WorldWideScience

Sample records for precision electromagnetic structure

  1. Single-impact calibrated electromagnetic tightening of long-life bolted joints in aviation structures

    Science.gov (United States)

    Firsov, V. A.; Bekhmet'ev, V. I.

    The general design and operation of a newly developed electromagnetic impact driver for the assembly of aviation structures is described. The electromagnetic impact driver makes it possible to considerably improve the precision of bolt torquing during the assembly. To test the performance of the new tool, M6 bolts of 16KhSN steel (tensile strength 120 +/- 10 kg/sq mm) were tightened by a manual torque wrench and by the electromagnetic impact driver. It is shown that the scatter of bolt elongation during the tightening by the impact driver is a factor of 3-5 less than in the case of manual torquing, which corresponds to a torque precision of 1.5-2 percent.

  2. Investigation on the electromagnetic centring technique in compressor with labyrinth seal structure

    Science.gov (United States)

    Zhang, W.; Feng, C.; Cheng, J.; Feng, Q.; Wu, W.

    2017-08-01

    At present, the piston of compressors with labyrinth seal structure generally runs eccentrically, which causes uneven radial clearance, serious leakages and lower volumetric efficiency. This has become an urgent problem in the development of labyrinth compressors. In this study, electromagnetic levitation technology was introduced to achieve concentric centering between the piston and cylinder, and the conventional cantilever structure for the piston centering was replaced by a simple support structure using the through-piston rod. Furthermore, the simulation model of the electromagnetic centering system was established and the experimental prototype was built. The mathematical simulation model was verified by comparing simulated and tested results. Then, the centering effect of the system was assessed and the variation of the leakage in the compressor was studied by models using dynamic mesh technology. The results showed that the radial clearance between piston and cylinder can be maintained in the range of -0.3 mm to 0.3 mm through the electromagnetic centering control. In addition, the inner leakage of the compressor was quite appreciable without the electromagnetic control. However, it was reduced by 1.8 times with the introduction of the electromagnetic control. Thus, it can be concluded that the precise centering between the piston and the cylinder can be achieved by the introduction of the electromagnetic centering technique.

  3. Precise Measurement of the Deuteron Elastic structure Function A(Q2)

    International Nuclear Information System (INIS)

    D. Abbott; A. Ahmidouch; H. Anklin; J. Arvieux; J. Bail; S. Beedoe; E. J. Beise; L. Bimbot; W. Boeglin; H. Breuer; R. Carlini; N. S. Chant; S. Danagoulian; K. Dow; J.E. Ducret; J. Dunne; R. Ent; L. Ewell; L. Eyraud; C. Furget; M. Garcon; R. Gilman; C. Glashausser; P. Gucye; K. Gustafsson; K. Hafidi; A. Honegger; J. Jourdan; S. Kox; G. Kumbartzki; L. Lu; A. Lung; D. Mack; P. Markowitz; J. McIntyre; D. Meekins; F. Merchez; J. Mitchell; R. Mohring; S. Mtingwa; H. Mrktchyan; D. Pitz; L. Qin; R. Ransome; J.S. Real; P. G. Roos; P. Rutt; R. Sawafta; S. Stepanyan; R. Tieulent; E. Tomasi-Gustafsson; W. Turchinetz; K. Vansyoc; J. Volmer; E. Voutier; W. Vulcan; C. Williamson; S. A. Wood; C. Yan; J. Zhao; W. Zhao

    1999-01-01

    The A(Q 2 ) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q 2 between 0.66 and 1.80 (GeV/c) 2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 o . These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents

  4. Precision cosmology from future lensed gravitational wave and electromagnetic signals.

    Science.gov (United States)

    Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong

    2017-10-27

    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.

  5. Precise Measurement of the Deuteron Elastic Structure Function A(Q2 )

    International Nuclear Information System (INIS)

    Ball, J.; Ducret, J.; Garcon, M.; Hafidi, K.; Pitz, D.; Tomasi-Gustafsson, E.; Honegger, A.; Jourdan, J.; Zhao, J.; Beise, E.J.; Breuer, H.; Chant, N.S.; Ewell, L.; Gustafsson, K.; Lung, A.; Mohring, R.; Pitz, D.; Roos, P.G.; Eyraud, L.; Furget, C.; Kox, S.; Lu, L.; Merchez, F.; Real, J.; Tieulent, R.; Voutier, E.; Abbott, D.; Carlini, R.; Dunne, J.; Ent, R.; Gilman, R.; Gueye, P.; Mack, D.; Meekins, D.; Mitchell, J.; Pitz, D.; Qin, L.; Vansyoc, K.; Volmer, J.; Vulcan, W.; Wood, S.A.; Yan, C.; Gilman, R.; Glashausser, C.; Kumbartzki, G.; McIntyre, J.; Ransome, R.; Rutt, P.; Ahmidouch, A.; Dow, K.; Turchinetz, W.; Williamson, C.; Zhao, W.; Anklin, H.; Boeglin, W.; Markowitz, P.; Mrktchyan, H.; Stepanyan, S.; Ahmidouch, A.; Beedoe, S.; Danagoulian, S.; Mtingwa, S.; Sawafta, R.; Arvieux, J.; Ball, J.; Tomasi-Gustafsson, E.; Arvieux, J.; Bimbot, L.

    1999-01-01

    The A(Q 2 ) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q 2 between 0.66 and 1.80 (GeV/c) 2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 degree. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents. copyright 1999 The American Physical Society

  6. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  7. Research on the electromagnetic structure of movable coil electromagnet drive mechanism for reactor control rod

    International Nuclear Information System (INIS)

    Zhang Jige; Yian Huijie; Wu Yuanqiang; Wu Xinxin; Yu Suyuan; He Shuyan

    2007-01-01

    The movable coil electromagnet drive mechanism (MCEDM) is a new drive scheme for the reactor control rod, and it has a simple structure, good security and reliability property, etc. MCEDM with an air cooled structure has been used in the land research reactor. In order to apply MCEDM to the mobile reactor, experimental and theoretical study on the electromagnet with an oil-water cooled structure and a single magnetic flux circuit (called the type A electro-magnet) has been completed. It is proven by the experiment and theory that the oil-water cooled structure is an excellent measure to increase the coil current of MCEDM. Moreover, a type B electromagnet with an oil-water cooled structure and double magnetic flux circuits is designed to further increase the magnetic force of MCEDM. The analysis of finite element method shows that the type B electromagnet could double the saturation current of type A electro-magnet and the magnetic force of type B electromagnet is greater than that of the type A electromagnet. Moreover, it is proven that the dynamic property of type B electromagnet is better than type A electromagnet. (author)

  8. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  9. Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems

    International Nuclear Information System (INIS)

    Wagner, A.; Schicho, K.; Birkfellner, W.; Figl, M.; Seemann, R.; Koenig, F.; Kainberger, Franz; Ewers, R.

    2002-01-01

    This study aims to provide a quantitative analysis of the factors affecting the actual precision and stability of optoelectronic and electromagnetic tracking systems in computer-aided surgery under real clinical/intraoperative conditions. A 'phantom-skull' with five precisely determined reference distances between marker spheres is used for all measurements. Three optoelectronic and one electromagnetic tracking systems are included in this study. The experimental design is divided into three parts: (1) evaluation of serial- and multislice-CT (computed tomography) images of the phantom-skull for the precision of distance measurements by means of navigation software without a digitizer, (2) digitizer measurements under realistic intraoperative conditions with the factors OR-lamp (radiating into the field of view of the digitizer) or/and 'handling with ferromagnetic surgical instruments' (in the field of view of the digitizer) and (3) 'point-measurements' to analyze the influence of changes in the angle of inclination of the stylus axis. Deviations between reference distances and measured values are statistically investigated by means of analysis of variance. Computerized measurements of distances based on serial-CT data were more precise than based on multislice-CT data. All tracking systems included in this study proved to be considerably less precise under realistic OR conditions when compared to the technical specifications in the manuals of the systems. Changes in the angle of inclination of the stylus axis resulted in deviations of up to 3.40 mm (mean deviations for all systems ranging from 0.49 to 1.42 mm, variances ranging from 0.09 to 1.44 mm), indicating a strong need for improvements of stylus design. The electromagnetic tracking system investigated in this study was not significantly affected by small ferromagnetic surgical instruments

  10. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    Science.gov (United States)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  11. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  12. Left Handed Materials: A New Paradigm in Structured Electromagnetics

    International Nuclear Information System (INIS)

    Johri, Manoj; Paudyal, Harihar

    2010-05-01

    A new paradigm has emerged exhibiting reverse electromagnetic properties. Novel composite and micro-structured materials (metamaterials) have been designed to control electromagnetic radiation. Such substances have been called as Left Handed Material (LHM) with simultaneous negative permittivity and negative permeability and negative refractive index as well. Left handed materials are of importance because of their ability to influence the behavior of electromagnetic radiation and to display properties beyond those available in naturally occurring materials. Typically these are sub-wavelength artificial structures where the dimensions are very small compared to the working wavelength. These dimensions are normally of the order of λ/10 where λ is the wavelength of electromagnetic wave propagating in the material. Emergence of this new paradigm leads to some very interesting consequences, such as, to create lenses that are not diffraction limited, cloaking, sensors (chemical, biological and individual molecule), optical and radio communication. This new development in structured electromagnetic materials has had a dramatic impact on the physics, optics and engineering communities. (author)

  13. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  14. The Marvels of Electromagnetic Band Gap (EBG) Structures

    Science.gov (United States)

    2003-11-01

    terminology of "Electromagnetic conference papers and journal articles dealing with Band- gaps (EBG)". Recently, many researchers the characterizations...Band Gap (EBG) Structures 9 utilized to reduce the mutual coupling between Structures: An FDTD/Prony Technique elements of antenna arrays. based on the...Band- Gap of several patents. He has had pioneering research contributions in diverse areas of electromagnetics,Snteructure", Dymposiget o l 21 IE 48

  15. Algebraic structure of general electromagnetic fields and energy flow

    International Nuclear Information System (INIS)

    Hacyan, Shahen

    2011-01-01

    Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  16. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    Science.gov (United States)

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  17. Nucleon electromagnetic structure studies in the spacelike and timelike regions

    International Nuclear Information System (INIS)

    Guttmann, Julia

    2013-01-01

    The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e + p/e - p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e + e - by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on cross section

  18. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  19. A broadband electromagnetic energy harvester with a coupled bistable structure

    OpenAIRE

    Zhu, Dibin; Beeby, Steve

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupl...

  20. Building with electromagnetic shield structure for individual floors

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1991-01-01

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs

  1. Building with electromagnetic shield structure for individual floors

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1991-09-10

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs.

  2. EDDYTRAN program system for eddy current, electromagnetic force and structural analysis

    International Nuclear Information System (INIS)

    Kameari, A.; Nikura, S.

    1983-01-01

    A computer program system (EDDYTRAN), which is applicable to torus structures of magnetic fusion devices, has been developed to calculate the eddy current, electromagnetic force and structural analysis. The program system is designed to perform the following functions sequentially: 1) generation of model mesh and other data such as electromagnetic and mechanical properties of finite elements and boundary conditions, 2) calculations of eddy currents and electromagnetic forces, 3) transformation of the resultant force to load data fit to the structural analysis program, 4) structural analysis and 5) post-processing of the results. The EDDYTRAN utilizes the EDDYCUFF (EDDY CUrrent, magnetic Field and electromagnetic Force) program and the NASTRAN (NASA STRuctural ANalysis) program. Here, the EDDYCUFF program which has been developed by the authors is a generalized computer program to calculate transient eddy currents, resultant magnetic fields and electromagnetic forces in the conductive components. This paper describes the outline of the EDDYTRAN program system and preliminary results obtained through the application to the Tokamak reactor design which was performed for the Japan Atomic Energy Research Institute

  3. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  4. Coupled electromagnetic and structural finite element analysis of a superconducting dipole model

    International Nuclear Information System (INIS)

    Hirtenfelder, F.

    1996-01-01

    Many devices contain parts that undergo motion due to electromagnetic forces. The motion causes the electromagnetic fields to change. Thus the electromagnetic fields must be computed along with the structural motion. In many cases the motion produced by electromagnetic forces is desired motion. However, in many devices, some undesired motion can occur due to electromagnetic forces. The motion creases motion-induced eddy currents which in turn affect the electromagnetic fields and forces. A finite element technique is described that fully couples structural and electromagnetic analysis in the time domain. The code is applied to a superconducting dipole model in order to study deformations and stresses during ramp and quench. The results of this coupled analysis enables the designer to visualize deformations, vibrations, displacements and all electromagnetic field quantities of the device and to try different solutions to enhance its performance

  5. Nucleon electromagnetic structure studies in the spacelike and timelike regions

    Energy Technology Data Exchange (ETDEWEB)

    Guttmann, Julia

    2013-07-23

    The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e{sup +}p/e{sup -}p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e{sup +}e{sup -} by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on

  6. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  7. A broadband electromagnetic energy harvester with a coupled bistable structure

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupled bistable energy harvester can achieve bistable operation with lower excitation amplitude and generate more output power than both conventional bistable and linear energy harvesters under white noise excitation

  8. Subdomain Precise Integration Method for Periodic Structures

    Directory of Open Access Journals (Sweden)

    F. Wu

    2014-01-01

    Full Text Available A subdomain precise integration method is developed for the dynamical responses of periodic structures comprising many identical structural cells. The proposed method is based on the precise integration method, the subdomain scheme, and the repeatability of the periodic structures. In the proposed method, each structural cell is seen as a super element that is solved using the precise integration method, considering the repeatability of the structural cells. The computational efforts and the memory size of the proposed method are reduced, while high computational accuracy is achieved. Therefore, the proposed method is particularly suitable to solve the dynamical responses of periodic structures. Two numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method through comparison with the Newmark and Runge-Kutta methods.

  9. Highlights in the hadron electromagnetic structure

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson Egle

    2017-01-01

    Full Text Available In frame of a general view of proton electromagnetic form factors, two recent findings related to reanalyses of data are presented. Recent experiments in the scattering and in the annihilation region provided us with more precise data and/or extending the kinematical region, allowing a deeper analysis and a common view of these fundamental quantities. We will discuss two issues: the discrepancy between the form factors extracted from unpolarized and polarized ep elastic scattering experiments, in connection with the commonly used dipole parametrization; peculiar oscillations in e+e− → p̄p(γ annihilation cross section, that become periodical when plotted as a function of the 3-momentum of the relative motion of the final proton and antiproton, after subtraction of a smooth function.

  10. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  11. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    International Nuclear Information System (INIS)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-01-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves

  12. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  13. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe

    2017-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  14. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe

    2016-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  15. A new electromagnetic shunt damping treatment and vibration control of beam structures

    International Nuclear Information System (INIS)

    Niu Hongpan; Zhang Xinong; Xie Shilin; Wang Pengpeng

    2009-01-01

    In this paper a new class of shunted electromagnetic damping treatment is proposed: a non-contact electromagnetic shunt damper (NC-EMSD). The NC-EMSD consists of an electromagnet attached to a host structure, a permanent magnet attached to the fixed boundary and an electrical impedance connected to the terminals of the electromagnet. The electromagnet and the shunt impedance constitute a closed circuit. When the structure vibrates, an induced electromotive force will be produced and results in the electromagnetic force as damping force, which can suppress the vibration of the structure. The model of NC-EMSD is built up based on the equivalent current method. The governing equations of the beam with NC-EMSD are established using Hamilton's principle. The capacitor-matching-inductance (CMI) method and the negative resistive capacitor-matching-inductance (NR-CMI) method are proposed, respectively. Then the vibration control of a cantilever beam with NC-EMSD is simulated and measured by CMI and NR-CMI control methods, respectively. The results show that both the CMI and NR-CMI can attenuate the vibration effectively, and the NR-CMI provides much better control performance than that by CMI. It is indicated as well from the studies that the decrease of either the gap between the magnet pair or the resistance of the shunt impedance contributes to the improvement of control performance

  16. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  17. Spatially variant periodic structures in electromagnetics

    Science.gov (United States)

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  18. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    Science.gov (United States)

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  19. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The CMS Electromagnetic Calorimeter is made of scintillating lead tungstate crystals, using avalanche photodiodes (APD) as photo-detectors in the barrel part. The high voltage system, consisting of 1224 channels, biases groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  20. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    Science.gov (United States)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  1. Precision Measurements of the Proton Electromagnetic Form Factors in the Time-Like Region and Vector Meson Spectroscopy

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure with precision the electromagnetic form factors of the proton in the time-like region via the reaction: .ce @*p @A e|+e|- with antiprotons of momenta between 0 and 2 GeV/c. Up to @= 800 MeV/c, a continuous energy scan in @= 2 MeV (@]s) bins will be performed. The form factor !G(E)! and !G(M)! will be determined separately since large statistics can be collected with LEAR antiproton beams, so that angular distributions can be obtained at many momenta.\\\\ \\\\ In addition, e|+e|- pairs produced via the reaction: .ce @*p @A V|0 + neutrals, .ce !@A e|+e|- where the antiprotons are at rest, will be detected allowing the vector meson mass spectrum between @= 1 GeV and @= 1.7 GeV to be obtained with high statistics and in one run. \\\\ \\\\ The proposed apparatus consists of a central detector, surrounded by a gas Cerenkov counter, wire chambers, hodoscopes, and an electromagnetic calorimeter. The central detector consists of several layers of proportional chambers around a liquid-h...

  2. Joint Estimation of Multiple Precision Matrices with Common Structures.

    Science.gov (United States)

    Lee, Wonyul; Liu, Yufeng

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.

  3. Centers of structures in electromagnetism--a critical analysis

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1982-01-01

    Some principles for finding reference points or centers of structures in electromagnetism are outlined. It is pointed out that the centers which are found depend on arbitrary choices. Since some of the principles are based on Friis's transmission formula and the radar equation, these are given...

  4. Electromagnetic and structural interaction analysis of curved shell structures

    International Nuclear Information System (INIS)

    Horie, T.; Niho, T.

    1993-01-01

    This paper describes a finite element formulation of the eddy current and structure coupled problem for curved shell structures. Coupling terms produced by curved geometry as well as flat plate geometry were obtained. Both matrix equations for eddy current and structure were solved simultaneously using coupling sub-matrices. TEAM Workshop bench mark problem 16 was solved to verify the formulation and the computer code. Agreement with experimental results was very good for such plate problem. A coupled problem for cylindrical shell structure was also analyzed. Influence of each coupling term was examined. The next topic is the eigenvalues of the coupled equations. Although the coupled matrix equations are not symmetric, symmetry was obtained by introducing a symmetrizing variable. The eigenvalues of the coupled matrix equations are different from those obtained from the uncoupled equations because of the influence of the coupling sub-matrix components. Some parameters obtained by the eigenvalue analysis have characteristics of parameters which indicate the intensity of electromagnetic structural coupling effect. (author)

  5. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  6. Precise fabrication of X-band accelerating structure

    International Nuclear Information System (INIS)

    Higo, T.; Sakai, H.; Higashi, Y.; Koike, S.; Takatomi, T.

    1994-01-01

    An accelerating structure with a/λ=0.16 is being fabricated to study a precise fabrication method. A frequency control of each cell better than 10 -4 level is required to realize a detuned structure. The present machining level is nearly 1 MHz/11.4 GHz in relative frequency error, which just satisfies the above requirement. To keep this machining precision, the diffusion bonding technique is found preferable to join the cells. Various diffusion conditions were tried. The frequency change can be less than 1 MHz/11.4 GHz and it can be controlled well better than that. (author)

  7. THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.

    Directory of Open Access Journals (Sweden)

    P. A. Preobrazhensky

    2017-02-01

    Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.

  8. Electromagnetic interference reduction using electromagnetic bandgap structures in packages, enclosures, cavities, and antennas

    Science.gov (United States)

    Mohajer Iravani, Baharak

    Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower

  9. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  10. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  11. Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine

    International Nuclear Information System (INIS)

    Banovac, Filip; Tang, Jonathan; Xu Sheng; Lindisch, David; Chung, Ho Young; Levy, Elliot B.; Chang, Thomas; McCullough, Michael F.; Yaniv, Ziv; Wood, Bradford J.; Cleary, Kevin

    2005-01-01

    Radiofrequency ablation of primary and metastatic liver tumors is becoming a potential alternative to surgical resection. We propose a novel system that uses real-time electromagnetic position sensing of the needle tip to help with precision guidance into a liver tumor. The purpose of this study was to evaluate this technology in phantom and animal models. Using an electromagnetic navigation device, instrumented 18 g needles were advanced into radioopaque tumor targets in a respiratory liver phantom. The phantom featured a moving liver target that simulated cranio-caudal liver motion due to respiration. Skin-to-target path planning and real-time needle guidance were provided by a custom-designed software interface based on pre-operative 1 mm CT data slices. Needle probes were advanced using only the electromagnetic navigation device and software display. No conventional real-time imaging was used to assist in advancing the needle to the target. Two experienced operators (interventional radiologists) and two inexperienced ones (residents) used the system. The same protocol was then also used in two anesthetized 45 kg Yorkshire swine where radioopaque agar nodules were injected into the liver to serve as targets. A total of 76 tumor targeting attempts were performed in the liver phantom, and 32 attempts were done in the swine. The average time for path planning was 30 s in the phantom, and 63 s in the swine. The median time for the actual needle puncture to reach the desired target was 33 s in the phantom, and 42 s in the swine. The average registration error between the CT coordinate system and electromagnetic coordinate system was 1.4 mm (SD 0.3 mm) in the phantom, and 1.9 mm (SD 0.4 mm) in the swine. The median distance from the final needle tip position to the center of the tumor was 6.4 mm (SD 3.3 mm, n=76) in the phantom, and 8.3 mm (SD 3.7 mm, n=32) in the swine. There was no statistical difference in the planning time, procedure time, or accuracy of needle

  12. Precision Munition Electro-Sciences Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility allows the characterization of the electro-magnetic environment produced by a precision weapon in free flight. It can measure the radiofrequency (RF)...

  13. Design and optimization of multi-class series-parallel linear electromagnetic array artificial muscle.

    Science.gov (United States)

    Li, Jing; Ji, Zhenyu; Shi, Xuetao; You, Fusheng; Fu, Feng; Liu, Ruigang; Xia, Junying; Wang, Nan; Bai, Jing; Wang, Zhanxi; Qin, Xiansheng; Dong, Xiuzhen

    2014-01-01

    Skeletal muscle exhibiting complex and excellent precision has evolved for millions of years. Skeletal muscle has better performance and simpler structure compared with existing driving modes. Artificial muscle may be designed by analyzing and imitating properties and structure of skeletal muscle based on bionics, which has been focused on by bionic researchers, and a structure mode of linear electromagnetic array artificial muscle has been designed in this paper. Half sarcomere is the minimum unit of artificial muscle and electromagnetic model has been built. The structural parameters of artificial half sarcomere actuator were optimized to achieve better movement performance. Experimental results show that artificial half sarcomere actuator possesses great motion performance such as high response speed, great acceleration, small weight and size, robustness, etc., which presents a promising application prospect of artificial half sarcomere actuator.

  14. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    Science.gov (United States)

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  15. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  16. Electromagnetic and structural coupled analysis with the effect of large deflection

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Niho, Tomoya

    1997-01-01

    In the designs of future fusion reactors and magnetic levitated vehicles, thin shell conducting structures are located in a high electromagnetic field. The transient magnetic field induces the eddy current on the conductive structure. While the Lorentz force by the eddy current and the magnetic field is loaded to the thin shell structure, the electromotive force by the deflection velocity and magnetic field reduces the eddy current. Therefore, the electromagnetic and structural coupled analysis is required for the design of these components. This paper describes a coupled finite element analysis for the eddy current and the structure. A formulation is presented considering the effect of the large deflection of shell structures by the total Lagrangian formulation. Both matrix equations for the eddy current and the structure are solved simultaneously using coupling sub-matrices. A coupled problem of a cantilever bending plate is analyzed. Based on the analysis results, the influence of the large deflection on the coupling effect is discussed. The condition that the large deflection analysis is required is examined through some parametric analyses

  17. [Morphological structure of rat epiphysis exposed to electromagnetic radiation from communication devices].

    Science.gov (United States)

    Yashchenko, S G; Rybalko, S Yu

    Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.

  18. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  19. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  20. Electromagnetic structure of the deuteron

    International Nuclear Information System (INIS)

    Gilman, R.; Gross, Franz

    2001-01-01

    Recent measurements of the deuteron electromagnetic structure functions A, B, and T 20 extracted from high energy elastic ed scattering, and the cross sections and asymmetries extracted from high energy photodisintegration gamma + d to n + p, are reviewed and compared to theory. The theoretical calculations range from nonrelativistic and relativistic models using the traditional meson and baryon degrees of freedom, to effective field theories, to models based on the underlying quark and gluon degrees of freedom of QCD, including nonperturbative quark cluster models and perturbative QCD. We review what has been learned from these experiments, and discuss why elastic ed scattering and photodisintegration seem to require very different theoretical approaches, even though they are closely related experimentally

  1. Nuclear structure investigations with electromagnetic probes

    International Nuclear Information System (INIS)

    Drechsel, D.

    1987-01-01

    This paper is related to the study of electromagnetic interactions, current of hadronic systems, deep inelastic scattering, quasifree scattering, low energy theorems and electromagnetic reactions above pion threshold. (A.C.A.S.) [pt

  2. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    International Nuclear Information System (INIS)

    Paddubskaya, A.; Valynets, N.; Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-01-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  3. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    Energy Technology Data Exchange (ETDEWEB)

    Paddubskaya, A. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius (Lithuania); Valynets, N.; Batrakov, K. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Kuzhir, P., E-mail: polina.kuzhir@gmail.com; Maksimenko, S. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Tomsk State University, Tomsk 634050 (Russian Federation); Kotsilkova, R.; Velichkova, H.; Petrova, I. [Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, Sofia (Bulgaria); Biró, I. [3D Wishes, Bíró u. 44/a/2, Érd (Hungary); Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P. [Institute of Technical Physics and Materials Science, Centre for Energy Research, PO Box 49, 1525 Budapest (Hungary)

    2016-04-07

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  4. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.

    1995-08-01

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  5. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    Science.gov (United States)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  6. Structurally uniform and atomically precise carbon nanostructures

    Science.gov (United States)

    Segawa, Yasutomo; Ito, Hideto; Itami, Kenichiro

    2016-01-01

    Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

  7. Resonance contribution to electromagnetic structure functions

    International Nuclear Information System (INIS)

    Bowling, A.L. Jr.

    1974-01-01

    The part of the pion and proton electromagnetic structure functions due to direct channel resonances in the virtual Compton amplitude is discussed. After a phenomenological discussion, based on the work of Bloom and Gilman, of resonance production in inelastic electroproduction, the single resonance contribution to the pion and proton structure functions is expressed in terms of transition form factors. Froissart-Gribov representations of the Compton amplitude partial waves are presented and are used to specify the spin dependence of the transition form factors. The dependence of the form factors on momentum transfer and resonance mass is assumed on the basis of the behavior of exclusive resonance electroproduction. The single resonance contributions are summed in the Bjorken limit, and the result exhibits Bjorken scaling. Transverse photons are found to dominate in the Bjorken limit, and the threshold behavior of the resonant part of the structure functions is related to the asymptotic behavior of exclusive form factors at large momentum transfer. The resonant parts of the annihilation structure functions are not in general given by simple analytic continuation in the scaling vari []ble ω' of the electroproduction structure functions. (Diss. Abstr. Int., B)

  8. Content-Based Image Retrieval Based on Electromagnetism-Like Mechanism

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2013-01-01

    Full Text Available Recently, many researchers in the field of automatic content-based image retrieval have devoted a remarkable amount of research looking for methods to retrieve the best relevant images to the query image. This paper presents a novel algorithm for increasing the precision in content-based image retrieval based on electromagnetism optimization technique. The electromagnetism optimization is a nature-inspired technique that follows the collective attraction-repulsion mechanism by considering each image as an electrical charge. The algorithm is composed of two phases: fitness function measurement and electromagnetism optimization technique. It is implemented on a database with 8,000 images spread across 80 classes with 100 images in each class. Eight thousand queries are fired on the database, and the overall average precision is computed. Experimental results of the proposed approach have shown significant improvement in the retrieval performance in regard to precision.

  9. Nucleon Structure Studies with Electromagnetic Probes

    International Nuclear Information System (INIS)

    Vineyard, Michael F.

    2011-01-01

    Summarized in this report is the progress achieved during the period from March 1, 2008 to June 14, 2009 under contract number DE-FG02-03ER41252. This is the final technical report under this contract. The experimental work described here is part of the electromagnetic nuclear physics program of the CEBAF Large Acceptance Spectrometer (CLAS) Collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) that published 17 journal articles during the period of this report. One of these journal articles reported on the results of precise measurements of the neutron magnetic form factor. I was a spokesperson on this experiment and the publication of these results is the culmination of years of effort by a small subset of the CLAS Collaboration. As usual, undergraduate students were involved in all aspects of this work. Three Union College students participated in this program during the window of this report and one presented a paper on his work at the 2009 National Conference on Undergraduate Research (NCUR22). In this report, I discuss recent progress on the measurements of the neutron magnetic form factor and describe my service work for the CLAS Collaboration.

