WorldWideScience

Sample records for precision machining sheet-metal

  1. Precision machining, sheet-metal work and welding at the heart of CERN

    CERN Multimedia

    2001-01-01

    From the writing of specifications and the production of high-tech components, to technology transfer and call-out work on-site, the MF group in EST Division offers CERN users a wide variety of services. Its full range of activities is presented in a new brochure. In addition to its many physicists and engineers, CERN also has teams of mechanics, welders and sheet-metalworkers whose expertise is a precious asset for the Organization. Within the MF Group (Manufacturing Facilities, EST Division) these teams perform precision machining, sheet-metal work and welding. As an example, the Group has been responsible for producing radiofrequency accelerating cells to a precision of the order of 1/100th mm and with a surface roughness of only 0.1 micron. The Group's workshops also manufactured the stainless steel vacuum chamber for the brand new n-TOF experiment (Bulletin n°47/2000), a 200-m long cylindrical chamber with a diameter of just 800 millimetres! The MF Group is assisted in its task of providing me...

  2. Problem and design drawing for solution of precision design drawing and machine design

    International Nuclear Information System (INIS)

    Heo, Gil

    1982-04-01

    The contents of this book are basic of design drawing, problem of machine design, problem of precision design drawing, problem of planar figure of sheet metal, design drawing for solution of machine design, design drawing for solution of precision design drawing and design drawing for planar figure of sheet metal. It tells of the problems and gives the solutions on precision design drawing and machine design.

  3. LASER CUTTING MACHINES FOR 3-D THIN SHEET PARTS

    Directory of Open Access Journals (Sweden)

    Miroslav RADOVANOVIC

    2012-11-01

    Full Text Available Laser cutting machines are used for precise contour cutting thin sheet. In industrial application nowadays various types and construction of laser cutting machines can be met. For contour cutting 3-D thin sheet parts laser cutting machines with rotation movements and laser robots are used. Laser generates the light beam, that presents a tool in working process. Application of laser cutting machines made possible good quality of products, flexibility of production and enlargement of economy

  4. Development of a low energy micro sheet forming machine

    Science.gov (United States)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  5. Precision machining commercialization

    International Nuclear Information System (INIS)

    1978-01-01

    To accelerate precision machining development so as to realize more of the potential savings within the next few years of known Department of Defense (DOD) part procurement, the Air Force Materials Laboratory (AFML) is sponsoring the Precision Machining Commercialization Project (PMC). PMC is part of the Tri-Service Precision Machine Tool Program of the DOD Manufacturing Technology Five-Year Plan. The technical resources supporting PMC are provided under sponsorship of the Department of Energy (DOE). The goal of PMC is to minimize precision machining development time and cost risk for interested vendors. PMC will do this by making available the high precision machining technology as developed in two DOE contractor facilities, the Lawrence Livermore Laboratory of the University of California and the Union Carbide Corporation, Nuclear Division, Y-12 Plant, at Oak Ridge, Tennessee

  6. Analysis of acoustic emission during abrasive waterjet machining of sheet metals

    Science.gov (United States)

    Mokhtar, Nazrin; Gebremariam, MA; Zohari, H.; Azhari, Azmir

    2018-04-01

    The present paper reports on the analysis of acoustic emission (AE) produced during abrasive waterjet (AWJ) machining process. This paper focuses on the relationship of AE and surface quality of sheet metals. The changes in acoustic emission signals recorded by the mean of power spectral density (PSD) via covariance method in relation to the surface quality of the cut are discussed. The test was made using two materials for comparison namely aluminium 6061 and stainless steel 304 with five different feed rates. The acoustic emission data were captured by Labview and later processed using MATLAB software. The results show that the AE spectrums correlated with different feed rates and surface qualities. It can be concluded that the AE is capable of monitoring the changes of feed rate and surface quality.

  7. Machining of the nuclear tube sheet with small hole diameter

    International Nuclear Information System (INIS)

    Lin Lifeng

    2010-01-01

    Regarding the tube sheet for the heat exchanger of Qinshan Phase II extension project, its material is 00Cr19Ni10 forgings, the tube sheet thickness is 125 mm, requiring 178-φ10.35 0 +0.05 hole, the tube array shall take the shape of equilateral triangle, the center distance is 15 mm, and the tube hole roughness is Ra 3.2. The guide sleeve shall be adopted for positioning prior to machining of the high precision small hole of the thick tube sheet, and the gun drill and BTA drill shall be adopted for testing, finally BTA drilling with internal chip removal shall be adopted, this method shall overcome the disadvantage factor of BTA drilling and shall be the new approach for drilling. The diameter of BTA drill is φ10.34 mm. The machined hole diameter shall be φ10.375-φ10.355 mm. The ellipticity of the tube hole shall be less than 0.01 mm, the pipe bridge dimension shall be 4.6 mm, conforming to the requirement of the drawing. The paper presents the precautions during machining so as to provide the reference for the similar pipe hole machining in the future. (author)

  8. Research on Computer Integrated Manufacturing of Sheet Metal Parts for Lithium Battery

    Directory of Open Access Journals (Sweden)

    Pan Wei-Min

    2016-01-01

    Full Text Available Lithium battery has been widely used as the main driving force of the new energy vehicle in recent years. Sheet metal parts are formed by means of pressure forming techniques with the characteristics of light weight, small size and high structural strength. The sheet metal forming has higher productivity and material utilization than the mechanical cutting, therefore sheet metal parts are widely used in many fields, such as modern automotive industry, aviation, aerospace, machine tools, instruments and household appliances. In this paper, taking a complex lithium battery box as an example, the integrated manufacturing of sheet metal parts is studied, and the digital integrated design and manufacturing process system is proposed. The technology is studied such as sheet metal design, unfolding, sheet nesting and laser cutting, CNC turret punch stamping programming, CNC bending etc. The feasibility of the method is verified through the examples of products and the integrated manufacturing of sheet metal box is completed.

  9. Ultrashort pulse laser machining of metals and alloys

    Science.gov (United States)

    Perry, Michael D.; Stuart, Brent C.

    2003-09-16

    The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>10.sup.12 W/cm.sup.2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface. Since there is negligible heating beyond the depth of material removed, the composition of the remaining material is unaffected by the laser machining process. This enables high precision machining of alloys and even pure metals with no change in grain structure.

  10. Elaboration of the technology of forming a conical product of sheet metal

    Directory of Open Access Journals (Sweden)

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  11. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    OpenAIRE

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  12. Finite element simulation and Experimental verification of Incremental Sheet metal Forming

    Science.gov (United States)

    Kaushik Yanamundra, Krishna; Karthikeyan, R., Dr.; Naranje, Vishal, Dr

    2018-04-01

    Incremental sheet metal forming is now a proven manufacturing technique that can be employed to obtain application specific, customized, symmetric or asymmetric shapes that are required by automobile or biomedical industries for specific purposes like car body parts, dental implants or knee implants. Finite element simulation of metal forming process is being performed successfully using explicit dynamics analysis of commercial FE software. The simulation is mainly useful in optimization of the process as well design of the final product. This paper focuses on simulating the incremental sheet metal forming process in ABAQUS, and validating the results using experimental methods. The shapes generated for testing are of trapezoid, dome and elliptical shapes whose G codes are written and fed into the CNC milling machine with an attached forming tool with a hemispherical bottom. The same pre-generated coordinates are used to simulate a similar machining conditions in ABAQUS and the tool forces, stresses and strains in the workpiece while machining are obtained as the output data. The forces experimentally were recorded using a dynamometer. The experimental and simulated results were then compared and thus conclusions were drawn.

  13. Sheet-bulk metal forming – forming of functional components from sheet metals

    Directory of Open Access Journals (Sweden)

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  14. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  15. Precision mechatronics based on high-precision measuring and positioning systems and machines

    Science.gov (United States)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  16. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    Science.gov (United States)

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  17. Machine Shop Suggested Job and Task Sheets. Part I. 25 Elementary Jobs.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This volume consists of elementary job and task sheets adaptable for use in the regular vocational industrial education programs for the training of machinists and machine shop operators. Twenty-five simple machine shop job sheets are included. Some or all of this material is provided for each job sheet: an introductory sheet with aim, checking…

  18. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  19. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization

    Directory of Open Access Journals (Sweden)

    Zhongqi Wang

    2016-01-01

    Full Text Available Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  20. Introduction to precision machine design and error assessment

    CERN Document Server

    Mekid, Samir

    2008-01-01

    While ultra-precision machines are now achieving sub-nanometer accuracy, unique challenges continue to arise due to their tight specifications. Written to meet the growing needs of mechanical engineers and other professionals to understand these specialized design process issues, Introduction to Precision Machine Design and Error Assessment places a particular focus on the errors associated with precision design, machine diagnostics, error modeling, and error compensation. Error Assessment and ControlThe book begins with a brief overview of precision engineering and applications before introdu

  1. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    Science.gov (United States)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  2. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  3. Machine Shop Suggested Job and Task Sheets. Part II. 21 Advanced Jobs.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This volume consists of advanced job and task sheets adaptable for use in the regular vocational industrial education programs for the training of machinists and machine shop operators. Twenty-one advanced machine shop job sheets are included. Some or all of this material is provided for each job: an introductory sheet with aim, checking…

  4. Feasibility Study on Flexibly Reconfigurable Roll Forming Process for Sheet Metal and Its Implementation

    Directory of Open Access Journals (Sweden)

    Jun-Seok Yoon

    2014-06-01

    Full Text Available A multicurved sheet metal surface for a skin structure has usually been manufactured using a conventional die forming process involving the use of both a die and a press machine in accordance with the product shape. However, such processes are economically inefficient because additional production costs are incurred for the development and management of forming tools. To overcome this drawback, many alternative processes have been developed; however, these still suffer from problems due to defects such as dimples and wrinkles occurring in the sheet. In this study, a new sheet metal forming process called the flexibly reconfigurable roll forming (FRRF process is proposed as an alternative to existing processes. Unlike existing processes, FRRF can reduce additional production costs resulting from material loss and significantly reduce forming errors. Furthermore, it involves the use of a smaller apparatus. The methodology and applicable procedure of the FRRF process are described. Numerical forming simulations of representative multicurved sheet surfaces are conducted using FEM. In addition, a simple apparatus is developed for verifying the feasibility of this process, and a doubly curved metal is formed to verify the applicability of the reconfigurable roller, a critical component in this forming process.

  5. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  6. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  7. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    . The improvement obtained is shown to be due to the development of a secondary bond in the joint beside the weld nugget increasing the total weld area. The application of powder additive is especially feasible, when using welding machines with insufficient current capacity for producing the required nugget size......In order to ensure good quality joints between aluminum sheets by resistance spot welding, a new approach involving the addition of metal powder to the faying surfaces before resistance heating is proposed. Three different metal powders (pure aluminum and two powders corresponding to the alloys AA....... In such cases the best results are obtained with pure aluminum powder....

  8. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  9. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    Science.gov (United States)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  10. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Kiridena, Vijitha [Ford Scientific Research Lab., Dearborn, MI (United States); Verma, Ravi [Boeing Research and Technology (BR& T), Seattle, WA (United States); Gutowski, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Roth, John [Pennsylvania State Univ., University Park, PA (United States)

    2018-03-31

    The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, is a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.

  11. Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo [Department of Mechanical Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul, 121-742 (Korea, Republic of); Ko, Sangjin [Mold/die and forming technology team, Product prestige research lab, LG electronics, 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 451-713 (Korea, Republic of)

    2013-12-16

    In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

  12. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  13. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)

    Science.gov (United States)

    Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2013-09-01

    The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.

  14. ADVANCED DESIGN SOLUTIONS FOR HIGH-PRECISION WOODWORKING MACHINES

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucisano

    2016-03-01

    Full Text Available With the aim at performing the highest precision during woodworking, a mix of alternative approaches, fruitfully integrated in a common design strategy, is essential. This paper represents an overview of technical solutions, recently developed by authors, in design of machine tools and their final effects on manufacturing. The most advanced solutions in machine design are reported side by side with common practices or little everyday expedients. These design actions are directly or indirectly related to the rational use of materials, sometimes very uncommon, as in the case of magnetorheological fluids chosen to implement an active control in speed and force on the electro-spindle, and permitting to improve the quality of wood machining. Other actions are less unusual, as in the case of the adoption of innovative anti-vibration supports for basement. Tradition or innovation, all these technical solutions contribute to the final result: the highest precision in wood machining.

  15. Application of Hydroforming Process in Sheet Metal Formation

    OpenAIRE

    GRIZELJ, Branko; CUMIN, Josip; ERGIĆ, Todor

    2009-01-01

    This article deals with the theory and application of a hydroforming process. Nowadays automobile manufacturers use high strength sheet metal plates. This high strength steel sheet metal plates are strain hardened in the process of metal forming. With the use of high strength steel, cars are made lightweight, which is intended for low fuel consumption because of high energy prices. Some examples of application of a hydroforming process are simulated with FEM.

  16. Research in the field of development of a new generation of metal-processing machines

    Directory of Open Access Journals (Sweden)

    L.Tanovič

    2017-12-01

    Full Text Available The paper presents a review of research in the field of development of a new generation of metal-working machines for manufacturing high-precision products with dimensions of several micrometers from various materials. Presented are several new, newly created micro-machines that have the ability to manufacture products of a wide range. Studies in the field of metalworking machines and robots of a new generation with parallel kinematics, creation of machining systems for multi-axis machining, improvement and application of controllable systems, testing of processing systems in production conditions, which are conducted at the Machine-Building Faculty of the Belgrade University (Serbia are considered.

  17. Estimating precise metallicity and stellar mass evolution of galaxies

    Science.gov (United States)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  18. Stiffness management of sheet metal parts using laser metal deposition

    Science.gov (United States)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  19. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    International Nuclear Information System (INIS)

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-01

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  20. Advanced friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.

    2012-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  1. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  2. Numerical Prediction of Springback Shape of Severely Bent Sheet Metal

    International Nuclear Information System (INIS)

    Iwata, Noritoshi; Murata, Atsunobu; Yogo, Yasuhiro; Tsutamori, Hideo; Niihara, Masatomo; Ishikura, Hiroshi; Umezu, Yasuyoshi

    2007-01-01

    In the sheet metal forming simulation, the shell element widely used is assumed as a plane stress state based on the Mindlin-Reissner theory. Numerical prediction with the conventional shell element is not accurate when the bending radius is small compared to the sheet thickness. The main reason is because the strain and stress formulation of the conventional shell element does not fit the actual phenomenon. In order to predict precisely the springback of a bent sheet with a severe bend, a measurement method for through-thickness strain has been proposed. The strain was formulated based on measurement results and calculation results from solid element. Through-thickness stress distribution was formulated based on the equilibrium. The proposed shell element based on the formulations was newly introduced into the FEM code. The accuracy of this method's prediction of the springback shape of two bent processes has been confirmed. As a result, it was found that the springback shape even in severe bending can be predicted with high accuracy. Moreover, the calculation time in the proposed shell element is about twice that in the conventional shell element, and has been shortened to about 1/20 compared to a solid element

  3. Explosive force of primacord grid forms large sheet metal parts

    Science.gov (United States)

    1966-01-01

    Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.

  4. Probabilistic Design in a Sheet Metal Stamping Process under Failure Analysis

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao, Jian; Chen, Wei; Xia, Z. Cedric

    2005-01-01

    Sheet metal stamping processes have been widely implemented in many industries due to its repeatability and productivity. In general, the simulations for a sheet metal forming process involve nonlinearity, complex material behavior and tool-material interaction. Instabilities in terms of tearing and wrinkling are major concerns in many sheet metal stamping processes. In this work, a sheet metal stamping process of a mild steel for a wheelhouse used in automobile industry is studied by using an explicit nonlinear finite element code and incorporating failure analysis (tearing and wrinkling) and design under uncertainty. Margins of tearing and wrinkling are quantitatively defined via stress-based criteria for system-level design. The forming process utilizes drawbeads instead of using the blank holder force to restrain the blank. The main parameters of interest in this work are friction conditions, drawbead configurations, sheet metal properties, and numerical errors. A robust design model is created to conduct a probabilistic design, which is made possible for this complex engineering process via an efficient uncertainty propagation technique. The method called the weighted three-point-based method estimates the statistical characteristics (mean and variance) of the responses of interest (margins of failures), and provide a systematic approach in designing a sheet metal forming process under the framework of design under uncertainty

  5. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    Science.gov (United States)

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  6. High-precision micro/nano-scale machining system

    Science.gov (United States)

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  7. Conformal Interpolating Algorithm Based on Cubic NURBS in Aspheric Ultra-Precision Machining

    International Nuclear Information System (INIS)

    Li, C G; Zhang, Q R; Cao, C G; Zhao, S L

    2006-01-01

    Numeric control machining and on-line compensation for aspheric surface are key techniques in ultra-precision machining. In this paper, conformal cubic NURBS interpolating curve is applied to fit the character curve of aspheric surface. Its algorithm and process are also proposed and imitated by Matlab7.0 software. To evaluate the performance of the conformal cubic NURBS interpolation, we compare it with the linear interpolations. The result verifies this method can ensure smoothness of interpolating spline curve and preserve original shape characters. The surface quality interpolated by cubic NURBS is higher than by line. The algorithm is benefit to increasing the surface form precision of workpieces in ultra-precision machining

  8. Damage Prediction in Sheet Metal Forming

    International Nuclear Information System (INIS)

    Saanouni, Khemais; Badreddine, Houssem

    2007-01-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, ... or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  9. The elasto plastic fracture mechanics in ductile metal sheets

    International Nuclear Information System (INIS)

    Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.

    1999-01-01

    The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)

  10. Development of a Plastic Recycling Machine

    OpenAIRE

    I. A. Daniyan,

    2017-01-01

    Plastics are not degradable materials, therefore improper disposal after use constitute environmental problem. The developed plastic recycler was fabricated using 1.5 mm mild metal sheet punched and rolled into cylindrical form. The outer peeling drum was punched inward and fixed to the machine frame while the inner peeling drum was punched outward. The inner drum was constructed using 1.5 mm galvanized metal sheet while the die was constructed using carbon steel. It has an outer diameter of ...

  11. Control of Springback in Sheet Metal U-bending Through Design Experiment

    International Nuclear Information System (INIS)

    Chirita, Bogdan; Brabie, Gheorghe

    2007-01-01

    For the U-bending of sheet metals, springback represents the most important failure mode that is affecting the parts. The purpose of this study was to develop a method for the reduction or the elimination of springback from the designing stage of the forming process. This paper describes a numerical procedure that combines simulation of springback by finite element method with a fractional factorial design and proposes the optimization of the forming parameters and tools geometry for the reduction of springback intensity. At the end of the study we were able to obtain an important improvement of part precision using the parameters predicted by the factorial design

  12. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth

    2016-06-29

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  13. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  14. HTGR Metallic Reactor Internals Core Shell Cutting & Machining Antideformation Technique Study

    International Nuclear Information System (INIS)

    Xing Huiping; Xue Song

    2014-01-01

    The reactor shell assembly of HTGR nuclear power station demonstration project metallic reactor internals is key components of reactor, remains with high-precision large component with large-sized thin-walled straight cylinder-shaped structure, and is the first manufacture in China. As compared with other reactor shell, it has a larger ID (Φ5360mm), a longer length (19000mm), a smaller wall thickness (40mm) and a higher precision requirement. During the process of manufacture, the deformation due to cutting & machining will directly affect the final result of manufacture, the control of structural deformation and cutting deformation shall be throughout total manufacture process of such assembly. To realize the control of entire core shell assembly geometry, the key is to innovate and make breakthroughs on anti-deformation technique and then provide reliable technological foundations for the manufacture of HTGR metallic reactor internals. (author)

  15. Tool Monitoring and Electronic Event Logging for Sheet Metal Forming Processes

    Directory of Open Access Journals (Sweden)

    Gerd Heiserich

    2010-06-01

    Full Text Available This contribution describes some innovative solutions regarding sensor systems for tool monitoring in the sheet metal industry. Autonomous and tamper-proof sensors, which are integrated in the forming tools, can detect and count the strokes carried out by a sheet metal forming press. Furthermore, an electronic event logger for documentary purposes and quality control was developed. Based on this technical solution, new business models such as leasing of sheet metal forming tools can be established for cooperation among enterprises. These models allow usage-based billing for the contractors, taking the effectively produced number of parts into account.

  16. Method and apparatus for determining weldability of thin sheet metal

    Science.gov (United States)

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  17. Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.

    Science.gov (United States)

    Yip, W S; To, S

    2018-03-02

    Titanium alloys are extensively applied in biomedical industries due to their excellent material properties. However, they are recognized as difficult to cut materials due to their low thermal conductivity, which induces a complexity to their deformation mechanisms and restricts precise productions. This paper presents a new observation about the removal regime of titanium alloys. The experimental results, including the chip formation, thrust force signal and surface profile, showed that there was a critical cutting distance to achieve better surface integrity of machined surface. The machined areas with better surface roughness were located before the clear transition point, defining as the ductile to brittle transition. The machined area at the brittle region displayed the fracture deformation which showed cracks on the surface edge. The relationship between depth of cut and the ductile to brittle transaction behavior of titanium alloys in ultra-precision machining(UPM) was also revealed in this study, it showed that the ductile to brittle transaction behavior of titanium alloys occurred mainly at relatively small depth of cut. The study firstly defines the ductile to brittle transition behavior of titanium alloys in UPM, contributing the information of ductile machining as an optimal machining condition for precise productions of titanium alloys.

  18. Determination of the Number of Fixture Locating Points for Sheet Metal By Grey Model

    Directory of Open Access Journals (Sweden)

    Yang Bo

    2017-01-01

    Full Text Available In the process of the traditional fixture design for sheet metal part based on the "N-2-1" locating principle, the number of fixture locating points is determined by trial and error or the experience of the designer. To that end, a new design method based on grey theory is proposed to determine the number of sheet metal fixture locating points in this paper. Firstly, the training sample set is generated by Latin hypercube sampling (LHS and finite element analysis (FEA. Secondly, the GM(1, 1 grey model is constructed based on the established training sample set to approximate the mapping relationship between the number of fixture locating points and the concerned sheet metal maximum deformation. Thirdly, the final number of fixture locating points for sheet metal can be inversely calculated under the allowable maximum deformation. Finally, a sheet metal case is conducted and the results indicate that the proposed approach is effective and efficient in determining the number of fixture locating points for sheet metal.

  19. LeBlond precision lathe safety modifications for HE machining

    International Nuclear Information System (INIS)

    Newton, L.E.

    1978-01-01

    In high explosives machining the three major concerns are safety, reliability, and ease of operation. With these three concerns as our main goals, LLL's EE and ME departments worked together to modify a LeBlond precision lathe for high explosives machining. The result is a unique, remote-controlled lathe which has extensive mechanical and electronics modifications. The lathe has been operating safely and successfully at Site 300's HE Test Facility since April 1978

  20. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    Science.gov (United States)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  1. Ultra-precision machining induced phase decomposition at surface of Zn-Al based alloy

    International Nuclear Information System (INIS)

    To, S.; Zhu, Y.H.; Lee, W.B.

    2006-01-01

    The microstructural changes and phase transformation of an ultra-precision machined Zn-Al based alloy were examined using X-ray diffraction and back-scattered electron microscopy techniques. Decomposition of the Zn-rich η phase and the related changes in crystal orientation was detected at the surface of the ultra-precision machined alloy specimen. The effects of the machining parameters, such as cutting speed and depth of cut, on the phase decomposition were discussed in comparison with the tensile and rolling induced microstrucutural changes and phase decomposition

  2. Assembly for testing weldability of sheet metal

    International Nuclear Information System (INIS)

    David, S.A.; Woodhouse, J.J.

    1985-01-01

    A test assembly for determining the weldability of sheet metal includes a base having a flat side surface with an annular groove in the side surface, a counterbore being formed in the outer wall of the groove and the surface portion of the base circumscribed by the inner wall of the groove being substantially coplanar with the bottom of the counterbore, a test disk of sheet metal the periphery of which is positioned in the counterbore and the outer surface of which is coplanar with one side of the base, and a clamp ring overlying the side surface of the base and the edge portion of the test disk and a plurality of clamp screws which extend through the clamp ring for holding the periphery of the test disk against the bottom of the counterbore

  3. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  4. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    Science.gov (United States)

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  5. Localised and Learnt Applications of Machine Learning for Robotic Incremental Sheet Forming

    DEFF Research Database (Denmark)

    Nicholas, Paul; Zwierzycki, Mateusz; Ramsgaard Thomsen, Mette

    2017-01-01

    Sheet Forming (ISF) and exemplified in the fabrication of a bridge structure. The methods we describe compensate for springback and improve forming tolerance by using localised in-process distance sensing to adapt tool-paths, and by using pre-process supervised machine learning to predict stringback...

  6. Limit State of Trapezoidal Metal Sheets Exposed to Concentrated Load

    OpenAIRE

    Kateřina Jurdová

    2013-01-01

    In most industrial compounds are used trapezoidal metal sheets like a roof decks. These trapezoidal metal sheets are exposed by concentrated loads, usually by service loads arise from installation of air distribution, sanitary distribution, sprinkler system or wiring installation. In objects of public facilities (like shopping centre, tennis hall, etc.) they can be used for hanging advertising posters etc, too. These systems work as “building kit”. These anchoring systems are represented by c...

  7. National Machine Guarding Program: Part 1. Machine safeguarding practices in small metal fabrication businesses.

    Science.gov (United States)

    Parker, David L; Yamin, Samuel C; Brosseau, Lisa M; Xi, Min; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2015-11-01

    Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine-related hazards in 221 business. Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc.

  8. Process control for sheet-metal stamping process modeling, controller design and shop-floor implementation

    CERN Document Server

    Lim, Yongseob; Ulsoy, A Galip

    2014-01-01

    Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shopfloor deployment are presented along with ideas for further...

  9. Constitutive Modeling for Sheet Metal Forming

    International Nuclear Information System (INIS)

    Barlat, Frederic

    2005-01-01

    This paper reviews aspects of the plastic behaviour common in sheet metals. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity suitable for applications to forming, are discussed in a very broad manner. Approaches to plastic anisotropy are described in a somewhat more detailed manner

  10. Fabrication of micro metallic valve and pump

    Science.gov (United States)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  11. Multi-scale contact modeling of coated steels for sheet metal forming applications

    NARCIS (Netherlands)

    Shisode, Meghshyam; Hazrati Marangalou, Javad; Mishra, Tanmaya; De Rooij, Matthijn; Van Den Boogaard, Ton; Bay, Niels; Nielsen, Chris V.

    2018-01-01

    Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The

  12. Shop Math for the Metal Trades. Combination Welder Apprentice, Machinist Helper, Precision Metal Finisher, Sheet Metal Worker Apprentice. A Report on Metal Trades Industry Certified, Single-Concept, Mathematical Learning Projects to Eliminate Student Math Fears.

    Science.gov (United States)

    Newton, Lawrence R.

    This project (1) identifies basic and functional mathematics skills (shop mathematics skills), (2) provides pretests on these functional mathematics skills, and (3) provides student learning projects (project sheets) that prepare metal trades students to read, understand, and apply mathematics and measuring skills that meet entry-level job…

  13. Machine for dismantling metal parts

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Loginovskiy, V.I.; Yagudin, S.Z.

    1982-01-01

    The purpose of the invention is to reduce the outlays of time for dismantling metal parts under conditions of eliminating open gas and oil gushers in operational drilling. This goal is achieved because the machine for dismantling the metal parts is equipped with a set of clamping elements arranged on the chassis, where each of them has a drive.

  14. Detection of defects in formed sheet metal using medial axis transformation

    Science.gov (United States)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  15. National machine guarding program: Part 1. Machine safeguarding practices in small metal fabrication businesses

    Science.gov (United States)

    Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine‐related hazards in 221 business. Results Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. Conclusions The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. Am. J. Ind. Med. 58:1174–1183, 2015. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc. PMID:26332060

  16. A NEW TREND IN MAGNETIC-PULSE METAL WORKING ASSOCIATED WITH THIN-WALLED SHEET METAL ATTRACTION. HISTORY AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    A.V. Gnatov

    2013-04-01

    Full Text Available Within the scope of this article, a summary is presented on the main world achievements of the new trend in magnetic-pulse metal working associated with attraction of specified sheet metal sections in vehicle production and repair. The importance of the new trend has been justified, its basic sources disclosed. Alternative straightening methods for damaged sheet metals are given.

  17. Multi Scale Models for Flexure Deformation in Sheet Metal Forming

    Directory of Open Access Journals (Sweden)

    Di Pasquale Edmondo

    2016-01-01

    Full Text Available This paper presents the application of multi scale techniques to the simulation of sheet metal forming using the one-step method. When a blank flows over the die radius, it undergoes a complex cycle of bending and unbending. First, we describe an original model for the prediction of residual plastic deformation and stresses in the blank section. This model, working on a scale about one hundred times smaller than the element size, has been implemented in SIMEX, one-step sheet metal forming simulation code. The utilisation of this multi-scale modeling technique improves greatly the accuracy of the solution. Finally, we discuss the implications of this analysis on the prediction of springback in metal forming.

  18. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    Science.gov (United States)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  19. Machinability study of steels in precision orthogonal cutting

    Directory of Open Access Journals (Sweden)

    Leonardo Roberto Silva

    2012-08-01

    Full Text Available The miniaturization of components and systems is advancing steadily in many areas of engineering. Consequently, micro-machining is becoming an important manufacture technology due to the increasing demand for miniaturized products in recent years. Precision machining aims the production of advanced components with high dimensional accuracy and acceptable surface integrity. This work presents an experimental study based on Merchant and Lee & Shaffer theories applied to precision radial turning of AISI D2 cold work tool and AISI 1045 medium carbon steels with uncoated carbide tools ISO grade K15. The aim of this study is to evaluate the influence of feed rate on chip compression ratio (Rc, chip deformation (ε, friction angle (ρ, shear angle (Φ, normal stress (σ and shear stress (• for both work materials. The results indicated that the shear angle decreased and chip deformation increased as the chip compression ratio was elevated without significant differences between both materials. Additionally, higher cutting and thrust forces and normal and shear stresses were observed for the tool steel. Finally, the Lee & Shaffer model gave shear plane angle values closer to the experimental data.

  20. Multiscale friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.; Felder, Eric; Montmitonnet, Pierre

    2010-01-01

    The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when

  1. Comparison between wire mesh and plate electrodes during Wide-pattern machining on invar fine sheet using through-mask electrochemical micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwang-ho; Jin, Da-som; Kim, Seong-hyun; Lee, Eun-sang [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    Many research on the fabrication of Organic light emitting diodes (OLED) shadow masks with high resolution have been carried out because of the development of the smart-display industry. It is the parts of display panel which has millions of micro holes on invar (Fe- Ni) fine sheet. Various techniques such as laser machining, chemical etching and Electrochemical micro-machining (EMM) are used to produce micro-hole arrays. In this study, Through-mask electrochemical machining (TMEMM) combine with portion of photolithography process was applied to fabricate micro-hole arrays on invar fine sheet. The sheet was coated with dry film photoresist. Two types of electrode, plate and mesh, was used to compare the influence of electrode type. The sheet was coated with dry film photoresist with micro- sized through holes. The results were compared in regard to uniformity and taper angle. Compared with the plate electrode, the mesh electrode has better uniformity and taper angle which is important criteria of OLED shadow mask. These results could be used to improve TMEMM for invar fine sheet when it is applied to fabricate micro-hole arrays and help to obtain optical uniformity and desired taper angles.

