bone scan in symptomatic accessory navicular bones

    International Nuclear Information System (INIS)

    Chong, Ari; Ha, Jung Min; Lee, Jun Young

    2016-01-01

    We analyzed clinical factors related to uptake on a Tc-99 m HDP bone scan of the accessory navicular (AN). We retrospectively reviewed patients who had been examined by an orthopedic surgeon and underwent bone scan due to suspected symptomatic AN. A three-point grading system was used to evaluate uptake on bone scan. Relationships between grade, symptoms, age, gender, symptom duration, and bone size were analyzed. In total, 73 ANs (30 asymptomatic, 43 symptomatic) were enrolled. The majority of asymptomatic ANs had no uptake but some had grade 1 (n = 8) or 2 (n = 2) uptake. All asymptomatic ANs with uptake remained asymptomatic during follow-up. For the asymptomatic ANs, larger bones showed a higher grade. With a cut-off value of size ≤6.8 mm, there is no chance of uptake. All symptomatic ANs showed uptake on bone scan. For symptomatic ANs, larger size and shorter pain duration were related to a higher grade. Age, gender, and left-/right-sideness were not related to grade. Multiple regressions revealed that only uptake grade, not size or symptom duration, was the significant risk factor for a symptomatic AN. With a cut-off value of grade <1, a symptomatic AN could be ruled out with a negative predictive value of 100 %. Bone scanning is useful for symptomatic ANs with a high negative predictive value. Higher grade is related to larger size and shorter pain duration. For asymptomatic ANs, grade was related to size but did not predict symptom development

  19. Clinical meaning of hot uptake on bone scan in symptomatic accessory navicular bones

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Ari; Ha, Jung Min; Lee, Jun Young [Chosun University Hospital, Gwangju (Korea, Republic of)

    2016-12-15

    We analyzed clinical factors related to uptake on a Tc-99 m HDP bone scan of the accessory navicular (AN). We retrospectively reviewed patients who had been examined by an orthopedic surgeon and underwent bone scan due to suspected symptomatic AN. A three-point grading system was used to evaluate uptake on bone scan. Relationships between grade, symptoms, age, gender, symptom duration, and bone size were analyzed. In total, 73 ANs (30 asymptomatic, 43 symptomatic) were enrolled. The majority of asymptomatic ANs had no uptake but some had grade 1 (n = 8) or 2 (n = 2) uptake. All asymptomatic ANs with uptake remained asymptomatic during follow-up. For the asymptomatic ANs, larger bones showed a higher grade. With a cut-off value of size ≤6.8 mm, there is no chance of uptake. All symptomatic ANs showed uptake on bone scan. For symptomatic ANs, larger size and shorter pain duration were related to a higher grade. Age, gender, and left-/right-sideness were not related to grade. Multiple regressions revealed that only uptake grade, not size or symptom duration, was the significant risk factor for a symptomatic AN. With a cut-off value of grade <1, a symptomatic AN could be ruled out with a negative predictive value of 100 %. Bone scanning is useful for symptomatic ANs with a high negative predictive value. Higher grade is related to larger size and shorter pain duration. For asymptomatic ANs, grade was related to size but did not predict symptom development.

  20. Process-based coastal erosion modeling for Drew Point (North Slope, Alaska)

    Science.gov (United States)

    Ravens, Thomas M.; Jones, Benjamin M.; Zhang, Jinlin; Arp, Christopher D.; Schmutz, Joel A.

    2012-01-01

    A predictive, coastal erosion/shoreline change model has been developed for a small coastal segment near Drew Point, Beaufort Sea, Alaska. This coastal setting has experienced a dramatic increase in erosion since the early 2000’s. The bluffs at this site are 3-4 m tall and consist of ice-wedge bounded blocks of fine-grained sediments cemented by ice-rich permafrost and capped with a thin organic layer. The bluffs are typically fronted by a narrow (∼ 5  m wide) beach or none at all. During a storm surge, the sea contacts the base of the bluff and a niche is formed through thermal and mechanical erosion. The niche grows both vertically and laterally and eventually undermines the bluff, leading to block failure or collapse. The fallen block is then eroded both thermally and mechanically by waves and currents, which must occur before a new niche forming episode may begin. The erosion model explicitly accounts for and integrates a number of these processes including: (1) storm surge generation resulting from wind and atmospheric forcing, (2) erosional niche growth resulting from wave-induced turbulent heat transfer and sediment transport (using the Kobayashi niche erosion model), and (3) thermal and mechanical erosion of the fallen block. The model was calibrated with historic shoreline change data for one time period (1979-2002), and validated with a later time period (2002-2007).

  1. Viewpoint: Sustainability of piñon-juniper ecosystems - A unifying perspective of soil erosion thresholds

    Science.gov (United States)

    Davenport, David W.; Breshears, D.D.; Wilcox, B.P.; Allen, Craig D.

    1998-01-01

    Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.

  2. Analysis of Prognosis of Lowland River Bed Erosion Based on Geotechnical Parameters

    Directory of Open Access Journals (Sweden)

    Smaga Agnieszka

    2015-12-01

    Full Text Available The river erosion is a complex process, the dynamics of which is very difficult to predict. Its intensity largely depends on hydraulic conditions of the river channel. However, it is also thought that natural resistance of the subsoil has a great influence on the scale of the erosion process. Predicting the effects of this process is extremely important in the case of constructing a piling structure (for example, artificial reservoirs. The partition of the river channel causes significant lowering of the river channel bed downstream the dam which threatens the stability of hydro technical and engineering (bridges buildings. To stop this unwanted phenomenon, stabilizing thresholds are built. However, random location of thresholds significantly reduces their effectiveness. Therefore, taking under consideration natural geotechnical conditions of the subsoil appears to be extremely important.

  3. Bone marrow edema pattern identification in patients with lytic bone lesions using digital subtraction angiography-like bone subtraction on large-area detector computed tomography.

    Science.gov (United States)

    Gondim Teixeira, Pedro Augusto; Hossu, Gabriela; Lecocq, Sophie; Razeto, Marco; Louis, Matthias; Blum, Alain

    2014-03-01

    The objective of this study was to evaluate the performance of digital subtraction angiography (DSA)-like bone subtraction with 2 different registration methods for the identification of bone marrow edema pattern (BMEP) in patients with lytic bone lesions, using magnetic resonance imaging as the criterion standard. Fifty-five patients with a lytic bone lesion were included in this prospective study with approval from the ethics committee. All patients underwent magnetic resonance imaging and low-dose computed tomographic (CT) perfusion after signing an informed consent. Two CT volumes were used for bone subtraction, which was performed with 2 different algorithms (rigid and nonrigid). Enhancement at the nonlytic bone marrow was considered as a sign of BMEP. Two readers evaluated the images blindly. The presence of BMEP on bone-subtracted CT images was evaluated subjectively and quantitatively. Image quality was assessed. Magnetic resonance imaging was used as the criterion standard. Using a rigid registration method, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of CT with DSA-like bone subtraction BMEP was 77%, 100%, 100%, 68%, and 85%, respectively. The interobserver agreement was good (κ, 0.782). Image quality was better using a nonrigid registration. With this algorithm, artifacts interfered with image interpretation in only 5% of cases. However, there was a noticeable drop in sensitivity and negative predictive value when a nonrigid algorithm was used: 56% and 52%, respectively. The interobserver agreement was average with a nonrigid subtraction algorithm. Computed tomography with DSA-like bone subtraction is sensitive and highly specific for the identification of BMEP associated with lytic bone lesions. Rigid registering should be preferred, but nonrigid algorithms can be used as a second option when artifacts interfere with image interpretation.

  4. Water Erosion in Different Slope Lengths on Bare Soil

    Directory of Open Access Journals (Sweden)

    Bárbara Bagio

    Full Text Available ABSTRACT Water erosion degrades the soil and contaminates the environment, and one influential factor on erosion is slope length. The aim of this study was to quantify losses of soil (SL and water (WL in a Humic Cambisol in a field experiment under natural rainfall conditions from July 4, 2014 to June 18, 2015 in individual events of 41 erosive rains in the Southern Plateau of Santa Catarina and to estimate soil losses through the USLE and RUSLE models. The treatments consisted of slope lengths of 11, 22, 33, and 44 m, with an average degree of slope of 8 %, on bare and uncropped soil that had been cultivated with corn prior to the study. At the end of the corn cycle, the stalk residue was removed from the surface, leaving the roots of the crop in the soil. Soil loss by water erosion is related linearly and positively to the increase in slope length in the span between 11 and 44 m. Soil losses were related to water losses and the Erosivity Index (EI30, while water losses were related to rain depth. Soil losses estimated by the USLE and RUSLE model showed lower values than the values observed experimentally in the field, especially the values estimated by the USLE. The values of factor L calculated for slope length of 11, 22, 33, and 44 m for the two versions (USLE and RUSLE of the soil loss prediction model showed satisfactory results in relation to the values of soil losses observed.

  5. Predicting the Rate of River Bank Erosion Caused by Large Wood Log

    Science.gov (United States)

    Zhang, N.; Rutherfurd, I.; Ghisalberti, M.

    2016-12-01

    When a single tree falls into a river channel, flow is deflected and accelerated between the tree roots and the bank face, increasing shear stress and scouring the bank. The scallop shaped erosion increases the diversity of the channel morphology, but also causes concern for adjacent landholders. Concern about increased bank erosion is one of the main reasons for large wood to still be removed from channels in SE Australia. Further, the hydraulic effect of many logs in the channel can reduce overall bank erosion rates. Although both phenomena have been described before, this research develops a hydraulic model that estimates their magnitude, and tests and calibrates this model with flume and field measurements, with logs with various configurations and sizes. Specifically, the model estimates the change in excess shear stress on the bank associated . The model addresses the effect of the log angle, distance from bank, and log size and flow condition by solving the mass continuity and energy conservation between the cross section at the approaching flow and contracted flow. Then, we evaluate our model against flume experiment preformed with semi-realistic log models to represent logs in different sizes and decay stages by comparing the measured and simulated velocity increase in the gap between the log and the bank. The log angle, distance from bank, and flow condition are systemically varied for each log model during the experiment. Final, the calibrated model is compared with the field data collected in anabranching channels of Murray River in SE Australia where there are abundant instream logs and regulated and consistent high flow for irrigation. Preliminary results suggest that a log can significantly increase the shear stress on the bank, especially when it positions perpendicular to the flow. The shear stress increases with the log angle in a rising curve (The log angle is the angle between log trunk and flow direction. 0o means log is parallel to flow with

  6. Scales and erosion

    Science.gov (United States)

    There is a need to develop scale explicit understanding of erosion to overcome existing conceptual and methodological flaws in our modelling methods currently applied to understand the process of erosion, transport and deposition at the catchment scale. These models need to be based on a sound under...

  7. Correlation of erosion and erodibility assessments using caesium-137

    International Nuclear Information System (INIS)

    Elliott, G.L.; Campbell, B.L.; Loughran, R.J.

    1984-01-01

    Data are presented which show that in soils in which net erosion is occurring, the content of the environmental isotope caesium-137 is highly correlated with soil loss. Other soil characteristics which may be related to the caesium content and therefore to soil loss have also been examined. Of these factors, an improved index of soil aggregate stability explained the most variation in caesium content (52%). Soil organic matter content explained 27% of variation in caesium content and other soil erodibility indices based on quantitative measurement of aggregate stability, explained between 6% and 21% of the variation. Indices based on implied hydrologic characteristics, implied aggregation and clay dispersion explained between 1% and 3% of caesium variation. It is suggested that practical factors of soil protection are relevant to the prediction of erosion hazard and may be more relevant than some indices of soil resistance. It is noted further that caesium-137 content of a soil gives every indication of being a most suitable predictor of soil erosion status

  8. [Anti-erosion effect of hedgerows in hillside croplands of Danjiangkou based on the evaluation with water erosion prediction project (WEPP) model].

    Science.gov (United States)

    Xiong, Qin-xue; Liu, Zhang-yong; Yao, Gui-zhi; Li, Ben-zhou

    2010-09-01

    Based on the data of field experiments on the hillside croplands of Danjiangkou, Hubei Province of China, the input files of crop characters, management measures, slope gradient and length, and soil properties for running WEPP model (Hillslope version) were established. Combining with the local weather data, a simulation study with the model was made on the runoff and soil loss of the croplands protected by four kinds of hedgerows (Amorpha fruticosa, Lonicera japonica, Hemerocallis fulva, and Poa sphondylodes) in Danjiangkou area. The resulted showed that WEPP model could accurately simulate the anti-erosion effect of hedgerows in hillside farmlands in the study area. Using this model not only reduced test number, but also saved time and effort, being able to provide scientific basis for the popularization and application of hedgerows. Among the four hedgerows, Amorpha fruticosa had the best anti-erosion effect. According to the simulation, the optimal planting density of A. fruticosa hedgerows in the farmlands was 1 m x 15 m at slope gradient 5 degrees, 1 m x 10 m at slope gradient 15 degrees, and 1 m x 3 m at slope gradient 25 degrees.

  9. Does a more sophisticated storm erosion model improve probabilistic erosion estimates?

    NARCIS (Netherlands)

    Ranasinghe, R.W.M.R.J.B.; Callaghan, D.; Roelvink, D.

    2013-01-01

    The dependency between the accuracy/uncertainty of storm erosion exceedance estimates obtained via a probabilistic model and the level of sophistication of the structural function (storm erosion model) embedded in the probabilistic model is assessed via the application of Callaghan et al.'s (2008)

  10. Comparative evaluation of experimental and theoretical erosion resistance of materials upon electric pulse treatment

    International Nuclear Information System (INIS)

    Karpman, M.G.; Fetisov, G.P.; Bologov, D.V.

    1999-01-01

    Using the Palatnik criterion a comparative analysis is performed of the theoretical and experimental data on comparative electric erosion and erosion resistance of the electrodes and parts made of different materials upon their treatment using electric pulse technique. A reasonable qualitative agreement of the theoretical and experimental data indicates the possibility of using the Palatnik criterion to predict the serviceability of different pairs of the materials in conditions of electroerosion wear [ru

  11. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) satellite data

    Science.gov (United States)

    Price, Kevin P.; Ridd, Merrill K.

    1991-01-01

    The sensitivity of Landsat TM data for detecting soil erosion within pinyon-juniper woodlands, and the potential of the spectral data for assigning the universal soil loss equation (USLE) crop managemnent (C) factor to varying cover types within the woodlands are assessed. Results show greatly accelerated rates of soil erosion on pinyon-juniper sites. Percent cover by pinyon-juniper, total soil-loss, and total nonliving ground cover accounted for nearly 70 percent of the variability in TM channels 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion than the biotic and abiotic field variables. Satellite data were more sensitive to vegetation variation than the USLE C factor, and USLE was found to be a poor predictor of soil loss on pinyon-juniper sites. A new string-to-ground soil erosion prediction technique is introduced.