  10. Precise stacking and bonding technology for RDDS structure

    International Nuclear Information System (INIS)

    Higo, T; Toge, N.; Suzuki, T.

    2000-01-01

    The X-band accelerating structures called RDDS1 (Rounded Dumped Detuned Structure) for the linear collider have been developed. The main body of RDDS1 was successfully fabricated in Japan (KEK, IHI). We established basic fabrication techniques through the development of prototype structures including RDDS1. The precise stacking and bonding technologies for RDDS structure are presented in this paper. (author)

  11. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    Science.gov (United States)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  12. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Massironi, Andrea

    2017-01-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO$_4$ crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO$_4$ crystals with different photosensors and readout electronics will be shown.

  13. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  14. Recent Studies of Nucleon Electromagnetic Form Factors

    International Nuclear Information System (INIS)

    Gilad, Shalev

    2010-01-01

    The electromagnetic form factors of nucleons are fundamental quantities in nucleon structure. As such, they have been studied extensively both theoretically and experimentally. Significant progress has been made with new measurements at Jlab, MAMI and MIT-Bates, with emphases on expanding the momentum-transfer range and on higher precision. In this paper, we describe the status of this field and present new results from measurements at both low and high momentum transfers. We also compare the experimental data to model predictions, and mention possible implications of the new results to other fields.

  15. Smart reconfigurable parabolic space antenna for variable electromagnetic patterns

    Science.gov (United States)

    Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh

    2018-02-01

    An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).

  16. Prospects for a precision timing upgrade of the CMS PbWO$_{4}$ crystal electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies on the timing properties of PbWO crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies on the timing performance of PbWO$_{4}$ crystals with various photosensors and readout electronics will be shown.

  17. Experimental evaluation of structural integrity of scram release electromagnet

    International Nuclear Information System (INIS)

    Patri, Sudheer; Ruhela, S.P.; Punniyamoorthy, R.; Vijayashree, R.; Chandramouli, S.; Kumar, P. Madan; Rajendraprasad, R.; Rao, P. Vijayamohana; Narmadha, S.; Sreedhar, B.K.; Rajan, K.K.

    2014-01-01

    Highlights: • The structural integrity of scram release electromagnet is evaluated against thermal shocks. • A simple test facility, employed for simulating the thermal shocks in a typical FBR, is presented. • The cold shock experienced by electromagnet during scram is simulated. • The testing qualified electromagnet for 11.6 yr of reactor operation. - Abstract: Prototype fast breeder reactor (PFBR), under construction at Kalpakkam, India, plays an important role in the commercialisation of fast breeder reactors (FBR) in India. It consists of two independent, fast acting and diverse shutdown systems. An electromagnet (EM) immersed in sodium acts as scram release device for the second shutdown system of prototype fast breeder reactor. The inside of EM is sealed from the sodium to achieve the required response time and to prevent the exposure of EM coil to sodium. As the EM response time is an important parameter for reactor safety, the integrity of EM is to be maintained under all anticipated loadings. The EM experiences thermal shocks and thermal stresses during reactor transients such as scram. The dissimilar weld joint present in EM is more susceptible to fatigue failure due to these thermal stresses. Failure of weld joint results in the entry of sodium into the EM, increasing its response time with associated safety implications. In this connection, the structural integrity of EM against thermal shocks was experimentally evaluated in Thermal Shock Test Facility. The EM was subjected to 1000 cycles of thermal shocks, which constitutes 29% of total number of shocks required to qualify the EM for 40 years of reactor operation, thus qualifying it for 11.6 yr of reactor operation. The testing has enhanced the confidence level for safe and reliable operation of EM of DSRDM in PFBR. The testing not only qualified the EM for use in reactor but also provided input for licensing the erection of DSRDM on reactor pile. Moreover, it provided a direction for

  18. A precise electromagnetic field model useful for development of microwave imaging systems

    DEFF Research Database (Denmark)

    Chaber, Bartosz; Mohr, Johan Jacob

    2016-01-01

    was created in an iterative fashion in order to determine how much details are needed to make it reliable, while keeping it efficient.Findings - The authors found that the commercial software seems like a viable platform for developing electromagnetic solvers. The resulting computer model is easy to prepare......Purpose - The paper describes a fast forward electromagnetic model built with help of commercial software. The purpose of this paper is to create an efficient and robust electromagnetic field model that could be easily plugged into a working microwave imaging system. The secondary purpose...... is to evaluate advantages and disadvantages of such a commercial packages for creating such a model.Design/methodology/approach - In this paper the authors decided to build the model using COMSOL Multiphysics software suite, ultimately comparing its result to measurements of a real device. The numerical model...

  19. Electromagnetic interference analysis of magnetic resistance sensors inside a projectile under complex electromagnetic environments

    International Nuclear Information System (INIS)

    Guo, Qingwei; Gao, Min; Lu, Zhicai; Yang, Peijie

    2013-01-01

    Accurate measurement of angular motion has long been recognized as a daunting task. In recent years the measurement of projectiles utilizing magnetic resistance sensors has become a hot research field. Electromagnetic interference on attitude measurement cannot be ignored in complex electromagnetic environments such as battlefield conditions. In this paper, the influence and function pattern of electromagnetic interference on the measuring performance are theoretically analyzed, and the shielding effectiveness (SE) simulation of projectile is conducted via software Computer Simulation Technology (CST). Considering the specific tests, the intensity of the influence is judged. The simulation indicates that the battlefield's complex electromagnetic environment influences the environment inside the projectile, especially its electronic components and capability. The research results can provide important theoretical support on the errors compensation and precision improvement of the projectile attitude measurement with Magnetic Resistance sensor.

  20. Electromagnetic structure of a bound nucleon

    International Nuclear Information System (INIS)

    Nogami, Y.

    1977-01-01

    The effect of binding on the electromagnetic (e.m.) structure of a nucleon in a nucleus is examined by means of a model consisting of a single nucleon which is bound in a harmonic oscillator potential and also coupled to the pion field through the Chew-Low interaction. The 'two-pion contribution' to the e.m. structure is considered. This is the part which is probably most susceptible to the binding effect. By the binding effect it is meant the one which arises because the nucleon wave functions, in the intermediate state as well as in the initial and final states, are distorted by the potential in which the nucleon is bound. This may be compared to a similar correction to the impulse approximation for pion-nucleus scattering. Unlike the latter which is likely to be quite appreciable, the binding correction to the e.m. structure of the nucleon is found to be negligibly small. The so-called quenching effect due to the Pauli principle when there are other nucleons is also discussed [pt

  1. CONSEQUENCES OF SYMMETRY GROUPS FOR ELECTROMAGNETIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, A. J.; Sudarshan, E. C.G.

    1963-06-15

    The electromagnetic properties of SU/sub 3/ supermultiplets are obtained formally by a unitary transformation of a theory whose SU/sub 3/ invariant strong interactions are perturbed by merely charge-independent interactions. Several new results are presented, but the emphasis is on the simplicity and power of the method. Electromagnetic properties of the first and second kinds are distinguished, the former being independent of the precise manner in which the particular electromagnetic property depends on the electric charge current density. It is shown that all except two relations between the magnetic moments of the baryon octet hold equally well for other electromagnetic properties like self energies and Compton scattering amplitudes. (auth)

  2. Structural response of a Tokamak first wall under electromagnetic forces caused by a plasma disruption

    International Nuclear Information System (INIS)

    Crutzen, Y.R.; Biggio, M.; Farfaletti-Casali, F.; Antonacci, P.; Vitali, R.

    1987-01-01

    The modern computerized techniques of CAD/FEM analysis are extensively applied for the numerical simulation of the electromagnetic-mechanical coupling induced in the last design configuration of NET first wall during a plasma disruption event. A picture of the impact of the electromagnetic forces on the structural behaviour of the outboard DN first wall is presented an an improvement of the FW structural section is proposed. In any case, additional investigations will be performed during the long process of structural behaviour optimization of the first wall reactor components

  3. Electromagnetic Radiation of Electrons in Periodic Structures

    CERN Document Server

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...

  4. Hadronic processes and electromagnetic corrections

    International Nuclear Information System (INIS)

    Scimemi, I.

    2004-01-01

    The inclusion of electromagnetism in a low energy effective theory is worth further study in view of the present high precision experiments (muon g - 2, π 0 → γγ, τ decays, etc.). In particular in many applications of chiral perturbation theory, one has to purify physical matrix elements from electromagnetic effects. The theoretical problems that I want to point out here are following: the splitting of a pure QCD and a pure electromagnetic part in a hadronic process is model dependent: is it possible to parametrise in a clear way this splitting? What kind of information (scale dependence, gauge dependence,) is actually included in the parameters of the low energy effective theory? I will attempt to answer these questions introducing a possible convention to perform the splitting between strong and electromagnetic parts in some examples

  5. Investigation of Equivalent Unsprung Mass and Nonlinear Features of Electromagnetic Actuated Active Suspension

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2015-01-01

    Full Text Available Electromagnetic actuated active suspension benefits active control and energy harvesting from vibration at the same time. However, the rotary type electromagnetic actuated active suspension introduces a significant extra mass on the unsprung mass due to the inertia of the rotating components of the actuator. The magnitude of the introduced unsprung mass is studied based on a gearbox type actuator and a ball screw type actuator. The geometry of the suspension and the actuator also influence the equivalent unsprung mass significantly. The suspension performance simulation or control logic derived should take this equivalent unsprung mass into account. Besides, an extra force should be compensated due to the nonlinear features of the suspension structure and it is studied. The active force of the actuator should compensate this extra force. The discovery of this paper provides a fundamental for evaluating the rotary type electromagnetic actuated active suspension performance and control strategy derived as well as controlling the electromagnetic actuated active suspension more precisely.

  6. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma

    DEFF Research Database (Denmark)

    Xu, G.S.; Naulin, Volker; Fundamenski, W.

    2010-01-01

    Drift-Alfvén vortex filaments associated with electromagnetic turbulence were recently identified in reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth magnetosheath, magnetospheric cusp and Saturn’s magnetosheath by spacecrafts. The characteristics...... energy, magnetic momentum, and angular momentum. The perpendicular vortex motions and the kinetic shear Alfvén waves are coupled through the parallel current and Ampere’s law, leading to field line bending. On the timescale of interchange motion τ⊥, a thermal expansion force in the direction of curvature......, heat, and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary electromagnetic filamentary structures....

  7. Power systems and electromagnetic safety in of powerful utility buildings and structures

    Directory of Open Access Journals (Sweden)

    О.І. Запорожець

    2008-01-01

    Full Text Available  Researching of origin terms of electromagnetic contaminations from the unbalanced currents and leak currents in the industrial networks of electric supply of structures and buildings saturated energy.

  8. Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure

    Science.gov (United States)

    Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe

    2014-09-01

    In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.

  9. Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity

    DEFF Research Database (Denmark)

    Dridi, Kim; Bjarklev, Anders Overgaard

    1999-01-01

    An electromagnetic vector-field modle for design of optical components based on the finite-difference-time-domain method and radiation integrals in presented. Its ability to predict the optical electromagnetic dynamics in structures with complex material distribution is demonstrated. Theoretical...

  10. Mathematical methods of electromagnetic theory

    CERN Document Server

    Friedrichs, Kurt O

    2014-01-01

    This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in el

  11. Investigations of the structure and electromagnetic interactions of few-body systems

    International Nuclear Information System (INIS)

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.

    1993-07-01

    The emphasis of the nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of π mesons. When the excitation energy of the target nucleus is low, the aim is to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. A central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question

  12. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  13. Method of high precision interval measurement in pulse laser ranging system

    Science.gov (United States)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  14. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  15. Evaluation of structural reliability for vacuum vessel under external pressure and electromagnetic force

    International Nuclear Information System (INIS)

    Minato, Akio

    1983-08-01

    Static and dynamic structural analyses of the vacuum vessel for a Swimming Pool Type Tokamak Reactor (SPTR) have been conducted under the external pressure (hydraulic and atmospheric pressure) during normal operation or the electromagnetic force due to plasma disruption. The reactor structural design is based on the concept that the adjacent modules of the vacuum vessel are not connected mechanically with bolts in the torus inboard region each other, so as to save the required space for inserting the remote handling machine for tightenning and untightenning bolts in the region and to simplify the repair and maintenance of the reactor. The structural analyses of the vacuum vessel have been carried out under the external pressure and the electromagnetic force and the structural reliability against the static and dynamic loads is estimated. The several configurations of the lip seal between the modules, which is required to make a plasma vacuum boundary, have been proposed and the structural strength under the forced displacements due to the deformation of the vacuum vessel is also estimated. (author)

  16. Numerical modelling of electromagnetic loads on fusion device structures

    International Nuclear Information System (INIS)

    Bettini, Paolo; Palumbo, Maurizio Furno; Specogna, Ruben

    2014-01-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine

  17. Numerical modelling of electromagnetic loads on fusion device structures

    Science.gov (United States)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  18. Electromagnetic radiation of electrons in periodic structures

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented. (orig.)

  19. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    International Nuclear Information System (INIS)

    Zhao, J.; Zheng, T.Q.; Zhang, W.; Fang, J.; Liu, Y.M.

    2011-01-01

    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  20. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    Science.gov (United States)

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  1. Electromagnetic and structural analyses of the vacuum vessel and plasma facing components for EAST

    International Nuclear Information System (INIS)

    Xu, Weiwei; Liu, Xufeng; Song, Yuntao; Li, Jun; Lu, Mingxuan

    2013-01-01

    Highlights: • The electromagnetic and structural responses of VV and PFCs for EAST are analyzed. • A detailed finite element model of the VV including PFCs is established. • The two most dangerous scenarios, major disruptions and downward VDEs are considered. • The distribution patterns of eddy currents, EMFs and torques on PFCs are analyzed. -- Abstract: During plasma disruptions, time-varying eddy currents are induced in the vacuum vessel (VV) and Plasma Facing Components (PFCs) of EAST. Additionally, halo currents flow partly through these structures during the vertical displacement events (VDEs). Under the high magnetic field circumstances, the resulting electromagnetic forces (EMFs) and torques are large. In this paper, eddy currents and EMFs on EAST VV, PFCs and their supports are calculated by analytical and numerical methods. ANSYS software is employed to evaluate eddy currents on VV, PFCs and their structural responses. To learn the electromagnetic and structural response of the whole structure more accurately, a detailed finite element model is established. The two most dangerous scenarios, major disruptions and downward VDEs, are examined. It is found that distribution patterns of eddy currents for various PFCs differ greatly, therefore resulting in different EMFs and torques. It can be seen that for certain PFCs the transient reaction force are severe. Results obtained here may set up a preliminary foundation for the future dynamic response research of EAST VV and PFCs which will provide a theoretical basis for the future engineering design of tokamak devices

  2. Analysis of electromagnetic scattering by nearly periodic structures: an LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wilton, Donald R. (University of Houston, Houston, TX); Basilio, Lorena I.; Peters, David William; Capolino, F. (University of Houston, Houston, TX)

    2006-10-01

    In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.

  3. Numerical modelling of the structure of electromagnetic disturbances generated by acoustic-gravity waves

    International Nuclear Information System (INIS)

    Pogorel'tsev, A.I.; Bidlingmajer, E.R.

    1992-01-01

    A numeric model of electromagnetic field disturbances generated under the interaction of acoustic-gravitational waves with ionospheric plasma is elaborated and vertical structure of the above disturbances is calculated. The estimates shown that electromagnetic disturbances can penetrate into neutral atmosphere and can be recorded through measurements of the variation of magnetic field and electron field vertical component near the earth is surface. A conclusion is made on a feasibility of monitoring of acoustic-gravitational wave activity in the lower thermosphere through land measurements of magnetic and electric field variations

  4. Unitarization of Koerner-Kuroda model of electromagnetic structure of octet 1/2+ baryons

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dubnickova, A.Z.

    1994-10-01

    The Koerner-Kuroda model of the electromagnetic structure of octet 1/2 + baryons is restored on a more topical physical basis. Electromagnetic radii of baryons under consideration are calculated and compared with other model predictions. By an incorporation of a two-cut approximation of correct form factor analytic properties and nonzero vector-meson widths, the Koerner-Kuroda model is unitarized, providing in this manner imaginary parts of the octet 1/2 + baryon form factors to be nonzero just starting from a branch point corresponding to the lowest threshold. (author). 32 refs, 16 figs, 2 tabs

  5. High-Precision Measurements of the Bound Electron’s Magnetic Moment

    Directory of Open Access Journals (Sweden)

    Sven Sturm

    2017-01-01

    Full Text Available Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the ionic nuclei. We summarize the measurements performed so far, discuss their significance, and give a detailed account of the experimental setups, procedures and the foreseen measurements.

  6. Electromagnetic analysis, structural integrity and progress on mechanical design of the ITER ferromagnetic insert

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, M. [Mitsubishi Heavy Industries, Ltd., 1-1 Wadasaki-cho 1-chome, Hyogo-ku, Kobe 652-8585 (Japan)], E-mail: masaaki_morimoto@maia.eonet.ne.jp; Ioki, K.; Terasawa, A.; Utin, Yu.; Barabash, V.; Gribov, Y. [ITER Organization, 13108 St. Paul lez Durance (France)

    2009-12-15

    Ferromagnetic material is used to reduce the toroidal field ripple in JFT-2M and JT-60U . In ITER, since the ferromagnetic material is inserted in the space between the double walls of ITER Vacuum Vessel (VV), it is called 'ferromagnetic inserts'. Suitable material is selected to satisfy the design requirements of ITER. The proper location and amount of the ferromagnetic inserts are optimized with the goal of reduction of the toroidal field ripple. The ferromagnetic inserts are designed to minimize electromagnetic forces acting on them. The electromagnetic forces have been calculated with the latest disruption scenarios. Magnetization forces due to magnetic fields have also been calculated. Structural integrity has been validated by a structural analysis.

  7. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    CERN Document Server

    Zhang, Zhicai

    2017-01-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run...

  8. Precise Estimation of Cellular Radio Electromagnetic Field in Elevators and EMI Impact on Implantable Cardiac Pacemakers

    Science.gov (United States)

    Harris, Louis-Ray; Hikage, Takashi; Nojima, Toshio

    The purpose of this paper is to investigate the possible impact of cellular phones' signals on implantable cardiac pacemakers in elevators. This is achieved by carrying out precise numerical simulations based on the Finite-Difference-Time-Domain method to examine the electromagnetic fields in elevator models. In order to examine the realistic and complicated situations where humans are present in the elevator, we apply the realistic homogeneous human phantom and cellular radios operating in the frequency bands 800MHz, 1.5GHz and 2GHz. These computed results of field strength inside the elevator are compared with a certain reference level determined from the experimentally obtained maximum interference distance of implantable cardiac pacemakers. This enables us to carry out a quantitative evaluation of the EMI risk to pacemakers by cellular radio transmission. The results show that for the case when up to 5 mobile radio users are present in the elevator model used, there is no likelihood of pacemaker malfunction for the frequency bands 800MHz, 1.5GHz and 2GHz.

  9. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2011-01-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s)and the SU(2) L coupling α 2 (s). I will report on my recent package alphaQED, which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the R had package by Harlander and Steinhauser, the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy.

  10. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Humboldt-Universitaet, Berlin

    2011-07-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s) and the SU(2) L coupling α 2 (s). I report on my recent package alphaQED [1], which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy. (orig.)

  11. Transient electromagnetic and dynamic structural analyses of a blanket structure with coupling effects

    Energy Technology Data Exchange (ETDEWEB)

    Koganezawa, K. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kushiyama, M. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Niikura, S. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kudough, F. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Koizumi, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-12-31

    Transient electromagnetic and dynamic structural analyses of a blanket structure in the fusion experimental reactor (FER) under a plasma disruption event and a vertical displacement event (VDE) have been performed to investigate the dynamic structural characteristics and the feasibility of the structure. Coupling effects between eddy currents and dynamic deflections have also been taken into account in these analyses. In this study, the inboard blanket was employed because of our computer memory limitation. A 1/192 segment model of a full torus was analyzed using the analytical code, EDDYCUFF. In the plasma disruption event, the maximum magnetic pressure caused by eddy currents and poloidal fields was 1.2MPa. The maximum stress intensity by this magnetic pressure was 114MPa. In the VDE, the maximum magnetic pressure was 2.4MPa and the maximum stress intensity was 253MPa. This stress was somewhat beyond the allowable stress limit. Therefore, the blanket structure and support design should be reviewed to reduce the stress to a suitable value. In summary, the dynamic structural characteristics and design issues of the blanket structure have been identified. (orig.).

  12. Coupling of electromagnetic and structural dynamics for a wind turbine generator

    International Nuclear Information System (INIS)

    Matzke, D; Rick, S; Schelenz, R; Jacobs, G; Hameyer, K; Hollas, S

    2016-01-01

    This contribution presents a model interface of a wind turbine generator to represent the reciprocal effects between the mechanical and the electromagnetic system. Therefore, a multi-body-simulation (MBS) model in Simpack is set up and coupled with a quasi-static electromagnetic (EM) model of the generator in Matlab/Simulink via co-simulation. Due to lack of data regarding the structural properties of the generator the modal properties of the MBS model are fitted with respect to results of an experimental modal analysis (EMA) on the reference generator. The used method and the results of this approach are presented in this paper. The MB S model and the interface are set up in such a way that the EM forces can be applied to the structure and the response of the structure can be fed back to the EM model. The results of this cosimulation clearly show an influence of the feedback of the mechanical response which is mainly damping in the torsional degree of freedom and effects due to eccentricity in radial direction. The accuracy of these results will be validated via test bench measurements and presented in future work. Furthermore it is suggested that the EM model should be adjusted in future works so that transient effects are represented. (paper)

  13. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    Science.gov (United States)

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Differential forms on electromagnetic networks

    CERN Document Server

    Balasubramanian, N V; Sen Gupta, D P

    2013-01-01

    Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the app

  15. From Theory to Experiment: Hadron Electromagnetic Form Factors in Space-like and Time-like Regions

    International Nuclear Information System (INIS)

    Tomasi-Gustafsson, E.; Gakh, G.I.; Rekalo, A.P.

    2007-01-01

    Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This Paper is devoted to the memory of Prof. M.P. Rekalo

  16. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  17. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  18. Fast electromagnetic characterization of integrated circuit passive isolation structures based on interference blocking

    NARCIS (Netherlands)

    Grau Novellas, M.; Serra, R.; Rose, Matthias

    2017-01-01

    An early characterization of integrated circuit passive isolation structures is crucial to predict their performance and effectiveness in minimizing substrate coupling. In this paper, an electromagnetic (EM) modeling methodology is proposed, which can be applied to different types of isolation

  19. Electromagnetic Characterization Of Metallic Sensory Alloy

    Science.gov (United States)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  20. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation.

    Science.gov (United States)

    Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo

    2017-10-31

    Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.

  1. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie

    2016-01-01

    Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.

  2. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    Science.gov (United States)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  3. Detection of electromagnetic radiation using nonlinear materials

    Science.gov (United States)

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  4. Precision Cosmology

    Science.gov (United States)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  5. Transient Electromagnetic Modelling and Imaging of Thin Resistive Structures: Applications for Gas Hydrate Assessment

    Science.gov (United States)

    Swidinsky, Andrei

    Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would

  6. High-precision optical systems with inexpensive hardware: a unified alignment and structural design approach

    Science.gov (United States)

    Winrow, Edward G.; Chavez, Victor H.

    2011-09-01

    High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.

  7. Intercalibration of the CMS Electromagnetic Calorimeter Using Jet Trigger Events

    CERN Document Server

    Futyan, David

    2004-01-01

    This note describes a strategy for rapidly obtaining electromagnetic calorimeter crystal intercalibration at LHC start-up in the absence of test beam precalibration of the complete detector. In the case of the CMS (Compact Muon Solenoid) Electromagnetic Calorimeter, the limit on the precision to which crystals can be intercalibrated in phi using fully simulated jet trigger events, and assuming complete ignorance of the distribution of material in front of the calorimeter, is determined as a function of the pseudorapidity eta. The value of the limit has been found to be close to 1.5% in the barrel and between 3.0% and 1.0% for the fiducial region of the endcaps. The precision is limited by the inhomogeneity of tracker material. With increasing knowledge of the material distribution in the tracker, the attainable precision of the method will increase, with the potential of providing rapid and repeated calibration of the calorimeter.

  8. Structure Optimal Design of Electromagnetic Levitation Load Reduction Device for Hydroturbine Generator Set

    Directory of Open Access Journals (Sweden)

    Qingyan Wang

    2015-01-01

    Full Text Available Thrust bearing is one part with the highest failure rate in hydroturbine generator set, which is primarily due to heavy axial load. Such heavy load often makes oil film destruction, bearing friction, and even burning. It is necessary to study the load and the reduction method. The dynamic thrust is an important factor to influence the axial load and reduction design of electromagnetic device. Therefore, in the paper, combined with the structure features of vertical turbine, the hydraulic thrust is analyzed accurately. Then, take the turbine model HL-220-LT-550, for instance; the electromagnetic levitation load reduction device is designed, and its mathematical model is built, whose purpose is to minimize excitation loss and total quality under the constraints of installation space, connection layout, and heat dissipation. Particle swarm optimization (PSO is employed to search for the optimum solution; finally, the result is verified by finite element method (FEM, which demonstrates that the optimized structure is more effective.

  9. Electromagnetic-based force sensor for Structural Health Monitoring(SHM)

    International Nuclear Information System (INIS)

    Choi, Man Yong; Park, Hae Won; Park, Jeong Hak; Sam, R.

    2002-01-01

    The demand for maintenance of structural health and safety to acceptable standards poses challenges for research and development of effective technologies for monitoring and measurement of parameters governing safety and health of structures. In this work, an electromagnetic based sensor has been investigated and developed for measuring force in pre-stressed steel cables and tendons. The change in magnetic permeability of a material caused by mechanical stress is exploited to measure force in the material. The sensor consists of a pair of sensing coils and a pair of reference coils. The sensing coils are wound around a stressed material while the reference pair are wound on a dummy specimen of same material as that under stress. When sensing and reference primary coils are excited by same current simultaneously, both the stressed and dummy materials are equally magnetized by the magnetic field generated by the current, and voltage is induced in the sensing and reference secondary coils. The induced voltage in each secondary coil is dependent on a number of factors including the magnetic permeability of its core which is a function of the core magnetizing current, temperature and stress/load. By suitably arranging the sensing and reference coils electro-magnetically, the effects of temperature and magnetizing current on the permeability of a stressed material can be eliminated in the output voltage of the sensor. The output voltage is a function of only the mechanical load in the stressed material, and can be calibrated for determination of force in pre-stressed materials

  10. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation

    Directory of Open Access Journals (Sweden)

    Ho-Yeon Jung

    2017-10-01

    Full Text Available Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.

  11. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  12. Coupled elasto-electromagnetic waves in bounded piezoelectric structures

    Energy Technology Data Exchange (ETDEWEB)

    Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Clezio, E Le [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)

    2007-12-15

    The work studies theoretically the effect of electromagnetic wave generation on the acoustic wave reflection/transmission in anisotropic materials possessing piezoelectric properties. We are concerned with quasi-normal incidence at angles {theta}{sub i} {>=} v{sub a}/v{sub el} {approx} 10{sup -3} to 10{sup -5}, where v{sub a} and v{sub el} are the typical velocities of the acoustic and electromagnetic waves. It is shown that electromagnetic and acoustic waves are able to interact strongly despite a huge difference in velocities so that the wave behavior of time-dependent electric fields can drastically change the coefficients of mode conversion. In particular, examples exist of the situations where the acoustic wave must be totally reflected but quasi-electrostatic calculations predict almost total transmission.

  13. Status of FED/INTOR electromagnetics

    International Nuclear Information System (INIS)

    Murray, J.G.

    1983-02-01

    This report provides a summary of the electromagnetic studies, calculations, and conclusions in the evolution of the base design of FED/INTOR (Fusion Engineering Device/International Tokamak Reactor). The electromagnetic feastures include the startup, control, disruptions, and design of structures. This report provides information concerning the evolution of the electromagnetic studies on FED and the justification for the eddy current design feature. The report shows that a major design feature required is the provision of a low induction and resistive path for toroidal currents to flow in the structures in order to provide self-stabilization and to manage the disruption energy dissipation

  14. Detailed electromagnetic simulation for the structural color of butterfly wings.

    Science.gov (United States)

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  15. Electromagnetic force support for thermonuclear device

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Yoshida, Kiyoshi; Tachikawa, Nobuo; Omori, Junji.

    1992-01-01

    The device of the present invention certainly supports electromagnetic force exerted on toroidal magnetic field coils. That is, a pair of support members are disposed being abutted against each other between toroidal magnetic field coils disposed radially in the torus direction of a vacuum vessel. Both of the support members are connected under an insulative state by way of an insulative structural portion having an insulation key. In addition, each of the support members and each of the toroidal magnetic field coils are connected by electromagnetic force support portions having a metal taper key and a metal spacer and supporting the electromagnetic force. With such a constitution, the electromagnetic force exerted on the toroidal magnetic field coils is supported by the electromagnetic force support portion having the metal taper key and the metal spacer. As a result, stable electromagnetic force support can be attained. Further, since the insulative structural portion has the insulation key, it can be assembled easily. (I.S.)