  2. Design of instrumentation and software for precise laser machining

    Science.gov (United States)

    Wyszyński, D.; Grabowski, Marcin; Lipiec, Piotr

    2017-10-01

    The paper concerns the design of instrumentation and software for precise laser machining. Application of advanced laser beam manipulation instrumentation enables noticeable improvement of cut quality and material loss. This factors have significant impact on process efficiency and cutting edge quality by means of machined part size and shape accuracy, wall taper, material loss reduction (e.g. diamond) and time effectiveness. The goal can be reached by integration of laser drive, observation and optical measurement system, beam manipulation system and five axis mechanical instrumentation with use of advanced tailored software enabling full laser cutting process control and monitoring.

  3. Working with Design: A Package for Sheet Metal

    Science.gov (United States)

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  4. Metal release from coffee machines and electric kettles.

    Science.gov (United States)

    Müller, Frederic D; Hackethal, Christin; Schmidt, Roman; Kappenstein, Oliver; Pfaff, Karla; Luch, Andreas

    2015-01-01

    The release of elemental ions from 8 coffee machines and 11 electric kettles into food simulants was investigated. Three different types of coffee machines were tested: portafilter espresso machines, pod machines and capsule machines. All machines were tested subsequently on 3 days before and on 3 days after decalcification. Decalcification of the machines was performed with agents according to procedures as specified in the respective manufacturer's manuals. The electric kettles showed only a low release of the elements analysed. For the coffee machines decreasing concentrations of elements were found from the first to the last sample taken in the course of 1 day. Metal release on consecutive days showed a decreasing trend as well. After decalcification a large increase in the amounts of elements released was encountered. In addition, the different machine types investigated clearly differed in their extent of element release. By far the highest leaching, both quantitatively and qualitatively, was found for the portafilter machines. With these products releases of Pb, Ni, Mn, Cr and Zn were in the range and beyond the release limits as proposed by the Council of Europe. Therefore, a careful rinsing routine, especially after decalcification, is recommended for these machines. The comparably lower extent of release of one particular portafilter machine demonstrates that metal release at levels above the threshold that triggers health concerns are technically avoidable.

  5. Feature Size Effect on Formability of Multilayer Metal Composite Sheets under Microscale Laser Flexible Forming

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-07-01

    Full Text Available Multilayer metal composite sheets possess superior properties to monolithic metal sheets, and formability is different from monolithic metal sheets. In this research, the feature size effect on formability of multilayer metal composite sheets under microscale laser flexible forming was studied by experiment. Two-layer copper/nickel composite sheets were selected as experimental materials. Five types of micro molds with different diameters were utilized. The formability of materials was evaluated by forming depth, thickness thinning, surface quality, and micro-hardness distribution. The research results showed that the formability of two-layer copper/nickel composite sheets was strongly influenced by feature size. With feature size increasing, the effect of layer stacking sequence on forming depth, thickness thinning ratio, and surface roughness became increasingly larger. However, the normalized forming depth, thickness thinning ratio, surface roughness, and micro-hardness of the formed components under the same layer stacking sequence first increased and then decreased with increasing feature size. The deformation behavior of copper/nickel composite sheets was determined by the external layer. The deformation extent was larger when the copper layer was set as the external layer.

  6. Trial of accelerator cells machining with high precision and high efficiency at Okayama region

    International Nuclear Information System (INIS)

    Yoshikawa, Mitsuo; Yoden, Hiroyuki; Yokomizo, Seiichi; Sumida, Tsuneto; Kunishida, Jun; Oshita, Isao

    2005-01-01

    In the framework of the project 'Promotion of Science and Technology in Regional Areas' by the Ministry of Education, Culture, Sports, Science and Technology, we have prepared a special apparatus for machining accelerator cells with a high precision and a high efficiency for the future linear collider. A machining with as small an error as 2 micrometers has been realized. Necessary time to finish one accelerator cell is reduced from 128 minutes to 34 minutes due to the suppression of the heating of the object at the machining. If newly developed one chuck method was employed, the precision and efficiency would be further improved. By cutting at both sides of the spindle, the necessary time for machining would be reduced by half. (author)

  7. Development of parallel benchmark code by sheet metal forming simulator 'ITAS'

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Suzuki, Shintaro; Minami, Kazuo

    1999-03-01

    This report describes the development of parallel benchmark code by sheet metal forming simulator 'ITAS'. ITAS is a nonlinear elasto-plastic analysis program by the finite element method for the purpose of the simulation of sheet metal forming. ITAS adopts the dynamic analysis method that computes displacement of sheet metal at every time unit and utilizes the implicit method with the direct linear equation solver. Therefore the simulator is very robust. However, it requires a lot of computational time and memory capacity. In the development of the parallel benchmark code, we designed the code by MPI programming to reduce the computational time. In numerical experiments on the five kinds of parallel super computers at CCSE JAERI, i.e., SP2, SR2201, SX-4, T94 and VPP300, good performances are observed. The result will be shown to the public through WWW so that the benchmark results may become a guideline of research and development of the parallel program. (author)

  8. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    International Nuclear Information System (INIS)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph; Sommitsch, Christof; Feuerhuber, Hannes

    2010-01-01

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  9. Proceedings of the meeting for coordinating precision machining of optics research and requirements

    International Nuclear Information System (INIS)

    Saito, T.T.

    1975-12-01

    The meeting for ''Coordinating Precision Machining of Optics Research and Requirements'' on September 18, 1975, was sponsored by the Air Force Weapons Laboratory at Kirtland AFB, NM. These proceedings contain an introduction to the meeting including a brief description of the participants and the objectives. The developments and capabilities of Union Carbide Y-12 plant are described in detail. A short summary of the new Moore no. 5 machine at Bendix, Kansas City, Mo. is included as well as a description of using light scattering for roughness characterization at Rockwell International, Rocky Flats, Colorado. The executive summary of the meeting mentions some of the discussions that also followed. Important conclusions of the meeting were that a 5 y lead time is required to obtain a machine and acquire the necessary skills for precision machining, and that demands for diamond turning optics will be increasing

  10. Interfacial delamination in polymer coated metal sheet : a numerical-experimental study

    NARCIS (Netherlands)

    van den Bosch, M.

    2007-01-01

    An increasing amount of products are nowadays made of polymer coated metal sheet. Polymer coated metal has several advantages compared to traditionally Sn (tin) coated metal, such as costs savings and a more environmental friendly production process. Beverage and food cans are formed by draw-redraw

  11. National machine guarding program: Part 1. Machine safeguarding practices in small metal fabrication businesses

    OpenAIRE

    Parker, David L.; Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardize...

  12. Apparatus for precision micromachining with lasers

    Science.gov (United States)

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  13. Compression deformation behaviors of sheet metals at various clearances and side forces

    OpenAIRE

    Zhan Mei; Wang Xianxian; Cao Jian; Yang He

    2015-01-01

    Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. I...

  14. Comparison of Two Commercial FE-Codes for Sheet Metal Forming

    International Nuclear Information System (INIS)

    Revuelta, A.; Larkiola, J.; Kanervo, K.; Korhonen, A. S.; Myllykoski, P.

    2007-01-01

    There is urgent need to develop new advanced fast and cost-effective mass-production methods for small sheet metal components. Traditionally progressive dies have been designed by using various CAD techniques. Recent results in mass production of small sheet metal parts using progressive dies and a transfer press showed that the tool design time may be cut in up to a half by using 3D finite element simulation of forming. In numerical simulation of sheet metal forming better constitutive models are required to obtain more accurate results, reduce the time for tool design and cut the production costs further. Accurate models are needed to describe the initial yielding, subsequent work hardening and to predict the formability. In this work two commercially available finite element simulation codes, PAM-STAMP and LS-DYNA, were compared in forming of small austenitic stainless steel sheet part for electronic industry. Several constitutive models were used in both codes and the results were compared. Comparisons were made between the same models in each of the codes and also between different models in the same code. Material models ranged from very simple to advanced ones, which took into account anisotropy and both isotropic and kinematic hardening behavior. In order to make a valid comparison we employed similar finite element meshes. The effects of the material models parameters were studied and the results were compared with experiments. The effects of the computational time were also studied

  15. Variation simulation for compliant sheet metal assemblies with applications

    Science.gov (United States)

    Long, Yufeng

    Sheet metals are widely used in discrete products, such as automobiles, aircraft, furniture and electronics appliances, due to their good manufacturability and low cost. A typical automotive body assembly consists of more than 300 parts welded together in more than 200 assembly fixture stations. Such an assembly system is usually quite complex, and takes a long time to develop. As the automotive customer demands products of increasing quality in a shorter time, engineers in automotive industry turn to computer-aided engineering (CAE) tools for help. Computers are an invaluable resource for engineers, not only to simplify and automate the design process, but also to share design specifications with manufacturing groups so that production systems can be tooled up quickly and efficiently. Therefore, it is beneficial to develop computerized simulation and evaluation tools for development of automotive body assembly systems. It is a well-known fact that assembly architectures (joints, fixtures, and assembly lines) have a profound impact on dimensional quality of compliant sheet metal assemblies. To evaluate sheet metal assembly architectures, a special dimensional analysis tool need be developed for predicting dimensional variation of the assembly. Then, the corresponding systematic tools can be established to help engineers select the assembly architectures. In this dissertation, a unified variation model is developed to predict variation in compliant sheet metal assemblies by considering fixture-induced rigid-body motion, deformation and springback. Based on the unified variation model, variation propagation models in multiple assembly stations with various configurations are established. To evaluate the dimensional capability of assembly architectures, quantitative indices are proposed based on the sensitivity matrix, which are independent of the variation level of the process. Examples are given to demonstrate their applications in selecting robust assembly

  16. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  17. Application of Multivariate Adaptive Regression Splines to Sheet Metal Bending Process for Springback Compensation

    Directory of Open Access Journals (Sweden)

    Dilan Rasim Aşkın

    2016-01-01

    Full Text Available An intelligent regression technique is applied for sheet metal bending processes to improve bending performance. This study is a part of another extensive study, automated sheet bending assistance for press brakes. Data related to material properties of sheet metal is collected in an online manner and fed to an intelligent system for determining the most accurate punch displacement without any offline iteration or calibration. The overall system aims to reduce the production time while increasing the performance of press brakes.

  18. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    Science.gov (United States)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  19. Investigations on the performance of ultrasonic drilling process with special reference to precision machining of advanced ceramics

    International Nuclear Information System (INIS)

    Adithan, M.; Laroiya, S.C.

    1997-01-01

    Advanced ceramics are assuming an important role in modern industrial technology. The applications and advantages of using advanced ceramics are many. There are several reasons why we should go in for machining of advanced ceramics after their compacting and sintering. These are discussed in this paper. However, precision machining of advanced ceramics must be economical. Critical technological issues to be addressed in cost effective machining of ceramics include design of machine tools, tooling arrangements, improved yield and precision, relationship of part dimensions and finish specifications to functional performance, and on-line inspection. Considering the above ultrasonic drilling is an important process used for the precision machining of advanced ceramics. Extensive studies on tool wear occurring in the ultrasonic machining of advanced ceramics have been carried out. In addition, production accuracy of holes drilled, surface finish obtained and surface integrity aspects in the machining of advanced ceramics have also been investigated. Some specific findings with reference to surface integrity are: a) there were no cracks or micro-cracks developed during or after ultrasonic machining of advanced ceramics, b) while machining Hexoloy alpha silicon carbide a recast layer is formed as a result of ultrasonic machining. This is attributed to the viscous heating resulting from high energy impacts during ultrasonic machining. While machining all other types of ceramics no such formation of recast layer was observed, and , c) there is no change in the microstructure of the advanced ceramics as a result of ultrasonic machining

  20. Review on progressive microforming of bulk metal parts directly using sheet metals (Keynote Paper

    Directory of Open Access Journals (Sweden)

    Fu M.W.

    2015-01-01

    Full Text Available Due to the ubiquitous trend of product miniaturization, energy saving and weight reduction, micro/meso-scale parts have been widely used in many industrial clusters. Micromanufacturing processes for production of such micro/meso-scale parts are thus critically needed. Microforming, as one of these micro manufacturing processes, is a promising process and thus got many explorations and researches. Compared with the research on size effect affected deformation behaviours, less attention has been paid to the process development for mass production of micro-parts. The product quality and fabrication productivity of micro-parts depend on the involved process chain. To address the difficulty in handling and transporting of the micro-sized workpiece, development of a progressive microforming process for directly fabricating bulk micro-parts using sheet metals seems quite promising as it avoids or facilitates billet handling, transportation, positioning, and ejection in the process chain. In this paper, an intensive review on the latest development of progressive microforming technologies is presented. First of all, the paper summarizes the characteristic of progressive microforming directly using sheet metal. The size effect-affected deformation behaviour and the dimensional accuracy, deformation load, ductile fracture, and the surface finish of the microformed parts by progressive microforming using sheet metals are then presented. Finally, some research issues from the implementation of mass production perspective are also discussed.

  1. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  2. Experimental Research on the Impact of Thin-Wall Ratio and the Fillet Radius of Forming Roller on the Limiting Spinning Ratio of AMS 5504 Sheets

    Directory of Open Access Journals (Sweden)

    Kut S.

    2017-12-01

    Full Text Available Results of experimental investigations of metal spinning process of AMS 5504 sheets. cylindrical drawpieces with use of discs-shaped sheet with various diameter and thickness were shown in this work. Tests were performed on two roller metal spinning machine of a vertical axis Leifeld SFC 800 V500.

  3. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  4. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    International Nuclear Information System (INIS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-01-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India

  5. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Science.gov (United States)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  6. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Shashank, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in [Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, Andhra Pradesh (India)

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  7. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface ...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  8. Tribo-systems for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels

    2009-01-01

    The present paper gives an overview of more than 10 years work by the author’s research group through participation in national as well as international framework programmes on developing and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners ......’s research group has especially been involved in the development of a system of tribo-tests for sheet metal forming and in testing and modelling of friction and limits of lubrication of new, environmentally friendly lubricants and tool materials....

  9. Precision Obtained Using an Artificial Neural Network for Predicting the Material Removal Rate in Ultrasonic Machining

    Directory of Open Access Journals (Sweden)

    Gaoyan Zhong

    2017-12-01

    Full Text Available The present study proposes a back propagation artificial neural network (BPANN to provide improved precision for predicting the material removal rate (MRR in ultrasonic machining. The BPANN benefits from the advantage of artificial neural networks (ANNs in dealing with complex input-output relationships without explicit mathematical functions. In our previous study, a conventional linear regression model and improved nonlinear regression model were established for modelling the MRR in ultrasonic machining to reflect the influence of machining parameters on process response. In the present work, we quantitatively compare the prediction precision obtained by the previously proposed regression models and the presently proposed BPANN model. The results of detailed analyses indicate that the BPANN model provided the highest prediction precision of the three models considered. The present work makes a positive contribution to expanding the applications of ANNs and can be considered as a guide for modelling complex problems of general machining.

  10. Development of Multi-Scale Finite Element Analysis Codes for High Formability Sheet Metal Generation

    International Nuclear Information System (INIS)

    Nnakamachi, Eiji; Kuramae, Hiroyuki; Ngoc Tam, Nguyen; Nakamura, Yasunori; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    In this study, the dynamic- and static-explicit multi-scale finite element (F.E.) codes are developed by employing the homogenization method, the crystalplasticity constitutive equation and SEM-EBSD measurement based polycrystal model. These can predict the crystal morphological change and the hardening evolution at the micro level, and the macroscopic plastic anisotropy evolution. These codes are applied to analyze the asymmetrical rolling process, which is introduced to control the crystal texture of the sheet metal for generating a high formability sheet metal. These codes can predict the yield surface and the sheet formability by analyzing the strain path dependent yield, the simple sheet forming process, such as the limit dome height test and the cylindrical deep drawing problems. It shows that the shear dominant rolling process, such as the asymmetric rolling, generates ''high formability'' textures and eventually the high formability sheet. The texture evolution and the high formability of the newly generated sheet metal experimentally were confirmed by the SEM-EBSD measurement and LDH test. It is concluded that these explicit type crystallographic homogenized multi-scale F.E. code could be a comprehensive tool to predict the plastic induced texture evolution, anisotropy and formability by the rolling process and the limit dome height test analyses

  11. In-situ stress analysis with X-Ray diffraction for yield locus characterization of sheet metals

    Energy Technology Data Exchange (ETDEWEB)

    Güner, A.; Tekkaya, A. E. [Institute of Forming Technology and Lightweight Construction, TU Dortmund University, Baroper Str. 301, 44227 Dortmund (Germany); Zillmann, B.; Lampke, T. [Institute of Materials Science and Engineering, Chemnitz University of Technology, Erfenschlager Strasse 73 D-09125 Chemnitz (Germany)

    2013-12-16

    A main problem in the field of sheet metal characterization is the inhomogeneous plastic deformation in the gauge regions of specimens which causes the analytically calculated stresses to differ from the sought state of stress acting in the middle of the gauge region. To overcome this problem, application of X-Ray diffraction is analyzed. For that purpose a mobile X-ray diffractometer and an optical strain measurement system are mounted on a universal tensile testing machine. This enables the recording of the whole strain and stress history of a material point. The method is applied to uniaxial tension tests, plane strain tension tests and shear tests to characterize the interstitial free steel alloy DC06. The applicability of the concepts of stress factors is verified by uniaxial tension tests. The experimentally obtained values are compared with the theoretical values calculated with crystal elasticity models utilizing the orientation distribution functions (ODF). The relaxation problem is addressed which shows itself as drops in the stress values with the strain kept at a constant level. This drop is analyzed with elasto-viscoplastic material models to correct the measured stresses. Results show that the XRD is applicable to measure the stresses in sheet metals with preferred orientation. The obtained yield locus is expressed with the Yld2000–2D material model and an industry oriented workpiece is analyzed numerically. The comparison of the strain distribution on the workpiece verifies the identified material parameters.

  12. Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation

    International Nuclear Information System (INIS)

    Dilip Kumar, K.; Appukuttan, K.K.; Neelakantha, V.L.; Naik, Padmayya S.

    2014-01-01

    Highlights: • The spring back and thinning effect during L-bending was determined on aluminum sheet. • Beyond a particular clearance, the above said effects are linearly increasing. • Below the critical clearance scratches will occur on the surface due to wear. • As the clearance reduces, the wear rate increases on the punching surface. - Abstract: In automotive industry, significant efforts are being put forth to replace steel sheets with aluminum sheets for various applications. Besides its higher cost, there are several technical hurdles for wide usage of aluminum sheets in forming. Major problems in aluminum sheet metal forming operations are deformation errors and spring back effect. These problems are dependent on the number of parameters such as die and tool geometry, friction condition, loading condition and anisotropic properties of the metal. To predict the exact shape, the geometry based punch contact program must be used. The shape changes once the punch is withdrawn, because of the materials elasticity. Prediction of such a spring back effect is a major challenging problem in industry involving sheet metal forming operations. It also needs applying appropriate back tension during the forming complex shapes. Slight deformation of the metal leads to non-axisymmetric loading. One can predict the residual stress by determining plastic and elastic deformation. Thus appropriate spring back effect can be investigated. The present investigation was carried out to determine the spring back and thinning effect of aluminum sheet metal during L-bending operation. Number of specimens with thickness varying from 0.5 mm to 3.5 mm were prepared. The experiments were conducted for different clearances between punch and die. It is observed that, beyond a particular clearance for each thickness of the sheet metal, the spring back and thinning effects were linearly increasing. However, below the critical clearance, scratches on the surface of the sheet metal were

  13. Lubricant Test Methods for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2008-01-01

    appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has......Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...

  14. Computer controlled experimental device for investigations of tribological influences in sheet metal forming

    Directory of Open Access Journals (Sweden)

    Milan Djordjevic

    2012-05-01

    Full Text Available Sheet metal forming, especially deep drawing process, is influenced by many factors. Blank holding force and drawbead displacement are two of them that can be controlled during the forming process. For this purpose, electro-hydraulic computerized sheet-metal strip sliding device has been constructed. Basic characteristic of this device is realization of variable contact pressure and drawbead height as functions of time or stripe displacement. There are both, pressure and drawbead, ten linear and nonlinear functions. Additional features consist of the ability to measure drawing force, contact pressure, drawbead displacement etc. Presented in the paper are the device overview and the first results of steel sheet stripe sliding over rounded  drawbead.

  15. COMPUTER CONTROLLED EXPERIMENTAL DEVICE FOR INVESTIGATIONS OF TRIBOLOGICAL INFLUENCES IN SHEET METAL FORMING

    Directory of Open Access Journals (Sweden)

    Tomislav Vujinović

    2012-05-01

    Full Text Available Sheet metal forming, especially deep drawing process is influenced by many factors. Blank holding force and drawbead displacement are two of them that can be controlled during the forming process.For this purpose, an electro-hydraulic computerized sheet-metal strip sliding device has been constructed. The basic characteristic of this device is realization of variable contact pressure and drawbead height as functions of time or stripe displacement. There are both, pressure and drawbead, ten linear and nonlinear functions. Additional features consist of the ability to measure drawing force, contact pressure, drawbead displacement etc.The device overview and first results of steel sheet stripe sliding over rounded drawbead are presented in the paper.

  16. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  17. Observations on Mode I ductile tearing in sheet metals

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau

    2013-01-01

    Cracked ductile sheet metals, subject to Mode I tearing, have been observed to display a variety of fracture surface morphologies depending on the material properties, and a range of studies on the fracture surface appearance have been published in the literature. Whereas classical fractures...

  18. Testing of environmentally friendly lubricants for sheet metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2005-01-01

    the authors have especially been involved in the development of a system of test methods for sheet metal forming and in testing of friction and limits of lubrication of new, environmentally friendly lubricants. An overview of the developed tests is presented together with selected results....

  19. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    Science.gov (United States)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  20. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    Science.gov (United States)

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  1. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    Science.gov (United States)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2018-04-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of

  2. Formability of porous tantalum sheet-metal

    International Nuclear Information System (INIS)

    Nebosky, Paul S; Schmid, Steven R; Pasang, Timotius

    2009-01-01

    Over the past ten years, a novel cellular solid, Trabecular Metal T M , has been developed for use in the orthopaedics industry as an ingrowth scaffold. Manufactured using chemical vapour deposition (CVD) on top of a graphite foam substrate, this material has a regular matrix of interconnecting pores, high strength, and high porosity. Manufacturing difficulties encourage the application of bending, stamping and forming technologies to increase CVD reactor throughput and reduce material wastes. In this study, the bending and forming behaviour of Trabecular Metal T M was evaluated using a novel camera-based system for measuring surface strains, since the conventional approach of printing or etching gridded patterns was not feasible. A forming limit diagram was obtained using specially fabricated 1.65 mm thick sheets. A springback coefficient was measured and modeled using effective hexagonal cell arrangements.

  3. Advances in precision machining and moulding technology bring design opportunities.

    Science.gov (United States)

    Glendening, Paul

    2008-09-01

    Machining of materials for medical applications has moved to a new level of precision. In parallel with this, moulding technology has improved through the increased use of sensors in moulds, enhanced design simulation and processes such as micromoulding. This article examines the opportunities offered by these developments and includes examples of mass produced parts that demonstrate the new capabilities useful to product designers.

  4. Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate

    International Nuclear Information System (INIS)

    Ha, Kyoung Ho; Lee, Se Won; Jee, Won Young; Chu, Chong Nam; Kim, Janggil

    2015-01-01

    A novel laser beam machining (LBM) method is proposed to achieve higher precision and better quality beyond the limits of a commercialized nanosecond pulsed laser system. The use of a cover plate is found to be effective for the precision machining of a thin metal foil at micro scale. For verifying the capability of cover plate laser beam machining (c-LBM) technology, a 30 by 30 array of micro-holes was fabricated on 8 µm-thick stainless steel 304 (STS) foil. As a result, thermal deformation and cracks were significantly reduced in comparison with the results using LBM without a cover plate. The standard deviation of the inscribed and circumscribed circle of the holes with a diameter of 12 µm was reduced to 33% and 81%, respectively and the average roundness improved by 77%. Moreover, the smallest diameter obtainable by c-LBM in the given equipment was found to be 6.9 µm, which was 60% less than the minimum size hole by LBM without a cover plate. (technical note)

  5. Stretchable and bendable carbon nanotube on PDMS super-lyophobic sheet for liquid metal manipulation

    International Nuclear Information System (INIS)

    Kim, Daeyoung; Jung, Daewoong; Yoo, Jun Hyeon; Lee, Gil S; Lee, Jeong-Bong; Lee, Yunho; Choi, Wonjae; Yoo, Koangki

    2014-01-01

    We report a vertically-aligned carbon nanotube (CNT) forest on polydimethylsiloxane (PDMS) sheet as a novel widely stretchable and bendable anti-wetting super-lyophobic surface for naturally oxidized gallium-based liquid metals. The vertically-aligned CNT has inherent chemical inertness and a hierarchical texture combining micro/nanoscale roughness; these two characters render the developed sheet as a super-lyophobic substrate against gallium-based liquid metals. The vertically-aligned CNT forest was first grown on Si substrate and then transferred onto a PDMS sheet by imprinting. It was found that the transferred CNT on the PDMS sheet maintained its vertically-aligned nature as well as hierarchical micro/nano surface morphology. It was found that the static contact angles of the gallium-based liquid metal droplet on the CNT on Si and on the CNT on PDMS were both greater than 155° and the contact angle hysteresis on the CNT on Si was 4° and that on the transferred CNT on PDMS was 19°. These measurement results showed that the surface retains a super-lyophobic property before and after the CNT transfer onto PDMS. We tested the CNT on PDMS sheet for its mechanical flexibility using stretching (50% and 100%) and bending (curvature of 0.1 and 0.4 mm −1 ). We carried out a bouncing test and a rolling test on the stretched/bent CNT on the PDMS sheet and the results confirmed that the flexible sheet maintains anti-wetting characteristics under bending or stretching conditions. (paper)

  6. Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets

    International Nuclear Information System (INIS)

    Zidane, I; Guines, D; Léotoing, L; Ragneau, E

    2010-01-01

    The main objective of this work is to propose a new experimental device able to give for a single specimen a good prediction of rheological parameters and formability under static and dynamic conditions (for intermediate strain rates). In this paper, we focus on the characterization of sheet metal forming. The proposed device is a servo-hydraulic testing machine provided with four independent dynamic actuators allowing biaxial tensile tests on cruciform specimens. The formability is evaluated thanks to the classical forming limit diagram (FLD), and one of the difficulties of this study was the design of a dedicated specimen for which the necking phenomenon appears in its central zone. If necking is located in the central zone of the specimen, then the speed ratio between the two axes controls the strain path in this zone and a whole forming limit curve can be covered. Such a specimen is proposed through a numerical and experimental validation procedure. A rigorous procedure for the detection of numerical and experimental forming strains is also presented. Finally, an experimental forming limit curve is determined and validated for an aluminium alloy dedicated to the sheet forming processes (AA5086)

  7. Research on NC laser combined cutting optimization model of sheet metal parts

    Science.gov (United States)

    Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.

  8. Study on the effect of thermal property of metals in ultrasonic-assisted laser machining

    International Nuclear Information System (INIS)

    Lee, Hu Seung; Kim, Gun Woo; Park, Jong Eun; Cho, Sung Hak; Yang, Min Yang; Park, Jong Kweon

    2015-01-01

    The laser machining process has been proposed as an advanced process for the selective fabrication of electrodes without a mask. In this study, we adapt laser machining to metals that have different thermal properties. Based on the results, the metals exhibit a different surface morphology, heat-affected zone (HAZ), and a recast layer around the machined surface according to their thermal conductivity, boiling point, and thermal diffusivity. Then, we apply ultrasonic-assisted laser machining to remove the recast layer. The ultrasonic-assisted laser machining exhibits a better surface quality in metals with higher diffusivity than those having lower diffusivity

  9. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  10. KrF excimer laser precision machining of hard and brittle ceramic biomaterials

    International Nuclear Information System (INIS)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-01-01

    KrF excimer laser precision machining of porous hard–brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse ⋅ J cm −2 ) and 0.048 µm/(pulse ⋅ J cm −2 ), while their threshold fluences are individually 0.72 and 1.5 J cm −2 . The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard–brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. (paper)

  11. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  12. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    Science.gov (United States)

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  13. Improvements in FE-analysis of real-life sheet metal forming

    NARCIS (Netherlands)

    Huetink, Han; van den Boogaard, Antonius H.; Geijselaers, Hubertus J.M.; Meinders, Vincent T.

    2000-01-01

    An overview will be presented of recent developments concerning the application and development of computer codes for numerical simulation of sheet metal forming processes. In this paper attention is paid to some strategies which are followed to improve the accuracy and to reduce the computation

  14. Development and pilot production of three ingot-source beryllium sheet metal parts

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1975-01-01

    Results of an extensive development program aimed at making three, separate, structural components from beryllium, using sheet-metal fabrication methods, are presented. Ingot-source beryllium sheet at thicknesses of 0.100, 0.125, and 0.170 inch is formed in a fully-recrystallized and in a partially-recrystallized condition. The tensile yield strength is 26,000 psi after full recrystallization. After partial recrystallization, tensile yield strength is between 35,000 and 45,000 psi, depending upon sheet thickness, heat treat temperature, and time at temperature. The high yield strength is retained in the parts after forming. (U.S.)

  15. Springback prediction in sheet metal forming process based on the hybrid SA

    International Nuclear Information System (INIS)

    Guo Yuqin; Jiang Hong; Wang Xiaochun; Li Fuzhu

    2005-01-01

    In terms of the intensive similarity between the sheet metal forming-springback process and that of the annealing of metals, it is suggested that the simulation of the sheet metal forming process is performed with the Nonlinear FEM and the springback prediction is implemented by solving the large-scale combinational optimum problem established on the base of the energy descending and balancing in deformed part. The BFGS-SA hybrid SA approach is proposed to solve this problem and improve the computing efficiency of the traditional SA and its capability of obtaining the global optimum solution. At the same time, the correlative annealing strategies for the SA algorithm are determined in here. By comparing the calculation results of sample part with those of experiment measurement at the specified sections, the rationality of the schedule of springback prediction used and the validity of the BFGS-SA algorithm proposed are verified

  16. An expert system for process planning of sheet metal parts produced ...

    Indian Academy of Sciences (India)

    Sachin Salunkhe

    set of production rules and frames for process planning of axisymmetric deep ... parameters for design of stamping die for manufacturing of circular cup with ..... proper sequence of operations to manufacture sheet metal part correctly and ...

  17. Numerical controlled diamond fly cutting machine for grazing incidence X-ray reflection mirrors

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Moriyama, Shigeo; Seya, Eiiti

    1992-01-01

    Synchrotron radiation has reached the stage of practical use, and the application to the wide fields that support future advanced technologies such as spectroscopy, the structural analysis of matters, semiconductor lithography and medical light source is expected. For the optical system of the equipment utilizing synchrotron radiation, the total reflection mirrors of oblique incidence are used for collimating and collecting X-ray. In order to restrain their optical aberration, nonspherical shape is required, and as the manufacturing method with high precision for nonspherical mirrors, a numerically controlled diamond cutting machine was developed. As for the cutting of soft metals with diamond tools, the high precision machining of any form can be done by numerical control, the machining time can be reduced as compared with grinding, and the cooling effect is large in metals. The construction of the cutting machine, the principle of machining, the control system, the method of calculating numerical control data, the investigation of machinable forms and the result of evaluation are reported. (K.I.)