  12. The prediction of cyclic proximal humerus fracture fixation failure by various bone density measures.

    Science.gov (United States)

    Varga, Peter; Grünwald, Leonard; Windolf, Markus

    2018-02-22

    Fixation of osteoporotic proximal humerus fractures has remained challenging, but may be improved by careful pre-operative planning. The aim of this study was to investigate how well the failure of locking plate fixation of osteoporotic proximal humerus fractures can be predicted by bone density measures assessed with currently available clinical imaging (realistic case) and a higher resolution and quality modality (theoretical best-case). Various density measures were correlated to experimentally assessed number of cycles to construct failure of plated unstable low-density proximal humerus fractures (N = 18). The influence of density evaluation technique was investigated by comparing local (peri-implant) versus global evaluation regions; HR-pQCT-based versus clinical QCT-based image data; ipsilateral versus contralateral side; and bone mineral content (BMC) versus bone mineral density (BMD). All investigated density measures were significantly correlated with the experimental cycles to failure. The best performing clinically feasible parameter was the QCT-based BMC of the contralateral articular cap region, providing significantly better correlation (R 2  = 0.53) compared to a previously proposed clinical density measure (R 2  = 0.30). BMC had consistently, but not significantly stronger correlations with failure than BMD. The overall best results were obtained with the ipsilateral HR-pQCT-based local BMC (R 2  = 0.74) that may be used for implant optimization. Strong correlations were found between the corresponding density measures of the two CT image sources, as well as between the two sides. Future studies should investigate if BMC of the contralateral articular cap region could provide improved prediction of clinical fixation failure compared to previously proposed measures. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Magnetic resonance imaging and bone scintigraphy in the differential diagnosis of unclassified arthritis

    DEFF Research Database (Denmark)

    Duer, Anne; Østergaard, M; Hørslev-Petersen, K

    2008-01-01

    OBJECTIVES: To investigate the value in clinical practice of hand magnetic resonance imaging (MRI) and whole body bone scintigraphy in the differential diagnosis of patients with unclassified arthritis. METHODS: 41 patients with arthritis (> or = 2 swollen joints, > 6 months' duration) which...... to psoriatic arthritis (RF negative + psoriasis); one to non-specific self-limiting arthritis). No patients classified as non-RA at baseline had fulfilled the ACR criteria after 2 years. The presence of MRI synovitis, MRI erosion and bone scintigraphic pattern compatible with RA showed 100% specificity...

  14. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion.

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the (137)Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of (137)Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. (137)Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.

  15. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    International Nuclear Information System (INIS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-01-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  16. Preliminary results of {sup 1}37 Cs activity in a soil erosion toposequence in cuenca (castilla la mancha, central spain)

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Alvarez, A.; Jimenez-Ballesta, R.

    2009-07-01

    The soil redistribution due to the conventional tillage practices represents a very severe process of soil erosion and degradation in Mediterranean agricultural lands. The existing methods for soil erosion assessment can be grouped into two main categories: erosion modelling and prediction methods and erosion measurement methods. The use of environmental radionuclides, in particular {sup 1}37 Cs, overcomes many of the limitations associated with traditional approaches and has been shown as an effective way of studying erosion and deposition. Its determination and the study of the characters of soils in a sequence permits know the control of the erosion. The objective of this study was to determine the soil erosion rates using {sup 1}37 Cs activities concentrations in a typical Mediterranean environment; the Chillaron basin (Cuenca, Castilla La Mancha, Spain). (Author) 9 refs.

  17. Effect of ITE and nozzle exit cone erosion on specific impulse of solid rocket motors

    Science.gov (United States)

    Smith-Kent, Randall; Ridder, Jeffrey P.; Loh, Hai-Tien; Abel, Ralph

    1993-06-01

    Specific impulse loss due to the use of a slowly eroding integral throat entrance, or a throat insert, with a faster eroding nozzle exit cone is studied. It is suggested that an oblique shock wave produced by step-off erosion results in loss of specific impulse. This is studied by use of a shock capturing CFD method. The shock loss predictions for first-stage Peacekeeper and Castor 25 motors are found to match the trends of the test data. This work suggests that a loss mechanism, previously unaccounted, should be considered in the specific impulse prediction procedure for nozzles with step-off exit cone erosion.

  18. Time-lapse reveals that osteoclasts can move across the bone surface while resorbing

    DEFF Research Database (Denmark)

    Søe, Kent; Delaissé, Jean-Marie

    2017-01-01

    , clear real-time observations are still lacking. Herein, we used specific markers and time-lapse to monitor live the spatiotemporal generation of resorption events by osteoclasts cultured on bone slices. In accordance with the current view, we found alternating episodes of resorption and migration...... trenches. Compared to pit events, trench events show properties enabling higher aggressiveness: long duration (days), high erosion speed (two times faster) and long-distance erosion (several 100 µm). Simultaneous resorption and migration reflect a unique situation where epithelial/secretory and mesenchymal....../migratory characteristics are integrated into just one cell phenotype, and deserves attention in future research....

  19. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic

    Directory of Open Access Journals (Sweden)

    Daniel Žížala

    2017-01-01

    Full Text Available The assessment of the soil redistribution and real long-term soil degradation due to erosion on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our study, we bring an approach for assessment of soil degradation by erosion by means of determining soil erosion classes representing soils differently influenced by erosion impact. The adopted methods include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface properties using aerial hyperspectral data and the digital elevation model and fuzzy classification. Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random forest and Artificial neural network were applied in the predictive modelling of soil properties. The properties with satisfying performance (R2 > 0.5 were used as input data in erosion classes determination by fuzzy C-means classification method. The study was performed at four study sites about 1 km2 large representing the most extensive soil units of the agricultural land in the Czech Republic (Chernozems and Luvisols on loess and Cambisols and Stagnosols on crystalline rocks. The influence of site-specific conditions on prediction of soil properties and classification of erosion classes was assessed. The prediction accuracy (R2 of the best performing models predicting the soil properties varies in range 0.8–0.91 for soil organic carbon content, 0.21–0.67 for sand content, 0.4–0.92 for silt content, 0.38–0.89 for clay content, 0.73–089 for Feox, 0.59–0.78 for Fed and 0.82 for CaCO3. The performance and suitability of different properties for erosion classes’ classification are highly variable at the study sites. Soil organic carbon was the most frequently used as the erosion classes’ predictor, while the textural classes showed lower

  20. Erhversbetinget erosion?

    DEFF Research Database (Denmark)

    Dige, Irene; Gjørup, Hans; Nyvad, Bente

    2012-01-01

    Baggrund – I forbindelse med dental erosion er en grundig udredning af patienten vigtig, således at årsagen til erosionernes opståen findes, og der kan iværksættes adækvat forebyggende indsats. En sådan udredning er ikke mindst vigtig, når arbejdsmiljøet mistænkes. Patienttilfælde – En 30-årig...... arbejdsskade, men ikke anerkendt, da erosioner ikke er optaget på Arbejdsskadestyrelsens liste over erhvervssygdomme. En systematisk registrering af lignende tilfælde kunne imidlertid på sigt ændre retspraksis for fremtidige patienter med arbejdsbetinget erosion....... patient, der arbejder som pladesmed, blev henvist til Landsdels- og Videnscenter, Århus Sygehus, med henblik på udredning af patientens kraftige slid. Patienten udviste ikke-alderssvarende tandslid af emalje og dentin svarende til erosion forårsaget af syredampe i arbejdsmiljøet, muligvis forstærket af...

  1. Operational limit of a planar DC magnetron cluster source due to target erosion

    International Nuclear Information System (INIS)

    Rai, A.; Mutzke, A.; Bandelow, G.; Schneider, R.; Ganeva, M.; Pipa, A.V.; Hippler, R.

    2013-01-01

    The binary collision-based two dimensional SDTrimSP-2D model has been used to simulate the erosion process of a Cu target and its influence on the operational limit of a planar DC magnetron nanocluster source. The density of free metal atoms in the aggregation region influences the cluster formation and cluster intensity during the target lifetime. The density of the free metal atoms in the aggregation region can only be predicted by taking into account (i) the angular distribution of the sputtered flux from the primary target source and (ii) relative downwards shift of the primary source of sputtered atoms during the erosion process. It is shown that the flux of the sputtered atoms smoothly decreases with the target erosion

  2. Dental erosion in archaeological human remains: A critical review of literature and proposal of a differential diagnosis protocol.

    Science.gov (United States)

    Coupal, Isabelle; Sołtysiak, Arkadiusz

    2017-12-01

    Although studies of dental wear on archaeological human remains have largely focused on mechanical wear (attrition and abrasion) in the past, chemical wear (erosion) is being increasingly identified as a separate form of wear. This paper aims to review the current state of research and to develop a protocol that may be universally used by biorchaeologists to specifically identify dental erosion. A critical review of literature has been done in order to highlight the issues related to diagnosis of dental erosion in archaeological human remains. The bodies of work based on the analysis of both modern and archaeological dentitions raise their separate problems. In addition to a need to re-evaluate symptoms of dental erosion, notably dentin 'cupping', it is apparent that no specific protocol is adapted from medical to archaeological sciences. Authors rather rely on tooth wear indices and photographs of modern clinical cases for diagnosis. Furthermore, the diagenetic chemical alternation has rarely been considered as a bias. Here we suggest a three-step protocol: the primary method is the microscopic identification of dental erosion by SEM, followed by the exclusion of taphonomic aetiology on surrounding bone and soil pH analysis. Archaeologists should also explore possible causative agents of wear using archaeological and historic knowledge about the population being analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex

    International Nuclear Information System (INIS)

    Benmansour, M.; Mabit, L.; Nouira, A.; Moussadek, R.; Bouksirate, H.; Duchemin, M.; Benkdad, A.

    2013-01-01

    In Morocco land degradation – mainly caused by soil erosion – is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42′ W, 33° 47′ N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of 137 Cs, 210 Pb ex as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha −1 yr −1 and 12.1 ha −1 yr −1 for 137 Cs and 210 Pb ex respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the 137 Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion. - Highlights: ► Net erosion rates estimated by 137 Cs and 210 Pb ex techniques were found comparable. ► The water erosion is the leading process in this Moroccan cultivated field. ► Soil erosion process has not changed significantly over the last 100 years. ► The prediction model RUSLE 2 provided results of the same order of

  4. Farmers' identification of erosion indicators and related erosion damage in the Central Highlands of Kenya

    NARCIS (Netherlands)

    Sterk, G.; Okoba, B.O.

    2006-01-01

    Most soil and water conservation planning approaches rely on empirical assessment methods and hardly consider farmers' knowledge of soil erosion processes. Farmers' knowledge of on-site erosion indicators could be useful in assessing the site-specific erosion risk before planning any conservation

  5. Spatial Distribution of Annual and Monthly Rainfall Erosivity in the Jaguarí River Basin

    Directory of Open Access Journals (Sweden)

    Lucas Machado Pontes

    2017-11-01

    Full Text Available ABSTRACT The Jaguarí River Basin forms the main water supply sources for the São Paulo Metropolitan Region and other cities in the state. Since the kinetic energy of rainfall is the driving force of water erosion, the main cause of land and water degradation, we tested the hypothesis of correlation between the erosive potential of rainfall (erosivity and geographical coordinates and altitude for the purpose of predicting the spatial and temporal distribution of the rainfall erosivity index (EI30 in the basin. An equation was used to estimate the (EI30 in accordance with the average monthly and total annual rainfall at rainfall stations with data available for the study area. In the regression kriging technique, the deterministic part was modeled using multiple linear regression between the dependent variable (EI30 and environmental predictor variables: latitude, longitude, and altitude. From the result of equations and the maps generated, a direct correlation between erosivity and altitude could be observed. Erosivity has a markedly seasonal behavior in accordance with the rainy season from October to March. This season concentrates 86 % of the estimated EI30 values, with monthly maximum values of up to 2,342 MJ mm ha-1 h-1 month-1 between December and January, and minimum of 34 MJ mm ha-1 h-1 month-1 in August. The highest values were found in the Mantiqueira Range region (annual average of up to 12,000 MJ mm ha-1 h-1, a region that should be prioritized in soil and water conservation efforts. From this validation, good precision and accuracy of the model was observed for the long period of the annual average, which is the main factor used in soil loss prediction models.

  6. Observations and predictions of wave runup, extreme water levels, and medium-term dune erosion during storm conditions

    OpenAIRE

    Suanez , Serge ,; Cancouët , Romain; Floc'h , France; Blaise , Emmanuel; Ardhuin , Fabrice; Filipot , Jean-François; Cariolet , Jean-Marie; Delacourt , Christophe

    2015-01-01

    Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France) over the past decade (2004–2014) has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i) astronomic tide; (ii) storm surge; and (iii) vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide wa...

  7. Validity and reliability of 3D US for the detection of erosions in patients with rheumatoid arthritis using MRI as the gold standard

    DEFF Research Database (Denmark)

    Ellegaard, K; Bliddal, H; Møller Døhn, U

    2014-01-01

    PURPOSE: To test the reliability and validity of a 3D US erosion score in RA using MRI as the gold standard. MATERIALS AND METHODS: RA patients were examined with 3D US and 3 T MRI over the 2nd and 3rd metacarpophalangeal joints. 3D blocks were evaluated by two investigators. The erosions were...... estimated according to a semi-quantitative score (SQS) (0 - 3) and a quantitative score (QS) (mm²). MRI was evaluated according to the RAMRIS score. For the estimation of reliability, intra-class correlation coefficients (ICC) were used. Validity was tested using Spearman's rho (rs). The sensitivity...... and specificity were also calculated. RESULTS: 28 patients with RA were included. The ICC for the inter-observer reliability in the QS was 0.41 and 0.13 for the metacarpal bone and phalangeal bone, respectively, and 0.86 and 0.16, respectively, in the SQS.  The ICC for the intra-observer reliability in the QS...

  8. Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river

    Science.gov (United States)

    Measures, R.; Hicks, D. M.; Brasington, J.

    2016-01-01

    Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477

  9. New approaches to the estimation of erosion-corrosion

    International Nuclear Information System (INIS)

    Bakirov, Murat; Ereemin, Alexandr; Levchuck, Vasiliy; Chubarov, Sergey

    2006-09-01

    erosion-corrosion in a double-phase flow is that of moving deaerated liquid in directly contact with metal as a barrier between the metal and main steam-drop flow. Local processes of mass transfer, corrosion properties and water-chemical parameters of this film define intensity of erosion-corrosion and features of its behavior. Erosion-corrosion of metal in a double-phase flow is determined by the gas-dynamics of double-phase flaws, water chemistry, thermodynamic, materials science, etc. The goal of the work: development of theoretical and methodological basis of physical, chemical and mathematical models, as well as the finding of technical solutions and method of diagnostics, forecast and control of the erosion-corrosion processes. It will allow the increase of reliability and safety operation of the power equipment of the secondary circuit in NPP with WWER by use of monitoring of erosion-corrosion wear of pipelines. One concludes by stressing that the described design-experimental approach for solving of FAC problem will enable to carry out the following works: - elaboration and certification of the procedure of design-experimental substantiation of zones, aims and periodicity of the NPP elements operational inspection; - development and certification of a new Regulatory Document of stress calculation for definition of the minimum acceptable wall thickness levels considering real wear shape, FAC rates and inaccuracy of devices for wall thickness measurements; - improving the current Regulatory Documents and correcting of the Typical programs of operational inspection - optimization of zones, aims and periodicity of the inspection; - elaboration of recommendations for operational lifetime prolongation of the WWER secondary circuits elements by means of increasing of erosion-corrosion resistance of the new equipment and of the equipment, exceeding the design lifetime; - improving of safe and uninterrupted work of the power unit due to prediction of the most damaged

  10. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    Science.gov (United States)

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  11. Net-erosion profile model and simulation experiments

    International Nuclear Information System (INIS)

    Sagara, Akio

    2001-01-01

    Estimation of net-erosion profile is requisite for evaluating the lifetime of divertor plates under high heat and particle fluxes of fusion plasmas. As a reference in benchmark tests of numerical calculation codes, a self-consistent analytical solution is presented for a simplified divertor condition, wherein the magnetic field line is normal to the target plate and the ionization mean free path of sputtered particles is assumed constant. The primary flux profile of hydrogen and impurities are externally given as well as the return ratio of sputtered atoms to the target. In the direction along the divertor trace, all conditions are uniform. The analytical solution is compared with net-erosion experiments carried out using the Compact Helical System (CHS). The deposition profiles of Ti and O impurities are in very good agreement with the analytical predictions. Recent preliminary results observed on divertor plates in the Large Helical Device (LHD) are briefly presented. (author)

  12. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    International Nuclear Information System (INIS)

    Asmara, Y. P.; Ismail, M. F.; Chui, L. Giok; Halimi, Jamiludin

    2016-01-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO 2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO 2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO 2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions. (paper)

  13. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  14. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.