  16. The electromagnetic calorimeter of the CMS experiment

    International Nuclear Information System (INIS)

    Diemoza, M.

    2003-01-01

    The Electromagnetic Calorimeter of the CMS experiment is made of about 80000 Lead Tungstate scintillating crystals. This project aims to achieve an extreme precision in photons and electrons energy measurement. General motivations, main technical challenges and key points in energy resolution will be discussed in the following

  17. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    Science.gov (United States)

    Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.

    2016-04-01

    Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.

  18. The structure of electromagnetism and gravitation

    International Nuclear Information System (INIS)

    Pommaret, J.F.

    1983-01-01

    The formalisms of gauge theory and continuum mechanics linked to the construction of the non-linear Spencer sequences in the formal theory of Lie pseudogroups give results showing that a contradiction exists between the two theories quoted above as the Yang-Mills ''potentials'' of physicists are sections of the first Spencer vector bundle, coming from connections, while the ''fields'' of mechanicians are sections of the same bundle, not coming from connections. The purpose of this Note is to explain this contradiction by showing that the electromagnetic model of gauge theory must be modified. Maxwell and Einstein equations then automatically appear in this differential framework that unifies electromagnetism and gravitation. These conclusions are imposed, not by the choice of physical assumptions, but by the use of a new mathematical tool [fr

  19. Towards the results of global analysis of data on nucleon electromagnetic structure

    International Nuclear Information System (INIS)

    Bilen'kaya, S.I.; Dubnicka, S.; Dubnickova, A.Z.; Strizenec, P.

    1991-01-01

    Peculiar features of the recent global analysis of data on the nucleon electromagnetic structure are discussed on the detail in order to reconsider reliability of the predicted result that the electron-positron annihilation into a neutron-antineutron cross-section is considerably larger that the cross-section of the electron-positron annihilation into a proton-antiproton pair. 14 refs.; 3 figs.; 3 tabs

  20. Variational Monte Carlo studies of electromagnetic structure of few-body nuclei

    International Nuclear Information System (INIS)

    Schiavilla, R.

    1990-01-01

    The electromagnetic structure and dynamic response of A = 2, 3 and 4 nuclei are studied with the Variational Monte Carlo method by using wave functions based on realistic nuclear interactions. Recent results obtained for the elastic form factors of 2 H, 3 H, 3 He and 4 He, the radiative neutron capture on 3 He at thermal energies, and the reaction 4 He(e,e'p) 3 H are reported. 24 refs., 5 figs

  1. Do we see what we should see? Describing non-covalent interactions in protein structures including precision

    Directory of Open Access Journals (Sweden)

    Manickam Gurusaran

    2014-01-01

    Full Text Available The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision (i.e. to too many decimal places is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges, i.e. ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and α-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures, takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.

  2. Quantum processes in an intense electromagnetic field

    International Nuclear Information System (INIS)

    Gitman, D.M.

    1976-01-01

    An approach is proposed to the consideration of processes in an external electromagnetic field which produces real pairs. Interaction with the field is taken into account precisely with the aid of solutions of the Dirac's equation. Processes of arbitrary order with respect to electron-photon interaction are considered

  3. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts. 

  4. Structural and ultrastructural study of rat liver influenced by electromagnetic radiation.

    Science.gov (United States)

    Holovská, K; Almášiová, V; Cigánková, V; Beňová, K; Račeková, E; Martončíková, M

    2015-01-01

    Mobile communication systems are undoubtedly an environmental source of electromagnetic radiation (EMR). There is an increasing concern regarding the interactions of EMR with the humans. The aim of this study was to examine the effects of EMR on Wistar rat liver. Mature rats were exposed to electromagnetic field of frequency 2.45 GHz and mean power density of 2.8 mW/cm2 for 3 h/d for 3 wk. Samples of the liver were obtained 3 h after the last irradiation and processed histologically for light and transmission electron microscopy. Data demonstrated the presence of moderate hyperemia, dilatation of liver sinusoids, and small inflammatory foci in the center of liver lobules. Structure of hepatocytes was not altered and all described changes were classified as moderate. Electron microscopy of hepatocytes revealed vesicles of different sizes and shapes, lipid droplets, and proliferation of smooth endoplasmic reticulum. Occasionally necrotizing hepatocytes were observed. Our observations demonstrate that EMR exposure produced adverse effects on rat liver.

  5. Study of coupled-cluster correlations on electromagnetic transitions and hyperfine structure constants of W VI

    International Nuclear Information System (INIS)

    Bhowmik, Anal; Majumder, Sonjoy; Roy, Sourav; Dutta, Narendra Nath

    2017-01-01

    This work presents precise calculations of important electromagnetic transition amplitudes along with details of their many-body correlations using the relativistic coupled-cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostics, with this correlation exhaustive many-body approach, are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of different isotopes of W VI, presented in this paper, will be helpful in gaining an accurate picture of the abundances of this element in different astronomical bodies. (paper)

  6. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    Science.gov (United States)

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  7. An introduction about precise measurements of QED γ structure functions

    International Nuclear Information System (INIS)

    Courau, A.

    1989-11-01

    Pure QED processes are theoretically exactly computable. However precise measurements and theoretical expectations of QED γ structure functions within a given experimental acceptance are not so trivial. Yet such a study is quite interesting. It supplies on the one hand a good QED test and, on the other hand, a good exercise for testing the procedure used for the determination of the hadronic γ structure functions

  8. Alpha-decay fine structure versus electromagnetic transitions

    International Nuclear Information System (INIS)

    Peltonen, S.

    2003-01-01

    Alpha decay of even-even Rn isotopes is studied microscopically along the lines of Phys. Rev. C 64, 302 (2001). The results are compared against experimental fine-structure hindrance factors (HFs). We consider problems related to reproducing observed HFs with nuclear models, especially in case of the collective 2 + - excitations. We use the QRPA model with isovector SDI interaction in order to systematically evaluate theoretical HFs. Pairing gaps and the experimental energy of the 2 + - state fix all interaction parameters except the ratio between the isovector and isoscalar interaction strengths that is used as an additional free parameter of the model. Correlation between the electromagnetic E2-strength and HFs is observed, depending both on the isotope and the excitation energy. The choice of the single particle basis appears to affect strongly the theoretical HFs. Further and even more systematical studies are required in order explain this behaviour. (author)

  9. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  10. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    OpenAIRE

    Huang Yu-Hang; Zhu Wei-Hua; Jiang Xingfang

    2014-01-01

    There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The softwar...

  11. Proton electromagnetic form factors: present status and future perspectives at PANDA

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson E.

    2015-01-01

    Full Text Available Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt. Measurements of the reaction p̅ + p → e+ + e− by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold, through the reaction p̅ + p → e+ + e− + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.

  12. Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses

    International Nuclear Information System (INIS)

    Han, Jeong Sam

    2010-01-01

    In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator

  13. Electromagnetic field analysis and modeling of a relative position detection sensor for high speed maglev trains.

    Science.gov (United States)

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  14. Electromagnetic Field Analysis and Modeling of a Relative Position Detection Sensor for High Speed Maglev Trains

    Directory of Open Access Journals (Sweden)

    Song Xue

    2012-05-01

    Full Text Available The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT and the New Equivalent Source (NES method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA. The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  15. Electromagnetic effects on dynamics of high-beta filamentary structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-01-15

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner scrape-off layer (SOL) region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and BOUT++ simulations, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave instability when resistivity drops below a certain value. The blobs temperature decreases in the course of its motion through the SOL and so the blob can switch from the electromagnetic to the electrostatic regime where resistive drift waves become important again.

  16. A finite integration method for conformal, structured-grid, electromagnetic simulation

    International Nuclear Information System (INIS)

    Cooke, S.J.; Shtokhamer, R.; Mondelli, A.A.; Levush, B.

    2006-01-01

    We describe a numerical scheme for solving Maxwell's equations in the frequency domain on a conformal, structured, non-orthogonal, multi-block mesh. By considering Maxwell's equations in a volume parameterized by dimensionless curvilinear coordinates, we obtain a set of tensor equations that are a continuum analogue of common circuit equations, and that separate the metrical and metric-free parts of Maxwell's equations and the material constitutive relations. We discretize these equations using a new formulation that treats the electric field and magnetic induction using simple basis-function representations to obtain a discrete form of Faraday's law of induction, but that uses finite integral representations for the displacement current and magnetic field to obtain a discrete form of Ampere's law, as in the finite integration technique [T. Weiland, A discretization method for the solution of Maxwell's equations for six-component fields, Electron. Commun. (AE U) 31 (1977) 116; T. Weiland, Time domain electromagnetic field computation with finite difference methods, Int. J. Numer. Model: Electron. Netw. Dev. Field 9 (1996) 295-319]. We thereby derive new projection operators for the discrete tensor material equations and obtain a compact numerical scheme for the discrete differential operators. This scheme is shown to exhibit significantly reduced numerical dispersion when compared to the standard linear finite element method. We take advantage of the mesh structure on a block-by-block basis to implement these numerical operators efficiently, and achieve computational speed with modest memory requirements when compared to explicit sparse matrix storage. Using the Jacobi-Davidson [G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (2) (1996) 401-425; S.J. Cooke, B. Levush, Eigenmode solution of 2-D and 3-D electromagnetic cavities containing absorbing materials using the Jacobi

  17. Effect of energy emission from evanescent electromagnetic wave at scattering by a dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu.V. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation); Barabanenkov, Yu.N. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)]. E-mail: yu.barab@mail.ip.sitek.net; Barabanenkov, M.Yu. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Nikitov, S.A. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)

    2005-02-21

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes. The optical theorem shows that an energy flux at scattering is emitted in the direction of incident evanescent wave decay.

  18. Electromagnetic modelling of large complex 3-D structures with LEGO and the eigencurrent expansion method

    NARCIS (Netherlands)

    Lancellotti, V.; Hon, de B.P.; Tijhuis, A.G.

    2009-01-01

    Linear embedding via Green's operators (LEGO) is a computational method in which the multiple scattering between adjacent objects - forming a large composite structure - is determined through the interaction of simple-shaped building domains, whose electromagnetic (EM) behavior is accounted for by

  19. Structural and functional polymer-matrix composites for electromagnetic applications

    Science.gov (United States)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES

  20. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    DEFF Research Database (Denmark)

    Eiríksson, Eyþór Rúnar; Wilm, Jakob; Pedersen, David Bue

    2016-01-01

    measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure...

  1. Analytical method for analysis of electromagnetic scattering from inhomogeneous spherical structures using duality principles

    Science.gov (United States)

    Kiani, M.; Abdolali, A.; Safari, M.

    2018-03-01

    In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.

  2. Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach

    Directory of Open Access Journals (Sweden)

    M. Stumpf

    2017-04-01

    Full Text Available A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.

  3. Electromagnetic Band Gap Structures: Practical Tips and Advice for Antenna Engineers

    Directory of Open Access Journals (Sweden)

    P. Kovacs

    2012-04-01

    Full Text Available In this paper we discuss the use of electromagnetic band gap (EBG structures in antenna engineering from a practical point of view. Our aim is to point out the most common mistakes and myths related to design, analysis and application of EBGs in the field of antennas. The paper could be helpful for beginners giving a short course on designing EBGs but also will bring novel findings for experts, investigating the effect of different number of unit cells on radiation characteristics of a planar antenna. An important part of the paper is the experiments showing the surface wave distribution over an EBG board and over the fabricated antennas with- and without the periodic structure.

  4. Fine structures of atomic excited states: precision atomic spectroscopy and electron-ion collision process

    International Nuclear Information System (INIS)

    Gao Xiang; Cheng Cheng; Li Jiaming

    2011-01-01

    Scientific research fields for future energies such as inertial confinement fusion researches and astrophysics studies especially with satellite observatories advance into stages of precision physics. The relevant atomic data are not only enormous but also of accuracy according to requirements, especially for both energy levels and the collision data. The fine structure of high excited states of atoms and ions can be measured by precision spectroscopy. Such precision measurements can provide not only knowledge about detailed dynamics of electron-ion interactions but also a bench mark examination of the accuracy of electron-ion collision data, especially incorporating theoretical computations. We illustrate that by using theoretical calculation methods which can treat the bound states and the adjacent continua on equal footing. The precision spectroscopic measurements of excited fine structures can be served as stringent tests of electron-ion collision data. (authors)

  5. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  6. Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED

    International Nuclear Information System (INIS)

    Sturm, Christian

    2013-01-01

    The running of the effective electromagnetic coupling is for many electroweak observables the dominant correction. It plays an important role for deriving constraints on the Standard Model in the context of electroweak precision measurements. We compute the four-loop QED corrections to the running of the effective electromagnetic coupling and perform a numerical evaluation of the different gauge invariant subsets

  7. Perturbations in electromagnetic dark energy

    International Nuclear Information System (INIS)

    Jiménez, Jose Beltrán; Maroto, Antonio L.; Koivisto, Tomi S.; Mota, David F.

    2009-01-01

    It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of ΛCDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as ΛCDM

  8. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    Science.gov (United States)

    Xu, Yu-Lin

    2016-01-01

    Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of

  9. Model structural uncertainty quantification and hydrogeophysical data integration using airborne electromagnetic data (Invited)

    DEFF Research Database (Denmark)

    Minsley, Burke; Christensen, Nikolaj Kruse; Christensen, Steen

    of airborne electromagnetic (AEM) data to estimate large-scale model structural geometry, i.e. the spatial distribution of different lithological units based on assumed or estimated resistivity-lithology relationships, and the uncertainty in those structures given imperfect measurements. Geophysically derived...... estimates of model structural uncertainty are then combined with hydrologic observations to assess the impact of model structural error on hydrologic calibration and prediction errors. Using a synthetic numerical model, we describe a sequential hydrogeophysical approach that: (1) uses Bayesian Markov chain...... Monte Carlo (McMC) methods to produce a robust estimate of uncertainty in electrical resistivity parameter values, (2) combines geophysical parameter uncertainty estimates with borehole observations of lithology to produce probabilistic estimates of model structural uncertainty over the entire AEM...

  10. Improving the precision of the structure-function relationship by considering phylogenetic context.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available Understanding the relationship between protein structure and function is one of the foremost challenges in post-genomic biology. Higher conservation of structure could, in principle, allow researchers to extend current limitations of annotation. However, despite significant research in the area, a precise and quantitative relationship between biochemical function and protein structure has been elusive. Attempts to draw an unambiguous link have often been complicated by pleiotropy, variable transcriptional control, and adaptations to genomic context, all of which adversely affect simple definitions of function. In this paper, I report that integrating genomic information can be used to clarify the link between protein structure and function. First, I present a novel measure of functional proximity between protein structures (F-score. Then, using F-score and other entirely automatic methods measuring structure and phylogenetic similarity, I present a three-dimensional landscape describing their inter-relationship. The result is a "well-shaped" landscape that demonstrates the added value of considering genomic context in inferring function from structural homology. A generalization of methodology presented in this paper can be used to improve the precision of annotation of genes in current and newly sequenced genomes.

  11. Electromagnet Response Time Tests on Primary CRDM of a Prototype Gen-IV SFR

    International Nuclear Information System (INIS)

    Lee, Jae-Han; Koo, Gyeong-Hoi

    2015-01-01

    This paper identifies the electromagnetic response characteristics of the electromagnet of a primary control rod drive mechanism (CRDM) used for the reactor scram function. The test measures the electromagnet response time required to release an armature from a stator controlled by a loss of an electromagnetic force on an armature after shorting a power supply to an electromagnet coil. These tests are carried out while changing the electromagnet core material, an assist spring, and an armature holding current. The main factors influencing the test parameters on the response are found to be the armature holding current for holding the armature loads, and the material type of the electromagnet cores. The minimum response time is 0.13 seconds in the case of using SS410 material as an armature, while the S10C material as an armature has a response time of 0.21 seconds. Electromagnet response time characteristics from the test results will be evaluated by comparing the precise moving data of an electromagnet armature through the use of a high-speed camera and a potentiometer in the future

  12. A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles

    Science.gov (United States)

    Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.

    2013-07-01

    We propose, describe, and demonstrate a new numerically stable implementation of the extended boundary-condition method (EBCM) to compute the T-matrix for electromagnetic scattering by spheroidal particles. Our approach relies on the fact that for many of the EBCM integrals in the special case of spheroids, a leading part of the integrand integrates exactly to zero, which causes catastrophic loss of precision in numerical computations. This feature was in fact first pointed out by Waterman in the context of acoustic scattering and electromagnetic scattering by infinite cylinders. We have recently studied it in detail in the case of electromagnetic scattering by particles. Based on this study, the principle of our new implementation is therefore to compute all the integrands without the problematic part to avoid the primary cause of loss of precision. Particular attention is also given to choosing the algorithms that minimise loss of precision in every step of the method, without compromising on speed. We show that the resulting implementation can efficiently compute in double precision arithmetic the T-matrix and therefore optical properties of spheroidal particles to a high precision, often down to a remarkable accuracy (10-10 relative error), over a wide range of parameters that are typically considered problematic. We discuss examples such as high-aspect ratio metallic nanorods and large size parameter (≈35) dielectric particles, which had been previously modelled only using quadruple-precision arithmetic codes.

  13. Fast and precise luminosity measurement at the international linear

    Indian Academy of Sciences (India)

    The detectors of the ILC will feature a calorimeter system in the very forward region. The system comprises mainly two electromagnetic calorimeters: LumiCal, which is dedicated to the measurement of the absolute luminosity with highest precision and BeamCal, which uses the energy deposition from beamstrahlung pairs ...

  14. In-Situ Calibration of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Futyan, D I

    2003-01-01

    The in-situ intercalibration of the lead tungstate crystals of the CMS electromagnetic calorimeter will be performed using 3 techniques: An energy flow method will be used at startup to intercalibrate to a precision of around 2% within about 3 hours. The energy/momentum measurement of isolated electrons from W decay will then be used to obtain the design goal precision of 0.5% within about 2 months. Global intercalibration of different regions of the calorimeter and the determination of the absolute energy scale will be performed using energetic electrons from Z->ee events.

  15. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  16. Turbulence anisotropy and coherent structures in electromagnetically generated vortex patterns

    International Nuclear Information System (INIS)

    Kenjereš, S

    2011-01-01

    Numerical investigations addressing influence of the localised electromagnetic forcing on turbulent thermal convection of a weakly electrically conductive fluid in a wall-bounded rectangular enclosure are performed over a wide range of working parameters (10 4 ≤Ra≤5×10 5 , Pr = 7). An asymmetrical electromagnetic forcing (EMF) is applied originating from combined effects of the imposed magnetic fields (originating from an array of 5×7 permanent magnets with |b 0 | max = 1 T each, located beneath the lower thermally active wall) and electric fields (originating from two electrodes supplied with dc current of different intensities, 0≤I≤10 A). Subgrid turbulent stress is modelled by electromagnetically extended Smagorinsky model and subgrid turbulent heat flux is represented by a simple gradient diffusion hypothesis. Simulations revealed two interesting findings: the electromagnetic forcing generated significant overall heat transfer increase (more than 500% for lower values of Ra) compared to its neutral case, and, the turbulence anisotropy was reduced in the central part of the enclosure.

  17. The connection between the electromagnetic fine structure constant α-bar0 and the monster Lie algebra

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2008-01-01

    The essay gives arguments for deriving the electromagnetic fine structure constant from maximally symmetric spaces. A connection between the order of some subgroups of the monster simple group, the ratio of the proton mass to the electron mass and the fine structure constant is found. A derivation of the fine structure constant from the number of elements in the Cristoffel symbol and the order of the reflection group F 4 is given

  18. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    Science.gov (United States)

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  19. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  20. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    Science.gov (United States)

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  1. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Frois, B.

    1987-01-01

    The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles

  2. Investigations of the structure and electromagnetic interactions of few-body systems

    International Nuclear Information System (INIS)

    Lehman, D.R.

    1991-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress make, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the GWU theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been carry out the continuum part of the theoretical work exactly, this is, by means of exact three- and four-body dynamics. When structure questions are the issue, exact calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art few-body calculations that will serve as an unambiguous means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics

  3. Identification of subsurface structures using electromagnetic data and shape priors

    Energy Technology Data Exchange (ETDEWEB)

    Tveit, Svenn, E-mail: svenn.tveit@uni.no [Uni CIPR, Uni Research, Bergen 5020 (Norway); Department of Mathematics, University of Bergen, Bergen 5020 (Norway); Bakr, Shaaban A., E-mail: shaaban.bakr1@gmail.com [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Uni CIPR, Uni Research, Bergen 5020 (Norway); Lien, Martha, E-mail: martha.lien@octio.com [Uni CIPR, Uni Research, Bergen 5020 (Norway); Octio AS, Bøhmergaten 44, Bergen 5057 (Norway); Mannseth, Trond, E-mail: trond.mannseth@uni.no [Uni CIPR, Uni Research, Bergen 5020 (Norway); Department of Mathematics, University of Bergen, Bergen 5020 (Norway)

    2015-03-01

    We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.

  4. Electromagnetic radiation and scattering from small canonical structures of double-negative metamaterials

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2007-01-01

    aspects associated with DNG materials, and was subsequently extended to investigations of the radiation and scattering from two- and three-dimensional (2D and 3D) MTM-based canonical problems in electromagnetic theory. As to the theoretical aspects of DNG materials, the sign, or more generally the branch......, cylindrical and spherical configurations to design electrically small, resonant structures such as cavities, waveguides, scatterers and radiators. These ideas are extended here to canonical antenna and scattering configurations which consist of electrically small resonant cylindrical and spherical MTM......-based structures excited by an arbitrarily located electric line source and an arbitrarily located and oriented electric Hertzian dipole, respectively. Exact analytical solutions, based on eigenfunction series, are derived and then numerically evaluated to study the radiation and scattering from these structures...

  5. Resistivity structures imaging using time-domain electromagnetic data; TDEM ho ni yoru chika hiteiko kozo no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K [Waseda University, Tokyo (Japan). School of Science and Engineering; Endo, M [Waseda University, Tokyo (Japan)

    1996-10-01

    The kernel function for transient vertical magnetic dipole was defined for semi-infinite uniform medium, and the 1-D imaging algorithm by TDEM (time-domain electromagnetic) method was developed for underground resistivity structure. Electromagnetic migration method directly images sectional resistivity profiles from the data observed by frequency-domain MT method, and determines underground resistivity profiles by integral equation of MT field using the concept of return travel time in reflection seismic exploration. The method reported in this paper is also one of the EM migration methods. The imaging algorithm of 2-D resistivity structure was developed by correcting 1-D imaging in consideration of the effect of 2-D anomaly on 1-D imaging (the resistivity of anomaly can be obtained from the resistivity contrast between anomaly and medium). The conventional methods require enormous forward computation, while this method can obtain underground resistivity structure in extremely short computation time, resulting in superior practicability. 12 refs., 7 figs.

  6. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  7. A computational procedure for coupled electromagnetic-structural dynamic problems and its application to a fusion reactor blanket

    International Nuclear Information System (INIS)

    Jordan, T.

    1993-09-01

    A method is presented in order to couple quasistationary electromagnetics and the dynamics of structure and fluid. This method allows to compute forces, strains and stresses in structures subjected to transient magnetic fields. An important application was to determine the dynamic loading of the self-cooled liquid metal blanket during a plasma distruption. (orig./HP) [de

  8. Embedding electromagnetic band gap structures in printed circuit boards for electromagnetic interference reduction

    NARCIS (Netherlands)

    Tereshchenko, O.V.

    2015-01-01

    Due to the tendency of faster data rates and lower power supply voltage in the integrated circuit (IC) design, Simultaneously Switching Noise (SSN) and ground bounce become serious concerns for designers and testers. This noise can be a source of electromagnetic interference (EMI). It propagates

  9. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    Directory of Open Access Journals (Sweden)

    Huang Yu-Hang

    2014-02-01

    Full Text Available There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The software and hardware circuit of the electromagnetic flowmeter has been designed and tested. The tested data have been analyzed by the least square method and the error is 0.8 %. The result shown that the electromagnetic flowmeter controlled by single-chip microcomputer for measurement of sewage has reached the advanced level of similar products at home and abroad.

  10. Statistical fluctuations of electromagnetic transition intensities and electromagnetic moments in pf-shell nuclei

    International Nuclear Information System (INIS)

    Hamoudi, A.; Shahaliev, E.; Nazmitdinov, R. G.; Alhassid, Y.

    2002-01-01

    We study the fluctuation properties of ΔT=0 electromagnetic transition intensities and electromagnetic moments in A∼60 nuclei within the framework of the interacting shell model, using a realistic effective interaction for pf-shell nuclei with a 56 Ni core. The distributions of the transition intensities and of the electromagnetic moments are well described by the Gaussian orthogonal ensemble of random matrices. In particular, the transition intensity distributions follow a Porter-Thomas distribution. When diagonal matrix elements (i.e., moments) are included in the analysis of transition intensities, the distributions remain Porter-Thomas except for the isoscalar M1. This deviation is explained in terms of the structure of the isoscalar M1 operator

  11. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    Science.gov (United States)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  12. Precision tracking and electromagnetic calorimetry towards a measurement of the pion polarisabilities at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, Anna-Maria Elisabeth

    2010-07-20

    In 2004 the COMPASS experiment at CERN SPS measured soft reactions with a beam of negatively charged pions on various nuclear targets. For this measurement, a silicon micro-strip telescope was installed in the target region. For the first time 5 silicon detector stations were operated simultaneously in the COMPASS experiment. A novel method of time calibration, with a clustering algorithm accordingly adapted, and refined alignment corrections were implemented in the analysis software. The spatial resolution of a silicon detector was determined to be 5 - 14 {mu}m and the time resolution 2 - 3 ns. Combining the time information of all stations, a track time resolution of 530 ps from the silicon telescope could be reached. One of the key points of this experiment was the observation of Primakoff events, namely pions scattering off quasi-real photons in the Coulomb field of a heavy nucleus. The production of real photons corresponds to pion Compton scattering in inverse kinematics which is sensitive to the pion polarisabilities {alpha}{sub {pi}} and {beta}{sub {pi}}. Key ingredient for such measurements is a precise knowledge of the performance of the electromagnetic calorimeter. This includes a study of the instabilities of calorimeter cells and an improved reconstruction algorithm. A data-driven shower model was developed, which was used for a timedependent recalibration of the calorimeter. A new cluster refitting method was used to recover position and energy of clusters containing passive or saturated cells and detects double-hit clusters. The latter are important, as the main background to the Primakoff Compton events stems from neutral pions misinterpreted as single-photon hits. The physics analysis comprised the selection of Primakoff events and the necessary steps to obtain the pionic polarisabilities. The measurement was limited by systematic effects of the apparatus also determined within this thesis. (orig.)

  13. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    1992-01-01

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of 16 O(e,e'p), 12 C(e,e'pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in 12 C(e,e'p 0 ) and 16 O(e,e'p 0 ), comparison of the 12 C(e, e'p 0 ) and 16 O(e,e'p 3 ) reactions, quadrupole strength in the 16 O(e,e'α 0 ) reaction, quadrupole strength in the 12 C(e,e'α) reaction, analysis of the 12 C(e,e'p 1 ) and 16 O(e,e'p 3 ) angular distributions, analysis of the 40 Ca(e,e'x) reaction at low q, analysis of the higher-q 12 C(e,e'x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments)

  14. Evaluation of Specific Absorption Rate as a Dosimetric Quantity for Electromagnetic Fields Bioeffects

    OpenAIRE

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2013-01-01

    PURPOSE: To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. METHODS: We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposu...

  15. Measuring and slowing decoherence in Electromagnetically induced transparency medium

    International Nuclear Information System (INIS)

    Shuker, M.; Firstenberg, O.; Sagi, Y.; Ben-Kish, A.; Fisher, A.; Ron, A.; Davidson, N.

    2005-01-01

    Full Text:Electromagnetically induced transparency is a unique light-matter interaction that exhibits extremely narrow-band spectroscopic features along with low absorption. Recent interest in this phenomenon is driven by its possible applications in quantum information (slow light, storage of light), atomic clocks and precise magnetometers. The Electromagnetically induced transparency phenomenon takes place when an atomic ensemble is driven to a coherent superposition of its ground state sub-levels by two phase-coherent radiation fields. A key parameter of the Electromagnetically induced transparency medium, that limits its applicability, is the coherence lifetime of this superposition (decoherence rate). We have developed a simple technique to measure decay rates within the ground state of an atomic ensemble, and specifically the decoherence rate of the Electromagnetically induced transparency coherent superposition. Detailed measurements were performed in a Rubidium vapor cell at 60 - 80 with 30 Torr of Neon buffer gas. We have found that the Electromagnetically induced transparency decoherence is dominated by spin-exchange collisions between Rubidium atoms. We discuss the sensitivity of various quantum states of the atomic ensemble to spin exchange decoherence, and find a set of quantum states that minimize this effect. Finally, we demonstrate a unique quantum state which is both insensitive to spin exchange decoherence and constitutes an Electromagnetically induced transparency state of the medium

  16. Coupling Analysis of Low-Speed Multiphase Flow and High-Frequency Electromagnetic Field in a Complex Pipeline Structure

    Directory of Open Access Journals (Sweden)

    Xiaokai Huo

    2014-01-01

    Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.