  18. Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2016-09-01

    Full Text Available To meet the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs such as the International Committee on Non-Ionizing Radiation Protection (ICNIRP guidelines, thin metallic sheets are often used to shield magnetic field leakage in high power applications of wireless power transfer (WPT systems based on magnetic field coupling. However, the metals in the vicinity of the WPT coils cause the decrease of self and mutual inductances and increase of effective series resistance; as such, the electric performance including transmission power and the efficiency of the system is affected. With the research objective of further investigating excellent shielding effectiveness associated with system performance, the utilization of the optimal magnetic field shielding method by metallic sheets in magnetic field coupling WPT is carried out in this paper. The circuit and 3D Finite Element Analysis (FEA models are combined to predict the magnetic field distribution and electrical performance. Simulation and experiment results show that the method is very effective by obtaining the largest possible coupling coefficient of the WPT coils within the allowable range and then reducing the value nearest to and no smaller than the critical coupling coefficient via geometric unbroken metallic sheets. The optimal magnetic field shielding method which considers the system efficiency, transmission power, transmission distance, and system size is also achieved using the analytic hierarchy process (AHP. The results can benefit WPT by helping to achieve efficient energy transfer and safe use in metal shielded equipment.

  19. Technology of high-speed combined machining with brush electrode

    Science.gov (United States)

    Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.

    2018-03-01

    The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.

  20. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, H.A., E-mail: hw@utg.de [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany); Leuning, N.; Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen, D-52062 Germany (Germany); Andorfer, T.; Jenner, S.; Volk, W. [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany)

    2017-01-01

    Mechanical stress occurring during the manufacturing process of electrical machines detrimentally alters the magnetic properties (iron losses and magnetizability). This affects the efficiency and performance of the machine. Improvement of the manufacturing process in terms of reduced magnetic property deterioration enables the full potential of the magnetic materials to be exploited, and as a result, the performance of the machine to be improved. A high quantity of electrical machine components is needed, with shear cutting (punching, blanking) being the most efficient manufacturing technology. The cutting process leads to residual stresses inside the non-oriented electrical sheet metal, resulting in increased iron losses. This paper studies the residual stresses induced by punching with different shear cutting parameters, taking a qualitative approach using finite element analysis. In order to calibrate the finite element analysis, shear cutting experiments are performed. A single sheet tester analysis of the cut blanks allows the correlation between residual stresses, micro hardness measurements, cutting surface parameters and magnetic properties to be studied.

  1. Electromagnetic confinement and movement of thin sheets of molten metal

    Science.gov (United States)

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1990-01-01

    An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  2. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – PERFORMANCE VERIFICATION OF CMMs

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Sobiecki, René; Tosello, Guido

    This document is used in connection with one exercise of 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns performance verification of the volumetric measuring capability of a small volume coordinate measuring machine...

  3. 48 CFR 53.301-1427 - Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form). 53.301-1427 Section 53.301-1427... Illustrations of Forms 53.301-1427 Standard Form 1427, Inventory Schedule A—Construction Sheet (Metals in Mill...

  4. Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Saggar, Richa; Tatarko, P.; Grasso, S.; Saunders, T.; Dlouhý, Ivo; Reece, M. J.

    2016-01-01

    Roč. 42, č. 6 (2016), s. 7533-7542 ISSN 0272-8842 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Alumina * Graphene nano-sheets * Nano-composites * Mechanical properties * Machinability Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.986, year: 2016

  5. Some aspects of precise laser machining - Part 1: Theory

    Science.gov (United States)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  6. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    International Nuclear Information System (INIS)

    Wuest, C.R.; Fuchs, B.A.; Holdener, F.R.; Heck, J.L. Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration's cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique

  7. Application of Six Sigma Robust Optimization in Sheet Metal Forming

    International Nuclear Information System (INIS)

    Li, Y.Q.; Cui, Z.S.; Ruan, X.Y.; Zhang, D.J.

    2005-01-01

    Numerical simulation technology and optimization method have been applied in sheet metal forming process to improve design quality and shorten design cycle. While the existence of fluctuation in design variables or operation condition has great influence on the quality. In addition to that, iterative solution in numerical simulation and optimization usually take huge computational time or endure expensive experiment cost In order to eliminate effect of perturbations in design and improve design efficiency, a CAE-based six sigma robust design method is developed in this paper. In the six sigma procedure for sheet metal forming, statistical technology and dual response surface approximate model as well as algorithm of 'Design for Six Sigma (DFSS)' are integrated together to perform reliability optimization and robust improvement. A deep drawing process of a rectangular cup is taken as an example to illustrate the method. The optimization solutions show that the proposed optimization procedure not only improves significantly the reliability and robustness of the forming quality, but also increases optimization efficiency with approximate model

  8. Low temperature wetting and cleanup of alkali metal-advanced electrical machine systems

    International Nuclear Information System (INIS)

    Gass, W.R.; Witkowski, R.E.; Burrow, G.C.

    1980-01-01

    Advanced homopolar electrical machines employing high electrical current density, liquid metal sliprings for current transfer utilize NaK/sub 78/ (78 w/o potassium, 22 w/o sodium) for the conducting fluid. Experiments have been performed to improve alkali metal/oxide clean-up procedures. Studies have also confirmed chemical and materials compatibility between barium doped NaK/sub 78/ and typical machine structural materials. 4 refs

  9. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-01-01

    by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal

  10. Machinability studies of infrared window materials and metals

    International Nuclear Information System (INIS)

    Arnold, J.B.; Morris, T.O.; Sladky, R.E.; Steger, P.J.

    1976-01-01

    Diamond machining of materials for optical applications is becoming an important fabrication process. Development work in material-removal technology to better understand the mechanics of the diamond-turning process, its limitations, and applications is described. The technique is presently limited to a select group of metals, most of which are of a face-center-cubic crystal structure. Machinability studies were done which were designed to better understand diamond compatibility and thus expand the range of applicable materials. Nonconventional methods such as ultrasonic tool stimulation were investigated. Work done to determine the machinability of infrared window materials indicates that this is a viable fabrication technique for many materials, although additional effort is needed to optimize the process for particular materials

  11. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  12. Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain.

    Science.gov (United States)

    Zhou, Yungang; Su, Qiulei; Wang, Zhiguo; Deng, Huiqiu; Zu, Xiaotao

    2013-11-14

    Prompted by recent experimental achievement of transition metal (TM) atoms substituted in MoS2 nanostructures during growth or saturating existing vacancies (Sun et al., ACS Nano, 2013, 7, 3506; Deepak et al., J. Am. Chem. Soc., 2007, 129, 12549), we explored, via density functional theory, the magnetic properties of a series of 3d TM atoms substituted in a MoS2 sheet, and found that Mn, Fe, Co, Ni, Cu and Zn substitutions can induce magnetism in the MoS2 sheet. The localizing unpaired 3d electrons of TM atoms respond to the introduction of a magnetic moment. Depending on the species of TM atoms, the substituted MoS2 sheet can be a metal, semiconductor or half-metal. Remarkably, the applied elastic strain can be used to control the strength of the spin-splitting of TM-3d orbitals, leading to an effective manipulation of the magnetism of the TM-substituted MoS2 sheet. We found that the magnetic moment of the Mn- and Fe-substituted MoS2 sheets can monotonously increase with the increase of tensile strain, while the magnetic moment of Co-, Ni-, Cu- and Zn-substituted MoS2 sheets initially increases and then decreases with the increase of tensile strain. An instructive mechanism was proposed to qualitatively explain the variation of magnetism with elastic strain. The finding of the magnetoelastic effect here is technologically important for the fabrication of strain-driven spin devices on MoS2 nanostructures, which allows us to go beyond the current scope limited to the spin devices within graphene and BN-based nanostructures.

  13. Testing and modelling of industrial tribo-systems for sheet metal forming

    DEFF Research Database (Denmark)

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real...

  14. A System of Test Methods for Sheet Metal Forming Tribology

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2007-01-01

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...... appearing in different sheet forming operations such as stamping, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production....

  15. US/DOE Man-Machine Integration program for liquid metal reactors

    International Nuclear Information System (INIS)

    D'Zmura, A.P.; Seeman, S.E.

    1985-03-01

    The United States Department of Energy (DOE) Man-Machine Integration program was started in 1980 as an addition to the existing Liquid Metal Fast Breeder Reactor safety base technology program. The overall goal of the DOE program is to enhance the operational safety of liquid metal reactors by optimum integration of humans and machines in the overall reactor plant system and by application of the principles of human-factors engineering to the design of equipment, subsystems, facilities, operational aids, procedures and environments. In the four years since its inception the program has concentrated on understanding the control process for Liquid Metal Reactors (LMRs) and on applying advanced computer concepts to this process. This paper describes the products that have been developed in this program, present computer-related programs, and plans for the future

  16. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  17. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  18. Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Toivola, Minna; Ahlskog, Fredrik; Lund, Peter [Laboratory of Advanced Energy Systems, Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 4100, FIN-02015 TKK (Finland)

    2006-11-06

    Direct integration of dye-sensitized solar cells (DSSC) onto industrial sheet metals has been studied. The stability of the metals, including zinc-coated and plain carbon steel, stainless steel and copper in a standard iodine electrolyte was investigated with soaking and encapsulation tests. Stainless and carbon steel showed sufficient stability and were used as the cell counter-electrodes, yielding cells with energy conversion efficiencies of 3.6% and 3.1%, respectively. A DSSC built on flexible steel substrates is a promising approach especially from the viewpoint of large-scale, cost-effective industrial manufacturing of the cells. (author)

  19. Formability models for warm sheet metal forming analysis

    Science.gov (United States)

    Jiang, Sen

    Several closed form models for the prediction of strain space sheet metal formability as a function of temperature and strain rate are proposed. The proposed models require only failure strain information from the uniaxial tension test at an elevated temperature setting and failure strain information from the traditionally defined strain space forming limit diagram at room temperature, thereby featuring the advantage of offering a full forming limit description without having to carry out expensive experimental studies for multiple modes of deformation under the elevated temperature. The Power law, Voce, and Johnson-Cook hardening models are considered along with the yield criterions of Hill's 48 and Logan-Hosford yield criteria. Acceptable correlations between the theory and experiment are reported for all the models under a plane strain condition. Among all the proposed models, the model featuring Johnson-Cook hardening model and Logan-Hosford yield behavior (LHJC model) was shown to best correlate with experiment. The sensitivity of the model with respect to various forming parameters is discussed. This work is significant to those aiming to incorporate closed-form formability models directly into numerical simulation programs for the purpose of design and analysis of products manufactured through the warm sheet metal forming process. An improvement based upon Swift's diffuse necking theory, is suggested in order to enhance the reliability of the model for biaxial stretch conditions. Theory relating to this improvement is provided in Appendix B.

  20. Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Dekkers, E.C.A.; Geers, M.G.D.

    2012-01-01

    While the industrial interest in sheet metal with improved specific-properties led to the design of new alloys with complex microstructures, predicting their safe forming limits and understanding their microstructural deformation mechanisms remain as significant challenges largely due to the

  1. Observation of enhanced electric field in an RF-plugged sheet plasma in the RFC-XX-M open-ended machine

    International Nuclear Information System (INIS)

    Oda, T.; Takiyama, K.; Kadota, K.

    1987-12-01

    We report nonperturbing observation of the electric field in the sheet plasma for RF end-plugging on the RFC XX-M open-ended machine by using the Stark effect with a combined technique of beam-probe and laser-induced fluorescence. Under the optimum condition for the RF plugging, enhanced electric field is found in the sheet plasma by about 2.5 times with respect to the electric field when no plasma is produced. The field spatial profile is also measured, which is discussed in connection with the electrostatic eigenmode. (author)

  2. An expert system for process planning of sheet metal parts produced

    Indian Academy of Sciences (India)

    Process planning of sheet metal part is an important activity in the design of compound die. Traditional methods of carrying out this task are manual, tedious, time-consuming, error-prone and experiencebased. This paper describes the research work involved in the development of an expert system for process planning of ...

  3. Testing of Lubricant Performance in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Friis, Kasper Leth

    2008-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. The problems are especially pronounced, when forming tribologically...... of the lubricant film causing pick-up of work piece material on the tool surface and scoring of subsequent work piece surfaces. The present paper gives an overview of more than 10 years work by the authors’ research group through participation in national as well as international framework programmes on developing...

  4. FY 1998 annual summary report on 6-axis, high-precision non-rotating machining systems (first year); 1998 nendo 6 jiku koseido heru kako system no kaihatsu seika hokokusho. Daiichinendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This R and D program is aimed at development of high-precision systems, based on non-rotating machining, in order to improve precision of machining of curved surfaces, e.g., mold, and members of complex shapes, e.g., those for aircraft. For non-rotating machining of curved surfaces, it is necessary to continuously control attitude and sending speed of the tool, and hence to simultaneously control 6 axes of a high-speed, high-precision tool machine. New techniques, e.g., high-precision non-rotating machining, 6-axis CAM/CAE systems and high-speed, high-precision NC systems, are being developed, in order to realize the above objectives. The total systems combining these techniques are also being developed. The 6-axis, high-precision, non-rotating tool machine will be made on a trial basis, to demonstrate its practicality. The major FY 1998 results are development of a non-rotating machining tool for deep grooves (under the theme of machining techniques), development of software for cutter path generation for 6-axis non-rotating machining to confirm its validity by the tests with a commercial machine (CAD/CAM), and modification of NC for early-stage cutting tests (NC). (NEDO)

  5. Metallic particles into mechanical and hydraulic systems in agricultural and construction machines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jair Rosas da; Silva, Deise Paula da [Instituto Agronomico de Campinas (IAC), Campinas, SP (Brazil). Centro de Engenharia Agricola; Bormio, Marcos Roberto [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia

    2008-07-01

    The lubricant oil analysis are an indicator of the conditions how the lubricant is, may to allow the prevision of damages that occurred into machine due to the internal abrasion of hydraulic and mechanical components of the machines. The present study had the objective to determine the kind and quantity of the metallic particles that occurred into the lubricant oil of the mechanical and hydraulic compartments of the energy transmission systems of three kinds of machines: a tracked-tractor, a sugarcane harvester and a group of power-shovels. The metallic particles presents into these compartments were determined under laboratory tests and concerning to the following elements: iron, copper, chromium, lead, nickel, aluminum, silex, tin and molybdenum. About to the tracked-tractor, the metallic contaminators into to the oil charges surpasses the tolerate levels, considering the technical standards adopted in this evaluation. In the sugarcane harvester only a metallic element in excess was identified and, in a power-shovel group it was showed the need to correct air false entrances in the hydraulic or mechanical systems due the high presence of silex element. (author)

  6. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – TRACEABILITY, CALIBRATION AND PERFORMANCE VERIFICATION

    DEFF Research Database (Denmark)

    Bariani, Paolo; De Chiffre, Leonardo; Tosello, Guido

    This document is used in connection with an exercise of 1 hour duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns establishment of traceability of measurements with optical coordinate machine by mean of using two different calibrated...

  7. An in-process form error measurement system for precision machining

    International Nuclear Information System (INIS)

    Gao, Y; Huang, X; Zhang, Y

    2010-01-01

    In-process form error measurement for precision machining is studied. Due to two key problems, opaque barrier and vibration, the study of in-process form error optical measurement for precision machining has been a hard topic and so far very few existing research works can be found. In this project, an in-process form error measurement device is proposed to deal with the two key problems. Based on our existing studies, a prototype system has been developed. It is the first one of the kind that overcomes the two key problems. The prototype is based on a single laser sensor design of 50 nm resolution together with two techniques, a damping technique and a moving average technique, proposed for use with the device. The proposed damping technique is able to improve vibration attenuation by up to 21 times compared to the case of natural attenuation. The proposed moving average technique is able to reduce errors by seven to ten times without distortion to the form profile results. The two proposed techniques are simple but they are especially useful for the proposed device. For a workpiece sample, the measurement result under coolant condition is only 2.5% larger compared with the one under no coolant condition. For a certified Wyko test sample, the overall system measurement error can be as low as 0.3 µm. The measurement repeatability error can be as low as 2.2%. The experimental results give confidence in using the proposed in-process form error measurement device. For better results, further improvement in design and tests are necessary

  8. Setting Organizational Key Performance Indicators in the Precision Machine Industry

    Directory of Open Access Journals (Sweden)

    Mei-Hsiu Hong

    2015-11-01

    Full Text Available The aim of this research is to define (or set organizational key performance indicators (KPIs in the precision machine industry using the concept of core competence and the supply chain operations reference (SCOR model. The research is conducted in three steps. In the first step, a benchmarking study is conducted to collect major items of core competence and to group them into main categories in order to form a foundation for the research. In the second step, a case company questionnaire and interviews are conducted to identify the key factors of core competence in the precision machine industry. The analysis is conducted based on four dimensions and hence several analysis rounds are completed. Questionnaire data is analyzed with grey relational analysis (GRA and resulted in 5–6 key factors in each dimension or sub-dimension. Based on the conducted interviews, 13 of these identified key factors are separated into one organization objective, five key factors of core competence and seven key factors of core ability. In the final step, organizational KPIs are defined (or set for the five identified key factors of core competence. The most competitive core abilities for each of the five key factors are established. After that, organizational KPIs are set based on the core abilities within 3 main categories of KPIs (departmental, office grade and hierarchal for each key factor. The developed KPI system based on organizational objectives, core competences, and core abilities allow enterprises to handle dynamic market demand and business environments, as well as changes in overall corporate objectives.

  9. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    International Nuclear Information System (INIS)

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-01-01

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  10. Impulse Hydroforming Method for Very Thin Sheets from Metallic or Hybrid Materials

    OpenAIRE

    Beerwald, C.; Beerwald, M.; Dirksen, U.; Henselek, A.

    2010-01-01

    Forming of very thin metallic and hybrid material foils is a demanding task in several application areas as for example in food or pharmaceutical packaging industries. Narrow forming limits of very thin sheet metals as well as minor process reliability due to necessary exact tool manufacturing (small punch-die clearance), both, causes abiding interest in new and innovative forming processes. In this contribution a new method using high pressure pulses will be introduced to form small geometry...

  11. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    Science.gov (United States)

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  12. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    International Nuclear Information System (INIS)

    Rafiqul, M I; Ishak, M; Rahman, M M

    2012-01-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  13. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    Science.gov (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  14. EXPERIMENTAL TESTING OF DRAW-BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    Institute of Scientific and Technical Information of China (English)

    J.H. Yang; J. Chen; D.N. He; X. Y. Ruan

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory anddepending on sheet metal forming properties experiment testing system, a simplifiedmethod to calculate draw-bead restraining force is put forward by experimental methodin cup-shaped drawing process. The experimental results were compared with numer-ical results and proved agreement. It shows the method is effective.

  15. Hand Book of Metal Material Contrast

    International Nuclear Information System (INIS)

    Park, Yeong Hui

    1989-06-01

    This book first gives descriptions of using of this hand book and contents. It tells of steel such as bar steel, section steel, and steel sheet which are steel for general structure and steel for pressure vessel, a steel pipe, carbon steel for machine structure and alloy steel, steel for special things, stainless steel, heat resisting steel, tool steel, spring steel, forging, steel casting, nonferrous metal such as aluminium and aluminium alloy, casting, list of similar steel per metal, list of steel like ASTM, AISI per number, and list of collecting standard per metal material.

  16. Superconductor homopolar machines with liquid-metal contacts

    International Nuclear Information System (INIS)

    Aliyevsky, B.L.; Bazarnov, B.A.; Oktyabrsky, A.M.; Popov, N.N.; Sherstuk, A.G.; Shopen, D.P.

    1992-01-01

    Alongside with the power increase of Electric Superconductor (SC) Machines including Homopolar Machines (HM) there is a strong need of improving their working characteristics, raising the efficiency, reducing the superconductor consumption. In the paper, the results of investigating the mass, dimensional and energetic properties of SCHM are given which are illustrated by the calculation of homopolar generators in the band of nominal power per unit P n = (2-250) MW at the voltage of 12, 24, 60, 230 V and rotation frequency of 25 and 50 rps. Screened and unscreened HM of a cylindrical type with liquid-metal current collector devices (LCD) and inductor consisting of 2 opposing SC coils mounted in a fixed cryostat inside the rotating armature are investigated

  17. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  18. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  19. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    Science.gov (United States)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  20. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  1. High-precision gauging of metal rings

    Science.gov (United States)

    Carlin, Mats; Lillekjendlie, Bjorn

    1994-11-01

    Raufoss AS designs and produces air brake fittings for trucks and buses on the international market. One of the critical components in the fittings is a small, circular metal ring, which is going through 100% dimension control. This article describes a low-price, high accuracy solution developed at SINTEF Instrumentation based on image metrology and a subpixel resolution algorithm. The measurement system consists of a PC-plugg-in transputer video board, a CCD camera, telecentric optics and a machine vision strobe. We describe the measurement technique in some detail, as well as the robust statistical techniques found to be essential in the real life environment.

  2. A theoretical study on pure bending of hexagonal close-packed metal sheet

    Science.gov (United States)

    Mehrabi, Hamed; Yang, Chunhui

    2018-05-01

    Hexagonal close-packed (HCP) metals have quite different mechanical behaviours in comparison to conventional cubic metals such as steels and aluminum alloys [1, 2]. They exhibit a significant tension-compression asymmetry in initial yielding and subsequent plastic hardening. The reason for this unique behaviour can be attributed to their limited symmetric crystal structure, which leads to twining deformation [3-5]. This unique behaviour strongly influences sheet metal forming of such metals, especially for roll forming, in which the bending is dominant. Hence, it is crucial to represent constitutive relations of HCP metals for accurate estimation of bending moment-curvature behaviours. In this paper, an analytical model for asymmetric elastoplastic pure bending with an application of Cazacu-Barlat asymmetric yield function [6] is presented. This yield function considers the asymmetrical tension-compression behaviour of HCP metals by using second and third invariants of the stress deviator tensor and a specified constant, which can be expressed in terms of uniaxial yield stresses in tension and compression. As a case study, the analytical model is applied to predict the moment-curvature behaviours of AZ31B magnesium alloy sheets under uniaxial loading condition. Furthermore, the analytical model is implemented as a user-defined material through the UMAT interface in Abaqus [7, 8] for conducting pure bending simulations. The results show that the analytical model can reasonably capture the asymmetric tension-compression behaviour of the magnesium alloy. The predicted moment-curvature behaviour has good agreement with the experimental results. Furthermore, numerical results show a better accuracy by the application of the Cazacu-Barlat yield function than those using the von-Mises yield function, which are more conservative than analytical results.

  3. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools

    DEFF Research Database (Denmark)

    Loginov, P.A.; Sidorenko, D.A.; Levashov, E.A.

    2018-01-01

    The applicability of metallic nanocomposites as binder for diamond machining tools is demonstrated. The various nanoreinforcements (carbon nanotubes, boron nitride hBN, nanoparticles of tungsten carbide/WC) and their combinations are embedded into metallic matrices and their mechanical properties...... are determined in experiments. The wear resistance of diamond tools with metallic binders modified by various nanoreinforcements was estimated. 3D hierarchical computational finite element model of the tool binder with hybrid nanoscale reinforcements is developed, and applied for the structure...

  4. Multi-objective optimization under uncertainty for sheet metal forming

    Directory of Open Access Journals (Sweden)

    Lafon Pascal

    2016-01-01

    Full Text Available Aleatory uncertainties in material properties, blank thickness and friction condition are inherent and irreducible variabilities in sheet metal forming. Optimal design configurations, which are obtained by conventional design optimization methods, are not always able to meet the desired targets due to the effect of uncertainties. This paper proposes a multi-objective robust design optimization that aims to tackle this problem. Results obtained on a U shape draw bending benchmark show that spring-back effect can be controlled by optimizing process parameters.

  5. Assessing the formability of metallic sheets by means of localized and diffuse necking models

    Science.gov (United States)

    Comşa, Dan-Sorin; Lǎzǎrescu, Lucian; Banabic, Dorel

    2016-10-01

    The main objective of the paper consists in elaborating a unified framework that allows the theoretical assessment of sheet metal formability. Hill's localized necking model and the Extended Maximum Force Criterion proposed by Mattiasson, Sigvant, and Larsson have been selected for this purpose. Both models are thoroughly described together with their solution procedures. A comparison of the theoretical predictions with experimental data referring to the formability of a DP600 steel sheet is also presented by the authors.

  6. EXPERIMENTAL TESTING OF DRAW—BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    Institute of Scientific and Technical Information of China (English)

    J.H.Yang; J.Chen; 等

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory and depending on sheet metal forming properties experiment testing system,a simplified method to calculate draw-bead restraining force is put forward by experimental method in cup-shaped drawing process.The experimental results were compared with numer-ical results and proved agreement.It shows the method is effective.

  7. Investigation on Wire Electrochemical Micro Machining of Ni-based Metallic Glass

    International Nuclear Information System (INIS)

    Meng, Lingchao; Zeng, Yongbin; Zhu, Di

    2017-01-01

    Highlights: • WECMM with nanosecond pulses is proposed firstly for fabricating micro complex components based on metallic glasses. • Applicable electrolyte for WECMM of the Ni-based MG is discussed. • Significantly uniform machined surface is achieved in H_2SO_4 solution. • High machining efficiency and stability are obtained experimentally by modifying pulse waveforms and electrolyte compositions. • Complex microstructures of Ni-based MG are fabricated by WECMM with optimized parameters. - Abstract: Metallic glasses (MGs) have been recognized as promising materials for realizing high-performance micro devices in micro electromechanical systems (MEMS) due to their excellent functional and structural characteristics. However, the applications of MGs are currently limited because of the difficulty of shaping them on the microscale. Wire electrochemical micro machining (WECMM) is increasingly recognized as a flexible and effective method to fabricate complex-shaped micro metal components with many advantages relative to the thermomechanical processing, which appears to be well suitable for micro shaping of MGs. We consider the example of a Ni-based MG, Ni_7_2Cr_1_9Si_7B_2, which has a typical passivation characteristic in 0.1 M H_2SO_4 solution. The transpassive process can be used for localized material removal when combined with nanosecond pulsed WECMM technique. In present work, the applicable electrolyte for WECMM of the Ni-based MG was discussed firstly. Then the voltage pulse waveform and electrolyte composition were modified to improve machining efficiency and stability. Several complex microstructures such as micro curved cantilever beam, micro gear, and micro square helix were machined with different optimized parameters.

  8. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    Science.gov (United States)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  9. Studies in Cup Drawing Behavior of Polymer Laminated Sheet Metal

    Science.gov (United States)

    Elnagmi, M.; Jain, M.; Bruhis, M.; Nielsen, K.

    2011-08-01

    Axisymmetric deep drawing behavior of a polymer laminated sheet metal (PLSM) is investigated using an axisymmetric cup drawing test. PLSMs are of interest as a replacement for painted finishes for automotive applications as they have the potential to achieve good quality long lasting and aesthetically appealing surfaces on stamped parts. However, there is limited understanding of PLSMs in automotive deep drawing situations to produce complex 3-D parts. The tests are carried out using well-controlled, laboratory-based, dual-action, servo-hydraulic forming presses under blank-holder force and punch displacement control conditions. An optical strain mapping system is used to measure the surface strains (and to construct 3D strain maps) from the film side of the deformed samples for a range of forming conditions. Deep drawing characteristics such as punch load versus punch displacement traces, strain distribution along the cup profile, flange wrinkling and fracture characteristics are experimentally assessed for stainless steel-plastic film laminated sheet materials. Also the effect of lamination pressure on wrinkling and delamination is investigated for a decorative pressure sensitive adhesive film affixed to the stainless steel sheet.

  10. PHYSICAL BASES OF SYSTEMS CREATION FOR MAGNETIC-IMPULSIVE ATTRACTION OF THIN-WALLED SHEET METALS

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2009-01-01

    Full Text Available The work is dedicated to the physical base of systems creating for the thin-walled sheet metals magnetic pulse attraction. Some practical realization models of the author’s suggestions are represented.

  11. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    Science.gov (United States)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  12. Ultrasonic measurement of through-thickness stress gradients in textured sheet metals

    International Nuclear Information System (INIS)

    Man Chising; Li Jianbo; Fan Xingyan; Lu Weiyang

    2000-01-01

    The objective of this investigation is to explore the possibility of using the dispersion of high-frequency Rayleigh waves for the evaluation of through-thickness stress gradients at the surface of metal sheets. We consider an orthorhombic sheet of cubic metal with through-thickness inhomogeneities in stress and texture, and adopt a coordinate system under which the rolling (RD), transverse (TD), and normal direction (ND) of the sheet are taken as the 1-, 2-, and 3-direction, respectively. We restrict our attention to the special case where only the stress components T 11 (x 3 ) and T 22 (x 3 ) in the sheet are nonzero, and consider only Rayleigh waves of sufficiently high frequency for which the sheet can be taken as the half-space x 3 ≥0. For Rayleigh waves of two different frequencies (with wave numbers k 1 and k k 2 respectively) propagating on the same wave path along either RD or TD, we appeal to an analysis of J. Li and Man to obtain a high-frequency asymptotic formula which gives the relative change in time-of-flight Δt/t 0 as (1/k 1 -1/k 2 ) times a linear combination of the derivatives T 11 ' (0), T 22 ' (0), W 4m0 ' (0)(m=0,2,4) and W 6m0 (0)(m=0,2,4,6) at the surface are ascertained and the material constants in the acoustoelastic consitutive equation of this polycrystal are known. An experiment was performed on an AA7075-T651 aluminum alloy beam, in which Δt/t 0 was measured for various values of T 11 (0) and T 11 ' (0) produced by beam bending (with (T 22 ≡0). The relevant texture coefficients of the beam were measured by X-ray diffraction. To obtain specific predictions from the aforementioned symptotic formula, we replace the material constants of the sample by their counterparts predicted for polycrystalline (pure) aluminum by the Man-Paroni model. The predictions and Δt/t 0 are then compared with the experimental results

  13. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    International Nuclear Information System (INIS)

    Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-01-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths

  14. Operation and machine studies

    International Nuclear Information System (INIS)

    1992-01-01

    This annual report describes the GANIL (Grand accelerateur national d'ions lourds, Caen, France) operation and the machine studies realized in 1992. Metallic ions have been accelerated during 36 pc of the time; some were produced for the first time at GANIL: 125 Te, 52 Cr with ECR3, 181 Ta with ECR4. The various machine studies are: comparison of lifetimes of carbon sheets, charge exchange of very heavy ions in carbon foils and in the residual gas of the Ganil cyclotrons, commissioning of the new high intensity axial injection system for Ganil, tantalum acceleration with the new injector, a cyclotron as a mass spectrometer; other studies concerned: implementing the new control system, gettering flux measurement, energy deposited by neutrons and gamma rays in the cryogenic system of SISSI; latest developments on multicharged ECR ion sources, and an on-line isotopic separator test bench at Ganil

  15. NUMISHEET 2016: 10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes

    International Nuclear Information System (INIS)

    2016-01-01

    The NUMISHEET conference series have been established as a world-class forum through which new intellectual ideas and technologies in the area of sheet metal forming simulation are exchanged. Previous NUMISHEET conferences have given enormous contributions to industry and academia in what regards the development of new methods and ideas for the numerical simulation of sheet metal forming processes. Previous NUMISHEET conferences were held in: Zurich (Switzerland, 1991), Isehara (Japan, 1993), Dearborn (USA, 1996), Besancon (France, 1999), Jeju Island (South Korea, 2002), Detroit (USA, 2005), Interlaken (Switzerland, 2008), Seoul (South Korea, 2011) and Melbourne (Australia, 2014). The NUMISHEET 2016 conference will be held in Bristol, UK. It features technical, keynote and plenary sessions and mini-symposiums in diverse sheet metal forming areas including the recently introduced incremental sheet forming and electromagnetic forming, as well as new prominent numerical methods such as IsoGeometric Analysis and meshless methods for sheet analysis. NUMISHEET 2016 will have eight academic plenary lectures delivered by worldwide recognised experts in the areas of sheet metal forming, material modelling and numerical methods in general. Also, NUMISHEET 2016 will have three industrial plenary lectures which will be addressed by three different companies with strong businesses in sheet metal forming processes: AutoForm, Crown Technology and Jaguar Land Rover. One of the most distinguishing features of NUMISHEET conference series is the industrial benchmark sessions, during which numerical simulations of industrial sheet formed parts are compared with experimental results from the industry. The benchmark sessions provide an extraordinary opportunity for networking, for the exchange of technologies related to sheet metal forming and for the numerical validation of sheet metal forming codes/software. Three benchmark studies have been organised in NUMISHEET 2016: BM1) &apos

  16. SKLUST device for high-precision gluing of MWPC

    International Nuclear Information System (INIS)

    Amaglobeli, N.S.; Burov, R.V.; Sakandelidze, R.M.; Sakhelashvili, T.M.; Chiladze, B.G.; Glonti, G.L.; Glonti, L.N.