    1998-05-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point of two divertor plasma conditions: (1) attached (Te > 40 eV) ELMing plasmas and (2) detached (Te 10 cm/year, even with incident heat flux 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood and that effective sputtering yields are > 10%. In ELM-free discharges, this erosion rate can account for the rate of carbon accumulation in the core plasma. Divertor plasma detachment eliminates physical sputtering, while spectroscopically measured chemical erosion yields are also found to be low (Y(C/D + ) ≤ 2.0 x 10 -3 ). This leads to suppression of net erosion at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates (∼ 10 microm/s) at the OSP of an attached plasma. Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  15. Soil erosion assessment on hillslope of GCE using RUSLE model

    Indian Academy of Sciences (India)

    61

    based on the RUSLE model in the Geographical Information System (GIS) platform. ... process of soil erosion happens in two stages; the first stage involves the ..... deep or surface cover of undecayed residue; c) appreciable brush of 2 m height ..... Kanungo D and Sharma S 2014 Rainfall thresholds for prediction of shallow ...

  16. Manufacturing issues which affect coating erosion performance in wind turbine blades

    Science.gov (United States)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  17. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    Science.gov (United States)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed

  18. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  19. Predictive role of prenasal thickness and nasal bone for Down syndrome in the second trimester.

    Science.gov (United States)

    Ozcan, Tulin; Özlü, Tülay; Allen, Julie; Peterson, Jeanne; Pressman, Eva K

    2013-12-01

    To assess the efficacy of prenasal thickness (PNT) and nasal bone (NB) for prediction of Down syndrome (DS) fetuses in the second trimester ultrasound examination. PNT was measured from stored two-dimensional fetal profile images taken at 15-23 weeks in 242 fetuses with normal karyotype (Group 1) and 24 fetuses with DS (Group 2). It was measured as the shortest distance from the anterior edge of the lowest part of the frontal bone to the skin. The efficacy of PNT, NB, PNT/NB and biparietal diameter (BPD)/NB was evaluated for prediction of DS. PNT values increased with gestational age in normal fetuses. PNT measurement was ≥95th percentile in 54.2% (13/24) of the DS cases and 2.9% of the normal cases. Receiver operator curve analysis showed that PNT/NB ratio had the best area under the curve with a detection rate of 80% for a false positive rate of 5% at a cut-off value of 0.76. PNT is increased in fetuses with DS as compared to normal fetuses. PNT/NB≥0.76 in the second trimester is a better predictor of DS than the use of PNT or NB alone. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Gastric Mucosal Erosions - Radiologic evaluation -

    International Nuclear Information System (INIS)

    Kim, Seung Hyup

    1985-01-01

    70 cases of gastric mucosal erosions were diagnosed by double contrast upper gastrointestinal examinations and endoscopic findings. Analyzing the radiologic findings of these 70 cases of gastric mucosal erosions, the following results were obtained. 1. Among the total 70 cases, 65 cases were typical varioliform erosions showing central depressions and surrounding mucosal elevations. Remaining 5 cases were erosions of acute phase having multiple irregular depressions without surrounding elevations. 2. The gastric antrum was involved alone or in part in all cases. Duodenal bulb was involved with gastric antrum in 4 cases. 3. The majority of the cases had multiple erosions. There were only 2 cases of single erosion. 4. In 65 cases of varioliform erosions; 1) The diameter of the surrounding elevations varied from 3 to 20 mm with the majority (47 cases) between 6 and 10 mm. 2) In general, the surrounding elevations with sharp margin on double contrast films were also clearly demonstrated on compression films but those with faint margin were not. 3) The size of the central barium collections varied from pinpoint to 10 mm with the majority under 5 mm. The shape of the central barium collections in majority of the cases were round with a few cases of linear, triangular or star-shape. 5. In 5 cases of acute phase erosions; 1) All the 5 cases were females. 2) On double contrast radiography, all the cases showed multiple irregular depressed lesions without surrounding elevations. 3) 1 case had the history of hematemesis. 4) In 1 case, there was marked radiological improvement on follow-up study of 2 months interval. 6. In 23 cases, there were coexistent diseases with gastric mucosal erosions. These were 13 cases of duodenal bulb ulcers,7 cases of benign gastric ulcers and 3 others

  1. Experiments and Numerical Simulations of Dike Erosion due to a Wave Impact

    Directory of Open Access Journals (Sweden)

    Stefania Evangelista

    2015-10-01

    Full Text Available Dike erosion is a crucial issue in coastal and fluvial flood risk management. These defense structures appear vulnerable to extreme hydrological events, whose potential occurrence risk seems to be recently increased due to climate change. Their design and reinforcement is, however, a complex task, and although numerical models are very powerful nowadays, real processes cannot be accurately predicted; therefore, physical models constitute a useful tool to investigate different features under controlled conditions. This paper presents some laboratory experimental results of erosion of a sand dike produced by the impact of a dam break wave. Experiments have been conducted in the Water Engineering Laboratory at the University of Cassino and Southern Lazio, Italy, in a rectangular channel: here, the sudden opening of a gate forming the reservoir generates the wave impacting the dike, made in turn of two different, almost uniform sands. The physical evidence proves that the erosion process is strongly unsteady and significantly different from a gradual overtopping and highlights the importance of apparent cohesion for the fine sand dike. The experimental results have also been compared against the ones obtained through the numerical integration of a two-phase model, which shows the reasonable predictive capability of the temporal free surface and dike profile evolution.

  2. MRI of the wrist in juvenile idiopathic arthritis: erosions or normal variants? A prospective case-control study

    International Nuclear Information System (INIS)

    Ording Muller, Lil-Sofie; Boavida, Peter; Avenarius, Derk; Eldevik, Odd Petter; Damasio, Beatrice; Malattia, Clara; Lambot-Juhan, Karen; Tanturri, Laura; Owens, Catherine M.; Rosendahl, Karen

    2013-01-01

    Bony depressions at the wrist resembling erosions are frequently seen on MRI in healthy children. The accuracy of MRI in detecting early bony destruction is therefore questionable. We compared findings on MRI of the wrist in healthy children and those with juvenile idiopathic arthritis (JIA) to investigate markers for true disease. We compared the number and localisation of bony depressions at the wrist in 85 healthy children and 68 children with JIA, ages 5-15 years. The size of the wrist was assessed from a radiograph of the wrist performed on the same day as the MRI. No significant difference in the number of bony depressions in the carpal bones was seen between healthy children and children with JIA at any age. Depressions are found in similar locations in the two groups, except for a few sites, where bony depressions were seen exclusively in the JIA group, particularly at the CMC joints. The wrist was significantly smaller in children with JIA (P < 0.001). Using adult scoring systems and standard MR sequences in the assessment of bone destruction in children may lead to overstaging or understaging of disease. At present, standard MRI sequences cannot easily be used for assessment of early signs of erosions in children. (orig.)

  3. MRI of the wrist in juvenile idiopathic arthritis: erosions or normal variants? A prospective case-control study

    Energy Technology Data Exchange (ETDEWEB)

    Ording Muller, Lil-Sofie [University Hospital North Norway, Department of Radiology, Tromsoe (Norway); Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Boavida, Peter [Homerton University Hospital, Department of Radiology, London (United Kingdom); Avenarius, Derk; Eldevik, Odd Petter [University Hospital North Norway, Department of Radiology, Tromsoe (Norway); Damasio, Beatrice [Ospedale Pediatrico Gaslini, Department of Radiology, Genoa (Italy); Malattia, Clara [Ospedale Pediatrico Gaslini, Department of Rhematology, Genoa (Italy); Lambot-Juhan, Karen [Hopital Necker Enfants Malades, Department of Radiology, Paris (France); Tanturri, Laura [Ospedale Pediatrico Bambino Gesu, Department of Radiology, Rome (Italy); Owens, Catherine M. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); UCL, Institute of Child Health, London (United Kingdom); Rosendahl, Karen [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); UCL, Institute of Child Health, London (United Kingdom); Haukeland University Hospital, Department of Radiology, Bergen (Norway); University of Bergen, Department of Surgical Sciences, Bergen (Norway)

    2013-07-15

    Bony depressions at the wrist resembling erosions are frequently seen on MRI in healthy children. The accuracy of MRI in detecting early bony destruction is therefore questionable. We compared findings on MRI of the wrist in healthy children and those with juvenile idiopathic arthritis (JIA) to investigate markers for true disease. We compared the number and localisation of bony depressions at the wrist in 85 healthy children and 68 children with JIA, ages 5-15 years. The size of the wrist was assessed from a radiograph of the wrist performed on the same day as the MRI. No significant difference in the number of bony depressions in the carpal bones was seen between healthy children and children with JIA at any age. Depressions are found in similar locations in the two groups, except for a few sites, where bony depressions were seen exclusively in the JIA group, particularly at the CMC joints. The wrist was significantly smaller in children with JIA (P < 0.001). Using adult scoring systems and standard MR sequences in the assessment of bone destruction in children may lead to overstaging or understaging of disease. At present, standard MRI sequences cannot easily be used for assessment of early signs of erosions in children. (orig.)

  4. Horizontal Bone Reconstruction on sites with different amounts of native bone: a retrospective study

    Directory of Open Access Journals (Sweden)

    André Antonio Pelegrine

    2018-04-01

    Full Text Available Abstract: The lack of guidelines for bone augmentation procedures might compromise decision making in implantology. The objective of this study was to perform a retrospective study to verify the outcomes of horizontal bone reconstruction in implant dentistry with different types of materials and amounts of native bone in the recipient bed to allow for a new guideline for horizontal bone reconstruction. One hundred preoperative CT scans were retrospectively evaluated and categorized in accordance to horizontal bone defects as presence (Group P or absence (Group A of cancellous bone in the recipient bed. Different approaches were used to treat the edentulous ridge and the outcomes were defined either as satisfactory or unsatisfactory regarding the possibility of implant placement. The percentage distribution of the patients according to the presence or absence of cancellous bone was 92% for Group P and 8% for Group A. In Group P, 98% of the patients had satisfactory outcomes, and the use of autografts had 100% of satisfactory outcomes in this group. In Group A, 37.5% of the patients had satisfactory outcomes, and the use of autografts also yielded 100% of satisfactory outcomes. The use of allografts and xenografts in Group A had 0% and 33.3% of satisfactory outcomes, respectively. Therefore, it seems reasonable to speculate that the presence of cancellous bone might be predictive and predictable when the decision includes bone substitutes. In cases of absence of cancellous bone in the recipient bed, the use of a vitalized graft seems to be mandatory.

  5. Rapid Erosion Modeling in a Western Kenya Watershed using Visible Near Infrared Reflectance, Classification Tree Analysis and 137Cesium.

    Science.gov (United States)

    deGraffenried, Jeff B; Shepherd, Keith D

    2009-12-15

    Human induced soil erosion has severe economic and environmental impacts throughout the world. It is more severe in the tropics than elsewhere and results in diminished food production and security. Kenya has limited arable land and 30 percent of the country experiences severe to very severe human induced soil degradation. The purpose of this research was to test visible near infrared diffuse reflectance spectroscopy (VNIR) as a tool for rapid assessment and benchmarking of soil condition and erosion severity class. The study was conducted in the Saiwa River watershed in the northern Rift Valley Province of western Kenya, a tropical highland area. Soil 137 Cs concentration was measured to validate spectrally derived erosion classes and establish the background levels for difference land use types. Results indicate VNIR could be used to accurately evaluate a large and diverse soil data set and predict soil erosion characteristics. Soil condition was spectrally assessed and modeled. Analysis of mean raw spectra indicated significant reflectance differences between soil erosion classes. The largest differences occurred between 1,350 and 1,950 nm with the largest separation occurring at 1,920 nm. Classification and Regression Tree (CART) analysis indicated that the spectral model had practical predictive success (72%) with Receiver Operating Characteristic (ROC) of 0.74. The change in 137 Cs concentrations supported the premise that VNIR is an effective tool for rapid screening of soil erosion condition.

  6. Coastal Erosion Control Methods

    Science.gov (United States)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  7. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Directory of Open Access Journals (Sweden)

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  8. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.

    Science.gov (United States)

    Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D

    2017-11-01

    Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design

  9. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  10. Soil erosion, sedimentation and the carbon cycle

    Science.gov (United States)

    Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.

    2012-04-01

    Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.

  11. Damage accumulation of bovine bone under variable amplitude loads

    Directory of Open Access Journals (Sweden)

    Abbey M. Campbell

    2016-12-01

    Full Text Available Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR, a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile (4000 μϵ, brittle due to high cyclic amplitude loading (>9000 μϵ, and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 –6750 μϵ. Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism. Keywords: Bone fatigue, Bone fracture, Health system monitoring, Failure prediction

  12. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Science.gov (United States)

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  13. Osteoimmunology: the study of the relationship between the immune system and bone tissue.

    Science.gov (United States)

    Arboleya, Luis; Castañeda, Santos

    2013-01-01

    Bone tissue is a highly regulated structure, which plays an essential role in various physiological functions. Through autocrine and paracrine mechanisms, bone tissue is involved in hematopoiesis, influencing the fate of hematopoietic stem cells. There are a number of molecules shared by bone cells and immune system cells indicating that there are multiple connections between the immune system and bone tissue. In order to pool all the knowledge concerning both systems, a new discipline known under the term «osteoimmunology» has been developed. Their progress in recent years has been exponential and allowed us to connect and increase our knowledge in areas not seemingly related such as rheumatoid erosion, postmenopausal osteoporosis, bone metastases or periodontal disease. In this review, we have tried to summarize the most important advances that have occurred in the last decade, especially in those areas of interest related to rheumatology. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  14. Predicting local distributions of erosion-corrosion wear sites for the piping in the nuclear power plant using CFD models

    International Nuclear Information System (INIS)

    Ferng, Y.M.