  17. Electromagnetic loads and structural response of the CIT [Compact Ignition Tokamak] vacuum vessel to plasma disruptions

    International Nuclear Information System (INIS)

    Salem, S.L.; Listvinsky, G.; Lee, M.Y.; Bailey, C.

    1987-01-01

    Studies of the electromagnetic loads produced by a variety of plasma disruptions, and the resulting structural effects on the compact Ignition Tokamak (CIT) vacuum vessel (VV), have been performed to help optimize the VV design. A series of stationary and moving plasmas, with disruption rates from 0.7--10.0 MA/ms, have been analyzed using the EMPRES code to compute eddy currents and electromagnetic pressures, and the NASTRAN code to evaluate the structural response of the vacuum vessel. Key factors contributing to the magnitude of EM forces and resulting stresses on the vessel have been found to include disruption rate, and direction and synchronization of plasma motion with the onset of plasma current decay. As a result of these analyses, a number of design changes have been made, and design margins for the present 1.75 meter design have been improved over the original CIT configuration. 1 ref., 10 figs., 4 tabs

  18. New approach to a global description of the deuteron electromagnetic structure

    International Nuclear Information System (INIS)

    Dubnickova, A.Z.; Dubnicka, S.

    1991-07-01

    A new approach to a global description of the deuteron electro-magnetic (EM) structure is developed on the bases of a modification of the well known vector-meson-dominance (VMD) model of EM hadron interactions by incorporating the true deuteron form factor (FF) analytic properties, non-zero vector meson widths and the correct power asymptotic behaviour as predicted by QCD. As a result, the experimental data on elastic electron-deuteron scattering structure functions A(t) and B(t) are described quite well, the deuteron EM FF's in the space-like region are reproduced and their behaviour in the time- like region is predicted. At the same time the couplings of the ω-mesons to deuteron are evaluated and the total cross section of e + e - → dd-bar process is determined for the first time. (author). 47 refs, 5 figs

  19. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Science.gov (United States)

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  20. Study of position resolution and electron-hadron separation of electromagnetic calorimeter with a silicon structure

    International Nuclear Information System (INIS)

    Gorodnichev, V.B.; Kachanov, V.A.; Khodyrev, V.Yu.; Kurchaninov, L.L.; Rykali, V.V.; Solovianov, V.L.; Ukhalov, M.N.

    1993-01-01

    The maximum shower silicon strip detectors embedded in a module of sandwich-type electromagnetic calorimeter have been tested. The position resolution at different depths of the silicon structure has been measured. The results on electron-hadron separation obtained as a byproduct in this study are presented, and possibility of their improvement is discussed. 8 refs., 10 figs., 1 tab

  1. Electromagnetic corrections to pseudoscalar decay constants

    Energy Technology Data Exchange (ETDEWEB)

    Glaessle, Benjamin Simon

    2017-03-06

    First principles Lattice quantum chromodynamics (LQCD) calculations enable the determination of low energy hadronic amplitudes. Precision LQCD calculations with relative errors smaller than approximately 1% require the inclusion of electromagnetic effects. We demonstrate that including (quenched) quantum electrodynamics effects in the LQCD calculation effects the values obtained for pseudoscalar decay constants in the per mille range. The importance of systematic effects, including finite volume effects and the charge dependence of renormalization and improvement coefficients, is highlighted.

  2. Effect of electromagnetic fields on the bacteria bioluminescent activity

    International Nuclear Information System (INIS)

    Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.

    1995-01-01

    The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs

  3. Coupling of electromagnetics and structural/fluid dynamics - application to the dual coolant blanket subjected to plasma disruptions

    International Nuclear Information System (INIS)

    Jordan, T.

    1996-01-01

    Some aspects concerning the coupling of quasi-stationary electromagnetics and the dynamics of structure and fluid are investigated. The necessary equations are given in a dimensionless form. The dimensionless parameters in these equations are used to evaluate the importance of the different coupling effects. A finite element formulation of the eddy-current damping in solid structures is developed. With this formulation, an existing finite element method (FEM) structural dynamics code is extended and coupled to an FEM eddy-current code. With this program system, the influence of the eddy-current damping on the dynamic loading of the dual coolant blanket during a centered plasma disruption is determined. The analysis proves that only in loosely fixed or soft structures will eddy-current damping considerably reduce the resulting stresses. Additionally, the dynamic behavior of the liquid metal in the blankets' poloidal channels is described with a simple two-dimensional magnetohydrodynamic approach. The analysis of the dimensionless parameters shows that for small-scale experiments, which are designed to model the coupled electromagnetic and structural/fluid dynamic effects in such a blanket, the same magnetic fields must be applied as in the real fusion device. This will be the easiest way to design experiments that produce transferable results. 10 refs., 7 figs

  4. Investigations of the structure and electromagnetic interactions of few-body systems

    International Nuclear Information System (INIS)

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics

  5. A linear actuator for precision positioning of dual objects

    International Nuclear Information System (INIS)

    Peng, Yuxin; Cao, Jie; Guo, Zhao; Yu, Haoyong

    2015-01-01

    In this paper, a linear actuator for precision positioning of dual objects is proposed based on a double friction drive principle using a single piezoelectric element (PZT). The linear actuator consists of an electromagnet and a permanent magnet, which are connected by the PZT. The electromagnet serves as an object 1, and another object (object 2) is attached on the permanent magnet by the magnetic force. For positioning the dual objects independently, two different friction drive modes can be alternated by an on–off control of the electromagnet. When the electromagnet releases from the guide way, it can be driven by impact friction force generated by the PZT. Otherwise, when the electromagnet clamps on the guide way and remains stationary, the object 2 can be driven based on the principle of smooth impact friction drive. A prototype was designed and constructed and experiments were carried out to test the basic performance of the actuator. It has been verified that with a compact size of 31 mm (L) × 12 mm (W) × 8 mm (H), the two objects can achieve long strokes on the order of several millimeters and high resolutions of several tens of nanometers. Since the proposed actuator allows independent movement of two objects by a single PZT, the actuator has the potential to be constructed compactly. (paper)

  6. The electromagnetic bio-field: clinical experiments and interferences.

    Science.gov (United States)

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  7. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...

  8. Electromagnetic scattering of large structures in layered earths using integral equations

    Science.gov (United States)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  9. System for detecting and processing abnormality in electromagnetic shielding

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1991-01-01

    The present invention relates to a system for detecting and processing an abnormality in electromagnetic shielding of an intelligent building which is constructed using an electromagnetic shielding material for the skeleton and openings such as windows and doorways so that the whole of the building is formed into an electromagnetic shielding structure. (author). 4 figs

  10. Electron and photon energy reconstruction in the electromagnetic calorimeter of ATLAS

    CERN Document Server

    AUTHOR|(CDS)2075753; Mandelli, Luciano

    2007-01-01

    The Atlas LAr electromagnetic calorimeter is designed to provide a precise measurement of electrons and photons energies, in order to meet the requirements coming from the LHC physics program. This request of precision makes important to understand the behavior of the detector in all its aspect. Of fundamental importance to achieve the best possible performances is the calibration of the EM calorimeter, and this is the topic of this thesis. With detailed Monte Carlo simulations of single electrons and photons in the Atlas detector, we find a method to calibrate the electromagnetic calorimeter, based only on the informations that come from it. All the informations needed to develop a calibration method come from the simulations made with the technique of the Calibration Hits, that allows to know the en- ergy deposited in all the materials inside the detector volume, and not only in the active layer of each subdetector as possible in the standard simulations. This technique required a big effort for the develop...

  11. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    Directory of Open Access Journals (Sweden)

    Andrzej Szczurek

    2018-05-01

    Full Text Available Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated.

  12. On the structure of the new electromagnetic conservation laws

    International Nuclear Information System (INIS)

    Edgar, S Brian

    2004-01-01

    New electromagnetic conservation laws have recently been proposed: in the absence of electromagnetic currents, the trace of the Chevreton superenergy tensor, H ab is divergence free in four-dimensional (a) Einstein spacetimes for test fields, and (b) Einstein-Maxwell spacetimes. Subsequently it has been pointed out, in analogy with flat spaces, that for Ricci-flat spacetimes the trace of the Chevreton superenergy tensor H ab can be rearranged in the form of a generalized wave operator □ L acting on the energy-momentum tensor T ab of the test fields, i.e., H ab □ L T ab /2. In this letter we show, for Einstein-Maxwell spacetimes in the full nonlinear theory, that, although, the trace of the Chevreton superenergy tensor H ab can again be rearranged in the form of a generalized wave operator □ G acting on the electromagnetic energy-momentum tensor, in this case the result is also crucially dependent on Einstein's equations; hence we argue that the divergence-free property of the tensor H ab = □ G T ab /2 has significant independent content beyond that of the divergence-free property of T ab . (letter to the editor)

  13. Electromagnetism based atmospheric ice sensing technique - A conceptual review

    Directory of Open Access Journals (Sweden)

    U Mughal

    2016-09-01

    Full Text Available Electromagnetic and vibrational properties of ice can be used to measure certain parameters such as ice thickness, type and icing rate. In this paper we present a review of the dielectric based measurement techniques for matter and the dielectric/spectroscopic properties of ice. Atmospheric Ice is a complex material with a variable dielectric constant, but precise calculation of this constant may form the basis for measurement of its other properties such as thickness and strength using some electromagnetic methods. Using time domain or frequency domain spectroscopic techniques, by measuring both the reflection and transmission characteristics of atmospheric ice in a particular frequency range, the desired parameters can be determined.

  14. Complex analysis of electromagnetic machines for vibro-impact technologies

    Science.gov (United States)

    Neyman, L. A.; Neyman, V. Yu

    2017-10-01

    For the implementation of high-energy impulse technologies of mechanical shock methods of secondary rock destruction, electromagnetic machines of vibro-impact action are of particular interest. Linear synchronous electromagnetic impact machine designs as a part of progress trend are considered where the head reciprocal motion is synchronized with 50 Hz power source pulses frequency applied to a winding or a system of windings. On the basis of identified differences of the head forced mechanical oscillation processes, merits and demerits of the work cycles of single or two-winding synchronous machine design variants are analyzed. Synchronous electromagnetic machines of a new design and principles of their control in a work cycle are presented. The specific half-wave interleaving of voltages applied to the windings allows reducing current amplitude and the influence of the impact drive on the power grid. To improve forced oscillation mode stability and precision, the new engineering solutions improving machines performances and exploitation conditions are proposed.

  15. Effect of low-intensity electromagnetic radiation on structurization properties of bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Grigory E. Brill

    2014-09-01

    Full Text Available Purpose — to investigate the effects of low-intensity electromagnetic radiation on the process of dehydration selforganization of bacterial lipopolysaccharide (LPS. Material and Methods — The method of wedge dehydration has been used to study the structure formation of bacterial LPS. Image-phases analysis included their qualitative characteristics, as well as the calculation of quantitative indicators, followed by statistical analysis. Results — Low-intensity ultra high frequency (UHF radiation (1 GHz, 0.1 μW/cm2, 10 min has led to the changes in the suspension system of the LPS-saline reflected in the kinetics of structure formation. Conclusion — 1 GHz corresponds to the natural frequency of oscillation of water clusters and, presumably, the effect of UHF on structure of LPS mediates through the changes in water-salt environment. Under these conditions, properties of water molecules of hydration and possibly the properties of hydrophobic and hydrophilic regions in the molecule of LPS, which can affect the ability of toxin molecules to form aggregates change. Therefore the LPS structure modification may result in the change of its toxic properties.

  16. Contribution to the electromagnetic study of conducting polymers and chiral structures

    International Nuclear Information System (INIS)

    Lafosse, Xavier

    1994-01-01

    In this work, an electromagnetic characterisation of organic absorptive materials partially made of conductive polymer is presented. Poly-pyrrole-Teflon alloys containing from 0 to 20 pc (in volume) poly-pyrrole were prepared and characterised from dc to 6 GHz. The complex permittivity shows that these materials are absorptive; the dielectric properties strongly depend on the composition and are correctly modelled by a percolation law. A dielectric relaxation was observed for the conductive alloys and this phenomenon is interpreted as the result of an electronic conduction process insured by a charged carriers hopping. A model was developed; it is in good agreement with these results. The difference between the low and high frequency behaviour is also underlined. Microwave chiral structures were manufactured. A cholesteric arrangement of uniaxial slabs was measured in transmission between 4 and 6 GHz; the experimental results are correctly modelled by cascading quadrupolar scattering matrices. New chiral materials were prepared by mixing millimetric helices made of poly-pyrrole with an insulating matrix. These materials exhibit a rotatory power and a good absorption of electromagnetic waves which is connected to the poly-pyrrole concentration. The interest in using conductive polymers to design absorptive chiral materials in the microwave domain is put in evidence and the experimental results are in good agreement with a numerical model; nevertheless, the optimisation of these materials remains difficult. (author) [fr

  17. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  18. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    Science.gov (United States)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  19. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  20. Application of an Integrated and Self-contained Electromagnetic Acoustic Recorder for Monitoring the Rock Mass Structure and Development of Geodynamic Processes in Ore Mines

    Directory of Open Access Journals (Sweden)

    Bespal’ko Anatoly

    2016-01-01

    Full Text Available The paper presents a block diagram of the recorder of electromagnetic and acoustic signals. The recorder provides monitoring of electromagnetic and acoustic signals under changing stress-strain state of heterogeneous materials and rocks. The analog amplifier input sensitivity of electromagnetic signals in 4 channels is 10 μV, that of the electromagnetic signal intensity is 10 μ and that of acoustic signals is 50 μV. The operating frequency range of recording is (1÷100 kHz. The averaging of electromagnetic and acoustic signal amplitudes is performed within 1 or 5 seconds. The data on electromagnetic and acoustic emission materials is recorded in digital format in the internal memory of the recorder. The recorder operates off-line within 7 days. Repeated testing of the recorder in natural conditions of the Tashtagol mine showed that the changes in the amplitude and frequency parameters of electromagnetic signals (EMC indicate the structural damage in mines made of rocks which differ in their electrical properties. Measurements of the intensity of electromagnetic signals enable monitoring the changes in the stress-strain state of rocks during and after blasting and other geodynamic phenomena.

  1. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  2. Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial.

    Science.gov (United States)

    Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.

  3. Electromagnetic micropores: fabrication and operation.

    Science.gov (United States)

    Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A

    2010-12-21

    We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.

  4. Electromagnetic form factors

    International Nuclear Information System (INIS)

    Desplanques, B.

    1987-01-01

    Electromagnetic form factors, in first approximation, are sensitive to spatial distribution of nucleons and to their current. In second approximation, more precise effects are concerned, whose role is increasing with momentum transfer and participating essentially of short range nuclei description. They concern of course the nucleon-nucleon interaction while approaching each other and keeping their free-state identity, but also mutually polarizing one the other. In this last effect, radial and orbital excitations of nucleon, the nucleon mesonic cloud modification and the nucleon antinucleon pair excitation are included. In this paper, these contributions are discussed while trying to find the important elements for a good description of form factors. Current questions are also discussed. Light nuclei are essentially concerned [fr

  5. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  6. Electromagnetism and the structure of matter

    CERN Document Server

    Funaro, Daniele

    2008-01-01

    The classical theory of electromagnetism is entirely revised in this book by proposing a variant of Maxwell equations that allows solitonic solutions (photons). The Lagrangian is the standard one, but it is minimized on a constrained space that enforces the wave packets to follow the rules of geometrical optics. Exact solutions are explicitly shown; this opens a completely new perspective for the study of light wave phenomena. In the framework of general relativity, the equations are written in covariant form. A coupling with the metric is obtained through the Einstein equation, whose solution

  7. Investigation on Electromagnetic Models of High-Speed Solenoid Valve for Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Jianhui Zhao

    2017-01-01

    Full Text Available A novel formula easily applied with high precision is proposed in this paper to fit the B-H curve of soft magnetic materials, and it is validated by comparison with predicted and experimental results. It can accurately describe the nonlinear magnetization process and magnetic saturation characteristics of soft magnetic materials. Based on the electromagnetic transient coupling principle, an electromagnetic mathematical model of a high-speed solenoid valve (HSV is developed in Fortran language that takes the saturation phenomena of the electromagnetic force into consideration. The accuracy of the model is validated by the comparison of the simulated and experimental static electromagnetic forces. Through experiment, it is concluded that the increase of the drive current is conducive to improving the electromagnetic energy conversion efficiency of the HSV at a low drive current, but it has little effect at a high drive current. Through simulation, it is discovered that the electromagnetic energy conversion characteristics of the HSV are affected by the drive current and the total reluctance, consisting of the gap reluctance and the reluctance of the iron core and armature soft magnetic materials. These two influence factors, within the scope of the different drive currents, have different contribution rates to the electromagnetic energy conversion efficiency.

  8. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  9. The structure of the proton in the LHC precision era

    Science.gov (United States)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2018-05-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.

  10. Comparison of Wet and Dry Grinding in Electromagnetic Mill

    Directory of Open Access Journals (Sweden)

    Szymon Ogonowski

    2018-03-01

    Full Text Available Comparison of dry and wet grinding process in an electromagnetic mill is presented in this paper. The research was conducted in a batch copper ore grinding. Batch mode allows for precise parametrization and constant repetitive conditions of the experiments. The following key aspects were tested: processing time, feed size, size of the grinding media, mass of the material and graining media, and density of the pulp. The particles size distribution of the product samples was analyzed in the laboratory after each experiment. The paper discusses the experimental results as well as the concept of dry and wet grinding and classification circuits for the electromagnetic mill. The main points of the discussion are the size reduction effectiveness and power consumption of the entire system.

  11. Tuneabilities of localized electromagnetic modes in random nanostructures for random lasing

    Science.gov (United States)

    Takeda, S.; Obara, M.

    2010-02-01

    The modal characteristics of localized electromagnetic waves inside random nanostructures are theoretically presented. It is crucial to know the tuneabilities of the localized modes systematically for demonstrating a specific random lasing application. By use of FDTD (Finite-Difference Time-Domain) method, we investigated the impulse response of two-dimensional random nanostructures consisting of closely packed cylindrical dielectric columns, and precisely analyzed the localized modes. We revealed the tuneability of the frequency of the localized modes by controlling the medium configurations: diameter, spatial density, and refractive index of the cylinders. Furthermore, it is found to be able to tune the Q (quality) factors of the localized modes dramatically by controlling simply the system size of the entire medium. The observed Q factors of approximately 1.6×104 were exhibited in our random disordered structures.

  12. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  13. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  14. Electromagnetic forces distribution and mechanical analysis in the first wall structure for INTOR/NET

    International Nuclear Information System (INIS)

    Coccorese, E.; Martone, R.; Rubinacci, G.; Biggio, M.; Inzaghi, A.; Turri, M.

    1984-01-01

    In the context of the studies performed at JRC-Ispra for NET/INTOR, a modular stainless steel first wall, and separated from the blanket which it envelops has been proposed. During plasma disruption the metallic structure of the first wall is inevitably subject to appreciable electromagnetic forces caused by induced eddy current-magnetic field interactions. The deformation and stress distributions in the first wall were quantified at various instants of time by three-dimensional calculations using the ICES-STRUDL code. (author)

  15. Three-Dimensional Electromagnetic Mixing Models for Dual-Phase Steel Microstructures

    Directory of Open Access Journals (Sweden)

    Weibin Zhou

    2018-03-01

    Full Text Available Linking the ferrite fraction in a dual-phase (DP steel microstructure and its electromagnetic properties is critical in the effort to develop on-line measurement techniques for phase transformation using electromagnetic (EM sensors. This paper developed a seamlessly integrated method for generating 3D microstructures and evaluating their equivalent permeability values. Both the generation of 3D microstructures and evaluation of equivalent permeability have been achieved through custom modelling packages developed by the authors. Voronoi modelling based on the random close packing of spheres (RCPS-VM was used to precisely control the ferrite fraction in DP steel microstructure, and an equivalent uniform field method for 3D finite element simulation was developed for efficient analysis.

  16. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  17. Sensitivities to neutrino electromagnetic properties at the TEXONO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kosmas, T.S., E-mail: hkosmas@uoi.gr [Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina (Greece); Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 Mexico, DF (Mexico); Papoulias, D.K., E-mail: dimpap@cc.uoi.gr [Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina (Greece); AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Tórtola, M., E-mail: mariam@ific.uv.es [AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Valle, J.W.F. [AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain)

    2015-11-12

    The possibility of measuring neutral-current coherent elastic neutrino–nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.

  18. Metamaterial inspired electromagnetic applications role of intelligent systems

    CERN Document Server

    2017-01-01

    This book focuses on the role of soft-computing-based electromagnetic computational engines in design and optimization of a wide range of electromagnetic applications. In addition to the theoretical background of metamaterials and soft-computing techniques, the book discusses novel electromagnetic applications such as tensor analysis for invisibility cloaking, metamaterial structures for cloaking applications, broadband radar absorbers, and antennas. The book will prove to be a valuable resource for academics and professionals, as well as military researchers working in the area of metamaterials.

  19. [Mechanisms of electromagnetic radiation damaging male reproduction].

    Science.gov (United States)

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  20. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  1. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    International Nuclear Information System (INIS)

    Gierczak, M; Markowski, P; Dziedzic, A

    2016-01-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators. (paper)

  2. The TIGRESS Integrated Plunger ancillary systems for electromagnetic transition rate studies at TRIUMF

    International Nuclear Information System (INIS)

    Voss, P.; Henderson, R.; Andreoiu, C.; Ashley, R.; Austin, R.A.E.; Ball, G.C.; Bender, P.C.; Bey, A.; Cheeseman, A.; Chester, A.; Cross, D.S.; Drake, T.E.; Garnsworthy, A.B.; Hackman, G.; Holland, R.; Ketelhut, S.; Kowalski, P.; Krücken, R.; Laffoley, A.T.; Leach, K.G.

    2014-01-01

    The TIGRESS Integrated Plunger device is a new experimental tool for nuclear structure investigations via gamma-ray spectroscopy with post-accelerated beams from the ISAC-II facility at TRIUMF. Several ancillary detection systems integral to the device's capabilities for charged-particle tagging and light-ion identification following a variety of nuclear reaction mechanisms have been constructed and characterized. In particular, a silicon PIN diode wall, an annular silicon segmented detector, and a CsI(Tl) scintillator wall have together enabled particle-gamma correlations for reaction channel selectivity and precision kinematic reconstruction in recent measurements. We highlight the construction, characteristics, and implementation of the device's ancillary detectors as they enable a rich set of electromagnetic transition rate measurements via Doppler-shift lifetime techniques and low-energy Coulomb excitation

  3. Quantum theory of phonon-mediated decoherence and relaxation of two-level systems in a structured electromagnetic reservoir

    Science.gov (United States)

    Roy, Chiranjeeb

    In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of

  4. New precise measurement of muonium hyperfine structure interval at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y., E-mail: yueno@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Aoki, M. [Osaka University, Graduate School of Science (Japan); Fukao, Y. [KEK (Japan); Higashi, Y.; Higuchi, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Iinuma, H.; Ikedo, Y. [KEK (Japan); Ishida, K. [RIKEN (Japan); Ito, T. U. [Japan Atomic Energy Agency (Japan); Iwasaki, M. [RIKEN (Japan); Kadono, R. [KEK (Japan); Kamigaito, O. [RIKEN (Japan); Kanda, S. [University of Tokyo, Department of Physics (Japan); Kawall, D. [University of Massachusetts, Amherst, Department of Physics (United States); Kawamura, N.; Koda, A.; Kojima, K. M. [KEK (Japan); Kubo, M. K. [International Christian University, Graduate School of Arts and Science (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Mibe, T. [KEK (Japan); and others

    2017-11-15

    MuSEUM is an international collaboration aiming at a new precise measurement of the muonium hyperfine structure at J-PARC (Japan Proton Accelerator Research Complex). Utilizing its intense pulsed muon beam, we expect a ten-fold improvement for both measurements at high magnetic field and zero magnetic field. We have developed a sophisticated monitoring system, including a beam profile monitor to measure the 3D distribution of muonium atoms to suppress the systematic uncertainty.

  5. Application and testing of additive manufacturing for mirrors and precision structures

    Science.gov (United States)

    Sweeney, Michael; Acreman, Martyn; Vettese, Tom; Myatt, Ray; Thompson, Mike

    2015-09-01

    Additive Manufacturing (aka AM, and 3-D printing) is widely touted in the media as the foundation for the next industrial revolution. Beneath the hype, AM does indeed offer profound advantages in lead-time, dramatically reduced consumption of expensive raw materials, while enabling new and innovative design forms that cannot be produced by other means. General Dynamics and their industry partners have begun to embrace this technology for mirrors and precision structures used in the aerospace, defense, and precision optical instrumentation industries. Aggressively lightweighted, open and closed back test mirror designs, 75-150 mm in size, were first produced by AM from several different materials. Subsequent optical finishing and test experiments have exceeded expectations for density, surface finish, dimensional stability and isotropy of thermal expansion on the optical scale of measurement. Materials currently under examination include aluminum, titanium, beryllium, aluminum beryllium, Inconel 625, stainless steel/bronze, and PEKK polymer.

  6. Electromagnetic Fields Effects on the Secondary Structure of Lysozyme and Bioprotective Effectiveness of Trehalose

    Directory of Open Access Journals (Sweden)

    Emanuele Calabrò

    2012-01-01

    Full Text Available FTIR spectroscopy was used to investigate the effects of extremely low frequency (50 Hz electromagnetic field and of microwaves at 900 MHz on the secondary structure of a typical protein, the lysozyme, evaluating the bioprotective effectiveness of trehalose. Lysozyme in D2O solution (60 mg/ml was exposed to 50 Hz frequency electromagnetic field at 180 μT. The FTIR spectra indicated an increase of CH2 group at 1921 and 1853 cm−1 after 3 h of exposure. Such effect was not observed after the addition of trehalose (150 mg/mL at the same exposure conditions. Lysozyme dissolved in D2O at the concentration of 100 mg/mL was exposed up to 4 h to 900 MHz mobile phone microwaves at 25 mA/m. A significant increase in intensity of the amide I vibration band in the secondary structure of the protein was observed after 4 h exposure to microwaves. This effect was inhibited by the presence of trehalose at the concentration of 150 mg/mL. Fourier self-deconvolution spectral analysis of lysozyme in D2O solution after exposure to microwaves revealed an increase in intensity of the conformational components of amide I mode, particularly of β-sheet and turn that can be attributed to disorder and unfolding processes of the protein.

  7. Study on electromagnetism force of CARR control rod drive mechanism experimental machine

    International Nuclear Information System (INIS)

    Zhu Xuewei; Zhen Jianxiao; Wang Yulin; Jia Yueguang; Yang Kun; Yin Haozhe

    2015-01-01

    With the aim of acquiring electromagnetic force and electromagnetic field distributions of control rod drive mechanism (CRDM) in China Advanced Research Reactor (CARR), the force analysis on the CRDM was taken. Manufacturing the experimental machine, the electromagnetic force experiment was taken on it. The electromagnetic field and electromagnetic force simulation analyses of experimental machine were taken, working out distribution data of electromagnetic force and magnetic induction intensity distribution curve, and the effects of permanent magnetic field on electromagnetic field and structure parameters on electromagnetic force. The simulation value is accord with experiment value, the research results provide a reference to electromagnetic force study on CRDM in CARR, and also provide a reference to design of the same type CRDM. (authors)

  8. Optimization of the scintillation parameters of the lead tungstate crystals for their application in high precision electromagnetic calorimetry

    International Nuclear Information System (INIS)

    Drobychev, G.

    2000-01-01

    In the frame of this dissertation work scintillation properties of the lead tungstate crystals PWO) and possibilities of their use were studied foreseeing their application for electromagnetic calorimetry in extreme radiation environment conditions of new colliders. The results of this work can be summarized in the following way. 1. A model of the scintillations origin in the lead tungstate crystals which includes processes influencing on the crystals radiation hardness and presence of slow components in scintillations was developed. 2. An analysis of the influences of the PWO scintillation properties changes on the parameters of the electromagnetic calorimeter was done. 3. Methods of the light collection from the large scintillation elements of complex shape made of the birefringent scintillation crystal with high refraction index and low light yield in case of signal registration by a photodetector with sensitive surface small in compare with the output face of scintillator were Studied. 4. Physical principles of the methodology of the scintillation crystals certification during their mass production foreseeing their installation into a calorimeter electromagnetic were developed. Correlations between the results of measurements of the PWO crystals parameters by different methods were found. (author)

  9. Electromagnetic wave scattering by aerial and ground radar objects

    CERN Document Server

    Sukharevsky, Oleg I

    2014-01-01

    Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur

  10. Electromagnetic moments of hadrons and quarks in a hybrid model

    International Nuclear Information System (INIS)

    Gerasimov, S.B.