    2005-01-01

    The SKLUST device has been created for gluing precision plane-parallel anode, cathode of spacer bars and integral anode and cathode frames of the MWPCs or flat surfaces of the large-area cathode planes for them in the case that thin copper clad stesalit or glass-cloth-base laminate is used as the cathode, for example, for the CSC chambers. In contrast to usual gluing, in this device the glued components are not pressed to each other. SKLUST allows making high-precision products in laboratory conditions without preliminarily machining its components and receiving a precision article practically for any area at the plane parallelism from ±0.030 up to ±0.006 mm using a non-calibrated sheet of the foiled (or unfoiled) stesalit, glass-cloth-base laminate or other flexible materials to a tolerance for the thickness ±0.2-0.5 mm or worse. On the biggest of the existing devices it is possible to fabricate an article with the maximal sizes 2400x250 mm 2 at the thickness accuracy (6±0.015) mm (maximum deviation). Whereas in the technological cycle machining of blanks to the thickness or application of exact blanks is completely excluded, the manufacturing process becomes simpler, and the price of the articles essentially reduces, especially for mass production

  17. 4. Seminar on efficient metal forming and machining: papers

    International Nuclear Information System (INIS)

    1982-01-01

    The 4th seminar on efficient metal forming and machining was held at the CSIR conference centre in Pretoria on 16 November 1982. This conference basically discussed the forming, fabrication and machining of metals which included the different methods used as well as new developments on tools manufacturing and their applications. The topics that were discussed cover subjects such as the creep feed grinding, thermal properties of coating materials and their effect on the efficiency of coated cutting tools, economic rough and finish milling, the design and application of high speed steel cutting tools, aluminium extrusion, the manufacturing and finishing of extrusion dies, broaching techniques, cold forming in the fastener industry, finishing methods for spiral, bevel and hypoid gears, laser cutting, press tool design, and productivity in the forging industry. Another topic that were discussed, is the current status of diamond and cubic boron nitride composites, their synthesis and roll in the production of a new range of ultra hard ceramic-type materials

  18. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' < or = 18 mag), with 4500 K < or = Teff < or = 7000 K, corresponding to those with the most reliable SSPP estimates, I find that the model predicts [Fe/H] values with a root-mean-squared-error (RMSE) of approx.0.27 dex. The RMSE from this machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  19. Metal matrix composites synthesis, wear characteristics, machinability study of MMC brake drum

    CERN Document Server

    Natarajan, Nanjappan; Davim, J Paulo

    2015-01-01

    This book is dedicated to composite materials, presenting different synthesis processes, composite properties and their machining behaviour. The book describes also the problems on manufacturing of metal matrix composite components. Among others, it provides procedures for manufacturing of metal matrix composites and case studies.

  20. Precise gouging-free tool orientations for 5-axis CNC machining

    KAUST Repository

    Kim, Yong-Joon

    2014-08-19

    We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank. To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOCs) (Wang et al., 1993a,b), that have third order contact with the target surface, and lead to a locally collision-free configuration between the tool and the target surface. At locations where an HOC is not possible, we aim at a double tangential contact among the tool and the target surface, and use it as a bridge between the feasible HOC tool paths. We formulate all such possible two-contact configurations as systems of algebraic constraints and solve them. For all feasible HOCs and two-contact configurations, we perform a global optimization to find the tool path that maximizes the approximation quality of the machining, while being gouge-free and possibly satisfying constraints on the tool tilt and the tool acceleration. We demonstrate the effectiveness of our approach via several experimental results.

  1. Precise gouging-free tool orientations for 5-axis CNC machining

    KAUST Repository

    Kim, Yong-Joon; Elber, Gershon; Barton, Michael; Pottmann, Helmut

    2014-01-01

    We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank. To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOCs) (Wang et al., 1993a,b), that have third order contact with the target surface, and lead to a locally collision-free configuration between the tool and the target surface. At locations where an HOC is not possible, we aim at a double tangential contact among the tool and the target surface, and use it as a bridge between the feasible HOC tool paths. We formulate all such possible two-contact configurations as systems of algebraic constraints and solve them. For all feasible HOCs and two-contact configurations, we perform a global optimization to find the tool path that maximizes the approximation quality of the machining, while being gouge-free and possibly satisfying constraints on the tool tilt and the tool acceleration. We demonstrate the effectiveness of our approach via several experimental results.

  2. Performance Evaluation of a Bench-Top Precision Glass Molding Machine

    Directory of Open Access Journals (Sweden)

    Peter Wachtel

    2013-01-01

    Full Text Available A Dyna Technologies Inc. GP-5000HT precision glass molding machine has been found to be a capable tool for bridging the gap between research-level instruments and the higher volume production machines typically used in industry, providing a means to apply the results of rigorous instrumentation analysis performed in the lab to industrial PGM applications. The GP-5000HT's thermal and mechanical functionality is explained and characterized through the measurement baseline functionality and the associated error. These baseline measurements were used to determine the center thickness repeatability of pressed glass parts, which is the main metric used in industrial pressing settings. The baselines and the repeatability tests both confirmed the need for three warm-up pressing cycles before the press reaches a thermal steady state. The baselines used for pressing a 2 mm glass piece to a 1 mm target center thickness yielded an average center thickness of 1.001 mm and a standard deviation of thickness of 0.0055 mm for glass samples pressed over 3 consecutive days. The baseline tests were then used to deconvolve the sources of error of final pressed piece center thickness.

  3. Modernity Evaluation of the Machines Used During Production Process of Metal Products

    OpenAIRE

    Ingaldi, Manuela; Dziuba, Szymon T.

    2015-01-01

    Most manufacturing companies realize its technologies, implemented through concrete machinery parts. They differ in terms of importance, the relevance of their selection and the level of their modernity. Modernity and efficiency of the machine are also very important during production process of the metal products. They have an influence on the quality of these products. The purpose of this article is to analyse the chosen production machine (CNC machine AFE-3D8-T) used during pro...

  4. Designing a logistic control system : dealing with changes in Fokker's sheet metal unit

    NARCIS (Netherlands)

    Gomes, Javier

    2008-01-01

    The following report presents the results of the Logistics Design Project carried out at the sheet metal unit of Stork-Fokker AESP, from October 2007 to March 2008. Stork Fokker AESP designs, develops and produces advanced structures and electrical systems for the aerospace and defense industry. The

  5. A machine learning approach for the classification of metallic glasses

    Science.gov (United States)

    Gossett, Eric; Perim, Eric; Toher, Cormac; Lee, Dongwoo; Zhang, Haitao; Liu, Jingbei; Zhao, Shaofan; Schroers, Jan; Vlassak, Joost; Curtarolo, Stefano

    Metallic glasses possess an extensive set of mechanical properties along with plastic-like processability. As a result, they are a promising material in many industrial applications. However, the successful synthesis of novel metallic glasses requires trial and error, costing both time and resources. Therefore, we propose a high-throughput approach that combines an extensive set of experimental measurements with advanced machine learning techniques. This allows us to classify metallic glasses and predict the full phase diagrams for a given alloy system. Thus this method provides a means to identify potential glass-formers and opens up the possibility for accelerating and reducing the cost of the design of new metallic glasses.

  6. Some recent developments in sheet metal forming for production of lightweight automotive parts

    Science.gov (United States)

    Tisza, M.; Lukács, Zs; Kovács, P.; Budai, D.

    2017-09-01

    Low cost manufacturing in the automotive industry is one of the main targets due to the ever increasing global competition among car manufacturers all over the World. Sheet metal forming is one of the most important key technologies in the automotive industry; therefore the elaboration of new, innovative low cost manufacturing processes is one of the main objectives in sheet metal forming as well. In 2015 with the initiative of the Imperial College London a research consortium was established under the umbrella Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles. The primary aim of this project is to provide affordable low cost weight reduction in mass production of vehicles considering the entire life-cycle. In this project, 19 European Institutions (Universities and Research Institutions) from 9 European countries are participating with the above targets. The University of Miskolc is one of the members of this research Consortium. In this paper, some preliminary results with the contributions of the University of Miskolc will be introduced.

  7. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – UNCERTAINTY ASSESSMENT BY USING CALIBRATED WORPIECES ON CMMs

    DEFF Research Database (Denmark)

    Tosello, Guido; De Chiffre, Leonardo

    This document is used in connection with one exercise 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns establishment of traceability of precision measurements on coordinate measuring machines. This document contains...... a short description of each step in the exercise, the uncertainty budget as described in the ISO/TS 15530 part 3 and tables from the excel spreadsheets....

  8. Machinability and Tribological Properties of Stir Cast LM6/SiC/GR Hybrid Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Tahat Montasser S.

    2016-01-01

    Full Text Available Analysis on machining characteristics in turning of LM6/SiC/Gr hybrid metal matrix composites is made of (Al-11.8%Si/SiC/Gr hybrid metal matrix composites. The process performances such as porosity, wear rate of the composites, tool wear, tool life, specific modulus, surface roughness and material removal rate with equal weight fraction of SiC and Gr particulates of 3%, 7%, 10% and 13% reinforcement are investigated. This experimental analysis and test results on the machinability of Al/SiCMMC will provide essential guidelines to the manufacturers. Hybird metal matrix composites reinforced with graphite particles posses better machinability and tribological properties.

  9. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    International Nuclear Information System (INIS)

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-01-01

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model

  10. Impact Of Elastic Modulus Degradation On Springback In Sheet Metal Forming

    International Nuclear Information System (INIS)

    Halilovic, Miroslav; Stok, Boris; Vrh, Marko

    2007-01-01

    Strain recovery after removal of forming loads, commonly defined as springback, is of great concern in sheet metal forming, in particular with regard to proper prediction of the final shape of the part. To control the problem a lot of work has been done, either by minimizing the springback on the material side or by increasing the estimation precision in corresponding process simulations. Unfortunately, by currently available software springback still cannot be adequately predicted, because most analyses of springback are using linear, isotropic and constant Young's modulus and Poisson's ratio. But, as it was measured and reported, none of it is true. The aim of this work is to propose an upgraded mechanical model which takes evolution of damage and related orthotropic stiffness degradation into account. Damage is considered by inclusion of ellipsoidal cavities, and their influence on the stiffness degradation is taken in accordance with the Mori-Tanaka theory, adopting the GTN model for plastic flow. In order to improve the numerical springback prediction, two major things are important: first, the correct evaluation of the stress-strain state at the end of the forming process, and second, correctness of the elastic properties used in the elastic relaxation analysis. Since in modelling of the forming process we adopt a damage constitutive model with orthotropic stiffness degradation considered, a corresponding damage parameters identification upon specific experimental tests data must be performed first, independently of the metal forming modelling. An improved identification of material parameters, which simultaneously considers tensile test results with different type of specimens and using neural network, is proposed. With regard to the case in which damage in material is neglected it is shown in the article how the springback of a formed part differs, when we take orthotropic damage evolution into consideration

  11. Diamond machining of micro-optical components and structures

    Science.gov (United States)

    Gläbe, Ralf; Riemer, Oltmann

    2010-05-01

    Diamond machining originates from the 1950s to 1970s in the USA. This technology was originally designed for machining of metal optics at macroscopic dimensions with so far unreached tolerances. During the following decades the machine tools, the monocrystalline diamond cutting tools, the workpiece materials and the machining processes advanced to even higher precision and flexibility. For this reason also the fabrication of small functional components like micro optics at a large spectrum of geometries became technologically and economically feasible. Today, several kinds of fast tool machining and multi axis machining operations can be applied for diamond machining of micro optical components as well as diffractive optical elements. These parts can either be machined directly as single or individual component or as mold insert for mass production by plastic replication. Examples are multi lens arrays, micro mirror arrays and fiber coupling lenses. This paper will give an overview about the potentials and limits of the current diamond machining technology with respect to micro optical components.

  12. Apparatus for electrical-assisted incremental forming and process thereof

    Science.gov (United States)

    Roth, John; Cao, Jian

    2018-04-24

    A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while the machine is forming the sheet metal component.

  13. Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal

    Science.gov (United States)

    Kurz, Gerrit

    In order to reduce fuel consumption efforts have been made to decrease the weight of automobile constructions by increasing the use of lightweight materials. In this field of application magnesium alloys are important because of their low density. A promising alternative to large surfaced and thin die casting parts has been found in construction parts that are manufactured by sheet metal forming of magnesium. Magnesium alloys show a limited formability at room temperature. A considerable improvement of formability can be achieved by heating the material. Formability increases above a temperature of approximately T = 225 °C.

  14. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    Science.gov (United States)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  15. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  16. Effect of material scatter on the plastic behavior and stretchability in sheet metal forming

    NARCIS (Netherlands)

    Wiebenga, J.H.; Atzema, E.H.; Atzema, E.H.; An, Y.G.; Vegter, H.; van den Boogaard, Antonius H.

    2014-01-01

    Robust design of forming processes is gaining attention throughout the industry. To analyze the robustness of a sheet metal forming process using Finite Element (FE) simulations, an accurate input in terms of parameter scatter is required. This paper presents a pragmatic, accurate and economic

  17. Apparel Manufacturing (Course Outline), Industrial Single Needle Machines and Machine Practice: 9377.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This course includes a study of the industrial single needle machine, its principal parts, general care, threading, and basic skills in machine practice. Instructional materials include films, illustration, information sheets, and other materials. (CK)

  18. The newest precision measurement

    International Nuclear Information System (INIS)

    Lee, Jing Gu; Lee, Jong Dae

    1974-05-01

    This book introduces basic of precision measurement, measurement of length, limit gauge, measurement of angles, measurement of surface roughness, measurement of shapes and locations, measurement of outline, measurement of external and internal thread, gear testing, accuracy inspection of machine tools, three dimension coordinate measuring machine, digitalisation of precision measurement, automation of precision measurement, measurement of cutting tools, measurement using laser, and point of choosing length measuring instrument.

  19. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    OpenAIRE

    Mo Yang; Lin Gui; Yefa Hu; Guoping Ding; Chunsheng Song

    2018-01-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. ...

  20. Hall effect measurement for precise sheet resistance and thickness evaluation of Ruthenium thin films using non-equidistant four-point probes

    Directory of Open Access Journals (Sweden)

    Frederik Westergaard Østerberg

    2018-05-01

    Full Text Available We present a new micro Hall effect measurement method using non-equidistant electrodes. We show theoretically and verify experimentally that it is advantageous to use non-equidistant electrodes for samples with low Hall sheet resistance. We demonstrate the new method by experiments where Hall sheet carrier densities and Hall mobilities of Ruthenium thin films (3-30 nm are determined. The measurements show that it is possible to measure Hall mobilities as low as 1 cm2V−1s−1 with a relative standard deviation of 2-3%. We show a linear relation between measured Hall sheet carrier density and film thickness. Thus, the method can be used to monitor thickness variations of ultra-thin metal films.

  1. Experimental formability analysis of bondal sandwich sheet

    Science.gov (United States)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  2. BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Machine learning and data mining advance predictive big data analysis in precision animal agriculture.

    Science.gov (United States)

    Morota, Gota; Ventura, Ricardo V; Silva, Fabyano F; Koyama, Masanori; Fernando, Samodha C

    2018-04-14

    Precision animal agriculture is poised to rise to prominence in the livestock enterprise in the domains of management, production, welfare, sustainability, health surveillance, and environmental footprint. Considerable progress has been made in the use of tools to routinely monitor and collect information from animals and farms in a less laborious manner than before. These efforts have enabled the animal sciences to embark on information technology-driven discoveries to improve animal agriculture. However, the growing amount and complexity of data generated by fully automated, high-throughput data recording or phenotyping platforms, including digital images, sensor and sound data, unmanned systems, and information obtained from real-time noninvasive computer vision, pose challenges to the successful implementation of precision animal agriculture. The emerging fields of machine learning and data mining are expected to be instrumental in helping meet the daunting challenges facing global agriculture. Yet, their impact and potential in "big data" analysis have not been adequately appreciated in the animal science community, where this recognition has remained only fragmentary. To address such knowledge gaps, this article outlines a framework for machine learning and data mining and offers a glimpse into how they can be applied to solve pressing problems in animal sciences.

  3. Agile Production of Sheet Metal Aviation Components Using Disposable Electromagnetic Actuators

    OpenAIRE

    Carson, B.; Daehn, G.; Psyk, V.; Tekkaya, A. E.; Weddeling, C.; Woodward, S.

    2010-01-01

    Electromagnetic forming is a process used to produce high strain rates that improve the formability of sheet metal. The objective of this paper is to discuss the feasibility of the use of disposable actuators during electromagnetic forming of two aluminum components: an industry part whose main feature is a convex flange with two joggles, and a simple part with a one-dimensional curve throughout. The main forming complications after the parts were formed using conventional methods were the pr...

  4. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    International Nuclear Information System (INIS)

    Alves, J.L.; Oliveira, M.C.; Menezes, L.F.

    2004-01-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results

  5. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    Science.gov (United States)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  6. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    Science.gov (United States)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  7. Numerical modelling of microscopic lubricant flow in sheet metal forming. Application to plane strip drawing

    DEFF Research Database (Denmark)

    Carretta, Y.; Boman, R.; Bech, Jakob Ilsted

    2017-01-01

    This paper presents a numerical investigation of microscopic lubricant flows from the cavities to the plateaus of the surface roughness of metal sheets during forming processes. This phenomenon, called micro-plasto-hydrodynamic (MPH) lubrication, was observed experimentally in various situations...

  8. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    Science.gov (United States)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  9. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    CERN Document Server

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  10. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    International Nuclear Information System (INIS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-01-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces. (paper)

  11. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  12. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-03-01

    Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  13. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  14. A New Approach for Handling of Micro Parts in Bulk Metal Forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Arentoft, M.

    2012-01-01

    of production [1]. This can fulfill the demands for mass production and miniaturization in industries and academic communities. According to the recent studies, topics related to materials, process and simulation have been investigated intensively and well documented. Machines, forming tools and handling...... systems are critical elements to complete micro forming technology for transferring knowledge to industries and toward miniature manufacturing systems (micro factory) [2]. Since most metal forming processes are multi stage, making a new handling system with high reliability on accuracy and speed...... have been optimized or handling systems based on new concepts for gripping and releasing micro parts have been proposed. Making a handling system for micro parts made by sheet metals or foils is easier than those in bulk metal forming because parts are attached to the sheet during the forming process...

  15. Friction modelling in sheet metal forming simulations: application and validation on an U-Bend product

    NARCIS (Netherlands)

    Sigvant, Mats; Hol, Johan; Chezan, Toni; van den Boogaard, Ton; Hora, P.

    2015-01-01

    The accuracy of sheet metal forming simulations strongly depends on, amongst others, friction modelling. The industrial standard is to use the Coulomb friction model with a constant coefficient of friction. However, it is known that the true friction conditions are dependent on the tribology system,

  16. The quantitative representation of fiber-and sheet-texture in metals of cubic system

    International Nuclear Information System (INIS)

    Kim, H.J.; Kim, S.C.; Chun, B.C.; Lee, C.Y.

    1983-01-01

    This is the first article of a series dealing with studies on the quantitative representation of fiber-and sheet-type textures in metals of cubic crystal system. Texture measurements by neutron diffraction method are analyzed using Bunge's series expansion method and the effect of series truncation is studied for samples of various texture sharpness. The present article describes two computer programs, TXFIB and TXSHT, develped for the analysis of the respective fiber-and sheet-type texture. Using these computer programs, the orientation distribution function can be expanded in the series of generalized spherical harmonics up to 58th term from 6 experimental pole figures as input. Estimations of various errors involved in the texture analysis and texture sharpness index are also included in the programs. (Author)

  17. Adaptive scallop height tool path generation for robot-based incremental sheet metal forming

    Science.gov (United States)

    Seim, Patrick; Möllensiep, Dennis; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    Incremental sheet metal forming is an emerging process for the production of individualized products or prototypes in low batch sizes and with short times to market. In these processes, the desired shape is produced by the incremental inward motion of the workpiece-independent forming tool in depth direction and its movement along the contour in lateral direction. Based on this shape production, the tool path generation is a key factor on e.g. the resulting geometric accuracy, the resulting surface quality, and the working time. This paper presents an innovative tool path generation based on a commercial milling CAM package considering the surface quality and working time. This approach offers the ability to define a specific scallop height as an indicator of the surface quality for specific faces of a component. Moreover, it decreases the required working time for the production of the entire component compared to the use of a commercial software package without this adaptive approach. Different forming experiments have been performed to verify the newly developed tool path generation. Mainly, this approach serves to solve the existing conflict of combining the working time and the surface quality within the process of incremental sheet metal forming.

  18. The Newest Machine Material

    International Nuclear Information System (INIS)

    Seo, Yeong Seop; Choe, Byeong Do; Bang, Meong Sung

    2005-08-01

    This book gives descriptions of machine material with classification of machine material and selection of machine material, structure and connection of material, coagulation of metal and crystal structure, equilibrium diagram, properties of metal material, elasticity and plasticity, biopsy of metal, material test and nondestructive test. It also explains steel material such as heat treatment of steel, cast iron and cast steel, nonferrous metal materials, non metallic materials, and new materials.

  19. Chemically-modified graphene sheets as an active layer for eco-friendly metal electroplating on plastic substrates

    International Nuclear Information System (INIS)

    Oh, Joon-Suk; Hwang, Taeseon; Nam, Gi-Yong; Hong, Jung-Pyo; Bae, Ah-Hyun; Son, Sang-Ik; Lee, Geun-Ho; Sung, Hak kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Nam, Jae-Do

    2012-01-01

    Eco-friendly nickel (Ni) electroplating was carried out on a plastic substrate using chemically modified graphene sheets as an active and conductive layer to initiate electroplating without using conventional pre-treatment or electroless metal-seeding processes. A graphene oxide (GO) solution was self-assembled on a polyethylene terephthalate (PET) film followed by evaporation to give GO layers (thickness around 6.5 μm) on PET (GO/PET) film. Then, the GO/PET film was chemically and thermally reduced to convert the GO layers to reduced graphene oxide (RGO) layers on the PET substrate. The RGO-coated PET (RGO/PET) film showed the sheet resistance of 100 Ω per square. On RGO/PET film, Ni electroplating was conducted under the constant-current condition and the entire surface of the PET film was completely metalized with Ni without any voids.

  20. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  1. Precise positioning method for multi-process connecting based on binocular vision

    Science.gov (United States)

    Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan

    2016-01-01

    With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.

  2. Off-Line Testing of Tribo-Systems for Sheet Metal Forming Production

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    Off-line testing of new tribo-systems for sheet metal forming production is an important issue, when new, environmentally benign lubricants are to be introduced. To obtain useful results it is, however, vital to ensure similar conditions as in the production process regarding the main tribo...... leading to very high tool/workpiece interface pressure and temperature in the second re-draw. Under such conditions only the best lubricant systems work satisfactory, and the paper shows how the performance of different tribo-systems in production may be predicted by off-line testing combined...

  3. Forming limit diagrams for anisotropic metal sheets with different yield criteria

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is analyzed by using the M-K-model approach, and forming limit diagrams are drawn based on the critical strains for localization. The analyses account for plastic anisotropy......, and predictions are shown based on four different anisotropic plasticity models, which have all been fitted to agree with the same set of experimental data. Situations where the tensile axis is along one of the orthotropic axes of the anisotropy are studied, as well as situations where the tensile axis...

  4. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  5. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  6. Development of dynamic explicit crystallographic homogenization finite element analysis code to assess sheet metal formability

    International Nuclear Information System (INIS)

    Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji

    2004-01-01

    The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and 'earing'. This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale 'unit cell', where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation.At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's 'constant strain homogenization algorithm' yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on 'earing' in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale

  7. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-05-01

    Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to catalysis. This success resulted from the manipulation of the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal nanoclusters, such as doped Ag29 with five gold (Au) atoms leading to enhance its quantum yield with remarkable stability. We also developed half-doped (alloyed) cluster of Ni6 nanocluster with molybdenum (Mo). This enabled enhanced stability and better catalytic activity. The third metal nanocluster that we synthesized was Au28 nanocluster by using di-thiolate as the ligand stabilizer instead of mono-thiolate. The new metal clusters obtained have been characterized by spectroscopic, electrochemical and crystallographic methods.

  8. 75 FR 15741 - Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of...

    Science.gov (United States)

    2010-03-30

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,630] Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of Investigation Pursuant to Section 223..., Troy, Michigan. The petitioning workers were filing on behalf of workers employed by several...

  9. Study of laser bending of a preloaded Titanium alloy sheet

    Directory of Open Access Journals (Sweden)

    Wang Xiufeng

    2014-01-01

    Full Text Available Laser bending of sheet metals with preload offers some attractive characteristics/merits, comparing to laser free bending without prestressing on the metals. The study reported in this paper was focused on a Titanium alloy which finds widespread applications in aerospace manufacturing. FE simulation of laser bending with prestressing on the Titanium alloy sheet was conducted for the analysis of the bending process and experiment carried out to verify the model and the result. It was shown that the simulation result is close to that measured in the experiment. Based on the computed result, the load-displacement curve was analysed and transmission efficiency of the elastic energy defined to evaluate the bending effect. These enhanced understanding of the mechanism of laser bending with a preload. A method for the optimization on technological parameters was further proposed. Referring to the deformation targeted, the preload value was determined through the FE simulation. The result showed that, on the premise that the specimen surface can be prevented from damaging, transmission efficiency of the elastic energy could reach to the maximum value through adjusting technological parameters of the laser system and deformation accuracy of the specimen could also be improved through this approach. The work presented in this paper may find its application in the manufacture of Titanium alloy sheets with a more cost-effective and a more precise way.

  10. A new constitutive model for prediction of springback in sheet metal forming

    International Nuclear Information System (INIS)

    Appiah, E.; Jain, M.

    2004-01-01

    With advances in computer capabilities, cost of sheet metal forming has being reducing mainly due to the reduction of trial and error approaches. At the moment, a complete process can be simulated on computer and appropriate forming conditions optimized before actual industrial forming process is carried out. While formability predictions have improved, the problem of springback exhibited by most metal, including aluminum alloy AA6111-T4, after forming persist and often leads to significant part fit-up problems during assembly. There are a number of factors that affect springback and perhaps the most significant one is constitutive equation. In this paper springback predicted by six advanced kinematic models are evaluated. In addition an improved constitutive kinematic model is presented. It is shown that by adding stress correction term (SCT) to Armstrong-Frederick model a relatively simple and yet accurate stress prediction could be obtained. The SCT was developed with the assumption that the yield surface remains convex, yield center depends on translation, size and shape variations of the yield surface. The model is implemented in a commercial finite element code (ABAQUS/Standard) via its user material interface (UMAT). Numerical simulations of U-bending were performed using automotive aluminum sheet material (AA6111-T4). It was noted that springback has inverse relationship with residual stress

  11. Machinability of titanium metal matrix composites (Ti-MMCs)

    Science.gov (United States)

    Aramesh, Maryam

    Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in

  12. Replacing the mechanical synchronism by electronic synchronism in metallography machines; Substituicao do sincronismo mecanico por sincronismo eletronico das maquinas de metalografia

    Energy Technology Data Exchange (ETDEWEB)

    Fusco, Miguel A.V.; Reis, Luiz O.M. dos [Universidade de Taubate (UNITAU), SP (Brazil)

    2009-07-01

    In the printing industry there is several segments and one of these segments is the printing in sheet metal, known how cans manufacturer (metallography). This segment consists in a preparation of the steel plates for the manufacturing industry for both cans household and industrial fields. Today most of the machines in this market segment is old and often driven by only one electric motor. The speed variation occurs through electromechanical and / or electromagnetic inverters or DC motors whose process timing and positioning of the sheet along the machine is via mechanical systems gears, gearboxes, belts and transmissions. The objective of this work is to suggest the replacement of the set of mechanical transmission by a completely electronic system through the use of AC motors, frequency inverters and programmable logic controller (PLC), that the synchronization system and position are done by encoders coupled to the PLC, ensuring the proper functioning of the whole machine. Using this system, the index of maintenance will be reduced and the machine speed will be increased from 5% to 10%, ensuring a higher production.

  13. Modeling of optimization strategies in the incremental CNC sheet metal forming process

    International Nuclear Information System (INIS)

    Bambach, M.; Hirt, G.; Ames, J.

    2004-01-01

    Incremental CNC sheet forming (ISF) is a relatively new sheet metal forming process for small batch production and prototyping. In ISF, a blank is shaped by the CNC movements of a simple tool in combination with a simplified die. The standard forming strategies in ISF entail two major drawbacks: (i) the inherent forming kinematics set limits on the maximum wall angle that can be formed with ISF. (ii) since elastic parts of the imposed deformation can currently not be accounted for in CNC code generation, the standard strategies can lead to undesired deviations between the target and the sample geometry.Several enhancements have recently been put forward to overcome the above limitations, among them a multistage forming strategy to manufacture steep flanges, and a correction algorithm to improve the geometric accuracy. Both strategies have been successful in improving the forming of simple parts. However, the high experimental effort to empirically optimize the tool paths motivates the use of process modeling techniques.This paper deals with finite element modeling of the ISF process. In particular, the outcome of different multistage strategies is modeled and compared to collated experimental results regarding aspects such as sheet thickness and the onset of wrinkling. Moreover, the feasibility of modeling the geometry of a part is investigated as this is of major importance with respect to optimizing the geometric accuracy. Experimental validation is achieved by optical deformation measurement that gives the local displacements and strains of the sheet during forming as benchmark quantities for the simulation

  14. Research on Liquid Forming Process of Nickel Superalloys Thin Sheet Metals

    Directory of Open Access Journals (Sweden)

    Hyrcza-Michalska M.

    2017-12-01

    Full Text Available The paper presents the study of drawability of thin sheet metals made of a nickel superalloy Inconel type. The manufacturing process of axisymmetric cup – cone and a closed section profile in the form of a circular tube were designed and analyzed. In both cases, working fluid-oil was used in place of the rigid tools. The process of forming liquid is currently the only alternative method for obtaining complex shapes, coatings, and especially if we do it with high-strength materials. In the case of nickel superalloys the search for efficient methods to manufacture of the shaped shell is one of the most considerable problems in aircraft industry [1-5]. However, the automotive industries have the same problem with so-called advanced high-strength steels (AHSS. Due to this, both industrial problems have been examined and the emphasis have been put on the process of liquid forming (hydroforming. The study includes physical tests and the corresponding numerical simulations performed, using the software Eta/Dynaform 5.9. Numerical analysis of the qualitative and quantitative forecasting enables the formability of materials with complex and unusual characteristics of the mechanical properties and forming technology. It has been found that only the computer aided design based on physical and numerical modeling, makes efficient plastic processing possible using a method of hydroforming. Drawability evaluation based on the determination of the mechanical properties of complex characteristics is an indispensable element of this design in the best practice of industrial manufacturing products made of thin sheet metals.

  15. Prediction of Path Deviation in Robot Based Incremental Sheet Metal Forming by Means of a New Solid-Shell Finite Element Technology and a Finite Elastoplastic Model with Combined Hardening

    Science.gov (United States)

    Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-08-01

    The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.