    2008-01-01

    The erosion-corrosion (E/C) wear is an essential degradation mechanism for the piping in the nuclear power plant, which results in the oxide mass loss from the inside of piping, the wall thinning, and even the pipe break. The pipe break induced by the E/C wear may cause costly plant repairs and personal injures. The measurement of pipe wall thickness is a useful tool for the power plant to prevent this incident. In this paper, CFD models are proposed to predict the local distributions of E/C wear sites, which include both the two-phase hydrodynamic model and the E/C models. The impacts of centrifugal and gravitational forces on the liquid droplet behaviors within the piping can be reasonably captured by the two-phase model. Coupled with these calculated flow characteristics, the E/C models can predicted the wear site distributions that show satisfactory agreement with the plant measurements. Therefore, the models proposed herein can assist in the pipe wall monitoring program for the nuclear power plant by way of concentrating the measuring point on the possible sites of severe E/C wear for the piping and reducing the measurement labor works

  15. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.; Buzhinskij, O.I.; Opimach, I.V.

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T e > 40 eV) ELMing plasmas, and detached (T e 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y ≤ 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates at the OSP of an attached plasma (∼ 10 microm/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  16. Bone graft viability evaluated by three phase bone scan

    International Nuclear Information System (INIS)

    Ljiljana Jaukovic Rajko Spaic; Marijan Novakovic; Srbislav Stosic

    2004-01-01

    Bone defects resulting war injury can be replaced by microvascular bone grafts from fibula. Aim: The aim of this study was to assess the value of three phase (3P) bone scintigraphy in the early detection of the bone graft complications. Method: 3P bone scans were performed in four patients (two after mandible reconstruction with micro vascular fibular bone grafts, one after fibular transplantation for ulnar and one with humeral reconstruction). First dynamic phase scan was performed immediately after iv injection of 740 MBq Tc- 99m DPD, acquiring 15 two seconds duration frames. Second, early static scan was performed during next 300 seconds, and third, delayed scan three hours later. All scans were obtained under the bone graft region. The scans were evaluated using ROI under graft region and the corresponding contra lateral area. Blood flow in graft region was determined using first phase scan, and tracer uptake in the same region was determined using second and third phase scans. Results: in all patients blood flow in graft region was particularly normal. Tracer uptake in one of two patients with mandible reconstruction was diffusely increased in graft, strongly suggesting infection; In the other patient delayed scan showed no tracer uptake in graft center .Both patients with ulnar and humeral reconstruction showed only slightly decreased tracer uptake in bone grafts. 3 phase bone scintigraphy may play a role in the evaluation of bone graft viability by predicting the infection and necrosis. (authors)

  17. X-ray diagnosis of erosive gastritis

    International Nuclear Information System (INIS)

    Taskov, A.; Krastin, A.

    1993-01-01

    A series of 602 patients are studied according to a standard protocol including double contrast examination, taking films with dosed compression and complete filling (accordingly 3+3+1 radiographs). A barium suspension at concentration 200.0 BaSO 4 in 100 ml water is used as a positive contrast medium, and effervescent powder or pills - as a negative contrast. Erosive gastritis is diagnosed in 48 patients (7.9%) of which 38 present complete erosions (79.2%), 6 (12.6%) - incomplete, and 4 (8.3%) - mixed erosions. In 35 cases (72.9%) erosions are differentiated in double-contrast films, while in 21 (43.8%) - in those with compression. The advantage of the double contrast technique consists in visualization of erosions of the body of the stomach and discovering of incomplete erosions. In 483 patients a comparative assessment is done of the X-ray and endoscopic findings. There are recorded 5 false-positive and 25 false-negative radiological results. The sensitivity of the X-ray study in terms of erosive gastritis amounts to 59.7%. 15 refs., 4 figs. (orig.)

  18. EFFECTS OF SLOPE SHAPES ON SOIL EROSION

    Directory of Open Access Journals (Sweden)

    Hüseyin ŞENSOY, Şahin PALTA

    2009-01-01

    Full Text Available Water is one of the most important erosive forces. A great number of factors also play a role in erosion process and slope characteristic is also one of them. The steepness and length of the slope are important factors for runoff and soil erosion. Another slope factor that has an effect on erosion is the shape of the slope. Generally, different erosion and runoff characteristics exist in different slopes which can be classified as uniform, concave, convex and complex shape. In this study, the effects of slope shape on erosion are stated and emphasized by taking similar researches into consideration.

  19. Spatial and temporal variations of wind erosion climatic erosivity in the farming-pastoral zone of Northern China

    Science.gov (United States)

    Yue, Shuping; Yang, Ruixin; Yan, Yechao; Yang, Zhengwei; Wang, Dandan

    2018-03-01

    Wind erosion climatic erosivity is an important parameter to assess the possible effects of climatic conditions on wind erosion. In this paper, the wind erosion climatic factor (C-factor), which was used to quantify the wind erosion climatic erosivity, was calculated for the period 1960-2014 based on monthly meteorological data collected from 101 stations in the farming-pastoral zone of Northern China. The Mann-Kendall (M-K) test, trend analysis, and geostatistical analysis methods were used to explore the spatial and temporal characteristics of the wind erosion climatic erosivity in this region. The result suggests that the annual C-factor, with a maximum of 76.05 in 1969 and a minimum of 26.57 in 2007, has a significant decreasing trend over the past 55 years. Strong seasonality in the C-factor was found, with the highest value in spring, which accounts for a significant proportion of the annual C-factor (41.46%). However, the coefficient of variation of the seasonal C-factor reaches a maximum in winter and a minimum in spring. The mean annual C-factor varies substantially across the region. Areas with high values of the mean annual C-factor (C ≥ 100) are located in Ulanqab and Dingxi, while areas with low values (C ≤ 10) lie in Lanzhou, Linxia, Dingxi, Xining, and Chengde. Spatial analysis on the trend of the C-factor reveals that 81% of the stations show statistically significant decreases at a 90% confidence level. An examination of the concentration ratio of the C-factor shows that the wind erosion climatic erosivity is concentrated in spring, especially in April, which makes this period particularly important for implementing soil conservation measures.

  20. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  1. Use of dendrochronological method in Pinus halepensis to estimate the soil erosion in the South East of Madrid (Spain).

    Science.gov (United States)

    Pérez-Rodríguez, Raquel; Marques, Maria Jose; Bienes, Ramón

    2007-05-25

    The rate of soil erosion in pine forests (Pinus halepensis) located in the Southeast of Madrid has been estimated using dendrochronological analysis based on the change in ring-growth pattern from concentric to eccentric when the root is exposed. Using 49 roots spread across five inclined areas, it has been found that the length and direction of the hillsides, as well as their vegetation cover affect the rate of erosion, while the slope itself does not. The erosion rates found for the different areas studied vary between 3.5 and 8.8 mm year(-1), that is between 40 and 101 t ha(-1) year(-1) respectively. These values are between 2 and 3 times greater than those predicted by USLE, for which this equation underestimates soil loss for Central Spain's Mediterranean conditions. Nonetheless, both methods (using dendrochronology to determine actual soil loss and theoretical prediction with USLE) are able to establish the same significant differences among the areas studied, allowing for the comparative estimate of the severity of the area's erosion problem.

  2. Critical Source Area Delineation: The representation of hydrology in effective erosion modeling.

    Science.gov (United States)

    Fowler, A.; Boll, J.; Brooks, E. S.; Boylan, R. D.

    2017-12-01

    Despite decades of conservation and millions of conservation dollars, nonpoint source sediment loading associated with agricultural disturbance continues to be a significant problem in many parts of the world. Local and national conservation organizations are interested in targeting critical source areas for control strategy implementation. Currently, conservation practices are selected and located based on the Revised Universal Soil Loss Equation (RUSLE) hillslope erosion modeling, and the National Resource Conservation Service will soon be transiting to the Watershed Erosion Predict Project (WEPP) model for the same purpose. We present an assessment of critical source areas targeted with RUSLE, WEPP and a regionally validated hydrology model, the Soil Moisture Routing (SMR) model, to compare the location of critical areas for sediment loading and the effectiveness of control strategies. The three models are compared for the Palouse dryland cropping region of the inland northwest, with un-calibrated analyses of the Kamiache watershed using publicly available soils, land-use and long-term simulated climate data. Critical source areas were mapped and the side-by-side comparison exposes the differences in the location and timing of runoff and erosion predictions. RUSLE results appear most sensitive to slope driving processes associated with infiltration excess. SMR captured saturation excess driven runoff events located at the toe slope position, while WEPP was able to capture both infiltration excess and saturation excess processes depending on soil type and management. A methodology is presented for down-scaling basin level screening to the hillslope management scale for local control strategies. Information on the location of runoff and erosion, driven by the runoff mechanism, is critical for effective treatment and conservation.

  3. Amplified Erosion above Waterfalls and Oversteepened Bedrock Reaches

    Science.gov (United States)

    Haviv, I.; Enzel, Y.; Whipple, K. X.; Zilberman, E.; Stone, J.; Matmon, A.; Fifield, K. L.

    2005-12-01

    Although waterfalls are abundant along steep bedrock channels, none of the conventional erosion laws can predict incision at the lip of a waterfall where flow is non-uniform and bed slope can be vertical. Considering the expected increase in flow velocity and shear stress at the lip of a vertical waterfall we determine erosion amplification at a waterfall lip as: Elip/Enormal= (1+0.4/Fr2)3n, where Fr is the Froude number and n ranges between 0.5-1.7. This amplification expression suggests that erosion at the lip could be as much as 2-5 times higher than normally expected in a setting with identical hydraulic geometry. It also demonstrates that a freefall is expected to amplify upstream incision rates even when the flow approaching the waterfall is highly supercritical. Utilizing this erosion amplification expression in numerical simulations in conjunction with a standard detachment-limited incision model we demonstrate its impact on reach-scale morphology above waterfalls. These simulations indicate that amplified erosion at the lip of a waterfall can trigger the formation of an oversteepened reach whose length is longer than the flow acceleration zone, provided incision velocity (Vi) at the edge of the flow acceleration zone is higher than the retreat velocity of the waterfall face. Such an oversteepened reach is expected to be more pronounced when Vi increases with increasing slope. The simulations also suggest that oversteepening can eventually lead to quasi steady-state gradients upstream from a waterfall provided Vi decreases with increasing slope. Flow acceleration above waterfalls can thus account, at least partially, for oversteepened bedrock reaches that are prevalent above waterfalls. Such reaches have been reported for the escarpments of southeast Australia, western Dead Sea, and at Niagara Falls. Using the cosmogenic isotope 36Cl we demonstrate that Vi upstream of a waterfall at the Dead Sea western escarpment is high enough for freefall

  4. Limitations of using micro-computed tomography to predict bone-implant contact and mechanical fixation.

    Science.gov (United States)

    Liu, S; Broucek, J; Virdi, A S; Sumner, D R

    2012-01-01

    Fixation of metallic implants to bone through osseointegration is important in orthopaedics and dentistry. Model systems for studying this phenomenon would benefit from a non-destructive imaging modality so that mechanical and morphological endpoints can more readily be examined in the same specimens. The purpose of this study was to assess the utility of an automated microcomputed tomography (μCT) program for predicting bone-implant contact (BIC) and mechanical fixation strength in a rat model. Femurs in which 1.5-mm-diameter titanium implants had been in place for 4 weeks were either embedded in polymethylmethacrylate (PMMA) for preparation of 1-mm-thick cross-sectional slabs (16 femurs: 32 slabs) or were used for mechanical implant pull-out testing (n= 18 femurs). All samples were scanned by μCT at 70 kVp with 16 μm voxels and assessed by the manufacturer's software for assessing 'osseointegration volume per total volume' (OV/TV). OV/TV measures bone volume per total volume (BV/TV) in a 3-voxel-thick ring that by default excludes the 3 voxels immediately adjacent to the implant to avoid metal-induced artefacts. The plastic-embedded samples were also analysed by backscatter scanning electron microscopy (bSEM) to provide a direct comparison of OV/TV with a well-accepted technique for BIC. In μCT images in which the implant was directly embedded within PMMA, there was a zone of elevated attenuation (>50% of the attenuation value used to segment bone from marrow) which extended 48 μm away from the implant surface. Comparison of the bSEM and μCT images showed high correlations for BV/TV measurements in areas not affected by metal-induced artefacts. In addition for bSEM images, we found that there were high correlations between peri-implant BV/TV within 12 μm of the implant surface and BIC (correlation coefficients ≥0.8, p implant pull-out strength (r= 0.401, p= 0.049) and energy to failure (r= 0.435, p= 0.035). Thus, the need for the 48-μm-thick exclusion

  5. Elevated temperature erosive wear of metallic materials

    International Nuclear Information System (INIS)

    Roy, Manish

    2006-01-01

    Solid particle erosion of metals and alloys at elevated temperature is governed by the nature of the interaction between erosion and oxidation, which, in turn, is determined by the thickness, pliability, morphology, adhesion characteristics and toughness of the oxide scale. The main objective of this paper is to critically review the present state of understanding of the elevated temperature erosion behaviour of metals and alloys. First of all, the erosion testing at elevated temperature is reviewed. This is followed by discussion of the essential features of elevated temperature erosion with special emphasis on microscopic observation, giving details of the erosion-oxidation (E-O) interaction mechanisms. The E-O interaction has been elaborated in the subsequent section. The E-O interaction includes E-O maps, analysis of transition criteria from one erosion mechanism to another mechanism and quantification of enhanced oxidation kinetics during erosion. Finally, the relevant areas for future studies are indicated. (topical review)

  6. Segmenting Bone Parts for Bone Age Assessment using Point Distribution Model and Contour Modelling

    Science.gov (United States)

    Kaur, Amandeep; Singh Mann, Kulwinder, Dr.

    2018-01-01

    Bone age assessment (BAA) is a task performed on radiographs by the pediatricians in hospitals to predict the final adult height, to diagnose growth disorders by monitoring skeletal development. For building an automatic bone age assessment system the step in routine is to do image pre-processing of the bone X-rays so that features row can be constructed. In this research paper, an enhanced point distribution algorithm using contours has been implemented for segmenting bone parts as per well-established procedure of bone age assessment that would be helpful in building feature row and later on; it would be helpful in construction of automatic bone age assessment system. Implementation of the segmentation algorithm shows high degree of accuracy in terms of recall and precision in segmenting bone parts from left hand X-Rays.

  7. Effect of stone coverage on soil erosion

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.