    1989-01-01

    Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig

  11. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    Science.gov (United States)

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  12. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    Science.gov (United States)

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  13. Effect of Electromagnetic Radiation Emitted from A Mobile Phone Station on Biochemical and Histological Structure of Some Rat Organs

    International Nuclear Information System (INIS)

    Lotfi, S.A.

    2011-01-01

    This study was carried out to investigate the effects of electromagnetic radiations (EMR), especially radio frequency (RF), which arises from mobile phone station on some parameter in serum and histological structure of some organs in male albino rats exposed to short (15 days) and long (30 days) periods. The long time exposure of the electromagnetic radiations can induce significant increase in the levels of testosterone, creatinine, urea and uric acid in the two exposure groups (15 and 30 days), while the serum total protein, albumin and globulin were decreased significantly after the long time of exposure as compared with control. The microscopic examination of liver, kidney and testes tissues revealed destruction and atrophy of cells in rats exposed to RF for 15 and 30 days. In conclusion, long term exposure of mobile phones station (EMR) induced harmful effects on blood parameter and histological structure of liver, kidney and testes tissues of rats.

  14. Electromagnetically induced acoustic emission—novel NDT technique for damage evaluation

    Science.gov (United States)

    Finkel, P.; Godinez, V.; Miller, R.; Finlayson, R.

    2001-04-01

    A recently developed electromagnetically induced acoustic emission technique (EM AE) which can be used for damage assessment of thin walled conducting structures is described. This technique allows a structure to be loaded locally by applying an electromagnetic field in order to produce an AE response, which may be captured by conventional or fiber optic (FO) AE sensors. The advantage of this technique is that the localized dynamic stresses induced by a short current pulse in the presence of an external magnetic field aid in the detection of cracks. Also, it is shown that electromagnetic stimulation can be applied to enhance conventional ultrasonics by modulation of the scattered signal from the defect (EM UT). Experimental data is presented for the case of a fatigue crack near rivet holes in thin walled aluminum structures.

  15. Broadband electromagnetic analysis of compacted kaolin

    International Nuclear Information System (INIS)

    Bore, Thierry; Scheuermann, Alexander; Wagner, Norman; Cai, Caifang

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz–3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification. (paper)

  16. High precision capacitive beam phase probe for KHIMA project

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji-Gwang, E-mail: windy206@hanmail.net [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Yang, Tae-Keun [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Forck, Peter [GSI Helmholtz Centre for Ion Research, Darmstadt 64291, German (Germany)

    2016-11-21

    In the medium energy beam transport (MEBT) line of KHIMA project, a high precision beam phase probe monitor is required for a precise tuning of RF phase and amplitude of Radio Frequency Quadrupole (RFQ) accelerator and IH-DTL linac. It is also used for measuring a kinetic energy of ion beam by time-of-flight (TOF) method using two phase probes. The capacitive beam phase probe has been developed. The electromagnetic design of the high precision phase probe was performed to satisfy the phase resolution of 1° (@200 MHz). It was confirmed by the test result using a wire test bench. The measured phase accuracy of the fabricated phase probe is 1.19 ps. The pre-amplifier electronics with the 0.125 ∼ 1.61 GHz broad-band was designed and fabricated for amplifying the signal strength. The results of RF frequency and beam energy measurement using a proton beam from the cyclotron in KIRAMS is presented.

  17. Needle-Bonded Electromagnetic Shielding Thermally Insulating Nonwoven Composite Boards: Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-10-01

    Full Text Available Complicated environmental problems inevitably arise when technology advances. One major environmental problem is the presence of electromagnetic radiation. Long-term exposure to electromagnetic radiation can damage people’s health in many ways. Therefore, this study proposes producing composite boards with electromagnetic shielding effectiveness and thermal insulation by utilizing the structures and properties of materials. Different combinations of flame-retardant polyester fiber (FR fiber, recycled far-infrared polyester fiber (FI fiber, and 4D low-melting-point fibers (LM fiber were made into flame-retardant and thermally insulating matrices. The matrices and carbon fiber (CF woven fabric in a sandwich-structure were needle-punched in order to be tightly compact, and then circularly heat dried in order to have a heat set and reinforced structure. The test results indicate that Polyester (PET/CF composite boards are mechanically strong and have thermal insulation and electromagnetic shielding effectiveness at a frequency between 0.6 MHz and 3 GHz.

  18. Electromagnetic shielding effectiveness of 3D printed polymer composites

    Science.gov (United States)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  19. Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China); Luo, Heng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Shuoqing; Yao, Lingling; He, Jun; Li, Yuhan; He, Longhui; Huang, Shengxiang; Deng, Lianwen [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China)

    2017-03-15

    The single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by the sol-gel method. Their crystal structure and microwave electromagnetic property in the frequency range of 2–18 GHz were investigated. The XRD patterns and Raman spectra showed that structural transition from rhombohedral (x=0, 0.05, 0.1) to triclinic (x=0.15) and tetragonal structure (x=0.20) appeared in the Bi{sub 1-x}Nd{sub x}FeO{sub 3}. Electromagnetic measurement suggested that both microwave permeability μ′ and magnetic loss tanδ{sub m} increased remarkably over 2–18 GHz by doping Nd. Strong dielectric loss peak was observed on the samples of Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.15) and Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.2). Results show that Nd substitution is an effective way to push BiFeO{sub 3} to become microwave absorbing materials with high performance. - Highlights: • Single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} samples were prepared by a sol-gel method. • Strong dielectric loss peak was observed in BiFeO{sub 3} with high doping content. • Significant enhancement of microwave absorption property was found in Nd-doped BiFeO{sub 3}.

  20. An electromagnetic micro-undulator

    International Nuclear Information System (INIS)

    Nassiri, A.; Turner, L.R.

    1997-01-01

    Microfabrication technology using the LIGA (a German acronym for Lithography, Electroforming, and Molding) process offers an attractive alternative for fabricating precision devices with micron-sized features. One such device is a mm-sized micro-undulator with potential applications in a table-top synchrotron light source for medical and other industrial uses. The undulator consists of a silver conductor embedded in poles and substrate of nickel-iron. Electromagnetic modeling of the undulator is done using the eddy current computer code ELEKTRA. Computations predict a field pattern of appropriate strength and quality if the current can be prevented from being shunted from silver by the nickel-iron poles either through insulation or through slotted poles. The design of the undulator along with the computational results are discussed

  1. Thermometry of ultracold atoms by electromagnetically induced transparency

    Science.gov (United States)

    Peters, Thorsten; Wittrock, Benjamin; Blatt, Frank; Halfmann, Thomas; Yatsenko, Leonid P.

    2012-06-01

    We report on systematic numerical and experimental investigations of electromagnetically induced transparency (EIT) to determine temperatures in an ultracold atomic gas. The technique relies on the strong dependence of EIT on atomic motion (i.e., Doppler shifts), when the relevant atomic transitions are driven with counterpropagating probe and control laser beams. Electromagnetically induced transparency permits thermometry with satisfactory precision over a large temperature range, which can be addressed by the appropriate choice of Rabi frequency in the control beam. In contrast to time-of-flight techniques, thermometry by EIT is fast and nondestructive, i.e., essentially it does not affect the ultracold medium. In an experimental demonstration we apply both EIT and time-of-flight measurements to determine temperatures along different symmetry axes of an anisotropic ultracold gas. As an interesting feature we find that the temperatures in the anisotropic atom cloud vary in different directions.

  2. Electromagnetic acoustic transducers noncontacting ultrasonic measurements using EMATS

    CERN Document Server

    Hirao, Masahiko

    2017-01-01

    This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical ...

  3. Device and method for redirecting electromagnetic signals

    Science.gov (United States)

    Garcia, Ernest J.

    1999-01-01

    A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.

  4. Progress of electromagnetic analysis for fusion reactors

    International Nuclear Information System (INIS)

    Takagi, T.; Ruatto, P.; Boccaccini, L.V.

    1998-01-01

    This paper describes the recent progress of electromagnetic analysis research for fusion reactors including methods, codes, verification tests and some applications. Due to the necessity of the research effort for the structural design of large tokamak devices since the 1970's with the help of the introduction of new numerical methods and the advancement of computer technologies, three-dimensional analysis methods have become as practical as shell approximation methods. The electromagnetic analysis is now applied to the structural design of new fusion reactors. Some more modeling and verification tests are necessary when the codes are applied to new materials with nonlinear material properties. (orig.)

  5. A Precision Measurement of the Spin Structure Function G(2)(P)

    Energy Technology Data Exchange (ETDEWEB)

    Benmouna, N

    2004-01-05

    The spin structure function g{sub 2}(x,Q{sup 2}) and the virtual photon asymmetry A{sub 2}(x,Q{sup 2}) were measured for the proton using deep inelastic scattering. The experiment was conducted at the Stanford Linear Accelerator Center (SLAC), where longitudinally polarized electrons at 29.1 and 32.3 GeV were scattered from a transversely polarized NH{sub 3} target. Large data sets were accumulated using three independent spectrometers covering a kinematic range 0.02 {le} x {le} 0.8 and 1 {le} Q{sup 2} {le} 20 (GeV/c){sup 2}. This new data is the first data precise enough to distinguish between current models for the proton. The structure function g{sub 2}{sup p} was found to be reasonably consistent with the twist-2 Wandzura-Wilczek calculation. The Q{sup 2} dependence of g{sub 2} approximately follows the Q{sup 2} dependence of g{sub 2}{sup WW}, although the data are not precise enough to rule out no Q{sup 2} dependence. The absolute value for A{sub 2}{sup p} was found to be significantly smaller than the Soffer limit over the measured range. The virtual photon asymmetry A{sub 2} was also found to be inconsistent with zero over much of the measured range.

  6. Use of electromagnetic terrain conductivity measurements to map liquid hazardous waste migration in groundwater

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Pin, F.G.

    1983-11-01

    Electromagnetic conductivity measurements have been used to map apparent ground conductivity in the vicinity of a liquid hazardous waste disposal site. An area of approximately 12 ha (30 acres) was surveyed. Approximately 600 conductivity measurements were obtained to prepare a conductivity map of the site. Conductivity measurments in the area correlate with specific conductance measurements of surface and groundwater samples. Contouring of the conductivity data showed the precise location of contaminant migration pathways in the subsurface. A complex contaminant plume was defined by the conductivity survey. Conductivity values obtained reflected anisotropic characteristics related to local bedrock structure. Anisotropy characteristics and the use of different instrument configurations indicated semiquantitatively the depth of the high conductivity zone and the direction of flow

  7. Electromagnetic and structural global model of the TF magnet system in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zammuto, I., E-mail: irene.zammuto@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85740 Garching (Germany); Streibl, B.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Mertens, V. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85740 Garching (Germany)

    2013-10-15

    Highlights: ► An electromagnetic and structural FE 3D model is set up for ASDEX Upgrade. ► The model is benchmarked against the old design results, present displacement measurements. ► The benchmarked model is applied to the present plasma configurations, which have a different poloidal field distribution with respect to the design case. ► The different poloidal field influences the out-of-plane force distribution, thus requiring an update of the TF safety system. -- Abstract: The enhancements carried out in the tokamak ASDEX Upgrade (AUG) are oriented toward the preparation of the future physics-related activities of ITER and DEMO. To address the main ITER issues, plasma configurations with a wider operational limit (e.g. higher triangularity) are planned for the future experimental campaigns in AUG. To evaluate the mechanical impact on the toroidal field (TF) magnet system a combined electromagnetic and structural finite element model was set up. At first extensive benchmarks of the models are carried out against the AUG reference design configurations with respect to stress [1–3], lateral displacement measurements and poloidal flux pattern. The numerical model was then applied to a set of actual high triangularity (HT) configurations generated by a more favorable poloidal field (PF) current distribution made possible by an extension of the power supply system. The resulting change of the poloidal flux pattern and the lateral force distribution has consequences for the coil shear stress and vault stability. Both aspects are monitored by a safety system measuring the PF flux placed on top and bottom of the outer surface of two TF coils (TFCs) between vault and the TFC supporting structure, so called Turn Over Structure (TOS). The range of the new HT configurations has induced a modification of the flux pattern, so that an adaptation of safety system is required to protect the TFCs system. Following the same criteria of the old safety system [4,5], a new

  8. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  9. Electromagnetic configurable architectures for assessment of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Steigmann Rozina

    2017-01-01

    Full Text Available Carbon Fiber Reinforced Plastics are used in most wide domains due their low density, lack of mechanical fatigue phenomena and high strength–to weight ratio. From electromagnetic point of view, Carbon Fiber Reinforced Plastics structure represents an inhomogeneous structure of electric conductive fibers embedded into a dielectric material, thus an electromagnetic configurable architecture can be used to evaluate above mentioned defects. The paper proposes a special sensor, send receiver type and the obtaining of electromagnetic image by post-processing each coil signals in each point of scanning, using a sub-encoding image reconstruction algorithm and super-resolution procedures. The layout of fibers can be detected interrogating only diagonal reception coils.

  10. Electron-muon puzzle and the electromagnetic coupling constant

    International Nuclear Information System (INIS)

    Jehle, H.

    1977-01-01

    On the basis of a heuristic model we argued in an earlier paper (paper C of this series) electric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated in terms of a closed loop of quantized magnetic flux whose alternative forms (''loopforms'') are superposed with probability amplitudes so as to represent the electromagnetic field of that lepton or quark. The Zitterbewegung of a single stationary (''elementary'') particle suggests a kind of quasiextension, which is assumed, in the present theory, to permit concepts of structuralization of the electromagnetic field even for leptons. Mesons and baryons may be represented by linked quantized flux loops, i.e., quark loops (as in paper B). The central problem now (in this paper D) is to formulate those probability-amplitude distributions in terms of wave functions to characterize the internal structure of the lepton or quark in question. As probability-amplitude functions one may choose bases of irreducible representations of the group with respect to which the model is to be invariant. It is seen that this implies the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling constant depend, in this flux-quantization model, on the correct formulation of the structuralization of probability-amplitude distributions, we should expect to get an insight into both these puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen that this same structuralization of probability-amplitude distributions also permits one to estimate the rate of weak interactions, thus relating them to electromagnetic interactions

  11. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  12. Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions

    OpenAIRE

    Park, Won-Kwang

    2012-01-01

    Recently, a non-iterative multi-frequency subspace migration imaging algorithm was developed based on an asymptotic expansion formula for thin, curve-like electromagnetic inclusions and the structure of singular vectors in the Multi-Static Response (MSR) matrix. The present study examines the structure of subspace migration imaging functional and proposes an improved imaging functional weighted by the frequency. We identify the relationship between the imaging functional and Bessel functions ...

  13. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  14. Electronic calibration developed for the CMS electromagnetic calorimeter

    CERN Document Server

    Baek, Y W; David, P Y; Ditta, J; Hermel, V; Fouque, N; Mendiburu, J P; Nédélec, P; Peigneux, J P; Poireau, V; Rebecchi, P; Silou, D

    2004-01-01

    An electronic system, designed to provide a relative calibration for the readout of the CMS electromagnetic calorimeter (CMS-ECAL), is described. On request, this system injects a pulse at the input of a predetermined group of preamplifiers with preselected amplitude and a shape identical to the one produced by the photodetectors. Several chips, in DMILL 0.8 mu m technology, have been developed for integration on the front-end electronics. We describe the principle, the testing, the measurement of their precision, and radiation hardness. (6 refs).

  15. Structure of Langmuir and electromagnetic collapsing wave packets in two-dimensional strong plasma turbulence

    International Nuclear Information System (INIS)

    Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.

    2007-01-01

    Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency

  16. Effect of radio frequency waves of electromagnetic field on the tubulin.

    Science.gov (United States)

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  17. Polarization-independent electromagnetically induced transparency-like metasurface

    Science.gov (United States)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.

  18. Strange nucleon electromagnetic form factors from lattice QCD

    Science.gov (United States)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Avilés-Casco, A. Vaquero

    2018-05-01

    We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are nonzero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.

  19. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    Science.gov (United States)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  20. Observational constraints on electromagnetic Born-Infeld cosmology

    International Nuclear Information System (INIS)

    Bretón, Nora; Montiel, Ariadna; Lazkoz, Ruth

    2012-01-01

    The cosmological model consisting of an electromagnetic Born-Infeld (BI) field coupled to a Robertson-Walker geometry is tested with the standard probes of SNIa, GRBs and direct Hubble parameter. The analysis shows that the inclusion of the nonlinear electromagnetic component does not contribute in a significative way to the observed expansion. The BI electromagnetic matter is considered with an abundance of Ω BI , that our best fit leads to Ω BI = 0.037 when tested with SNIa and the Hubble parameter data (0.1 BI = 0.304, which may indicate that this electrodynamics was important at epochs close to the appearance of large structure (z ≈ 7), although this late result has not as much reliability as that corresponding to the first two probes, since we know that the dispersion in GRBs data is still considerable. In view of these results we can rule out the electromagnetic Born-Infeld matter as the origin of the present accelerated expansion, this conclusion concerns exclusively the Born-Infeld theory

  1. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    Science.gov (United States)

    Zhang, Zhicai

    2018-04-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run II. We will show performance results from the 2015-2016 data taking periods and provide an outlook on the expected Run II performance in the years to come. Beyond the LHC, challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC) . We review the design and R&D studies for the CMS ECAL and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC . We also report on the R&D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  2. Numerical calculation of electromagnetic properties including chirality parameters for uniaxial bianisotropic media

    International Nuclear Information System (INIS)

    Amirkhizi, Alireza V; Nemat-Nasser, Sia

    2008-01-01

    Through the use of conductive straight wires or coils the electromagnetic properties of a composite material can be modified. The asymmetric geometry of the coils creates an overall chiral response. The polarization vectors rotate as an electromagnetic wave travels through such a medium. To calculate the chirality of a medium prior to its manufacturing, we developed a method to extract all four electromagnetic material parameter tensors for a general uniaxial bianisotropic composite based on the numerical simulation of the electromagnetic fields. Our method uses appropriate line and surface field averages in a single unit cell of the periodic structure of the composite material. These overall field quantities have physical meaning only when the microscopic variation of the electromagnetic fields in the scale of the unit cell is not important, that is when the wavelength of interest is significantly larger than the maximum linear dimension of the unit cell. The overall constitutive relations of the periodic structure can then be obtained from the relations among the average quantities

  3. Precision surveying the principles and geomatics practice

    CERN Document Server

    Ogundare, John Olusegun

    2016-01-01

    A comprehensive overview of high precision surveying, including recent developments in geomatics and their applications This book covers advanced precision surveying techniques, their proper use in engineering and geoscience projects, and their importance in the detailed analysis and evaluation of surveying projects. The early chapters review the fundamentals of precision surveying: the types of surveys; survey observations; standards and specifications; and accuracy assessments for angle, distance and position difference measurement systems. The book also covers network design and 3-D coordinating systems before discussing specialized topics such as structural and ground deformation monitoring techniques and analysis, mining surveys, tunneling surveys, and alignment surveys. Precision Surveying: The Principles and Geomatics Practice: * Covers structural and ground deformation monitoring analysis, advanced techniques in mining and tunneling surveys, and high precision alignment of engineering structures *...

  4. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  5. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.

    Science.gov (United States)

    Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling

    2014-11-12

    Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.

  6. Analysis of Electromagnetic Propagation from MHz to THz with a Memory-Optimised CPML-FDTD Algorithm

    Directory of Open Access Journals (Sweden)

    A. Rodríguez-Sánchez

    2018-01-01

    Full Text Available FDTD method opened a fertile research area on the numerical analysis of electromagnetic phenomena under a wide range of media and propagation conditions, providing an extensive analysis of electromagnetic behaviour like propagation, reflection, refraction, and multitrajectory phenomena. In this paper, we present an optimised FDTD-CPML algorithm, focused in saving memory while increasing the performance of the algorithm. We particularly implement FDTD-CPML method at high frequency bands, used in several telecommunications applications as well as in nanoelectromagnetism. We show an analysis of the performance of the algorithm in single and double precision, as well as a stability of the algorithm analysis, from where we conclude that the implemented CPML ABC constitutes a robust choice in terms of precision and accuracy for the high frequencies herein considered. It is important to recall that the CPML ABC parameters provided in this paper are fixed for the tested range of frequencies, that is, from MHz to THz.

  7. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  8. Precision muonium spectroscopy

    International Nuclear Information System (INIS)

    Jungmann, Klaus P.

    2016-01-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s–2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium–antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter. (author)

  9. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  10. Electromagnetic analysis of ITER diagnostic equatorial port plugs during plasma disruptions

    International Nuclear Information System (INIS)

    Zhai, Y.; Feder, R.; Brooks, A.; Ulrickson, M.; Pitcher, C.S.; Loesser, G.D.

    2013-01-01

    Highlights: ► Disruption loads on ITER diagnostic equatorial port plugs are extracted. ► Upward major disruption produces the largest radial moment and radial force on diagnostic first walls and diagnostic shield modules. ► Large eddy currents on supporting rails, keys and water pipes are observed during disruption. -- Abstract: ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed

  11. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    Science.gov (United States)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each

  12. Structural analysis by electro-magnetic loads for conceptual design of HCCR TBM-set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk National University, Cheongju (Korea, Republic of); Lee, Youngmin; Ku, Duck Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • Using the results of EM analysis on the magnetization and the major disruption such as MD-1, MD-2, and MD-IV events, structural analyses are performed with the conventional FEM code (ANSYS). • The obtained stresses and deformations are confirmed to meet the design criteria. • We found that the magnetization effect is dominant compared to the major disruptions. - Abstract: Using a conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a structural analysis with electro-magnetic (EM) loads is performed. From a previous analysis of the material magnetization due to the use of reduced activation ferritic-martensitic (RAFM) steel as the TBM structure material and EM analysis considering the major disruption of MD-I, MD-II, and MD-IV, the forces are obtained and used for the current structural analysis. The results indicate that the maximum stress occurs at the He purge line at the upper and lower region of the breeding zone (BZ) box including the graphite reflector region, which meets the design requirement. In addition, displacements are lower than the designed gaps from the TBM port plug (PP) frame. The results are provided to the load combination analysis.

  13. Structural analysis by electro-magnetic loads for conceptual design of HCCR TBM-set

    International Nuclear Information System (INIS)

    Lee, Dong Won; Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung; Shin, Kyu In; Park, Jai Hak; Lee, Youngmin; Ku, Duck Young; Cho, Seungyon

    2016-01-01

    Highlights: • Using the results of EM analysis on the magnetization and the major disruption such as MD-1, MD-2, and MD-IV events, structural analyses are performed with the conventional FEM code (ANSYS). • The obtained stresses and deformations are confirmed to meet the design criteria. • We found that the magnetization effect is dominant compared to the major disruptions. - Abstract: Using a conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a structural analysis with electro-magnetic (EM) loads is performed. From a previous analysis of the material magnetization due to the use of reduced activation ferritic-martensitic (RAFM) steel as the TBM structure material and EM analysis considering the major disruption of MD-I, MD-II, and MD-IV, the forces are obtained and used for the current structural analysis. The results indicate that the maximum stress occurs at the He purge line at the upper and lower region of the breeding zone (BZ) box including the graphite reflector region, which meets the design requirement. In addition, displacements are lower than the designed gaps from the TBM port plug (PP) frame. The results are provided to the load combination analysis.

  14. Multiparameter Optimization for Electromagnetic Inversion Problem

    Directory of Open Access Journals (Sweden)

    M. Elkattan

    2017-10-01

    Full Text Available Electromagnetic (EM methods have been extensively used in geophysical investigations such as mineral and hydrocarbon exploration as well as in geological mapping and structural studies. In this paper, we developed an inversion methodology for Electromagnetic data to determine physical parameters of a set of horizontal layers. We conducted Forward model using transmission line method. In the inversion part, we solved multi parameter optimization problem where, the parameters are conductivity, dielectric constant, and permeability of each layer. The optimization problem was solved by simulated annealing approach. The inversion methodology was tested using a set of models representing common geological formations.

  15. A top-face-sway electromagnetic micromotor

    Science.gov (United States)

    Liang, Jingqiu; Le, Zichun; Yao, Jinsong; Wu, Zhiyong; Jia, Hongguang; Wu, Yihui; Jia, Zhi; 1, Qiongying Lu; Xuan, Ming; Wang, Lijun

    2003-04-01

    In this paper, the structure of a top-face-sway electromagnetic micromotor and its principle, fabrication and performance are introduced. A combination of the electromagnetic actuating and the planetary reducing provides this micromotor an advantage of low rotational speed and high torque. In addition, since a flexible coupling absorbs the sway and only outputs rotation, it gives this micromotor a balanced output. The dimension of the micromotor is 5 mm. Its rotation speed has a range of 20 - 860 rpm, and its driving current is 300 mA. The output torque of the micromotor is measured to be 13.0 ?Nm.

  16. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  17. Development of Electromagnetic Band Gap Structures in the Perspective of Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Md. Shahidul Alam

    2013-01-01

    Full Text Available Electromagnetic band gap (EBG technology has become a significant breakthrough in the radio frequency (RF and microwave applications due to their unique band gap characteristics at certain frequency ranges. Since 1999, the EBG structures have been investigated for improving performances of numerous RF and microwave devices utilizing the surface wave suppression and the artificial magnetic conductor (AMC properties of these special type metamaterial. Issues such as compactness, wide bandwidth with low attenuation level, tunability, and suitability with planar circuitry all play an important role in the design of EBG structures. Remarkable efforts have been undertaken for the development of EBG structures to be compatible with a wide range of wireless communication systems. This paper provides a comprehensive review on various EBG structures such as three-, two-, and one-dimensional (3D, 2D, and 1D EBG, mushroom and uniplanar EBG, and their successive advancement. Considering the related fabrication complexities, implementation of vialess EBG is an attractive topic for microwave engineers. For microstrip antennas, EBG structures are used in diversified ways, which of course found to be effective except in some cases. The EBG structures are also successfully utilized in antenna arrays for reducing the mutual coupling between elements of the array. Current challenges and limitations of the typical microstrip antennas and different EBG structures are discussed in details with some possible suggestions. Hopefully, this survey will guide to increasing efforts towards the development of more compact, wideband, and high-efficient uniplanar EBG structures for performance enhancement of antenna and other microwave devices.

  18. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    Science.gov (United States)

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  19. Off-shore wind power plant modelling precision and efficiency in electromagnetic transient simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, U.; Saad, H.; Mahseredjian, J. [Ecole Polytechnique de Montreal, Montreal, QC (Canada); Jensen, S.; Cai, L. [REpower Systems AG, Hamburg (Germany)

    2012-07-01

    The large number of switching elements in the modular multilevel converter (MMC) is a challenging problem for modeling the MMC-HVDC systems in electromagnetic transient type (EMT-type) programs. The modeling complexity increases even further when MMC-HVDC systems are used to integrate offshore wind farms (OWFs) with power electronics based wind energy converters, such as doubly-fed induction generators (DFIGs). This paper compares the computational performances of various combinations of MMC-HVDC and OWF models. Practical onshore ac fault scenarios are simulated for an OWF composed of DFIG type wind turbines and connected to a practical ac grid through a point-to-point MMC-HVDC system. (orig.)

  20. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  1. Production of dissociated hydrogen gas by electro-magnetically driven shock

    International Nuclear Information System (INIS)

    Kondo, Kotaro; Moriyama, Takao; Hasegawa, Jun; Horioka, Kazuhiko; Oguri, Yoshiyuki

    2013-01-01

    Evaluation of ion stopping power which has a dependence on target temperature and density is an essential issue for heavy-ion-driven high energy density experiment. We focus on experimentally unknown dissociated hydrogen atoms as target for stopping power measurement. The precise measurement of shock wave velocity is required because the dissociated gas is produced by electro-magnetically driven shock. For beam-dissociated hydrogen gas interaction experiment, shock velocity measurement using laser refraction is proposed. (author)

  2. Optimization of Integrated Electro-Absorption Modulated Laser Structures for 100 Gbit/s Ethernet Using Electromagnetic Simulation

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Kazmierski, Christophe; Jany, Christophe

    2007-01-01

    In this paper three options for very-high bit rate integrated electro-absorption modulated laser (EML) structures are investigated using electromagnetic simulation. A physics based distributed equivalent circuit model taking the slowwave propagation characteristics of the modulation signal...... into account is proposed for the electro-absorption modulator (EAM)electrode arrangement. This model makes it possible to apply an EM/circuit co-simulation approach to estimate the electrical to optical transmission bandwidth for the integrated EML. It is shown that a transmission bandwidth of 70 GHz seems...

  3. Structures, systems and methods for harvesting energy from electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  4. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

    International Nuclear Information System (INIS)

    Aburjania, G. D.; Chargazia, Kh. Z.

    2011-01-01

    A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.

  5. Electromagnetic characteristics of carbon nanotube film materials

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2015-08-01

    Full Text Available Carbon nanotube (CNT possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material. This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method. The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed. It is shown that CNT film exhibits anisotropic electromagnetic characteristic. Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film. For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases. The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 dB to 78 dB in X-band. Stretching process induces the alignment of CNTs. When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity. Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness. This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.