  16. AN ANALYSIS OF THE MANUFACTURING POSSIBILITY OF SPECIAL ANKLE FOOT ORTHOSIS COMPONENTS BY OMPARISON BETWEEN THE REQUIRED PRECISION AND THE VAILABLE PRECISION ON A VERTICAL MACHINING CENTER PROGRAMED WITH TOPSOLID

    Directory of Open Access Journals (Sweden)

    Alexandru STANIMIR

    2010-06-01

    Full Text Available Validation of different solutions adopted to achieve new ankle foot orthosis involves among others their prototyping. In these paper we developed a representative part for two axis machining that requires the use of the main features of TopSolid Cad and Cam modules, and that assumes the use of the main manufacturing processes that usually may be met on a vertical machining center. Also, in order to determine the dimensional and geometrical deviations of the part this was done on the YMC 1050 machining center. After comparing the measured deviations with the requirements of various components of orthesis, we concluded that the available precision meets the requirements and that the machining center with TopSolid software that we have will enable us to realize special ankle foot orthosis of quality, for experimental research .

  17. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Directory of Open Access Journals (Sweden)

    Vince Beachley

    2014-08-01

    Full Text Available A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications.

  18. OptiCentric lathe centering machine

    Science.gov (United States)

    Buß, C.; Heinisch, J.

    2013-09-01

    High precision optics depend on precisely aligned lenses. The shift and tilt of individual lenses as well as the air gap between elements require accuracies in the single micron regime. These accuracies are hard to meet with traditional assembly methods. Instead, lathe centering can be used to machine the mount with respect to the optical axis. Using a diamond turning process, all relevant errors of single mounted lenses can be corrected in one post-machining step. Building on the OptiCentric® and OptiSurf® measurement systems, Trioptics has developed their first lathe centering machines. The machine and specific design elements of the setup will be shown. For example, the machine can be used to turn optics for i-line steppers with highest precision.

  19. Some regularities of structure and surface layer properties changing of metal materials after electro-erosion machining

    International Nuclear Information System (INIS)

    Khvostyntsev, K.I.; Kuz'mina, T.S.; Kruglov, V.V.; Lukovkin, G.F.

    1982-01-01

    Effect of electoerosion machining on the surface state of pearlitic class steel of the 12KhN4MFA type, bronzes BrAMts 9-2 and BrAZhNMts 9-4-4-1, of the alloy PT-3V has been studied. As a result of electroerosion machining (EEM) a transformed layer, presenting overheated and partially melted metal, the structure and hardness of which depend on chemical composition of the materials treated, their tendency to phase transformatins and saturation with introduction elements, is formed on the surface of metal materials

  20. Some regularities of structure and surface layer properties changing of metal materials after electro-erosion machining

    Energy Technology Data Exchange (ETDEWEB)

    Khvostyntsev, K.I.; Kuz' mina, T.S.; Kruglov, V.V.; Lukovkin, G.F.

    1982-01-01

    Effect of electoerosion machining on the surface state of pearlitic class steel of the 12KhN4MFA type, bronzes BrAMts 9-2 and BrAZhNMts 9-4-4-1, of the alloy PT-3V has been studied. As a result of electroerosion machining (EEM) a transformed layer, presenting overheated and partially melted metal, the structure and hardness of which depend on chemical composition of the materials treated, their tendency to phase transformatins and saturation with introduction elements, is formed on the surface of metal materials.

  1. A randomized, controlled intervention of machine guarding and related safety programs in small metal-fabrication businesses.

    Science.gov (United States)

    Parker, David L; Brosseau, Lisa M; Samant, Yogindra; Xi, Min; Pan, Wei; Haugan, David

    2009-01-01

    Metal fabrication employs an estimated 3.1 million workers in the United States. The absence of machine guarding and related programs such as lockout/tagout may result in serious injury or death. The purpose of this study was to improve machine-related safety in small metal-fabrication businesses. We used a randomized trial with two groups: management only and management-employee. We evaluated businesses for the adequacy of machine guarding (machine scorecard) and related safety programs (safety audit). We provided all businesses with a report outlining deficiencies and prioritizing their remediation. In addition, the management-employee group received four one-hour interactive training sessions from a peer educator. We evaluated 40 metal-fabrication businesses at baseline and 37 (93%) one year later. Of the three nonparticipants, two had gone out of business. More than 40% of devices required for adequate guarding were missing or inadequate, and 35% of required safety programs and practices were absent at baseline. Both measures improved significantly during the course of the intervention. No significant differences in changes occurred between the two intervention groups. Machine-guarding practices and programs improved by up to 13% and safety audit scores by up to 23%. Businesses that added safety committees or those that started with the lowest baseline measures showed the greatest improvements. Simple and easy-to-use assessment tools allowed businesses to significantly improve their safety practices, and safety committees facilitated this process.

  2. A study on ultra-precision machining technique for Al6061-T6 to fabricate space infrared optics

    Science.gov (United States)

    Ryu, Geun-man; Lee, Gil-jae; Hyun, Sang-won; Sung, Ha-yeong; Chung, Euisik; Kim, Geon-hee

    2014-08-01

    In this paper, analysis of variance on designed experiments with full factorial design was applied to determine the optimized machining parameters for ultra-precision fabrication of the secondary aspheric mirror, which is one of the key elements of the space cryogenic infrared optics. A single point diamond turning machine (SPDTM, Nanotech 4μpL Moore) was adopted to fabricate the material, AL6061-T6, and the three machining parameters of cutting speed, feed rate and depth of cut were selected. With several randomly assigned experimental conditions, surface roughness of each condition was measured by a non-contact optical profiler (NT2000; Vecco). As a result of analysis using Minitab, the optimum cutting condition was determined as following; cutting speed: 122 m/min, feed rate: 3 mm/min and depth of cut: 1 μm. Finally, a 120 mm diameter aspheric secondary mirror was attached to a particularly designed jig by using mixture of paraffin and wax and successfully fabricated under the optimum machining parameters. The profile of machined surface was measured by a high-accuracy 3-D profilometer(UA3P; Panasonic) and we obtained the geometrical errors of 30.6 nm(RMS) and 262.4 nm(PV), which satisfy the requirements of the space cryogenic infrared optics.

  3. Development of millimeter-wave accelerating structures using precision metal forming technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-06-03

    High gradients in radio-frequency (RF) driven accelerators require short wavelengths that have the concomitant requirements of small feature size and high tolerances, 1-2 {micro}m for millimeter wavelengths. Precision metal-forming stampling has the promise of meeting those tolerances with high production rates. This STI will evaluate that promise.

  4. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    Science.gov (United States)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  5. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  6. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  7. Radial-rotation profile forming: A new processing technology of incremental sheet metal forming

    Science.gov (United States)

    Laue, Robert; Härtel, Sebastian; Awiszus, Birgit

    2018-05-01

    Incremental forming processes (i.e., spinning) of sheet metal blanks into cylindrical cups are suitable for lower lot sizes. The produced cups were frequently used as preforms to produce workpieces in further forming steps with additional functions like profiled hollow parts [1]. The incremental forming process radial-rotation profile forming has been developed to enable the production of profiled hollow parts with low sheet thinning and good geometrical accuracy. The two principal forming steps are the production of the preform by rotational swing-folding [2] and the subsequent radial profiling of the hollow part in one clamping position. The rotational swing-folding process is based on a combination of conventional spinning and swing-folding. Therefore, a round blank rotates on a profiled mandrel and due to the swinging of a cylindrical forming tool, the blank is formed to a cup with low sheet thinning. In addition, thickening results at the edge of the blank and wrinkling occurs. However, the wrinkles are formed into the indentation of the profiled mandrel and can be reshaped as an advantage in the second process step, the radial profiling. Due to the rotation and continuous radial feed of a profiled forming tool to the profiled mandrel, the axial profile is formed in the second process step. Because of the minor relative movement in axial direction between tool and blank, low sheet thinning occurs. This is an advantage of the principle of the process.

  8. Forming Limits in Sheet Metal Forming for Non-Proportional Loading Conditions - Experimental and Theoretical Approach

    International Nuclear Information System (INIS)

    Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf; Merklein, Marion

    2005-01-01

    The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress

  9. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  10. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  11. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Science.gov (United States)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  12. Exploitation of the Ultraviolet Properties and Machine Cut Edges of Paper to Associate and Sequence Sheets in a Ream.

    Science.gov (United States)

    Musgrave, Nicola R; Thorne, Oliver T S

    2018-01-16

    Previously unreported line patterns visible under ultraviolet light were observed on a proportion of plain white A4 printer/copier paper from different manufacturers. These Ultraviolet Line Patterns (UVLPs) usually appear as stripes down the vertical length of the paper. Typically, the UVLPs were found to "repeat" through the ream in a predictable way, while also changing. It is postulated that the repeating nature of the UVLPs is a result of the way that paper is manufactured. This leads to the ability to sequence the sheets compared to their original source paper. Even in the absence of UVLPs, it is possible to use our observation of the manufacturing process to anticipate the order of several sheets of paper and conclusively associate them, in some cases, by physically fitting their machine cut edges and crossing paper fibers. Such a novel approach to examining questioned documents would be highly useful in forensic casework. © 2018 American Academy of Forensic Sciences.

  13. Control the springback of metal sheets by using an artificial neural network

    International Nuclear Information System (INIS)

    Crina, Axinte

    2007-01-01

    One of the greatest challenges of manufacturing sheet metal parts is to obtain consistent parts dimensions. Springback is the major cause of variations and inconsistencies in the final part geometry. Obtaining a consistent and desirable amount of springback is extremely difficult due to the non-linear effects and interactions of process and material parameters. In this work, the ability of an artificial neural network model to predict optimum process parameters and tools geometry which allow to obtain minimum amount of springback is tested, in the case of a cylindrical deep-drawing process

  14. Flexible Engineering Structures from the Corrugated Metal Sheets - Comparison of Costs of Solutions used in the Road Building

    Science.gov (United States)

    Ołdakowska, E.

    2017-11-01

    The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.

  15. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Science.gov (United States)

    Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng

    2018-03-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.

  16. Finishing of precision generated metal optical components

    International Nuclear Information System (INIS)

    Baker, P.C.; Sonderman, J.B.

    1975-08-01

    Diamond turning and precision generation of aspheric metal surfaces has promoted a change in lapping techniques due to the extremely close figure tolerances and surface finishes that have been achieved. Special tooling, diamond abrasive, silicon oil and special techniques used to polish the unusual aspheric figures are described. The studies include small flat diamond turned samples of copper, electroplated copper, electroplated silver, electroplated nickel and silver as well as large aspheres such as an f/0.75, 35 cm dia copper ellipse. Results from cleaning studies on flat samples using ultrasonics and vapor degreasers are also summarized. Interferograms of wavefront distortion and analysis of focal volume are included as well as 10.6 μm reflectivity and a summary of laser damage experiments. (TFD)

  17. Machine Shop I. Learning Activity Packets (LAPs). Section D--Power Saws and Drilling Machines.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "power saws and drilling machines" instructional area of a Machine Shop I course. The two LAPs cover the following topics: power saws and drill press. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning…

  18. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    Science.gov (United States)

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  19. Striation-free fibre laser cutting of mild steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M.; Crouse, P.L.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Sackville Street Building, P.O. Box 88, Manchester (United Kingdom)

    2008-01-15

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations, i.e. regular lines on the cut surface, which lowers the quality of the surfaces produced. The elimination of striation formation is thus of considerable importance, since it could open a variety of novel high-precision applications. This study presents the initial results of a laser cutting study using a 1 kW single-mode fibre laser, a relative newcomer in the field of laser metal cutting. Striation-free laser cuts are demonstrated when cutting 1 mm thick mild steel sheets. (orig.)

  20. Precision engineering : from pre-polishing to deep-hole drilling

    NARCIS (Netherlands)

    Bos, A.; Steinbuch, M.; Shore, P.; Tonnellier, X.P.

    2011-01-01

    Cranfield University designs and produces top-of-the-art precision machines for machining, grinding and polishing, but they use commercial machines as well. One of its specialties is producing precision optics, but projects in other fields are not uncommon. This traineeship involves measurement of

  1. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    Science.gov (United States)

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  2. Vibration control for precision manufacturing using piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, D.R.; Hinnerichs, T.D.; Redmond, J.M.

    1995-12-31

    Piezoelectric actuators provide high frequency, force, and stiffness capabilities along with reasonable Stroke limits, all of which can be used to increase performance levels in precision manufacturing systems. This paper describes two examples of embedding piezoelectric actuators in structural components for vibration control. One example involves suppressing the self excited chatter phenomenon in the metal cutting process of a milling machine and the other involves damping vibrations induced by rigid body stepping of a photolithography platen. Finite element modeling and analyses are essential for locating and sizing the actuators and permit further simulation studies of the response of the dynamic system. Experimental results are given for embedding piezoelectric actuators in a cantilevered bar configuration, which was used as a surrogate machine tool structure. These results are incorporated into a previously developed milling process simulation and the effect of the control on the cutting process stability diagram is quantified. Experimental results are also given for embedding three piezoelectric actuators in a surrogate photolithography platen to suppress vibrations. These results demonstrate the potential benefit that can be realized by applying advances from the field of adaptive structures to problems in precision manufacturing.

  3. Research status in ultra-precision machining of silicon carbide parts by oxidation-assisted polishing

    Directory of Open Access Journals (Sweden)

    Xinmin SHEN

    2016-10-01

    Full Text Available Oxidation-assisted polishing is an important machining method for obtaining SiC parts with high precision. Through plasma oxidation, thermal oxidation, and anodic oxidation, soft oxide can be obtained on the RS-SiC substrate. With the assistance of abrasive polishing to remove the oxide rapidly, the material removal rate can be increased and the surface quality can be improved. The research results indicate that the surface roughness root-mean-square (RMS and roughness-average (Ra can reach 0.626 nm and 0.480 nm by plasma oxidation-assisted polishing; in thermal oxidation-assisted polishing, the RMS and Ra can be 0.920 nm and 0.726 nm; in anodic oxidation, the calculated oxidation rate is 5.3 nm/s based on Deal-Grove model, and the RMS and Ra are 4.428 nm and 3.453 nm respectively in anodic oxidation-assisted polishing. The oxidation-assisted polishing can be propitious to improve the process level in machining RS-SiC, which would promote the application of SiC parts in optics and ceramics fields.

  4. Modification Of Coffe Fruits Breaking Machine Two Cylinder Type With Capacity 700 Kg Jam

    Directory of Open Access Journals (Sweden)

    M.C. Tri Atmodjo

    2017-08-01

    Full Text Available Modification of a tool is an early activity of the business development of a product that is needed by the community. In this case wants a tool or breaking machine to improve the production of fast precise and efficient. Because there are still many farmers who use single cylindrical coffee-breaking machine even most still use traditional or manual way. The purpose of this research is to modify the simple two-cylinder wet coffee breaking tool so that it can be easily applied in the community especially to small and medium-sized coffee of farmers in rural areas and to improve the production result in order to achieve the appropriate result both in the work and quality. . From the calculation of the machine obtained high dimension 1200 mm width 450 mm and length 600 mm. With the material characteristics are Sheet plate Shaft Iron frame Cylindrical breaker Bearing Pulley Belt and gasoline engine 6.5 HP. The results of this machine operation is a coffee fruit that has been broken with a capacity of 800 kg hour.

  5. A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminum sheets and comparison with experimental results

    International Nuclear Information System (INIS)

    Reichl, Ch.; Schneider, R.; Hohenauer, W.; Grabner, F.; Grant, R.J.

    2017-01-01

    Highlights: • Thermodynamic processes for cryogenic sheet metal forming tools were examined. • Static and transient temperature field simulations are evaluated on a Nakajima tool. • Differently arranged cooling loops lead to homogeneous temperature distribution. • Scaling of the geometry leads to significantly increased heat transfer times. • The temperature management of complex forming tools can be developed numerically. - Abstract: Forming at cryogenic temperatures provides a significant improvement in formability of aluminum sheets. This offers the potential for light, complex and highly integrated one-piece components to be produced out of aluminum alloys at sub-zero temperatures. This would allow weight reduction, environmental conservation and cost reduction of a car body to give one example in the automotive industry. For temperature supported processes special forming tools and cooling strategies are required to be able to reach and maintain process stability. Time dependent numerical simulations of the thermodynamic processes of cryogenic sheet metal forming covering all aspects of heat transfer through conduction, convection and radiation play a vital role in the design and development of future tools and are presented for several geometries. Cooling (and heating) strategies (including selection of the number of cooling loops and their relative positioning) in a Nakajima testing tool were evaluated using computational fluid dynamics. These simulations were performed with static and transient solvers to demonstrate the extraction of tool surface temperature distributions on different forming tool geometries. Comparisons of predicted temperature characteristics of an aluminum sheet and experimentally determined temperature distributions were made. The temperature distribution of the surface of an aluminum sheet could be predicted with high accuracy. Further, the influence of the tool size on the parameters temperature transfer times and

  6. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  7. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  8. Study of the influence between the strength of antibending of working rolls on the widening during hot rolling of thin sheet metal

    Directory of Open Access Journals (Sweden)

    U. Muhin

    2016-07-01

    Full Text Available Based on the variation principle of Jourdan was developed a mathematical model of the process of widening freely in hot rolling of thin sheet metal. The principle applies to rigid-plastic materials and for the cinematically admissible area of speeds. The developed model allows to study the distribution of the widening on the length of the deformation zone depending on the parameters of the rolling process and sheet metal. Results are obtained, characterizing the size of the widening and effectiveness of the process control on tension at the entrance and exit from the stand. The widening is dependent on the strength of anti bending.

  9. Hydro mechanical deep-drawing and high pressure sheet metal forming as forming technologies for the production of complex parts made of magnesium sheet metal AZ31B-0; Hydromechanisches Tiefziehen und Hochdruckblechumformung als Verfahren zur Herstellung komplexer Bauteile aus Magnesiumfeinblechen des Typs AZ31B-0

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, B.; Richter, G.; Duering, M.; Karabet, A. [Lehrstuhlleiter, BTU Cottbus, Lehrstuhl Konstruktion und Fertigung, Konrad-Wachsmann Allee 1, 03046 Cottbus (Germany); Sviridov, A.; Hartmann, H.; Richter, U. [Forschungs- und Qualitaetszentrum Oderbruecke gGmbH Eisenhuettenstadt (Germany)

    2004-07-01

    Semi - finished sheet - metal products made of magnesium alloys such as AZ31B are known as better deformable at temperatures in the range of 175 C - 240 C. By means of hydroforming technologies, as there are hydro mechanical deep-drawing and high pressure sheet metal forming, the influence of different forming parameters on the forming results has been investigated. A more complex experimental geometry was deformed applying forming temperatures of 175 C, 200 C, 225 C and 240 C and accordingly adjusted forces of the blank holder. Concerning the applied forming - methods and experimental parameters the forming results have been evaluated and compared regarding the decrease of sheet thickness and the development of small radii. For some experimental parts, which have been deformed by means of high pressure sheet metal forming at temperatures of 175 C and 225 C, supplementary investigations have been carried out in order to determine the evolution of characteristic surface values in dependence on the forming operation. On the basis of these results practical recommendations for the limits of application of aforementioned forming technologies for AZ31B-0 magnesium sheet metal are given. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Eine gute Umformbarkeit von Blechhalbzeugen aus Magnesiumknetlegierungen stellt sich bekanntlich bei Anwendung von Umformtemperaturen im Bereich von 175 C - 240 C ein. Anhand der wirkmedienbasierten Umformverfahren hydromechanisches Tiefziehen und Hochdruckblechumformung ist an handelsueblichen AZ31B-0 Feinblechen die Einstellung unterschiedlicher Umformparameter erprobt worden. Unter Verwendung von Umformtemperaturen von 175 C, 200 C, 225 C und 240 C und entsprechend angepassten Niederhalterdruecken ist eine praxisnahe Versuchsgeometrie ''Minihood'' ausgeformt worden. Im Hinblick auf angewendete Umformverfahren und Versuchsparameter wurde an den Versuchsbauteilen die Blechdickenabnahme und die

  10. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  11. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    Directory of Open Access Journals (Sweden)

    Yuchuan Chen

    2018-03-01

    Full Text Available Laser induced damage threshold (LIDT is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT, followed by water dissolution ultra-precision polishing (WDUP and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal.

  12. Trapping of point defects and segregation at the free surfaces of a metal sheet under irradiation

    International Nuclear Information System (INIS)

    Sarce, Alicia

    2003-01-01

    The migration of irradiation produced vacancies and interstitials to the free surfaces of a sheet of thickness d (pure metal and binary alloys AB of hcp structure) is calculated. For alloys, the irradiation temperature when no segregation exists (critical temperature) is obtained. The anisotropy of the diffusion of point defects in the hcp lattice is explicitly included in the calculations. (author)

  13. Microstructure of bonding interface for resistance welding of Zr-based metallic glass sheets

    International Nuclear Information System (INIS)

    Kuroda, Toshio; Ikeuchi, Kenji; Shimada, Masahiro; Kobayashi, Akira; Kimura, Hisamichi; Inoue, Akihisa

    2009-01-01

    Resistance welding of Zr 55 Cu 30 Al 10 Ni 5 metallic glass sheets was investigated at 723 K in a supercooled liquid region. The welding time was changed from 5 s to 20 s at 723 K. The joint interface of the metallic glass was no defect and no crack. X-ray diffraction technique of the bonding interface of specimens was performed. The specimens showed halo patterns showing existence of only glassy phase, when the welding time was 5 s and 10 s. X-ray diffraction patterns of specimen bonded for 20 s showed crystalline peaks with halo patterns for the welding for 20 s. The crystalline phase at the bonding interface was small. Transmission electron micrograph at the bonding interface showed nanostructures of NiZr 2 and Al 5 Ni 3 Zr 2 . (author)

  14. High speed laser cutting machine. Kosoku reza kakoki

    Energy Technology Data Exchange (ETDEWEB)

    Shinno, N. (Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan))

    1993-11-01

    The carbon dioxide gas laser cutting machine is being used widely for from cutting soft steel and stainless steel, etc. to intermetallic welding and in the field of cutting in particular, concerning sheet cutting, it has been changing the existing monopoly of the turret punch press, and as for medium and thick plate cutting, that of the gas plasma fusing device. This article is the general description of high speed laser cutting machine. Concerning the laser cutting (sheet cutting in particular), as the essential items for securing severe cutting accuracy and, at the same time, improving the cutting speed, the following matters are picked up for respective explanation; improvement of stationary machine accuracy, improvement of dynamic machine accuracy, improvement of quality of laser beam as well as optimization of cutting conditions, and shortening of piercing time. Also explanation is given to the respective items, namely speeding-up of medium and thick plate cutting, and reduction of load onto the operator by improved operation. Finally, feeding and removing of a sheet only, and feeding and removing with a pallet are mentioned as the efforts for automation and energy saving. 3 figs., 1 tab.

  15. Thermomechanical processing of plasma sprayed intermetallic sheets

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  16. Device of connecting the metal sheet lining a concrete enclosure to a pipe opening inside the enclosure

    International Nuclear Information System (INIS)

    Petit, Guy.

    1975-01-01

    Said invention relates to a sealed device connecting a metal sheet anchored on the internal side of a concrete vessel containing a hot pressurized fluid, with a metallic pipe opening inside said vessel. It is intended for heat insulating structures so-called 'hot skin' used for the pressure vessels of some boiling water reactors. Said invention is intended for different types of said pipe such as: the penetrations for the inlets and outlets of the primary circuit, or anchoring cylindrical sheaths used as supports of components or other elements located inside said pressure vessel [fr

  17. Ultraprecision machining. Cho seimitsu kako

    Energy Technology Data Exchange (ETDEWEB)

    Suga, T [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1992-10-05

    It is said that the image of ultraprecision improved from 0.1[mu]m to 0.01[mu]m within recent years. Ultraprecision machining is a production technology which forms what is called nanotechnology with ultraprecision measuring and ultraprecision control. Accuracy means average machined sizes close to a required value, namely the deflection errors are small; precision means the scattered errors of machined sizes agree very closely. The errors of machining are related to both of the above errors and ultraprecision means the combined errors are very small. In the present ultraprecision machining, the relative precision to the size of a machined object is said to be in the order of 10[sup -6]. The flatness of silicon wafers is usually less than 0.5[mu]m. It is the fact that the appearance of atomic scale machining is awaited as the limit of ultraprecision machining. The machining of removing and adding atomic units using scanning probe microscopes are expected to reach the limit actually. 2 refs.

  18. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, León, Guanajuato 37160 (Mexico); Papadimitratos, Alexios [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Zakhidov, Anvar A., E-mail: Zakhidov@utdallas.edu [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Energy Efficiency Center, National University of Science and Technology, MISiS, Moscow 119049 (Russian Federation)

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  19. Metals extraction from sea water

    International Nuclear Information System (INIS)

    Chryssostomidis, C.; Larue, G.J.; Morgan, D.T.

    1981-01-01

    A method and system for continuously extracting metals from sea water by deploying adsorber sheets in a suitable current of sea water, recovering the adsorber sheets after they become loaded with metal and eluting the metal from the recovered sheets. The system involves the use of hollow, perforated bobbins on which the sheets are rolled as they are recovered and through which elutant is introduced

  20. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  1. Toxic metals in the atmosphere

    International Nuclear Information System (INIS)

    Munoz-Ribadeneira, F.J.; Mo, T.; Canoy, M.J.

    1975-05-01

    Methods used in Puerto Rico for monitoring toxic metals in the atmosphere are described. Air sampling machines are placed at heights from 15 to 25 ft above the surface and the tapes are subjected to neutron activation and γ spectroscopy. The concentrations of up to 33 elements can be determined with precision and sensitivity without destroying the tapes, which can then be used for analysis by other methods. (U.S.)

  2. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Directory of Open Access Journals (Sweden)

    Mo Yang

    2018-03-01

    Full Text Available Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM, this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool. Keywords: CFRP drive-line system, Dynamic behavior, Transfer matrix, Vibration measurement

  3. Precision Machining When Cutting with Leading Plastic Deformation

    Directory of Open Access Journals (Sweden)

    N. A. Yaroslavtseva

    2017-01-01

    Full Text Available Keeping up the product competitiveness continually requires solving the problems of reducing time for product creation and material costs for its production and ensuring the maximum conformity of the product quality with the individual requirements of a particular consumer. It is especially difficult to implement these tasks in product manufacturing from the hard-to-machine steels and alloys with extremely low production rate in machining (often 10-20 times lower than when cutting the ordinary structural steels.Currently, one of the promising ways to improve the cutting process of hard-to-machine materials and quality of parts made from these materials is development and application of combined processing methods, which use additional energy sources to act on the machined material in the cutting zone. A BMSTU-developed cutting method with leading plastic deformation (LPD, which acts to raise the production rate, gain the cutting tool-life, reduce the surface roughness, improve the accuracy of processing and the performance characteristics of products, ensure the reliable flow chip control, and improve the labor conditions, belongs to such sort of methods.One of the most important indicators of processing quality that has a great impact on the operation and cost characteristics of the product and on the machining rate as well is the accuracy of processing. In cutting, the processing errors largely arise from the elastic deformations of a technological system when the cutting force, and, in particular, the radial component of the cutting force, acts on it.The deforming devices, used in cutting with LPD, being located as a rule, on the diametrically opposite side with respect to the cutting zone, act on the technological system as vibration dampers. In addition, as studies have shown, the choice of a rational direction for applying LPD load helps to compensate partially or completely the cutting force radial component effect on the technological

  4. Perforation of metal sheets

    DEFF Research Database (Denmark)

    Steenstrup, Jens Erik

    simulation is focused on the sheet deformation. However, the effect on the tool and press is included. The process model is based on the upper bound analysis in order to predict the force progress and hole characteristics etc. Parameter analyses are divided into two groups, simulation and experimental tests......The main purposes of this project are:1. Development of a dynamic model for the piercing and performation process2. Analyses of the main parameters3. Establishing demands for process improvements4. Expansion of the existing parameter limitsThe literature survey describes the process influence...

  5. Analysis of residual stress in subsurface layers after precision hard machining of forging tools

    Directory of Open Access Journals (Sweden)

    Czan Andrej

    2018-01-01

    Full Text Available This paper is focused on analysis of residual stress of functional surfaces and subsurface layers created by precision technologies of hard machining for progressive constructional materials of forging tools. Methods of experiments are oriented on monitoring of residual stress in surface which is created by hard turning (roughing and finishing operations. Subsequently these surfaces were etched in thin layers by electro-chemical polishing. The residual stress was monitored in each etched layer. The measuring was executed by portable X-ray diffractometer for detection of residual stress and structural phases. The results significantly indicate rise and distribution of residual stress in surface and subsurface layers and their impact on functional properties of surface integrity.

  6. Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance.

    Science.gov (United States)

    Wang, Jun; Li, Kai; Zhong, Hai-xia; Xu, Dan; Wang, Zhong-li; Jiang, Zheng; Wu, Zhi-jian; Zhang, Xin-bo

    2015-09-01

    Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  8. Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance

    Science.gov (United States)

    Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.

    2017-10-01

    Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.

  9. Production of an Amorphous Fe_<75>Si_<10>B_<15> Sheet by a Metallic Mold Casting Method and its Properties

    OpenAIRE

    Inoue, Akihisa; Yamamoto, Hirokazu; Saito, Takanobu; Masumoto, Tsuyosi

    1993-01-01

    The application of a metallic mold casting method to an Fe_Si_B_ alloy with the largest glass-forming ability in (Fe, Co, Ni)-Si-B system was found to cause the formation of a mostly single amorphous phase in a sheet form with a thickness of 0.1 mm. No distinct difference in thermal stability (crystallization temperature and heat of crystallization), hardness, Curie temperature and magnetization is detected between the as-cast sheet and the melt-spun amorphous ribbon with a thickness of 0.02 ...

  10. Effect of strain path change on limits to ductility of anisotropic metal sheets

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    of the anisotropic plasticity models, and it is shown that elastic straining plays a large role, as the stresses quickly move from one point of the yield surface to another. When the load is removed between steps, the stress point moves in a different manner, which results in quite different flow localization......Localized necking in thin metal sheets is analyzed by using the M-K-model approach, and the effect of a number of different non-proportional strain paths prior to the occurrence flow localization are considered. The analyses account for plastic anisotropy, using four different anisotropic...

  11. Technologies for micro- and precision machining applications: Presentation held at International Specialized Exhibition Metalloobrabotka, 23.-27.05.2016, Moscow

    OpenAIRE

    Kugler, Till; Blau, Peter; Edelmann, Jan; Eckert, Udo; Koriath, Hans-Joachim; Bogachev, Yuri P.; Sakharova, Olga P.

    2016-01-01

    The use of microstructures or functional surfaces in powertrain components or molds and dies has attained increasing significance. Also the relevance of micro parts for various applications is still growing worldwide. Technologies for micro and precision machining applications are also becoming increasingly important in batch production. Main applications are primarily in the micro-analysis, automotive, medical engineering and watch-making industries. Customers are increasingly demanding equi...

  12. Formability analysis of sheet metals by cruciform testing

    Science.gov (United States)

    Güler, B.; Alkan, K.; Efe, M.

    2017-09-01

    Cruciform biaxial tests are increasingly becoming popular for testing the formability of sheet metals as they achieve frictionless, in-plane, multi-axial stress states with a single sample geometry. However, premature fracture of the samples during testing prevents large strain deformation necessary for the formability analysis. In this work, we introduce a miniature cruciform sample design (few mm test region) and a test setup to achieve centre fracture and large uniform strains. With its excellent surface finish and optimized geometry, the sample deforms with diagonal strain bands intersecting at the test region. These bands prevent local necking and concentrate the strains at the sample centre. Imaging and strain analysis during testing confirm the uniform strain distributions and the centre fracture are possible for various strain paths ranging from plane-strain to equibiaxial tension. Moreover, the sample deforms without deviating from the predetermined strain ratio at all test conditions, allowing formability analysis under large strains. We demonstrate these features of the cruciform test for three sample materials: Aluminium 6061-T6 alloy, DC-04 steel and Magnesium AZ31 alloy, and investigate their formability at both the millimetre scale and the microstructure scale.