    2010-12-01

    Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in

  8. Assessment and management of dental erosion.

    Science.gov (United States)

    Wang, Xiaojie; Lussi, Adrian

    2010-07-01

    Studies have shown a growing trend toward increasing prevalence of dental erosion, associated with the declining prevalence of caries disease in industrialized countries. Erosion is an irreversible chemical process that results in tooth substance loss and leaves teeth susceptible to damage as a result of wear over the course of an individual's lifetime. Therefore, early diagnosis and adequate prevention are essential to minimize the risk of tooth erosion. Clinical appearance is the most important sign to be used to diagnose erosion. The Basic Erosive Wear Examination (BEWE) is a simple method to fulfill this task. The determination of a variety of risk and protective factors (patient-dependent and nutrition-dependent factors) as well as their interplay are necessary to initiate preventive measures tailored to the individual. When tooth loss caused by erosive wear reaches a certain level, oral rehabilitation becomes necessary. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Soil erosion processes on sloping land using REE tracer

    International Nuclear Information System (INIS)

    Shen Zhenzhou; Liu Puling; Yang Mingyi; Lian Zhenlong; Ju Tongjun; Yao Wenyi; Li Mian

    2007-01-01

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  10. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  11. Objectively measured physical activity predicts hip and spine bone mineral content in children and adolescents ages 5 - 15 years: Iowa Bone Development Study

    Directory of Open Access Journals (Sweden)

    Kathleen F Janz

    2014-07-01

    Full Text Available This study examined the association between physical activity (PA and bone mineral content (BMC; g from middle childhood to middle adolescence and compared the impact of vigorous-intensity PA (VPA over moderate- to vigorous-intensity PA (MVPA. Participants from the Iowa Bone Development Study were examined at ages 5, 8, 11, 13, and 15 yr (n=369, 449, 452, 410, 307, respectively. MVPA and VPA (min/day were measured using ActiGraph accelerometers. Anthropometry was used to measure body size and somatic maturity. Spine BMC and hip BMC were measured via dual-energy x-ray absorptiometry. Sex-specific multi-level linear models were fit for spine BMC and hip BMC, adjusted for weight (kg, height (cm, linear age (yr, non-linear age (yr2, and maturity (pre peak height velocity vs. at/post peak height velocity. The interaction effects of PA×maturity and PA×age were tested. We also examined differences in spine BMC and hip BMC between the least (10th percentile and most (90th percentile active participants at each examination period. Results indicated that PA added to prediction of BMC throughout the 10-year follow-up, except MVPA did not predict spine BMC in females. Maturity and age did not modify the PA effect for males nor females. At age 5, the males at the 90th percentile for VPA had 8.5% more hip BMC than males in the 10th percentile for VPA. At age 15, this difference was 2.0%. Females at age 5 in the 90th percentile for VPA had 6.1% more hip BMC than those in the 10th percentile for VPA. The age 15 difference was 1.8%. VPA was associated with BMC at weight-bearing skeletal sites from childhood to adolescence, and the effect was not modified by maturity or age. Our findings indicate the importance of early and sustained interventions that focus on VPA. Approaches focused on MVPA may be inadequate for optimal bone health, particularly for females.

  12. Soil Erosion Risk Assessment in Uganda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2017-02-01

    Full Text Available Land use without adequate soil erosion control measures is continuously increasing the risk of soil erosion by water mainly in developing tropical countries. These countries are prone to environmental disturbance due to high population growth and high rainfall intensity. The aim of this study is to assess the state of soil erosion by water in Uganda at national and district levels, for various land cover and land use (LCLU types, in protected areas as well to predict the impact of support practices on soil loss reduction. Predictions obtained using the Revised Universal Soil Loss Equation (RUSLE model indicated that the mean rate of soil loss risk in Uganda’s erosion‐prone lands was 3.2 t∙ha−1∙y−1, resulting in a total annual soil loss of about 62 million tons in 2014. About 39% of the country’s erosion‐prone lands were comprised of unsustainable mean soil loss rates >1 t∙ha−1∙y−1. Out of 112 districts in Uganda, 66 districts were found to have unsustainable estimated soil loss rates >1 t∙ha−1∙y−1. Six districts in Uganda were found to have mean annual soil loss rates of >10 t∙ha−1∙y−1: Bududa (46.3 t∙ha−1∙y−1, Kasese (37.5 t∙ha−1∙y−1, Bundibugyo (28.9 t∙ha−1∙y−1, Bulambuli (20.9 t∙ha−1∙y−1, Sironko (14.6 t∙ha−1∙y−1 and Kotido (12.5 t∙ha−1∙y−1. Among the LCLU types, the highest soil loss rates of 11 t∙ha−1∙y−1 and 10.6 t∙ha−1∙y−1 were found in moderate natural forest and dense natural forest, respectively, mainly due to their locations in highland areas characterized by steep slopes ranging between 16% to 21% and their high rainfall intensity, ranging from 1255 mm∙y−1 to 1292 mm∙y−1. Only five protected areas in Uganda were found to have high mean estimated mean soil loss rates >10 t∙ha−1∙y−1: Rwenzori Mountains (142.94 t∙ha−1∙y−1, Mount Elgon (33.81 t∙ha−1∙y−1, Bokora corridor (12.13 t∙ha−1∙y−1

  13. Medication-related dental erosion: a review.

    Science.gov (United States)

    Thomas, Manuel S; Vivekananda Pai, A R; Yadav, Amit

    2015-10-01

    Dental erosion has become a major problem that affects the long-term health of the dentition. Among the various potential causes for erosive tooth wear, the different drugs prescribed for patients may be overlooked. Several therapeutic medications can directly or indirectly be associated with dental erosion. It is the responsibility of oral health providers to make both patients and colleagues aware of drugs that may contribute to this condition. Therefore, the purpose of this discussion is to provide an overview of the various therapeutic medications that can be related to tooth erosion. The authors also include precautionary measures-summarized as The 9 Rs-to avoid or at least reduce medication-induced erosion.

  14. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    correlation also incorporates the RMS data, accounting for swirling flow of the products in the RMS combustor. These correlations are useful for rocket nozzle designs. The correlation for non-metallized propellant and RMS firings was developed in terms of the effective oxidizer mass fraction and effective Reynolds number. The results calculated from this correlation were compared with measured erosion rate data within +/-15% or 0.05 mm/s (2 mils/s). For metallized propellant, the nozzle erosion rate was found to be relatively independent of the concentration of oxidizing species due to the diffusion-controlled process and the partial surface coverage by the liquid Al/Al2O3 layer. The nozzle erosion rate was also found to be lower than those of non-metallized propellant cases. Agreement between predicted and measured erosion rates was found to be within +/-20% or 0.04 mm/s (2 mils/s).

  15. Composition of enamel pellicle from dental erosion patients.

    Science.gov (United States)

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p erosion patients (p erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  16. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling.

    Science.gov (United States)

    Fernández, J R; García-Aznar, J M; Martínez, R

    2012-01-07

    We have developed a mathematical approach for modelling the piezoelectric behaviour of bone tissue in order to evaluate the electrical surface charges in bone under different mechanical conditions. This model is able to explain how bones change their curvature, where osteoblasts or osteoclasts could detect in the periosteal/endosteal surfaces the different electrical charges promoting bone formation or resorption. This mechanism also allows to understand the BMU progression in function of the electro-mechanical bone behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Effectiveness of digital subtraction radiography in detecting artificially created osteophytes and erosions in the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Kocasarac, Husniye Demirturk [Dept. of Comprehensive Dentistry, The University of Texas Health Science Center, San Antonio (United States); Celenk, Peruze [Dept. of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ondokuz Mayis University, Samsun (Turkmenistan)

    2017-06-15

    Erosions and osteophytes are radiographic characteristics that are found in different stages of temporomandibular joint (TMJ) osteoarthritis. This study assessed the effectiveness of digital subtraction radiography (DSR) in diagnosing simulated osteophytes and erosions in the TMJ. Five intact, dry human skulls were used to assess the effectiveness of DSR in detecting osteophytes. Four cortical bone chips of varying thicknesses (0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm) were placed at the medial, central, and lateral aspects of the condyle anterior surface. Two defects of varying depth (1.0 mm and 1.5 mm) were created on the lateral, central, and medial poles of the condyles of 2 skulls to simulate erosions. Panoramic images of the condyles were acquired before and after artificially creating the changes. Digital subtraction was performed with Emago dental image archiving software. Five observers familiar with the interpretation of TMJ radiographs evaluated the images. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic accuracy of the imaging methods. The area under the ROC curve (Az) value for the overall diagnostic accuracy of DSR in detecting osteophytic changes was 0.931. The Az value for the overall diagnostic accuracy of panoramic imaging was 0.695. The accuracy of DSR in detecting erosive changes was 0.854 and 0.696 for panoramic imaging. DSR was remarkably more accurate than panoramic imaging in detecting simulated osteophytic and erosive changes. The accuracy of panoramic imaging in detecting degenerative changes was significantly lower than the accuracy of DSR (P<.05). DSR improved the accuracy of detection using panoramic images.

  18. Effectiveness of digital subtraction radiography in detecting artificially created osteophytes and erosions in the temporomandibular joint

    International Nuclear Information System (INIS)

    Kocasarac, Husniye Demirturk; Celenk, Peruze

    2017-01-01

    Erosions and osteophytes are radiographic characteristics that are found in different stages of temporomandibular joint (TMJ) osteoarthritis. This study assessed the effectiveness of digital subtraction radiography (DSR) in diagnosing simulated osteophytes and erosions in the TMJ. Five intact, dry human skulls were used to assess the effectiveness of DSR in detecting osteophytes. Four cortical bone chips of varying thicknesses (0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm) were placed at the medial, central, and lateral aspects of the condyle anterior surface. Two defects of varying depth (1.0 mm and 1.5 mm) were created on the lateral, central, and medial poles of the condyles of 2 skulls to simulate erosions. Panoramic images of the condyles were acquired before and after artificially creating the changes. Digital subtraction was performed with Emago dental image archiving software. Five observers familiar with the interpretation of TMJ radiographs evaluated the images. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic accuracy of the imaging methods. The area under the ROC curve (Az) value for the overall diagnostic accuracy of DSR in detecting osteophytic changes was 0.931. The Az value for the overall diagnostic accuracy of panoramic imaging was 0.695. The accuracy of DSR in detecting erosive changes was 0.854 and 0.696 for panoramic imaging. DSR was remarkably more accurate than panoramic imaging in detecting simulated osteophytic and erosive changes. The accuracy of panoramic imaging in detecting degenerative changes was significantly lower than the accuracy of DSR (P<.05). DSR improved the accuracy of detection using panoramic images

  19. Association of the presence of bone bars on radiographs and low bone mineral density

    International Nuclear Information System (INIS)

    Pitt, Michael J.; Morgan, Sarah L.; Lopez-Ben, Robert; Steelman, Rebecca E.; Nunnally, Nancy; Burroughs, Leandria; Fineberg, Naomi

    2011-01-01

    Bone bars (BB) are struts of normal trabecular bone that cross the medullary portions of the metaphysis and diaphysis at right angles to the long axis of the shaft. The purpose of this investigation was to determine whether the presence of bone bars (BB) identified on radiographs of the proximal femurs and tibia, predict lower bone mineral density (BMD) as evaluated with dual-energy x-ray absorptiometry (DXA) in the lumbar spine, total hip, or femoral neck. A total of 134 sequential DXA patients underwent radiography of the pelvis, hips, and both knees. The radiographs were evaluated for the presence of BB by two musculoskeletal radiologists who were blinded to DXA results. A t test was used to evaluate the relationship of BB to BMD and a Chi-square test was used to determine if BB were equally distributed among the categories of normal BMD, low bone mass (osteopenia), and osteoporosis. BB were associated with lower BMD at all measured sites. BB at the intertrochanteric and proximal tibial sites were the most predictive of low BMD while supraacetabular and distal femur BB were less predictive. Osteoporosis or osteopenia is seen in 60-91% of those with BB depending on the side and reader. It is only seen in about 40% of those without BB. We conclude that the presence of BB suggest decreased BMD and when correlated with other clinical information, might support further evaluation of BMD. (orig.)

  20. Association of the presence of bone bars on radiographs and low bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Michael J. [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Morgan, Sarah L. [Schools of Health Professions, Medicine, and Dentistry, Departments of Nutrition Sciences and Medicine, Birmingham (United Kingdom); Lopez-Ben, Robert [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Steelman, Rebecca E. [University of Alabama, Birmingham (United Kingdom); Nunnally, Nancy; Burroughs, Leandria [UAB Osteoporosis Prevention and Treatment Clinic, Birmingham (United Kingdom); Fineberg, Naomi [University of Alabama at Birmingham, Department of Biostatistics, School of Public Health, Birmingham (United Kingdom)

    2011-07-15

    Bone bars (BB) are struts of normal trabecular bone that cross the medullary portions of the metaphysis and diaphysis at right angles to the long axis of the shaft. The purpose of this investigation was to determine whether the presence of bone bars (BB) identified on radiographs of the proximal femurs and tibia, predict lower bone mineral density (BMD) as evaluated with dual-energy x-ray absorptiometry (DXA) in the lumbar spine, total hip, or femoral neck. A total of 134 sequential DXA patients underwent radiography of the pelvis, hips, and both knees. The radiographs were evaluated for the presence of BB by two musculoskeletal radiologists who were blinded to DXA results. A t test was used to evaluate the relationship of BB to BMD and a Chi-square test was used to determine if BB were equally distributed among the categories of normal BMD, low bone mass (osteopenia), and osteoporosis. BB were associated with lower BMD at all measured sites. BB at the intertrochanteric and proximal tibial sites were the most predictive of low BMD while supraacetabular and distal femur BB were less predictive. Osteoporosis or osteopenia is seen in 60-91% of those with BB depending on the side and reader. It is only seen in about 40% of those without BB. We conclude that the presence of BB suggest decreased BMD and when correlated with other clinical information, might support further evaluation of BMD. (orig.)

  1. The water erosion processes in the retreat erosive of cliff on soft rocks in the province of Cadiz (Spain)

    International Nuclear Information System (INIS)

    Rendon Aragon, J. J.; Gracia Prieto, F. J.; Rio Rodriguez, L. del

    2009-01-01

    The littoral cliffs on soft materials of the Atlantic Cadiz coast show an important activity of the fresh water erosion processes, sometimes even more significant than the marine erosion processes. The connection of the lower cliffs with sandy beaches favours aeolian sand invasion, which fills previous rills and reduces the water erosion intensity by increasing infiltration. Cliff retreat and rill erosion measurement by using erosion sticks has shown very variables values, most of them higher than the estimated error of the employed methods. This indicates the existence of other factors influencing the distribution of water erosion processes along these cliffs, which have to be studied through different techniques. (Author) 5 refs.

  2. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  3. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Science.gov (United States)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  4. GEOSTATISTICAL BASED SUSCEPTIBILITY MAPPING OF SOIL EROSION AND OPTIMIZATION OF ITS CAUSATIVE FACTORS: A CONCEPTUAL FRAMEWORK

    Directory of Open Access Journals (Sweden)

    ABDULKADIR T. SHOLAGBERU

    2017-11-01

    Full Text Available Soil erosion hazard is the second biggest environmental challenges after population growth causing land degradation, desertification and water deterioration. Its impacts on watersheds include loss of soil nutrients, reduced reservoir capacity through siltation which may lead to flood risk, landslide, high water turbidity, etc. These problems become more pronounced in human altered mountainous areas through intensive agricultural activities, deforestation and increased urbanization among others. However, due to challenging nature of soil erosion management, there is great interest in assessing its spatial distribution and susceptibility levels. This study is thus intend to review the recent literatures and develop a novel framework for soil erosion susceptibility mapping using geostatistical based support vector machine (SVM, remote sensing and GIS techniques. The conceptual framework is to bridge the identified knowledge gaps in the area of causative factors’ (CFs selection. In this research, RUSLE model, field studies and the existing soil erosion maps for the study area will be integrated for the development of inventory map. Spatial data such as Landsat 8, digital soil and geological maps, digital elevation model and hydrological data shall be processed for the extraction of erosion CFs. GISbased SVM techniques will be adopted for the establishment of spatial relationships between soil erosion and its CFs, and subsequently for the development of erosion susceptibility maps. The results of this study include evaluation of predictive capability of GIS-based SVM in soil erosion mapping and identification of the most influential CFs for erosion susceptibility assessment. This study will serve as a guide to watershed planners and to alleviate soil erosion challenges and its related hazards.