  6. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at Eγ=65 MeV

    Science.gov (United States)

    Sikora, Mark; Compton@HIGS Team

    2017-01-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.

  7. Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Buzheng; Liu, Huaiqing [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Ren, Guobin, E-mail: gbren@bjtu.edu.cn [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Yang, Yuguang; Ye, Shen; Pei, Li; Jian, Shuisheng [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2017-01-23

    Highlights: • The EIT and slow light effect are achieved by our novel graphene based structure. • Excellent tunability of wide wavelength range can be obtained only by a small change in Fermi energy level. • The group velocity of incident light is reduced to more than 1/600 of that in vacuum. • Position control is realized by designing a graded period grating. - Abstract: A broad band tunable graphene based silicon–air grating structure is proposed. Electromagnetically-induced-transparency (EIT) window can be successfully tuned by virtually setting the desired Fermi energy levels on graphene sheets. Carrier mobility plays an important role in modulating the resonant depth. Furthermore, by changing the grating periods, light can be trapped at corresponding resonant positions where slow down factor is relatively larger than in the previous works. This structure can be used as a highly tunable optoelectronic device such as optical filter, broad-band modulator, plasmonic switches and buffers.

  8. Observational constraints on electromagnetic Born-Infeld cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora; Montiel, Ariadna [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I.P.N., Apdo. 14–740, D.F. (Mexico); Lazkoz, Ruth, E-mail: nora@fis.cinvestav.mx, E-mail: amontiel@fis.cinvestav.mx [Dpto. de Física Teórica, Universidad del País Vasco, Apdo. 644, E-48080, Bilbao (Spain)

    2012-10-01

    The cosmological model consisting of an electromagnetic Born-Infeld (BI) field coupled to a Robertson-Walker geometry is tested with the standard probes of SNIa, GRBs and direct Hubble parameter. The analysis shows that the inclusion of the nonlinear electromagnetic component does not contribute in a significative way to the observed expansion. The BI electromagnetic matter is considered with an abundance of Ω{sub BI}, that our best fit leads to Ω{sub BI} = 0.037 when tested with SNIa and the Hubble parameter data (0.1 < z < 1.75); while when tested with GRBs the result is of Ω{sub BI} = 0.304, which may indicate that this electrodynamics was important at epochs close to the appearance of large structure (z ≈ 7), although this late result has not as much reliability as that corresponding to the first two probes, since we know that the dispersion in GRBs data is still considerable. In view of these results we can rule out the electromagnetic Born-Infeld matter as the origin of the present accelerated expansion, this conclusion concerns exclusively the Born-Infeld theory.

  9. Precision Diagnosis, Monitoring and Control of Structural Component Degradation in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Han, J. H.; Choi, M. S.; Lee, D. H.; Hur, D. H.; Na, J. W.; Kim, K. M.; Hong, J. H.; Kim, H. S.

    2007-06-01

    The occurrence of structural material degradations in NPPs and their progress during operation are directly related to the safety and the integrity of NPPs. The various kinds of material degradation are usually examined by methods of material integrity evaluation and non-destructive evaluation(NDE). Material integrity evaluation is well known as classical method to interpret cause and mechanism of degradation and failure, however, this method has a limitation of detection and diagnosis for actual condition of flaws and defects occurring during plant operation, particularly for their formation in the early stage. NDE used widely for detection of defects formed on structural materials provides many information for safety regulation, plant management, repairing, however, this technique has a generic problem in its reliability due to low detectability and ability of signal analysis, etc. The objective of this research project is to develop the advanced technologies ensuring a precision diagnosis on the various kind of defects in structural materials of NPP and a high performance in material degradation evaluation. Many of the advanced technologies were developed in the 1st phase of this project. They contributed to interpret more precisely the root causes of degradation, failure and to establish the proper measures for the safety and integrity of NPPs. The accomplishment of comprehensive technology developed as planned will be practically applied to the nuclear industries and contributed to improve the safety and integrity of NPPs

  10. Precise determination of low-Q nucleon electromagnetic form factors and their impact on parity-violating e-p elastic scattering

    International Nuclear Information System (INIS)

    Arrington, John; Sick, Ingo

    2007-01-01

    The extraction of the strangeness form factors from parity-violating elastic electron-proton scattering is sensitive to the electromagnetic form factors at low Q 2 . We provide parametrizations for the form factors and uncertainties, including the effects of two-photon exchange corrections to the extracted electromagnetic form factors. We study effect of the correlations between different form factors, in particular as they impact the parity-violating asymmetry and the extraction of the strangeness form factors. We provide a prescription to extract the strangeness form factors from the asymmetry that provides an excellent approximation of the full two-photon correction. The corrected form factors are also appropriate as input for other low-Q analyses, although the effects of correlations and two-photon exchange corrections may be different

  11. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    Directory of Open Access Journals (Sweden)

    Shahid Ahmed

    2012-02-01

    Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  12. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-01-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  13. Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland

    Science.gov (United States)

    Jóźwiak, Waldemar

    2013-10-01

    The marginal zone of the East European Platform, an area of key importance for our understanding of the geotectonic history of Europe, has been a challenge for geophysicists for many years. The basic research method is seismic survey, but many important data on physical properties and structure of the lithosphere may also be provided by the electromagnetic methods. In this paper, results of deep basement study by electromagnetic methods performed in Poland since the mid-1960s are presented. Over this time, several hundred long-period soundings have been executed providing an assessment of the electric conductivity distribution in the crust and upper mantle. Numerous 1D, 2D, and pseudo-3D electric conductivity models were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian Platform, transitional zone (TESZ), and the Paleozoic Platform. The wide-spread conducting complexes in the crust with integral conductivity values reaching 10 000 S at 20-30 km depths are most spectacular. They are most likely consequences of geological processes related to Caledonian and Variscan orogenesis. The upper mantle conductivity is also variable, the thickness of high-resistive lithospheric plates ranging from 120-140 km under the Paleozoic Platform to 220-240 km under the East European Platform.

  14. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    International Nuclear Information System (INIS)

    Li, Y.J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R.X.; Zheng, J.; Deng, C.Y.; Deng, Z.G.

    2016-01-01

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  15. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-09-15

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  16. Structure Study on Electromagnetic Navigation Intelligent Vehicle Detection and Control System%电磁导航式智能车控制系统研究

    Institute of Scientific and Technical Information of China (English)

    侯代坡; 孔琳琳; 王烁; 杨成; 韩致信

    2013-01-01

    With "the Freescale cup intelligent car racing" of the electromagnetic navigation intelligent car' s electromagnetic signal as the research and study object. The inductance coil and operational amplifier components selection and circuit design is discussed in detail; the sensor layout methods on the influence to the precision of detection is essential analyzed, a kind of "piecewise interpolation label" direction control scheme is put forward.%以“飞思卡尔智能车”电磁组比赛中的磁导航方式的电磁信号为研究和分析对象,对电感线圈和运算放大器等元器件的选择和电路设计方面作了详细论述;重点分析传感器的布置方式对检测精度的影响,提出了一种“分段插值标号”的方向控制方案.

  17. Ferrites Ni0,5Zn0,5Fe2O4 doped with samarium: structural analysis, morphological and electromagnetic

    International Nuclear Information System (INIS)

    Costa, A.C.F.M.; Diniz, A.P.; Viana, K.M.S.; Cornejo, D.R.; Kiminami, R.H.G.A.

    2010-01-01

    This paper proposes to investigate the sintering at 1200 deg C/2h of Ni 0.5 Zn 0.5 Fe 2-x Sm x O 4 ferrite doped with 0.05; 0.075 e 0.1 mol of Sm synthesized by combustion reaction to evaluate the performance materials as absorbers of electromagnetic radiation. The influence of the concentration of samarium on the structure, morphology and electromagnetic properties of ferrites was studied. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetic measurements and reflectivity measurements in the frequency range between 8-12 GHz. The results showed that increasing the concentration of samarium caused a decrease in particle size of the samples, encouraging, therefore, to obtain materials with better values of magnetization and reflectivity, allowing for use as absorbers in narrow-band frequency between 9-10 GHz. (author)

  18. Electromagnetic analysis of the Faraday shield of the EAST ICRF antenna

    International Nuclear Information System (INIS)

    Yang Qingxi; Song Yuntao; Wu Songtao; Zhao Yanping

    2011-01-01

    Faraday shield is one of the important components of ICRF antenna for EAST. In view of the structural safety of the Faraday shield, the electromagnetic and structural analyses for the Faraday shield have been carried out by applying the finite element method and the formulas under the cases of plasma disruption and vertical displacement event (VDE). Results of the electromagnetic forces, the stresses distribution as well as the deformation in the Faraday shield have been obtained under the two cases. They meet the design requirements and provide the theoretical basis for the structural safety evaluation of the Faraday shield. (authors)

  19. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    International Nuclear Information System (INIS)

    Tanner, Carol E.

    2005-01-01

    outside of a closed shell, provide the simplest open shell systems for detailed comparisons between experiment and theory. This program initially focused on measurements of excited state atomic lifetimes in alkali atomic systems. Our first measurements of atomic lifetimes in cesium surpassed the precision and accuracy of previous measurements and sparked renewed interest in the need for greater precision in lifetime measurements throughout the atomic physics community. After enhancing the capabilities of the laser systems built for these initial measurements, we began a study hyperfine energy splittings in cesium using a thermal atomic beam. The results surpassed previous measurements by more than an order of magnitude and lead to the first observation of the nuclear magnetic octupole moment in cesium demonstrating the inadequacy of the nuclear shell model for predicting high order nuclear moments. The laser system and atomic beam apparatus developed for these endeavors turned out to be perfectly suited for exploring the possibility of making absolute optical frequency measurements of atomic transitions. We initiated collaboration with researchers at NIST so that the desired optical frequencies could be reference with respect to the primary microwave frequency standard (Cs atomic fountain NIST-FI) via a femtosecond laser frequency comb. Our first absolute optical frequency measurement, of the cesium D2 line, surpassed the accuracy of a previous measurement by more than an order of magnitude. An absolute optical frequency measurement of the cesium D1 line, now near completion, also surpasses previous results and places us in a position to be able to report a new value for the fine structure constant which is the fundamental dimensionless constant that underlies all electromagnetic interactions

  20. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Carol E.

    2005-03-04

    outside of a closed shell, provide the simplest open shell systems for detailed comparisons between experiment and theory. This program initially focused on measurements of excited state atomic lifetimes in alkali atomic systems. Our first measurements of atomic lifetimes in cesium surpassed the precision and accuracy of previous measurements and sparked renewed interest in the need for greater precision in lifetime measurements throughout the atomic physics community. After enhancing the capabilities of the laser systems built for these initial measurements, we began a study hyperfine energy splittings in cesium using a thermal atomic beam. The results surpassed previous measurements by more than an order of magnitude and lead to the first observation of the nuclear magnetic octupole moment in cesium demonstrating the inadequacy of the nuclear shell model for predicting high order nuclear moments. The laser system and atomic beam apparatus developed for these endeavors turned out to be perfectly suited for exploring the possibility of making absolute optical frequency measurements of atomic transitions. We initiated collaboration with researchers at NIST so that the desired optical frequencies could be reference with respect to the primary microwave frequency standard (Cs atomic fountain NIST-FI) via a femtosecond laser frequency comb. Our first absolute optical frequency measurement, of the cesium D2 line, surpassed the accuracy of a previous measurement by more than an order of magnitude. An absolute optical frequency measurement of the cesium D1 line, now near completion, also surpasses previous results and places us in a position to be able to report a new value for the fine structure constant which is the fundamental dimensionless constant that underlies all electromagnetic interactions.

  1. Precision Electroweak measurements at the FCC-ee

    CERN Document Server

    Dam, Mogens

    2016-01-01

    Because of a luminosity of up to five orders of magnitude larger than at LEP, electroweak precision measurements at the FCC-ee -- the Future Circular Collider with electron-positron beams -- would provide improvements by orders of magnitude over the present status and constitute a broad search for the existence of new, weakly interacting particles up to very high energy scales. The FCC-ee will address centre-of-mass energies ranging from below the Z pole to the $\\mathrm{t\\bar{t}}$ threshold and above. At energies around the Z pole, the Z-boson mass and width can be measured to better than 100 keV each. Asymmetry measurements at the Z pole allow improvements in the determination of the weak mixing angle by at least a factor 30 to $\\delta\\sin^2\\theta\\mathrm{_W^{eff}}\\simeq 6\\times 10^{-6}$. A determination of the electromagnetic coupling constant at the Z energy scale, $\\alpha_\\mathrm{QED}(m_\\mathrm{Z}^2)$, to a relative precision of $3\\times 10^{-5}$ can be obtained via measurement of the forward-backward asym...

  2. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  3. Electromagnetic Hammer for Metalworking

    Science.gov (United States)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; hide

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  4. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  6. LLL transient-electromagnetics-measurement facility

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Miller, E.K.; Hudson, H.G.

    1975-01-01

    The operation and hardware of the Lawrence Livermore Laboratory's transient-electromagnetics (EM)-measurement facility are described. The transient-EM range is useful for determining the time-domain transient responses of structures to incident EM pulses. To illustrate the accuracy and utility of the EM-measurement facility, actual experimental measurements are compared to numerically computed values

  7. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-07-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding-cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are - 15 dB and - 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( - 55 °C-80 °C ) and strength durability (160-1600μɛ, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life.

  8. The parametrized simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Peters, S.

    1992-09-01

    The simulation of electromagnetic showers in calorimeters by detailed tracking of all secondary particles is extremely computer time consuming. Without loosing considerably in precision, the use of parametrizations for global shower properties may reduce the computing time by factors of 10 1 to 10 4 , depending on the energy, the degree of parametrization, and the complexity in the material description and the cut off energies in the detailed simulation. To arrive at a high degree of universality, parametrizations of individual electromagnetic showers in homogeneous media are developed, taking the dependence of the shower development on the material into account. In sampling calorimeters, the inhomogeneous material distribution leads to additional effects which can be taken into account by geometry dependent terms in the parametrization of the longitudinal and radial energy density distributions. Comparisons with detailed simulations of homogeneous and sampling calorimeters show very good agreement in the fluctuations, correlations, and signal averages of spatial energy distributions. Verifications of the algorithms for the simulation of the H1 detector are performed using calorimeter test data for different moduls of the H1 liquid argon calorimeter. Special attention has been paid to electron pion separation, which is of great importance for physics analysis. (orig.) [de

  9. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    Science.gov (United States)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  10. Direct chill casting of aluminium alloys under electromagnetic interaction by permanent magnet assembly

    Science.gov (United States)

    Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms

    2018-05-01

    Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.

  11. Massive parallel electromagnetic field simulation program JEMS-FDTD design and implementation on jasmin

    International Nuclear Information System (INIS)

    Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li

    2010-01-01

    A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)

  12. Gravity sag of sandwich panel assemblies as applied to precision cathode strip chamber structural design

    International Nuclear Information System (INIS)

    Horvath, J.

    1993-01-01

    The relationship between gravity sag of a precision cathode strip chamber and its sandwich panel structural design is explored parametrically. An algorithm for estimating the dominant component of gravity sag is defined. Graphs of normalized gravity sag as a function of gap frame width and material, sandwich core edge filler width and material, panel skin thickness, gap height, and support location are calculated using the gravity sag algorithm. The structural importance of the sandwich-to-sandwich ''gap frame'' connection is explained

  13. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  14. Electromagnetic solitary vortices in rotating plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1985-12-01

    The nonlinear equations describing drift-Alfven solitary vortices in a low β, rotating plasma are derived. Two types of solitary vortex solutions along with their corresponding nonlinear dispersion relations are obtained. Both solutions have the localized coherent dilopar structure. The first type of solution belongs to the family of the usual Rossby or drift wave vortex, while the second type of solution is intrinsic to the electromagnetic perturbation in a magnetized plasma and is a complicated structure. While the first type of vortex is a solution to a second order differential equation the second one is the solution of a fourth order differential equation intrinsic to the electromagnetic problem. The fourth order vortex solution has two intrinsic space scales in contrast to the single space scale of the previous drift vortex solution. With the second short scale length the parallel current density at the vortex interface becomes continuous. As special cases the rotational electron drift vortex and the rotational ballooning vortex also are given. 10 refs

  15. Electromagnetic properties of nuclei at high spins

    International Nuclear Information System (INIS)

    Leander, G.A.

    1986-01-01

    A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs

  16. Precisely predictable Dirac observables

    CERN Document Server

    Cordes, Heinz Otto

    2006-01-01

    This work presents a "Clean Quantum Theory of the Electron", based on Dirac’s equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac’s theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ½) moving in a given electromagnetic field. This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A "Schroedinger particle", such as a light quantum, experiences a very different (time-dependent) "Precise Predictablity of Observables". An attempt is made to compare both cases. There is not the Heisenberg uncertainty of location and momentum; rather, location alone possesses a built-in uncertainty ...

  17. Electromagnetically induced transparency in an open multilevel system

    International Nuclear Information System (INIS)

    Li Tian; Lu Meiju; Weinstein, Jonathan D.

    2011-01-01

    Electromagnetically induced transparency in a multilevel system is investigated in 173 Yb. The level structure investigated is ''open'' in that the light that gives rise to the transparency also resonantly couples the atoms to excited states which do not exhibit electromagnetically induced transparency. The resulting reduction of transparency is investigated experimentally and theoretically. It is found that, while the transparency is poor in certain regimes, it can be made to perform arbitrarily well in the limit of a large intensity imbalance between the optical fields.

  18. Electromagnetic diagnostic system for the Keda Torus eXperiment

    Science.gov (United States)

    Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2017-09-01

    A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on

  19. The DESMEX Project - Deep Electromagnetic Sounding for Mineral EXploration

    Science.gov (United States)

    Meyer, U.; Becken, M.; Stolz, R.; Nittinger, C.; Cherevatova, M.; Siemon, B.; Martin, T.; Petersen, H.; Steuer, A.

    2017-12-01

    The DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration) aims to develop independent semi-airborne frequency domain systems for mineral exploration down to depths of 1 km and deeper. Two different helicopter-towed systems are being designed and tested using source installations on ground. One system uses among other equipment conventional three axis induction coils, a 3D-fluxgate and a high precision inertial motion unit. The use of the two different magnetometers allows to record data in a broad frequency range from 1 Hz to 10 kHz. The second system uses a newly developed SQUID-based sensing system of a similar frequency range and a self made inertial motion unit. Horizontal electric dipole transmitters provided by the Leibniz Institute for Applied Geophysics in Hannover and the Institute of Geophysics and Meteorology of the University in Cologne are used as ground based sources. First system tests showed a good performance of both systems with general noise levels below 50 pT/root(Hz). Test flights above the common survey area proved that the desired depth of investigation can be achieved and that the data is consistent with the subsurface conductivity structures. In order to verify the data acquired from the newly developed system at shallow depths and to provide a better starting model for later inversion calculations helicopter borne frequency domain electromagnetics has been acquired and fully processed over the test site Schleiz - Greiz in Germany. To further relate the subsurface conductivity models to the subsurface geology and mineralogy, petrophysical investigations have been performed on rock samples from the site of investigation and analogue samples.

  20. How Does My Cellphone GPS Work?-The Physics of Precision Time-Keeping

    Science.gov (United States)

    Chu, Steven

    The most precise measurements in all of science are frequency and frequency difference measurements, or alternatively, phase and phase change of electromagnetic waves. Improvements in time-keeping have opened up many horizons in fundamental and applied physics that range from the detection of gravity waves to the melting of glaciers and the depletion of underground aquifers. Precision time keeping has also had important practical applications such as in the navigation, beginning with the determination of the longitude position of sailing ships. We now use our cell phones to help us navigate city streets and hail taxis from Uber and Lyft based on our geographical position within a few meters. How did this come about? What will the new time-keeping technologies enable in the future?

  1. Intrinsic electromagnetic solitary vortices in magnetized plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1986-01-01

    Several Rossby type vortex solutions constructed for electromagnetic perturbations in magnetized plasma encounter the difficulty that the perturbed magnetic field and the parallel current are not continuous on the boundary between two regions. We find that fourth order differential equations must be solved to remove this discontinuity. Special solutions for two types of boundary value problems for the fourth order partial differential equations are presented. By applying these solutions to different nonlinear equations in magnetized plasma, the intrinsic electromagnetic solitary drift-Alfven vortex (along with solitary Alfven vortex) and the intrinsic electromagnetic solitary electron vortex (along with short-wavelength drift vortex) are constructed. While still keeping a localized dipole structure, these new vortices have more complicated radial structures in the inner and outer regions than the usual Rossby wave vortex. The new type of vortices guarantees the continuity of the perturbed magnetic field deltaB/sub perpendicular/ and the parallel current j/sub parallel/ on the boundary between inner and outer regions of the vortex. The allowed regions of propagation speeds for these vortices are analyzed, and we find that the complementary relation between the vortex propagating speeds and the corresponding phase velocities of the linear modes no longer exists

  2. Studying Lorentz-violating electromagnetic waves in confined media

    International Nuclear Information System (INIS)

    Viana, Davidson R.; Gomes, Andre H.; Fonseca, Jakson M.; Moura-Melo, Winder A.

    2009-01-01

    Full text. Planck energy scale is still far beyond current possibilities. A question of interest is whether the Lorentz symmetry remains valid at these extremely high energies, whose answer certainly would be useful whenever building grand unified theories, in which general relativity is consistently accommodated. Here, we study a reminiscent of this possible symmetry violation, incorporated in the body of the so-called Standard Model Extension (SME). More precisely, we deal with the pure (Abelian) gauge sector, so that we have a modified classical electromagnetism in (3+1) dimensions, whose Lagrangian include a term proportional to a (constant) background tensor that breaks the Lorentz symmetry, but respecting CPT. Our attention is devoted to the wave-like solutions constrained to propagate inside confined media, like waveguides and resonant cavities. Our preliminary findings indicate that Lorentz-breaking implies in modifications of the standard results which are proportional to the (very small) violating parameters, but could be largely enhanced by diminishing the size of the confined media. Under study is the case of a toroidal cavity where the electromagnetic field should respect the additional requirement of being single-valued in the (toroidal) angular variable. Perhaps, such an extra feature combined with the usual boundary conditions could lead us to large effects of this violation, somewhat similar to those predicted for CPT- and Lorentz-odd electromagnetic waves constrained to propagate along a hollow conductor waveguide. (author)

  3. Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab

    Science.gov (United States)

    Gilfoyle, Gerard

    2018-01-01

    The elastic, electromagnetic form factors are fundamental observables that describe the internal structure of protons, neutrons, and atomic nuclei. Jefferson Lab in the United States has completed the 12 GeV Upgrade that will open new opportunities to study the form factors. A campaign to measure all four nucleon form factors (electric and magnetic ones for both proton and neutron) has been approved consisting of seven experiments in Halls A, B, and C. The increased energy of the electron beam will extend the range of precision measurements to higher Q2 for all four form factors together. This combination of measurements will allow for the decomposition of the results into their quark components and guide the development of a QCD-based understanding of nuclei in the non-perturbative regime. I will present more details on the 12 GeV Upgrade, the methods used to measure the form factors, and what we may learn.

  4. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at HI γS

    Science.gov (United States)

    Sikora, Mark

    2016-09-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at incident photon energies of 65 and 85 MeV and discuss the sensitivity of these data to the polarizabilities.

  5. Electromagnetic interactions in the MINOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, Patricia LaVern [Univ. of Texas, Austin, TX (United States)

    2004-08-01

    MINoS is a long-baseline neutrino experiment designed to observe the oscillation of neutrinos traveling between two detectors, a Near Detector at Fermi National Accelerator Laboratory and a Far Detector at the Soudan Underground Laboratory in northern Minnesota. Precision measurement of the oscillation parameters requires a better than 5% absolute energy calibration with is derived using a dedicated calibration detector, called CalDet. A smaller version of the MINOS detectors, the CalDet was exposed to particular beams in the CERN PS East Area test beams in 2001-2003. This document describes the conditions under which the CalDet beam data were taken, establishes selection criteria to identify a sample of electrons, and discusses the characteristics of electromagnetic interactions in the CalDet.

  6. Spacetime algebra as a powerful tool for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Dressel, Justin, E-mail: prof.justin.dressel@gmail.com [Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Konstantin Y. [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Interdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Nori, Franco [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-08

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann–Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric–magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  7. Spacetime algebra as a powerful tool for electromagnetism

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  8. Up-grading a 4.7-cm-period plane electromagnetic undulator

    CERN Document Server

    Bogachenkov, V A; Papadichev, V A

    1999-01-01

    Electromagnetic undulators have a number of advantages over permanent-magnet undulators. They are less expensive to fabricate and their field is easily regulated by changing the current, without requiring a complex and expensive precision system for changing the undulator gap. Their main weaknesses are that they require a large power supply and that the field is limited due to yoke saturation mainly because of large axial stray fluxes, particularly in simple constructions. Modernization of a 4.7-cm-period, 20-period long plane electromagnetic undulator of simple design is described. Samarium-cobalt permanent magnets were used to increase the field and decrease power consumption. They were placed between adjacent rings (with opposite sign of field) and while increasing the working field they decreased saturation of the iron yokes. Small lateral displacements of permanent magnets were used to equalize field amplitudes in half periods of the undulator with 0.1% accuracy. Matched input and output to and from the ...

  9. Electromagnetically Inferred Structure of the Caja del Rio Plateau, New Mexico

    Science.gov (United States)

    Layton, M. E.; Speed, C.; Shukla, M.; Vila, A.; Chon, E.; Kitamikado, C.; Feucht, D. W.; Bedrosian, P.; Pellerin, L.

    2016-12-01

    Magnetotelluric (MT) and transient electromagnetic (TEM) data were acquired by students from the Summer of Applied Geophysical Experience (SAGE) to construct structural models in and around the Caja del Rio Plateau, New Mexico. The Caja del Rio is located on the La Bajada-Jemez constriction that separates the Española and Santa Domingo basins in the Rio Grande Rift. The Rio Grande Rift, the result of tectonic extensional forces, extends approximately north-south across northern New Mexico. MT data collected in 2016 were merged with that from previous years to make up an 11 km north line and a 16 km south line extending from the west side of the Caja Del Rio to the east off the plateau in the Old Buckman Road area. The resistivity distributions revealed in one-dimensional (1-D) and two-dimensional (2-D) inverse models show some robust features. Models of the north are interpreted as a top resistive layer (convention) point in the northwest direction towards the conductive Valles Caldera. The MT models are consistent with geologic interpretations of the stratigraphic units. In addition, models disclose an additional conductive layer below the basement that we interpret as the mid-crustal conductor. Transient electromagnetic (TEM) data were collected in seven locations atop the Caja del Rio plateau in an attempt to identify the basal contact of the Cerros del Rio volcanic field, which, in turn, allow for the thickness of these basaltic and andesitic deposits to be mapped across the plateau. One-dimensional inverse models produced from the TEM data were aligned and interpreted geologically. A resistive ( 1000 ohm-m) unit, interpreted to represent the Cerros del Rio volcanics, thickens from 70m to 175m from southeast to northwest. The volcanics are overlain by a thin conductor, interpreted as weathered material. The resistive body is underlain by a thicker conductor, interpreted as sedimentary rocks of the Tertiary-aged Santa Fe Group.

  10. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  11. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  12. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  13. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  14. Precision timing detectors with cadmium-telluride sensor

    Science.gov (United States)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  15. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  16. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  17. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    Science.gov (United States)

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  18. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2008-01-01

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW

  19. Reducing radar cross section by investigation electromagnetic materials

    Directory of Open Access Journals (Sweden)

    S. Komeylian

    2012-12-01

    Full Text Available Decreasing the Radar Cross Section (RCS is investigated in electromagnetic materials, i.e. double-positive (DPS , double-negative (DNG , epsilon-negative (ENG and mu-negative (MNG materials. The interesting properties of these materials lead to a great flexibility in manufacturing structures with unusual electromagnetic characteristics. The valid conditions for achieving the transparency and gaining resonance for an electrically small cylinder are established, in this corresponding The effect of incidence direction on RCS inclusive of transparency and resonance conditions is also explored ,through computer simulations for an electrically small cylinder.

  20. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    International Nuclear Information System (INIS)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-01-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding–cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are − 15 dB and − 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( − 55 °C–80 °C ) and strength durability (160–1600με, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life. (paper)

  1. Biological effects of static and low-frequency electromagnetic fields: an overview of United States literature

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.

    1977-04-12

    Results are reviewed from a number of studies on the biological effects of static and low frequency electromagnetic fields on animals. Based on a long history of experience with electric fields by the utility industry, it appears that intermittent and repeated exposures to strong 60-Hz electromagnetic fields from present power transmission systems have no obvious adverse effect on the health of man. It has been recognized recently that this belief must be tested by carefully designed and executed experiments under laboratory conditions where precise control can be exercised over coexisting environmental factors. A number of studies have been initiated in response to this need to evaluate possible effects from both acute and chronic exposures. 100 references.

  2. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  3. Molding acoustic, electromagnetic and water waves with a single cloak.