  13. Machine Learning for Precision Psychiatry: Opportunities and Challenges.

    Science.gov (United States)

    Bzdok, Danilo; Meyer-Lindenberg, Andreas

    2018-03-01

    The nature of mental illness remains a conundrum. Traditional disease categories are increasingly suspected to misrepresent the causes underlying mental disturbance. Yet psychiatrists and investigators now have an unprecedented opportunity to benefit from complex patterns in brain, behavior, and genes using methods from machine learning (e.g., support vector machines, modern neural-network algorithms, cross-validation procedures). Combining these analysis techniques with a wealth of data from consortia and repositories has the potential to advance a biologically grounded redefinition of major psychiatric disorders. Increasing evidence suggests that data-derived subgroups of psychiatric patients can better predict treatment outcomes than DSM/ICD diagnoses can. In a new era of evidence-based psychiatry tailored to single patients, objectively measurable endophenotypes could allow for early disease detection, individualized treatment selection, and dosage adjustment to reduce the burden of disease. This primer aims to introduce clinicians and researchers to the opportunities and challenges in bringing machine intelligence into psychiatric practice. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    Science.gov (United States)

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-08-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, "faster, more accurate and easier", of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD. On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust. Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation.

  15. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    International Nuclear Information System (INIS)

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-01-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, 'faster, more accurate and easier', of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD.On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust.Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation

  16. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  17. Testing and Prediction of Limits of Lubrication in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels

    2012-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems, here meaning the combination of tool_material/workpiece_material/lubricant, in order to substitute hazardous lubricants such as chlorinated paraffin...... laboratory and production tests as well as numerical analyses in order to evaluate and compare performance of the new tribo-systems. A part is selected from industrial production and analyzed by this methodology in order to substitute the existing tribo-system with a new one....... oils. Testing of new tribo-systems under production conditions is, however, very costly. For preliminary testing it is more feasible to introduce laboratory tests. In this paper a new methodology for testing new tribo-systems is presented. The methodology describes a series of investigations combining...

  18. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  19. Material Choice for spindle of machine tools

    Science.gov (United States)

    Gouasmi, S.; Merzoug, B.; Abba, G.; Kherredine, L.

    2012-02-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  20. Material Choice for spindle of machine tools

    International Nuclear Information System (INIS)

    Gouasmi, S; Merzoug, B; Kherredine, L; Abba, G

    2012-01-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  1. Numerical investigation of blanking for metal polymer sandwich sheets

    Directory of Open Access Journals (Sweden)

    Gutknecht Florian

    2016-01-01

    Full Text Available Metal polymer sandwich sheets consist of materials with drastically different mechanical properties. Due to this fact and because of high local gradients in the cutting zone during the blanking process, traditional process strategies and empirical knowledge are difficult to apply. A finite-element simulation of the shear cutting process is used to predict the necessary force and the geometry of the cutting surface. A fully-coupled ductile damage model is used for the description of the material behaviour. This model considers the influence of shear and compression-dominated stress states on the initiation of damage. Experimental tensile and compression test data is used for the identification of material parameters. The results of the blanking simulation are compared with experimental data. Furthermore, the evolution of the stress state is analysed to gain understanding of the underlying physics. Finally this model enables the prediction of core compression and other quantities such as the acting stresses and corresponding triaxilities, which provide valuable information for the development of analytical models.

  2. Design and applications of a pneumatic accelerator for high speed punching

    International Nuclear Information System (INIS)

    Yaldiz, Sueleyman; Saglam, Haci; Unsacar, Faruk; Isik, Hakan

    2007-01-01

    High speed forming is an important production method that requires specially designed HERF (high energy rate forming) machines. Most of the HERF machines are devices that consist of a system in which energy is stored and a differential piston mechanism is used to release the energy at high rate. In order to eliminate the usage of specially designed HERF machines and to obtain the high speed forming benefits, the accelerator which can be adapted easily onto conventional presses has been designed and manufactured in this study. The designed energy accelerator can be incorporated into mechanical press to convert the low speed operation into high-speed operation of a hammer. Expectations from this work are reduced distortion rates, increased surface quality and precise dimensions in metal forming operations. From the performance test, the accelerator is able to achieve high speed and energy which require for high speed blanking of thick sheet metals

  3. Achieving precision in high density batch mode micro-electro-discharge machining

    International Nuclear Information System (INIS)

    Richardson, Mark T; Gianchandani, Yogesh B

    2008-01-01

    This paper reports a parametric study of batch mode micro-electro-discharge machining (µEDM) of high density features in stainless steel. Lithographically fabricated copper tools with single cross, parallel line and 8 × 8 circle/square array features of 5–100 µm width and 5–75 µm spacing were used to quantify trends in machining tolerance and the impact of debris accumulation. As the tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two independent techniques for mitigating this debris buildup are separately investigated. The first is a passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, the mean tool wear rate decreases from a typical of about 34% to 1.7% and machining non-uniformity reduces from 4.9 µm to 1.1 µm across the workpiece. The second technique involves a two-step machining process that enhances the hydrodynamic removal of machining debris compared to standard methods. This improves surface and edge finish, machining time and tool wear

  4. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    Science.gov (United States)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  5. Identification of a process window for tailored carburization of sheet metals in hot stamping

    Science.gov (United States)

    Horn, Alexander; Merklein, Marion

    2018-05-01

    Due to governmental regulations concerning the reduction of CO2 emissions and increasing safety standards, hot stamping of high strength boron manganese steel sheets has evolved into a state of the art process for manufacturing structural car body parts. The combined forming and in-die quenching process enables the formation of a fully martensitic microstructure. Therefore, press hardened steels offer high strength, but low ductility. In order to further improve passenger safety, a tailored configuration of mechanical properties is desired. Besides state of the art methods, like the application of locally different heat treatment temperatures or varying quenching rates, the adjustment of mechanical properties of sheet metals by a tailored carburization is a novel approach. For the carburization process, the specimens are first coated with graphite and subsequently heat treated. Within this contribution, different coating strategies as well as heat treatment temperatures and dwell times are investigated. For the determination of a process window, mechanical properties such as tensile strength and microhardness will be analyzed and correlated with the resulting microstructure.

  6. Diamond turning on advanced machine tool prototypes

    International Nuclear Information System (INIS)

    Arnold, J.B.; Steger, P.J.

    1975-01-01

    Specular-quality metal mirrors are being machined for use in laser optical systems. The fabrication process incorporates special quality diamond tools and specially constructed turning machines. The machines are controlled by advanced control techniques and are housed in an environmentally controlled laboratory to insure ultimate machine stability and positional accuracy. The materials from which these mirrors are primarily produced are the softer face-center-cubic structure metals, such as gold, silver, copper, and aluminum. Mirror manufacturing by the single-point diamond machining process is in an early stage of development, but it is anticipated that this method will become the most economical way for producing high-quality metal mirrors. (U.S.)

  7. Universal precision sine bar attachment

    Science.gov (United States)

    Mann, Franklin D. (Inventor)

    1989-01-01

    This invention relates to an attachment for a sine bar which can be used to perform measurements during lathe operations or other types of machining operations. The attachment can be used for setting precision angles on vises, dividing heads, rotary tables and angle plates. It can also be used in the inspection of machined parts, when close tolerances are required, and in the layout of precision hardware. The novelty of the invention is believed to reside in a specific versatile sine bar attachment for measuring a variety of angles on a number of different types of equipment.

  8. Practical Aspects of CALS in Design and Manufacturing of Sheet Metal Products

    DEFF Research Database (Denmark)

    Shpitalni, Moshe; Alting, Leo; Bilberg, Arne

    1998-01-01

    The transition from design to process planning and to the various stages of manufacturing is traditionally sequential. In many cases, practical problems associated with manufacturing cannot be resolved if only individual processes are examined. These problems can be overcome, however, by adopting...... with the design and manufacture of sheet metal parts. It is demonstrated that through implementation of the CALS approach, the overall process can be optimised and products can be manufactured significantly more accurately, faster and less expensively.......The transition from design to process planning and to the various stages of manufacturing is traditionally sequential. In many cases, practical problems associated with manufacturing cannot be resolved if only individual processes are examined. These problems can be overcome, however, by adopting...

  9. Study of the stiffness for predicting the accuracy of machine tools; Estudio de la rigidez para la prediccion de la precision de las maquinas-herramientas

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, N.; Campa, F.J.; Fernandez Valdivielso, A.; Alonso, U.; Olvera, D.; Compean, F.I.

    2010-07-01

    Machining processes are frequently faced with the challenge of achieving more and more precision and surface qualities. These requirements are usually attained taking into account some process variables, including the cutting parameters and the use or not of refrigerant, leaving aside the mechanical aspects associated with the influence of machine tool itself. There are many sources of error linked with machine-workpiece interaction, but, in general, we can summarize them into two types of error: quasi-static and dynamic. This paper shows the influence of quasi-static error caused by low machine rigidity on the accuracy applied on two very different processes: turning and grinding. For the study of the static stiffness of these two machines, two different methods are proposed, both of them equally valid. The first one is based on separated parameters and the second one on finite elements. (Author).

  10. PROCESSING OF SOFT MAGNETIC MATERIALS BY POWDER METALLURGY AND ANALYSIS OF THEIR PERFORMANCE IN ELECTRICAL MACHINES

    Directory of Open Access Journals (Sweden)

    W. H. D. Luna

    2017-12-01

    Full Text Available This article presents the use of finite elements to analyze the yield of electric machines based on the use of different soft magnetic materials for the rotor and the stator, in order to verify the performance in electric machine using powder metallurgy. Traditionally, the cores of electric machines are built from rolled steel plates, thus the cores developed in this work are obtained from an alternative process known as powder metallurgy, where powders of soft magnetic materials are compacted and sintered. The properties of interest were analyzed (magnetic, electric and mechanical properties and they were introduced into the software database. The topology of the rotor used was 400 W three-phase synchronous motor manufactured by WEG Motors. The results show the feasibility to replace the metal sheets of the electric machines by solid blocks obtained by powder metallurgy process with only 0.37% yield losses. In addition, the powder metallurgical process reduces the use of raw materials and energy consumption per kg of raw material processed.

  11. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  12. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  13. precision deburring using NC and robot equipment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-05-01

    Deburring precision miniature components is often time consuming and inconsistent. Although robots are available for deburring parts, they are not precise enough for precision miniature parts. Numerical control (NC) machining can provide edge break consistencies to meet requirements such as 76.2-..mu..m maximum edge break (chamfer). Although NC machining has a number of technical limitations which prohibits its use on many geometries, it can be an effective approach to features that are particularly difficult to deburr.

  14. Studies on the finite element simulation in sheet metal stamping processes

    Science.gov (United States)

    Huang, Ying

    The sheet metal stamping process plays an important role in modern industry. With the ever-increasing demand for shape complexity, product quality and new materials, the traditional trial and error method for setting up a sheet metal stamping process is no longer efficient. As a result, the Finite Element Modeling (FEM) method has now been widely used. From a physical point of view, the formability and the quality of a product are influenced by several factors. The design of the product in the initial stage and the motion of the press during the production stage are two of these crucial factors. This thesis focuses on the numerical simulation for these two factors using FEM. Currently, there are a number of commercial FEM software systems available in the market. These software systems are based on an incremental FEM process that models the sheet metal stamping process in small incremental steps. Even though the incremental FEM is accurate, it is not suitable for the initial conceptual design for its needing of detailed design parameters and enormous calculation times. As a result, another type of FEM, called the inverse FEM method or one-step FEM method, has been proposed. While it is less accurate than that of the incremental method, this method requires much less computation and hence, has a great potential. However, it also faces a number of unsolved problems, which limits its application. This motivates the presented research. After the review of the basic theory of the inverse method, a new modified arc-length search method is proposed to find better initial solution. The methods to deal with the vertical walls are also discussed and presented. Then, a generalized multi-step inverse FEM method is proposed. It solves two key obstacles: the first one is to determine the initial solution of the intermediate three-dimensional configurations and the other is to control the movement of nodes so they could only slide on constraint surfaces during the search by

  15. Monitoring coordinate measuring machines by calibrated parts

    International Nuclear Information System (INIS)

    Weckenmann, A; Lorz, J

    2005-01-01

    Coordinate measuring machines (CMM) are essential for quality assurance and production control in modern manufacturing. Due to the necessity of assuring traceability during the use of CMM, interim checks with calibrated objects carried out periodically. For this purpose usually special artefacts like standardized ball plates, hole plates, ball bars or step gages are measured. Measuring calibrated series parts would be more advantageous. Applying the substitution method of ISO 15530-3: 2000 such parts can be used. It is less cost intensive and less time consuming than measuring expensive special standardized objects in special programmed measurement routines. Moreover, the measurement results can directly compare with the calibration values; thus, direct information on systematic measurement deviations and uncertainty of the measured features are available. The paper describes a procedure for monitoring horizontal-arm CMMs with calibrated sheet metal series parts

  16. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    Directory of Open Access Journals (Sweden)

    Woong-Kirl Choi

    2018-01-01

    Full Text Available Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks.

  17. Evaluation of essential work of fracture in a dual phase high strength steel sheet

    International Nuclear Information System (INIS)

    Gutierrez, D.; Perez, L. I.; Lara, A.; Casellas, D.; Prado, J. M.

    2013-01-01

    Fracture toughness of advanced high strength steels (AHSS), can be used to optimize crash behavior of structural components. However it cannot be readily measured in metal sheet because of the sheet thickness. In this work, the Essential Work of Fracture (EWF) methodology is proposed to evaluate the fracture toughness of metal sheets. It has been successfully applied in polymers films and some metal sheets. However, their information about the applicability of this methodology to AHSS is relatively scarce. In the present work the fracture toughness of a Dual Phase (strength of 800 MPa) and drawing steel sheets has been measured by means of the EWF. The results show that the test requirements are met and also show the clear influence of notch radii on the measured values, specially for the AHSS grade. Thus, the EWF is postulated as a methodology to evaluate the fracture toughness in AHSS sheets. (Author) 18 refs.

  18. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  19. Application of machine-learning methods to solid-state chemistry: ferromagnetism in transition metal alloys

    International Nuclear Information System (INIS)

    Landrum, G.A.Gregory A.; Genin, Hugh

    2003-01-01

    Machine-learning methods are a collection of techniques for building predictive models from experimental data. The algorithms are problem-independent: the chemistry and physics of the problem being studied are contained in the descriptors used to represent the known data. The application of a variety of machine-learning methods to the prediction of ferromagnetism in ordered and disordered transition metal alloys is presented. Applying a decision tree algorithm to build a predictive model for ordered phases results in a model that is 100% accurate. The same algorithm achieves 99% accuracy when trained on a data set containing both ordered and disordered phases. Details of the descriptor sets for both applications are also presented

  20. Machinability evaluation of titanium alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Okuno, Osamu

    2004-03-01

    In the present study, the machinability of titanium, Ti-6Al-4V, Ti-6A1-7Nb, and free-cutting brass was evaluated using a milling machine. The metals were slotted with square end mills under four cutting conditions. The cutting force and the rotational speed of the spindle were measured. The cutting forces for Ti-6Al-4V and Ti-6Al-7Nb were higher and that for brass was lower than that for titanium. The rotational speed of the spindle was barely affected by cutting. The cross sections of the Ti-6Al-4V and Ti-6Al-7Nb chips were more clearly serrated than those of titanium, which is an indication of difficult-to-cut metals. There was no marked difference in the surface roughness of the cut surfaces among the metals. Cutting force and the appearance of the metal chips were found to be useful as indices of machinability and will aid in the development of new alloys for dental CAD/CAM and the selection of suitable machining conditions.

  1. Machine Shop Practice. Trade and Industrial Education Course of Study.

    Science.gov (United States)

    Emerly, Robert J.; And Others

    Designed for secondary school students who are interested in becoming machinists, this beginning course guide in machine shop practice is organized into the following sections: (1) Introduction, (2) instructional plan, (3) educational philosophy, (4) specific course objectives, (5) course outline, (6) job sheets, and (7) operation sheets. The…

  2. Towards nanoprinting with metals on graphene

    Science.gov (United States)

    Melinte, G.; Moldovan, S.; Hirlimann, C.; Liu, X.; Bégin-Colin, S.; Bégin, D.; Banhart, F.; Pham-Huu, C.; Ersen, O.

    2015-08-01

    Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a `pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections.

  3. Improvement of aluminum drilling efficiency and precision by shaped femtosecond laser

    International Nuclear Information System (INIS)

    Qi, Ying; Qi, Hongxia; Chen, Anmin; Hu, Zhan

    2014-01-01

    Highlights: • The ablation accuracy can be improved by the shaped femtosecond laser pulse. • The ablation rate can be improved by the shaped femtosecond laser pulse with higher laser fluence. • The results can be used to optimize femtosecond micromachining metal. - Abstract: Shaped femtosecond laser pulses with the plain phase (transform-limited pulse) and sine phase (A = 1.2566, T = 30, T = 10, and T = 5) were used to drill Al sheet in vacuum. Using different phase, the number of pulses required to drill through the sheet was different. With lower laser pulse energy, the ablation rate was the highest when plain phase (corresponding to transform limited pulse) was used. With higher laser energy, the optimized ablation rate can be achieved by increasing the time separation between the subpulses of pulse train produced from the sine phase function. And, with the shaped femtosecond laser, the diameter of ablation holes produced was smaller, the ablation precision was also improved. The results showed that shaped femtosecond laser pulse has great advantages in the context of femtosecond laser drilling

  4. Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming

    Science.gov (United States)

    Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.

  5. Fast for sure: new developments in laser beam cutting of thin sheet metal; Mit Sicherheit schnell: neue Entwicklungen zum Laserstrahlschneiden von Fein- und Feinstblechen

    Energy Technology Data Exchange (ETDEWEB)

    Petring, D.; Schneider, F.; Thelen, C.; Poprawe, R.l [Fraunhofer-Institut fuer Lasertechnik (ILT), Aachen (Germany)

    1999-04-01

    Presently laser beam cutting is a rapidly developing technology. New laser sources with higher power and improved beam quality as well as the modern drive and control equipment together with advanced process developments allow a significant increase in cutting speed at excellent quality features. Recent results in laser beam slitting of sheet metal coils and in fast cutting of car body sheets illustrate this trend. It will be continued be even higher powers and new types of lasers. (orig.)

  6. Towards Industrial Application of Damage Models for Sheet Metal Forming

    Science.gov (United States)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  7. Tailor-made blanks for the aircraft industry

    NARCIS (Netherlands)

    Zad Poor, A.A.

    2010-01-01

    Tailor-Made Blanks (TMBs) are hybrid assemblies made of sheet metals with different materials and/or thicknesses that are joined together prior to forming. Alternatively, a monolithic sheet can be machined to create required thickness variations (machined TMBs). The possibility of having several

  8. Investigation on the Crack Initiation of V-Shaped Notch Tip in Precision Cropping

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2014-01-01

    Full Text Available The crack initiation of V-shaped notch tip has a very important influence on the cross-section quality and the cropping time for every segment of metal bar in course of low stress precision cropping. By the finite element method, the influence of machining precision of V-shaped notch bottom corner on the crack initiation location is analyzed and it is pointed out that the crack initiation point locates in the place at the maximal equivalent stress change rate on V-shaped notch surface. The judgment criterion of the crack initiation direction is presented and the corresponding crack initiation angle can be calculated by means of the displacement extrapolation method. The factual crack initiation angle of the metal bar has been measured by using the microscopic measurement system. The formula of the crack initiation life of V-shaped notch tip is built, which mainly includes the stress concentration factor of V-shaped notch, the tensile properties of metal material, and the cyclic loading conditions. The experimental results show that the obtained theoretical analyses about the crack initiation location, the crack initiation direction, and the crack initiation time in this paper are correct. It is also shown that the crack initiation time accounts for about 80% of the cropping time for every segment of the metal bar.

  9. Rotating magnetizations in electrical machines: Measurements and modeling

    Science.gov (United States)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  10. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  11. kW-class direct diode laser for sheet metal cutting based on commercial pump modules

    Science.gov (United States)

    Witte, U.; Schneider, F.; Holly, C.; Di Meo, A.; Rubel, D.; Boergmann, F.; Traub, M.; Hoffmann, D.; Drovs, S.; Brand, T.; Unger, A.

    2017-02-01

    We present a direct diode laser with an optical output power of more than 800 W ex 100 μm with an NA of 0.17. The system is based on 6 commercial pump modules that are wavelength stabilized by use of VBGs. Dielectric filters are used for coarse and dense wavelength multiplexing. Metal sheet cutting tests were performed in order to prove system performance and reliability. Based on a detailed analysis of loss mechanisms, we show that the design can be easily scaled to output powers in the range of 2 kW and to an optical efficiency of 80%.

  12. Experimental Investigation of Comparative Process Capabilities of Metal and Ceramic Injection Molding for Precision Applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2016-01-01

    and discussion presented in the paper will be useful for thorough understanding of the MIM and CIM processes and to select the right material and process for the right application or even to combine metal and ceramic materials by molding to produce metal–ceramic hybrid components.......The purpose of this paper is to make a comparative study on the process capabilities of the two branches of the powder injection molding (PIM) process—metal injection molding (MIM) and ceramic injection molding (CIM), for high-end precision applications. The state-of-the-art literature does...

  13. PREPARATION OF CONSTRUCTION PRODUCTION OF METAL SHEET FOR MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Piotr Penkała

    2013-03-01

    Full Text Available The design of sheet metal parts, pressed, used in the automotive industry is very complicated. Many factors influence the final shape of the part. Contemporary designer does not need to have the knowledge needed to understand the essence of its all requirements that are placed on parts of the body. It is only important that they are aware of their existence and know who in the company can help them in their fulfilment of the construction. Nowadays, only the constructor creates a CAD model geometry, which is assumed to provide the functionality. The rest of the aspects such as the provision of adequate stiffness, manufacturability, assembly features, vibration analysis, etc., are the arena of other specialists. This is the essence of constructing simultaneous, where many cell companies often work on the same element, giving it a set of features impossible to obtain by one expert on everything. Therefore, the role of the designer is often limited to being only a CAD system operator.

  14. Die design optimization on sheet metal forming with considering the phenomenon of springback to improve product quality

    Directory of Open Access Journals (Sweden)

    Darmawan Agung Setyo

    2018-01-01

    Full Text Available The process of sheet metal forming is one of the very important processes in manufacture of products mainly in the automotive field. In sheet metal forming, it is added a certain size at the die to tolerate a result of the elasticity restoration of material. Therefore, when the product is removed from the die then the process elastic recovery will end within the allowable tolerance size. Extra size of the die is one method to compensate for springback. The aim of this research is to optimize the die by entering a springback value in die design to improve product quality that is associated with accuracy the final size of the product. Simulation processes using AutoForm software are conducted to determine the optimal parameters to be used in the forming process. Variations the Blank Holder Force of 77 N, 97 N, and 117 N are applied to the plate material. The Blank Holder Force application higher than 97 N cannot be conducted because the Forming Limit Diagram indicates the risk of tearing. Then the Blank Holder Force of 37 N, 57 N and 77 N are selected and applied in cup drawing process. Even though a few of wrinkling are appear, however there is no significant deviation of dimension between the product and the design of cup.

  15. Experimental investigation of the degree of weakening in structural notch area of 7075-T6 aluminum alloy sheet welded with the RFSSW method

    Directory of Open Access Journals (Sweden)

    Kubit Andrzej

    2017-01-01

    Full Text Available The paper presents the methodology of the research determining the degree of weakening of the welded sheet obtained by the refill friction stir spot welding (RFSSW method. The considered weakness is the effect of a structural notch resulting from penetration by the tool. RFSSW technology is a relatively new method of joining metals, which can successfully provide an alternative to resistance welding or riveting - traditionally used methods of joining thin-walled structures in the aerospace and automotive industries. The study presented in the paper focuses on the overlapping of sheet metal with 7075-T6 aluminum alloy combined in the configuration: 1.6 mm top sheet and 0.8 mm bottom sheet. Joints were assembled following the following process parameters: Welding time 1.5 s, the tool plunge depth in the range of 1.5 ÷ 1.9 mm, and the spindle speed of 2600 rpm. The analysis of the microstructure of joints revealed that along the edge of the tool path a structural notch is formed, the size and shape of which depend on the parameters applied. The paper describes the study consisting in punching the welded area along the formed notch in the upper sheet. The punching process was performed on a universal testing machine and the punching force was measured during the test. Based on the force value, the degree of sheet weakening in the notched area was determined. The smallest weakening was observed in joints made with the smallest tool depth, i.e. 1.5 mm, whereas the biggest weakening was obtained for tool depth of 1.9 mm. The load applied to the joints was equal to 5290N and 7585N respectively.

  16. Comparison of Conventional Deep Drawing, Hydromechanical Deep-Drawing and High Pressure Sheet Metal Forming by Numerical Experiments

    International Nuclear Information System (INIS)

    Oender, I. Erkan; Tekkaya, A. Erman

    2005-01-01

    Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydro-mechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing ratio and fillet radii have been altered systematically. St14 stainless steel has been used as the material throughout the study. The deformation behavior has been described by an elasto-plastic material model and all numerical simulations have been carried out by using a dynamic-explicit commercial finite element code. During the analyses each workpiece is produced by the three competing processes. The analyses results such as sheet thickness distribution, necking, forming of radii etc., are used for assessing the success of each forming process alternative. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are preferable for obtaining satisfactory products. The process windows for each process have been established based on the analyzed parameters of the three different product geometries. This data is expected to be useful for selecting the appropriate production process for a given workpiece geometry

  17. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  18. VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.

  19. Sine-Bar Attachment For Machine Tools

    Science.gov (United States)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  20. Single point incremental forming: Formability of PC sheets

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  1. Rotating magnetizations in electrical machines: Measurements and modeling

    Directory of Open Access Journals (Sweden)

    Andreas Thul

    2018-05-01

    Full Text Available This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  2. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  3. Assessment of the vibration on the foam legged and sheet metal-legged passenger seat

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2015-10-01

    Full Text Available In this study, it was aim ed to decrease the vibration reaching to passenger from the legs of vehicle seats. In order to determine the levels of vibrations reaching at passengers, a test pad placed under the passenger seat was used, and HVM100 device was used for digitizing the information obtained. By transferring the vibration data to system by using HVM100 device, the acceleration graphics were prepared with Blaze software. As a result, it was determined that the acceleration values of seat legs made of foam material were lower than that of seat legs made of 2 mm thick sheet metal, so they damped the vibration better.

  4. Preface

    NARCIS (Netherlands)

    Geiger, M.; Kals, H.J.J.; Shirvani, B; Singh, U.P.

    2001-01-01

    The multiple facets of modern sheet metal manufacturing techniques are applied throughout a wide spectrum of economy, ranging from the automotive industry and machine manufacturing to electrical engineering and electronics. This wide range of applications means that sheet metal manufacturers produce

  5. Data acquisition testing in supercritical water oxidation using machine cutting oils and metals

    International Nuclear Information System (INIS)

    Garcia, K.M.

    1996-01-01

    The Department of Energy, the Navy, and SERDP provided funding for an extensive series of testing of a Supercritical Water Oxidation (SCWO) system. The goal of the testing was to create performance data on the process when dealing with highly chlorinated wastes containing heavy metals, and radionuclides. The testing was performed in a MODAR vessel oxidizer. Performance was measured by the ability of the process to achieve greater than 99.99% destruction of the organic content, to partition the metals and radionuclide surrogates for mass balance, and survive the highly corrosive species in the effluent. The test data has shown that these goals were accomplished. 30 gal/day of highly chlorinated machine cutting oil was treated for 130 hrs. There were no significant corrosion or solids handling problems. This machine cutting oil, TRIM reg-sign SOL was chosen by DOE for its complex nature and has proven to be one of the more refractory organic feeds encountered by MODAR. The Navy provided 8 waste streams collected from their shore facilities operation. These paints varied in solids content with wastes such as paint chips, and adhesives. The ninth test run was with all 8 series of wastes combined. The MODAR system successfully treated all of these waste streams providing performance data on the ability of SCWO to treat difficult sludges

  6. Energy Harvesting with a Liquid-Metal Microfluidic Influence Machine

    Science.gov (United States)

    Conner, Christopher; de Visser, Tim; Loessberg, Joshua; Sherman, Sam; Smith, Andrew; Ma, Shuo; Napoli, Maria Teresa; Pennathur, Sumita; Weld, David

    2018-04-01

    We describe and demonstrate an alternative energy-harvesting technology based on a microfluidic realization of a Wimshurst influence machine. The prototype device converts the mechanical energy of a pressure-driven flow into electrical energy, using a multiphase system composed of droplets of liquid mercury surrounded by insulating oil. Electrostatic induction between adjacent metal droplets drives charge through external electrode paths, resulting in continuous charge amplification and collection. We demonstrate a power output of 4 nW from the initial prototype and present calculations suggesting that straightforward device optimization could increase the power output by more than 3 orders of magnitude. At that level, the power efficiency of this energy-harvesting mechanism, limited by viscous dissipation, could exceed 90%. The microfluidic context enables straightforward scaling and parallelization, as well as hydraulic matching to a variety of ambient mechanical energy sources, such as human locomotion.

  7. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  8. Micro Machining Enhances Precision Fabrication

    Science.gov (United States)

    2007-01-01

    Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.

  9. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  10. Thin lead sheets in the decorative features in Pavia Charterhouse.

    Science.gov (United States)

    Colombo, Chiara; Realini, Marco; Sansonetti, Antonio; Rampazzi, Laura; Casadio, Francesca

    2006-01-01

    The facade of the church of the Pavia Charterhouse, built at the end of the 15th century, shows outstanding decorative features made of different stone materials, such as marbles, breccias and sandstones. Magnificent ornamental elements are made of thin lead sheets, and some marble slabs are inlaid with them. Metal elements are shaped in complex geometric and phytomorphic design, to form a Greek fret in black contrasting with the white Carrara marble. Lead pins were fixed to the back of the thin lead sheets with the aim of attaching the metal elements to the marble; in so doing the pins and the lead sheets constitute a single piece of metal. In some areas, lead elements have been lost, and they have been substituted with a black plaster, matching the colour of the metal. To the authors' knowledge, this kind of decorative technique is rare, and confirms the refinement of Renaissance Lombard architecture. This work reports on the results of an extensive survey of the white, orange and yellowish layers, which are present on the external surface of the lead. The thin lead sheets have been characterized and their state of conservation has been studied with the aid of Optical Microscopy, SEM-EDS, FTIR and Raman analyses. Lead sulphate, lead carbonates and oxides have been identified as decay products.

  11. Various aspects of ionic machining applied to metallic systems in microwave dipolar transistors

    International Nuclear Information System (INIS)

    Pestie, J.P.; Dumontet, H.; Andrieu, J.P.

    1974-01-01

    The positive benefit of ion bombardment machining in fabricating bipolar microwave transistors is shown. Ion cleaning, especially for P type silicon with high boron concentration allows reproducible surface resistivities to be reached 10 -6 ohms/cm 2 ) and the spurious resistance of the basis to be minimized. Ionic etching of metallic layers allowed 1μm stepped geometric structures to be realized. The multilayer Ti-Pt-Au system was associated to the finest geometries through a finite number of operations [fr

  12. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  13. Machinability of cast commercial titanium alloys.

    Science.gov (United States)

    Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T

    2002-01-01

    This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.