  5. Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma

    DEFF Research Database (Denmark)

    Abildgaard, Niels; Brixen, K; Eriksen, E.F

    2004-01-01

    BACKGROUND AND OBJECTIVES: Bone lesions often occur in multiple myeloma (MM), but no tests have proven useful in identifying patients with increased risk. Bone marker assays and bone densitometry are non-invasive methods that can be used repeatedly at low cost. This study was performed to evaluate...... 6 weeks, DEXA-scans performed every 3 months, and skeletal radiographs were done every 6 months as well as when indicated. RESULTS: Serum ICTP and urinary NTx were predictive of progressive bone events. Markers of bone formation, bone mineral density assessments, and M component measurements were...... changes, and our data do not support routine use of sequential DEXA-scans. However, lumbar DEXA-scans at diagnosis can identify patients with increased risk of early vertebral collapses. Sequential analyses of serum ICTP and urinary NTx are useful for monitoring bone damage....

  6. Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments

    Directory of Open Access Journals (Sweden)

    Panos Panagos

    2016-03-01

    Full Text Available As a follow up and an advancement of the recently published Rainfall Erosivity Database at European Scale (REDES and the respective mean annual R-factor map, the monthly aspect of rainfall erosivity has been added to REDES. Rainfall erosivity is crucial to be considered at a monthly resolution, for the optimization of land management (seasonal variation of vegetation cover and agricultural support practices as well as natural hazard protection (landslides and flood prediction. We expanded REDES by 140 rainfall stations, thus covering areas where monthly R-factor values were missing (Slovakia, Poland or former data density was not satisfactory (Austria, France, and Spain. The different time resolutions (from 5 to 60 min of high temporal data require a conversion of monthly R-factor based on a pool of stations with available data at all time resolutions. Because the conversion factors show smaller monthly variability in winter (January: 1.54 than in summer (August: 2.13, applying conversion factors on a monthly basis is suggested. The estimated monthly conversion factors allow transferring the R-factor to the desired time resolution at a European scale. The June to September period contributes to 53% of the annual rainfall erosivity in Europe, with different spatial and temporal patterns depending on the region. The study also investigated the heterogeneous seasonal patterns in different regions of Europe: on average, the Northern and Central European countries exhibit the largest R-factor values in summer, while the Southern European countries do so from October to January. In almost all countries (excluding Ireland, United Kingdom and North France, the seasonal variability of rainfall erosivity is high. Very few areas (mainly located in Spain and France show the largest from February to April. The average monthly erosivity density is very large in August (1.67 and July (1.63, while very small in January and February (0.37. This study addresses

  7. Wind erosion of soils burned by wildfire

    Science.gov (United States)

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud

    2011-01-01

    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  8. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  9. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    Science.gov (United States)

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  10. Soil loss prediction in Guaraíra river experimental basin, Paraíba, Brazil based on two erosion simulation models

    Directory of Open Access Journals (Sweden)

    Jorge Flávio Cazé B. da Costa Silva

    2007-12-01

    Full Text Available In this study, two hydrological models to estimate soil losses and sediment yield due to sheet and channel erosion, at the basin outlet, are applied to Guaraíra River Experimental Basin, located in Paraíba State, northeastern Brazil. The soil erosion models are (a the classical Universal Soil Loss Equation (USLE, which is used to simulate annual and monthly soil losses; and (b Kineros model, which is used to simulate the sediment yield within the basin. Kineros model is a physically-based distributed model that uses a cascade of planes and channels to represent the basin and to describe the processes of interception, infiltration, surface runoff and erosion within the basin. The USLE is computed using land use, soil erodibility, topographic digital maps, as well as observed rainfall data. It was found that Guaraíra river experimental basin has a low potential for soil losses; however, specific areas which are susceptible to the erosion process in the basin could be detected by the modeling techniques coupled to a GIS (Geographic Information System.

  11. Erosion resistance comparison of alternative surface treatments

    Science.gov (United States)

    Česánek, Z.; Schubert, J.; Houdková, Š.

    2017-05-01

    Erosion is a process characterized by the particle separation and the damage of component functional surfaces. Thermal spraying technology HP/HVOF (High Pressure / High Velocity Oxygen Fuel) is commonly used for protection of component surfaces against erosive wear. Alloy as well as cermet based coatings meet the requirements for high erosion resistance. Wear resistance is in many cases the determining property of required component functioning. The application suitability of coating materials is particularly influenced by different hardness. This paper therefore presents an erosion resistance comparison of alloy and cermet based coatings. The coatings were applied on steel substrates and were subjected to the erosive test using the device for evaluation of material erosion resistance working on the principle of centrifugal erodent flow. Abrasive sand Al2O3 with grain size 212-250 μm was selected as an erosive material. For this purpose, the specimens were prepared by thermal spraying technology HP/HVOF using commercially available powders Stellite 6, NiCrBSi, Cr3C2-25%NiCr, Cr3C2-25%CoNiCrAlY, Hastelloy C-276 and experimental coating TiMoCN-29% Ni. Erosion resistance of evaluated coatings was compared with erosive resistance of 1.4923 high alloyed steel without nitridation and in nitrided state and further with surface treatment using technology PVD. According to the evaluation, the resulting erosive resistance depends not only on the selected erodent and surface protection, but also on the erodent impact angle.

  12. The erosion and erosion products of tungsten and carbon based materials bombarded by high energy pulse electron beam

    International Nuclear Information System (INIS)

    Liu Xiang; Zhang Fu; Xu Zengyu; Liu Yong; Yoshida, N.; Noda, N.

    2002-01-01

    In this paper, the erosion behaviors and erosion products of tungsten and some carbon based materials, such as graphite, C/C composite and B 4 C/Cu functionally graded material, were investigated by using a pulse electron beam to simulate the vertical displacement events (VDE) process. The authors will focus on the forms and differences of erosion products among these testing materials, and make clear to their erosion mechanisms

  13. Auto consolidated cohesive sediments erosion

    International Nuclear Information System (INIS)

    Ternat, F.

    2007-02-01

    Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)

  14. Dynamic Analysis of Soil Erosion in Songhua River Watershed

    Science.gov (United States)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    In this paper, based on RS and GIS technology and Revised Universal Soil Loss Equation (RUSLE), the soil erosion dynamic changes during the two periods of 1990 and 2010 in Bin County was analyzed by using the Landsat TM data of the two periods, so as to reveal the soil erosion spatial distribution pattern and spatial and temporal dynamic evolution rule in the region. The results showed that: the overall patterns of soil erosion were basically the same in both periods, mainly featuring slight erosion and mild erosion, with the area proportions of 80.68% and 74.71% respectively. The slight and extremely intensive erosion changing rates showed a narrowing trend; mild, moderate and intensive erosion was increasing, with a trend of increased soil erosion; mild and intensive erosion were developing towards moderate erosion and moderate and extremely intensive erosion were progressing towards intensive erosion.

  15. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...... prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... and the open filters are surface piercing. Due to the few experimental data sets on sediment transport inside of rock layers, a sediment transport formulation has been proposed based on a matching between the numerical model and experimental data on the profile deformation inside an open filter. The rock layer...

  16. Dynamic Failure Properties of the Porcine Medial Collateral Ligament-Bone Complex for Predicting Injury in Automotive Collisions

    Science.gov (United States)

    Peck, Louis; Billiar, Kristen; Ray, Malcolm

    2010-01-01

    The goal of this study was to model the dynamic failure properties of ligaments and their attachment sites to facilitate the development of more realistic dynamic finite element models of the human lower extremities for use in automotive collision simulations. Porcine medial collateral ligaments were chosen as a test model due to their similarities in size and geometry with human ligaments. Each porcine medial collateral ligament-bone complex (n = 12) was held in a custom test fixture placed in a drop tower to apply an axial impulsive impact load, applying strain rates ranging from 0.005 s-1 to 145 s-1. The data from the impact tests were analyzed using nonlinear regression to construct model equations for predicting the failure load of ligament-bone complexes subjected to specific strain rates as calculated from finite element knee, thigh, and hip impact simulations. The majority of the ligaments tested failed by tibial avulsion (75%) while the remaining ligaments failed via mid-substance tearing. The failure load ranged from 384 N to 1184 N and was found to increase with the applied strain rate and the product of ligament length and cross-sectional area. The findings of this study indicate the force required to rupture the porcine MCL increases with the applied bone-to-bone strain rate in the range expected from high speed frontal automotive collisions. PMID:20461229

  17. Estimation of wind erosion from construction of a railway in arid Northwest China

    Directory of Open Access Journals (Sweden)

    Benli Liu

    2017-06-01

    Full Text Available A state-of-the-art wind erosion simulation model, the Wind Erosion Prediction System and the United States Environmental Protection Agency's AP 42 emission factors formula, were combined together to evaluate wind-blown dust emissions from various construction units from a railway construction project in the dry Gobi land in Northwest China. The influence of the climatic factors: temperature, precipitation, wind speed and direction, soil condition, protective measures, and construction disturbance were taken into account. Driven by daily and sub-daily climate data and using specific detailed management files, the process-based WEPS model was able to express the beginning, active, and ending phases of construction, as well as the degree of disturbance for the entire scope of a construction project. The Lanzhou-Xinjiang High-speed Railway was selected as a representative study because of the diversities of different climates, soil, and working schedule conditions that could be analyzed. Wind erosion from different working units included the building of roadbeds, bridges, plants, temporary houses, earth spoil and barrow pit areas, and vehicle transportation were calculated. The total wind erosion emissions, 7406 t, for the first construction area of section LXS-15 with a 14.877 km length was obtained for quantitative analysis. The method used is applicable for evaluating wind erosion from other complex surface disturbance projects.

  18. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  19. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    International Nuclear Information System (INIS)

    Hu, H.X.; Zheng, Y.G.; Qin, C.P.

    2010-01-01

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90 o , and almost equal to that of the Inconel 600 at impacting angle of 30 o . Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  20. Medium-term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model

    International Nuclear Information System (INIS)

    Hancock, G.R.; Willgoose, G.R.

    2000-01-01

    This study forms part of a collaborative project designed to validate the long-term erosion predictions of the SIBERIA landform evolution model on rehabilitated mine sites. The SIBERIA catchment evolution model can simulate the evolution of landforms resulting from runoff and erosion over many years. SIBERIA needs to be calibrated before evaluating whether it correctly models the observed evolution of rehabilitated mine landforms. A field study to collect data to calibrate SIBERIA was conducted at the abandoned Scinto 6 uranium mine located in the Kakadu Region, Northern Territory, Australia. The data were used to fit parameter values to a sediment loss model and a rainfall-runoff model. The derived runoff and erosion model parameter values were used in SIBERIA to simulate 50 years of erosion by concentrated flow on the batters of the abandoned site. The SIBERIA runs correctly simulated the geomorphic development of the gullies on the man-made batters of the waste rock dump. The observed gully position, depth, volume, and morphology on the waste rock dump were quantitatively compared with the SIBERIA simulations. The close similarities between the observed and simulated gully features indicate that SIBERIA can accurately predict the rate of gully development on a man-made post-mining landscape over periods of up to 50 years. SIBERIA is an appropriate model for assessment of erosional stability of rehabilitated mine sites over time spans of around 50 years. Copyright (2000) CSIRO Australia

  1. Preventing erosion at pipeline crossings of watercourses

    International Nuclear Information System (INIS)

    Sawatsky, L.; Arnold, G.

    1997-01-01

    Watercourses are naturally vulnerable to erosion but the risk is particularly acute after sub-soil and armour materials have been disturbed by trenching and backfilling during construction. Various types of erosion (river scour, river bed, river channel bed and river bank ) and the progressive removal of pipeline cover resulting from erosion were discussed. Methods of estimating the risk of progressive erosion, river avulsions and beaver dam scour, and methods of mitigating erosion at pipeline crossings such as deep burial, proper siting, conventional armouring, and a combination of bank toe protection, and upper bank vegetation cover, were described

  2. Categorization of erosion control matting.

    Science.gov (United States)

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  3. Erosion products in disruption simulation experiments

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Arkhipov, I.; Werle, H.; Wuerz, H.

    1998-01-01

    Erosion of divertor materials under tokamak disruption event presents a serious problem of ITER technology. Erosion restricts the divertor lifetime and leads to production of redeposited layers of the material retaining large amount of tritium, which is a major safety issue for future fusion reactor. Since ITER disruptive heat loads are not achievable in existing tokamaks, material erosion is studied in special simulation experiments. Till now the simulation experiments have focused mainly on investigation of shielding effect and measurement of erosion rate. In the present work the properties of eroded and redeposited graphite are studied under condition typical for hard ITER disruption. (author)

  4. Erosive lichen planus: a therapeutic challenge.

    Science.gov (United States)

    Romero, Williams; Giesen, Laura; Navajas-Galimany, Lucas; Gonzalez, Sergio

    2016-01-01

    Erosive lichen planus is an uncommon variant of lichen planus. Chronic erosions of the soles, accompanied by intense and disabling pain, are some of its most characteristic manifestations. We present the case of a woman who developed oral and plantar erosive lichen planus associated with lichen planus pigmentosus and ungueal lichen planus that were diagnosed after several years. The patient failed to respond to multiple therapies requiring longstanding medication but remained refractory. Knowledge of the treatment options for erosive lichen planus is insufficient. Further research is required to clarify their effectiveness, ideally adopting an evidence-based methodology.

  5. Erosion dynamics of tungsten fuzz during ELM-like heat loading

    Science.gov (United States)

    Sinclair, G.; Tripathi, J. K.; Hassanein, A.

    2018-04-01

    Transient heat loading and high-flux particle loading on plasma facing components in fusion reactors can lead to surface melting and possible erosion. Helium-induced fuzz formation is expected to exacerbate thermal excursions, due to a significant drop in thermal conductivity. The effect of heating in edge-localized modes (ELMs) on the degradation and erosion of a tungsten (W) fuzz surface was examined experimentally in the Ultra High Flux Irradiation-II facility at the Center for Materials Under Extreme Environment. W foils were first exposed to low-energy He+ ion irradiation at a fluence of 2.6 × 1024 ions m-2 and a steady-state temperature of 1223 K. Then, samples were exposed to 1000 pulses of ELM-like heat loading, at power densities between 0.38 and 1.51 GW m-2 and at a steady-state temperature of 1223 K. Comprehensive erosion analysis measured clear material loss of the fuzz nanostructure above 0.76 GW m-2 due to melting and splashing of the exposed surface. Imaging of the surface via scanning electron microscopy revealed that sufficient heating at 0.76 GW m-2 and above caused fibers to form tendrils to conglomerate and form droplets. Repetitive thermal loading on molten surfaces then led to eventual splashing. In situ erosion measurements taken using a witness plate and a quartz crystal microbalance showed an exponential increase in mass loss with energy density. Compositional analysis of the witness plates revealed an increase in the W 4f signal with increasing energy density above 0.76 GW m-2. The reduced thermal stability of the fuzz nanostructure puts current erosion predictions into question and strengthens the importance of mitigation techniques.