    Science.gov (United States)

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  4. Precision measurement of sub-nanosecond lifetimes of excited nuclear states using fast-timing coincidences with LaBr3(Ce) detectors

    International Nuclear Information System (INIS)

    Regan, P.H.

    2015-01-01

    Precision measurements of electromagnetic (EM) transition rates enable tests of models of internal nuclear structure. Measurements of transition rates can be used to infer the spin and parity differences between the initial and final discrete nuclear excited states via which the EM transition takes place. This short conference paper reports on developments of detection systems for the identification of discrete energy gamma-ray decays using arrays of halide-scintillation detectors acting in coincidence mode, which can be used to determine electromagnetic transition rates between excited nuclear states in the sub-nanosecond temporal regime. Ongoing development of a new multi-detector LaBr 3 (Ce) array for studies of exotic nuclei produced at the upcoming Facility for Anti-Proton and Ion Research (FAIR) as part of the NUSTAR–DESPEC project are presented, together with initial results from pre-NUSTAR implementations of this array for nuclear structure studies of neutron-rich fission fragment radionuclides at ILL-Grenoble, France and RIBF at RIKEN, Japan. - Highlights: • This paper reports on new detection systems for identification of gamma decays. • It focusses on using arrays of halide-scintillation detectors in coincidence mode. • These can determine lifetimes of nuclear states at the sub-ns level. • Plans for new LaBr3(Ce) arrays for studies of exotic nuclei are presented.

  5. Electromagnetic study of lithospheric structure in Trans-European Suture Zone in Poland

    Science.gov (United States)

    Jóźwiak, Waldemar; Ślęzak, Katarzyna; Nowożyński, Krzysztof; Neska, Anne

    2016-04-01

    The area covered by magnetotelluric surveys in Poland is mostly related to the Trans-European Suture Zone (TESZ), the largest tectonic boundary in Europe. Numerous 1D, 2D, and pseudo-3D and 3D models of the electrical resistivity distribution were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results indicate that the TESZ is a lithospheric discontinuity and there are noticeable differences in geoelectric structures between the East European Craton (EEC), the transitional zone (TESZ), and the Paleozoic Platform (PP). The electromagnetic sounding is a very efficient tool for recognizing the lithospheric structure especially it helps in identification of important horizontal (or lateral) inhomogeneities in the crust. Due to our study we can clearly determine the areas of the East European Craton of high resistivity, Paleozoic Platform of somewhat lower resistivity value, and transitional TESZ of complicated structure. At the East European Craton, we observe very highly resistive lithosphere, reaching 220-240 km depth. Underneath, there is distinctly greater conductivity values, most probably resulting from partial melting of rocks; this layer may represent the asthenosphere. The resistivity of the lithosphere under the Paleozoic Platform is somewhat lower, and its thickness does not exceed 150 km. The properties of the lithosphere in the transition zone, under the TESZ, differ significantly. The presented models include prominent, NW-SE striking conductive lineaments. These structures, that related with the TESZ, lie at a depth of 10-30 km. They are located in a mid-crustal level and they reach the boundary of the EEC. The structures we initially connect to the Variscan Deformation Front (VDF) and the Caledonian Deformation Front (CDF). The differentiation of conductivity visible in the crust continues in the upper mantle.

  6. Efficient transformer for electromagnetic waves

    Science.gov (United States)

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  7. FDTD-analyse of electromagnetic wave propagation through photonic band gap structure

    International Nuclear Information System (INIS)

    Brendel', M.O.; Danilov, V.V.; Makarov, D.G.; Nechiporuk, O.Yu.

    2007-01-01

    FDTD-method for numerical solution of Maxwell's equation has used for investigation of electromagnetic wave transmission through the periodically inhomogeneous planar waveguide. The spectral dependence for transmission factor has obtained. This result compared with the previous one, obtained with approximate analytical calculations

  8. Proceedings of the 2nd international workshop on electromagnetic forces and related effects on blankets and other structures surrounding the fusion plasma torus

    International Nuclear Information System (INIS)

    Takagi, T.; Nishiguchi, I.; Yoshida, Y.

    1993-01-01

    This publication is the collection of the papers presented at the title meeting. The subjects of the papers presented were categorized in six parts and are contained in this volume. In the first part, the valuable experiences are presented concerning electromagnetic phenomena in existing large devices or those under construction. In the 2nd part, the papers are mainly concerning on the evaluation of the electromagnetic fields and forces for the next experimental reactors. In the 3rd part, electromagnetomechanical coupling problems were treated by numerical and experimental approaches. In the part 4, numerical and experimental approaches for ferromagnetic structures are performed. In the 5th part, papers related to the structural integrity evaluation are presented. The part 6 is devoted to the proposal of the intelligent material system. A summary of the panel discussion held at the final session of the workshop is also included at the end of this volume. The 22 of the presented papers are indexed individually. (J.P.N.)

  9. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  10. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Science.gov (United States)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  11. The study on electromagnetic compatibility of DC electric motor in HAPS

    Energy Technology Data Exchange (ETDEWEB)

    Junping, Geng; Ronghong, Jin; Yu, Fan; Bo, Liu; Jiaqiang, Li; Yuebo, Cheng; Zhongyuan, Wang [Shanghai Jiao Tong Univ., Dpt. Electronic Engineering, Shanghai (China)

    2005-10-01

    The electromagnetic compatibility (EMC) problem of high altitude platform systems (HAPS) is investigated in this paper. A physical model for electromagnetic interferences (EMI) of electromagnetic radiation of spark discharge in DC electric motor is proposed. Based on this model, EMI frequency points has been estimated by approximative equation for the given structure and size of a motor, and EMI frequency points, peak values that received by the ports of antennas and far-field pattern have been calculated. The estimated results are consistent with the calculated ones. These frequency bands and spatial directions with max EMI should be avoided in the valid information when the HAPS system is being designed. Two methods are taken to shield electromagnetic radiation, either to mount a metal plate near the DC electric motor (EMI source), or to mount a perfect conductor board near the antenna array (sensitive element), are valid to shield electromagnetic radiation, but to mount a metal plate near the EMI source is more effective. (authors)

  12. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  13. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2013-01-01

    Full Text Available A modified electromagnetic-bandgap (M-EBG structure and its application to planar monopole ultra-wideband (UWB antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX and the wireless local area network (WLAN at 3.5 GHz and 5.5 GHz, respectively.

  14. Electromagnetic properties for arbitrary spin particles: Natural electromagnetic moments from light-cone arguments

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2009-01-01

    We revisit the old-standing problem of the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and Q 2 =0 should be conserved nontrivially by the electromagnetic interaction, we are able to derive all the natural electromagnetic moments for a pointlike particle of any spin. We provide here a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments and covariant vertex functions. The light-cone helicity conservation argument determines uniquely the values of all electromagnetic moments, which we refer to as the 'natural' ones. These specific values are in accordance with the standard model, and the prediction of universal g=2 gyromagnetic factor is naturally recovered. We provide a very simple and compact formula for these natural moments. As an application of our results, we generalize the discussion of quark transverse charge densities to particles with arbitrary spin, giving more physical support to the light-cone helicity conservation argument.

  15. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial.

    Science.gov (United States)

    Kim, Jaeyoun; Soref, Richard; Buchwald, Walter R

    2010-08-16

    We investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature. Impacts of structural and dielectric parameters are also investigated.

  16. Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis

    Science.gov (United States)

    Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro

    2017-04-01

    The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup

  17. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  18. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  19. Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source

    International Nuclear Information System (INIS)

    Kousaka, Hiroyuki; Ono, Kouichi

    2003-01-01

    The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy

  20. Preliminary electromagnetic analysis of Helium Cooled Solid Blanket for CFETR by MAXWELL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cheng; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-11-15

    Highlights: • A FEM model of the blanket and magnetic system was built. • Electromagnetic forces and moments of the typical blanket for ferromagnetic and non-ferromagnetic materials were computed and analyzed. • Maxwell forces and Lorentz forces were computed and compared. • Eddy current in the blanket was analyzed under MD condition. - Abstract: A Helium Cooled Solid Blanket (HCSB) for CFETR (Chinese Fusion Engineering Test Reactor) was designed by USTC. The structural and thermal-hydraulic analysis has been carried out, while electromagnetic analysis was not carefully researched. In this paper, a FEM (finite element method) model of the HCSB was developed and electromagnetic forces as well as moments was computed by a FEM software called MAXWELL integrated in ANSYS Workbench. In the geometrical model, flow channels and small connecting parts were neglected because of the extreme complication and the reasonable conservative assumption by neglecting these circumstantial details. As for electromagnetic (EM) analysis, Lorentz forces due to eddy currents caused by main disruption and Maxwell forces due to the magnetization of RAFM steel (i.e. EUROFER97) were computed. Since the unavailability of the details of the plasma in CFETR, when disruptions happen, the condition where a linear current quench of main disruption occurs was assumed. The maximum magnitude of the electromagnetic forces was 356.45 kN and the maximum value of the coupled electromagnetic moments was 1899.40 N m around the radial direction. It is feasible to couple electromagnetic analysis, structural analysis and thermal-hydraulic analysis in the future since MAXWELL has good channels to exchange data between different analytic parts.

  1. A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B.

    2013-01-01

    Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of the wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods

  2. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  3. ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, Abraham, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)

    2016-03-10

    Mergers of stellar-mass black holes (BHs), such as GW150914 observed by Laser Interferometer Gravitational Wave Observatory (LIGO), are not expected to have electromagnetic counterparts. However, the Fermi GBM detector identified a γ-ray transient 0.4 s after the gravitational wave (GW) signal GW150914 with consistent sky localization. I show that the two signals might be related if the BH binary detected by LIGO originated from two clumps in a dumbbell configuration that formed when the core of a rapidly rotating massive star collapsed. In that case, the BH binary merger was followed by a γ-ray burst (GRB) from a jet that originated in the accretion flow around the remnant BH. A future detection of a GRB afterglow could be used to determine the redshift and precise localization of the source. A population of standard GW sirens with GRB redshifts would provide a new approach for precise measurements of cosmological distances as a function of redshift.

  4. Electromagnetic effects on the NET first wall caused by a plasma disruption event

    International Nuclear Information System (INIS)

    Crutzen, Y.R.; Biggio, M.; Farfaletti-Casali, F.

    1987-01-01

    During the event of a major plasma disruption, the structural components of the NET fusion reactor, such as the First Wall (FW), are subjected to strong electromagnetic transients arising from the interaction of the induced eddy currents with the large magnetic field which confines and equilibrates the plasma ring. Finite element structural analyses (static, vibration, transient dynamic) have been performed to examine stresses, deformations and reactions, generated by the electromagnetic loads, in the modular blanket-enveloping box outboard FW segment. Considering the last three engineering design variations of the outboard FW module, an improvement is obtained for the new Double Null FW configuration because of the drastic reduction of electromagnetic effects and induced stresses, mainly due to increased segmentation of the internal components

  5. A high precision position sensor design and its signal processing algorithm for a maglev train.

    Science.gov (United States)

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  6. A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train

    Directory of Open Access Journals (Sweden)

    Wensen Chang

    2012-04-01

    Full Text Available High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  7. Large numbers hypothesis. II - Electromagnetic radiation

    Science.gov (United States)

    Adams, P. J.

    1983-01-01

    This paper develops the theory of electromagnetic radiation in the units covariant formalism incorporating Dirac's large numbers hypothesis (LNH). A direct field-to-particle technique is used to obtain the photon propagation equation which explicitly involves the photon replication rate. This replication rate is fixed uniquely by requiring that the form of a free-photon distribution function be preserved, as required by the 2.7 K cosmic radiation. One finds that with this particular photon replication rate the units covariant formalism developed in Paper I actually predicts that the ratio of photon number to proton number in the universe varies as t to the 1/4, precisely in accord with LNH. The cosmological red-shift law is also derived and it is shown to differ considerably from the standard form of (nu)(R) - const.

  8. Potential of Glassy Carbon and Silicon Carbide Photonic Structures as Electromagnetic Radiation Shields for Atmospheric Re-entry

    Science.gov (United States)

    Komarevskiy,Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John W.

    2012-01-01

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  9. Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey

    International Nuclear Information System (INIS)

    Shon, Ho Woong; Lee, Seung Hee; Lee, Kang Won

    2002-01-01

    To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges 2kHz∼4MHz and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys

  10. Electromagnetic analysis of ITER generic equatorial port plug designs during three plasma current disruption cases

    International Nuclear Information System (INIS)

    Guirao, J.; Rodríguez, E.; Ordieres, J.; Cabanas, M.F.; García, C.H. Rojas

    2012-01-01

    Highlights: ► Electromagnetic transient performance evaluation of the GEPP structure. ► Three different plasma current disruption cases: MD UP LIN36, VDE UP LIN36 and VDE DW LIN36 were analyzed. ► Three DSM-First Wall (FW) designs (horizontal and vertical drawers and monoblock) were compared. - Abstract: Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures. This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure. The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.

  11. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  12. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    International Nuclear Information System (INIS)

    Dorofeev, O.F.; Lobanov, A.E.

    2005-01-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'

  13. Design of a high field uniformity electromagnet for Penning trap

    International Nuclear Information System (INIS)

    Itteera, Janvin; Singh, Kumud; Teotia, Vikas; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K.; Joshi, Manoj; Rao, Pushpa

    2013-01-01

    An ion trap (Penning trap) facility is being developed at BARC for spectroscopy studies. This requires the design of an iron core electromagnet capable of generating high magnetic fields (∼1.7T) at the centre of an 88 mm long air gap. This electromagnet provides the requisite dipole magnetic field which when superimposed on the electrostatic quadrupoles ensures a stable trapping of ions. To conduct high precision spectroscopy studies, we need to ensure a high degree of magnetic field uniformity ( 3 volume (Trap zone). Various pole shoe profiles were studied and modelled, FEM simulation of the same were conducted to compute the magnetic field intensity and field uniformity. Owing to the large air gap and requirement of high field intensity in the GFR, the exciting coils need to handle high current densities, which require water cooled systems. Double Pan-Cake coil design is selected for powering the magnet. Electrical, thermal and hydraulic designs of the coils are completed and a prototype double pancake coil was fabricated and tested for verifying the electrical and thermal parameter. The spatial field homogeneity is achieved by shimming the pole tip. Temporal stability of magnet requires a highly stable power supply for exciting the coils and its stability class is derived from FEM simulations. This paper discusses the electromagnetic design and development of the penning trap magnet being developed at BARC. (author)

  14. Metamaterials beyond electromagnetism

    International Nuclear Information System (INIS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-01-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks. (review article)

  15. Metamaterials beyond electromagnetism

    Science.gov (United States)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  16. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  17. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    International Nuclear Information System (INIS)

    Lee, Youngmin; Ku, Duck Young; Lee, Dong Won; Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon

    2016-01-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  18. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  19. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  20. Influence of Turbulent Atmosphere on Polarization Properties of Stochastic Electromagnetic Pulsed Beams

    International Nuclear Information System (INIS)

    Ding Chao-Liang; Zhao Zhi-Guo; Li Xiao-Feng; Pan Liu-Zhan; Yuan Xiao

    2011-01-01

    Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere. The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length. It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero. The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length. (fundamental areas of phenomenology(including applications))

  1. Electromagnetic hammer removes weld distortions from aluminum tanks

    Science.gov (United States)

    Schwinghamer, R. J.

    1965-01-01

    Distortions around weld areas on sheet-aluminum tanks and other structures are removed with a portable electromagnetic hammer. The hammer incorporates a coil that generates a controlled high-energy pulsed magnetic field over localized areas on the metal surface.

  2. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  3. Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation

    International Nuclear Information System (INIS)

    Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun

    2015-01-01

    A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)

  4. Three-Component Forward Modeling for Transient Electromagnetic Method

    Directory of Open Access Journals (Sweden)

    Bin Xiong

    2010-01-01

    Full Text Available In general, the time derivative of vertical magnetic field is considered only in the data interpretation of transient electromagnetic (TEM method. However, to survey in the complex geology structures, this conventional technique has begun gradually to be unsatisfied with the demand of field exploration. To improve the integrated interpretation precision of TEM, it is necessary to study the three-component forward modeling and inversion. In this paper, a three-component forward algorithm for 2.5D TEM based on the independent electric and magnetic field has been developed. The main advantage of the new scheme is that it can reduce the size of the global system matrix to the utmost extent, that is to say, the present is only one fourth of the conventional algorithm. In order to illustrate the feasibility and usefulness of the present algorithm, several typical geoelectric models of the TEM responses produced by loop sources at air-earth interface are presented. The results of the numerical experiments show that the computation speed of the present scheme is increased obviously and three-component interpretation can get the most out of the collected data, from which we can easily analyze or interpret the space characteristic of the abnormity object more comprehensively.

  5. Three-dimensional transient electromagnetic modeling in the Laplace Domain

    International Nuclear Information System (INIS)

    Mizunaga, H.; Lee, Ki Ha; Kim, H.J.

    1998-01-01

    In modeling electromagnetic responses, Maxwell's equations in the frequency domain are popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient electromagnetic interactions in the conductive medium. This paper presents a new technique to compute the electromagnetic response of three-dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting system of equations is then solved for the fields using the incomplete Cholesky conjugate gradient (ICCG) method. The new method is particularly effective in saving computer memory since all the operations are carried out in real numbers. For the same reason, the computing speed is faster than frequency domain modeling. The proposed approach can be an extremely useful tool in developing an inversion algorithm using the time domain data

  6. Examination of Bursty Electromagnetic Waves Observed During Intervals of Turbulent Magnetosheath Reconnection

    Science.gov (United States)

    Adrian, Mark L.; Wendel, D. E.

    2011-01-01

    We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.

  7. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  8. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  9. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  10. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    Science.gov (United States)

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  11. Molding acoustic, electromagnetic and water waves with a single cloak

    KAUST Repository

    Xu, Jun

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.

  12. Molding acoustic, electromagnetic and water waves with a single cloak

    KAUST Repository

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sé bastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.

  13. Electromagnetic interactions between antibiotics and bacteria

    Science.gov (United States)

    Abdul-Moqueet, Mohammad M.

    The effect of weak electromagnetic fields on the interaction of the antibiotic erythromycin on E.coli has been studied. Erythromycin is a first derivative antibiotic which is bacteriostatic in nature. E.coli's structure has been well studied and provides a baseline for understanding the interaction. Electromagnetic fields are shown to influence the growth curve of bacterium depending on the field's geometry. The theoretical model discussed in this thesis describes the interaction using a two-fluid model. The basis of this two-fluid model has been tested and shown that the concentration of antibiotics in the fluid environment is proportional to the response seen by the bacterium. The response of the bacterium has been determined using optical density measurements from which the behavior of the antibiotic-cell system has been studied.

  14. Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    CERN Document Server

    Adzic, Petar; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Baccaro, Stefania; Baffioni, Stephanie; Balazs, Michael; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Benetta, Robert; Bercher, Michel; Bernet, Colin; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bornheim, Adolf; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Bühler, M; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cussans, David; Dafinei, Ioan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; Descamps, Julien; Diemoz, Marcella; Di Marco, Emanuele; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dutta, Dipanwita; Dzelalija, Mile; Peisert, A; El-Mamouni, H; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Geerebaert, Yannick; Gentit, François-Xavier; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Greenhalgh, R J S; Guevara Riveros, Luz; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel de Monchenault, Gautier; Hansen, Magnus; Heath, Helen F; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Husejko, Michal; Ille, Bernard; Imlay, Richard; Ingram, Quentin; Jarry, Patrick; Jessop, Colin; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kailas, Swaminathan; Kataria, Sushil Kumar; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Kolberg, Ted; Krasnikov, Nikolai; Krpic, Dragomir; Kubota, Yuichi; Kumar, P; Kuo, Chen-Cheng; Kyberd, Paul; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Leshev, Georgi; Lethuillier, Morgan; Lin, Sheng-Wen; Lin, Willis; Lintern, A L; Litvine, Vladimir; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, Paul David; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Mahlke-Krüger, H; Malberti, Martina; Malcles, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marone, Matteo; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mohanty, Ajit Kumar; Moortgat, Filip; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Organtini, Giovanni; Orimoto, Toyoko; Paganoni, Marco; Paganini, Pascal; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patterson, Juliet Ritchie; Pauss, Felicitas; Petrakou, Eleni; Phillips, D G; Piroué, Pierre; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Ragazzi, Stefano; Rahatlou, Shahram; Rander, John; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogan, Christopher; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Sala, Leonardo; Salerno, Roberto; Santanastasio, Francesco; Schinzel, Dietrich; Seez, Christopher; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Smith, Brian; Smith, Vincent J; Sproston, Martin; Stöckli, Fabian; Suter, Henry; Swain, John; Tabarellide Fatis, T; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Theofilatos, Konstantinos; Thiebaux, Christophe; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Verrecchia, Patrice; Veverka, Jan; Vichoudis, Paschalis; Virdee, Tejinder; Vlassov, E; Von Gunten, Hans Peter; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Williams, Jennifer C; Yang, Yong; Yaselli, Ignacio; Yohay, Rachel; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished before installation with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3\\%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5\\% over most of the ECAL. The best intercalibration precision is expected to come from the analysis of events collected {\\it in situ} during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were in...

  15. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  16. Precision digital control systems

    Science.gov (United States)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  17. Electromagnetic field measurements in ULF-ELF-VLF [0.001 Hz─100 KHz] bands

    Directory of Open Access Journals (Sweden)

    C. Di Lorenzo

    2008-01-01

    Full Text Available We are reporting the technological and scientific objectives of the MEM project. The MEM project has been activated in the INGV Observatory of L'Aquila to create in Central Italy a network of observatories in order to monitoring the electromagnetic signals in the frequency band [0.001 Hz–100 kHz]. Some examples of the instrumentation developed in the frame of the project are reported. An innovative technique, based on the wide band interferometry is proposed to obtain detailed information concerning the several detected electromagnetic sources. Moreover, data from each station will be elaborated to investigate different sectors as the structure of ground electric conductibility, the electromagnetic phenomena connected with seismic activity, the separation of the electromagnetic fields originated in the Earth's interior and the electromagnetic phenomena originated in the magnetosphere, in the ionosphere and in the Earth-ionosphere cavity.

  18. Measurement of Ultra-Short Solitary Electromagnetic Pulses

    Directory of Open Access Journals (Sweden)

    Eva Gescheidtova

    2004-01-01

    Full Text Available In connection with the events of the last few years and with the increased number of terrorist activities, the problem of identification and measurement of electromagnetic weapons or other systems impact occurred. Among these are also microwave sources, which can reach extensive peak power of up to Pmax = 100 MW. Solitary, in some cases several times repeated, impulses lasting from tp E <1, 60>ns, cause the destruction of semiconductor junctions. These days we can find scarcely no human activity, where semiconductor structures are not used. The problem of security support of the air traffic, transportation, computer nets, banks, national strategic data canter’s, and other applications crops up. Several types of system protection from the ultra-short electromagnetic pulses present itself, passive and active protection. The analysis of the possible measuring methods, convenient for the identification and measurement of the ultra-short solitary electromagnetic pulses in presented in this paper; some of the methods were chosen and used for practical measurement. This work is part of Research object MSM262200022 "Research of microelectronic systems".

  19. Up-grading a 4.7-cm-period plane electromagnetic undulator

    International Nuclear Information System (INIS)

    Bogachenkov, V.A.; Kondratyev, K.V.; Papadichev, V.A.

    1999-01-01

    Electromagnetic undulators have a number of advantages over permanent-magnet undulators. They are less expensive to fabricate and their field is easily regulated by changing the current, without requiring a complex and expensive precision system for changing the undulator gap. Their main weaknesses are that they require a large power supply and that the field is limited due to yoke saturation mainly because of large axial stray fluxes, particularly in simple constructions. Modernization of a 4.7-cm-period, 20-period long plane electromagnetic undulator of simple design is described. Samarium-cobalt permanent magnets were used to increase the field and decrease power consumption. They were placed between adjacent rings (with opposite sign of field) and while increasing the working field they decreased saturation of the iron yokes. Small lateral displacements of permanent magnets were used to equalize field amplitudes in half periods of the undulator with 0.1% accuracy. Matched input and output to and from the undulator, respectively, were formed by means of auxiliary permanent magnets and special magnetic screens

  20. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  1. Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-01-01

    Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.

  2. High-precision hyperfine structure measurement in slow atomic ion beams by collinear laser-rf double resonance

    International Nuclear Information System (INIS)

    Amarjit Sen; Childs, W.J.; Goodman, L.S.

    1987-01-01

    A new collinear laser-ion beam apparatus for slow ions (1 to 1.5 keV) has been built for measuring the hyperfine structure of metastable levels of ions with laser-rf double resonance technique. Narrow linewidths of ∼60 kHz (FWHM) have been observed for the first time in such systems. As a first application the hyperfine structure of the 4f 7 ( 8 S 0 )5d 9 D/sub J/ 0 metastable levels of /sup 151,153/Eu + has been measured with high precision. 10 refs., 8 figs

  3. Ultra-precise measurement of optical aberrations for sub-Aangstroem transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, J.

    2008-06-15

    Quantitative investigations of material structures on an atomic scale by means of highresolution transmission electron microscopy (HRTEM) impose not only extreme demands on the mechanic and electromagnetic stability of the applied instruments but require also their precise electron-optical adjustment. Today a physical resolution well below one Aangstroem can be achieved with commercially available microscopes on a daily basis. However, the achieved resolution can often not be reliably exploited for the interpretation of the resulting microscopical data due to the presence of so-called higher-order lens aberrations. At the starting time of this work, a sufficiently accurate procedure to measure higher-order aberrations was urgently missing. Since aberration measurement is a mandatory prerequisite for any technique of aberration control enabling quantitative high-resolution microscopy, the goal of this work is to develop such a measurement procedure for the Sub-Aangstroem regime. The measurement procedures developed in the course of this work are based on the numerical evaluation of a series of images taken from an amorphous object under electron-beam illumination with varying tilt. New techniques have been developed for the evaluation of single images as well as for the optimised evaluation of the whole series. These procedures allow microscope users to perform quantitative HRTEM even at a resolution of 0.5 Aangstroem. The precision reached with the newly developed measurement procedures is unprecedented and surpasses existing solutions by at least one order of magnitude in any respect. All the concepts and procedures for aberration measurement developed in this work have been implemented in a software package which satisfies professional demands with respect to robustness, precision, speed and user-friendliness. The new automatic aberrationmeasurement procedures are suitable to establish HRTEM as a quantitative technique for material science investigations in the

  4. Ultra-precise measurement of optical aberrations for sub-Aangstroem transmission electron microscopy

    International Nuclear Information System (INIS)

    Barthel, J.

    2008-06-01

    Quantitative investigations of material structures on an atomic scale by means of highresolution transmission electron microscopy (HRTEM) impose not only extreme demands on the mechanic and electromagnetic stability of the applied instruments but require also their precise electron-optical adjustment. Today a physical resolution well below one Aangstroem can be achieved with commercially available microscopes on a daily basis. However, the achieved resolution can often not be reliably exploited for the interpretation of the resulting microscopical data due to the presence of so-called higher-order lens aberrations. At the starting time of this work, a sufficiently accurate procedure to measure higher-order aberrations was urgently missing. Since aberration measurement is a mandatory prerequisite for any technique of aberration control enabling quantitative high-resolution microscopy, the goal of this work is to develop such a measurement procedure for the Sub-Aangstroem regime. The measurement procedures developed in the course of this work are based on the numerical evaluation of a series of images taken from an amorphous object under electron-beam illumination with varying tilt. New techniques have been developed for the evaluation of single images as well as for the optimised evaluation of the whole series. These procedures allow microscope users to perform quantitative HRTEM even at a resolution of 0.5 Aangstroem. The precision reached with the newly developed measurement procedures is unprecedented and surpasses existing solutions by at least one order of magnitude in any respect. All the concepts and procedures for aberration measurement developed in this work have been implemented in a software package which satisfies professional demands with respect to robustness, precision, speed and user-friendliness. The new automatic aberrationmeasurement procedures are suitable to establish HRTEM as a quantitative technique for material science investigations in the

  5. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang

    2012-10-22

    We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.

  6. Integrable parameter regimes and stationary states of nonlinearly coupled electromagnetic and ion-acoustic waves

    International Nuclear Information System (INIS)

    Rao, N.N.

    1998-01-01

    A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known Hacute enon endash Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. copyright 1998 American Institute of Physics

  7. Selective wave-transmitting electromagnetic absorber through composite metasurface

    Science.gov (United States)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  8. Precision Timing with Silicon Sensors for Use in Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bornheim, A. [Caltech; Ronzhin, A. [Fermilab; Kim, H. [Chicago U.; Bolla, G. [Fermilab; Pena, C. [Caltech; Xie, S. [Caltech; Apresyan, A. [Caltech; Los, S. [Fermilab; Spiropulu, M. [Caltech; Ramberg, E. [Fermilab

    2017-11-27

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 1034 cm-2 s-1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC and future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.

  9. Precision Timing with Silicon Sensors for Use in Calorimetry

    Science.gov (United States)

    Bornheim, A.; Ronzhin, A.; Kim, H.; Bolla, G.; Pena, C.; Xie, S.; Apresyan, A.; Los, S.; Spiropulu, M.; Ramberg, E.