  14. Rolling induced size effects in elastic–viscoplastic sheet metals

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2015-01-01

    sheet rolling, where a non-homogeneous material deformation takes place between the rollers. Large strain gradients develop where the rollers first come in contact with the sheet, and a higher order plasticity model is employed to illustrate their influence at small scales. The study reveals...... presented revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combination with strain gradient hardening – including both dissipative and energetic contributions. To bring out first order effects on rolling at small scale, the modeling efforts are limited to flat...

  15. Precise fabrication of X-band accelerating structure

    International Nuclear Information System (INIS)

    Higo, T.; Sakai, H.; Higashi, Y.; Koike, S.; Takatomi, T.

    1994-01-01

    An accelerating structure with a/λ=0.16 is being fabricated to study a precise fabrication method. A frequency control of each cell better than 10 -4 level is required to realize a detuned structure. The present machining level is nearly 1 MHz/11.4 GHz in relative frequency error, which just satisfies the above requirement. To keep this machining precision, the diffusion bonding technique is found preferable to join the cells. Various diffusion conditions were tried. The frequency change can be less than 1 MHz/11.4 GHz and it can be controlled well better than that. (author)

  16. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  17. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  18. Advanced Gradient Based Optimization Techniques Applied on Sheet Metal Forming

    International Nuclear Information System (INIS)

    Endelt, Benny; Nielsen, Karl Brian

    2005-01-01

    The computational-costs for finite element simulations of general sheet metal forming processes are considerable, especially measured in time. In combination with optimization, the performance of the optimization algorithm is crucial for the overall performance of the system, i.e. the optimization algorithm should gain as much information about the system in each iteration as possible. Least-square formulation of the object function is widely applied for solution of inverse problems, due to the superior performance of this formulation.In this work focus will be on small problems which are defined as problems with less than 1000 design parameters; as the majority of real life optimization and inverse problems, represented in literature, can be characterized as small problems, typically with less than 20 design parameters.We will show that the least square formulation is well suited for two classes of inverse problems; identification of constitutive parameters and process optimization.The scalability and robustness of the approach are illustrated through a number of process optimizations and inverse material characterization problems; tube hydro forming, two step hydro forming, flexible aluminum tubes, inverse identification of material parameters

  19. Application of wire electrodes in electric discharge machining of metal samples of reactor blocks of the operative atomic power station

    International Nuclear Information System (INIS)

    Gozhenko, S.V.

    2007-01-01

    Features of application of electroerosive methods are considered during the process of direct definition of properties of metal of the equipment of power units of the atomic power station. Results of development of a complex of the equipment for wire electric discharge machining of metal templet and its use are presented at the control of the basic metal of the main circulating pipelines over blocks of the atomic power station of Ukraine over long terms of operation

  20. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  1. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  2. Sheet pinch devices

    International Nuclear Information System (INIS)

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.

    1958-01-01

    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  3. Laser-assisted micro sheet forming

    Science.gov (United States)

    Holtkamp, Jens; Gillner, Arnold

    2008-01-01

    The fast growing market for micro technical products requires parts with increasing complexity. While sheet metal forming enables low cost mass production with short cycle times, it is limited by the maximum degree of deformation and the quality of the cut edge. The technology of warm forming partially eliminates these deficiencies. This operation takes place at elevated temperatures before structural transformation is initiated. It combines characteristic advantages of traditional cold and hot forming processes. Lasers as heat sources provide a high, selective and controllable energy input. The general difficulty of a uniform temperature distribution during the heating process can be reached by using an Axicon which generates an annulus on the sheet metal surface. The temperature of the workpiece, measured by a pyrometer, is tuned by a PI-Controller. A tool incorporating a multistage operation die is used for the manufacturing of up to three parts at the same time. The tool is integrated into a hydraulical press. A gearwheel made of the magnesium alloy AZ31 is chosen as metal demonstrator. The quality of these punched parts could be significantly improved at elevated temperatures

  4. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Science.gov (United States)

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  5. Increasing the Robustness of the Sheet Metal Forming Simulation by the Prediction of the Forming Limit Band

    Science.gov (United States)

    Banabic, D.; Vos, M.; Paraianu, L.; Jurco, P.

    2007-05-01

    The experimental research on the formability of metal sheets has shown that there is a significant dispersion of the limit strains in an area delimited by two curves: a lower curve (LFLC) and an upper one (UFLC). The region between the two curves defines the so-called Forming Limit Band (FLB). So far, this forming band has only been determined experimentally. In this paper the authors suggested a method to predict the Forming Limit Band. The proposed method is illustrated on the AA6111-T43 aluminium alloy.

  6. Increasing the Robustness of the Sheet Metal Forming Simulation by the Prediction of the Forming Limit Band

    International Nuclear Information System (INIS)

    Banabic, D.; Paraianu, L.; Vos, M.; Jurco, P.

    2007-01-01

    The experimental research on the formability of metal sheets has shown that there is a significant dispersion of the limit strains in an area delimited by two curves: a lower curve (LFLC) and an upper one (UFLC). The region between the two curves defines the so-called Forming Limit Band (FLB). So far, this forming band has only been determined experimentally. In this paper the authors suggested a method to predict the Forming Limit Band. The proposed method is illustrated on the AA6111-T43 aluminium alloy

  7. Method of charging instruments into liquid metal coolant

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi

    1980-01-01

    Purpose: To alleviate the thermal shock of a reactor charging machine when charging the machine into liquid metal coolant after the machine is preheated in cover gas. Method: When a reactor fueling machine reaches at the lowermost portion the position immediately above liquid metal coolant surface level, the machine is stopped moving down. The reactor fueling machine is heated at the lowermost portion by thermal radiation from the surface of the liquid metal coolant. After the machine is thus preheated in cover gas, it is again steadily moved down by a winch and charged into the liquid metal coolant. Therefore, the thermal shock of the machine becomes low when charging the machine into the liquid metal coolant to eliminate the damage and deformation at the machine. (Yoshihara, H.)

  8. Innovation prize for air-conditioned assembly shop - Constant temperature allows the assembly of high-precision machining centres; Innovationspreis fuer klimatisierte Montagehalle

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W.

    2002-07-01

    This article describes the clever combination of various techniques to achieve the goal of providing a stable ambient temperature with an accuracy of +/- 1 K in the assembly shop of a German manufacturer of precision machine tools. The requirements placed on the assembly and operation of machine tools operating to an accuracy of less that a hundredth of a millimetre are discussed. The award-winning heating and cooling system, which features the use of gravity cooling, geothermal energy (ground water for cooling) and the use of constructional elements (floor, facades, windows) for thermal buffering is described. The ingenious control system with 32 control zones and 64 sensors is described, which also provides the company's management with long-term documentation of temperature conditions for quality assurance purposes. Technical data on the installation is provided in table form.

  9. Raising quality of maintenance and control of metallic structures in large-load technological machines

    Science.gov (United States)

    Drygin, M. Yu; Kuryshkin, N. P.

    2018-01-01

    Active growth of coal extraction and underinvestment of coal mining in Russia lead to the fact that technical state of more than 86% of technological machines at opencast coal mines is unacceptable. One of the most significant problems is unacceptable state of supporting metallic structures of excavators and mine dump trucks. The analysis has shown that defects in these metallic structures had been accumulated for a long time. Their removal by the existing method of repair welding was not effective - the flaws reappeared in 2-6 months of technological machines’ service. The authors detected the prime causes that did not allow to make a good repair welding joint. A new technology of repair welding had been tested and endorsed, and this allowed to reduce the number of welded joints’ flaws by 85% without additional raising welders’ qualification. As a result the number of flaws in metallic structures of the equipment had been reduced by 35 % as early as in the first year of using the new technology.

  10. Fluid Structure Interaction Analysis in Manufacturing Metal/Polymer Macro-Composites

    International Nuclear Information System (INIS)

    Baesso, R.; Lucchetta, G.

    2007-01-01

    Polymer Injection Forming (PIF) is a new manufacturing technology for sheet metal-polymer macro-composites, which results from the combination of injection moulding and sheet metal forming. This process consists on forming the sheet metal according to the boundary of the mould cavity by means of the injected polymer. After cooling, the polymer bonds permanently to the metal resulting in a sheet metal-polymer macro-composite product. Comparing this process to traditional ones (where the polymeric and metal parts are joined together after separate forming) the main advantages are both reduction of production costs and increase of part quality. This paper presents a multi-physics numerical simulation of the process performed in the Ansys/CFX environment

  11. Design of a dual-axis optoelectronic level for precision angle measurements

    International Nuclear Information System (INIS)

    Fan, Kuang-Chao; Wang, Tsung-Han; Lin, Sheng-Yi; Liu, Yen-Chih

    2011-01-01

    The accuracy of machine tools is mainly determined by angular errors during linear motion according to the well-known Abbe principle. Precision angle measurement is important to precision machines. This paper presents the theory and experiments of a new dual-axis optoelectronic level with low cost and high precision. The system adopts a commercial DVD pickup head as the angle sensor in association with the double-layer pendulum mechanism for two-axis swings, respectively. In data processing with a microprocessor, the measured angles of both axes can be displayed on an LCD or exported to an external PC. Calibrated by a triple-beam laser angular interferometer, the error of the dual-axis optoelectronic level is better than ±0.7 arcsec in the measuring range of ±30 arcsec, and the settling time is within 0.5 s. Experiments show the applicability to the inspection of precision machines

  12. An Adaptive Test Sheet Generation Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan-Yu Lin

    2012-01-01

    Full Text Available For test-sheet composition systems, it is important to adaptively compose test sheets with diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment requirements during real learning situations. Computation time and item exposure rate also influence performance and item bank security. Therefore, this study proposes an Adaptive Test Sheet Generation (ATSG mechanism, where a Candidate Item Selection Strategy adaptively determines candidate test items and conceptual granularities according to desired conceptual scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA to figure out the approximate solution of mixed integer programming problem for the test-sheet composition. Experimental results show that the ATSG mechanism can efficiently, precisely generate test sheets to meet the various assessment requirements than existing ones. Furthermore, according to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the near future.

  13. Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing

    Science.gov (United States)

    Ünsal, Ismail; Hama-Saleh, R.; Sviridov, Alexander; Bambach, Markus; Weisheit, A.; Schleifenbaum, J. H.

    2018-05-01

    New technological challenges like electro-mobility pose an increasing demand for cost-efficient processes for the production of product variants. This demand opens the possibility to combine established die-based manufacturing methods and innovative, dieless technologies like additive manufacturing [1, 2]. In this context, additive manufacturing technologies allow for the weight-efficient local reinforcement of parts before and after forming, enabling manufacturers to produce product variants from series parts [3]. Previous work by the authors shows that the optimal shape of the reinforcing structure can be determined using sizing optimization. Sheet metal parts can then be reinforced using laser metal deposition. The material used is a pearlite-reduced, micro-alloyed steel (ZE 630). The aim of this paper is to determine the effect of the additive manufacturing process on the material behavior and the mechanical properties of the base material and the resulting composite material. The parameters of the AM process are optimized to reach similar material properties in the base material and the build-up volume. A metallographic analysis of the parts is presented, where the additive layers, the base material and also the bonding between the additive layers and the base material are analyzed. The paper shows the feasibility of the approach and details the resulting mechanical properties and performance.

  14. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  15. ICESat's First Year of Measurements Over the Polar Ice Sheets

    Science.gov (United States)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  16. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an

  17. EDM machinability of SiCw/Al composites

    Science.gov (United States)

    Ramulu, M.; Taya, M.

    1989-01-01

    Machinability of high temperature composites was investigated. Target materials, 15 and 25 vol pct SiC whisker-2124 aluminum composites, were machined by electrodischarge sinker machining and diamond saw. The machined surfaces of these metal matrix composites were examined by SEM and profilometry to determine the surface finish. Microhardness measurements were also performed on the as-machined composites.

  18. Simulation spread sheet of Angra-1 secondary circuit

    International Nuclear Information System (INIS)

    Futuro, F.L.; Rucos, J.; Ogando, A.; Maprelian, E.; Bassel, W.S.; Baptista Filho, B.D.

    2000-01-01

    The efficient operation of a Nuclear Power Plant (NPP) requires the continuous identification of derivations in the main operating parameters. The identification and analysis of those derivations allow someone to detect the degradation of instruments or even of any equipment. In order to study this problem the group of thermal generation of Angra 1 NPP, devised the use of a Microsoft Excel spread sheet for the automation of Angra 1 thermal balance. In the set of simulation spread sheets, measured values of the secondary system main parameters were compared with project values for a given reactor power level and condenser pressure. The spread sheets provide the turbines power and efficiency and do the plant thermal balance. This work presents a general description of the spread sheets set and a real case analysis of Angra 1 NPP, showing its precision and use easiness. (author)

  19. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  20. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Science.gov (United States)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  1. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  2. Obtainment, machining and wear of metal matrix composites processed by powder metallurgy

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    1998-01-01

    The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The

  3. Tattoo machines, needles and utilities.

    Science.gov (United States)

    Rosenkilde, Frank

    2015-01-01

    Starting out as a professional tattooist back in 1977 in Copenhagen, Denmark, Frank Rosenkilde has personally experienced the remarkable development of tattoo machines, needles and utilities: all the way from home-made equipment to industrial products of substantially improved quality. Machines can be constructed like the traditional dual-coil and single-coil machines or can be e-coil, rotary and hybrid machines, with the more convenient and precise rotary machines being the recent trend. This development has resulted in disposable needles and utilities. Newer machines are more easily kept clean and protected with foil to prevent crosscontaminations and infections. The machines and the tattooists' knowledge and awareness about prevention of infection have developed hand-in-hand. For decades, Frank Rosenkilde has been collecting tattoo machines. Part of his collection is presented here, supplemented by his personal notes. © 2015 S. Karger AG, Basel.

  4. A Fundamental Study of Stretch-Drawing Process of Sheet Metals : Single and Double Operations

    Science.gov (United States)

    Gotoh, Manabu; Kim, Young-soo; Yamashita, Minoru

    1998-05-01

    Fundamental and informative data of axisymmetric stretch-drawing of several sheet metals with thichness of 0.7 1.0 mm are presented especially for single and double operations. Very small radius is applied to the die-profile (or -shoulder) in all operations to induce wall-thinning by the effect of bending-under-tension, from which the name `stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by the single and double stretch-drawings from smaller cirlcular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks. From this fact, it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional LDR (=limiting drawing ratio), but the depth of the drawn cup should also be taken into account. Many experimental data about various metals and thicknesses given in this paper offer a valueable information on this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing, it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation. Fracturing is found to occur at the middle section of the wall part or at the die-profile other than at the punch profile common in the usual deep-drawing process. Numerical simulation of the single stretch-drawing process is also performed by use of DYNA-3D code to confirm that a satisfactory prediction especially in the depth of the drawn-cup can be done at least in a practical sense, although this kind of numerical analysis is very difficult because of the severity or localization of deformation around the die profile. The drawn cup of SUS304 among others fractures in a couple of weeks after the operation due to the residual circumferential tensile stress, whereas that of SUS304L does not. In the double stretch-drawing, it is confirmed that very deeper

  5. Fabrication of Superhydrophobic Metallic Surface by Wire Electrical Discharge Machining for Seamless Roll-to-Roll Printing

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-04-01

    Full Text Available This paper presents a proposal of a direct one-step method to fabricate a multi-scale superhydrophobic metallic seamless roll mold. The mold was fabricated using the wire electrical discharge machining (WEDM technique for a roll-to-roll imprinting application to produce a large superhydrophobic surface. Taking advantage of the exfoliating characteristic of the metallic surface, nano-sized surface roughness was spontaneously formed while manufacturing the micro-sized structure: that is, a dual-scale hierarchical structure was easily produced in a simple one-step fabrication with a large area on the aluminum metal surface. This hierarchical structure showed superhydrophobicity without chemical coating. A roll-type seamless mold for the roll-to-roll process was fabricated through engraving the patterns on the cylindrical substrate, thereby enabling to make a continuous film with superhydrophobicity.

  6. High precision spectrophotometric analysis of thorium

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1984-01-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium when processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using dissodium ethylenediaminetetraacetate (EDTA) solution and alizarin-S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer programme. Besides the equivalence point, other parameters of titration were determined: the indicator concentration, the absorbance of the metal-indicator complex, and the stability constants of the metal-indicator and the metal-EDTA complexes. (Author) [pt

  7. Engineering of Machine tool’s High-precision electric drives

    Science.gov (United States)

    Khayatov, E. S.; Korzhavin, M. E.; Naumovich, N. I.

    2018-03-01

    In the article it is shown that in mechanisms with numerical program control, high quality of processes can be achieved only in systems that provide adjustment of the working element’s position with high accuracy, and this requires an expansion of the regulation range by the torque. In particular, the use of synchronous reactive machines with independent excitation control makes it possible to substantially increase the moment overload in the sequential excitation circuit. Using mathematical and physical modeling methods, it is shown that in the electric drive with a synchronous reactive machine with independent excitation in a circuit with sequential excitation, it is possible to significantly expand the range of regulation by the torque and this is achieved by the effect of sequential excitation, which makes it possible to compensate for the transverse reaction of the armature.

  8. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  9. Laser-assisted shearing: new application for high-power diode lasers

    Science.gov (United States)

    Emonts, Michael; Brecher, Christian

    2010-02-01

    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  10. Automatic Compensation of Workpiece Positioning Tolerances for Precise Laser

    Directory of Open Access Journals (Sweden)

    N. C. Stache

    2008-01-01

    Full Text Available Precise laser welding plays a fundamental role in the production of high-tech goods, particularly in precision engineering. In this working field, precise adjustment and compensation of positioning tolerances of the parts to be welded with respect to the laser beam is of paramount importance. This procedure mostly requires tedious and error-prone manual adjustment, which additionally results in a sharp increase in production costs. We therefore developed a system which automates and thus accelerates this procedure significantly. To this end, the welding machine is equipped with a camera to acquire high resolution images of the parts to be welded. In addition, a software framework is developed which enables precise automatic position detection of these parts and adjusts the position of the welding contour correspondingly. As a result, the machine is rapidly prepared for welding, and it is much more flexible in adapting to unknown parts.This paper describes the entire concept of extending a conventional welding machine with means for image acquisition and position estimation. In addition to this description, the algorithms, the results of an evaluation of position estimation, and a final welding result are presented. 

  11. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  12. Efficient implicit FEM simulation of sheet metal forming

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Meinders, Vincent T.; Huetink, Han

    2003-01-01

    For the simulation of industrial sheet forming processes, the time discretisation is one of the important factors that determine the accuracy and efficiency of the algorithm. For relatively small models, the implicit time integration method is preferred, because of its inherent equilibrium check.

  13. Valid Probabilistic Predictions for Ginseng with Venn Machines Using Electronic Nose

    Directory of Open Access Journals (Sweden)

    You Wang

    2016-07-01

    Full Text Available In the application of electronic noses (E-noses, probabilistic prediction is a good way to estimate how confident we are about our prediction. In this work, a homemade E-nose system embedded with 16 metal-oxide semi-conductive gas sensors was used to discriminate nine kinds of ginsengs of different species or production places. A flexible machine learning framework, Venn machine (VM was introduced to make probabilistic predictions for each prediction. Three Venn predictors were developed based on three classical probabilistic prediction methods (Platt’s method, Softmax regression and Naive Bayes. Three Venn predictors and three classical probabilistic prediction methods were compared in aspect of classification rate and especially the validity of estimated probability. A best classification rate of 88.57% was achieved with Platt’s method in offline mode, and the classification rate of VM-SVM (Venn machine based on Support Vector Machine was 86.35%, just 2.22% lower. The validity of Venn predictors performed better than that of corresponding classical probabilistic prediction methods. The validity of VM-SVM was superior to the other methods. The results demonstrated that Venn machine is a flexible tool to make precise and valid probabilistic prediction in the application of E-nose, and VM-SVM achieved the best performance for the probabilistic prediction of ginseng samples.

  14. A Two-Ply Polymer-Based Flexible Tactile Sensor Sheet Using Electric Capacitance

    Directory of Open Access Journals (Sweden)

    Shijie Guo

    2014-01-01

    Full Text Available Traditional capacitive tactile sensor sheets usually have a three-layered structure, with a dielectric layer sandwiched by two electrode layers. Each electrode layer has a number of parallel ribbon-like electrodes. The electrodes on the two electrode layers are oriented orthogonally and each crossing point of the two perpendicular electrode arrays makes up a capacitive sensor cell on the sheet. It is well known that compatibility between measuring precision and resolution is difficult, since decreasing the width of the electrodes is required to obtain a high resolution, however, this may lead to reduction of the area of the sensor cells, and as a result, lead to a low Signal/Noise (S/N ratio. To overcome this problem, a new multilayered structure and related calculation procedure are proposed. This new structure stacks two or more sensor sheets with shifts in position. Both a high precision and a high resolution can be obtained by combining the signals of the stacked sensor sheets. Trial production was made and the effect was confirmed.

  15. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  16. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.

    Science.gov (United States)

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo

    2016-12-13

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.

  17. 3D finite element modelling of sheet metal blanking process

    Science.gov (United States)

    Bohdal, Lukasz; Kukielka, Leon; Chodor, Jaroslaw; Kulakowska, Agnieszka; Patyk, Radoslaw; Kaldunski, Pawel

    2018-05-01

    The shearing process such as the blanking of sheet metals has been used often to prepare workpieces for subsequent forming operations. The use of FEM simulation is increasing for investigation and optimizing the blanking process. In the current literature a blanking FEM simulations for the limited capability and large computational cost of the three dimensional (3D) analysis has been largely limited to two dimensional (2D) plane axis-symmetry problems. However, a significant progress in modelling which takes into account the influence of real material (e.g. microstructure of the material), physical and technological conditions can be obtained by using 3D numerical analysis methods in this area. The objective of this paper is to present 3D finite element analysis of the ductile fracture, strain distribution and stress in blanking process with the assumption geometrical and physical nonlinearities. The physical, mathematical and computer model of the process are elaborated. Dynamic effects, mechanical coupling, constitutive damage law and contact friction are taken into account. The application in ANSYS/LS-DYNA program is elaborated. The effect of the main process parameter a blanking clearance on the deformation of 1018 steel and quality of the blank's sheared edge is analyzed. The results of computer simulations can be used to forecasting quality of the final parts optimization.

  18. Keyhole shapes during laser welding of thin metal sheets

    International Nuclear Information System (INIS)

    Aalderink, B J; Lange, D F de; Aarts, R G K M; Meijer, J

    2007-01-01

    Camera observations of the full penetration keyhole laser welding process show that the keyhole shape is elongated under certain welding conditions. Under these unfavourable circumstances, the welding process is susceptible to holes in the weld bead. Existing models of the pressure balance at the keyhole wall cannot explain this keyhole elongation. In this paper a new model is presented, accounting for the doubly curved shape of the keyhole wall. In this model, the surface tension pressure has one term that tends to close the keyhole and another term that tries to open it. Model calculations show that when the keyhole diameter is of the same order as the sheet thickness, the latter part can become dominant, causing the keyhole to elongate. Experiments on thin aluminium (AA5182) and mild steel (DC04) sheets verify these model calculations. As the keyhole radius depends on the radius of the focused laser spot, it was found for both materials that the ratio of the spot radius and the sheet thickness must be above a critical value to prevent keyhole elongation. These critical radii are 0.25 for AA5182 and 0.4 for DC04, respectively. Furthermore, differences in appearance of the weld bead between the circular and the elongated keyhole welds could be explained by this model

  19. Current state and future perspectives on coupled ice-sheet – sea-level modelling

    NARCIS (Netherlands)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S.W.

    2017-01-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the

  20. Classification of LIDAR Data for Generating a High-Precision Roadway Map

    Science.gov (United States)

    Jeong, J.; Lee, I.

    2016-06-01

    Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  1. CLASSIFICATION OF LIDAR DATA FOR GENERATING A HIGH-PRECISION ROADWAY MAP

    Directory of Open Access Journals (Sweden)

    J. Jeong

    2016-06-01

    Full Text Available Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  2. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  3. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-01-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  4. The achievements of the Z-machine; Les exploits de la Z-machine

    Energy Technology Data Exchange (ETDEWEB)

    Larousserie, D

    2008-03-15

    The ZR-machine that represents the latest generation of Z-pinch machines has recently begun preliminary testing before its full commissioning in Albuquerque (Usa). During its test the machine has well operated with electrical currents whose intensities of 26 million Ampere are already 2 times as high as the intensity of the operating current of the previous Z-machine. In 2006 the Z-machine reached temperatures of 2 billions Kelvin while 100 million Kelvin would be sufficient to ignite thermonuclear fusion. In fact the concept of Z-pinch machines was imagined in the fifties but the technological breakthrough that has allowed this recent success and the reborn of Z-machine, was the replacement of gas by an array of metal wires through which the electrical current flows and vaporizes it creating an imploding plasma. It is not well understood why Z-pinch machines generate far more radiation than theoretically expected. (A.C.)

  5. Electrical Discharge Machining (EDM: A Review

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2016-09-01

    Full Text Available Electro discharge machining (EDM process is a non-conventional and non-contact machining operation which is used in industry for high precision products. EDM is known for machining hard and brittle conductivematerials since it can melt any electrically conductive material regardless of its hardness. The workpiece machined by EDM depends on thermal conductivity, electrical resistivity, and melting points of the materials. The tool and the workpiece are adequately both immersed in a dielectric medium, such as, kerosene, deionised water or any other suitable fluid. This paper is reviewed comprehensively on types of EDM operation. A brief discussion is also done on the machining responses and mathematical modelling.

  6. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  7. Machining of Molybdenum by EDM-EP and EDC Processes

    Science.gov (United States)

    Wu, K. L.; Chen, H. J.; Lee, H. M.; Lo, J. S.

    2017-12-01

    Molybdenum metal (Mo) can be machined with conventional tools and equipment, however, its refractory propertytends to chip when being machined. In this study, the nonconventional processes of electrical discharge machining (EDM) and electro-polishing (EP) have been conducted to investigate the machining of Mo metal and fabrication of Mo grid. Satisfactory surface quality was obtained using appropriate EDM parameters of Ip ≦ 3A and Ton EDMed Mo metal. Experimental results proved that the appropriate parameters of Ip = 5A and Ton = 50μs at Toff = 10μs can obtain the deposit with about 60μm thickness. The major phase of deposit on machined Mo surface was SiC ceramic, while the minor phases included MoSi2 and/or SiO2 with the presence of free Si due to improper discharging parameters and the use of silicone oil as the dielectric fluid.

  8. Tool wear and breakage monitoring in machining

    International Nuclear Information System (INIS)

    Madl, J.

    1992-01-01

    Risk minimization of metal cutting operations is one of the main problems of metal cutting technology. This paper describes some aspects in monitoring and control of machining processes. Tool monitoring is the fokus of machining process monitoring. Tool breakage and tool life recognition are the main problems of tool monitoring. All problems of this type of monitoring have not yet been fully solved. (orig.)

  9. Machine Tool Software

    Science.gov (United States)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  10. Advanced characterization of carrier profiles in germanium using micro-machined contact probes

    DEFF Research Database (Denmark)

    Clarysse, T.; Konttinen, M.; Parmentier, B.

    2012-01-01

    of new concepts based on micro machined, closely spaced contact probes (10 μm pitch). When using four probes to perform sheet resistance measurements, a quantitative carrier profile extraction based on the evolution of the sheet resistance versus depth along a beveled surface is obtained. Considering...... the properties of both approaches on Al+ implants in germanium with different anneal treatments....

  11. Machine tool evaluation

    International Nuclear Information System (INIS)

    Lunsford, B.E.

    1976-01-01

    Continued improvement in numerical control (NC) units and the mechanical components used in the construction of today's machine tools, necessitate the use of more precise instrumentation to calibrate and determine the capabilities of these systems. It is now necessary to calibrate most tape-control lathes to a tool-path positioning accuracy of +-300 microinches in the full slide travel and, on some special turning and boring machines, a capability of +-100 microinches must be achieved. The use of a laser interferometer to determine tool-path capabilities is described

  12. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    Science.gov (United States)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  13. Design of a kinematic coupling for precision applications

    NARCIS (Netherlands)

    Schouten, C.H.; Rosielle, P.C.J.N.; Schellekens, P.H.J.

    1997-01-01

    To machine a complex precision product, several tools are needed. These tools are placed on a tool turret. A tool must return several times to its original position. To attain a very high repeatability between the upper part and the base of the tool turret mounted on a precision lathe, it is

  14. Methods of In-Process On-Machine Auto-Inspection of Dimensional Error and Auto-Compensation of Tool Wear for Precision Turning

    Directory of Open Access Journals (Sweden)

    Shih-Ming Wang

    2016-04-01

    Full Text Available The purpose of this study is mainly to develop an information and communication technology (ICT-based intelligent dimension inspection and tool wear compensation method for precision tuning. With the use of vibration signal processing/characteristics analysis technology combined with ICT, statistical analysis, and diagnosis algorithms, the method can be used to proceed with an on-line dimension inspection and on-machine tool wear auto-compensation for the turning process. Meanwhile, the method can also monitor critical tool life to identify the appropriate time for cutter replacement to reduce machining costs and improve the production efficiency of the turning process. Compared to the traditional ways, the method offers the advantages of requiring less manpower, and having better production efficiency, high tool life, fewer scrap parts, and low costs for inspection instruments. Algorithms and diagnosis threshold values for the detection, cutter wear compensation, and cutter life monitoring were developed. In addition, a bilateral communication module utilizing FANUC Open CNC (computer numerical control Application Programming Interface (API Spec was developed for the on-line extraction of instant NC (numerical control codes for monitoring and transmit commands to CNC controllers for cutter wear compensation. With use of local area networks (LAN to deliver the detection and correction information, the proposed method was able to remotely control the on-machine monitoring process and upload the machining and inspection data to a remote central platform for further production optimization. The verification experiments were conducted on a turning production line. The results showed that the system provided 93% correction for size inspection and 100% correction for cutter wear compensation.

  15. Application of Electro Chemical Machining for materials used in extreme conditions

    Science.gov (United States)

    Pandilov, Z.

    2018-03-01

    Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.

  16. Explicit and implicit springback simulation in sheet metal forming using fully coupled ductile damage and distortional hardening model

    Science.gov (United States)

    Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.

    2018-05-01

    The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.

  17. Inhalation hazards from machining beryllium metal

    International Nuclear Information System (INIS)

    Hoover, M.D.; Finch, G.L.; Mewhinney, J.A.; Eidson, A.F.

    1987-01-01

    Beryllium metal has special nuclear and structural properties that make it useful for applications in fission and fusion reactor designs. Unfortunately, concerns for its toxicity have made designers wary of using beryllium metal. The work being reported here was undertaken to characterize the aerosols produced by two very common operations performed during preparation or modification of components for use in reactor systems: sawing and milling of beryllium metal. The study also covered beryllium metal alloys to allow comparison. Information from this study is to enable better assessments of the risk of using beryllium metal in reactor designs

  18. Precision Parameter Estimation and Machine Learning

    Science.gov (United States)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  19. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    International Nuclear Information System (INIS)

    Kheyri, A.; Nourbakhsh, Z.; Darabi, E.

    2016-01-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  20. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kheyri, A. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Nourbakhsh, Z., E-mail: z.nourbakhsh@sci.ui.ac.ir [Physics Department, Faculty of Science, University of Isfahan, Isfahan (Iran, Islamic Republic of); Darabi, E. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-08-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  1. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.; Wit, J.H.W. de; Mol, J.M.C.; Terryn, H.

    2012-01-01

    Highlights: ► Localized electrochemical cell and glow discharge optical emission spectrometry were used. ► An electrochemical depth profile of an aluminum brazing sheet was obtained. ► The electrochemical responses were correlated to the microstructural features. - Abstract: Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1 wt% NaCl solution at pH 2.8 were obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion, while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical activity of the outer 10 μm in controlling the corrosion performance of the aluminum brazing sheet.