  6. Preventing erosive risks after wildfire in Spain: advances and gaps

    Science.gov (United States)

    Fernández Filgueira, Cristina; Vega Hidalgo, José A.; Fontúrbel Lliteras, Teresa

    2017-04-01

    Galicia (NW Spain) is one of the most wildfire-affected areas in Western Europe and where the highest soil losses following fire are recorded in the Iberian Peninsula. During the last decade, mitigation of hydrological and erosive risk has been an important objective for researchers and forest managers. For this reason, research carried out has focused on three main issues: i) the development of operational tools to prioritize post-fire soil stabilization actions, based on soil burn severity indicators and remote sensed information, and testing of their ability to reflect degradation risk in relevant soil properties and subsequent soil erosion, ii) the development and testing of different soil stabilization treatments and their effectiveness for reducing erosion, following their application at broad scale, under the specific environmental conditions of Galicia and iii) the assessment of the performance of current erosion models as well as the development of empirical models to predict post-fire soil losses. On the other hand, the use of forest resources is an essential component of the regional incomes in NW Spain and consequently there is a pressing necessity for investigation on techniques suitable for reconciling soil conservation and sustainable use of those resources. In the framework of wildfire impacts this involve many and complex challenges. This scenario contrast with most of the Iberian Peninsula under Mediterranean influence where salvage logging is not a priority. As in other regions, post-fire hydrologic and erosive risk modeling, including threatened resources vulnerability evaluation is also a capital research need, particularly in a climate change context where dramatic changes in drivers such as precipitation, evapotranspiration and fire regime are expected. The study was funded by the National Institute of Agricultural Research of Spain (INIA) through project RTA2014-00011-C06-02, cofunded by FEDER and the Plan de Mejora e Innovación Forestal de

  7. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    Science.gov (United States)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  8. Wind and water erosion control on semiarid lands

    International Nuclear Information System (INIS)

    Siddoway, F.H.

    1980-01-01

    Commercial crop production on semiarid lands is difficult because insufficient water is often present to manage the system effectively. Erosion control presents the major management problem. The factors contributing to wind erosion and their interaction have been quantified into a wind erosion equation. The control of wind erosion through agronomic alteration of the various factors is discussed. The quantification and control of water erosion is also discussed with respect to the Universal Soil Loss Equation. Radioisotopes tracers have been used in conjunction with these erosion equations to measure soil losses. (author)

  9. Erosion control works and the intensity of soil erosion in the upper part of the river Toplica drainage basin

    International Nuclear Information System (INIS)

    Kostadinov, S; Dragovic, N; Zlatic, M; Todosijevic, M

    2008-01-01

    Aiming at the protection of the future storage 'Selova' against erosion and sediment, and also to protect the settlements and roads in the drainage basin against torrential floods, erosion control works in the upper part of the river Toplica basin, upstream of the storage 'Selova', started in 1947. The works included building-technical works (check dams) and biological works (afforestation and grassing of bare lands and other erosion risk areas). Within the period 1947-2006, the following erosion control works were executed: afforestation of bare lands on the slopes 2,257.00 ha, grassing of bare lands 1,520.00 ha, and altogether 54 dams were constructed in the river Toplica tributaries. This caused the decrease of sediment transport in the main flow of the river Toplica. This paper, based on the field research conducted in two time periods: 1988 and in the period 2004-2007, presents the state of erosion in the basin before erosion control works; type and scope of erosion control works and their effect on the intensity of erosion in the river Toplica basin upstream of the future storage 'Selova'.

  10. Erosion Pressure on the Danish Coasts

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Sørensen, Per; Kroon, Aart

    Coastlines around the world are receding due to coastal erosion.With rising sea levels and a potential climatic deterioration due to climate change, erosion rates are likely to increase at many locations in the future.Together with the current preference of people to settle near or directly...... by the ocean, coastal erosion issues become increasingly more important to the human values at risk. Along many Danish coastlines, hard structures already act as coastal protection in the form of groins, breakwaters, revetments etc. These eroding coasts however still lack sand and where the public, in general......, neglects the need for sand replenishment i.e. in the form of repeated sand nourishments. Here we present a conceptual model and method for dividing coastal erosion into acute and chronic erosion pressure, respectively. We focus on the model use for management and climate change adaptation purposes...

  11. Combination of prostate specific antigen and pathological stage regarding to gleason score to predict bone metastasis of newly diagnosed prostate cancer

    International Nuclear Information System (INIS)

    Wang Zhen; Zhou Liquan; Gao Jiangping; Shi Lixin; Zhao Xiaoyi; Hong Baofa

    2004-01-01

    To determine the value of tumor grade and serum prostate-specific antigen in predicting skeletal metastases in untreated prostate cancer, the results of bone scans were related retrospectively to levels of serum PSA and tumor Grade based on pathologyical examination in 202 patients with prostate cancer newly diagnosed. Skeletal metastases were present in 7% of patients with serum PSA 100 μg/L. Bone scans are omitted likely in a man newly diagnosed with prostate cancer who has no suggestive clinical features, a serum PSA 100 μg/L. (authors)

  12. Restorative Rehabilitation of a Patient with Dental Erosion

    OpenAIRE

    AlShahrani, Mohammed Thamer; Haralur, Satheesh B.; Alqarni, Mohammed

    2017-01-01

    Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clini...

  13. Utility of bone SPECT in temporomandibular joint pain

    International Nuclear Information System (INIS)

    Yang, Dong Hunn; Sung, Mi Sook; Lee, Jung Whee; Chung, Soo Kyo; Shinn, Kyung Sub

    1997-01-01

    Temporomandibular (TM) joint pain results from many etiologic factors. The aim of this study was to evaluate the utility of Bone SPECT in patients with TM joint pain. The subjects were 34 patients with TM joint pain. All patients underwent plain radiography, planar bone scan, and Bone SPECT. The intensity of radioisotope uptake at TM joint was graded into three; no increased uptake above the background activity as grade 0, uptake similar to occipital bone as grade I, and uptake similar to maxillary sinus as grade II. Clinical findings and therapeutic methods were reviewed. Twenty-seven patients (80%) out of 34 patients with TM joint pain had increased uptake in bone SPECT. Twenty-one (78%) out of 27 patients had increased uptake in the mandibular condyle and remaining six patients (22%) had uptake in the mandibular and maxillary arch, which proved to be dental problem. Seven patients (21%) out of 34 were grade as 0, four (12%) were grade I, 23 (68%) were grade. II. Four patients with grade I had clicking sound and symptoms which were subsided with medication in all cases. Among 23 patients with grade II, 7 patients had clicking sound and 14 patients underwent medication and decompression therapy. With Planar bone scan, 11 cases (32%) had increased uptake in TM joint area. Plain radiography revealed narrowing, distension, erosion and limitation of TM joint in 16 cases (47%). Bone SPECT can be valuable for screening and managing the patients with TM joint pain. Patients with grade II needed intensive treatment such as joint aspiration. However degree of the radioisotope uptake did not well correlated with clinical symptoms

  14. Erosion Modeling Analysis For Modified DWPF SME Tank

    International Nuclear Information System (INIS)

    LEE, SI

    2004-01-01

    In support of an erosion evaluation for the modified cooling coil guide and its supporting structure in the DWPF SME vessel, a computational model was developed to identify potential sites of high erosion using the same methodology established by previous work. The erosion mechanism identified in the previous work was applied to the evaluation of high erosion locations representative of the actual flow process in the modified coil guide of the SME vessel, abrasive erosion which occurs by high wall shear of viscous liquid. The results show that primary locations of the highest erosion due to the abrasive wall erosion are at the leading edge of the guide, external surface of the insert plate, the tank floor next to the insert plate of the coil guide support, and the upstream lead-in plate. The present modeling results show a good comparison between the original and the modified cases in terms of high erosion sites, as well as the degree of erosion and the calculated shear stress. Wall she ar of the tank floor is reduced by about 30 per cent because of the new coil support plate. Calculations for the impeller speed lower than 103 rpm in the SME showed similar erosion patterns but significantly reduced wall shear stresses and reduced overall erosion. Comparisons of the 103 rpm results with SME measurements indicated that no significant erosion of the tank floor in the SME is to be expected. Thus, it is recommended that the agitator speed of SME does not exceed 103 rpm

  15. Dental erosion among 12 year-old Libyan schoolchildren.

    Science.gov (United States)

    Huew, R; Waterhouse, P J; Moynihan, P J; Maguire, A

    2012-12-01

    As there are limited data on dental erosion in Libya, the aim of this study was to assess the prevalence and severity of dental erosion in a sample of 12 year-old children in Benghazi, Libya. Cross-sectional observational study. Elementary schools in Benghazi, Libya. A random sample of 791 12 year-old children (397 boys and 394 girls) attending 36 schools. Clinical dental examination for erosion using UK National Diet and Nutrition Survey (2000) criteria and self-completion questionnaire. The area and depth of dental erosion affecting the labial and palatal surfaces of the upper permanent incisors and occlusal surfaces of the first permanent molars. Dental erosion was observed in 40.8% of subjects; into enamel affecting 32.5%, into dentine affecting 8.0% and into pulp affecting 0.3% of subjects. Based on area affected, 323 subjects (40.8%) exhibited dental erosion (code > 0), with 32.6% of these subjects having erosion affecting more than two thirds of one or more surfaces examined. Mean total scores for dental erosion for all surfaces per mouth by area and by depth were both 2.69 (sd 3.81). Of the 9492 tooth surfaces examined, 2128 surfaces (22.4%) had dental erosion. Girls had more experience of erosion than boys at all levels of severity (p = 0.001). In a cohort of 12 year-old Libyan schoolchildren, more than one third of children examined showed dental erosion, requiring clinical preventive counselling. Significantly more erosion occurred in girls than boys.

  16. Erosion and sedimentation caused by watercourse regulation

    International Nuclear Information System (INIS)

    Dahl, T.E.; Godtland, K.

    1995-01-01

    This report describes the observations made by SINTEF NHL in 1993 - 1994 on the development of erosion in three regulated lakes in Norway: Devdesjavri, Store Maalvatn and Gjevilvatnet. Surveys, profile levelling, water sample analyses, aerial photography etc were all used. Erosion was dramatic in all three magazines the first year of regulation and then slowed down. It has since remained relatively stable. However, there is a risk of further strong erosion connected with flooding tributaries, notably at low water such as usually occurs in spring. This is true in particular of the main river discharging into Devdesjavri, which is subject to landslides, wave and river erosion. In addition, ground water erosion may occur if the magazine is drained too fast. The report is lavishly illustrated with colour pictures of the effects of erosion. 21 refs., 15 figs., 13 tabs

  17. Varioliform erosions in the stomach and duodenum

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, W.; Schulz, D.; Munkel, G.

    1984-04-01

    One thousand five hundred and eighty-three patients who were x-rayed for dyspepsia showed varioliform erosions in 15.3%. Men had an incidence of 9.8%, almost twice as common as in women (5.5%). Mucosal polyps, usually of the hyperplastic type, occurred in 2.4%. 15% of patients with gastric ulcers and 16% of patients with duodenal ulcers had varioliform erosions. On the other hand, amongst patients with erosions, 11% had gastric ulcers and 8.3% duodenal ulcers. The definitions of erosion which have been given in the literature are partly contradictory, and are discussed. Varioliform erosions, also known as complete erosions, may be acute or chronic. They are the third most common cause of bleeding from the upper gastrointestinal tract. With modern radiological methods of examining the stomach, they are no longer a rare finding. 5 figs.

  18. Varioliform erosions in the stomach and duodenum

    International Nuclear Information System (INIS)

    Lotz, W.; Schulz, D.; Munkel, G.

    1984-01-01

    One thousand five hundred and eighty-three patients who were x-rayed for dyspepsia showed varioliform erosions in 15.3%. Men had an incidence of 9.8%, almost twice as common as in women (5.5%). Mucosal polyps, usually of the hyperplastic type, occurred in 2.4%. 15% of patients with gastric ulcers and 16% of patients with duodenal ulcers had varioliform erosions. On the other hand, amongst patients with erosions, 11% had gastric ulcers and 8.3% duodenal ulcers. The definitions of erosion which have been given in the literature are partly contradictory, and are discussed. Varioliform erosions, also known as complete erosions, may be acute or chronic. They are the third most common cause of bleeding from the upper gastrointestinal tract. With modern radiological methods of examining the stomach, they are no longer a rare finding. (orig.) [de

  19. Statistical determination of rainfall-runoff erosivity indices for single storms in the Chinese Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Mingguo Zheng

    Full Text Available Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng's tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I30 (the maximum 30-minute rainfall intensity has been suggested for use as the rainfall erosivity index, although I30 is equally correlated with soil loss as factors of I20, EI10 (the product of the rainfall kinetic energy, E, and I10, EI20 and EI30 are. Runoff depth (total runoff volume normalized to drainage area is more correlated with soil loss than all other examined rainfall-runoff factors, including I30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations.

  20. Statistical Determination of Rainfall-Runoff Erosivity Indices for Single Storms in the Chinese Loess Plateau

    Science.gov (United States)

    Zheng, Mingguo; Chen, Xiaoan

    2015-01-01

    Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng’s tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I 30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I 30 is equally correlated with soil loss as factors of I 20, EI 10 (the product of the rainfall kinetic energy, E, and I 10), EI 20 and EI 30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I 30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations. PMID

  1. Shared epitope-antagonistic ligands: a new therapeutic strategy in mice with erosive arthritis.

    Science.gov (United States)

    Ling, Song; Liu, Ying; Fu, Jiaqi; Colletta, Alessandro; Gilon, Chaim; Holoshitz, Joseph

    2015-05-01

    The mechanisms underlying bone damage in rheumatoid arthritis (RA) are incompletely understood. We recently identified the shared epitope (SE), an HLA-DRB1-coded 5-amino acid sequence motif carried by the majority of RA patients as a signal transduction ligand that interacts with cell surface calreticulin and accelerates osteoclast (OC)-mediated bone damage in collagen-induced arthritis (CIA). Given the role of the SE/calreticulin pathway in arthritis-associated bone damage, we sought to determine the therapeutic targetability of calreticulin. A library of backbone-cyclized peptidomimetic compounds, all carrying an identical core DKCLA sequence, was synthesized. The ability of these compounds to inhibit SE-activated signaling and OC differentiation was tested in vitro. The effect on disease severity and OC-mediated bone damage was studied by weekly intraperitoneal administration of the compounds to DBA/1 mice with CIA. Two members of the peptidomimetics library were found to have SE-antagonistic effects and antiosteoclast differentiation effects at picomolar concentrations in vitro. The lead mimetic compound, designated HS(4-4)c Trp, potently ameliorated arthritis and bone damage in vivo when administered in picogram doses to mice with CIA. Another mimetic analog, designated HS(3-4)c Trp, was found to lack activity, both in vitro and in vivo. The differential activity of the 2 analogs depended on minor differences in their respective ring sizes and correlated with distinctive geometry when computationally docked to the SE binding site on calreticulin. These findings identify calreticulin as a novel therapeutic target in erosive arthritis and provide sound rationale and early structure/activity relationships for future drug design. © 2015, American College of Rheumatology.