    2017-11-01

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 1034 cm -2 s -1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC and future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.

  10. On the electro-magnetic nature of life.

    Science.gov (United States)

    Jacobson, J I

    1989-01-01

    Man has wondered since the dawning of thought about the origin and the meaning of the spark of life. How does life work and what is the difference between life and non-life? This paper wonders about the part that electromagnetism plays in the life process. It proposes a new insight into the relation of in vivo electromagnetic fields and gravitational fields and discusses such manifestations as solitons, the quantum hall effect, gravity waves, biological strings, biologically closed electric circuits, phonos and the piezoelectric nature of living tissue. It proposes a new and fundamental form of resonance, called Jacobson resonance. The system unifies quantum genetic characters and associated structures with electromagnetic field interaction energies. The result is the reorientation of atomic crystal lattice structures of organic molecules critical to the sustenance of life. A new treatment methodology is proposed for genomic, viral and trophic factor disorders essentially in terms of the potential efficacy of the magnetic force to reorient the spin angular momenta of electrons and protons; to therein rearrange atomic and molecular magnetic domains regulating homeostasis on microscopic, mesosopic and macroscopic levels through biological amplification of quantum interactions. Finally it proposes that the equation, mc2 = Bvl coulomb, may indeed represent the achievement of fourfold physical unification, the unification of physics and medicine, and resultant production of a thorough understanding of what may be the most fundamental natural law of the universe representing the ultimate goal of Einsteinian equivalence and relativistic field theory.

  11. Investigation of a double oscillating-fan cooling device using electromagnetic force

    International Nuclear Information System (INIS)

    Su, Hsien-Chin; Xu, Han Yang

    2016-01-01

    Highlights: • The characteristics of a double oscillating-fan cooling device using electromagnetic force was investigated. • The driving current can be either DC PWM or AC within 3–12 V. • The comparison between a double blower pair, the model and a synjet were examined. • A 50 mm ∗ 50 mm ∗ 15 mm model can provide the flow rate of 154.89 l/min while consuming 0.65 W. • The flow rate, sound pressure, power consumption and two thermal tests have been done. - Abstract: This study proposes a double oscillating-fan cooling device using electromagnetic force. The device consists of two oscillating-fans. It requires only one electromagnet and two fan sheets with one magnet on each of them. The electromagnet and fan sheets are situated on a base and arranged accordingly. The electromagnetic force generated by the electromagnet can actuate the fan sheets. The main advantage of the device is its simple structure because there is no bearing and motor in the device. The driving current can be either DC PWM (Pulse width modulation) or AC (Alternating current) within 3–12 V so it is compatible with most electronic devices. The dimensions of the proposed model are 50 mm ∗ 50 mm ∗ 15 mm during operation. Concerning flow rate, sound pressure, power consumption and resonant frequency tests, a comparison between the proposed model and different type of cooling devices has been completed. The result shows that the model can provide cooling ability similar to a rotary fan while consuming 40% of the power of the rotary fan. It shows not only a good cooling ability but also a great potential for structural reliability and design flexibility.

  12. Predicting the biological effects of mobile phone radiation absorbed energy linked to the MRI-obtained structure.

    Science.gov (United States)

    Krstić, Dejan; Zigar, Darko; Petković, Dejan; Sokolović, Dušan; Dinđić, Boris; Cvetković, Nenad; Jovanović, Jovica; Dinđić, Nataša

    2013-01-01

    The nature of an electromagnetic field is not the same outside and inside a biological subject. Numerical bioelectromagnetic simulation methods for penetrating electromagnetic fields facilitate the calculation of field components in biological entities. Calculating energy absorbed from known sources, such as mobile phones when placed near the head, is a prerequisite for studying the biological influence of an electromagnetic field. Such research requires approximate anatomical models which are used to calculate the field components and absorbed energy. In order to explore the biological effects in organs and tissues, it is necessary to establish a relationship between an analogous anatomical model and the real structure. We propose a new approach in exploring biological effects through combining two different techniques: 1) numerical electromagnetic simulation, which is used to calculate the field components in a similar anatomical model and 2) Magnetic Resonance Imaging (MRI), which is used to accurately locate sites with increased absorption. By overlapping images obtained by both methods, we can precisely locate the spots with maximum absorption effects. This way, we can detect the site where the most pronounced biological effects are to be expected. This novel approach successfully overcomes the standard limitations of working with analogous anatomical models.

  13. Framing the structural role of mathematics in physics lectures: A case study on electromagnetism

    Directory of Open Access Journals (Sweden)

    Ricardo Karam

    2014-05-01

    Full Text Available Physics education research has shown that students tend to struggle when trying to use mathematics in a meaningful way in physics (e.g., mathematizing a physical situation or making sense of equations. Concerning the possible reasons for these difficulties, little attention has been paid to the way mathematics is treated in physics instruction. Starting from an overall distinction between a technical approach, which involves an instrumental (tool-like use of mathematics, and a structural one, focused on reasoning about the physical world mathematically, the goal of this study is to characterize the development of the latter in didactic contexts. For this purpose, a case study was conducted on the electromagnetism course given by a distinguished physics professor. The analysis of selected teaching episodes with the software Videograph led to the identification of a set of categories that describe different strategies used by the professor to emphasize the structural role of mathematics in his lectures. As a consequence of this research, an analytic tool to enable future comparative studies between didactic approaches regarding the way mathematics is treated in physics teaching is provided.

  14. Precision Muonium Spectroscopy

    NARCIS (Netherlands)

    Jungmann, Klaus P.

    2016-01-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 mu s. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In

  15. A modified precise integration method based on Magnus expansion for transient response analysis of time varying dynamical structure

    International Nuclear Information System (INIS)

    Yue, Cong; Ren, Xingmin; Yang, Yongfeng; Deng, Wangqun

    2016-01-01

    This paper provides a precise and efficacious methodology for manifesting forced vibration response with respect to the time-variant linear rotational structure subjected to unbalanced excitation. A modified algorithm based on time step precise integration method and Magnus expansion is developed for instantaneous dynamic problems. The iterative solution is achieved by the ideology of transition and dimensional increment matrix. Numerical examples on a typical accelerating rotation system considering gyroscopic moment and mass unbalance force comparatively demonstrate the validity, effectiveness and accuracy with Newmark-β method. It is shown that the proposed algorithm has high accuracy without loss efficiency.

  16. Structural effects on electromagnetic flow coupler performance

    International Nuclear Information System (INIS)

    Aoyama, Goro; Yokota, Norikatsu; Mine, Masao; Watanabe, Takashi; Takuma, Tadasu; Takenaka, Kiyoshi.

    1992-01-01

    A prototype electromagnetic flow coupler was tested using 300degC liquid sodium to estimate the effect on performance of generator flow velocity, magnetic flux density, magnetic core length and bus bar length. Its performance was not affected by changes in fluid velocity and magnetic flux density up to 8.3 m/s and 0.51 T, respectively. Besides the experiments, a two-dimensional numerical analysis program based on Ohm's law and the current continuity equation was prepared to estimate the effects of magnetic core length and bus bar construction. The current transferred from the generator to the pump, the current transfer ratio, increased by lengthening the magnetic core being a maximum of 0.706 for a 100 mm core and 0.764 for a 300 mm core. The numerical results showed that the presence of the bus bar in the outer region of the magnetic core gave inferior performance to that in its absence. (author)

  17. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  18. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  19. Electronic structure and transport on the surface of topological insulator attached to an electromagnetic superlattice

    International Nuclear Information System (INIS)

    Wang Haiyan; Chen Xiongwen; Zhou Xiaoying; Zhang Lebo; Zhou Guanghui

    2012-01-01

    We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.

  20. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  1. Feasibility studies of time-like proton electromagnetic form factors at PANDA-FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Dbeyssi, Alaa; Capozza, Luigi; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Mora Espi, Maria Carmen; Noll, Oliver; Rodriguez Pineiro, David; Valente, Roserio; Zambrana, Manuel; Zimmermann, Iris [Helmholtz-Institut Mainz, Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz, Mainz (Germany); Institute of Nuclear Physics, Mainz (Germany); PRISMA Cluster of Excellence, Mainz (Germany); Marchand, Dominique; Tomasi-Gustafsson, Egle; Wang, Ying [Institut de Physique Nucleaire, Orsay (France); Collaboration: PANDA-Collaboration

    2015-07-01

    Electromagnetic form factors are fundamental quantities which describe the intrinsic electric and magnetic distributions of hadrons. Time-like proton form factors are experimentally accessible through the annihilation processes anti p+p <-> e{sup +}+e{sup -}. Their measurement in the time-like region had been limited by the low statistics achieved by the experiments. This contribution reports on the results of Monte Carlo simulations for future measurements of electromagnetic proton form factors at PANDA (antiProton ANnihilation at DArmstadt). In frame of the PANDARoot software, the statistical precision at which the proton form factors will be determined is estimated. The signal (anti p+p → e{sup +}+e{sup -}) identification and the suppression of the main background process (anti p+p → π{sup +}+π{sup -}) are studied. Different methods have been used and/or developed to generate and analyse the processes of interest. The results show that time-like proton form factors will be measured at PANDA with unprecedented statistical accuracy.

  2. Electromagnetic dissociation of target nuclei by $^{16}$O and $^{32}$S projectiles

    CERN Multimedia

    2002-01-01

    We have measured the inclusive cross sections for electromagnetic dissociation (ED) of $^{197}$Au targets by 60 and 200 GeV/nucleon $^{16}$O and $^{32}$S projectiles. This is an extension of similar measurements carried out earlier at 2 GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual $\\gamma$ ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200 GeV/nucleon $^{16}$O projectiles on $^{197}$Au of approximately 0.45~barns. The result i...

  3. Timing performance of the CMS electromagnetic calorimeter and prospects for the future

    CERN Document Server

    Bornheim, Adolf

    2014-01-01

    The CMS electromagnetic calorimeter (ECAL) is made of 75,848 scintillating lead tungstate crystals arranged in a barrel and two endcaps. The scintillation light is read out by avalanche photodiodes in the barrel and vacuum phototriodes in the endcaps, at which point the scintillation pulse is amplified and sampled at 40 MHz by the on-detector electronics. The fast signal from the crystal scintillation enables energy as well as timing measurements from the data collected in proton-proton collisions with high energy electrons and photons. The single-channel time resolution of ECAL measured at beam tests for high energy showers is better than 100 ps. The timing resolution achieved with the data collected in proton-proton collisions at the LHC is discussed. We present how precision timing is used in current physics measurements and discuss studies of subtle calorimetric effects, such as the timing response of different crystals belonging to the same electromagnetic shower. In addition, we present prospects for th...

  4. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    Science.gov (United States)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  5. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  6. A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis

    Science.gov (United States)

    Dion, Marc; Kashyap, Satish; Louie, Aloisius

    1991-06-01

    This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.

  7. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  8. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, September 1, 1983-August 31, 1984

    International Nuclear Information System (INIS)

    Harper, E.P.; Lehman, D.R.; Prats, F.

    1984-01-01

    The George Washington University nuclear theory group proposes to conduct investigations of the structure and electromagnetic interactions of few-body systems. The structural properties of the very light nuclei are examined by developing theoretical models that begin from the basic interactions between the constituents and that are solved exactly (numerically), i.e., full three or four-body dynamics. Such models are then used in an attempt to understand the details of the strong and electromagnetic interactions of the few-nucleon nuclei after the basic underlying reaction mechanisms are understood with simpler models. Examples of specific work proposed are the following: (1) From exact four-body dynamics, derive the equations that will permit calculation of the 4 He→ 3 He+n and 4 He→d+d asymptotic normalization constants; (2) Develop a unified picture of the p + d → 3 He = γ, p + d → 3 He = π 0 , p + d → 3 H + π + reactions at intermediate energies; (3) Calculate the elastic and inelastic (1 + →0 + ) form factors for 6 Li with three-body (αNN) wave functions; (4) Calculate static properties (RMS radius, magnetic moment, and quadrupole moment) of 6 Li with three-body wave functions; and (5) Develop the theory for the coincidence reactions 6 Li(p,2p)nα, 6 Li(e,e'p)nα, and 6 Li(e,e'd)α. It is anticipated that these efforts will expand the frontiers of our knowledge about few-body nuclei

  9. Extended vector meson dominance model for the baryon octet electromagnetic form factors

    International Nuclear Information System (INIS)

    Williams, R.A.; Puckett-Truman, C.

    1996-01-01

    An unresolved issue in the present understanding of nucleon structure is the effect of hidden strangeness on electromagnetic observables such as G n E (q 2 ). Previously, we have shown that G n E (q 2 ) is sensitive to small φNN couplings. A complementary approach for understanding effects due to strangeness content and the Okubo-Zweig-Iizuka (OZI) rule is to investigate the electromagnetic structure of hyperons. We apply Sakurai close-quote s universality limit of the SU(3) F symmetry relations and a prescription based on the OZI rule to calculate the electromagnetic form factors of the baryon octet states (p,n,Λ,Σ + ,Σ 0 ,Σ - ,Ξ 0 ,Ξ - ) within the framework of an extended vector meson dominance model. To provide additional motivation for experimental investigation, we discuss the possibility of extracting the ratio G M Λ (q 2 )/G M ΣΛ (q 2 ) from the Λ/Σ polarization ratio in kaon electroproduction experiments. copyright 1996 The American Physical Society

  10. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    Science.gov (United States)

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  11. Finite difference time domain solution of electromagnetic scattering on the hypercube

    International Nuclear Information System (INIS)

    Calalo, R.H.; Lyons, J.R.; Imbriale, W.A.

    1988-01-01

    Electromagnetic fields interacting with a dielectric or conducting structure produce scattered electromagnetic fields. To model the fields produced by complicated, volumetric structures, the finite difference time domain (FDTD) method employs an iterative solution to Maxwell's time dependent curl equations. Implementations of the FDTD method intensively use memory and perform numerous calculations per time step iteration. The authors have implemented an FDTD code on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. This code allows to solve problems requiring as many as 2,048,000 unit cells on a 32 node Hypercube. For smaller problems, the code produces solutions in a fraction of the time to solve the same problems on sequential computers

  12. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots.

    Science.gov (United States)

    Liu, Keng-Ku; Tadepalli, Sirimuvva; Wang, Zheyu; Jiang, Qisheng; Singamaneni, Srikanth

    2017-11-20

    Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.

  13. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    Science.gov (United States)

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  14. Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes

    OpenAIRE

    Aidala, C. A.; Bailey, V.; Beckman, S.; Belmont, R.; Biggs, C.; Blackburn, J.; Boose, S.; Chiu, M.; Connors, M.; Franz, A.; Haggerty, J. S.; He, X.; Higdon, M. M.; Huang, J.; Kauder, K.

    2017-01-01

    The sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) will perform high precision measurements of jets and heavy flavor observables for a wide selection of nuclear collision systems, elucidating the microscopic nature of strongly interacting matter ranging from nucleons to the strongly coupled quark-gluon plasma. A prototype of the sPHENIX calorimeter system was tested at the Fermilab Test Beam Facility as experiment T-1044 in the spring of 2016. The electromagnetic calorimeter...

  15. An Approach for Effect Analysis of Electromagnetic Pulse in Operating NPPs

    International Nuclear Information System (INIS)

    Ryu, Ho Sun; Ye, Song Hae; Kim, Minyi; Lee, Euijong

    2016-01-01

    Recently, there is a growing Electromagnetic Pulse (EMP) threat caused by North Korea’s nuclear weapons and unmanned aerial vehicles (UAVs). KHNP CRI is currently conducting a research project that will evaluate the safety of domestic nuclear power plants (NPPs) against EMP effects and prepare safety measures to counter vulnerable points. We will instead use simulation tools to evaluate the electromagnetic shielding ability and the conductivity of cables through vulnerable points in NPPs. Through a study of electromagnetic simulation techniques and tools, this paper suggests a simulation method for analysis of EMP effects in operating NPPs. Although 3D tools are relatively accurate, is difficult to use only 3D tools to simulate EMP effects for huge and complex structures such as NPPs. It is more efficient in terms of cost and time to use a 3D tool and an EMT tool for the simulation of such structures. We have compared the advantages and disadvantages of various methods and have selected the most appropriate tools; we will proceed in our next paper with the simulation of EMP effects

  16. An Approach for Effect Analysis of Electromagnetic Pulse in Operating NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Sun; Ye, Song Hae; Kim, Minyi; Lee, Euijong [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Recently, there is a growing Electromagnetic Pulse (EMP) threat caused by North Korea’s nuclear weapons and unmanned aerial vehicles (UAVs). KHNP CRI is currently conducting a research project that will evaluate the safety of domestic nuclear power plants (NPPs) against EMP effects and prepare safety measures to counter vulnerable points. We will instead use simulation tools to evaluate the electromagnetic shielding ability and the conductivity of cables through vulnerable points in NPPs. Through a study of electromagnetic simulation techniques and tools, this paper suggests a simulation method for analysis of EMP effects in operating NPPs. Although 3D tools are relatively accurate, is difficult to use only 3D tools to simulate EMP effects for huge and complex structures such as NPPs. It is more efficient in terms of cost and time to use a 3D tool and an EMT tool for the simulation of such structures. We have compared the advantages and disadvantages of various methods and have selected the most appropriate tools; we will proceed in our next paper with the simulation of EMP effects.

  17. Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements

    Science.gov (United States)

    Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.

    1999-09-01

    MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.

  18. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    International Nuclear Information System (INIS)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1994-03-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g o , where g o is acceleration due to gravity

  19. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  20. Structural and ultrastructural study of rat testes influenced by electromagnetic radiation.

    Science.gov (United States)

    Almášiová, Viera; Holovská, Katarína; Cigánková, Viera; Račeková, Enikö; Fabianová, Kamila; Martončíková, Marcela

    2014-01-01

    This study was conducted to investigate the influence of whole-body electromagnetic radiation (EMR) on testicular parenchyma of Wistar rats. Sexually mature rats were subjected to pulsed electromagnetic field at frequency of 2.45 GHz and mean power density 2.8 mW/cm(2) by 3-h daily applications for 3 wk. Tissue samples were obtained 3 h after the last irradiation and processed by histological techniques for light and transmission electron microscopy. Testes showed apparent degenerative changes of seminiferous epithelium. The seminiferous tubules were mostly irregular in shape, and seminiferous epithelium contained a number of empty spaces of different size. Subsequently, groups of sloughed epithelial cells were often found inside the lumina of tubules. Except for relatively unchanged Sertoli cells, some locations of basal compartment of seminiferous epithelium contained shriveled Sertoli cells with dark cytoplasm. These areas showed degenerative features including necrotizing and shriveled spermatogonia surrounded by empty irregular spaces, and undulating basement membrane. The intertubular spaces were enlarged but interstitial Leydig cells did not show any marked morphological changes. Evidence demonstrates the adverse effects of EMR on testicular parenchyma in rats.

  1. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  2. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  3. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  4. Design and test of a novel isolator with negative resistance electromagnetic shunt damping

    International Nuclear Information System (INIS)

    Yan, Bo; Zhang, Xinong; Niu, Hongpan

    2012-01-01

    This paper proposes a negative resistance electromagnetic shunt damping vibration isolator and investigates the effectiveness of the isolator. The isolator consists of a shunt circuit and a pair of electromagnet and permanent magnets that are pasted onto a box-shaped spring. A kind of negative resistance shunt impedance is proposed to cancel the inherent resistance of the electromagnet. The electromechanical coupling coefficient and the electromagnetic damping force calculation formula are obtained by Biot–Savart’s law and Ampère’s law, respectively. A single degree of freedom system is employed to verify the performance of the proposed isolator. The governing equation is established. The performance of the proposed isolator under a half-cycle sine pulse is investigated and discussed. Experiments were carried out and the results agreed well with the numerical predictions. Both the results demonstrate that the negative resistance electromagnetic shunt damping vibration isolator could suppress vibration transmitted to the structure effectively. (paper)

  5. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  6. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  7. [Biological effects of non-ionizing electromagnetic radiation].

    Science.gov (United States)

    Fedorowski, A; Steciwko, A

    1998-01-01

    Since the mid 1970's, when Adey discovered that extremely-low-frequency electromagnetic field (ELF EMF) may affect the calcium ions efflux from various cells, bioeffects of non-ionizing radiation (NIR) have become the subject of growing interest and numerous research projects. At present, the fact that NIR exerts both stimulatory and inhibitory effects on different physiological cellular parameters is rather unquestionable. At the same time, some epidemiological studies suggest that exposure to EMF is potentially harmful even if its intensity is very low. It has been proved that thermal factors are not responsible for these effects, therefore nowadays, they are called 'non-thermal effects'. Our paper deals with three different aspects of biological effects of non-ionizing radiation, bioelectromagnetism, electromagnetobiology and electromagnetic bioinformation. Firstly, we describe how EMF and photons can be produced within a living cell, how biological cycles are controlled, and what are the features of endogenous electromagnetic radiation. Secondly, we discuss various facets of external EMF interactions with living matter, focusing on extremely-low-frequencies, radio- and microwaves. Possible mechanisms of these interactions are also mentioned. Finally, we present a short overview of current theories which explain how electromagnetic couplings may control an open and dissipative structure, namely the living organism. The theory of electromagnetic bioinformation seems to explain how different physiological processes are triggered and controlled, as well as how long-range interactions may possibly occur within the complex biological system. The review points out that the presented research data must be assessed very carefully since its evaluation is crucial to set the proper limits of EMF exposure, both occupational and environmental. The study of biological effects of non-ioinizing radiation may also contribute to the development of new diagnostic and therapeutic

  8. An electromagnetic inerter-based vibration suppression device

    International Nuclear Information System (INIS)

    Gonzalez-Buelga, A; Clare, L R; Neild, S A; Jiang, J Z; Inman, D J

    2015-01-01

    This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy

  9. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-07-01

    Full Text Available This paper proposes the study and implementation of a sensor with a metamaterial (MM lens in electromagnetic nondestructive evaluation (eNDE. Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  10. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

    Science.gov (United States)

    Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman

    2015-07-03

    This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  11. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  12. Applicability of the grounded-source airborne electromagnetics to coastal areas

    International Nuclear Information System (INIS)

    Ito, Hisatoshi; Tsukuda, Kazuhiro; Suzuki, Koichi; Kaieda, Hideshi; Kiho, Kenzo; Mogi, Toru

    2012-01-01

    Understanding geological and hydrogeological characteristics in coastal areas is an issue of paramount importance especially with regard to siting of geological disposal of nuclear wastes, whereas conventional airborne electromagnetic (AEM) surveys can reveal an electrical resistivity structure to a depth of only ∼200 m. In order to enhance the depth of investigation, we have developed a new type of AEM, grounded-electrical-source airborne transient electromagnetics (GREATEM). Here we have applied GREATEM to two coastal areas in Japan; Kujukuri, an alluvial coastal plain where thick Quaternary sediments prevail, and northwestern part of Awaji Island, where granitic rocks are dominant. It was found that the GREATEM system can reveal resistivity structure to a depth of ∼500 m and also high quality data are available just beneath the shoreline where shallow water prevails. (author)

  13. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  14. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  15. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  16. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  17. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  18. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  19. Light-to-light readout system of the CMS electromagnetic calorimeter

    CERN Document Server

    Denes, P; Lustermann, W; Mathez, H; Pangaud, P; Walder, J P

    2001-01-01

    For the CMS experiment at the Large Hadron Collider at CERN, an 8OOOO-crysral electromagnetic calorimeter will measure electron and photon energies with high precision over a dynamic range of roughly 16 bits. The readout electronics will be located directly behind the crystals, and must survive a total dose of up to 2x10 Gy along with 5x10**1**3 n/cm**2. A readout chain consisting of a custom wide-range acquisition circuit, commercial ADC and custom optical link for each crystal is presently under construction. An overview of the design is presented, with emphasis on the large-scale fiber communication system. 11 Refs.

  20. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  1. Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique

    International Nuclear Information System (INIS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn–Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol–gel combustion method. The microstructure and surface morphology of Mn–Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field. - Highlights: • We designed and synthesized Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8), with citrate acid as complex agent by the sol–gel combustion method. • Citrate acid as the complex agent overcomes the aggregation of ferrite resulting in high purity and homogeneous particles. • We investigated the electromagnetic absorbing performance of a fabricated thin coating by introducing Mn–Zn ferrite into epoxy resin (EP). • The Mn 0.8 Zn 0.2 Fe 2 O 4 composite coatings could achieve the satisfactory absorbing value of −17 dB at 800 MHz. • The prepared composites can potentially be used for the application in electromagnetic microwave absorbing field

  2. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  3. Strange magnetism and the anapole structure of the proton

    International Nuclear Information System (INIS)

    Hasty, R.; Beck, D.H.; Danagoulian, A.; Blake, A.; Carr, R.; Covrig, S.; Filipoone, B.W.; Ito, T.M.; Gao, J.; Jones, C.E.; Lee, P.; McKeown, R.D.; Savu, V.; Beise, E.J.; Breuer, H.; Spayde, D.T.; Tieulent, R.; Herda, M.C.; Barkhuff, D.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Tsentalovich, E.; Yang, B.; Zwart, T.; Hawthorne-Allen, A.M.; Pitt, M.; Ritter, J.; Korsch, W.; Mueller, B.; Wells, S.P.; Averett, T.; Roche, J.; Kramer, K.

    2000-01-01

    The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.

  4. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    Science.gov (United States)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2015-02-01

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.

  5. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    International Nuclear Information System (INIS)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz; Lustrac, André de

    2015-01-01

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device

  6. Planar passive electromagnetic deflector for millimeter-wave frequencies

    NARCIS (Netherlands)

    Kastelijn, M.C.T.; Akkermans, J.A.G.

    2008-01-01

    A novel passive planar structure is proposed that is able to deflect an incoming electromagnetic (EM) wave into a desired direction. The direction of the outgoing EM wave is determined by the design of this deflector. The deflector can be used to extend coverage of a steerable source with limited

  7. Parametric trapping of electromagnetic waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Silin, V.P.; Starodub, A.N.

    1977-01-01

    Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients

  8. Precise documentation of well-structured programs

    Energy Technology Data Exchange (ETDEWEB)

    Parnas, D.L.; Madey, J.; Iglewski, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1997-11-01

    This paper describes a new form of program documentation that is precise, systematic and readable. This documentation comprises a set of displays supplemented by a lexicon and an index. Each display presents a program fragment in such a way that its correctness can be examined without looking at any other display. Each display has three parts: (1) the specification of the program presented in the display, (2) the program itself, and (3) the specifications of programs invoked by this program. The displays are intended to be used by Software Engineers as a reference document during inspection and maintenance. This paper also introduces a specification technique that is a refinement of Mills functional approach to program documentation and verification; programs are specified and described in tabular form.

  9. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    Directory of Open Access Journals (Sweden)

    Keisuke Fujisaki

    2013-11-01

    Full Text Available To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model and the homogeneous model (macro-model. However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity.

  10. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  11. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  12. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  13. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  14. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  15. Broadband Control of Topological Nodes in Electromagnetic Fields

    Science.gov (United States)

    Song, Alex Y.; Catrysse, Peter B.; Fan, Shanhui

    2018-05-01

    We study topological nodes (phase singularities) in electromagnetic wave interactions with structures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength range. As an implication of such broadband binding, we demonstrate that the topological nodes can be used for hiding of metallic objects over a broad wavelength range.

  16. A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots

    International Nuclear Information System (INIS)

    Arrayás, Manuel; Trueba, José L

    2015-01-01

    An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)

  17. A parallel code named NEPTUNE for 3D fully electromagnetic and pic simulations

    International Nuclear Information System (INIS)

    Dong Ye; Yang Wenyuan; Chen Jun; Zhao Qiang; Xia Fang; Ma Yan; Xiao Li; Sun Huifang; Chen Hong; Zhou Haijing; Mao Zeyao; Dong Zhiwei

    2010-01-01

    A parallel code named NEPTUNE for 3D fully electromagnetic and particle-in-cell (PIC) simulations is introduced, which could run on the Linux system with hundreds to thousand CPUs. NEPTUNE is suitable to simulate entire 3D HPM devices; many HPM devices are simulated and designed by using it. In NEPTUNE code, the electromagnetic fields are updated by using the finite-difference in time domain (FDTD) method of solving Maxwell equations and the particles are moved by using Buneman-Boris advance method of solving relativistic Newton-Lorentz equation. Electromagnetic fields and particles are coupled by using liner weighing interpolation PIC method, and the electric filed components are corrected by using Boris method of solve Poisson equation in order to ensure charge-conservation. NEPTUNE code could construct many complicated geometric structures, such as arbitrary axial-symmetric structures, plane transforming structures, slow-wave-structures, coupling holes, foils, and so on. The boundary conditions used in NEPTUNE code are introduced in brief, including perfectly electric conductor boundary, external wave boundary, and particle boundary. Finally, some typical HPM devices are simulated and test by using NEPTUNE code, including MILO, RBWO, VCO, and RKA. The simulation results are with correct and credible physical images, and the parallel efficiencies are also given. (authors)

  18. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  19. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  20. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.