  2. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  3. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided

  4. Precision physics at LHC

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1997-05-01

    In this talk the author gives a brief survey of some physics topics that will be addressed by the Large Hadron Collider currently under construction at CERN. Instead of discussing the reach of this machine for new physics, the author gives examples of the types of precision measurements that might be made if new physics is discovered

  5. [Computer aided design and manufacture of the porcelain fused to metal crown].

    Science.gov (United States)

    Nie, Xin; Cheng, Xiaosheng; Dai, Ning; Yu, Qing; Hao, Guodong; Sun, Quanping

    2009-04-01

    In order to satisfy the current demand for fast and high-quality prosthodontics, we have carried out a research in the fabrication process of the porcelain fused to metal crown on molar with CAD/CAM technology. Firstly, we get the data of the surface mesh on preparation teeth through a 3D-optical grating measuring system. Then, we reconstruct the 3D-model crown with the computer-aided design software which was developed by ourselves. Finally, with the 3D-model data, we produce a metallic crown on a high-speed CNC carving machine. The result has proved that the metallic crown can match the preparation teeth ideally. The fabrication process is reliable and efficient, and the restoration is precise and steady in quality.

  6. Formability of aluminium sheets manufactured by solid state recycling

    Science.gov (United States)

    Kore, A. S.; Nayak, K. C.; Date, P. P.

    2017-09-01

    Conventional recycling practices for non-ferrous metallic scrap involves melting followed by purification. This practice is suitable for recycling when the large volume of scrap is available. Though such recycling reduces consumption of diminishing metallic resources, high energy requirement and material loss during melting and purification limit its applicability. In the present work, manufacturing of solid state recycled aluminium sheet by hot rolling is explored and its formability characterized. Aluminium chips were divided into smaller particles (1~2mm) by crushing. After stress relief annealing, chips were cold compacted into square slabs (75*75mm section) of different thicknesses. Another similar set of slabs was made by hot compaction. The compacted slabs were hot rolled over a number of passes at 400°C. Each slab was reduced to approximately 90% thickness to get the sheet thickness in the range of 0.6 to 1.5 mm. Microstructure revealed good interface bonding between the chip particles. Mechanical properties of the sheet from room temperature up to 200°C and at different strain rates were characterized by a number of tensile tests. Circular blanks from sheet were drawn into cylindrical cups and strain distribution was observed along different directions of rolling using circle grid analysis.

  7. Towards High Productivity in Precision Grinding

    Directory of Open Access Journals (Sweden)

    W. Brian Rowe

    2018-04-01

    Full Text Available Over the last century, substantial advances have been made, based on improved understanding of the requirements of grinding processes, machines, control systems, materials, abrasives, wheel preparation, coolants, lubricants, and coolant delivery. This paper reviews a selection of areas in which the application of scientific principles and engineering ingenuity has led to the development of new grinding processes, abrasives, tools, machines, and systems. Topics feature a selection of areas where relationships between scientific principles and new techniques are yielding improved productivity and better quality. These examples point towards further advances that can fruitfully be pursued. Applications in modern grinding technology range from high-precision kinematics for grinding very large lenses and reflectors through to medium size grinding machine processes and further down to grinding very small components used in micro electro-mechanical systems (MEMS devices. The importance of material issues is emphasized for the range of conventional engineering steels, through to aerospace materials, ceramics, and composites. It is suggested that future advances in productivity will include the wider application of artificial intelligence and robotics to improve precision, process efficiency, and features required to integrate grinding processes into wider manufacturing systems.

  8. Deep x-ray lithography for micromechanics and precision engineering

    International Nuclear Information System (INIS)

    Guckel, H.

    1996-01-01

    Micromechanics, an emerging technology for sensor and actuator fabrication, has already been exploited in the sensor area. Progress in actuators, devices that modify their environment and are fundamentally three dimensional, has been much more modest and is suffering from the availability of a fabrication tool with the necessary attributes. If the tool is based on photoresist technology, requirements include very large structure heights: in the millimeter range, for mask-defined prismatic photoresist shapes with flanks that differ from 90 degrees by less than 15 arc-seconds. Photoresist procedures that lead to these results are very different from their counterparts in the microelectronic industry. Thus, application is based on precast sheets of polymethyl methacrylate, PMMA, and solvent bonding followed by precision fly-cutting. Exposure is based on well-collimated x-ray sources, synchrotrons, with flux densities that can deposit 1,600 Joules per cubic centimeter in a finite time at the correct photoresist depth. Since PMMA has an absorption length that varies with photon energy, it is 100 micrometer at 3000 eV and increases to 1 cm at 20,000 eV, beamline and exposure designs center on transmission filters that control the low energy portion of the synchrotron spectrum. Since exposure latitude is large, overexposure by a factor of 15 is allowed, beamline and exposure design are relatively simple. Experiments via the Wisconsin machine, Aladdin, and the Brookhaven 2.6-GeV ring are being used to study the effectiveness issue of manufacturing with synchrotron radiation. Actuator test vehicles are linear and rotational magnetic micromotors with force outputs in the milli-Newton range. High energy exposures have produced large parts with submicron precision that are finding applications in ink jet printing and precision injection molding procedures. Both device types are unique to x-ray assisted processing. copyright 1996 American Institute of Physics

  9. Application of alternating current for dimensionally electrochemical machining

    International Nuclear Information System (INIS)

    Kacheev, M.K.; Kovalev, L.M.

    1978-01-01

    The results of comparative experimental investigations in dimensionally electrochemical machining of 1Kh18N9T steel using alternating and direct currents are presented. The effect of the electrolyte rate in the inter-electrode clearance, electrode voltage and oscillation amplitude of the electrode-tool on the metal output from the electrodes and the relief of the machined surface is studied. It is shown that the a.c. electrochemical machining permits to achieve the greater dimensional accuracy than the d.c. machining when choosing the proper voltage and electrolyte composition. It is connected with the fact that the prevailing part of the metal output is obtained in the impulse-asymmetrical regime when the inter-electrode clearance is minimum

  10. Research on cylindrical indexing cam’s unilateral machining

    Directory of Open Access Journals (Sweden)

    Junhua Chen

    2015-08-01

    Full Text Available The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported.

  11. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets

    International Nuclear Information System (INIS)

    Watanabe, Goro; Yogo, Yasuhiro; Takao, Hisaaki

    2014-01-01

    A new joining method for dissimilar metal sheets was developed where a rotated consumable rod of Al alloy is pressed onto an Al alloy sheet at the part overlapped with a mild steel sheet. The metal flow in the joining region is increased by the through-hole in the Al sheet and consumable Al rod. The rod creates the joint interface and pads out of the thinly joined parts through pressing. This produces a higher joint strength than that of conventional friction stir spot welding. Measurements of the joint interface showed the presence of a 5-10 nm thick amorphous layer consisting of Al and Mg oxides

  12. An overview on the conventional and nonconventional methods for manufacturing the metallic glasses

    Directory of Open Access Journals (Sweden)

    Axinte Eugen

    2017-01-01

    Full Text Available Metallic glasses (MGs, first discovered in 1959 at Caltech are currently among the most studied metallic materials. MGs called also glassy metals, amorphous metals, liquid metals, are considered to be among the materials of the future. The “classic” methods for industrialization of MGs are : end-casting in copper molds and protected environment, die forging , atomization for obtaining MG powder ,selective laser melting , imprinting in molds, thermoplastic shaping in the super-cooled temperature region. These methods are suitable for producing high value-added precision components but the problems still exists: expensive tools, limited lifetime of tools and the occurring of crystallization. Actually methods (thermoplastic shaping, casting and die forging are limited by the low flexibility of production and by higher costs of tools and accessories. More suitable methods are greatly desired to machine MGs for their wider applications.

  13. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    Science.gov (United States)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  14. Development of technique for quantifying gamma emitters in metal waste. New technique of precise and automatic measurements for confirmation of clearance level of metal waste

    International Nuclear Information System (INIS)

    Hattori, Takatoshi

    2002-01-01

    A New technique of precise and automatic measurements of gamma emitters in metal waste has been developed using 3D non-contact shape measurement and monte-carlo calculation techniques in order to confirm that specific radioactivity level of metal waste satisfies the clearance level and furthermore the surface contamination level of the metal waste is below the legal standard level. The technique can give a calibration factor every measurement target automatically and realize an automatic correction for reduction of background count rate in gamma measurements due to self-shield effect of the measurement target. The accuracy of the present method has been made clear using mock-metal wastes with various types of shape, number and size. Assuming the goal of the detection limit for practical use is 25OBq in radioactivity, a concept of the practical gamma monitor has been designed so as to be able to confirm both the clearance level and surface contamination level simultaneously and to cope with the metal waste at a speed of 2-10 ton a day. (author)

  15. Effect of Intermediate Annealing on Microstructure and Property of 5182 Aluminum Alloy Sheet for Automobile

    Directory of Open Access Journals (Sweden)

    WANG Yu

    2016-09-01

    Full Text Available Effect of intermediate annealing on the microstructure and properties of 5182 aluminum alloy sheet with full annealed state (5182-O was investigated by means of optical microscope, scanning electron microscope and universal testing machine. The results indicate that compared with 5182-O sheet without intermediate annealing, 5182-O sheet with intermediate annealing possesses too fine grain size, intermetallic compounds not broken enough, larger size intermetallic particles, less dispersed phase. Yield strength and ultimate tensile strength, work hardening exponent and normal anisotropy of plastic strain ratio decrease but planner anisotropy of plastic strain ratio increases. The mechanical properties and forming ability of 5182-O aluminum alloy sheet and its microstructure are not improved significantly after intermediate annealing.

  16. Characterization and modelling techniques for gas metal arc welding of DP 600 sheet steels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Prahl, U.; Bleck, W. [RWTH Aachen University, Department of Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2010-11-15

    The objectives of the present work are to characterize the Gas Metal Arc Welding process of DP 600 sheet steel and to summarize the modelling techniques. The time-temperature evolution during the welding cycle was measured experimentally and modelled with the softwaretool SimWeld. To model the phase transformations during the welding cycle dilatometer tests were done to quantify the parameters for phase field modelling by MICRESS {sup registered}. The important input parameters are interface mobility, nucleation density, etc. A contribution was made to include austenite to bainite transformation in MICRESS {sup registered}. This is useful to predict the microstructure in the fast cooling segments. The phase transformation model is capable to predict the microstructure along the heating and cooling cycles of welding. Tensile tests have shown the evidence of failure at the heat affected zone, which has the ferrite-tempered martensite microstructure. (orig.)

  17. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  18. Casimir interactions between graphene sheets and metamaterials

    International Nuclear Information System (INIS)

    Drosdoff, D.; Woods, Lilia M.

    2011-01-01

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  19. Polymer quenched prealloyed metal powder

    Science.gov (United States)

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  20. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  1. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  2. Springback Simulation and Tool Surface Compensation Algorithm for Sheet Metal Forming

    International Nuclear Information System (INIS)

    Shen Guozhe; Hu Ping; Zhang Xiangkui; Chen Xiaobin; Li Xiaoda

    2005-01-01

    Springback is an unquenchable forming defect in the sheet metal forming process. How to calculate springback accurately is a big challenge for a lot of FEA software. Springback compensation makes the stamped final part accordant with the designed part shape by modifying tool surface, which depends on the accurate springback amount. How ever, the meshing data based on numerical simulation is expressed by nodes and elements, such data can not be supplied directly to tool surface CAD data. In this paper, a tool surface compensation algorithm based on numerical simulation technique of springback process is proposed in which the independently developed dynamic explicit springback algorithm (DESA) is used to simulate springback amount. When doing the tool surface compensation, the springback amount of the projected point can be obtained by interpolation of the springback amount of the projected element nodes. So the modified values of tool surface can be calculated reversely. After repeating the springback and compensation calculations for 1∼3 times, the reasonable tool surface mesh is gained. Finally, the FEM data on the compensated tool surface is fitted into the surface by CAD modeling software. The examination of a real industrial part shows the validity of the present method

  3. Findings From the National Machine Guarding Program-A Small Business Intervention: Machine Safety.

    Science.gov (United States)

    Parker, David L; Yamin, Samuel C; Xi, Min; Brosseau, Lisa M; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2016-09-01

    The purpose of this nationwide intervention was to improve machine safety in small metal fabrication businesses (3 to 150 employees). The failure to implement machine safety programs related to guarding and lockout/tagout (LOTO) are frequent causes of Occupational Safety and Health Administration (OSHA) citations and may result in serious traumatic injury. Insurance safety consultants conducted a standardized evaluation of machine guarding, safety programs, and LOTO. Businesses received a baseline evaluation, two intervention visits, and a 12-month follow-up evaluation. The intervention was completed by 160 businesses. Adding a safety committee was associated with a 10% point increase in business-level machine scores (P increase in LOTO program scores (P < 0.0001). Insurance safety consultants proved effective at disseminating a machine safety and LOTO intervention via management-employee safety committees.

  4. Job Grading Standard for Machine Tool Operator, WG-3431.

    Science.gov (United States)

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard covers nonsupervisory work involved in the set up, adjustment, and operation of conventional machine tools to perform machining operations in the manufacture and repair of castings, forgings, or parts from raw stock made of various metals, metal alloys, and other materials. A general description of the job at both the WG-8 and WG-9…

  5. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  6. Effect of some types of machining processes on beryllium fatigue strength properties

    International Nuclear Information System (INIS)

    Armbruster, M.

    1977-01-01

    The aim of this work, which is sponsored by the French D.G.R.S.T., is to determine a machining process giving both the highest tensile strength and the highest fatigue limit to beryllium parts. A comparison is made of the effects of : mechanical machining, electro discharge machining, electro-chemical machining, electrolytical and chemical polishing, glass shot peening, on the mechanical strength and fatigue limits of samples taken from hot pressed and extruded rods and from cast ingot sheets, either notched or not as required. Complementary examinations are performed principally by fractographic study. The results show that for beryllium, electrochemical machining followed by glass shot peening gives the best results; however mechanical machining with electrolytical polishing followed by glass shot peening are also satisfactory. (author)

  7. Theory and practice in machining systems

    CERN Document Server

    Ito, Yoshimi

    2017-01-01

    This book describes machining technology from a wider perspective by considering it within the machining space. Machining technology is one of the metal removal activities that occur at the machining point within the machining space. The machining space consists of structural configuration entities, e.g., the main spindle, the turret head and attachments such the chuck and mandrel, and also the form-generating movement of the machine tool itself. The book describes fundamental topics, including the form-generating movement of the machine tool and the important roles of the attachments, before moving on to consider the supply of raw materials into the machining space, and the discharge of swarf from it, and then machining technology itself. Building on the latest research findings “Theory and Practice in Machining System” discusses current challenges in machining. Thus, with the inclusion of introductory and advanced topics, the book can be used as a guide and survey of machining technology for students an...

  8. Laminated multilayer sheet structure and its utilization

    International Nuclear Information System (INIS)

    Chiba, K.; Itoh, K.; Mitani, Y.; Sobajima, S.; Yonemura, U.

    1980-01-01

    A laminated multilayer sheet structure is described comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer (B 2 ), said layer (B 1 ) being a transparent thermic ray reflecting layer composed of (I) a layer of a metal having a thickness of about 50 to about 600 A, said metal being selected from the group consisting of gold, silver, copper, aluminum and a mixture of alloy of at least two of said metals, and (II) a high refractive substance layer having a thickness of about 50 to about 600 A, of an oxide of titanium derived from a layer of an organic titanium compound of the formula Ti 1 O/sub m/R/sub n/, where R is alkyl of 1-20 carbon atoms, l=1-30, m=4+3(1-1), and n=4+2(1-1), and containing the organic residual moiety of the organic titanium compound, the amount of said organic residual moiety being 0.1 to 30% by weight based on the weight of the high refractive substance layer; or said layer (B 1 ) being a transparent semiconductive layer having a thickness of about 500 to about 5,000 a and being composed of a compound selected from the group consisting of indium oxide, tin oxide, cadmium oxide, antimony oxide, copper iodide, and a mixture of at least two of said compounds. A method is described for heat-insulating a room, which comprises applying to the surface of a floor, wall, ceiling or partition in the room a laminated multilayer sheet structure comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer

  9. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  10. Environmental diagnosis of the washing machine motor

    DEFF Research Database (Denmark)

    Erichsen, Hanne K. Linnet

    1997-01-01

    An environmental diagnosis of the washing machine focusing on the motor is performed. The goal of the diagnosis is to designate environmental focus points in the product. The LCA of the washing machine showed impact potentials from the life cycle of the product (see: LCA of a washing machine). Th...... up 2%, Manually disassembling and recycling of metals, Reuse of motor in a new washing machine, aluminium wire instead of copper wire in the motor....

  11. 78 FR 33339 - Notice of Petitions by Firms for Determination of Eligibility To Apply for Trade Adjustment...

    Science.gov (United States)

    2013-06-04

    ... Firm manufacturers metal parts for IN 46350. air compressors from sheet metal, aluminum and stainless... 17406. as spacers, washers, bushings and pins on multi-spindle automatic screw machines. K&F Electronics...

  12. Corrosion behaviour of metallic and non-metallic materials in various media in the Anhydrite and Gypsum Mine Felsenau/AG

    International Nuclear Information System (INIS)

    Laske, D.; Wiedemann, K.H.

    1983-10-01

    The final underground disposal of radioactive wastes necessitates container materials with a good long-term resistance against corrosion from both external agents and the solidification matrix inside. For low- and medium-level active waste, repositories in anhydrite sites, among others, are under consideration. Sheet and plate samples from 14 metallic and 8 non-metallic materials have been tested for 5 years in a tunnel in the Anhydrite and Gypsum Mine Felsenau/AG for their corrosion resistance in the tunnel atmosphere, anhydrite powder, gypsum powder, gypsum, and cement. From the metallic materials tested, only chromium-nickel steel is corrosion resistant to all the media present. Zinc plated and tin plated iron sheet as well as aluminium and aluminium alloys are corrosion resistant only in the atmosphere of the tunnel, and lead plated iron sheet is resistant also in cement. Aluminium is dissolved in cement. Uncovered iron sheet undergoes severe corrosion. The non-metallic coatings tested (lacquer, stove lacquer, or synthetic resins) partially flake off already after one year's testing and are therefore not appropriate for iron sheet corrosion protection. No influence of the different media has been observed after 5 years on the 8 plastic materials tested (6 without, and 2 with glass fiber reinforcement). (author)

  13. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    Science.gov (United States)

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Machine vision system for measuring conifer seedling morphology

    Science.gov (United States)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  15. Quantification of Galling in Sheet Metal Forming by surface topography characterisation

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Bay, Niels; De Chiffre, Leonardo

    1998-01-01

    One of the major problems in forming of stainless steel sheet is galling due to lubricant film breakdown leading to scoring and bad surface quality. In a Danish research programme new lubricants substituting the normally applied chlorinated paraffin oils are being developed and tested...... for this purpose. In order to determine the limits of lubrication of these new lubricants, as well as commercial ones already available on the market, two sheet forming tests have been developed. Quantification of the degree of galling is done by roughness measurements on the workpiece surface. In a strip...

  16. A supervisor system for computer aided laser machining

    International Nuclear Information System (INIS)

    Mukherjee, J.K.

    1990-01-01

    Lasers achieve non divergent beam of short wavelength energy which can propagate through normal atmosphere with little divergence and can be focused on very fine points. The final high energy per unit area on target is highly localised and suitable for various types of machining at high speeds. The most notable factor is that this high energy spot can be located precisely using light-weight optical components. The laser-machining is very amenable to environmental conditions unlike electron beam and other techniques. Precision cutting and welding of nuclear materials in normal or non oxidising atmosphere can be done using this fairly easily. To achieve these objectives, development of a computer controlled laser machining system has been undertaken. The development project aims at building a computer aided machine with indegenous controller and medium power laser suitable for cutting, welding, and marking. This paper describes the integration of the various computer aided functions, spanning over the full range, from job-defining to final finished part-delivary, in computer aided laser machining. Various innovative features of the system that render it suitable for laser tool development as well as for special machining applications with user-friendliness have been covered. (author). 5 refs., 5 figs

  17. Development of an electrically operated cassava slicing machine

    Directory of Open Access Journals (Sweden)

    I. S. Aji

    2013-08-01

    Full Text Available Labor input in manual cassava chips processing is very high and product quality is low. This paper presents the design and construction of an electrically operated cassava slicing machine that requires only one person to operate. Efficiency, portability, ease of operation, corrosion prevention of slicing component of the machine, force required to slice a cassava tuber, capacity of 10 kg/min and uniformity in the size of the cassava chips were considered in the design and fabrication of the machine. The performance of the machine was evaluated with cassava of average length and diameter of 253 mm and 60 mm respectively at an average speed of 154 rpm. The machine produced 5.3 kg of chips of 10 mm length and 60 mm diameter in 1 minute. The efficiency of the machine was 95.6% with respect to the quantity of the input cassava. The chips were found to be well chipped to the designed thickness, shape and of generally similar size. Galvanized steel sheets were used in the cutting section to avoid corrosion of components. The machine is portable and easy to operate which can be adopted for cassava processing in a medium size industry.

  18. Findings from the National Machine Guarding Program–A Small Business Intervention: Machine Safety

    Science.gov (United States)

    Yamin, Samuel C.; Xi, Min; Brosseau, Lisa M.; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2016-01-01

    Objectives The purpose of this nationwide intervention was to improve machine safety in small metal fabrication businesses (3 – 150 employees). The failure to implement machine safety programs related to guarding and lockout/tagout (LOTO) are frequent causes of OSHA citations and may result in serious traumatic injury. Methods Insurance safety consultants conducted a standardized evaluation of machine guarding, safety programs, and LOTO. Businesses received a baseline evaluation, two intervention visits and a twelve-month follow-up evaluation. Results The intervention was completed by 160 businesses. Adding a safety committee was associated with a 10-percentage point increase in business-level machine scores (p< 0.0001) and a 33-percentage point increase in LOTO program scores (p <0.0001). Conclusions Insurance safety consultants proved effective at disseminating a machine safety and LOTO intervention via management-employee safety committees. PMID:26716850

  19. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  20. Novel spin-electronic properties of BC7 sheets induced by strain

    International Nuclear Information System (INIS)

    Xu, Lei; Dai, ZhenHong; Sui, PengFei; Sun, YuMing; Wang, WeiTian

    2014-01-01

    Based on first-principles calculations, the authors have investigated the electronic and magnetic properties of BC 7 sheets with different planar strains. It is found that metal–semiconductor transition appears at the biaxial strain of 15.5%, and the sheets are characteristic of spin-polarized semiconductor with a zero band-gap. The band-gap rapidly increases with strain, and reaches a maximum value of 0.60 eV at the strain of 20%. Subsequently, the band-gap decreases until the strain reaches up to 22% and shows a semiconductor-half metal transformation. It will further present metal properties until the strain is up to the maximum value of 35%. The magnetic moments also have some changes induced by biaxial strain. The numerical analysis shows that the two-dimensional distortions have great influences on the magnetic moments. The novel spin-electronic properties make BC 7 sheets have potential applications in future spintronic nanodevices

  1. Technology of magnetic abrasive finishing in machining of difficult-to-machine alloy complex surface

    Directory of Open Access Journals (Sweden)

    Fujian MA

    2016-10-01

    Full Text Available The technology of magnetic abrasive finishing is one of the important finishing technologies. Combining with low-frequency vibration and ultrasonic vibration, it can attain higher precision, quality and efficiency. The characteristics and the related current research of magnetic abrasive finishing, vibration assisted magnetic abrasive finishing and ultrasonic assisted magnetic abrasive finishing are introduced. According to the characteristics of the difficult-to-machine alloy's complex surface, the important problems for further study are presented to realize the finishing of complex surface with the technology of magnetic abrasive finishing, such as increasing the machining efficiency by enhancing the magnetic flux density of machining gap and compounding of magnetic energy and others, establishing of the control function during machining and the process planning method for magnetic abrasive finishing of complex surface under the space geometry restraint of complex surface on magnetic pole, etc.

  2. Metal Removal Process Optimisation using Taguchi Method - Simplex Algorithm (TM-SA) with Case Study Applications

    OpenAIRE

    Ajibade, Oluwaseyi A.; Agunsoye, Johnson O.; Oke, Sunday A.

    2018-01-01

    In the metal removal process industry, the current practice to optimise cutting parameters adoptsa conventional method. It is based on trial and error, in which the machine operator uses experience,coupled with handbook guidelines to determine optimal parametric values of choice. This method is notaccurate, is time-consuming and costly. Therefore, there is a need for a method that is scientific, costeffectiveand precise. Keeping this in mind, a different direction for process optimisation is ...

  3. High-intensity fibre laser design for micro-machining applications

    Science.gov (United States)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  4. Analysis of the Influence of the Use of Cutting Fluid in Hybrid Processes of Machining and Laser Metal Deposition (LMD

    Directory of Open Access Journals (Sweden)

    Magdalena Cortina

    2018-02-01

    Full Text Available Hybrid manufacturing processes that combine additive and machining operations are gaining relevance in modern industry thanks to the capability of building complex parts with minimal material and, many times, with process time reduction. Besides, as the additive and subtractive operations are carried out in the same machine, without moving the part, dead times are reduced and higher accuracies are achieved. However, it is not clear whether the direct material deposition after the machining operation is possible or intermediate cleaning stages are required because of the possible presence of residual cutting fluids. Therefore, different Laser Metal Deposition (LMD tests are performed on a part impregnated with cutting fluid, both directly and after the removal of the coolant by techniques such as laser vaporizing and air blasting. The present work studies the influence of the cutting fluid in the LMD process and the quality of the resulting part. Resulting porosity is evaluated and it is concluded that if the part surface is not properly clean after the machining operation, deficient clad quality can be obtained in the subsequent laser additive operation.

  5. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    Science.gov (United States)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  6. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  7. 1970-1997 energy balance-sheets

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of this document is to bring together a consistent and harmonized set of statistical data on energy economics in the French territory. The information is based on the global and structural approach of the different energy balance-sheets published between 1970 and 1997. The first chapter gives a general idea of the energy situation of the passed year and outlines the evolution of the main aggregates (production, primary and final consumption etc..) comparatively to those of the general economy. The second chapter is devoted to the history of energy economics. Time series of indicators and diagrams allow to precise the structural modifications that occurred during the last decades. The main transformations in the national energy production and the development of the different energy sources in the industry, the residential and tertiary sectors and in the transportation sector are described too. The third chapter gives numerical data on energy for the last 28 years using the common Mtpe unit (million of tons of petroleum equivalent). These balance sheets are based on new energy keeping methods and use identical equivalence coefficients. The last chapter presents the energy balance sheets for the last three years, using the proper units for coal, petroleum, gas and electricity. (J.S.)

  8. High Precision Metal Thin Film Liftoff Technique

    Science.gov (United States)

    Brown, Ari D. (Inventor); Patel, Amil A. (Inventor)

    2015-01-01

    A metal film liftoff process includes applying a polymer layer onto a silicon substrate, applying a germanium layer over the polymer layer to create a bilayer lift off mask, applying a patterned photoresist layer over the germanium layer, removing an exposed portion of the germanium layer, removing the photoresist layer and a portion of the polymer layer to expose a portion of the substrate and create an overhanging structure of the germanium layer, depositing a metal film over the exposed portion of the substrate and the germanium layer, and removing the polymer and germanium layers along with the overlaying metal film.

  9. Unipolar Electric Machines with Liquid-Metal Current Pickup,

    Science.gov (United States)

    1984-03-08

    A new homopolar motor , e4ournal of the Franklin Institute*. 1954, v. 258, Ne 1. %4 144093, Bjo.1.leTeJb H3o6peTeHxA. 1962,. 14 1. 30. X oao p o a...VIII. Motor Mode of Unipolar Electrical Machine ............... 301 Chapter IX. Bases of Theory and Calculation of Nonpolar Dynamos without...unipolar electric motors . Are examined questions of the classification of acyclic machines, their electromagnetic field, calculation of magnetic circuit

  10. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    Science.gov (United States)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  11. Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture.

    Science.gov (United States)

    Fernandez, Michael; Boyd, Peter G; Daff, Thomas D; Aghaji, Mohammad Zein; Woo, Tom K

    2014-09-04

    In this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.

  12. Pulsar current sheet C̆erenkov radiation

    Science.gov (United States)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  13. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  14. EXPERIMENTAL EVALUATION OF WEDM MACHINED SURFACE WAVINESS

    Directory of Open Access Journals (Sweden)

    Katerina Mouralova

    2016-10-01

    Full Text Available Wire Electrical Discharge Machining (WEDM an unconventional machining technology which has become indispensable in many industries. The typical morphology of a surface machined using the electrical discharge technology is characterized with a large number of craters caused by electro-spark discharges produced during the machining process. The study deals with an evaluation of the machine parameter setting on the profile parameters of surface waviness on samples made of two metal materials Al 99.5 and Ti-6Al-4V. Attention was also paid to an evaluation of the surface morphology using 3D colour filtered and non-filtered images.

  15. Ultra-precision turning of complex spiral optical delay line

    Science.gov (United States)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  16. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching(SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition,etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000?C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  17. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  18. Mechanical and Acoustic Characteristics of the Weld and the Base Metal Machine Part of Career Transport

    Science.gov (United States)

    Smirnov, Alexander N.; Knjaz'kov, Victor L.; Levashova, Elena E.; Ababkov, Nikolay V.; Pimonov, Maksim V.

    2018-01-01

    Currently, many industries use foreign-made machinery. There is no opportunity to purchase quality original spare parts for which machinery. Therefore, enterprises operating this equipment are looking for producers of analogues of various parts and assemblies. Quite often, the metal of such analog components turns out to be substandard, which leads to their breakdown at a much earlier date and the enterprises incur material losses. Due to the fact that the complex of performance characteristics and the resource of products are laid at the stage of their production, it is extremely important to control the quality of the raw materials. The structure, mechanical, acoustic and magnetic characteristics of metal samples of such destroyed details of quarry transport as hydraulic cylinders and detail “axis” of an excavator are investigated. A significant spread of data on the chemical composition of metal, hardness and characteristics of non-destructive testing is established, which gives grounds to recommend to manufacturers and suppliers of parts is more responsible to approach the incoming quality control. The results of the investigation of metal samples by destructive and non-destructive methods of control are compared, which showed that the spectral-acoustic method of nondestructive testing can be used to control the quality of the responsible machine parts under conditions of import substitution.

  19. An approach to eliminate stepped features in multistage incremental sheet forming process: Experimental and FEA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nirala, Harish Kumar; Jain, Prashant K.; Tandon, Puneet [PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur Jabalpur-482005, Madhya Pradesh (India); Roy, J. J.; Samal, M. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-15

    Incremental sheet forming (ISF) is a recently developed manufacturing technique. In ISF, forming is done by applying deformation force through the motion of Numerically controlled (NC) single point forming tool on the clamped sheet metal blank. Single Point Incremental sheet forming (SPISF) is also known as a die-less forming process because no die is required to fabricate any component by using this process. Now a day it is widely accepted for rapid manufacturing of sheet metal components. The formability of SPISF process improves by adding some intermediate stages into it, which is known as Multi-stage SPISF (MSPISF) process. However during forming in MSPISF process because of intermediate stages stepped features are generated. This paper investigates the generation of stepped features with simulation and experimental results. An effective MSPISF strategy is proposed to remove or eliminate this generated undesirable stepped features.

  20. Advanced induction machine model in phase coordinates for wind turbine applications

    DEFF Research Database (Denmark)

    Fajardo, L.A.; Iov, F.; Hansen, Anca Daniela

    2007-01-01

    In this paper an advanced phase coordinates squirrel cage induction machine model with time varying electrical parameters affected by magnetic saturation and rotor deep bar effects, is presented. The model uses standard data sheet for characterization of the electrical parameters, it is developed...