  2. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    International Nuclear Information System (INIS)

    Karlo, Christoph A.; Patcas, Raphael; Signorelli, Luca; Mueller, Lukas; Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J.; Ullrich, Oliver; Luder, Hans-Ulrich

    2012-01-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  3. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Patcas, Raphael; Signorelli, Luca; Mueller, Lukas [University of Zurich, Clinic for Orthodontics and Pediatric Dentistry, Center of Dental Medicine, Zurich (Switzerland); Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Ullrich, Oliver [University of Zurich, Institute of Anatomy, Faculty of Medicine, Zurich (Switzerland); Luder, Hans-Ulrich [University of Zurich, Section of Orofacial Structures and Development, Center of Dental Medicine, Zurich (Switzerland)

    2012-07-15

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective ({kappa} = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  4. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.X. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Zheng, Y.G., E-mail: ygzheng@imr.ac.c [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Qin, C.P. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China)

    2010-10-15

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90{sup o}, and almost equal to that of the Inconel 600 at impacting angle of 30{sup o}. Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  5. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Science.gov (United States)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  6. A numerical model investigation of the formation and persistence of an erosion hotspot

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin; List, Jeffrey H.; Barnard, Patrick L.

    2011-01-01

    A Delft3D-SWAN coupled flow and wave model was constructed for the San Francisco Bight with high-resolution at 7 km-long Ocean Beach, a high-energy beach located immediately south of the Golden Gate, the sole entrance to San Francisco Bay. The model was used to investigate tidal and wave-induced flows, basic forcing terms, and potential sediment transport in an area in the southern portion of Ocean Beach that has eroded significantly over the last several decades. The model predicted flow patterns that were favorable for sediment removal from the area and net erosion from the surf-zone. Analysis of the forcing terms driving surf-zone flows revealed that wave refraction over an exposed wastewater outfall pipe between the 12 and 15 m isobaths introduces a perturbation in the wave field that results in erosion-causing flows. Modeled erosion agreed well with five years of topographic survey data from the area.

  7. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge

  8. Seismic signature of turbulence during the 2017 Oroville Dam spillway erosion crisis

    Science.gov (United States)

    Goodling, Phillip J.; Lekic, Vedran; Prestegaard, Karen

    2018-05-01

    Knowing the location of large-scale turbulent eddies during catastrophic flooding events improves predictions of erosive scour. The erosion damage to the Oroville Dam flood control spillway in early 2017 is an example of the erosive power of turbulent flow. During this event, a defect in the simple concrete channel quickly eroded into a 47 m deep chasm. Erosion by turbulent flow is difficult to evaluate in real time, but near-channel seismic monitoring provides a tool to evaluate flow dynamics from a safe distance. Previous studies have had limited ability to identify source location or the type of surface wave (i.e., Love or Rayleigh wave) excited by different river processes. Here we use a single three-component seismometer method (frequency-dependent polarization analysis) to characterize the dominant seismic source location and seismic surface waves produced by the Oroville Dam flood control spillway, using the abrupt change in spillway geometry as a natural experiment. We find that the scaling exponent between seismic power and release discharge is greater following damage to the spillway, suggesting additional sources of turbulent energy dissipation excite more seismic energy. The mean azimuth in the 5-10 Hz frequency band was used to resolve the location of spillway damage. Observed polarization attributes deviate from those expected for a Rayleigh wave, though numerical modeling indicates these deviations may be explained by propagation up the uneven hillside topography. Our results suggest frequency-dependent polarization analysis is a promising approach for locating areas of increased flow turbulence. This method could be applied to other erosion problems near engineered structures as well as to understanding energy dissipation, erosion, and channel morphology development in natural rivers, particularly at high discharges.

  9. Seismic signature of turbulence during the 2017 Oroville Dam spillway erosion crisis

    Directory of Open Access Journals (Sweden)

    P. J. Goodling

    2018-05-01

    Full Text Available Knowing the location of large-scale turbulent eddies during catastrophic flooding events improves predictions of erosive scour. The erosion damage to the Oroville Dam flood control spillway in early 2017 is an example of the erosive power of turbulent flow. During this event, a defect in the simple concrete channel quickly eroded into a 47 m deep chasm. Erosion by turbulent flow is difficult to evaluate in real time, but near-channel seismic monitoring provides a tool to evaluate flow dynamics from a safe distance. Previous studies have had limited ability to identify source location or the type of surface wave (i.e., Love or Rayleigh wave excited by different river processes. Here we use a single three-component seismometer method (frequency-dependent polarization analysis to characterize the dominant seismic source location and seismic surface waves produced by the Oroville Dam flood control spillway, using the abrupt change in spillway geometry as a natural experiment. We find that the scaling exponent between seismic power and release discharge is greater following damage to the spillway, suggesting additional sources of turbulent energy dissipation excite more seismic energy. The mean azimuth in the 5–10 Hz frequency band was used to resolve the location of spillway damage. Observed polarization attributes deviate from those expected for a Rayleigh wave, though numerical modeling indicates these deviations may be explained by propagation up the uneven hillside topography. Our results suggest frequency-dependent polarization analysis is a promising approach for locating areas of increased flow turbulence. This method could be applied to other erosion problems near engineered structures as well as to understanding energy dissipation, erosion, and channel morphology development in natural rivers, particularly at high discharges.

  10. Probabilistic soil erosion modeling using the Erosion Risk Management Tool (ERMIT) after wildfires

    Science.gov (United States)

    P. R. Robichaud; W. J. Elliot; J. W. Wagenbrenner

    2011-01-01

    The decision of whether or not to apply post-fire hillslope erosion mitigation treatments, and if so, where these treatments are most needed, is a multi-step process. Land managers must assess the risk of damaging runoff and sediment delivery events occurring on the unrecovered burned hillslope. We developed the Erosion Risk Management Tool (ERMiT) to address this need...

  11. Predictive value of specific radiographic findings of disability in patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Kaye, J.J.; Nance, E.P. Jr.; Callahan, L.F.; Pincus, T.

    1986-01-01

    This study was carried out to determine whether and to what extend radiographic erosion, joint space narrowing, and malalignment are predictive of clinical disability in patients with rheumatoid arthristis (RA). Radiographs of the hands and wrists of 224 patients with RA were scored for these radiographic parameters. To determine which of these findings best explained variation in clinical measures of disability, a series of regression analyses was performed. Malalignment scores were the best predictor of joint deformity and limitation of motion. Erosion scores were most predictive of variation in functional tests. The author concludes that specific radiographic findings of malalignment and erosion are significantly predictive of disability in patients with RA

  12. The erosive potential of lollipops

    NARCIS (Netherlands)

    Brand, H.S.; Gambon, D.L.; Paap, A.; Bulthuis, M.S.; Veerman, E.C.I.; Nieuw Amerongen, A.V.

    2009-01-01

    Aim: To determine the erosive potential of several commercially available lollipops and the protective effect of saliva. Methods: The erosive potential of lollipops was determined in vitro by measuring the pH and neutralisable acidity. Subsequently, 10 healthy volunteers tested different types of

  13. Spatial bedrock erosion distribution in a natural gorge

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half

  14. Cavitation erosion - scale effect and model investigations

    Science.gov (United States)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  15. Investigation of Erosion of Cement-Bentonite via Piping

    Directory of Open Access Journals (Sweden)

    Zijun Wang

    2017-01-01

    Full Text Available Cement-bentonite is one of the main materials used in the seepage barriers to protect earth dams and levees from water erosion. However, the current understanding of the erodibility of the cementitious materials and the interactions between cracked seepage barriers and the water flow is inadequate. Based on the laboratory pinhole erosion test, we first investigated the impacts of cement-bentonite treatments by using the ground granulated blast-furnace slag (GGBS as replacement on the erosion characteristics, compared with the original mixtures; the inclusion of GGBS highlighted a potential advantage against water erosion. In addition, we proposed to calculate the erosion percentage and establish the mathematical relationships between the erosion percentage and different regimes, that is, different curing period, erosion time, and sizes of initial holes. Results showed that enough curing period was critical to avoid the increases of hydraulic conductivity in the macrofabric of the barrier; meanwhile, the materials were eroded quickly at the beginning and slowed down with the erosion time, where the enlargement of the initial creaks would be stabilised at some point in time. Moreover, the sizes of initial holes may affect the erosion situation varying from the sample curing periods.

  16. Antecedent moisture content and soil texture effects on infiltration and erosion

    Science.gov (United States)

    Mamedov, A. I.; Huang, C.; Levy, G. J.

    2006-12-01

    erosion modeling. In order to improve the prediction capabilities of erosion models, temporal and spatial variation of soil moisture content (AMC, wetting and aging) prior to erosive rainstorms should be considered and or incorporated. In addition, management practices could be adapted to diminish the severe soil moisture variation, where ever possible, (minimum till or no-till with known residue) to maintain the soil surface at a desired AMC level prior to expected rainstorms in order to decrease soil susceptibility to seal formation, runoff and soil loss.

  17. Bedrock river erosion measurements and modelling along a river of the Frontal Himalaya

    Science.gov (United States)

    Lave, Jerome; Dubille, Matthieu

    2017-04-01

    rate. 2. Both block detachment and attrition processes clearly increase with fluvial shear stress, but non-linearly, in particular through the existence of a minimum threshold. As a result of which bank erosion occur during only a few hours per year during short and very high flood events, which questions the use of average discharge (or drainage area) in many bedrock erosion models. We then propose a semi-physical model of sandstone bars abrasion based on discharge history (HEC-RAS modelling), Rouse suspension model, and experimental measurements on dependency of abrasion rate vs impacting particle size. This model predicts well the timing and the amplitude of both real-time and monsoon average abrasion along the surveyed sandstone bars. This first validation of a model for bank erosion opens large perspective for future work on channel bottom incision modelling using physical models of erosion and their time- and gravel-size-integration, with the objective to introduce more physical rules in landscape evolution models.

  18. Clinical value of combined detection of serum tumor markers and whole body bone scan for diagnosis of bone metastases from breast cancer

    International Nuclear Information System (INIS)

    Gao Chao; Zhao Jing; Liu Desheng; Zhang Jingchuan; Ji Xuejing; Hou Xiancun

    2007-01-01

    Objective: To study the clinical value of serum tumor marker determination and whole body bone scan for diagnosis of bone metastases from breast cancer. Methods: Serum tumor markers (CA15-3, CEA, TSGF)were detected with GLIA and whole body bone scan were investigated by SPECT in 124 breast cancer patients. Results: In 124 patients, 38 patients were diagnosed as positive for bone metastases with whole body bone scan. The positive predicting values of CA15-3, CEA, TSGF were 76.78%, 80% and 82.14%, and the negative predicting values of CA15-3, GEA, TSGF were 82.41%, 86.74% and 84.29% respectively. The levels of CA15-3, CEA, TSGF in patients with bone metastases were significantly higher than those in patients without metastasis and the controls (P<0.01). Conclusion: Determination of levels of serum tumor markers CA15-3, CEA, TSGF is helpful for diagnosis of bone metastases from breast cancer. Combined detection of GA15-3, CEA, TSGF could increase the sensitivity and accuracy of diagnosing bone metastases. (authors)

  19. Fluorine-18-fluorocholine PET/CT parameters predictive for hematological toxicity to radium-223 therapy in castrate-resistant prostate cancer patients with bone metastases: a pilot study.

    Science.gov (United States)

    Vija Racaru, Lavinia; Sinigaglia, Mathieu; Kanoun, Salim; Ben Bouallègue, Fayçal; Tal, Ilan; Brillouet, Sévérine; Bauriaud-Mallet, Mathilde; Zerdoud, Slimane; Dierickx, Lawrence; Vallot, Delphine; Caselles, Olivier; Gabiache, Erwan; Pascal, Pierre; Courbon, Frederic

    2018-05-21

    This study aims to predict hematological toxicity induced by Ra therapy. We investigated the value of metabolically active bone tumor volume (MBTV) and total bone lesion activity (TLA) calculated on pretreatment fluorine-18-fluorocholine (F-FCH) PET/CT in castrate-resistant prostate cancer (CRPC) patients with bone metastases treated with Ra radionuclide therapy. F-FCH PET/CT imaging was performed in 15 patients with CRPC before treatment with Ra. Bone metastatic disease was quantified on the basis of the maximum standardized uptake value (SUV), total lesion activity (TLA=MBTV×SUVmean), or MBTV/height (MBTV/H) and TLA/H. F-FCH PET/CT bone tumor burden and activity were analyzed to identify which parameters could predict hematological toxicity [on hemoglobin (Hb), platelets (PLTs), and lymphocytes] while on Ra therapy. Pearson's correlation was used to identify the correlations between age, prostate-specific antigen, and F-FCH PET parameters. MBTV ranged from 75 to 1259 cm (median: 392 cm). TLA ranged from 342 to 7198 cm (median: 1853 cm). Patients benefited from two to six cycles of Ra (n=56 cycles in total). At the end of Ra therapy, five of the 15 (33%) patients presented grade 2/3 toxicity on Hb and lymphocytes, whereas three of the 15 (20%) patients presented grade 2/3 PLT toxicity.Age was correlated negatively with both MBTV (r=-0.612, P=0.015) and TLA (r=-0.596, P=0.018). TLA, TLA/H, and MBTV/H predicted hematological toxicity on Hb, whereas TLA/H and MBTV/H predicted toxicity on PLTs at the end of Ra cycles. Receiver operating characteristic curve analysis allowed to define the cutoffs for MBTV (915 cm) and TLA (4198 cm) predictive for PLT toxicity, with an accuracy of 0.92 and 0.99. Tumor bone burden calculation is feasible with F-FCH PET/CT with freely available open-source software. In this pilot study, baseline F-FCH PET/CT markers (TLA, MBTV) have shown abilities to predict Hb and PLT toxicity after Ra therapy and could be explored for

  20. Recent and future rainfall erosivity on the territory of the Czech Republic

    Science.gov (United States)

    Krasa, Josef; Stredova, Hana; Stepanek, Petr; Hanel, Martin; Dostal, Tomas; Novotny, Ivan

    2015-04-01

    Water erosion is a main factor of degradation of soils used for agriculture in the Czech Republic. For landscape conservation purposes the soil erosion risk is defined here mostly by USLE (Wischmeier and Smith, 1978). Within USLE the precipitation impact on erosion is a function of rainfall kinetic energy and intensity represented by R-factor. In the Czech Republic historically and recently several research teams have analyzed rainfall data to assess R-factor. Till now not many European countries have performed detailed spatially distributed analyses of rain erosivities. Most studies use only simplified methods based on long-term rainfall averages or databases of only several station-datasets. The most recent study on rainfall erosivity spatial distribution over the Czech Republic was based on digital rain gauge data from automatic stations of the Czech Hydrometeorogical Institute. The erosive rains were derived from continuous 1 minute step 10-year rainfall data (2003-2012) from 245 stations. Based on the research recent annual R-factor values in the stations vary from 37 to 239 [N.h-1] (values over 100 are located in mountain regions with minimum of agricultural land). Average value is 69 [N.h-1.year-1]. For the Czech Republic the future prediction is based on 10km resolution ALADIN/CZ regional climate model. Within the EU FP6 project CECILIA it was coupled with GCM ARPEGE to provide a projection of future climate in two time slices, 2021-2050 and 2071-2100, according to the IPCC A1B emission scenario. Daily precipitation volumes and percentiles of maximal events allowed authors to develop R-factor maps of present and future scenarios. Based on the analyses we can conclude that average value for the whole territory of the Czech Republic will remain close to 70 [N.h-1.year-1] or even decrease for 2071-2100, but we can expect significant changes (30-40 % rise or decrease) for several large agricultural regions (eg. Southern Moravia). These changes will have impact